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Abstract. Semidiscrete finite element approximations of a linear fluid-structure interaction
problem are studied. First, results concerning a divergence-free weak formulation of the interaction
problem are reviewed. Next, semidiscrete finite element approximations are defined, and the exis-
tence of finite element solutions is proved with the help of an auxiliary, discretely divergence-free
formulation. A discrete inf-sup condition is verified, and the existence of a finite element pressure
is established. Strong a priori estimates for the finite element solutions are also derived. Then,
by passing to the limit in the finite element approximations, the existence of a strong solution is
demonstrated and semidiscrete error estimates are obtained.
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1. Introduction. Fluid-structure interaction problems have been extensively
studied in recent years both analytically and computationally. The book [28] and
the special issue [30] give accounts of the state of the art from the engineering points
of view. In addition, a short discussion of the literature can be found in [10]. The
references in [10] include [4, 18, 29] for fluid-structure interactions involving elemen-
tary fluids, [2, 3, 32] for fluid-structure interactions involving inviscid fluids, and
[6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 20, 21, 22, 26, 27, 33, 34] for interactions between
viscous, incompressible fluids and elastic solids.

In [10], we analyzed a model for the interactions between Stokesian fluids and
linear elastic solids. This paper is devoted to the finite element analysis of that
model. As in [10], we assume that the fluid and solid occupy two adjacent open
Lipschitz domains, Ω1 ⊂ R

d and Ω2 ⊂ R
d, respectively, where d = 2 or 3 is the space

dimension. We denote by Ω the entire fluid-solid region under consideration; i.e., Ω
is the interior of Ω1 ∪Ω2. Let Γ0 = ∂Ω1 ∩ ∂Ω2 denote the interface between the fluid
and solid, and let Γ1 = ∂Ω1 \ Γ0 and Γ2 = ∂Ω2 \ Γ0 denote the parts of the fluid
and solid boundaries, respectively, excluding the interface Γ0. For obvious reasons we
assume that meas(Γ1 ∪ Γ2) �= 0.
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In the fluid region Ω1, we apply the Stokes system

ρ1vt + ∇p− µ1∇ · (∇v + ∇vT ) = ρ1f1 in Ω1,

∇ · v = 0 in Ω1,

v = 0 on Γ1,

v|t=0 = v0 in Ω1,

(1.1)

where v denotes the fluid velocity, p the fluid pressure, f1 the given body force per
unit mass, ρ1 and µ1 the constant fluid density and viscosity, and v0 the given initial
velocity.

In the solid region, we apply the equations of linear elasticity
ρ2utt − µ2∇ · (∇u + ∇uT ) − λ2∇(∇ · u) = ρ2f2 in Ω2,

u = 0 on Γ2,

u|t=0 = u0 and ut|t=0 = u1 in Ω2,

(1.2)

where u denotes the displacement of the solid, f2 the given loading force per unit
mass, µ2 and λ2 the Lamé constants, ρ2 the constant solid density, and u0 and u1

the given initial data.
Across the fixed interface Γ0 between the fluid and solid, the velocity and stress

vector are continuous. Thus, we have

ut = v on Γ0(1.3)

and

µ2(∇u + ∇uT ) · n2 + λ2(∇ · u)n2 = pn1 − µ1(∇v + ∇vT ) · n1 on Γ0,(1.4)

where ni is the outward-pointing unit normal vector along ∂Ωi, i = 1, 2.
The physical validity of the model (1.1)–(1.4) was explained in [10]. Previous

work concerning this model include, as cited in [10], eigenmode analysis [34], homog-
enization [8], the one-dimensional case [11], and a numerical algorithm [13]. In [10],
weak formulations for (1.1)–(1.4) were defined, and the existence of weak solutions
was established. The proof for the existence result was based on Galerkin approxima-
tions using divergence-free basis functions, and the pressure term was absent in the
Galerkin approximations.

The objective of this paper is to define semidiscrete finite element approxima-
tions, prove the convergence of finite element solutions, and derive error estimates for
the finite element approximations. We point out that finite element basis functions
in general are not divergence-free, and finite element formulations must be studied
with the pressure term. The proof for the convergence of finite element solutions pro-
vides an alternative proof to that found in [10] for the existence of a weak solution;
the results of this paper do not rely on those of [10] concerning the existence of a
divergence-free weak solution. Moreover, the regularity and compatibility assump-
tions made on the data in this paper lead to a stronger solution. The details for
the divergence-free Galerkin approximations of [10] and the discretely divergence-free
finite element approximations are sufficiently different so that separate treatments are
warranted.
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A few technical aspects contained in this paper are particularly noteworthy: the
finite element initial conditions are defined asymmetrically about the two subdomains
Ω1 and Ω2; two inf-sup conditions are verified that facilitate the analysis of certain
steady-state saddle point problems (these inf-sup conditions are also useful in dealing
with approximations of mixed boundary value problems for the Stokes equations); and
error estimates for a weighted L2 projection onto discretely divergence-free spaces are
derived.

The plan of the paper is as follows. In section 2, we recall relevant results of
[10], in particular the weak formulations and the existence theorems. In section 3, we
define semidiscrete finite element approximations and establish the existence of and a
priori estimates for the finite element solutions. In section 4, we show the convergence
of finite element solutions and derive error estimates.

2. Notations and results concerning divergence-free weak formulations.
In this section we will recall the notation, weak formulations, and existence results of
[10].

Throughout this paper, C denotes a positive constant, depending on the domains
Ω, Ω1, and Ω2, whose meaning and value changes with context. Hs(D), s ∈ R,
denotes the standard Sobolev space of order s with respect to the set D equipped
with the standard norm ‖ · ‖s,D. Vector-valued Sobolev spaces are denoted by Hs(D),
with norms still denoted by ‖ · ‖s,D. H1

0 (D) denotes the space of functions belonging
to H1(D) that vanish on the boundary ∂D of D; H1

0(D) denotes the vector-valued
counterpart.

We will use the following L2 inner product notations on scalar and vector-valued
L2 spaces:

[p, q]D =

∫
D
pq dD ∀ p, q ∈ L2(D), [u,v]D =

∫
D
u · v dD ∀u,v ∈ L2(D),

where the spatial set D is Ω or Γ0 or Ωi, for i = 1, 2.
We introduce the function spaces

Xi = [H1
0(Ω)]|Ωi

with the norm ‖ · ‖Xi
= ‖ · ‖1,Ωi

, i = 1, 2,

and

Ψ = {η ∈ H1
0(Ω) : divη = 0 in Ω1} with the norm ‖ · ‖1,Ω.

We define the weighted L2(Ω) inner product [[·, ·]] by

[[ξ,η]] = [ρ1ξ,η]Ω1 + [ρ2ξ,η]Ω2 ∀ ξ,η ∈ L2(Ω).(2.1)

We denote by 〈〈·, ·〉〉 the duality pairing between Ψ∗ and Ψ that is generated from
the weighted L2(Ω) inner product [[·, ·]]. The norm on the dual space Ψ∗ is defined
in the conventional manner:

‖g‖Ψ∗ = sup
η∈Ψ, ‖η‖1,Ω≤1

|〈〈g,η〉〉| ∀g ∈ Ψ∗.



4 Q. DU, M. D. GUNZBURGER, L. S. HOU, AND J. LEE

We define the bilinear forms

a1[u,v] = 2

∫
Ω1

µ1(∇u + ∇uT ) : (∇v + ∇vT ) dΩ ∀u,v ∈ X1,

a2[u,v] =

∫
Ω2

{
2µ2(∇u + ∇uT ) : (∇v + ∇vT ) + λ2(∇ · u)(∇ · v)

}
dΩ ∀u,v ∈ X2,

b[v, q] = −
∫

Ω1

q∇ · v dΩ ∀v ∈ X1, ∀ q ∈ L2(Ω1).

It can be verified with the help of Korn’s inequalities [31, pp. 31, 120] that for i = 1, 2,

ai[η,η] ≥ ki‖η‖2
1,Ωi

∀η ∈ Xi if meas (Γi) �= 0(2.2)

and

[η,η]Ωi + ai[η,η] ≥ ki‖η‖2
1,Ωi

∀η ∈ Xi if meas (Γi) = 0.(2.3)

The bounded bilinear form b[·, ·] was shown in [10] to satisfy the inf-sup conditions

inf
q∈L2(Ω1)

sup
η∈H1

0(Ω)

b[η, q]

‖η‖1,Ω‖q‖0,Ω1

≥ kb(2.4)

and

inf
q∈L2(Ω1)

sup
v∈X1

b[v, q]

‖v‖1,Ω1
‖q‖0,Ω1

≥ kb,(2.5)

where kb > 0 is a constant.
For functions that also depend on time, we introduce the space L2(0, T ;X) that

consists of L2-integrable functions from [0, T ] into the space X and which is equipped
with the norm (∫ t

0

‖f‖2
X dt

)1/2

.

Similarly, we introduce the space C(0, T ;X) that consists of continuous functions from
[0, T ] into the space X and which is equipped with the norm

sup
t∈[0,T ]

‖f‖X .

The divergence-free weak formulation for (1.1)–(1.4) was defined in [10] as follows.
Given {

f1 ∈ C([0, T ];L2(Ω1)), f2 ∈ C([0, T ];L2(Ω2)), u0 ∈ X2,

v0 ∈ X1, divv0 = 0 in Ω1, u1 ∈ X2, v0|Γ0 = u1|Γ0 ,
(2.6)

seek a pair (v,u) such that

(v,u) ∈ L2(0, T ;X1) × L2(0, T ;X2), divv = 0,(2.7)

d

dt

(
ρ1[v,η]Ω1 + ρ2[∂tu,η]Ω2

)
+ a1[v,η] + a2[u,η]

= ρ1[f1,η]Ω1 + ρ2[f2,η]Ω2 ∀η ∈ Ψ,

(2.8)
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v|t=0 = v0, u|t=0 = u0, ut|t=0 = u1,(2.9)

and ∫ t

0

v(s)|Γ0
ds = u(t)|Γ0

− u0|Γ0
a.e. t.(2.10)

The “natural” interface condition (1.4) is built into (2.8), and the “essential” interface
condition (1.3) is enforced weakly in the sense of (2.10).

By defining

ξ =

{
v in Ω1,

ut in Ω2,
ξ0 =

{
v0 in Ω1,

u1 in Ω2,
and f =

{
f1 in Ω1,

f2 in Ω2,
(2.11)

(2.7)–(2.10) was conveniently recast in [10] into the following equivalent, auxiliary
divergence-free weak formulation: seek a ξ such that

ξ ∈ L2(0, T ;L2(Ω)), ∂tξ ∈ L2(0, T ;Ψ∗),

ξ|Ω1
∈ L2(0, T ;X1), div ξ|Ω1

= 0,
∫ t
0
ξ(s)|Ω2

ds ∈ L2(0, T ;X2),
(2.12)

〈〈ξt,η〉〉 + a1[ξ,η] + a2

[∫ t

0

ξ(s) ds,η

]
= [[f ,η]] − a2[u0,η] ∀η ∈ Ψ, a.e. t,

(2.13)

ξ(0) = ξ0,(2.14)

and ∫ t

0

(ξ(s)|Ω1
)
∣∣∣
Γ0

ds =

∫ t

0

(ξ(s)|Ω2
)
∣∣∣
Γ0

ds a.e. t.(2.15)

The existence and uniqueness of a solution for the auxiliary problem (2.12)–(2.15)
was proved in [10].

Theorem 2.1. Assume that f1,v0, f2, and u0 satisfy (2.6). Then, there exists a
unique solution ξ for (2.12)–(2.15). Moreover, ξ satisfies the estimates

‖ξ(t)‖2
0,Ω + ‖ξ‖2

L2(0,T ;H1(Ω1))
+

∥∥∥∥∫ t

0

ξ(s) ds

∥∥∥∥2

H1(Ω2)

≤ CeCT (‖f‖2
L2(0,T ;L2(Ω)) + ‖u0‖2

1,Ω2
+ ‖v0‖2

1,Ω1
+ ‖u1‖2

1,Ω2
) ∀ t ∈ [0, T ]

(2.16)

and

‖∂tξ‖2
L2(0,T ;Ψ∗)

≤ CeCT (‖f‖2
L2(0,T ;L2(Ω)) + ‖u0‖2

1,Ω2
+ ‖v0‖2

1,Ω1
+ ‖u1‖2

1,Ω2
).

(2.17)

Using relation (2.11) reversely, i.e., setting v = ξ|Ω1 and u = u0 +
∫ t
0
ξ(s)|Ω2 ds,

Theorem 2.1 immediately yields the following existence result for (2.7)–(2.10).



6 Q. DU, M. D. GUNZBURGER, L. S. HOU, AND J. LEE

Theorem 2.2. Assume that f1,v0, f2,u0, and u1 satisfy (2.6). Then, there
exists a unique solution (v,u) ∈ L2(0, T ;X1) × L2(0, T ;X2) for (2.7)–(2.10), where
(2.8) holds in the sense of distributions on (0, T ). Moreover,

‖v(t)‖2
0,Ω1

+ ‖ut(t)‖2
0,Ω2

+ ‖v‖2
L2(0,T ;H1(Ω1))

+ ‖u(t)‖2
H1(Ω2)

≤ CeCT (‖f‖2
L2(0,T ;L2(Ω)) + ‖u0‖2

1,Ω2
+ ‖v0‖2

0,Ω1
+ ‖u1‖2

0,Ω2
) ∀ t ∈ [0, T ].

(2.18)

The existence of a stronger solution and an L2-integrable pressure was also es-
tablished in [10].

Theorem 2.3. Assume that f1,v0, f2,u0, and u1 satisfy (2.6) and

∂tfi ∈ L2(0, T ;L2(Ωi)), i = 1, 2, v0 ∈ H2(Ω1), u1 ∈ H1(Ω2), u0 ∈ H2(Ω2).

Assume further that there exists a p0 ∈ H1(Ω1) such that

(p0n1 − µ1(∇v0 + ∇vT0 ) · n1)|Γ0 = (µ2(∇u0 + ∇uT0 ) · n2 + (λ2 + µ2)(divu0)n2)|Γ0 ,

where ni denotes the outward-pointing normal along ∂Ωi. Then, the solution (v,u)
to (2.7)–(2.10) satisfies

v ∈ L∞(0, T ;L2(Ω1)) ∩ L2(0, T ;X1), u ∈ L∞(0, T ;X2),

vt ∈ L∞(0, T ;L2(Ω1))∩L2(0, T ;X1), ut ∈ L∞(0, T ;X2), utt ∈ L∞(0, T ;L2(Ω2)),

and

‖∂tv(t)‖2
0,Ω1

+ ‖∂ttu(t)‖2
0,Ω2

+ ‖∂tv‖2
L2(0,T ;X1)

+ ‖∂tu(t)‖2
1,Ω2)

≤ CeCT (‖f‖2
H1(0,T ;L2(Ω)) + ‖u0‖2

2,Ω2
+ ‖v0‖2

2,Ω1
+ ‖p0‖2

1,Ω1
+ ‖u1‖2

1,Ω2
) ∀t ∈ [0, T ].

Furthermore, there exists a unique p ∈ L2(0, T ;L2(Ω1)) such that

ρ1[vt,η]Ω1 + b[η, p] + a1[v,η] + ρ2[utt,η]Ω2 + a2[u,η]

= ρ1[f1,η]Ω1
+ ρ2[f2,η]Ω2

∀η ∈ H1
0(Ω), a.e. t

(2.19)

and

‖p‖L2(0,T ;L2(Ω1)) ≤ CeCT (‖f‖2
H1(0,T ;L2(Ω))+‖u0‖2

2,Ω2
+‖v0‖2

2,Ω1
+‖p0‖2

1,Ω1
+‖u1‖2

1,Ω2
).

3. Semidiscrete finite element approximations. In this section we will de-
fine semidiscrete finite element approximations, prove the existence of finite element
solutions on discretely divergence-free spaces and derive energy estimates, and es-
tablish the existence of a discrete pressure by verifying inf-sup conditions for finite
element space pairs.

As alluded to previously, finite element solutions in general are not divergence-
free, and finite element formulations should include the pressure term. Of course, the
corresponding continuous weak formulation should also contain the pressure term.
Such a weak formulation requires additional regularity on vt and utt. The continuous
weak formulation we consider is as follows: given f1,v0, f2, and u0 satisfying (2.6),
seek a triplet (v, p,u) such that

(v, p,u) ∈ L2(0, T ;X1) × L2(0, T ;L2(Ω1)) × L2(0, T ;X2),(3.1)
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vt ∈ L2(0, T ;L2(Ω1)), ut ∈ L2(0, T ;X2), utt ∈ L2(0, T ;L2(Ω2)),(3.2)

ρ1[vt,η]Ω1
+ b[η, p] + a1[v,η] + ρ2[utt,η]Ω2 + a2[u,η]

= ρ1[f1,η]Ω1 + ρ2[f2,η]Ω2 ∀η ∈ H1
0(Ω), a.e. t ∈ [0, T ],

(3.3)

b[v, q] = 0 ∀ q ∈ L2(Ω1), a.e. t ∈ [0, T ],(3.4)

v|t=0 = v0, u|t=0 = u0, ut|t=0 = u1,(3.5)

v|Γ0 = ut|Γ0 a.e. t.(3.6)

We will define finite element approximations to (3.3)–(3.6). By showing the conver-
gence of finite element solutions, we establish the existence of a solution for (3.1)–(3.6).
For reasons connected with the derivation of the regularity results (3.2), we will define
finite element initial conditions in a nonstandard manner.

3.1. Finite element discretization. In what follows we assume that Ω1 and
Ω2 are two-dimensional polygons or three-dimensional polyhedra. Let h denote a
discretization parameter associated with the triangulation T h(Ω) of Ω. We assume
that elements of T h do not cross the interface Γ0. We assume that the triangula-
tion T h consists of triangular elements in two dimensions or tetrahedral elements in
three dimensions, though our results can be extended to other types of triangulations.
Furthermore, we assume that there exists a triangulation T h0(Ω) such that, for each
h < h0, T h(Ω) is a refinement of T h0(Ω).

For each h, we choose Xh ⊂ C(Ω) ∩H1
0(Ω) and Qh1 ⊂ L2(Ω1) as finite element

subspaces over the triangulation T h(Ω). We assume that Xh contains piecewise linear
functions. We set

Xh
i = Xh|Ωi

, i = 1, 2,

and

Ψh = {ηh ∈ Xh : b[ηh, qh] = 0 ∀ qh ∈ Qh1}.

We assume that the finite element spaces Xh
1 , Xh

2 , and Qh1 satisfy the standard ap-
proximation properties [5]; i.e., there exist an integer k > 0 and constant C > 0 such
that

inf
vh∈Xh

i

‖v − vh‖0,Ωi ≤ Chr+1‖v‖r+1,Ωi ∀v ∈ Hr+1(Ωi) ∩Xi, r ∈ [0, k],(3.7)

inf
vh∈Xh

i

‖v − vh‖1,Ωi ≤ Chr‖v‖r+1,Ωi ∀v ∈ Hr+1(Ωi) ∩Xi, r ∈ [0, k],(3.8)

and

inf
qh∈Qh

1

‖q − qh‖0,Ω1 ≤ Chr‖p‖r,Ω1 ∀ q ∈ Hr(Ω1), r ∈ [0, k].(3.9)
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Also, Xh satisfies the approximation properties

inf
ηh∈Xh

‖η − ηh‖0,Ω ≤ Chr+1‖η‖r+1,Ω ∀η ∈ Hr+1(Ω) ∩ L2(Ω), r ∈ [0, k],(3.10)

and

inf
ηh∈Xh

‖η − ηh‖1,Ωi ≤ Chr‖η‖r+1,Ω ∀η ∈ Hr+1(Ω) ∩H1
0(Ω), r ∈ [0, k].(3.11)

We assume that the finite element pair {X̃h
1 ,M

h} ≡ {Xh
1 ∩H1

0(Ω1), Q
h
1 ∩L2

0(Ω1)}
satisfies the discrete inf-sup condition

inf
qh∈Mh(Ω1)

sup
vh∈X̃h(Ω1)

b[vh, qh]

‖vh‖1,Ω1‖qh‖0,Ω1

≥ C.(3.12)

Choices of finite element spaces satisfying (3.12) are well known [19]. Note that

functions in X̃h
1 vanish on Γ0.

We also assume that triangulations are uniformly regular so that the following
inverse inequalities hold:

‖vh‖1,Ω ≤ Ch−1‖vh‖0,Ω ∀vh ∈ Xh;

‖vh‖1,Ωi ≤ Ch−1‖vh‖0,Ωi ∀vh ∈ Xh
i , i = 1, 2.

(3.13)

Semidiscrete finite element approximations of the weak form (3.3)–(3.6) are de-
fined as follows: seek (vh, ph,uh) ∈ C1([0, T ];Xh

1 ) × C([0, T ];Qh1 ) × C1([0, T ];Xh
2 )

such that

ρ1[∂tvh,ηh]Ω1
+ b[ηh, ph] + a1[vh,ηh] + ρ2[∂ttuh,ηh]Ω2

+ a2[uh,ηh]

= ρ1[f1,ηh]Ω1 + ρ2[f2,ηh]Ω2 ∀ηh ∈ Xh, a.e. t,
(3.14)

b[vh, qh] = 0 ∀ qh ∈ Qh1 , a.e. t,(3.15)

vh|Γ0 = ∂tuh|Γ0 a.e. t ∈ [0, T ],(3.16)

vh|t=0 = v0,h, uh|t=0 = u0,h, ∂tuh|t=0 = u1,h,(3.17)

where v0,h ∈ Ψh|Ω1 , u0,h ∈ Xh
2 , and u1,h ∈ Xh

2 are finite element approximations of
v0, u0, and u1, respectively. We assume that (v0,h,u1,h) satisfies

b[v0,h, qh] = 0 ∀ qh ∈ Qh1 , v0,h|Γ0
= u1,h|Γ0

(3.18)

and that u0,h is defined by

a2[u0,h,wh] = a2[u0,wh] ∀wh ∈ Xh
2 .(3.19)



FEM FOR A FLUID-STRUCTURE INTERACTION PROBLEM 9

3.2. The existence of discretely divergence-free finite element solutions.
The existence of finite element solutions {(vh,uh)} can be established in a manner
analogous to the analysis of the Galerkin approximations {(vm,um)} in [10]. However,
it should be noted that finite element approximations are not special cases of the
Galerkin approximations due to the fact that the basis functions used in the Galerkin
approximations are divergence-free in Ω1, whereas the finite element solutions are
only discretely divergence-free in Ω1 in the sense of (3.15), i.e., they belong to the
space of discretely divergence-free functions Ψh.

We first formulate auxiliary semidiscrete finite element approximations on the
discretely divergence-free space Ψh. Through the relation

ξh =

{
vh in Ω1,
∂tuh in Ω2,

(3.20)

we see that (3.14)–(3.19) can be recast into the system

ρ1[∂tξh,ηh]Ω1 + ρ2[∂tξh,ηh]Ω2 + a1[ξh,ηh] + a2

[∫ t

0

ξh(s) ds,ηh

]
= ρ1[f1,ηh]Ω1 + ρ2[f2,ηh]Ω2 − a2[u0,ηh] ∀ηh ∈ Ψh, t ∈ [0, T ]

(3.21)

and

ξh(0) = ξ0,h ≡
{

v0,h in Ω1,
u1,h in Ω2.

(3.22)

Let {ψhj }Jhj=1 be a finite element basis for Ψh. Assumption (3.18) implies that ξ0,h ∈
Ψh, so that we can write

ξ0,h =

Jh∑
j=1

djψ
h
j .

The solution ξh ∈ C([0, T ];Ψh) for (3.21)–(3.22) can be expressed in the form

ξh =

Jh∑
j=1

ghj (t)ψhj (x)(3.23)

so that system (3.21)–(3.22) is equivalent to the following linear system of ordinary
differential equations for {ghj }Jhj=1:

Jh∑
j=1

[[ψhj ,ψ
h
i ]]
d

dt
ghj (t) +

Jh∑
j=1

a1[ψ
h
j ,ψ

h
i ] ghj (t) +

Jh∑
j=1

a2[ψ
h
j ,ψ

h
i ]

∫ t

0

ghj (s) ds

= [ρ1f1(t),ψ
h
i ]Ω1 + [ρ2f2(t),ψ

h
i ]Ω2 − a2[u0,ψ

h
i ], i = 1, . . . , Jh, t ∈ [0, T ],

ghi (0) = di, i = 1, . . . , Jh.

We have the following results concerning the existence of and a priori estimates for a
finite element solution ξh of (3.21)–(3.22). The proof is the same as that in [10] for
the Galerkin approximations and thus is omitted.
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Theorem 3.1. Assume that f1,v0, f2,u0, and u1 satisfy (2.6). Then, there exists
a unique function ξh ∈ C1([0, T ];Ψh) which satisfies (3.21)–(3.22) and the estimate

‖ξh(t)‖2
0,Ω + ‖ξh‖2

L2(0,T ;H1(Ω1))
+

∥∥∥∥∫ t

0

ξh(s) ds

∥∥∥∥2

H1(Ω2)

≤ CeCT (‖f‖2
L2(0,T ;L2(Ω)) + ‖u0‖2

1,Ω2
+ ‖v0,h‖2

0,Ω1
+ ‖u1,h‖2

0,Ω2
)∀t ∈ [0, T ].

(3.24)

Setting vh = ξh|Ω1 , uh = u0,h +
∫ t
0
ξh(s)|Ω2 ds and using (3.19), we immediately

obtain the existence of a (vh,uh) satisfying the discretely divergence-free version of
(3.14)–(3.19), as follows.

Theorem 3.2. Assume that f1,v0, f2,u0, and u1 satisfy (2.6). Then, there exists
a unique (vh,uh) ∈ C1([0, T ];Ψh|Ω1

) × C2([0, T ];X2) satisfying

ρ1[∂tvh,ηh]Ω1
+ a1[v,ηh] + ρ2[∂ttuh,ηh]Ω2

+ a2[uh,ηh]

= ρ1[f1,ηh]Ω1
+ ρ2[f2,ηh]Ω2 ∀ηh ∈ Ψh, t ∈ [0, T ]

(3.25)

and (3.15)–(3.19). Moreover, the following estimate holds:

‖vh(t)‖2
0,Ω1

+ ‖∂tuh(t)‖2
0,Ω2

+ ‖vh‖2
L2(0,T ;H1(Ω1))

+ ‖uh‖2
H1(Ω2)

≤ CeCT (‖f‖2
L2(0,T ;L2(Ω)) + ‖u0‖2

1,Ω2
+ ‖v0,h‖2

0,Ω1
+ ‖u1,h‖2

0,Ω2
) ∀t ∈ [0, T ].

(3.26)

3.3. The discrete inf-sup conditions and discrete pressure fields. We
have proved the existence of a finite element solution in the discretely divergence-free
formulation consisting of (3.25) and (3.15)–(3.19). We will show the existence of a
discrete pressure ph such that (3.14) holds. A crucial step towards this goal is the
verification of discrete inf-sup conditions. The discrete inf-sup conditions will also
play a role in deriving strong energy estimates in a subsequent section.

We rewrite (3.14) as

b[ηh, ph] = −ρ1[∂tvh,ηh]Ω1 − a1[v,ηh] − ρ2[∂ttuh,ηh]Ω2 − a2[uh,ηh]

+ ρ1[f1,ηh]Ω1 + ρ2[f2,ηh]Ω2 ∀ηh ∈ Xh, t ∈ [0, T ].
(3.27)

In terms of the auxiliary variable ξh, (3.27) is equivalent to

b[ηh, ph] = −[[∂tξh,ηh]] − a1[vh,ηh]

− a2[uh,ηh] + [[f ,ηh]] ∀ηh ∈ Xh, ∀ t ∈ [0, T ].
(3.28)

To show the existence of a ph ∈ C([0, T ];Qh1 ) satisfying (3.27) or (3.28), we need to
verify a discrete inf-sup condition for b[·, ·], which will be presented below; this will
be the task of this subsection. To derive an estimate for ph, we need an estimate for
‖∂tξh‖0,Ω, or ‖∂tvh‖0,Ω1

and ‖∂ttuh‖0,Ω2
; these will be derived in section 3.4.

The inf-sup condition we will verify is

inf
qh∈Qh

1

sup
ηh∈Xh

b[ηh, qh]

‖ηh‖1,Ω‖qh‖0,Ω1

≥ C.(3.29)

This inf-sup condition was proved in [2] for a special choice of Xh and Qh1 . We will
establish (3.29) for the general case under assumption (3.12). To this end, we will
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first need the following lemma, and we will need to prove the inf-sup condition

inf
qh∈Qh

1

sup
vh∈Xh

1

b[vh, qh]

‖vh‖1,Ω1
‖qh‖0,Ω1

≥ C.(3.30)

Lemma 3.3. For each constant d, there exists a piecewise linear function v ∈ Xh0
1

such that ∫
Γ0

v · n dΓ = −d, b[v, d] = |d|2, and ‖v‖1,Ω1
≤ C|d|,

where n denotes the unit outward-pointing normal along ∂Ω1, and the constant C
depends only on the coarse triangulation T h0(Ω1).

Proof. We give the complete proof for the two-dimensional case and discuss the
ideas for the three-dimensional case in an ensuing remark.

We choose from T h0(Ω) a layer of triangles K ≡ ∪J0
j=1Kj ⊂ Ω1 adjacent to Γ0,

i.e., each Kj has either a side or a vertex on Γ0. We denote the vertices on Γ0 ∩ ∂K
by Aj , j = 0, 1, . . . , J0. We define the C0, piecewise linear vector function v = (v1, v2)
on K as follows:

v = 0 at points A0 and AJ0
,

v = 0 at all vertices of K belonging to the interior of Ω1,

v · nj−1 = −d and v · nj = −d at Aj , j = 1, . . . , J0 − 1, nj−1 �= nj ,

v · nj−1 = −d and v · τ j = 0 at Aj , j = 1, . . . , J0 − 1, nj−1 = nj ,

where

d = d

/|A0A1|/2 +

J0−1∑
j=2

|Aj−1Aj | + |AJ0−1AJ0
|/2


and nj and τ j denote the unit, outward-pointing normal and unit tangent vectors,
respectively, on ∂Ω1 ∩ Aj−1Aj . Note that nj and τ j are defined with respect to
the segment Aj−1Aj so that they are well defined. Clearly, the values of v1(Aj) and
v2(Aj) are proportional to d. We can write

vi(x) =

J0−1∑
j=1

vi(Aj)L
h0
j (x), i = 1, 2,

where for each j, Lh0
j (x) is the continuous piecewise linear basis function (the shape

function) associated with the vertex Aj . Then,

‖vi‖2
1,K ≤ C

J0−1∑
j=1

|vi(Aj)|2‖Lh0
j ‖2

1,K ≤ C|d|2
J0−1∑
j=1

‖Lh0
j ‖2

1,K

so that

‖v‖1,K ≤ C|d|.
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We extend v to Ω1 by zero outside K and denote the extended function still by v.
Then we readily have v ∈ Xh0

1 ,

‖v‖1,Ω1 = ‖v‖1,K ≤ C|d| ≤ C|d|,

and ∫
Γ0

v · n dΓ =

J0∑
j=1

∫
Aj−1Aj

v · n dΓ

= −d
|A0A1|/2 +

J0−1∑
j=2

|Aj−1Aj | + |AJ0−1AJ0 |/2
 = −d.

Using Green’s theorem and the last equality, we have

b[v, d] = −d
∫

Ω1

∇ · v dΩ = −d
∫

Γ0

v · n dΓ = d2.

Remark 1. In the three-dimensional case we merely need assume that [T h0(Ω)]|Γ0

contains a vertex P0 shared by exactly three triangles. Indeed, in forming the coarse
triangulation T h0(Ω), we may simply choose a partition on a flat piece of Γ0 to meet
this requirement. Then, we define a v to satisfy v · n = d and v × n = 0 at P0, and
v = 0 at all other vertices, where d is a suitable scaling of d.

Next we prove inf-sup condition (3.30) based on the inf-sup assumption (3.12) for

the pair {X̃h
1 ,M

h
1 } ≡ {Xh

1 ∩H1
0(Ω1), Q

h
1 ∩ L2

0(Ω1)}.
Theorem 3.4. The pair {Xh

1 , Q
h
1} satisfies inf-sup condition (3.30).

Proof. Owing to [19, Remark 1.4, p. 118], the inf-sup condition (3.30) is equivalent
to

∀ qh ∈ Qh1 , there exists vh ∈ Xh
1 such that

b[vh, qh] ≥ C‖qh‖2
0,Ω1

and ‖vh‖1,Ω1
≤ C‖qh‖0,Ω1

.
(3.31)

Let qh ∈ Qh1 be given. Set

qh =
1

|Ω1|
∫

Ω1

qh dΩ and q̃h = qh − qh.

Then qh = q̃h + qh in Ω1 and ‖qh‖2
0,Ω1

= ‖q̃h‖2
0,Ω1

+ ‖qh‖2
0,Ω1

. Obviously, q̃h ∈Mh
1 ≡

Qh1∩L2
0(Ω1) so that, by inf-sup condition (3.12) for the pair {X̃h

1 ,M
h
1 }, we may choose

a ṽh ∈ X̃h
1 such that

b[ṽh, q̃h] = ‖q̃h‖2
0,Ω1

and ‖ṽh‖1,Ω1 ≤ C‖q̃h‖0,Ω1 .

By Lemma 3.3 with d = ‖qh‖0,Ω1
, we may choose a vh ∈ Xh

1 such that

b[vh, qh] = ‖qh‖2
0,Ω1

and ‖vh‖1,Ω1 ≤ C‖qh‖0,Ω1 .

(We recall that we assumed that T h(Ω1) is a refinement of a coarse triangulation
T h0(Ω1) so that a piecewise linear function on T h0(Ω1) belongs to Xh

1 .) Setting



FEM FOR A FLUID-STRUCTURE INTERACTION PROBLEM 13

vh = ṽh + αvh for some α > 0 (to be determined), we have

b[vh, qh] = b[ṽh, q̃h] + b[ṽh, qh] + αb[vh, q̃h] + αb[vh, qh]

≥ ‖q̃h‖2
0,Ω1

+ 0 − Cα‖q̃h‖0,Ω1
‖vh‖1,Ω1

+ α‖qh‖2
0,Ω1

≥ ‖q̃h‖2
0,Ω1

− Cα‖q̃h‖0,Ω1
‖qh‖0,Ω1

+ α‖qh‖2
0,Ω1

≥ ‖q̃h‖2
0,Ω1

− [Cα‖q̃h‖2
0,Ω1

+
α

2
‖qh‖2

0,Ω1
] + α‖qh‖2

0,Ω1

= (1 − Cα)‖q̃h‖2
0,Ω1

+
α

2
‖qh‖2

0,Ω1

so that by choosing a sufficiently small α > 0 we obtain

b[vh, qh] ≥ min{1 − Cα,α/2}
(
‖q̃h‖2

0,Ω1
+

1

2
‖qh‖2

0,Ω1

)
≥ C‖qh‖2

0,Ω1
.

Also,

‖vh‖1,Ω1 ≤ ‖ṽh‖1,Ω1 + ‖vh‖1,Ω1 ≤ C‖q̃h‖0,Ω1 + C‖qh‖0,Ω1 ≤ C‖qh‖0,Ω1 .

Hence, we have proved (3.31) which is equivalent to (3.30).
We now prove inf-sup condition (3.29) for {Xh, Qh1}.
Theorem 3.5. {Xh, Qh1} satisfies the inf-sup condition (3.29).
Proof. Let the discrete extension operator Eh : Xh

1 → Xh be defined as follows:
for any vh ∈ Xh

1 , (Ehvh)|Ω1
= vh and (Ehvh)|Ω2

∈ Xh
2 is the solution of

[∇(Ehvh),∇zh]Ω2 = 0 ∀ zh ∈ Xh
2 ∩H1

0(Ω2), (Ehvh)|Γ2 = 0, (Ehvh)|Γ0 = vh|Γ0 .

It is well known (see, e.g., [23] and [1]) that ‖Ehvh‖1,Ω2 ≤ C‖vh‖1/2,Γ0
so that

‖Ehvh‖1,Ω ≤ C‖(Ehvh)|Ω1
‖1,Ω1

+ ‖(Ehvh)|Ω2
‖1,Ω2

≤ C(‖vh‖1,Ω1
+ ‖vh‖1/2,Γ0

) ≤ C‖vh‖1,Ω1
∀vh ∈ Xh

1 .

Then, for every qh ∈ Qh1 we have

sup
ηh∈Xh

b[ηh, qh]

‖qh‖0,Ω1
‖ηh‖1,Ω

≥ sup
vh∈Xh

1

b[Ehvh, qh]

‖qh‖0,Ω1
‖Ehvh‖1,Ω

≥ C sup
vh∈Xh

1

b[Ehvh, qh]

‖qh‖0,Ω1 ‖vh‖1,Ω1

= C sup
vh∈Xh

1

b[vh, qh]

‖qh‖0,Ω1 ‖vh‖1,Ω1

≥ C,

where the last step is valid because of (3.30).
As a direct consequence of [19, Lemma 4.1, p. 58], Theorem 3.8, and the inf-sup

condition (3.29), we obtain the following theorem concerning the existence of a discrete
pressure. Note that an estimate for ph will be established in section 3.4 only after we
have derived strong energy estimates, particularly the estimate for ‖∂tξh‖L2(0,T ;L2(Ω)).

Theorem 3.6. Assume that f1,v0, f2,u0, and u1 satisfy (2.6), and let ξh ∈
C1([0, T ];Ψh) be the solution of (3.21)–(3.22). Let (vh,uh) ∈ C1([0, T ];Xh|Ω1) ×
C1([0, T ];Xh

2 ) be the solution of (3.25) and (3.15)–(3.19). Then there exists a unique
ph ∈ C([0, T ];Qh1 ) satisfying (3.28) and (3.15).

Proof. The existence and uniqueness of a ph ∈ C([0, T ];Qh1 ) satisfying (3.28)
follow directly from [19, Lemma 4.1, p. 58], Theorem 3.8, and the inf-sup condition
(3.29). Since (3.28) is equivalent to (3.27), we also conclude that ph satisfies (3.27)
and is the unique such solution.
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3.4. Strong a priori energy estimates for the finite element solutions.
In the finite element system (3.25) and (3.15)–(3.19) the discrete initial conditions are
arbitrary approximations of the corresponding continuous initial data. We now make
a particular choice of discrete initial data that will allow us to derive an estimate for
‖∂tξh‖0,Ω under additional assumptions on the data. Such an estimate can then be
used to derive an estimate for ‖ph‖L2(0,T ;L2(Ω1)). (The existence of a discrete pressure
ph satisfying (3.14) was shown in section 3.3.) The estimates on ph and ∂tξh will
be needed in order to prove the convergence of finite element solutions, since finite
element formulations involve the term b[ηh, ph], which, in general, does not vanish for
ηh ∈ Xh.

We first study the approximation of the initial condition. We choose (v0,h,u1,h) ∈
Ψh and p0,h ∈ Qh1 to be the solution of

a1[v0,h,ηh] + [u1,h,ηh]Ω2 + b[ηh, p0,h]

= a1[v0,ηh] + [u1,ηh]Ω2
+ b[ηh, p0] ∀ηh ∈ Xh,

(3.32)

b[v0,h, qh] = 0 ∀ qh ∈ Qh1 and v0,h|Γ0
= u1,h|Γ0

,(3.33)

where p0 is the initial pressure field associated with the initial velocity field v0.
Lemma 3.7. Assume that v0 ∈ X1, p0 ∈ L2(Ω1), u1 ∈ X2, and v0|Γ0

= u1|Γ0
.

Then there exists a unique triplet (v0,h, p0,h,u1,h) ∈ Xh
1 × Qh1 × Xh

2 which satisfies
(3.32)–(3.33) and

‖v0,h − v0‖1,Ω1
+ ‖u1,h − u1‖0,Ω2 + ‖p0,h − p0‖0,Ω1

≤ C(‖ηh − v0‖1,Ω1 + ‖ηh − u1‖0,Ω2 + ‖qh − p0‖0,Ω1) ∀ (ηh, qh) ∈ Xh ×Qh1 .

(3.34)

If, in addition, v0 ∈ Hr+1(Ω1), p0 ∈ Hr(Ω1), and u1 ∈ Hr+1(Ω2) for some r ∈ [0, k]
(k being the integer appearing in the approximation properties), then

‖v0,h − v0‖1,Ω1
+ ‖u1,h − u1‖0,Ω2

+ ‖p0,h − p0‖0,Ω1

≤ Chr(‖v0‖r+1,Ω1 + ‖u1‖r+1,Ω2 + ‖p0‖r,Ω1).
(3.35)

Proof. We set X̃ = {η ∈ L2(Ω) : η|Ω1 ∈ X1,divη|Ω1 = 0} and equip X̃ with the
inner product

[ξ,η]
X̃

= a1[ξ,η] + [ξ,η]Ω2 ∀ ξ,η ∈ X̃.
It is easy to check that X̃ is a Hilbert space. The continuous inf-sup condition (2.4)
implies

inf
q∈L2(Ω1)

sup
η∈X̃

b[η, q]

‖η‖
X̃
‖q‖0,Ω1

≥ inf
q∈L2(Ω1)

sup
η∈H1

0(Ω)

b[η, q]

‖η‖
X̃
‖q‖0,Ω1

≥ inf
q∈L2(Ω1)

sup
η∈H1

0(Ω)

b[η, q]

‖η‖1,Ω‖q‖0,Ω1

≥ C.

Thus, by [19, Theorem 1.1, p. 114], there exists a unique (ξ̃0, p̃0) ∈ X̃ × L2(Ω1)
satisfying

[ξ̃0,η]
X̃

+ b[η, p̃0] = a1[v0,η] + [u1,η]Ω2 + b[η, p0] ∀η ∈ X̃,(3.36)
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b[ξ̃0, q] = 0 ∀ q ∈ L2(Ω1).(3.37)

As ξ0 defined by (2.11) and p0 constitute an obvious solution to (3.36)–(3.37), we
have

ξ̃0 = ξ0 =

{
ξ|Ω1 = v0,
ξ|Ω2

= u1,
and p̃0 = p0.(3.38)

Similarly, the discrete inf-sup condition (3.29) implies

inf
qh∈Qh

1

sup
ηh∈Xh

b[ηh, qh]

‖ηh‖X̃‖qh‖0,Ω1

≥ inf
qh∈Qh

1

sup
ηh∈Xh

b[ηh, qh]

‖ηh‖1,Ω‖qh‖0,Ω1

≥ C,

so that by [19, Theorem 1.1, p. 114] there exists a unique (ξ0,h, p0,h) ∈ Xh × Qh1
satisfying

[ξ0,h,ηh]
X̃

+ b[ηh, p0,h] = a1[v0,ηh] + [u1,ηh]Ω2 + b[ηh, p0] ∀ηh ∈ Xh,(3.39)

b[ξ0,h, qh] = 0 ∀ q ∈ Qh1 ;(3.40)

moreover, the following error estimate holds:

‖ξ0,h − ξ0‖X̃ + ‖p0,h − p0‖0,Ω1

≤ C(‖ηh − ξ0‖X̃ + ‖qh − p0‖0,Ω1) ∀ (ηh, qh) ∈ Xh ×Qh1 .
(3.41)

By setting

v0,h = ξ0,h|Ω1 and u1,h = ξ0,h|Ω2 ,(3.42)

we see that (3.41) is equivalent to (3.34) and that (3.32)–(3.33) are satisfied. The
uniqueness of the solution (v0,h, p0,h,u1,h) for (3.32)–(3.33) follows from the unique-
ness of the solution (ξ0,h, p0,h) for (3.39)–(3.40).

Next, assuming that v0 ∈ Hr+1(Ω1), p0 ∈ Hr(Ω1), and u1 ∈ Hr+1(Ω2) for some
r ∈ [1, k], we proceed to prove (3.35) by making a particular choice of ηh in (3.34).
Let (v0,h, p0,h) ∈ Xh

1 ×Qh1 be the unique finite element solution of the following Stokes
system on Ω1:

a1[v0,h, zh] + b[zh, p0,h] = a1[v0, zh] + b[zh, p0] ∀ zh ∈ Xh
1 ∩H1

0(Ω1),

b[v0,h, qh] = 0 ∀ qh ∈ Qh1 ∩ L2
0(Ω1),

v0,h|Γ1
= 0 and [v0,h, sh]0,Γ0

= [v0, sh]0,Γ0
∀ sh ∈ Xh

1 |Γ0
,

where p0 = p0−(1/|Ω1|)
∫
Ω1
p0 dx. Using the results of [23] concerning error estimates

for the finite element approximations of the Stokes equations with inhomogeneous
boundary conditions, we obtain

‖v0,h − v0‖1,Ω1 + ‖p0,h − p0‖0,Ω1

≤ Chr(‖v0‖r+1,Ω1 + ‖p0‖r,Ω1) ≤ Chr(‖v0‖r+1,Ω1 + ‖p0‖r,Ω1).
(3.43)
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Analogously, let u1,h ∈ Xh
2 be the unique finite element solution of the following

elliptic system on Ω2 with an inhomogeneous boundary condition:

[∇u1,h,∇wh]Ω2 = [∇u1,∇wh]Ω2 ∀wh ∈ Xh
2 ∩H1

0(Ω2),

u1,h|Γ2
= 0 and [u1,h, sh]0,Γ0 = [u1, sh]0,Γ0

∀ sh ∈ Xh
2 |Γ0

.
(3.44)

Then we have

‖u1,h − u1‖0,Ω2 ≤ ‖u1,h − u1‖1,Ω2
≤ Chr‖u1‖r+1,Ω2

.(3.45)

The assumption v0|Γ0
= u1|Γ0

implies v0,h|Γ0 = u1,h|Γ0 , so that the element ηh
defined by

ηh|Ω1 =

{
v0,h in Ω1,
u1,h in Ω2

satisfies ηh ∈ Xh. By choosing ηh = ηh and qh = p0,h + (1/|Ω1|)
∫
Ω1
p0 dx in (3.34)

and using (3.43)–(3.45), we arrive at (3.35).
We now derive a strong a priori energy estimate for the auxiliary finite element

solution ξh.
Theorem 3.8. Assume that f1,v0, f2,u0, and u1 satisfy (2.6) and

∂tfi ∈ L2(0, T ;L2(Ωi)), i = 1, 2, v0 ∈ H2(Ω1), u1 ∈ H2(Ω1), u0 ∈ H2(Ω2).

(3.46)

Assume further that there exists a p0 ∈ H1(Ω1) such that

(p0n1 − µ1∇v0 · n1)|Γ0
= (µ2∇u0 · n2 + (λ2 + µ2)(divu0)n2)|Γ0

,(3.47)

where ni denotes the outward-pointing normal along ∂Ωi, i = 1, 2. Then there exists
a unique solution ξh ∈ C1([0, T ];Ψh) for (3.21)–(3.22) with the initial condition ξ0,h

defined by

ξ0,h|Ω1
= v0,h and ξ0,h|Ω2

= u1,h,(3.48)

where v0,h and u1,h are determined by (3.32)–(3.33). Moreover, ξh satisfies the esti-
mates

‖ξh‖2
L2(0,T ;L2(Ω)) + ‖ξh‖2

L2(0,T ;H1(Ω1))
+

∥∥∥∥∫ t

0

ξh(s) ds

∥∥∥∥2

L∞(0,T ;H1(Ω2))

≤ CeCT (‖f‖2
L2(0,T ;L2(Ω)) + ‖u0‖2

1,Ω2
+ ‖v0‖2

1,Ω1
+ ‖u1‖2

0,Ω2
+ ‖p0‖2

0,Ω1
)

(3.49)

and

‖∂tξh‖2
L∞(0,T ;L2(Ω)) + ‖∂tξh‖2

L2(0,T ;H1(Ω1))
+

∥∥∥∥∫ t

0

∂tξh(s) ds

∥∥∥∥2

L∞(0,T ;H1(Ω2))

≤ CeCT (‖f‖2
H1(0,T ;L2(Ω)) + ‖u0‖2

2,Ω2
+ ‖v0‖2

2,Ω1
+ ‖p0‖2

1,Ω1
+ ‖u1‖2

2,Ω2
).

(3.50)

Proof. By Theorem 3.1, there exists a unique solution ξh ∈ C1([0, T ];Ψh) for
(3.21)–(3.22) and (3.24). We note that, by virtue of Lemma 3.7, the initial condition
ξ0,h ∈ Ψh satisfies the estimate

‖ξ0,h‖1,Ω1 + ‖ξ0,h‖0,Ω2 ≤ C(‖v0‖1,Ω1 + ‖p0‖0,Ω1 + ‖u1‖0,Ω2).
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Thus (3.49) follows from the last estimate and (3.24).
Defining ζh = ∂tξh and differentiating (3.21), we obtain that for each t ∈ [0, T ]

ρ1[∂tζh,ηh]Ω1
+ ρ2[∂tζh,ηh]Ω2

+ a1[ζh,ηh] + a2

[∫ t

0

ζh(s) ds,ηh

]
= ρ1[∂tf1,ηh]Ω1

+ ρ2[∂tf2,ηh]Ω2
− a2[ξh(0),ηh] ∀ηh ∈ Ψh.

(3.51)

Setting ηh = ζh(t) in (3.51) and integrating in t, we obtain

[[ζh(t), ζh(t)]] +

∫ t

0

a1[ζh(s), ζh(s)] ds+ a2

[∫ t

0

ζh(s) ds,

∫ t

0

ζh(s) ds

]
≤ C(‖ζh(0)‖2

0,Ω + ‖f‖2
L2(0,T ;L2(Ω))) + a2

[
u0,

∫ t

0

ζh(s) ds

]
+

∫ t

0

‖ζh(s)‖2
0,Ω ds

≤ C(‖ζh(0)‖2
0,Ω + ‖f‖2

L2(0,T ;L2(Ω)) + ‖u0‖2
1,Ω2

)

+
1

2
a2

[∫ t

0

ζh(s) ds,
∫ t
0
ζh(s) ds

]
+

∫ t

0

‖ζh(s)‖2
0,Ω ds,

so that

‖ζh(t)‖2
0,Ω +

∫ t

0

a1[ζh(t), ζh(t)] dt+ a2

[∫ t

0

ζh(s) ds,

∫ t

0

ζh(s) ds

]
≤ C(‖ζh(0)‖2

0,Ω + ‖∂tf‖2
L2(0,T ;L2(Ω)) + ‖ξh(0)‖2

1,Ω2
) +

∫ t

0

‖ζh(s)‖2
0,Ω ds.

(3.52)

Dropping the second and third terms on the left-hand side of (3.52) and then applying
the following version of Gronwall’s inequality [12, p. 625],

if r(t) ≤ C1 + C2

∫ t

0

r(s) ds, then r(t) ≤ C1(1 + C2t)e
C2t,(3.53)

we deduce

‖ζh(t)‖2
0,Ω ≤ CeCT (‖ζh(0)‖2

0,Ω + ‖ξh(0)‖2
1,Ω2

+ ‖∂tf‖2
L2(0,T ;L2(Ω))).

The last estimate and (3.52) yield

‖ζh(t)‖2
0,Ω +

∫ t

0

a1[ζh(t), ζh(t)] dt+ a2

[∫ t

0

ζh(s) ds,

∫ t

0

ζh(s) ds

]
≤ CeCT (‖ζh(0)‖2

0,Ω + ‖∂tf‖2
L2(0,T ;L2(Ω)) + ‖ξh(0)‖2

1,Ω2
).

(3.54)

The term ‖ξh(0)‖2
1,Ω2

on the right-hand side of (3.54) can be estimated with the help
of inverse inequalities (3.13), (3.45), and (3.35) with r = 1:

‖ξh(0)‖1,Ω2
≤ ‖ξ0,h − u1,h‖1,Ω2

+ ‖u1,h − u1‖1,Ω2
+ ‖u1‖1,Ω2

≤ C

h
‖ξ0,h − u1,h‖0,Ω2 + Ch‖u1‖2,Ω2 + ‖u1‖1,Ω2

≤ C

h
‖ξ0,h − u1‖0,Ω2 +

C

h
‖u1 − u1,h‖0,Ω2 + Ch‖u1‖2,Ω2 + ‖u1‖1,Ω2

≤ C(‖v0‖2,Ω1 + ‖u1‖2,Ω2 + ‖p0‖0,Ω1),

(3.55)
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where u1,h is defined by (3.44). The term ‖ζh(0)‖2
0,Ω can be estimated as follows.

Evaluating (3.21) at t = 0, then setting ηh = ∂tξh(0) and using (3.52), we have

[[∂tξh(0), ∂tξh(0)]] = [[f(0), ∂tξh(0)]] − a2[u0, ∂tξh(0)] − a1[ξh(0), ∂tξh(0)]

= [[f(0), ∂tξh(0)]] − a2[u0, ∂tξh(0)] − b[∂tξh(0), p0] − a1[v0, ∂tξh(0)]

− [u1, ∂tξh(0)]Ω2
+ [ξh(0), ∂tξh(0)]Ω2

= [[f(0), ∂tξh(0)]] + [∆u0 + ∇(divu0), ∂tξh(0)]Ω2
+ [∆v0 −∇p0, ∂tξh(0)]

+

∫
Γ0

(−µ2∇u0 · n2 − (λ2 + µ2)(divu0)n2 + p0n1 −∇v0 · n1) · ∂tξh(0) dΓ

− [u1, ∂tξh(0)]Ω2
+ [ξh(0), ∂tξh(0)]Ω2 .

Applying assumption (3.47) and initial condition (3.32)–(3.33) to the last relation, we
are led to

[[∂tξh(0), ∂tξh(0)]] = [[f(0), ∂tξh(0)]] + [∆u0 + ∇(divu0), ∂tξh(0)]Ω2

+ [∆v0 −∇p0, ∂tξh(0)] − [u1, ∂tξh(0)]Ω2 + [ξh(0), ∂tξh(0)]Ω2

≤ C(‖f(0)‖2
L2(Ω) + ‖u0‖2

2,Ω2
+ ‖v0‖2

2 + ‖u1‖2
2,Ω2

+ ‖p0‖2
1,Ω1

)

+ C‖ξ0,h‖2
0,Ω +

1

2
[[∂tξh(0), ∂tξh(0)]],

so that, using (3.55), the last relation simplifies to

‖∂tξh(0)‖2
0,Ω ≤ C(‖f‖2

H1(0,T ;L2(Ω)) + ‖u0‖2
2,Ω2

+ ‖v0‖2
2,Ω1

+ ‖p0‖2
1,Ω1

+ ‖u1‖2
2,Ω2

).

Combining (3.54), (3.55), and the last relation, we obtain (3.50).
Remark 2. The particular choice of the initial condition (3.32)–(3.33) played a

key role in the estimation of [[∂tξh(0), ∂tξh(0)]].

Using relation (3.20) in reverse, i.e., setting uh = u0,h +
∫ t
0
ξh(s)|Ω2

ds and vh =
ξh|Ω1 , we arrive at the following theorem.

Theorem 3.9. Assume that f1,v0, f2,u0, and u1 satisfy (2.6) and (3.46). As-
sume further that there exists a p0 ∈ H1(Ω1) such that (3.47) holds. Then there exists
a unique solution (vh, ph,uh) ∈ C1([0, T ];Xh

1 ) × C([0, T ];Qh1 ) × C1([0, T ];Xh
2 ) for

(3.14)–(3.19) with the initial conditions (v0,h,u1,h) defined by (3.32)–(3.33). More-
over, (vh, ph,uh) satisfies the estimates

‖vh‖2
L∞(0,T ;L2(Ω1))

+ ‖∂tuh‖2
L∞(0,T ;L2(Ω2))

+ ‖vh‖2
L2(0,T ;H1(Ω1))

+ ‖uh‖2
L∞(0,T ;H1(Ω2))

≤ CeCT (‖f‖2
L2(0,T ;L2(Ω)) + ‖u0‖2

1,Ω2
+ ‖v0‖2

1,Ω1
+ ‖p0‖2

0,Ω1
+ ‖u1‖2

0,Ω2
)

(3.56)

and

‖∂tvh‖2
L∞(0,T ;L2(Ω1))

+ ‖∂ttuh‖2
L∞(0,T ;L2(Ω2))

+ ‖∂tvh‖2
L2(0,T ;H1(Ω1))

+ ‖∂tuh‖2
L∞(0,T ;H1(Ω2))

≤ CeCT (‖f‖2
H1(0,T ;L2(Ω)) + ‖u0‖2

2,Ω2
+ ‖v0‖2

2,Ω1
+ ‖p0‖2

1,Ω1
+ ‖u1‖2

2,Ω2
).

(3.57)
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Recall that Theorem 3.6 stated only the existence and uniqueness of a discrete
pressure ph satisfying (3.28), (3.27) and (3.14). By virtue of the strong energy esti-
mates (3.57) and the discrete inf-sup conditions, we now can establish an estimate
for ph.

Theorem 3.10. Assume that f1,v0, f2,u0, and u1 satisfy (2.6) and (3.46). As-
sume further that there exists a p0 ∈ H1(Ω1) such that (3.47) holds. Let (vh, ph,uh) ∈
C1([0, T ];Xh

1 )×C([0, T ];Qh1 )×C1([0, T ];Xh
2 ) be the solution for (3.14)–(3.19) with the

initial conditions (v0,h,u1,h) defined by (3.32)–(3.33). Then ph satisfies the estimate

‖ph‖2
L2(0,T ;L2(Ω1))

≤ CeCT
(
‖f‖2

H1(0,T ;L2(Ω)) + ‖u0‖2
2,Ω2

+ ‖v0‖2
2,Ω1

+ ‖p0‖2
1,Ω1

+ ‖u1‖2
2,Ω2

)
.

(3.58)

Proof. We observe that from (3.28) we have

‖ph‖L2(0,T ;L2(Ω1)) ≤ C
(
‖∂tξh‖2

L2(0,T ;L2(Ω))

+ ‖f‖2
L2(0,T ;L2(Ω)) + ‖ξh‖L2(0,T ;X1) + ‖ ∫ t

0
ξh(s) ds‖L2(0,T ;X1)

)
.

Thus, (3.58) follows from the last relation and energy estimate (3.50) for ξh.
Remark 3. Note that Theorems 3.8, 3.9, and 3.10 require the specification of an

initial pressure p0 and the initial interface stress condition (3.47). From a physical
point of view, these requirements are entirely reasonable.

4. The convergence of finite element solutions and error estimates.
Having proved the existence of finite element solutions (vh, ph,uh) for problem (3.14)–
(3.19) and (3.32)–(3.33), we now prove the convergence of the finite element solutions
and derive error estimates.

4.1. The convergence of finite element solutions. We first consider the
convergence of the finite element approximations.

Theorem 4.1. Assume that f1,v0, f2,u0, and u1 satisfy (2.6) and (3.46) and that
there exists a p0 ∈ H1(Ω1) such that (3.47) holds. Let (vh, ph,uh) ∈ C1([0, T ];Xh

1 )×
C([0, T ];Qh1 ) × C1([0, T ];Xh

2 ) be the unique solution of (3.14)–(3.19) with the initial
conditions (v0,h,u1,h) defined by (3.32)–(3.33). Assume further that the finite ele-
ment meshes are nested, i.e., that the triangulation T h2(Ω) is a refinement of the
triangulation T h1(Ω) whenever h2 < h1. Then, there exists a unique (v, p,u) such
that 

v ∈ L∞(0, T ;L2(Ω1)) ∩ L2(0, T ;X1),

∂tv ∈ L∞(0, T ;L2(Ω1)) ∩ L2(0, T ;X1), p ∈ L2(0, T ;L2(Ω1)),

u ∈ L∞(0, T ;X2), ∂tu ∈ L∞(0, T ;X2), ∂ttu ∈ L∞(0, T ;L2(Ω2)),

(4.1)

vh ⇀ v in L2(0, T ;X1), vh
∗
⇀ v in L∞(0, T ;L2(Ω1)),(4.2)

∂tvh
∗
⇀ ∂tv in L∞(0, T ;L2(Ω1)), ∂tvh ⇀ ∂tv in L2(0, T ;X1),(4.3)
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uh
∗
⇀ u in L∞(0, T ;X2),(4.4)

∂tuh
∗
⇀ ∂tu in L∞(0, T ;L2(Ω1)), ∂tuh

∗
⇀ ∂tu in L∞(0, T ;X2),(4.5)

∂ttuh
∗
⇀ ∂ttu in L∞(0, T ;L2(Ω2)),(4.6)

and

ph ⇀ p weakly in L2(0, T ;L2(Ω1)).(4.7)

Furthermore, (v, p,u) satisfies (3.3)–(3.6) and the estimates

‖v‖2
L∞(0,T ;L2(Ω1))

+ ‖∂tu‖2
L∞(0,T ;L2(Ω2))

+ ‖v‖2
L2(0,T ;H1(Ω1))

+ ‖u‖2
L∞(0,T ;H1(Ω2))

≤ CeCT (‖f‖2
L2(0,T ;L2(Ω)) + ‖u0‖2

2,Ω2
+ ‖v0‖2

2,Ω1
+ ‖p0‖2

1,Ω1
+ ‖u1‖2

2,Ω2
)

(4.8)

and

‖∂tv‖2
L∞(0,T ;L2(Ω1))

+ ‖∂tv‖2
L2(0,T ;H1(Ω1))

+ ‖p‖2
L2(0,T ;L2(Ω1))

+ ‖∂ttu(t)‖2
L∞(0,T ;L2(Ω2))

+ ‖∂tu‖2
L∞(0,T ;H1(Ω2))

≤ CeCT (‖f‖2
H1(0,T ;L2(Ω)) + ‖u0‖2

2,Ω2
+ ‖v0‖2

2,Ω1
+ ‖p0‖2

1,Ω1
+ ‖u1‖2

2,Ω2
).

(4.9)

Proof. We have that {(vh, ph,uh)} satisfies the estimates (3.56)–(3.57) and (3.58).
Using these estimates, we may extract a subsequence {(vhn

, phn ,uhn)} of {(vh, ph,uh)},
with {hn} decreasing to 0 as n → ∞, such that (4.2)–(4.7) hold for the subsequence
{(vhn

, phn
,uhn

)} for a (v, p,u) satisfying (4.1).
Equation (3.17) holds for h = hn, and thus, by passing to the limit as n→ ∞ in

that equation, we obtain (3.6). Also, u(0) = u0 trivially holds.
To prove that (v, p,u) satisfies (3.3) we begin from (3.14) with h = hn. We

arbitrarily fix an integer N and a function η ∈ C1([0, T ];XhN ). For each n > N
we obtain from (3.14) and the nesting assumption on the triangulation family T h(Ω)
that

∫ T

0

(
ρ1[∂tvhn ,η]Ω1 + a1[vhn ,η] + b[η, phn ] + ρ2[∂ttuhn ,η]Ω2 + a2[uhn ,η]

)
dt

=

∫ T

0

(
ρ1[f1,η]Ω1 + ρ2[f2,η]Ω2

)
dt.

(4.10)

Passing to the limit as n→ ∞, we find∫ T

0

(
ρ1[∂tv,η]Ω1 + a1[v,η] + b[η, p] + ρ2[∂ttu,η]Ω2 + a2[u,η]

)
dt

=

∫ T

0

(
ρ1[f1,η]Ω1 + ρ2[f2,η]Ω2

)
dt.

(4.11)
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Equality (4.11) then holds for all η ∈ L2(0, T ;H1
0(Ω)), as

⋃∞
n=N C([0, T ];Xhn) is

dense in L2(0, T ;H1
0(Ω)) for the L2(0, T ;H1

0(Ω)) norm. Hence,

ρ1[∂tv,η]Ω1 + a1[v,η] + b[η, p] + ρ2[∂ttu,η]Ω2 + a2[u,η]

= ρ1[f1,η]Ω1 + ρ2[f2,η]Ω2
∀η ∈ H1

0(Ω), a.e. t,

which is precisely (3.3).
From (3.15) we obtain ∫ T

0

b[vhn , q] ds = 0

for all q ∈ L2(0, T ;QhN
1 ) and all n ≥ N . Passing to the limit as n→ ∞ leads us to∫ T

0

b[v, q] ds = 0(4.12)

for all q ∈ L2(0, T ;QhN
1 ). Using the denseness (with respect to the L2(0, T ;L2(Ω1))

norm) of
⋃∞
n=N L

2(0, T ;Qhn
1 ) in L2(0, T ;L2(Ω1)), we see that (4.12) holds for all

q ∈ L2(0, T ;L2(Ω1)). In particular, this implies (3.4).
To verify the initial condition (3.5) we first note that the regularity results (4.1)

imply that v ∈ C([0, T ];L2(Ω1)) ∩ C([0, T ;X1), u ∈ C([0, T ];L2(Ω2)) ∩ C([0, T ;X2),
and ∂tu ∈ C([0, T ];L2(Ω2)). For each η ∈ C1([0, T ];H1

0(Ω)) with η(T ) = 0 we obtain,
from (4.11), by integration by parts that∫ T

0

(
− ρ1[v, ∂tη]Ω1 − ρ2[∂tu, ∂tη]Ω2 + a1[v,η] + b[η, p̂] + a2[u,η]

)
dt

=

∫ T

0

[[f ,η]] dt+ ρ1[v(0),η(0)]Ω1
+ ρ2[∂tu(0),η(0)]Ω2

.

(4.13)

On the other hand, from (4.10), we deduce that for all η ∈ C1([0, T ];XhN ) and all
n > N , ∫ T

0

(
− ρ1[vhn

, ∂tη]Ω1
− ρ2[∂tuhn

, ∂tη]Ω2

+ a1[vhn
,η] + b[η, phn

] + a2[uhn
,η]

)
dt

=

∫ T

0

[[f ,η]] dt+ ρ1[vhn(0),η(0)]Ω1 + ρ2[∂tuhn(0),η(0)]Ω2 .

(4.14)

Holding N fixed and passing to the limit as n→ ∞ in (4.14) and utilizing (3.35), we
arrive at ∫ T

0

(
− ρ1[v, ∂tη]Ω1

− ρ2[∂tu, ∂tη]Ω2
+ a1[v,η] + b[η, p̂] + a2[u,η]

)
dt

=

∫ T

0

[[f ,η]] dt+ ρ1[v0,η(0)]Ω1
+ ρ2[u1,η(0)]Ω2

(4.15)

for all η ∈ C1([0, T ];XhN ). Comparing (4.13) and (4.15), we obtain

ρ1[v(0) − v0,η(0)]Ω1 + ρ2[∂tu(0) − u1,η(0)]Ω2 = 0(4.16)
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for all η(0) ∈ XhN . Since
⋃∞
n=N X

hn is dense in L2(Ω) for the L2(Ω) norm, we derive

v(0) = v0 in L2(Ω1) and ∂tu(0) = u1 in L2(Ω2).

To check u(0) = u0 we first note that with regularity (4.1) we are justified to
write

u = u(0) +

∫ t

0

∂tu(s) ds.(4.17)

From the compact embedding H1(0, T ;B) ↪→↪→ L2(0, T ;B) for any Banach space B
and the weak convergence (4.2)–(4.5) we deduce that for a further subsequence hnj

we have

∂tuhnj
→ ∂tu in L2(0, T ;L2(Ω2)) and uhnj

→ u in L2(0, T ;L2(Ω2)),

so that, passing to the limit in the relation

uhn = u0,hn +

∫ t

0

∂tuhn
(s) ds

and noting that ‖u0,h − u0‖0,Ω2
→ 0 as h→ 0, we obtain

u = u0 +

∫ t

0

∂tu(s) ds.(4.18)

A comparison of (4.17) and (4.18) yields u(0) = u0.
Hence we have verified that (v, p,u) satisfies (3.1)–(3.6). Of course, (v,u) is also

a solution for (2.7)–(2.10), so that, by Theorem 2.2, (v,u) is the unique solution of
(2.7)–(2.10) and estimate (4.8) holds. Then, by Theorem 2.3, we obtain the uniqueness
of p. Estimate (4.9) follows from (3.57) and (3.58).

Finally, it follows from the uniqueness of the limit (v, p,u) that the entire family
of finite element solutions (vh, ph,uh) satisfies (4.2)–(4.7) as h→ 0.

We also have the following strong convergence, the proof of which is contained in
that of Theorem 4.1.

Corollary 4.2. Assume that all hypotheses of Theorem 4.1 hold. Then

vh → v in L2(0, T ;L2(Ω1)), uh → u in L2(0, T ;X2)

and

∂tuh → ∂tu in L2(0, T ;L2(Ω2)).

4.2. Error estimates for finite element approximations. We will estimate
the error between the continuous solution defined by (3.3)–(3.6) and the finite element
solution defined by (3.14)–(3.19) and (3.32)–(3.33). To this end we introduce the
weighted L2(Ω) projection operator onto the discretely divergence-free space Ψh.
(Ψh is discretely divergence-free in Ω1.)

The projection operator Ph : L2(Ω) → Ψh with respect to the weighted L2(Ω)
inner product is defined as follows: for every η ∈ L2(Ω), Phη ∈ Ψh is the solution of

[[Phη, zh]] = [[η, zh]] ∀ zh ∈ Ψh.(4.19)
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Note that the definition of Ψh implies

b[Phη, qh] = 0 ∀ qh ∈ Qh1 .(4.20)

We assume that the domains Ω1 and Ω2 satisfy the following regularity assump-
tions.

Hypothesis (H1). The problem
(v̄, p̄) ∈ H1

0(Ω1) × L2
0(Ω1),

[∇v̄,∇z]Ω1 + b[z, p̄] = [f̄1, z]Ω1
∀ z ∈ H1

0(Ω1),

b[v, q] = 0 ∀ q ∈ L2(Ω1)

(4.21)

is H2−ε1 regular for an ε1 ∈ (0, 1); i.e., for every f̄1 ∈ L2(Ω1), the solution (v̄, p̄)
to problem (4.21) belongs to H2−ε1(Ω1) × H1−ε1(Ω1), −p̄n1 + (∇v̄ + ∇v̄T )n1 ∈
H1/2−ε1(Γ0), and

‖v̄‖H2−ε1 (Ω1) + ‖p̄‖H1−ε1 (Ω1)‖ − p̄n1 + (∇v̄ + ∇v̄T )n1‖1/2−ε1,Γ0
≤ C‖f̄1‖0,Ω1

.

Hypothesis (H2). The problem{
ū ∈ H1

0(Ω1),

[∇ū,∇w]Ω1 = [f̄2,w]Ω1
∀w ∈ H1

0(Ω2)
(4.22)

is H2−ε2 regular for an ε2 ∈ (0, 1); i.e., for every f̄2 ∈ L2(Ω2), the solution ū to
problem (4.22) belongs to H2−ε2(Ω2), ∇ū · n2 ∈ H1/2−ε2(Γ0), and

‖ū‖H2−ε2 (Ω2)‖∇ū · n2‖1/2−ε2,Γ0
≤ C‖f̄2‖0,Ω2 .

Remark 4. Hypotheses (H1)–(H2) are simply equivalent to angle conditions on Ω1

and Ω2 owing to the well-known regularity results on polygonal domains for boundary
value problems (4.21) and (4.22); see [24] and [19]. In particular, if both Ω1 and Ω2

are convex (in which case Γ0 is necessarily a straight line), then ε1 and ε2 can be
chosen arbitrarily small.

Under Hypotheses (H1)–(H2), we may prove the following error estimates for the
projection operator Ph:

‖ζ − Phζ‖1,Ω ≤ Chr−ε(‖ζ‖r+1,Ω1 + ‖ζ‖r+1,Ω2)

∀ ζ ∈ Ψ with ζ|Ωi ∈ Hr+1(Ωi), i = 1, 2, r ∈ [0, k],
(4.23)

and

‖ζ − Phζ‖0,Ω ≤ Chr+1−ε(‖ζ‖r+1,Ω1 + ‖ζ‖r+1,Ω2)

∀ ζ ∈ Ψ with ζ|Ωi ∈ Hr+1(Ωi), i = 1, 2, r ∈ [0, k].
(4.24)

The proof of (4.23)–(4.24) will be given in the appendix, Theorem A.3.
Now we prove the following error estimates for the semidiscrete finite element

approximations of the fluid-solid interaction problem.
Theorem 4.3. Assume that f1,v0, f2,u0, and u1 satisfy (2.6) and (3.46) and that

there exists a p0 ∈ H1(Ω1) such that (3.47) holds. Assume also that (H1)–(H2) hold.
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Let (v, p,u) be the solution of (3.1)–(3.6), and (vh, ph,uh) be the solution of (3.14)–
(3.19) and (3.32)–(3.33). Assume that for some r ∈ [1, k], v ∈ L2(0, T ;Hr+1(Ω1)),
∂tv ∈ L2(0, T ;Hr−1(Ω1)), p ∈ L2(0, T ;Hr(Ω1)), ∂tu ∈ L2(0, T ;Hr+1(Ω2)), ∂ttu ∈
L2(0, T ;Hr−1(Ω2)), v0 ∈ Hr+1(Ω1), u1 ∈ Hr+1(Ω2), u0 ∈ Hr+1(Ω2), and p0 ∈
Hr(Ω1). Then,

‖v(t) − vh(t)‖2
0,Ω1

+ ‖v − vh‖2
L2(0,T ;X1)

+ ‖∂tu(t) − ∂tuh(t)‖2
0,Ω2

+ ‖u(t) − uh(t)‖2
1,Ω2

≤ CeCTh2r
(‖v0‖2

r+1,Ω1
+ ‖u1‖2

r+1,Ω2
+ ‖u0‖2

r+1,Ω2
+ ‖p0‖2

r,Ω1

+ ‖p‖2
L2(0,T ;Hr(Ω1))

)
+ CeCTh2(r−ε)(‖v‖2

L2(0,T ;Hr+1(Ω1))

+ ‖ut‖2
L2(0,T ;Hr+1(Ω2))

+ ‖∂tv‖2
L2(0,T ;Hr−1(Ω1))

+ ‖∂ttu‖2
L2(0,T ;Hr−1(Ω2))

)

(4.25)

for all t ∈ [0, T ].
Proof. Let ξ and ξh be defined by (2.11) and (3.20), respectively. We set ṽh(t) =

[Phξ(t)]|Ω1
and w̃h(t) = [Phξ(t)]|Ω2

.
By subtracting (3.14)–(3.15) from the corresponding equations of (3.3)–(3.4), we

obtain the following “orthogonality conditions”:

ρ1[∂tv − ∂tvh,ηh]Ω1 + b[ηh, p− ph] + a1[v − vh,ηh]

+ ρ2[utt − ∂ttuh,ηh]Ω2
+ a2[u− uh,ηh] = 0 ∀ηh ∈ Xh, a.e. t,

(4.26)

b[v − vh, qh] = 0 ∀ qh ∈ Qh1 , a.e. t.(4.27)

By adding/subtracting terms and using (4.26)–(4.27), we deduce that

ρ1[∂tvh − ∂tvh,v − vh]Ω1
+ a1[v − vh,v − vh]

+ ρ2[∂ttu− ∂ttuh, ∂tu− ∂tuh]Ω2
+ a2[u− uh, ∂tu− uh]

= ρ1[∂tv − ∂tvh,v − ṽh]Ω1 + a1[v − vh,v − ṽh]

+ ρ2[∂ttu− ∂ttuh, ∂tu− w̃h]Ω2
+ a2[u− uh, ∂tu− w̃h]

− b[ṽh − vh, p− ph] + ρ1[∂tv − ∂tvh, ṽh − vh]Ω1

+ a1[v − vh, ṽ − vh] + ρ2[∂ttu− ∂ttuh, w̃h − ∂tuh]Ω2

+ a2[u− uh, w̃h − ∂tuh] + b[ṽh − vh, p− ph]

= ρ1[∂tv − ∂tvh,v − ṽh]Ω1 + a1[v − vh,v − ṽh]

+ ρ2[∂ttu− ∂ttuh, ∂tu− w̃h]Ω2
+ a2[u− uh, ∂tu− w̃h]

+ b[vh − ṽh, p− ph].

(4.28)

By the definition of ṽh and (4.20), we obtain

b[ṽh(t), ph] = b[Phξ(t), ph] = 0 = b[Phξ(t), qh] = b[ṽh(t), qh] ∀ qh ∈ Qh1 .(4.29)
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Utilizing (3.15), we have

b[vh(t), ph] = 0 = b[vh(t), qh] ∀ qh ∈ Qh1 .(4.30)

Additionally,

ρ1[∂tv − ∂tvh,v − ṽh]Ω1 + ρ2[∂ttu− ∂ttuh, ∂tu− w̃]Ω2

= [[∂tξ(t) − ∂tξh(t), ξ(t) − Phξ(t)]] = [[∂tξ(t), ξ(t) − Phξ(t)]]
= [[∂tξ(t) − ∂tPhξ(t), ξ(t) − Phξ(t)]]

=
1

2

d

dt
[[ξ(t) − Phξ(t), ξ(t) − Phξ(t)]]

=
ρ1
2

d

dt
‖v − ṽh‖2

0,Ω1
+
ρ2
2

d

dt
‖∂tu− w̃h‖2

0,Ω2
.

(4.31)

Combining (4.28)–(4.31), we deduce that for all qh ∈ L2(0, T ;Qh1 )

ρ1
2

d

dt
‖v − vh‖2

0,Ω1
+ a1[v − vh,v − vh] +

ρ2
2

d

dt
‖∂tu− ∂tuh‖2

0,Ω2

+
1

2

d

dt
a2[u− uh,u− uh]

=
ρ1
2

d

dt
‖v − ṽh‖2

0,Ω1
+ a1[v − vh,v − ṽh] +

ρ2
2

d

dt
‖∂tu− w̃h‖2

0,Ω2

+ a2[u− uh, ∂tu− w̃h] + b[vh − ṽh, p− qh]

≤ ρ1
2

d

dt
‖v − ṽh‖2

0,Ω1
+
k1
4
‖v(t) − vh(t)‖2

1,Ω1
+ C‖v(t) − ṽh(t)‖2

1,Ω1

+
ρ2
2

d

dt
‖∂tu− w̃h‖2

0,Ω2
+ ‖u(t) − uh(t)‖2

0,Ω2
+ C‖∂tu(t) − w̃h(t)‖2

1,Ω2

+ C‖v(t) − ṽh(t)‖2
1,Ω2

+
k1
4
‖v(t) − vh(t)‖2

1,Ω2
+ C‖p(t) − qh‖2

0,Ω1
.

Applying (2.2)–(2.3) to the last relation and integrating in t, we obtain

ρ1‖v(t) − vh(t)‖2
0,Ω1

+ k1‖v − vh‖2
L2(0,T ;H1(Ω1))

+ ρ2‖∂tu(t) − ∂tuh(t)‖2
0,Ω2

+ ‖u(t) − uh(t)‖2
1,Ω2

≤ C
(
‖v(0) − v0,h‖2

0,Ω1
+ ‖∂tu(0) − u1,h‖2

0,Ω2
+ ‖u0 − u0,h‖2

1,Ω2

+ ‖ξ0 − Phξ0‖2
0,Ω + ‖ξ(t0) − Phξ(t0)‖2

0,Ω1
+ ‖ξ − Phξ‖2

L2(0,T ;H1(Ω))

+ ‖p− qh‖2
L2(0,T ;L2(Ω1))

)
+

∫ t

0

‖u(s) − uh(s)‖2
1,Ω2

ds

(4.32)

for all qh ∈ L2(0, T ;Qh1 ), where t0 ∈ [0, T ] is such that

‖ξ(t0) − Phξ(t0)‖2
0,Ω = max

t∈[0,T ]
‖ξ(t) − Phξ(t)‖2

0,Ω .



26 Q. DU, M. D. GUNZBURGER, L. S. HOU, AND J. LEE

The error estimate (3.34) yields

‖v0 − v0,h‖2
0,Ω1

+ ‖u1 − u1,h‖2
0,Ω2

= Ch2r(‖v0‖2
r+1,Ω1

+ ‖u1‖2
r+1,Ω2

+ ‖p0‖2
r,Ω1

).
(4.33)

Equation (3.19) and the approximation properties imply

‖u0 − u0,h‖2
1,Ω2

≤ Ch2r‖u0‖2
r+1,Ω1

.(4.34)

Also, by virtue of (4.24), we have

‖ξ(t0) − Phξ(t0)‖2
0,Ω ≤ Ch2r−2ε

(
‖v(t0)‖2

r,Ω1
+ ‖∂tu(t0)‖2

r,Ω2

)
≤ Ch2r−2ε

(
‖v‖2

L2(0,T ;Hr+1(Ω1))
+ ‖∂tv‖2

L2(0,T ;Hr−1(Ω1))

+ ‖u‖2
L2(0,T ;Hr+1(Ω2))

+ ‖∂tu‖2
L2(0,T ;Hr−1(Ω2))

)
.

(4.35)

Thus, utilizing (4.33)–(4.35), (4.23), and (3.9), we may simplify (4.32) to

ρ1‖v(t) − vh(t)‖2
0,Ω1

+ k1‖v − vh‖2
L2(0,T ;H1(Ω1))

+ ρ2‖∂tu(t) − ∂tuh(t)‖2
0,Ω2

+ ‖u(t) − uh(t)‖2
1,Ω2

≤ Ch2r
(
‖v0‖2

r+1,Ω1
+ ‖u1‖2

r+1,Ω2
+ ‖p0‖2

r,Ω1
+ ‖u0‖2

r+1,Ω1

+ ‖p‖2
L2(0,T ;Hr(Ω1))

)
+ Ch2r−2ε

(
‖v‖2

L2(0,T ;Hr+1(Ω1))

+ ‖∂tv‖2
L2(0,T ;Hr−1(Ω1))

+ ‖u‖2
L2(0,T ;Hr+1(Ω2))

+ ‖∂tu‖2
L2(0,T ;Hr−1(Ω2))

)
+

∫ t

0

‖u(s) − uh(s)‖2
1,Ω2

ds.

(4.36)

By dropping the first three terms on the left-hand side of (4.36) and applying the
Gronwall’s inequality (3.53), we obtain

‖u(t) − uh(t)‖2
1,Ω2

≤ CeCTh2r
[
‖v0‖2

r+1,Ω1
+ ‖u1‖2

r+1,Ω2

+ ‖p0‖2
r,Ω1

+ ‖u0‖2
r+1,Ω1

+ ‖p‖2
L2(0,T ;Hr(Ω1))

]
+ CeCTh2r−2ε

(
‖v‖2

L2(0,T ;Hr+1(Ω1))
+ ‖∂tv‖2

L2(0,T ;Hr−1(Ω1))

+ ‖u‖2
L2(0,T ;Hr+1(Ω2))

+ ‖∂tu‖2
L2(0,T ;Hr−1(Ω2))

)
.

(4.37)

Hence, (4.25) follows from (4.36)–(4.37).

Appendix. Error estimates for the weighted L2 projection onto Ψh. The
objective of this subsection is to prove error estimates (4.23)–(4.24) for the weighted
L2 projection operator Ph defined by (4.19).

We introduce an operator Sh : Ψ → Ψh as follows. For each ζ ∈ Ψ ⊂ H1
0(Ω),

Shζ =

{
ζ1,h in Ω1,

ζ2,h in Ω2,
(A.1)
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where ζ1,h ∈ Xh
1 together with some σh ∈ Qh1 is the finite element solution of

a1[ζ1,h, zh] + b[zh, σh] = [ζ, zh] ∀ zh ∈ Xh
1 ∩H1

0(Ω1),

b[ζ1,h, qh] = 0 ∀ qh ∈ Qh1 ∩ L2
0(Ω1),

ζ1,h|Γ1
= 0 and [ζ1,h, sh]0,Γ0

= [ζ, sh]0,Γ0 ∀ sh ∈ Xh
1 |Γ0 ,

and ζ2,h ∈ Xh
2 is the finite element solution of{

[∇ζ2,h,∇wh]Ω2
= [∇ζ,∇wh]Ω2

∀wh ∈ Xh
2 ∩H1

0(Ω2),

ζ2,h|Γ2 = 0 and [ζ2,h, sh]0,Γ0
= [ζ, sh]0,Γ0 ∀ sh ∈ Xh

2 |Γ0 .

Evidently, ζ1,h|Γ0 = ζ2,h|Γ0 , so that Shζ defined by (A.1) indeed satisfies Shζ ∈ Ψh.
Using the results of [23, 25] concerning error estimates for the finite element

approximations of the Stokes equations (noting that div ζ|Ω1
= 0) with inhomogeneous

boundary conditions, we obtain

‖ζ1,h − ζ‖1,Ω1
≤ Chr‖ζ‖r+1,Ω1

if ζ|Ω1
∈ Hr+1(Ω1).(A.2)

Furthermore, under assumption (H1), we may adapt straightforwardly the proof in
[23] for an Aubin–Nitsche-type result to obtain

‖ζ1,h − ζ‖0,Ω1 ≤ Ch1−ε1‖ζ1,h − ζ‖1,Ω1 .(A.3)

Likewise,

‖ζ2,h − ζ‖1,Ω2
≤ Chr‖ζ‖r+1,Ω2

if ζ|Ω2
∈ Hr+1(Ω2),(A.4)

and, under assumption (H2),

‖ζ2,h − ζ‖0,Ω2
≤ Ch1−ε2‖ζ2,h − ζ‖1,Ω2

.(A.5)

To summarize, we have the following results.
Proposition A.1. If ζ ∈ Ψ and ζ|Ωi ∈ Hr+1(Ωi) (i = 1, 2) for some r ∈ [0, k],

then

‖Shζ − ζ‖1,Ω ≤ Chr(‖ζ‖r+1,Ω1 + ‖ζ‖r+1,Ω2).(A.6)

If, in addition, assumptions (H1)–(H2) hold, then

‖Shζ − ζ‖0,Ω ≤ Ch1−ε‖Shζ − ζ‖1,Ω,(A.7)

where ε = max{ε1, ε2}
The following proposition establishes relationships between approximation prop-

erties for the operator Ph and those for the operator Sh.
Proposition A.2. Assume that (H1)–(H2) hold. Then,

‖ζ − Phζ‖1,Ω ≤ Ch−ε‖ζ − Shζ‖1,Ω ∀ ζ ∈ Ψ.(A.8)

Proof. Let ζ ∈ Ψ be given. The best approximation property of a projection
operator implies that

‖ζ − Phζ‖0,Ω ≤ ‖Shζ − ζ‖0,Ω.(A.9)
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Using the triangle inequality, the inverse inequality (3.13), and inequality (A.9), we
deduce that

‖ζ − Phζ‖1,Ω ≤ ‖ζ − Shζ‖1,Ω + ‖Shζ − Phζ‖1,Ω

≤ ‖ζ − Shζ‖1,Ω +
C

h
‖Shζ − Phζ‖0,Ω

≤ ‖ζ − Shζ‖1,Ω +
C

h
‖ζ − Phζ‖0,Ω +

C

h
‖Shζ − ζ‖0,Ω

≤ ‖ζ − Shζ‖1,Ω +
C

h
‖Shζ − ζ‖0,Ω.

Thus, (A.8) follows from the last inequality and (A.7).
Finally, as obvious consequences of (A.8) and (A.6)–(A.7), we obtain the following

error estimates for ζ − Phζ:
Theorem A.3. Assume that (H1)–(H2) hold. Then the operator Ph satisfies the

error estimates (4.23) and (4.24).
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[2] A. Bermúdez, R. Durán, and R. Rodŕiguez, Finite element analysis of compressible and
incompressible fluid-solid systems, Math. Comp., 67 (1998), pp. 111–136.

[3] F. Blom, A monolithical fluid-structure interaction algorithm applied to the piston problem,
Comput. Methods Appl. Mech. Engrg., 167 (1998), pp. 369–391.

[4] J. Boujot, Mathematical formulation of fluid-structure interaction problems, RAIRO Modél.
Math. Anal. Numér., 21 (1987), pp. 239–260.

[5] P. Ciarlet, The Finite Element Method For Elliptic Problems, North–Holland, Amsterdam,
1978.

[6] C. Conca and M. Durán, A numerical study of a spectral problem in solid-fluid type structures
Numer. Methods Partial Differential Equations, 11 (1995), pp. 423–444.

[7] C. Conca, J. Mart́in, and J. Tucsnak, Motion of a rigid body in a viscous fluid, C. R. Acad.
Sci. Paris Sér. I Math., 328 (1999), pp. 473–478.

[8] S. Dasser, A penalization method for the homogenization of a mixed fluid-structure problem,
C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), pp. 759–764.

[9] B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction:
Compressible and incompressible models, Comm. Partial Differential Equations, 25 (2000),
pp. 1399–1413.

[10] Q. Du, M. Gunzburger, L. Hou, and J. Lee, Analysis of a Linear Fluid-Structure Interaction
Problem, Disc. Cont. Dyn. Syst., 9 (2003), pp. 633–650.

[11] D. Errate, M. J. Esteban, and Y. Maday, Couplage fluid-structure, Un modéle simplifié en
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1. Introduction. Spectral collocation provides powerful methods—known as
pseudospectral methods—for computing approximate solutions of ordinary and par-
tial differential equations. Over the last two decades, pseudospectral methods have
emerged as viable alternatives in many situations to finite difference and finite element
methods. In the pseudospectral approach, the unknown solution of the differential
equation is approximated by a global interpolant, such as an algebraic or trigonometric
polynomial of high degree. The derivatives appearing in the differential equation are
approximated by exact differentiation of the interpolant, and the unknown coefficients
in the interpolant are then obtained by setting the residual to zero at an appropriate
number of collocation points in the domain of the problem. Since interpolation and
differentiation are linear operations, the process of obtaining approximations to the
values of the derivative of a function at the set of collocation points can be expressed
as a matrix-vector multiplication: the matrices involved are called pseudospectral dif-
ferentiation matrices. A Chebyshev pseudospectral differentiation matrix is one for
which the domain in the direction of differentiation is the finite interval [−1, 1], the
interpolant is an algebraic polynomial, and the collocation points are chosen to be the
extrema or zeros of a Chebyshev polynomial.

The aim of this paper is to give integral expressions for the elements of the inverses
of second-order pseudospectral differentiation matrices, and to show that these inverse
matrices have simple upper bounds in the maximum norm if the collocation points are
Chebyshev extrema or zeros. Integral expressions are also given for the elements of
the inverses of first-order pseudospectral differentiation matrices. Comments are made
on the failure to obtain upper bounds for the inverse matrices when the collocation
points are evenly spaced and the interpolant is an algebraic polynomial.

The main advantage of pseudospectral methods for approximate solution of dif-
ferential equations is their high accuracy for problems whose solutions are suffi-
ciently smooth. Such methods converge exponentially fast [3, 11, 14], whereas fi-
nite differences and finite elements have algebraic rates of convergence. In practical
computations this means that high accuracy can be achieved with relatively coarse
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discretizations. Disadvantages include the occurrence of full rather than sparse differ-
entiation matrices, and less flexibility when dealing with irregular domains. For a full
treatment of numerical solution of differential equations by pseudospectral methods,
the reader is referred to [2, 3, 7, 8, 9].

The computation of pseudospectral differentiation matrices for derivatives of ar-
bitrary order has been considered by Huang and Sloan [12] and by Welfert [16]. A
MATLAB package by Weideman and Reddy [15] may be used to generate pseudospec-
tral differentiation matrices and to solve differential equations by the pseudospectral
method. FORTRAN packages for pseudospectral computations have been produced
by Funaro [10] and by Don and Solomonoff [6].

The outline of this paper is as follows. Section 2 presents integral expressions for
the elements of second-order pseudospectral differentiation matrices for algebraic poly-
nomial interpolants and arbitrary distributions of collocation points. Upper bounds
on the inverse matrices are given in the maximum norm when the collocation points
are extrema or zeros of Chebyshev polynomials. It is also shown that the elements
become unbounded as the number of collocation points tends to infinity when the
points are evenly spaced. Section 3 presents integral expressions for the elements of
first-order pseudospectral differentiation matrices, and conclusions and comments are
given in section 4. The analysis leading to the upper bound on the inverses of second-
order matrices depends on a negativity property of the elements, and this property is
examined in the appendix.

2. Second-order differentiation matrices.

2.1. Background. We consider pseudospectral differentiation of nonperiodic
functions on the domain [−1, 1]. Let {xj}Nj=0 be a set of N + 1 distinct collocation
points, or nodes, satisfying

−1 = x0 < x1 < · · · < xN−1 < xN = 1(2.1)

but otherwise arbitrary. If u is a real function defined on this set of nodes, the
approximating polynomial interpolant pN ∈ PN is defined by

pN (x) =

N∑
j=0

u(xj)L
(N)
j (x),(2.2)

where PN is the set of real polynomials of degree at most N and L
(N)
j (x) is the

Lagrange interpolation polynomial

L
(N)
j (x) =

N∏
i=0
i�=j

(
x− xi
xj − xi

)
.(2.3)

L
(N)
j is determined by the conditions

L
(N)
j (xi) =

{
0 if j �= i,
1 if j = i, for 0 ≤ i, j ≤ N.

(2.4)

For 0 ≤ i ≤ N , the second-order derivative of u at x = xi is approximated by p′′N (xi).
Now set

u := [u(x0), u(x1), . . . , u(xN )]
T and w := [p′′N (x0), p

′′
N (x1), . . . , p

′′
N (xN )]

T ,
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and it follows from (2.2) that

w = D
(2)
N u,(2.5)

where D
(2)
N ∈ R

(N+1)×(N+1), with the element of row index i and column index j
given by

D
(2)
N (i, j) =

(
d2 L

(N)
j

dx2

)
(xi) for 0 ≤ i, j ≤ N.(2.6)

The vector w is the discrete second derivative vector, and D
(2)
N is the second-order

pseudospectral differentiation matrix based on the nodes (2.1).

It is readily shown using (2.2) and (2.3) that D
(2)
N v0 = D

(2)
N v1 = 0, where v0 and

v1 are vectors in R
(N+1) defined by v0 = [1, 1, . . . , 1]T and v1 = [x0, x1, . . . , xN ]

T ,

and it follows that D
(2)
N is singular. To obtain the nonsingular differentiation matrix

that arises in pseudospectral solution of differential equations, consider the simple
one-dimensional Poisson equation

d2u

dx2
= f(x), −1 < x < 1, u(±1) = 0,

where f ∈ C[−1, 1]. If uj denotes the pseudospectral approximation to u at x = xj
(j = 0, 1, . . . , N), then u0 := 0, uN := 0, and the approximation to u′′ at x = xi is

given by (2.2) as p′′N (xi), where pN (x) =
∑N−1
j=1 uj L

(N)
j (x). The unknown coefficients

{uj}N−1
j=1 are obtained from the conditions

p′′N (xi) = f(xi), 1 ≤ i ≤ N − 1.

This system may be written as

D̃
(2)
N v = f ,(2.7)

where f = [f(x1), f(x2), . . . , f(xN−1)]
T , v = [u1, u2, . . . , uN−1]

T , and D̃
(2)
N ∈

R
(N−1)×(N−1) is obtained by deleting the first and last rows and columns from D

(2)
N .

Henceforth we shall refer to D̃
(2)
N as the second-order pseudospectral differentiation

matrix based on the nodes (2.1). The matrix D̃
(2)
N is nonsingular: the objective now

is to give expressions for the elements of its inverse and to obtain an upper bound for
the inverse when the nodes (2.1) are suitably chosen.

2.2. Formation of (D̃
(2)
N )−1. Let ψ

(N−2)
j ∈ PN−2 be the Lagrange polynomial

satisfying

ψ
(N−2)
j (xi) =

{
0 if j �= i,
1 if j = i, for 1 ≤ i, j ≤ N − 1.

(2.8)

Now define φ
(N)
j ∈ PN by

d2φ
(N)
j

dx2
(x) = ψ

(N−2)
j (x), j = 1, 2, . . . , N − 1,

subject to φ
(N)
j (±1) = 0.

(2.9)
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It is clear from the construction of D
(2)
N that if φj ∈ PN and φj = [φj(x0), φj(x1), . . . ,

φj(xN )]
T , then D

(2)
N φj = ψj , where ψj = [φ′′

j (x0), φ
′′
j (x1), . . . , φ

′′
j (xN )]

T . In other
words, pseudospectral differentiation of order 2 is exact for functions in PN . (This is
true for fixed N and differentiation of any order.)

Equation (2.5), with w := ψ
(N−2)
j = [ψ

(N−2)
j (x0), ψ

(N−2)
j (x1), . . . , ψ

(N−2)
j (xN )]

T

and u := φ
(N)
j = [φ

(N)
j (x0), φ

(N)
j (x1), . . . , φ

(N)
j (xN )]

T becomes the identity

D
(2)
N φ

(N)
j = ψ

(N−2)
j .

If Φ = [φ
(N)
1 ,φ

(N)
2 , . . . ,φ

(N)
N−1] and Ψ = [ψ

(N−2)
1 ,ψ

(N−2)
2 , . . . ,ψ

(N−2)
N−1 ], we may utilize

conditions (2.8) in

D
(2)
N Φ = Ψ

to obtain

D
(2)
N Φ =



ψ
(N−2)
1 (x0) ψ

(N−2)
2 (x0) · · · ψ

(N−2)
N−1 (x0)

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

ψ
(N−2)
1 (xN ) ψ

(N−2)
2 (xN ) · · · ψ

(N−2)
N−1 (xN )


.

If we identify elements from rows 2 to N in the above equation, we obtain

D̃
(2)
N (D̃

(2)
N )−1 = I,

where

(D̃
(2)
N )−1(i, j) = φ

(N)
j (xi), 1 ≤ i, j ≤ N − 1.(2.10)

The elements of the inverse of the matrix D̃
(2)
N are thus given by solutions of the

differential equations (2.9).
The solution of (2.9) may be written as

φ
(N)
j (x) =

∫ 1

−1

G(z;x)ψ
(N−2)
j (z)dz, 1 ≤ j ≤ N − 1,(2.11)

where G(z;x) is the Green’s function defined by

G(z;x) =


(z + 1)(x− 1)

2
, −1 ≤ z ≤ x,

(z − 1)(x+ 1)

2
, x < z ≤ 1.

(2.12)

Note that − 1
2 ≤ G(z;x) < 0 for z, x ∈ (−1, 1).

An equivalent representation is

φ
(N)
j (x) =

∫ x

−1

(x− z)ψ
(N−2)
j (z)dz +

(x+ 1)

2

∫ 1

−1

(z − 1)ψ
(N−2)
j (z)dz.(2.13)

The elements (D̃
(2)
N )−1(i, j), 1 ≤ i, j ≤ N−1, are now obtained by evaluating φ

(N)
j (x)

at x = xi.
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2.3. Symmetry properties of (D̃
(2)
N )−1. Henceforth we shall assume that

the nodes (2.1) are symmetrically located around x = 0. Thus xj = −xN−j for
1 ≤ j ≤ N/2, and there is a node at x = 0 if and only if N is even. With a nodal

distribution of this type it is readily seen that L
(N)
j (x) = L

(N)
N−j(−x). Hence

D̃
(2)
N (i, j) =

d2L
(N)
j

dx2
(xi) =

d2L
(N)
N−j

dx2
(−xi) =

d2L
(N)
N−j

dx2
(xN−i)

= D̃
(2)
N (N − i,N − j),(2.14)

which shows that D̃
(2)
N is a centrosymmetric matrix [1]. The centrosymmetric property

may be written as D̃
(2)
N = PD̃

(2)
N P , with

P = PT = P−1 =

[
1...1

]
.

Clearly

(D̃
(2)
N )−1 = P−1(D̃

(2)
N )−1P−1 = P (D̃

(2)
N )−1P,

and it follows that (D̃
(2)
N )−1 is also centrosymmetric.

2.4. Upper bounds on (D̃
(2)
N )−1. We now consider three specific distributions

of the collocation points (2.1):

(a) Chebyshev extrema : xj := tj = − cos

(
πj

N

)
, j = 0, 1, . . . , N ;

(b) Chebyshev zeros : x0 := s0 = −1, xN := sN = +1, and

xj := sj = − cos

(
π(2j − 1)

2(N − 1)

)
, j = 1, 2, . . . , N − 1;

(c) Evenly spaced : xj := ρj = −1 + 2× j

N
, j = 0, 1, . . . , N.

(2.15)
The points {tj}Nj=0 are the extrema of the Chebyshev polynomial TN in [−1, 1], and
{sj}N−1

j=1 are the zeros of TN−1 (see [13]). The distributions (a) and (b) are popular
choices for pseudospectral solution of differential equations [2, 3, 7, 8].

In the case of nodes based on Chebyshev extrema, it is readily shown that (see
[4, 13])

ψ
(N−2)
j (x) =

T ′
N (x)

(x− tj)T ′′
N (tj)

, j = 1, 2, . . . , N − 1,

and if this is substituted into (2.11), we obtain

φ
(N)
j (x) =

1

T ′′
N (tj)

∫ 1

−1

G(z;x)T ′
N (z)

(z − tj)
dz, j = 1, 2, . . . , N − 1.(2.16)

With nodes based on Chebyshev zeros, we find

ψ
(N−2)
j (x) =

TN−1(x)

(x− sj)T ′
N−1(sj)

, j = 1, 2, . . . , N − 1,
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Fig. 1. φ
(N)
j (x) corresponding to Chebyshev extrema nodes. N = 6 throughout, and j = 1, 3, 2,

and 4 as indicated above each panel.

which yields

φ
(N)
j (x) =

1

T ′
N−1(sj)

∫ 1

−1

G(z;x)TN−1(z)

(z − sj)
dz, j = 1, 2, . . . , N − 1.(2.17)

The functions φ
(N)
j (x) were determined for a range of values of N and j, using

the three nodal distributions given in (2.15). Evaluations are readily effected using
the representation (2.13), with the MATLAB routines ode45 and quadl employed to
compute the first and second integrals, respectively, in (2.13). Numerical experiments

suggest that for both Chebyshev distributions of nodes, φ
(N)
j (x) < 0 on (−1, 1) for

any positive integer N and for all j = 1, 2, . . . , N − 1. For evenly spaced nodes,
this negativity result does not hold. To illustrate this observation, Figure 1 shows

φ
(N)
j (x) corresponding to the Chebyshev extrema nodes (2.15(a)), with N = 6 and

j = 1, 2, 3, and 4. The profiles corresponding to the Chebyshev zero nodes have

similar qualitative features. The centrosymmetry property of (D̃
(2)
N )−1 implies that

φ
(N)
j (x) = φ

(N)
N−j(−x) for 1 ≤ j ≤ N − 1, and this symmetry is seen in the plots

corresponding to N = 6, j = 2 and N = 6, j = 4. In Figure 2, φ
(N)
j (x) is shown

for the same values of N and j on evenly spaced nodes. Here again, the property

φ
(N)
j (x) = φ

(N)
N−j(−x) is illustrated by the plots N = 6, j = 2 and N = 6, j = 4.

In the case of evenly spaced nodes, φ
(N)
j (x) can take positive values; in particular,

elements of the inverse differentiation matrix are given by the values of φ
(N)
j (x) at

the asterisks, and some of these values are positive. Thus, the computational results

show that (D̃
(2)
N )−1 is a negative matrix for Chebyshev nodes, but not necessarily for

evenly spaced nodes.
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Fig. 2. φ
(N)
j (x) corresponding to evenly spaced nodes. N = 6 throughout, and j = 1, 3, 2 and 4

as indicated above each panel.

Table 1
(D̃

(2)
6 )−1 for Chebyshev extrema nodes.

−10−1 ×


0.250 0.485 0.333 0.161 0.021
0.267 1.500 1.333 0.562 0.087
0.167 1.167 2.333 1.167 0.167
0.087 0.562 1.333 1.500 0.267
0.021 0.161 0.333 0.485 0.250


Table 2

(D̃
(2)
6 )−1 for evenly spaced nodes.

−10−1 ×


1.223 −0.062 1.412 −0.123 0.328
1.062 0.691 1.926 0.198 0.568
0.812 0.500 2.375 0.500 0.812
0.568 0.198 1.926 0.691 1.062
0.328 −0.123 1.412 −0.062 1.223



The inverse matrices (D̃
(2)
N )−1 corresponding to N = 6 are given in Tables 1 and

2 for Chebyshev extrema nodes and evenly spaced nodes, respectively. The matrices
displayed in Tables 1 and 2 were obtained by inverting the appropriate pseudospectral
differentiation matrices computed using the MATLAB codes of Weideman and Reddy
[15].

Note that (D̃
(2)
6 )−1 is negative in Table 1, but there are positive elements in

Table 2. The matrices are centrosymmetric for both sets of nodes.
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To obtain upper bounds for (D̃
(2)
N )−1 we first consider the row sums of the inverse

matrix. The sum of the elements in row i (i = 1, 2, . . . , N − 1) of (D̃
(2)
N )−1, for any

distribution of nodes (2.1), is given by

S
(N)
i =

N−1∑
j=1

φ
(N)
j (xi).(2.18)

Now define φ(N)(x) =
∑N−1
j=1 φ

(N)
j (x) and ψ(N−2)(x) =

∑N−1
j=1 ψ

(N−2)
j (x). From (2.9)

we see that φ(N) is defined by

d2φ(N)

dx2
(x) = ψ(N−2)(x),

with φ(N)(±1) = 0.

(2.19)

Clearly, ψ(N−2) ∈ PN−2 and ψ(N−2)(xi) = 1 for i = 1, 2, . . . , N − 1. The unique
polynomial in PN−2 satisfying these conditions is ψ(N−2)(x) ≡ 1, and it follows from
(2.19) that

φ(N)(x) =
1

2
(x2 − 1).(2.20)

It follows from (2.18) and (2.20) that the row sum is given by

S
(N)
i =

1

2
(x2
i − 1) for i = 1, 2, . . . , N − 1.(2.21)

To obtain upper bounds for the maximum norms of (D̃
(2)
N )−1 when the nodes are

Chebyshev extrema or Chebyshev zeros, we note that (D̃
(2)
N )−1(i, j) < 0 for 1 ≤ i, j ≤

N − 1. This negativity property, which is established in the appendix, is equivalent

to the conditions φ
(N)
j (ti) < 0 and φ

(N)
j (si) < 0 for 1 ≤ i, j ≤ N − 1. The numerical

experiments described above and the analysis in the appendix show that φ
(N)
j (x) < 0

for 1 ≤ j ≤ N − 1 and x ∈ (−1, 1), with each of the Chebyshev nodal distributions.
Under this negativity assumption, it follows from (2.21) that

N−1∑
j=1

∣∣∣(D̃(2)
N )−1(i, j)

∣∣∣ = 1

2
(1− x2

i ), 1 ≤ i ≤ N − 1.

The maximum value of this quantity occurs at i = N/2 if N is even and at i =
(N ± 1)/2 if N is odd. The key results are contained in the following theorem.
Theorem 2.1. For either of the two Chebyshev nodal distributions in (2.15),

‖(D̃(2)
N )−1‖∞ =

1

2
if N is even.(2.22)

If N is odd, then

‖(D̃(2)
N )−1‖∞ =

1

2
(1− t2(N−1)/2) =

1

2
cos2

( π

2N

)
(2.23)

for the Chebyshev extrema distribution, and

‖(D̃(2)
N )−1‖∞ =

1

2
(1− s2(N−1)/2) =

1

2
cos2

(
π

2(N − 1)

)
(2.24)



38 DAVID M. SLOAN

Table 3
‖(D̃(2)

N )−1‖∞ for evenly spaced nodes.

N ‖(D̃(2)
N )−1‖∞

4 0.5000
5 0.4800
6 0.5000
7 0.4898
8 0.5926
...

...
15 14.2727
16 28.1331
...

...
32 3.5× 105

for the Chebyshev zeros distribution. For distributions (2.15(a)) or (2.15(b)),

‖(D̃(2)
N )−1‖∞ ≤ 1

2
, with equality if N is even.(2.25)

The values of the norms given in (2.22)–(2.24) are readily verified numerically.
If the nodes are evenly spaced, the inverse matrix does not satisfy the negativity

property (unless N ≤ 5), and the bound given in (2.25) does not apply if N ≥ 8.

Table 3 gives ‖(D̃(2)
N )−1‖∞ for evenly spaced nodes at several values of N .

The results show that the norm increases rapidly with N . One expects that nodal
distributions with clustering at the ends [8] will be a prerequisite for the existence of
bounds on the inverse differentiation matrix. Numerical results show, for example,
that if the collocation points {sj}N−1

j=1 in (2.15) denote the zeros of the Legendre

polynomial of degree N − 1, then (D̃
(2)
N )−1) is negative. Furthermore, ‖(D̃(2)

N )−1‖∞
takes values 1

2 or 1
2 (1− s2(N−1)/2) for N even or odd.

3. First-order differentiation matrices.

3.1. Background. Here we follow the method adopted in the preceding section
to give a brief presentation of expressions for the elements of the inverses of first-
order pseudospectral differentiation matrices. The element of row index i and column

index j of the first-order pseudospectral differentiation matrix D
(1)
N ∈ R

(N+1)×(N+1)

associated with nodes (2.1) is given by

D
(1)
N (i, j) =

(
dL

(N)
j

dx

)
(xi) for 0 ≤ i, j ≤ N.

In the notation of subsection 2.1, D
(1)
N v0 = 0, and D

(1)
N is therefore singular. To

obtain a nonsingular differentiation matrix that arises in pseudospectral solution of
differential equations, we consider the simple differential problem

du

dx
= f(x), −1 < x ≤ 1, u(−1) = 0,

where f ∈ C[−1, 1]. The pseudospectral solution is obtained from

D̃
(1)
N v = f ,(3.1)
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where f = [f(x1), f(x2), . . . , f(xN )]
T , v = [u1, u2, . . . , uN ]

T , and D̃
(1)
N ∈ R

N×N is

obtained by deleting the first row and column from D
(1)
N . (If the boundary condition

of the first-order differential problem is imposed at x = +1, then the last row and

column of D
(1)
N are deleted.)

3.2. Formation of (D̃
(1)
N )−1. Let ψ

(N−1)
j ∈ PN−1 be the Lagrange polynomial

satisfying

ψ
(N−1)
j (xi) =

{
0 if j �= i,
1 if j = i, for 1 ≤ i, j ≤ N.

(3.2)

Now define φ
(N)
j ∈ PN by

dφ
(N)
j

dx
(x) = ψ

(N−1)
j (x), j = 1, 2, . . . , N,

subject to φ
(N)
j (−1) = 0.

(3.3)

The notation here is inconsistent with that adopted in section 2; however, the aim in
this choice of notation is to simplify the presentation.

Following the steps taken in subsection 2.1, we find that

(D̃
(1)
N )−1(i, j) = φ

(N)
j (xi), 1 ≤ i, j ≤ N.(3.4)

The matrix elements are given by the solution of (3.3), which is

φ
(N)
j (x) =

∫ x

−1

ψ
(N−1)
j (z)dz, 1 ≤ j ≤ N.(3.5)

In the case of the Chebyshev extrema nodes (see [13]),

ψ
(N−1)
j (x) =

(x− 1)T ′
N (x)

(tj − 1)(x− tj)T ′′
N (tj)

, 1 ≤ j ≤ N − 1,

and

ψ
(N−1)
N (x) =

T ′
N (x)

T ′
N (tN )

.

Hence

φ
(N)
j (x) =

1

(tj − 1)T ′′
N (tj)

∫ x

−1

(z − 1)T ′
N (z)

(z − tj)
dz, 1 ≤ j ≤ N − 1,(3.6)

and

φ
(N)
N (x) =

1

T ′
N (tN )

∫ x

−1

T ′
N (z)dz =

TN (x)− TN (t0)

T ′
N (tN )

.(3.7)

With the Chebyshev zeros nodal distribution,

ψ
(N−1)
j (x) =

(x− 1)TN−1(x)

(sj − 1)(x− sj)T ′
N−1(sj)

, 1 ≤ j ≤ N − 1,
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and

ψ
(N−1)
N (x) =

TN−1(x)

TN−1(sN )
.

Hence

φ
(N)
j (x) =

1

(sj − 1)T ′
N−1(sj)

∫ x

−1

(z − 1)TN−1(z)

(z − sj)
dz, 1 ≤ j ≤ N − 1,(3.8)

and

φ
(N)
N (x) =

1

TN−1(sN )

∫ x

−1

TN−1(z)dz

=

∫ x

−1

TN−1(z)dz

=
1

2

[
TN (x)

N
− TN−2(x)

N − 2

]
+

(−1)N
N(N − 2)

.(3.9)

The first-order inverse matrices (D̃
(1)
N )−1 have a row sum property which is the

analogue of the condition (2.21) that applies to (D̃
(2)
N )−1. If φ(N)(x) =

∑N
j=1 φ

(N)
j (x)

and ψ(N−1)(x) =
∑N
j=1 ψ

(N−1)
j (x), then

dφ(N)

dx
(x) = ψ(N−1)(x),

with φ(N)(−1) = 0.

(3.10)

Here φ(N) ∈ PN , ψ
(N−1) ∈ PN−1, and ψ(N−1)(xi) = 1 for i = 1, 2, . . . , N . Clearly

ψ(N−1)(x) ≡ 1 and

φ(N)(x) = x+ 1.(3.11)

It follows that

φ(N)(xi) =

N∑
j=1

(D̃
(1)
N )−1(i, j) = xi + 1, 1 ≤ i ≤ N,

and

max
1≤i≤N

φ(N)(xi) = φN (xN ) = 2.

It may be shown (see the appendix) that, for each of the Chebyshev nodal distri-

butions, the elements φ
(N)
j (xN ) have a constant sign for 1 ≤ j ≤ N , from which

it follows that
∑N
j=1 |(D̃(1)

N )−1(N, j)| = 2. However, numerical experiments indicate

that elements in (D̃
(1)
N )−1 do not have a uniform sign, and, as a result of cancellation,

it may not be the case that

‖(D̃(1)
N )−1‖∞ ≤ 2.(3.12)
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Table 4
‖(D̃(1)

N )−1‖∞ for Chebyshev zeros nodes.

N ‖(D̃(1)
N )−1‖∞

4 2.3769
8 2.0924
16 2.0211
32 2.0050
64 2.0012
128 2.0003
256 2.0001
257 2.0001

‖(D̃(1)
N )−1‖∞ was computed for each of the two Chebyshev nodal distributions over a

range of values of N . In the case of Chebyshev extrema nodes, the norm was found
to have the value 2 for a selection of values of N between 4 and 257. In the case
of Chebyshev zeros nodes, the computed values of ‖(D̃(1)

N )−1‖∞ for several values of
N are given in Table 4. The computed results suggest that (3.12) holds for nodal

distribution (2.15(a)), and that ‖(D̃(1)
N )−1‖∞ tends to 2 from above as N increases for

distribution (2.15(b)). Further comments on the structure of ‖(D̃(1)
N )−1‖∞ are given

in the appendix.

4. Comments. Expressions have been given for the elements of the inverses of
first- and second-order pseudospectral differentiation matrices. Simple upper bounds
have been presented for the maximum norms of the second-order differentiation ma-
trices when Chebyshev collocation points are used. The analytic expressions for the
matrix elements may be useful in studying properties of the inverse matrices, and
the bounds can be utilized in obtaining error bounds for the computed solutions
of differential equations by the Chebyshev pseudospectral method. The bounds on

‖(D̃(2)
N )−1‖∞ for the Chebyshev distributions of nodes indicate that, in the maximum

norm, the growth rate of the condition number of D̃
(2)
N with N is similar to the growth

of ‖D(2)
N ‖∞: it is readily shown numerically that this isO(N4) asN increases. It would

be of interest to investigate analogous properties of differentiation matrices associated
with other sets of nodal distributions that have quadratic clustering—minimum node
spacing decreasing like O(1/N2).

It may also be of interest to note that, for both Chebyshev distributions,

‖(D̃(2)
N )−1‖1 and ‖(D̃(2)

N )−1‖2 tend to 0.5708 and 0.4076, respectively, as N increases.

In the case of the first-order differentiation matrix, ‖(D̃(1)
N )−1‖1 and ‖(D̃(1)

N )−1‖2 tend
to 1.8 and 1.4, respectively, as N increases: the convergence rate is slower for the
inverses of the first-order matrices. With evenly spaced nodes, the 1-norm and the
2-norm increase rapidly with N . These results are obtained by direct computation.

5. Appendix.

5.1. Negativity property of (D̃
(2)
N )−1.

Signs of
dφ

(N)

j

dx
at x = ±1. In the appendix we confine our analysis to the

Chebyshev extrema distribution of nodes. Results may be obtained for the Chebyshev
zeros case using an analogous approach.
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Lemma 5.1. I
(N)
j :=

∫ 1

−1
ψ

(N−2)
j (x)dx > 0 for j = 1, 2, . . . , N − 1, with

ψ
(N−2)
j (x) =

T ′
N (x)

(x− tj)T ′′
N (tj)

and tj = − cos(πjN ).

Note that {tj}N−1
j=1 are the zeros of UN−1(x), the Chebyshev polynomial of the

second kind of degree (N − 1) [13]. Using the orthogonality properties of {Uk}N−2
k=0 ,

we may write

ψ
(N−2)
j (x) =

N−2∑
k=0

cj,k Uk(x),(5.1)

where cj,k = 2
π

∫ 1

−1
(1 − x2)

1
2ψ

(N−2)
j (x)Uk(x)dx. For 0 ≤ k ≤ N − 2, ψ

(N−2)
j Uk ∈

P2N−4, and we may therefore use the Gaussian quadrature rule (see [5])

(5.2)∫ 1

−1

(1− x2)
1
2 f(x)dx =

N−1∑
i=1

wi f(ti) +
π

22N−1(2N − 2)!
f (2N−2)(ξ), −1 < ξ < 1,

with zero error term (f ≡ ψ
(N−2)
j Uk), where wi =

π
N sin2(πiN ). This enables us to

write

cj,k =
2

π

N−1∑
l=1

wl ψ
(N−2)
j (tl)Uk(tl)

=
2

π
wj Uk(tj)

=
2

N
(−1)k sin(η(N)

j ) sin[(k + 1)η
(N)
j ],

where η
(N)
j = πj

N . Hence

I
(N)
j =

N−2∑
k=0

cj,k

∫ 1

−1

Uk(x)dx

=

N−2∑
k=0

cj,k νk, where νk =

{
0, k odd,

2
k+1 , k even,

=

q∑
m=0

cj,2m ν2m, where 2q =

{
N − 2, N even,
N − 3, N odd,

=
4

N
sin(η

(N)
j )

q∑
m=0

1

(2m+ 1)
sin[(2m+ 1)η

(N)
j ].

This may be written as

I
(N)
j =

2

N

{
1−

q∑
m=1

bm cos(2mη
(N)
j )− 1

2q + 1
cos[2(q + 1)η

(N)
j ]

}
,
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where bm = 2
(2m−1)(2m+1) . Clearly,

I
(N)
j >

2

N

{
1−

(
1− 1

3

)
−
(
1

3
− 1

5

)
− · · · −

(
1

2q − 1
− 1

2q + 1

)
− 1

2q + 1

}
> 0.

This establishes the inequality given as Lemma 5.1.

The inequality in Lemma 5.1 may be strengthened to I
(N)
j > 4/N2, and this

stronger result is required later. It is clear that I
(N)
j = I

(N)
N−j for j = 1, 2, . . . , N − 1,

so we need only consider j = 1, 2, . . . , jmax, where jmax = N/2 or jmax = (N−1)/2,
depending on whether N is even or odd. Numerical experiments indicate that the
quantity

F
(N)
j =

N

4
(I

(N)
j − I

(N)
1 ) > 0

for j = 2, 3, . . . , jmax: the minimum value of I
(N)
j occurs at j = 1, and it is therefore

sufficient to show that I
(N)
1 > 4/N2.

The positivity of F
(N)
j is more readily appreciated if we write F

(N)
j in the form

F
(N)
j =

q∑
m=1

bm sin(mη
(N)
j+1) sin(mη

(N)
j−1) +

1

2q + 1
sin[(q + 1)η

(N)
j+1] sin[(q + 1)η

(N)
j−1].

For j = 2, 3, . . . , jmax, the initial terms in this summation are positive, and the sum
of the initial set of positive terms exceeds the sum of the moduli of the remaining
terms.
Lemma 5.2.

I
(N)
j > 4/N2 for j = 1, 2, . . . , jmax.

Given that I
(N)
j ≥ I

(N)
1 for j = 1, 2, . . . , jmax, it is sufficient to establish the

inequality for j = 1.
If N is even (2q = N − 2),

N

2
I
(N)
1 = 1 +

1

N − 1
−

q∑
m=1

bm cos(2mη
(N)
1 )

>
N

N − 1
−
{(

1− 1

3

)
+

(
1

3
− 1

5

)
+ · · ·+

(
1

2q − 1
− 1

2q + 1

)}
=

N

N − 1
−
(
1− 1

N − 1

)
=

2

N − 1

>
2

N
.

Hence I
(N)
1 > 4/N2 if N is even.
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If N is odd (2q = N − 3),

N

2
I
(N)
1 = 1 +

1

N − 2
cos

( π

N

)
−

q∑
m=1

bm cos(2mη
(N)
1 )

> 1 +
1

N − 2
cos

( π

N

)
−
(
1− 1

N − 2

)
=

1

N − 2

(
1 + cos

( π

N

))
>

1

N − 2

(
2− π2

2N2

)
if N ≥ 3,

>
1

N − 2

(
2− 4

N

)
=

2

N
.

Hence I
(N)
1 > 4/N2 if N is odd. This establishes the inequality given as Lemma 5.2.

Lemma 5.3.

J
(N)
j :=

∫ 1

−1

(x− 1)ψ
(N−2)
j (x)dx < 0 for j = 1, 2, . . . , N − 1,

where ψ
(N−2)
j is as defined in Lemma 5.1.

In this case we write

(x− 1)ψ
(N−2)
j (x) =

N−1∑
k=0

dj,k Uk(x),(5.3)

where dj,k =
2
π

∫ 1

−1
(1−x2)

1
2 (x−1)ψ

(N−2)
j (x)Uk(x)dx. For k = 0, 1, . . . , N−2 we eval-

uate this integral as in Lemma 5.1 above, since (x−1)ψ
(N−2)
j (x)Uk(x) is a polynomial

of degree at most (2N − 3). It is readily shown that

dj,k = (tj − 1)cj,k for k = 0, 1, . . . , N − 2.

The coefficient dj,N−1 may be obtained by equating coefficients of x
N−1 in (5.2). This

identification gives dj,N−1 = N/T ′′
N (tj). From (5.1) and (5.2) we now obtain

J
(N)
j = (tj − 1)I

(N)
j + dj,N−1

∫ 1

−1

UN−1(x)dx

= (tj − 1)I
(N)
j +

1

N
dj,N−1(1− (−1)N )

= (tj − 1)I
(N)
j +

(−1)j
N2

sin2(η
(N)
j )(1− (−1)N ).

It follows that

J
(N)
j =


(tj − 1)I

(N)
j , N even,

(tj − 1)

[
I
(N)
j − 2(−1)j

N2
(tj + 1)

]
, N odd.

(5.4)
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Since (tj − 1) < 0 and I
(N)
j > 0, then J

(N)
j < 0 if N is even. Furthermore, since

I
(N)
j > 4/N2, then J

(N)
j < 0 if N is odd. Lemma 5.3 is now established for any

positive integer N and j = 1, 2, . . . , N − 1.
Lemma 5.4.

K
(N)
j :=

∫ 1

−1

(x+ 1)ψ
(N−2)
j (x)dx > 0 for j = 1, 2, . . . , N − 1,

where ψ
(N−2)
j is as defined in Lemma 5.1.

Note that

K
(N)
j = J

(N)
j + 2I

(N)
j =


(tj + 1)I

(N)
j , N even,

(tj + 1)

[
I
N)
j − 2(−1)j

N2
(tj − 1)

]
, N odd.

(5.5)

Since (tj+1) > 0 and I
(N)
j > 4/N2, the proof of Lemma 5.4 follows immediately from

(5.4).

From equation (2.13), we see that
dφ

(N)
j

dx (−1) = 1
2 J

(N)
j and

dφ
(N)
j

dx (+1) = 1
2 K

(N)
j .

Lemmas 5.3 and 5.4 show that for the Chebyshev extrema distribution of nodes, the

gradients of φ
(N)
j at the boundaries satisfy

dφ
(N)
j

dx (−1) < 0 and
dφ

(N)
j

dx (+1) > 0. Similar
results can be derived for the Chebyshev zeros distribution of nodes: in this latter
case, the expansions (5.1) and (5.2) are effected in terms of Chebyshev polynomials
of the first kind.

Sign of φ
(N)
j (x) in (−1, 1). For the Chebyshev extrema distribution of nodes,

(2.9) in φ
(N)
j takes the form

T ′′
N (tj)(x− tj)

d2φ
(N)
j

dx2
(x) = T ′

N (x).(5.6)

A first integration of (5.5), making use of boundary conditions at x = −1, is

T ′′
N (tj)

[
(x− tj)

dφ
(N)
j

dx
(x)− φ

(N)
j (x)

]
= TN (x) +A,

where A = −T ′′
N (tj)(1 + tj)

dφ
(N)
j

dx (−1)− TN (−1). The solution may now be written
as

φ
(N)
j (x) = −(x− tj)

∫ 1

x

f(z)

(z − tj)2
dz,(5.7)

where f(x) = (TN (x)+A)/T ′′
N (tj). Alternatively, if the first integral incorporates the

boundary conditions at x = +1, the solution is written as

φ
(N)
j (x) = (x− tj)

∫ x

−1

g(z)

(z − tj)2
dz,(5.8)

where g(x) = (TN (x) + B)/T ′′
N (tj) and B = T ′′

N (tj)(1 − tj)
dφ(N)

dx (+1) − TN (+1).

To obtain approximations to φ
(N)
j (x) by means of (5.6) and (5.7) we first show that
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the dominant terms in f(x) and g(x) are, respectively, −(1 + tj)
dφ

(N)
j

dx (−1) and

(1− tj)
dφ

(N)
j

dx (+1). To establish this, note that∣∣∣∣TN (x)− TN (±1)
T ′′
N (tj)

∣∣∣∣ ≤ 2

|T ′′
N (tj)|

=
2

N2
(1− t2j )

< (1− t2j )
I
(N)
j

2

≤ 1

2
max

(
−(1 + tj)J

(N)
j , (1− tj)K

(N)
j

)
= max

(
−(1 + tj)

dφ
(N)
j

dx
(−1), (1− tj)

dφ
(N)
j

dx
(+1)

)
.

If f(x) and g(x) are replaced by their respective dominant terms, then approximations

to φ
(N)
j (x) may now be obtained from (5.6) and (5.7) as

φ
(N)
j (x) ∼ (1 + tj)

dφ
(N)
j

dx
(−1) (1− x)

(1− tj)
(5.9)

and

φ
(N)
j (x) ∼ −(1− tj)

dφ
(N)
j

dx
(+1)

(x+ 1)

(1 + tj)
.(5.10)

If N is even, then

−(1 + tj)
dφ

(N)
j

dx
(−1) = (1− tj)

dφ
(N)
j

dx
(+1) =

1

2
(1− t2j )I

(N)
j ,

and φ
(N)
j (x) may be represented by either (5.8) or (5.9). If N is odd, then

(1− tj)
dφ

(N)
j

dx
(+1) + (1 + tj)

dφ
(N)
j

dx
(−1) = 2(−1)j

N2
(1− t2j ),

and φ
(N)
j (x) may be approximated by (5.9) and (5.10), depending on whether j is odd

or even. In either case, the dominant terms in the solution indicate that φ
(N)
j (x) < 0

in (−1, 1).
5.2. Comments on the structure of (D̃

(1)
N )−1. The Nth row of (D̃

(1)
N )−1 is

[φ
(N)
1 (tN ), φ

(N)
2 (tN ), . . . , φ

(N)
N (tN )]. For the Chebyshev extrema distribution of nodes,

we see from (3.7) that φ
(N)
N (tN ) takes values 0 or 2/N2 for N even or odd. For

j = 1, 2, . . . , N − 1, we see from (3.6) that

φ
(N)
j (tN ) =

1

(tj − 1)T ′′
N (tj)

∫ 1

−1

(z − 1)T ′
N (z)

(z − tj)
dz

=
1

(tj − 1)

∫ 1

−1

(z − 1)ψ
(N−2)
j (z)dz,
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where ψ
(N−2)
j is the interpolation polynomial for extrema nodes used in section 5.1.

It follows that φ
(N)
j (tN ) = J

(N)
j /(tj − 1), which is strictly positive since J

(N)
j < 0 and

(tj − 1) < 0. Thus φ
(N)
j (tN ) ≥ 0 for any positive integer N and j = 1, 2, . . . , N . It

has been shown in section 3.2 that the sum of these nonnegative elements in the Nth

row of (D̃
(1)
N )−1 is 2. Direct computation shows that

N∑
j=1

∣∣∣(D̃(1)
N )−1 (i, j)

∣∣∣ < 2 for i = 1, 2, . . . , N − 1.

The maximum row sum is

N∑
j=1

∣∣∣(D̃(1)
N )−1 (N, j)

∣∣∣ = N∑
j=1

(D̃
(1)
N )−1 (N, j) = 2.

For the Chebyshev zeros distribution of nodes, an argument similar to that used

above (assuming that the appropriate J
(N)
j is negative) shows that φ

(N)
j (sN ) ≥ 0 for

any positive integer N and j = 1, 2, . . . , N . The sum of these nonnegative elements in

the Nth row of (D̃
(1)
N )−1 is 2, as shown in section 3.2. In this case, direct computation

shows that the maximum value of
∑N
j=1 |(D̃(1)

N )−1 (i, j)| occurs at i = N − 2, and it is

this value that gives rise to the entries in Table 4. The value of
∑N
j=1 |(D̃(1)

N )−1 (i, j)|
is strictly less than 2 if i differs from N − 2 or N . Furthermore,

∑N
j=1 |(D̃(1)

N )−1 (i, j)|
is strictly monotonic increasing with i for i = 1, 2, . . . , N − 2.

The structure of the inverses of the first-order Chebyshev pseudospectral differ-
entiation matrices is worthy of further investigation.
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Abstract. In the present paper, the authors consider the Schrödinger operator H with the
Coulomb potential defined in R3m, where m is a positive integer. Both bounded domain approxima-
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The spectrum of H becomes completely discrete when confined to bounded domains. The error
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numerical solution is difficult for a higher-dimensional problem of dimension more than three, the
finite element analyses in this paper are restricted to the S-state of the helium atom. The authors
transform the six-dimensional Schrödinger equation of the helium S-state into a three-dimensional
form. Optimal error estimates for the finite element approximation to the three-dimensional equa-
tion, for all eigenvalues and eigenfunctions of the three-dimensional equation, are obtained by means
of local regularization. Numerical results are shown in the last section.
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1. Introduction. The multielectron Coulomb problem in quantum mechanics
cannot be solved in a finite form. Nevertheless it challenges and stimulates many
mathematicians and physicists to devote themselves to developing efficient methods
for solving the system.

Several successful approximation techniques in quantum physics/chemistry have
been developed for this problem. They include the Hartree–Fock method [15], the
finite difference method [19], [35], the correlation-function hyperspherical-harmonic
method [18], [24], and various variational approximations. For the Hartree–Fock
method, every electron is considered independently to be in a central electric field
formed by the nucleus and other electrons. The finite difference method needs a rect-
angular domain in RN and uniform grids. The double and triple basis set methods
(which are variational methods indeed) are very powerful for the eigenvalue problem
of the helium atom. Kono and Hattori (see [21], [22]) used two sets of basis func-
tions ri1r

j
2r
k
12e

−ξr1−ηr2A (“ξ terms”) and ri1r
j
2r
k
12e

−ζ(r1+r2)A (“ζ terms”) to calculate
the energy levels for the S, P , and D states of the helium atom. (A is an appropriate
angular factor.) The former set of functions is expected to describe the whole wave
function roughly, while the latter is expected to describe the short- and middle-range
correlation effects. Their calculations yield 9–10 significant digits for S states. Klein-
dienst, Lüchow, and Merckens [20] and Drake and Yan [12] applied the double basis
set method to S-states of helium. Their basis functions are ri1r

j
2r
k
12e

−ξ1r1−η1r2 and

ri1r
j
2r
k
12e

−ξ2r1−η2r2 . Drake and Yan employed truncations to ensure numerical stabil-
ity and convergence. By complete optimization of the exponential scale factors ξ1,
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η1, ξ2, and η2, they achieved more than 15 significant digits. Recently, Drake, Cas-
sar, and Nistor [13] obtained 21 significant digits for the ground state of helium by
the triple basis set method. Korobov [23] even obtained 25 significant digits for the
ground state of helium. That work can be used as a benchmark for other approaches
for three-body systems. All three of these excellent works in variational methods
promote the development of few-body problems in quantum mechanics.

The finite element method (FEM) is used initially in elastic mechanics and fluid
mechanics. It uses local interpolation functions to approximate the unknown function
(see [8] and [36]), and thus can describe the local properties of wave functions. There-
fore, we can expect to obtain good approximations to the energy. Important works on
FEM applied to atomic and molecular problems first appeared in 1975 (see [3]). They
were devoted to one- or two-dimensional problems [3], [4], [14], [16], [30]. In 1985,
Levin and Schertzer [25] published the first work applying FEM to three-dimensional
problems. They calculated the ground state of the helium atom. Most of the works
applying FEM to three-body problems have appeared since 1990 (i.e., [1], [6], [31],
[37]). All of the cited works obtained very good results.

To apply FEM to quantum mechanics, we should consider three aspects of the
problem. The first is the spectrum approximation of the whole space Schrödinger
operator by the operator defined on some bounded domain. The second is the error
estimate for FEM approximation. The third is the real computation of approximate
solutions. To the best of our knowledge, we have not found any work analyzing the
first two aspects.

In this paper, we consider the first aspect for the system of an arbitrary atom.
But as for the finite element aspect, since any problem of dimension more than three is
a great challenge for both modern numerical methods and computers, we restrict the
finite element analysis and computation to the S-state of the helium atom. In fact,
we can transform the 3m-dimensional Schrödinger equation (see [38] for m = 2, 3)
into a 3(m − 1)-dimensional form rigorously, and theoretical analysis of the FEM
applied to the simplified equation can be obtained similarly, in view of the argument
of sections 3, 4, and 5 in the present paper. However, real computations are very
difficult to carry out because of numerous degrees of freedom. Our numerical results
on the lithium atom (the Schrödinger equation is nine-dimensional) will appear in
another paper [39].

The present paper consists of three parts. First, we consider the bounded domain
approximation of the 3m-dimensional Schrödinger equation (m is the number of elec-
trons in an ion). The spectrum of the Schrödinger operator H consists of the discrete
spectrum included in (−a, 0)(for some a > 0) and the continuous spectrum [0,+∞).
We show that the spectrum of H becomes completely discrete if it is restricted to
bounded domains. In section 2, we show that for any eigenvalue of the whole space
problem and for any ε > 0, assuming the bounded domain large enough, there is an
eigenpair of the bounded domain problem such that the errors of both the eigenvalue
and the eigenfunction are smaller than ε. Secondly, we analyze the finite element
approximation of the S-state of the helium atom. In section 3, the six-dimensional
Schrödinger equation is transformed into a three-dimensional form, and some Hilbert
spaces with weighted inner products and norms are defined. Because we cannot say
that the solutions of both the three-dimensional equation and the six-dimensional one
are continuous, the technique of local regularization [25] is used to prove the conver-
gency of the finite element scheme. In section 4, we describe the three-dimensional
local regularization operator in detail. In section 5, an equivalent variational equa-
tion of the three-dimensional equation and its FEM approximation are given for the
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helium atom of the S-state. The optimal order error estimate of the finite element
scheme is obtained. Thirdly, we have calculated approximate solutions by the finite
element scheme. In section 6, we give the numerical results from two kinds of FEM
approximations to the three-dimensional energy equation. The results are better than
existing finite element results. Furthermore, from the figures we can see that our ap-
proximate wave functions coincide very well with many physical properties well known
to physicists, and with many essential physical assumptions in quantum mechanics
which are not added into our computations a priori.

The difficulties appear in three aspects: 1. the proof of the continuity and co-
ercivity of the bilinear forms in the variational equations with the presence of the
singularities in the Coulomb potential, 2. the proof of the convergency of the finite
element scheme while the variational spaces are not standard Sobolev spaces, and 3.
obtaining precise results in presence of numerous unknowns and singular integrals.

Through the paper, C represents the generic constant independent of minded
parameters; the symbol “⇐⇒” means “be equivalent to.” We use atomic units except
where explicitly explained, i.e., Bohr radius a0 for length, Rydberg (Hartree only in
section 6) for energy. We consider the nonrelativistic and spin-independent case.

2. Discrete spectrum approximations of the Schrödinger operator in
bounded domains. Let m > 0 be an integer, N = 3m. The Schrödinger equation
of an m-electron ion is

Hψ = Eψ in RN ,(2.1)

where

Hψ = −∆ψ + V ψ,

∆ψ =
m∑
i=1

(
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

)
,

V = −
m∑
i=1

2Z

ri
+

∑
1≤i<j≤m

2

rij
;

(xi, yi, zi) are the coordinates of the ith electron, ri =
√
x2
i + y2

i + z2
i is the distance

between the ith electron and the nucleus, 1 ≤ i ≤ m; and rij = [(xi − xj)
2 + (yi −

yj)
2 + (zi − zj)

2]1/2 is the distance between the ith electron and the jth electron,
1 ≤ i < j ≤ m. Z is the charge number of the nucleus.

It is well known that H is self-adjoint and bounded below (Theorem 10.33 and
the analysis on p. 323 of [34]). Its spectrum σ(H) is included in R1. Furthermore, the
continuous spectrum of H is [0,+∞), and ∀s ∈ σ(H)

⋂
(−∞, 0), s is an eigenvalue of

H (see Theorems 10.30 and 10.31 in [34]).

Lemma 2.1. Let 1 ≤ p < 2, 3/2 < q < 2, 1 ≤ q1 < min(3, Nq
N−2q ). Then there

exists a constant C such that ∀v ∈ H1(RN ), u ∈ W 2,q(RN ),

u

ri
,

u

rij
∈ Lq1(RN ),(2.2)

and 
∫
RN

v2

rpi
dx,

∫
RN

v2

rpij
dx ≤ C‖v‖2

1,RN ,∥∥∥∥ uri
∥∥∥∥

0,q1,RN

,

∥∥∥∥ u

rij

∥∥∥∥
0,q1,RN

≤ C‖u‖2,q,RN ;

(2.3)
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moreover, if v is compactly supported in RN , then

v

ri
,

v

rij
∈ Lp(RN ),(2.4)

and ∥∥∥∥ vri
∥∥∥∥

0,p,RN

,

∥∥∥∥ v

rij

∥∥∥∥
0,p,RN

≤ C‖v‖1,RN ,(2.5)

where 1 ≤ i, j ≤ m and i < j.
Proof. (1) ∀x ∈ RN , set x = (x(1), . . . , x(m)), x(i) = (xi, yi, zi), x̃

(i) = (x(1), . . . ,
x(i−1), x(i+1), . . . , x(m)). Define Bi = {(xi, yi, zi) | x2

i + y2
i + z2

i ≤ 1}, i = 1, . . . ,m.
Since H1(Bi) ↪→ L6(Bi), W

2,q(Bi) ↪→ C(Bi), W
2,q(R3) ↪→ W 1,q(R3) ↪→ L2(R3), let

0 ≤ t < 2, 0 ≤ s < 3; then ∀v ∈ H1(RN ), u ∈ W 2,q(RN ),∫
R3\Bi

v2

rti
dx(i) ≤ ‖v‖2

0,R3 ≤ ‖v‖2
1,R3 ,

∫
R3\Bi

u2

rsi
dx(i) ≤ ‖u‖2

0,R3 ≤ C‖u‖2
2,q,R3 ,

∫
Bi

v2

rti
dx(i) ≤

(∫
Bi

v6dx(i)

) 1
3
(∫

Bi

r
− 3t

2
i dx(i)

) 2
3

≤ C‖v‖2
0,6,Bi

≤ C‖v‖2
1,Bi

,

∫
Bi

u2

rsi
dx(i) ≤ ‖u‖2

0,∞,Bi

∫
Bi

r−si dx(i) ≤ C‖u‖2
2,q,Bi

for almost every x̃(i) ∈ RN−3.

Hence ∫
R3

v2

rti
dx(i) ≤ C‖v‖2

1,R3 ,

∫
R3

u2

rsi
dx(i) ≤ C‖u‖2

2,q,R3 .(2.6)

By Tonelli’s theorem [34], integrating (2.6) with respect to the rest variables gives∫
RN

v2

rti
dx ≤ C‖v‖2

1,RN ,

∫
RN

u2

rsi
dx ≤ C‖u‖2

2,q,RN .(2.7)

Setting s = N(q−2)+4q
N(q−q1)+2qq1

q1, by (2.7) we have

∫
RN

(
u

ri

)q1
dx ≤

(∫
RN

u2

rsi
dx

) q1
s
(∫

RN

u
q1(s−2)
s−q1 dx

) s−q1
s

≤ C‖u‖q1
2,q,RN .

If the support of v ∈ H1(RN ) is compact, set R > 0 large enough and define

Bi(0, R) =

{
(xi, yi, zi) ∈ R3

∣∣∣∣ √x2
i + y2

i + z2
i ≤ R

}
,

ΩR =

{
(x(1), . . . , x(m)) ∈ RN

∣∣∣∣ √x2
i + y2

i + z2
i ≤ R, i = 1, 2, . . . ,m

}
.

Assuming supp v ⊂ ΩR, by Hölder’s inequality there exists a positive constant C,
depending on R and p, such that∫

R3

(
v

ri

)p
dx(i) =

∫
Bi(0,R)

(
v

ri

)p
dx(i) ≤ C‖v‖p0,6,Bi(0,R) ≤ C‖v‖p1,Bi(0,R).(2.8)
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Integrating (2.8) with respect to the rest of the variables produces the following:∫
RN

(
v

ri

)p
dx̃(i) ≤ C

∫
RN−3

‖v‖p1,Bi(0,R)dx̃
(i) ≤ C‖v‖p

1,RN .

(2) For any 1 ≤ i < j ≤ m, let ξ(i) = x(i) − x(j), ξ(i) = (ξi, ηi, ζi), x(i) =
(xi, yi, zi). For any v = v(x(1), . . . , x(m)) ∈ H1(RN ), define

vij(x
(1), . . . , ξ(i), . . . , x(m)) = v(x(1), . . . , ξ(i) + x(j) . . . , x(m)),

By Tonelli’s theorem [34], we have∫
RN−3

∫
R3

v2(x(1), . . . , x(i), . . . , x(m))dx(i)dx̃(i)

=

∫
RN−3

∫
R3

v2
ij(x

(1), . . . , ξ(i), . . . , x(m))dξ(i)dx̃(i)

=

∫
RN

v2
ijdx ∀v ∈ H1(RN ).

Thus vij ∈ L2(RN ). In the same way, we have

∂vij
∂xk

,
∂vij
∂yk

,
∂vij
∂zk

∈ L2(RN ), 1 ≤ k ≤ N, k �= i, j.

Since
∂vij
∂ξi

= ∂v
∂xi

,
∂vij
∂xj

= ∂v
∂xi

+ ∂v
∂xj

, we have∫
RN−3

∫
R3

∣∣∣∣ ∂v∂ξi
∣∣∣∣2dξ(i)dx̃(i)=

∫
RN−3

∫
R3

∣∣∣∣ ∂v∂xi

∣∣∣∣2dξ(i)dx̃(i)=

∫
RN−3

∫
R3

∣∣∣∣ ∂v∂xi

∣∣∣∣2dx(i)dx̃(i),

i.e.,
∂vij
∂ξi

∈ L2(RN ). Similarly, we have

∂vij
∂ηi

,
∂vij
∂ζi

,
∂vij
∂xj

,
∂vij
∂yj

,
∂vij
∂zj

∈ L2(RN ).

Therefore vij ∈ H1(RN ). In the same way, if u ∈ W 2,q(RN ), we have uij ∈ W 2,q(RN ),
1 ≤ i, j,≤ m. By (1), v/rij = vij/|ξ(i)|, u/rij = uij/|ξ(i)| satisfy (2.3)–(2.5).

Let σ > 0 be a constant, x̂ = (x̂(1), . . . , x̂(m)) = σx, x̂(i) = (x̂i, ŷi, ẑi), ψ̂(x̂) =
ψ(σx) for any x ∈ RN . Then (2.1) becomes

−σ2∆̂ψ̂ − σ

m∑
i=1

2Zψ̂

r̂i
+ σ

∑
1≤i<j≤m

2ψ̂

r̂ij
= Eψ̂ in RN ,(2.9)

where ∆̂ concerns the derivatives with respect to x̂. Obviously, ψ ∈ H1(RN ) ⇐⇒ ψ̂ ∈
H1(RN ). By Lemma 2.1, we can choose σ,K large enough such that

2σ

m∑
i=1

∫
RN

2Zϕ̂2

r̂i
dx̂ ≤ σ2|ϕ̂|21,RN +K‖ϕ̂‖2 ∀ϕ̂ ∈ H1(RN ).(2.10)

Let λ = E + K; then the variational form of (2.9) is the following: Find (λ, ψ̂) ∈
R1 ×H1(RN ) and ψ̂ �= 0 such that

â(ψ̂, ϕ̂) = λ

∫
RN

ψ̂ϕ̂dx̂ ∀ϕ̂ ∈ H1(RN ),(2.11)
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where

â(ψ̂, ϕ̂) = σ2

∫
RN

∇̂ψ̂ · ∇̂ϕ̂dx̂+

∫
RN

−
m∑
i=1

2Zσ

r̂i
+

∑
1≤i<j≤m

2σ

r̂ij
+K

 ψ̂ϕ̂dx̂.

It is easy to see that â(·, ·) is continuous and coercive on H1(RN ) by Lemma 2.1 and
(2.10).

The weak form of (2.1) is the following: Find (λ, ψ) ∈ R1 ×H1(RN ) and ψ �= 0
such that

a(ψ,ϕ) = λ

∫
RN

ψϕdx ∀ϕ ∈ H1(RN ),(2.12)

where

a(ψ,ϕ) =

∫
RN

∇ψ · ∇ϕdx+

∫
RN

−
m∑
i=1

2Z

ri
+

∑
1≤i<j≤m

2

rij
+K

ψϕdx.

By the transform a(ψ,ϕ) = σ−N â(ψ̂, ϕ̂) and

min{σN , σN−2}‖ψ‖2
1,RN ≤ ‖ψ̂‖2

1,RN ≤ max{σN , σN−2}‖ψ‖2
1,RN ,

we know that a(·, ·) is continuous and coercive on H1(RN ). For the sake of simplicity
in notation, we drop the continuity and coercivity constants and write ‖ · ‖1,RN =√
a(·, ·) throughout this paper.
We consider the approximation of (2.12) in a bounded domain. Let R > 0 be large

enough and B = B(0, R) ⊂ RN be the ball with radius R and center at the origin.
The approximation of (2.12) is defined as follows: Find (λB , ψB) ∈ R1 ×H1

0 (B) and
ψB �= 0 such that

a(ψB , φB) = λ

∫
RN

ψBφBdx ∀φB ∈ H1
0 (B).(2.13)

For all φB ∈ H1
0 (B), we extend φB by zero to the exterior of B and still denote

the extension as φB ∈ H1(RN ). Thus (2.13) is the Galerkin approximation of (2.12).
a(·, ·) is continuous and coercive onH1

0 (B), and the continuity and coercivity constants
are independent of the radius R.

Theorem 2.2. If the Schrödinger operator H is restricted to the bounded domain
B, then its spectrum is discrete. It has the form

0 < λB1 ≤ λB2 ≤ · · · → +∞,(2.14)

where λBi = λB,i+1 means that λBi is multiple. If ψB is the eigenfunction in (2.13)
associated with λB, then ψB ∈ H2(B)

⋂
H1

0 (B).
Proof. Since H1

0 (B) ↪→↪→ L2(B), by the Lax–Milgram theorem [9], we know that
(2.13) has eigenvalues and eigenfunctions. Its spectrum is discrete and has the form
of (2.14).

Let (λB , ψB) be an eigenpair of (2.13), i.e., −∆ψB −
m∑
i=1

2ZψB
ri

+
∑

1≤i<j≤m

2ψB
rij

= EψB in B,

ψ = 0 on ∂B.

(2.15)



SPECTRUM APPROXIMATION TO THE SCHRÖDINGER EQUATION 55

By Lemma 2.1, we have

ψB
ri

,
ψB
rij

∈ Lp(B), 1 ≤ i < j ≤ m, ∀ 1 < p < 2.

By the Lp theory of elliptic equations [17], ψB ∈ W 2,p(B) for any 1 < p < 2. Then
by Lemma 2.1,

ψB
ri

,
ψB
rij

∈ L2(B), 1 ≤ i < j ≤ m.

Thus ψB ∈ H2(B).
Theorem 2.3. If (λ, ψ) is an eigenpair of (2.12) with ‖ψ‖1,RN = 1, then for any

ε > 0 there exist R > 0 and an eigenpair (λB , ψB) of (2.13) such that

|λ− λB | < Cε2,(2.16)

‖ψ − ψB‖1,RN < Cε,(2.17)

where ψB is extended by zero to the exterior of B and C is a positive constant inde-
pendent of R and ε.

Proof. By Theorem 10.33 in [34] and the coercivity of a(·, ·), we know that the
discrete spectrum of (2.12) is

0 < λ1 ≤ λ2 ≤ · · · < K,

where λi = λi+1 means that λi is multiple, and K is the unique accumulation. By
the minmax theorem [10],

λi ≤ λBi, i = 1, 2, . . . .

Define Vi, VBi as the eigenspaces associated with λi and λBi, respectively. We assume
ψ ∈ Vi. By the theory of abstract spectrum approximation (p. 699 of [10]), there
exists ψBi ∈ VBi such that

|λi − λBi| ≤ C(εB(λi))
2,(2.18)

‖ψ − ψBi‖1,RN ≤ CεB(λi),(2.19)

where

εB(λi) = sup
u∈Vi,‖u‖1,RN =1

inf
v∈H1

0 (B)
‖u− v‖1,RN .(2.20)

C is a constant depending on the continuity and coercivity constants of the bilinear
form a(·, ·) and λi, but is independent of R.

Let {ψ1, . . . , ψl} be an orthonormal basis of Vi with respect to the norm of
H1(RN ), and let l be the multiplicity of λi. For any ε > 0, since ψk ∈ H1(RN ),
there exists a φk ∈ C∞

0 (RN ) such that ‖ψk−φk‖1,RN < ε/l. Set R large enough such
that ∪lk=1 suppφk ⊂ B = B(0, R); then

εB(λi) ≤
l∑

k=1

‖ψk − φk‖1,RN < ε.(2.21)

In view of (2.18)–(2.21), we have (2.16) and (2.17).
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3. Weighted norms and Hilbert spaces. We consider the eigenvalue problem
of the S-state of the helium atom, i.e., Z = m = 2. The eigenvalue equations of the
Hamiltonian and the square of the angular momentum are

−∆1ψ −∆2ψ +

(
2

r12
− 4

r1
− 4

r2

)
ψ = Eψ,(3.1) 

[
2∑
i=1

(
yi

∂

∂zi
− zi

∂

∂yi

)]2

+

[
2∑
i=1

(
zi

∂

∂xi
− xi

∂

∂zi

)]2

(3.2)

+

[
2∑
i=1

(
xi

∂

∂yi
− yi

∂

∂xi

)]2

+ l(l + 1)

ψ = 0,

where l = 0, 1, . . . . Let θ′, φ, φ′ be three Euler angles such that (r1, θ
′, φ′) are the

spherical coordinates of the first electron in the fixed system o − xyz, φ is the inter-
fractial angle between the r1−z plane and the r1−r2 plane, and θ is the interelectronic
angle. We introduce the Hylleraas–Breit transform [7]:

x1 = r1 sin θ
′ cosφ′,

y1 = r1 sin θ
′ sinφ′,

z1 = r1 cos θ
′,

x2 = r2(sin θ cos θ
′ cosφ cosφ′ − sin θ sinφ sinφ′ + cos θ sin θ′ cosφ′),

y2 = r2(sin θ cosφ cos θ′ sinφ′ + sin θ sinφ cosφ′ + cos θ sin θ′ sinφ′),
z2 = r2(cos θ cos θ

′ − sin θ sin θ′ cosφ).

(3.3)

We can transform (3.1) and (3.2) into the following forms by (3.3):

L(ψ)− A1(ψ)

r2
1

− A2(ψ)

r2
2

= Eψ,(3.4) [
∂2

∂θ′2 + ctgθ′
∂

∂θ′
+

1

sin2 θ′

(
∂2

∂φ2
+

∂2

∂φ′2

)
− 2 cos θ′

sin2 θ′
∂2

∂φ∂φ′ + l(l + 1)

]
ψ = 0,(3.5)

where

L(ψ) = − 1

r2
1

∂

∂r1

(
r2
1

∂ψ

∂r1

)
− 1

r2
2

∂

∂r2

(
r2
2

∂ψ

∂r2

)

−
(

1

r2
1

+
1

r2
2

)
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

(
2

r12
− 4

r1
− 4

r2

)
ψ,

A1(ψ) =
1

sin θ′
∂

∂θ′

(
sin θ′

∂ψ

∂θ′

)
+ (ctg2θ + ctg2θ′ + 2ctgθctgθ′ cosφ)

∂2ψ

∂φ2

+
1

sin θ′
∂2ψ

∂φ′2 − 2 cosφ
∂2ψ

∂θ∂θ′
− 2

sinφ

sin θ′
∂2ψ

∂θ∂φ′ + 2 sinφctgθ
∂2ψ

∂φ∂θ′

+2ctgθ′ sinφ
∂2ψ

∂θ∂φ
− 2

sin θ′
(ctgθ′ + ctgθ cosφ)

∂2ψ

∂φ∂φ′ ,

A2(ψ) =
1

sin2 θ

∂2ψ

∂φ2
.
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For the S-state of the helium atom, l = 0; then (3.5) has only constant solutions.
Thus any wave function u of the S-state depends on only three variables r1, r2, and
θ. Therefore, we can transform (3.4) of the S-state into a three-dimensional form

L(u) = Eu.(3.6)

Assume that Ω ⊂ X = [0,+∞) × [0,+∞) × [0, π] is a bounded domain. u =
u(r1, r2, θ), v = v(r1, r2, θ). We define inner products, norms, and Hilbert spaces as
follows:

(u, v)0 =

∫
Ω

uvr2
1r

2
2 sin θdr1dr2dθ, ‖u‖2

0,r,Ω =

∫
Ω

u2r2
1r

2
2 sin θdr1dr2dθ,

(u, v)1 = (u, v)0+

∫
Ω

[
r2
1r

2
2

∂u

∂r1

∂v

∂r1
+r2

1r
2
2

∂u

∂r2

∂v

∂r2
+(r2

1 + r2
2)
∂u

∂θ

∂v

∂θ

]
sin θdr1dr2dθ,

|u|21,r,Ω =

∫
Ω

[
r2
1r

2
2

(
∂u

∂r1

)2

+ r2
1r

2
2

(
∂u

∂r2

)2

+ (r2
1 + r2

2)

(
∂u

∂θ

)2
]
sin θdr1dr2dθ,

|u|22,r,Ω =

∣∣∣∣ ∂u∂r1
∣∣∣∣2
1,r,Ω

+

∣∣∣∣ ∂u∂r2
∣∣∣∣2
1,r,Ω

+

∣∣∣∣∂u∂θ
∣∣∣∣2
1,r,Ω

,

‖u‖2
i+1,r,Ω = ‖u‖2

i,r,Ω + |u|2i+1,r,Ω, i = 0, 1,

Hi
r(Ω) =

{
v| ‖v‖2

i,r,Ω < +∞} , i = 0, 1,

H2
r (Ω) =

{
v|‖v‖2

2,r,Ω < +∞,

∫
Ω

u2(r2
1 + r2

2) sin θdr1dr2dθ < ∞
}
.

Lemma 3.1. Assume that Ω ⊂ X is a bounded domain; then

H1
r (Ω) ↪→↪→ H0

r (Ω).(3.7)

Furthermore, if there exists a constant dΩ > 0, such that for any (r1, r2, θ) ∈ Ω,
r1, r2 ≥ dΩ, then

H2
r (Ω) ↪→↪→ H1

r (Ω).(3.8)

Proof. (1): Proof of (3.7). Let x = (x1, y1, z1, x2, y2, z2) = H(r1, r2, θ, θ
′, φ, φ′)

be the Hylleraas–Breit transform defined by (3.3), and let Ω̂ ⊂ R6 be a bounded
domain defined by

Ω̂ = {x | x = H(r1, r2, θ, θ
′, φ, φ′), (r1, r2, θ) ∈ Ω, 0 ≤ θ′ ≤ π, 0 ≤ φ, φ′ ≤ 2π}.(3.9)

The Jacobian determinant of (3.3) is

det

(
∂(x1, y1, z1, x2, y2, z2)

∂(r1, r2, θ, θ′, φ, φ′)

)
= r2

1r
2
2 sin θ sin θ

′.(3.10)

By direct calculation, we have ‖u‖2
i,r,Ω = 1

8π2 ‖u‖2
i,Ω̂

, where ‖ · ‖i,Ω̂ is the norm of the

standard Sobolev space Hi(Ω̂), i = 0, 1. It is easy to show that H0
r (Ω) and H1

r (Ω)
are Hilbert spaces, and H1

r (Ω) ↪→↪→ H0
r (Ω).
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(2): Proof of (3.8). Let {vn} be a bounded sequence in H2
r (Ω); then {vn}, {∂vn∂r1

},
{∂vn∂r2

}, {∂vn∂θ } are bounded uniformly in H1
r (Ω). By (1), we can choose (successively)

a subsequence denoted as {vn} too, such that {vn}, {∂vn∂r1
}, {∂vn∂r2

}, {∂vn∂θ } are Cauchy

sequences in H0
r (Ω). Thus {vn} is a Cauchy sequence in the measure{

‖vn‖2
0,r,Ω +

∫
Ω

(∣∣∣∣∂vn∂r1

∣∣∣∣2 + ∣∣∣∣∂vn∂r2

∣∣∣∣2 + ∣∣∣∣∂vn∂θ

∣∣∣∣2
)
r2
1r

2
2 sin θdr1dr2dθ

}1/2

.

It is clear that∫
Ω

∣∣∣∣∂vn∂θ

∣∣∣∣2 (r2
1 + r2

2) sin θdr1dr2dθ ≤ 2

d2
Ω

∫
Ω

∣∣∣∣∂vn∂θ

∣∣∣∣2 r2
1r

2
2 sin θdr1dr2dθ,

and so we have

‖vn‖2
1,r,Ω ≤ max

{
1, 2/d2

Ω

}(‖vn‖2
0,r,Ω +

∥∥∥∥∂vn∂r1

∥∥∥∥2

0,r,Ω

+

∥∥∥∥∂vn∂r2

∥∥∥∥2

0,r,Ω

+

∥∥∥∥∂vn∂θ

∥∥∥∥2

0,r,Ω

)
.

Therefore {vn} is a Cauchy sequence in H1
r (Ω) and converges.

Remark 3.2. Suppose that Ω is bounded. For any integer k > 0, define

Pk(Ω) =

p =
∑

0≤l+m+n≤k
αlmnr

l
1r
m
2 θn

∣∣∣ αlmn ∈ R1, (r1, r2, θ) ∈ Ω

 ;

then Pk(Ω) ⊂ H2(Ω) ⊂ H2
r (Ω).

Lemma 3.3. Supposing R > 0 is a constant, there exists a constant C independent
of R such that, for any f ∈ H1([0, R]),∫ R

0

f2dx ≤ Cmax{R2, R−2}
(∫ R

0

x2f2dx+

∫ R

0

f
′2dx

)
.(3.11)

Proof. For any f ∈ C1([R/2, R]) there exists ξ ∈ [R/2, R] such that

f(ξ) =
2

R

∫ R

R/2

f(x)dx.

Then for any x ∈ [R/2, R], by Hölder’s inequality we have

|f(x)| =
∣∣∣∣f(ξ) + ∫ x

ξ

f ′(t)dt
∣∣∣∣ ≤ 2

R

∫ R

R/2

|f(t)|dt+
∫ R

R/2

|f ′(t)|dt

≤
(

2

R

∫ R

R/2

|f(t)|2dt
)1/2

+

(
R

2

∫ R

R/2

|f ′(t)|2dt
)1/2

.

Thus there exists a positive constant C independent of R such that

|f |0,∞,[R/2,R] ≤ Cmax{
√
R, 1/

√
R}‖f‖1,[R/2,R].(3.12)
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Set x0 ∈ [R/2, R]. By (3.12), we have, for any x ∈ [0, R] and f ∈ C∞([0, R]),

f2(x) ≤ 2

{
f2(x0) +

[ ∫ x

x0

f ′(x)dx
]2}

≤ C

{
f2(x0) +R

∫ R

0

f
′2(x)dx

}
(3.13)

≤ Cmax{R,R−3}
(∫ R

R/2

x2f2(x)dx+

∫ R

0

f
′2(x)dx

)
∀x ∈ [0, R],

where C is a constant independent of R. We obtain (3.11) for all functions in
C∞([0, R]) by integrating both sides of (3.13) over [0, R]. Therefore (3.11) is true
for all functions in H1([0, R]) by the density of C∞([0, R]) in H1([0, R]).

Now, we expand each function u(r1, r2, θ) in some Banach space defined on Ω
to R3 \ Ω. Thus r1, r2, θ are not the distances and the interelectronic angle in the
previous sense. For any u = u(r1, r2, θ), define

|‖u|‖2
0,Ω =

∫
Ω

u2r2
1r

2
2| sin θ|dr1dr2dθ,(3.14)

|‖u|‖2
1,Ω =

∫
Ω

[(
∂u

∂r1

)2

+

(
∂u

∂r2

)2

+

(
∂u

∂θ

)2
]
(r2

1 + r2
2)| sin θ|dr1dr2dθ,(3.15)

H(Ω) = {u | |‖u|‖2
0,Ω + |‖u|‖2

1,Ω < ∞}.
Theorem 3.4. Suppose that Ω ⊂ X is a bounded open domain satisfying C1-

regularity [2]. There exists a linear operator

E : H(Ω) → H(R3)

such that, for any u ∈ H(Ω),

Eu(r1, r2, θ) = u(r1, r2, θ), almost everywhere in (r1, r2, θ) ∈ Ω,(3.16)

|‖Eu|‖i,R3 ≤ C|‖u|‖i,Ω, i = 0, 1,(3.17)

where C is a constant depending on Ω.
Proof. Let B(0, 1) be the open unit ball in R3. Since Ω is bounded and C1-

regular, there exist a finite number of bounded open sets O0, . . . , OM such that O0 ⊂⊂
Ω, ∂Ω ⊂ ∪Mi=1Oi, and Ω ⊂ ∪Mi=0Oi, and there exist m + 1 transforms (ξ, η, ζ) =
ϕi(r1, r2, θ) such that

ϕi(Oi) = B(0, 1), ϕi(Oi ∩ ∂Ω) = Σ = B(0, 1) ∩ {ζ = 0},
ϕi(Oi ∩ Ω) = B+(0, 1) = {(ξ, η, ζ) ∈ B(0, 1) | ζ > 0},
ϕi ∈ C1(Oi ∩ ∂Ω), ϕ−1

i ∈ C1(Σ̄).

For the convenience of notation, define x = (r1, r2, θ) and x̂ = (ξ, η, ζ). We choose a
partition of unity {αi} associated with {Oi} satisfying

αi ∈ C∞
0 (Oi), 0 ≤ αi ≤ 1, 0 ≤ i ≤ M,

M∑
i=0

αi(x) = 1 ∀x ∈ Ω.

(1): Proof for functions u ∈ C1(Ω̄). Set ui = uαi; then u =
∑M

i=0 ui. Let

;(x) = r2
1r

2
2| sin θ|, ;i(x̂) = ;(ϕ−1

i (x̂)),
ω(x) = (r2

1 + r2
2)| sin θ|, ωi(x̂) = ω(ϕ−1

i (x̂)),
vi(x̂) = ui(ϕ

−1
i (x̂)) = ui(x).

(3.18)
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For any 0 ≤ i ≤ M , since ∂vi
∂x̂k

=
∑3

l=1
∂ui

∂xl

∂xl

∂x̂k
, ∂ui

∂xl
=
∑3

k=1
∂vi
∂x̂k

∂x̂k

∂xl
, there exists a

constant C depending only on ϕi and ϕ−1
i such that∫

B+(0,1)

|vi|2;idx̂ =

∫
Ω
⋂
Oi

|ui|2;Jidx ≤ C |‖ui|‖2
0,Ω

⋂
Oi

,(3.19)

∫
B+(0,1)

∣∣∣∣ ∂vi∂x̂k

∣∣∣∣2 ωidx̂ ≤ C

3∑
l=1

∫
B+(0,1)

∣∣∣∣∂ui∂xl

∣∣∣∣2 ∣∣∣∣ ∂xl∂x̂k

∣∣∣∣2 ωidx̂(3.20)

≤ C

3∑
l=1

∣∣∣∣∥∥∥∥∂ui∂xl

∣∣∣∣∥∥∥∥2

0,Ω
⋂
Oi

,

where Ji = det(∂ϕi

∂x ) is the Jacobian determinant. Similarly, we have

|‖ui|‖2
0,Ω

⋂
Oi

≤ C

∫
B+(0,1)

|vi|2;idx̂,(3.21) ∣∣∣∣∥∥∥∥∂ui∂xl

∣∣∣∣∥∥∥∥2

0,Ω
⋂
Oi

≤ C

3∑
k=1

∫
B+(0,1)

∣∣∣∣ ∂vi∂x̂k

∣∣∣∣2 ωidx̂.(3.22)

We expand u0 by zero to the exterior of O0 and denote the extension as ũ0; then
ũ0 ∈ C1

0 (R
3). We expand vi(x̂) as follows:

ṽi(x̂) =

{
vi(x̂), x̂ ∈ B+(0, 1) ∪ Σ,
4vi(ξ, η,− 1

2ζ)− 3vi(ξ, η,−ζ), x̂ ∈ B−(0, 1),(3.23)

where B−(0, 1) = {x̂ ∈ B(0, 1) | ζ < 0}. Obviously, ṽi ∈ C1(B+(0, 1)∪B−(0, 1)). For
any multiple index α ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} and x̂0 ∈ Σ, we have

lim
x̂∈B+(0,1)

x̂→x̂0

Dαṽi(x̂)=Dαvi(x̂
0),

lim
x̂∈B−(0,1)

x̂→x̂0

Dαṽi(x̂)= lim
x̂∈B−(0,1)

x̂→x̂0

[
4

(
−1

2

)α3

Dαvi

(
ξ, η,−1

2
ζ

)
+3(−1)α3+1Dαvi(ξ, η,−ζ)

]
=Dαvi(x̂

0).

Thus ũi(x) = ṽi(ϕi(x)) ∈ C1
0 (Oi). Expand ũi by zero to the exterior of Oi and

denote the extension by ũi too; then ũi ∈ C1
0 (R

3). Define Eu =
∑M

i=0 ũi; then

(Eu)(x) =
∑M

i=0 ui(x) = u(x) ∀x ∈ Ω. Combing (3.19)–(3.23) yields (3.16) and
(3.17).

(2): Proof for functions u ∈ H(Ω). Let Ω̂ be defined as in (3.9). In view of

‖u‖2
i,r,Ω =

1

8π2
‖u‖2

i,Ω̂
,

we have Hi
r(Ω) ↪→ Hi(Ω̂), i = 0, 1, in the sense of isomorphism. Since C1(Ω̂) is

dense in Hi(Ω̂), for any v(r1, r2, θ) ∈ Hi
r(Ω) ↪→ Hi(Ω̂) there exists {vn(r1, r2, θ)} ⊂

C1(Ω̂) such that vn(r1, r2, θ) converge to v(r1, r2, θ) in Hi(Ω̂), and hence in Hi
r(Ω),

i = 0, 1. Since ∂vn
∂ξ =

∑6
i=1

∂vn
∂xi

∂xi

∂ξ ,
∂vn
∂xi

, and ∂xi

∂ξ are continuous and bounded, we
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have vn(r1, r2, θ) ∈ C1(Ω̄), where ξ = r1, r2, θ, θ
′, φ, φ′. Thus C1(Ω̄) is dense in Hi

r(Ω),
i = 0, 1.

Since Ω ⊂ X, C1(Ω̄) is dense in H(Ω) in view of H(Ω) ↪→ H1
r (Ω). There exists

a sequence {un} ⊂ C1(Ω̄) converging to u in H(Ω). By (3.18), {Eun} is a Cauchy
sequence in H(R3) and hence converges to some w ∈ H(R3). Set Eu = w. Since
|‖un − Eu|‖i,Ω = |‖Eun − Eu|‖i,Ω → 0, we have Eu = u, a.e. in Ω. Furthermore,

|‖Eu|‖i,R3 = lim
n→∞ |‖Eun|‖i,R3 ≤ C lim

n→∞ |‖un|‖i,Ω = C|‖u|‖i,Ω, i = 0, 1.

The proof is complete.
We define Ωr1,θ as the projection of Ω onto the r1−θ plane. For any (r1, θ) ∈ Ωr1,θ,

define

Ωr2(r1, θ) = {r2 | (r1, r2, θ) ∈ Ω}.
Ωr2,θ and Ωr1(r2, θ) are defined in the same way.

Theorem 3.5. Let Ω ⊂ X be a bounded domain satisfying one of the following
two conditions:

(a) Ω is C1−regular;
(b) The boundary ∂Ω is Lipschitz continuous, and there exists a constant d > 0

such that, for almost every (r2, θ) ∈ Ωr2,θ (respectively, (r1, θ) ∈ Ωr1,θ), if Ωr ⊂
Ωr1(r2, θ) (respectively, Ωr2(r1, θ)) is a maximal simply connected set, then meas(Ωr)
≥ d.

Furthermore, we assume that there are f1, f2, . . . , fM ∈ (Hm
r (Ω))′ satisfying

∀p ∈ Pm−1(Ω),

M∑
i=1

fi(p) = 0 ⇐⇒ p = 0.(3.24)

Then there exists a constant C(Ω) such that

‖v‖m,r,Ω ≤ C(Ω)

{
|v|m,r,Ω +

∣∣∣∣∣
M∑
i=1

fi(v)

∣∣∣∣∣
}

∀v ∈ Hm
r (Ω), m = 1, 2.(3.25)

Proof. (1) In view of (3.7), we can prove (3.25) in the case of m = 1 by the
argument of Theorem 3.1.1 in [9, p. 115].

(2) Proof of (3.25) in the case of m = 2. If (3.25) were false, then for any
integer n > 0 there should exist vn ∈ H2

r (Ω) such that ‖vn‖2,r,Ω = 1 and

|vn|2,r,Ω +

∣∣∣∣∣
M∑
i=1

fi(vn)

∣∣∣∣∣ < 1

n
.(3.26)

In view of Theorem 3.4, the definition of ‖ · ‖2,r,Ω, and (3.25) for m = 1, there exists
a subsequence of {vn} (also denoted as {vn}), which is a Cauchy sequence under the
following measures:

‖ · ‖0,r,Ω,

∥∥∥∥∂ ·
∂θ

∥∥∥∥
0,r,Ω

,

∥∥∥∥ ∂ ·
∂ri

∥∥∥∥
0,r,Ω

, i = 1, 2,{∫
Ω

[(
∂2 ·

∂r1∂θ

)2

+

(
∂2 ·

∂r2∂θ

)2

+

(
∂2 ·
∂θ2

)2
]
(r2

1 + r2
2) sin θdr1dr2dθ

}1/2

.

(3.27)
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(i) Suppose that Ω satisfies the condition (a). We set un = ∂vn
∂θ ; then un ∈ H(Ω).

Choose R > 0 to be sufficiently large such that Ω ⊂ [0, R]× [0, R]× [0, π]. By Lemma
3.3 and Theorem 3.4, we have∫

Ωr2
(r1,θ)

(
∂vn
∂θ

)2

r2
1 sin θdr2 ≤

∫ R

0

(Eun)
2r2

1 sin θdr2

≤ C

{∫ R

0

(Eun)
2r2

1r
2
2 sin θdr2 +

∫ R

0

(
∂Eun
∂r2

)2

r2
1 sin θdr2

}
∀(r1, θ) ∈ Ωr1,θ,

where C depends on R. By Lemma 3.3, integrating both sides of the above inequality
over Ωr1,θ produces∫

Ω

(
∂vn
∂θ

)2

r2
1 sin θdr1dr2dθ ≤ C

1∑
i=0

|‖Eun|‖2
i,[0,R]×[0,R]×[0,π] ≤ C

1∑
i=0

|‖un|‖2
i,Ω.(3.28)

Thus {vn} is a Cauchy sequence under [
∫
Ω
( ∂ ·
∂θ )

2r2
1 sin θdr1dr2dθ]

1/2. Similarly, {vn}
is a Cauchy sequence under [

∫
Ω
( ∂ ·
∂θ )

2r2
2 sin θdr1dr2dθ]

1/2. Consequently, {vn} is a
Cauchy sequence in H1

r (Ω) by (3.27), and so in H2
r (Ω) by (3.26). Suppose vn →

v ∈ H2
r (Ω); then |v|2,r,Ω = 0 and

∑M
i=1 fi(v) = 0 by (3.26). Thus v ∈ P1(Ω), and

v = 0 by (3.24). Therefore, v = 0 contradicts the following identities: ‖v‖2,r,Ω =
limn→∞ ‖vn‖2,r,Ω = 1. Thus (3.25) is true for m = 2.

(ii) Suppose that Ω satisfies the condition (b). Without loss of generality, we may
suppose that Ωr2(r1, θ) is simply connected for any (r1, θ) ∈ Ωr1,θ. By Lemma 3.3,
we have∫

Ωr2
(r1,θ)

(
∂vn
∂θ

)2

r2
1 sin θdr2 ≤ C

∫
Ωr2

(r1,θ)

[(
∂vn
∂θ

)2

r2
2 +

(
∂2vn
∂r2∂θ

)2
]
r2
1 sin θdr2

∀(r1, θ) ∈ Ωr1,θ, where C depends on d but is independent of (r1, θ). Thus we can get
(3.25) by the argument of (i).

Remark 3.6. Assume that Ω satisfies the conditions in Theorem 3.5. Define

|Ω| =
∫

Ω

r2
1r

2
2 sin θdr1dr2dθ, f(v) =

1

|Ω|
∫

Ω

vr2
1r

2
2 sin θdr1dr2dθ.

By Hölder’s inequality, we have |f(v)| ≤ |Ω|−2‖v‖0,r,Ω. Thus f ∈ (H1
r (Ω))

′. Now
(3.26) implies

‖v − f(v)‖1,r,Ω ≤ |v|1,r,Ω ∀v ∈ H1
r (Ω).(3.29)

Remark 3.7. Assume R > 0 and Ω = [0, R]× [0, R]× [0, π]. Define

H1
0r(Ω) = {v ∈ H1

r (Ω)| v|r1=R = v|r2=R = 0}.
Then we have H1

0r(Ω) ↪→ H1
0 (Ω̂) in the sense of isomorphism, and, by Poincáre’s

inequality,

‖v‖1,r,Ω =

√
2

4π
‖v‖1,Ω̂ ≤ C(Ω)|v|1,Ω̂ =

√
8πC(Ω)|v|1,r,Ω.(3.30)

Equations (3.29) and (3.30) are the so-called Friedrichs-type inequality and
Poincáre-type inequality, respectively.
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Theorem 3.8. Let Ω ⊂ X be the domain in Theorem 3.5 and T : Hk
r (Ω) →

Hm
r (Ω) be a linear and continuous mapping satisfying

Tp = p ∀p ∈ Pk−1(Ω).(3.31)

Then there exists a constant C(Ω) such that

‖u− Tu‖m,r,Ω ≤ C(Ω)|u|k,r,Ω ∀u ∈ Hk
r (Ω),(3.32)

where 0 ≤ m ≤ 2, 1 ≤ k ≤ 2, m ≤ k.
Proof. (3.32) can be proved by virtue of Theorem 3.5 and the argument of The-

orem 3.1.4 in [9, p. 121].

4. Local regularization operator. Because we cannot say that the solutions
of (2.13) and (5.1) are continuous, difficulties appear in proving the convergency of the
finite element scheme. The technique of local regularization (Clément’s interpolation
[11]) will be used. Thus we are in the position of describing the construction of the
three-dimensional local regularization operator.

Set R > 0 be large enough, and define

Ω = [0, R]× [0, R]× [0, π], ∂ Ω = {(r1, r2, θ) ∈ Ω| r1 = R or r2 = R},
Γ1 = {(r1, r2, θ) ∈ ∂ Ω | r1 = 0}, Γ2 = {(r1, r2, θ) ∈ ∂ Ω | r2 = 0},
Γ3 = {(r1, r2, θ) ∈ ∂ Ω | θ = 0}, Γ4 = {(r1, r2, θ) ∈ ∂ Ω | θ = π}.
Suppose that Th is a regular subdivision of Ω. Each element in Th is a cuboid.

(We can also obtain similar results for regular hexahedrons, but the analysis is very
tedious.) h is the maximal diameter of all elements. The regularity of K means that
there exists a constant σ independent of K such that ∀K ∈ Th, hK ≤ σ|e|; here hK
is the diameter of K, e is any edge of K. Denote all nodes of Ω̄ by A1, A2, . . . , AI ,
and define �i = ∪K∈Th,Ai∈KK as the macro element associated with the node Ai.

Qk(K) =

p | p =

k∑
l,m,n=0

αlmnr
l
1r
m
2 θn, (r1, r2, θ) ∈ K

 .

Since the behaviors of the weights (see (3.18)) on an inner element differ from
those on a boundary element, different kinds of elements or macro elements must be
affine equivalent to different reference elements or macro elements, respectively. Each
macro element must be one of the following four cases:

1. An element in Th. Let l10 = [0, 1], l11 = [1, 2]; its affine equivalent reference
macro element must be one of l1i × l1j × l1k, 0 ≤ i, j, k ≤ 1.

2. The combination of two elements with a common face. Let l20 = [0, 2],
l21 = [1, 3]; its affine equivalent reference macro element must be one of
l2i × l1j × l1k, l1i × l2j × l1k, or l1i × l1j × l2k, 0 ≤ i, j, k ≤ 1.

3. The combination of four elements with a common edge. Its affine equivalent
reference macro element must be one of l1i × l2j × l2k, l2i × l1j × l2k, or
l2i × l2j × l1k, 0 ≤ i, j, k ≤ 1.

4. The combination of eight elements with a common vertex. Its affine equivalent
reference macro element must be one of l2i × l2j × l2k, 0 ≤ i, j, k ≤ 1.

Each reference element is a cube with unit volume and is included in some reference
macro element. Clearly, the total number of reference elements and reference macro
elements is finite.
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Suppose h∆ < σhK , for any K ⊂ ∆, where h∆ is the diameter of ∆. For any
K ∈ Th, FK : K̂ → K is the affine transform from some reference element K̂ to
K. For any macro element ∆, assume that ∆̂ = ∪K⊂∆F−1

K (K) is a macro reference
element defined in cases 1, 2, 3, or 4. Define F∆: F∆|K = FK and F−1

∆ : F−1
∆ |K̂ = F−1

K ,

with FK(K̂) = K.
If v is a function defined on ∆ and û is defined on ∆̂, denote v̂ := v ◦ F∆ and

u := û ◦ F−1
∆ , respectively. Without ambiguity, we also use piecewise-defined norms

on macro elements:

|v̂|2
m,r,∆̂

=
∑
K̂⊂∆̂

|v ◦ F∆|2
m,r,K̂

, |u|2m,r,∆ =
∑
K⊂∆

|û ◦ F−1
∆ |2m,r,K .(4.1)

In view of (4.1), it is easy to prove v ∈ Hm
r (∆) ⇐⇒ v̂ ∈ Hm

r (∆̂), m = 0, 1, 2.
We define the H0

r -projection P∆̂ : H0
r (∆̂) → Pk(∆̂) as follows: ∀v ∈ H0

r (∆̂),

(P∆̂v, p)0 = (v, p)0 ∀p ∈ Pk(∆̂).(4.2)

Since the weights vanish on some boundary elements K ∩ (∪4
i=1Γi) �= ∅, we need

to deal with their transformations under the affine transforms by detailed analysis.
To do so, we first need the following estimate for the transformation of sin θ. Define

Λ(θ, h) =


1, π/2− h ≤ θ ≤ π/2,
sin θ, θ ≥ π/2,
sin(θ + h), θ ≤ π/2− h.

(4.3)

Lemma 4.1. Let σ > 0 be a constant, h1, h2 ≤ h ≤ σmin{h1, h2}, θ ≥ h1, and θ+
h1+h2+h/σ ≤ π. When h is sufficiently small, there exists a constant C independent
of h and θ such that

Λ(θ, h1) ·max

{
1

sin θ
,

1

sin(θ + h1)
,

1

sin(θ + h1 + h2)

}
≤ C.(4.4)

Proof. Let M = max{1/ sin θ, 1/ sin(θ + h1), 1/ sin(θ + h1 + h2)}. We consider
(4.4) in three cases:

1. When π/2− h1 − h2 ≤ θ ≤ π/2, Λ ·M ≤ M , since h is small enough, (4.4) is
true obviously.

2. When θ ≥ π/2, it is clear that

ΛM ≤ sin θ

sin(θ + h1 + h2)
=

sin(π − θ)

sin(π − θ − h1 − h2)
.

If θ ≤ π − 2(h1 + h2), then

ΛM ≤ sin(π − θ)

sin((π − θ)/2)
≤ 2.

If θ ≥ π − 2(h1 + h2), we need only to choose h such that 2 sin(h/σ) ≥ h/σ;
then

ΛM ≤ sin 2(h1 + h2)

sin(h/σ)
≤ 4h

h/(2σ)
≤ 8

σ
.

3. When θ ≤ π/2− h1 − h2, ΛM ≤ sin(θ+h1)
sin θ ≤ sin 2θ

sin θ ≤ 2.
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The proof is complete.
Theorem 4.2. Suppose that ∆ = F∆(∆̂) is a macro element associated with

some node of Th, u ∈ Hm
r (∆). Define P∆u = (P∆̂û) ◦ F−1

∆ . Then

|u− P∆u|l,r,∆ ≤ Chm−l
∆ |u|m,r,∆, 0 ≤ l ≤ m ≤ 2,(4.5)

where C is a constant independent of h.
Proof. For the sake of simplicity, without loss of generality, we may suppose

∆ = ∪4
i=1Ki and analyze Ki in two representative cases.

(1) K1, . . . ,K4 are boundary elements where the weights degenerate. Suppose
h∆ is small enough and

K1 = [0, h1]×[0, h2]×[0, h3], K2 = [0, h1]×[0, h2]×[h3, h3 + hK2
3 ],

K3 = [0, h1]×[h2, h2 + hK3
2 ]×[0, h3], K4 = [0, h1]×[h2, h2 + hK3

2 ]×[h3, h3 + hK2
3 ].

The reference macro element and reference elements are defined as

∆̂ = [0, 1]× [0, 2]× [0, 2], K̂1 = [0, 1]× [0, 1]× [0, 1],

K̂2 = [0, 1]× [0, 1]× [1, 2], K̂3 = [0, 1]× [1, 2]× [0, 1], K̂4 = [0, 1]× [1, 2]× [1, 2].

On any finite-dimensional space, all norms are equivalent, and so we have

‖P∆̂û‖2
i,r,∆̂

≤ C‖P∆̂û‖2
0,r,∆̂

≤ C‖û‖2
0,r,∆̂

.(4.6)

Hence the projection P∆̂ is stable on ‖ · ‖i,r,∆̂, i = 1, 2. By (4.2) and Theorem 3.8,
we have

‖u− P∆u‖2
0,r,K1

≤ h3
1h

3
2h3

∫
K̂1

|û− P∆̂û|2ξ2η2 sin(h3ζ)dξdηdζ(4.7)

≤ max{2, 1/ sin ζ0}h3
1h

3
2h

2
3‖û− P∆̂û‖2

0,r,K̂1

≤ Ch8
∆|û|2

m,r,∆̂
, m = 1, 2,

where ζ0 ∈ (0, 1) satisfies ζ0 ≤ 2 sin ζ0. Similarly, we have

‖u− P∆u‖2
0,r,K4

≤ h3
1h

K3
2 hK2

3 (h2 + hK3
2 )2Λ(h3, h

K2
3 )

∫
K̂4

|û− P∆̂û|2ξ2dξdηdζ(4.8)

≤ Ch3
1h

K3
2 hK2

3 (h2 + hK3
2 )2Λ(h3, h

K2
3 )‖û− P∆̂û‖2

0,r,K̂1

≤ Ch8
∆|û|2

m,r,∆̂
, m = 1, 2;

‖u− P∆u‖2
0,r,K2∪K3

≤ Ch8
∆|û|2

m,r,∆̂
, m = 1, 2,(4.9)

|u− P∆u|21,r,∆ ≤ Ch6
∆|û|2

m,r,∆̂
, m = 1, 2.(4.10)

Set h∆ small enough such that h∆ < sin(2h∆); by detailed analysis similar to (4.7)
and (4.8), we have

|û|2
m,r,∆̂

≤ Ch2m−8
∆ |u|2m,r,∆, m = 1, 2,(4.11)

where C depends only on R and σ. Combining (4.7)–(4.11) yields (4.5).
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(2) K1, . . . ,K4 are inner elements where the weights are strictly positive:

K1 = [r10, r10 + h1]× [r20, r20 + h2]× [θ0, θ0 + h3],

K2 = [r10, r10 + h1]× [r20 + h2, r20 + h2 + hK2
2 ]× [θ0, θ0 + h3],

K3 = [r10, r10 + h1]× [r20, r20 + h2]× [θ0 + h3, θ0 + h3 + hK3
3 ],

K4 = [r10, r10 + h1]× [r20 + h2, r20 + h2 + hK2
2 ]× [θ0 + h3, θ0 + h3 + hK3

3 ],

where r10, r20, θ0 ≥ σh∆. The reference macro element and reference elements are
defined as

∆̂ = [1, 2]× [1, 3]× [1, 3], K̂1 = [1, 2]× [1, 2]× [1, 2],

K̂2 = [1, 2]× [2, 3]× [1, 2], K̂3 = [1, 2]× [1, 2]× [2, 3], K̂4 = [1, 2]× [2, 3]× [2, 3].

Then for m = 1, 2, by affine transforms, there exists a generic constant C independent
of h, such that

‖u− P∆u‖2
0,r,K1

≤ Ch1h2h3Λ(θ0, h3)(r10 + h1)
2(r20 + h2)

2‖û− P∆̂û‖2
0,K̂1

(4.12)

≤ Ch1h2h3Λ(θ0, h3)(r10 + h1)
2(r20 + h2)

2‖û− P∆̂û‖2
0,r,K̂1

≤ Ch3
∆(r10 + h∆)2(r20 + h∆)2Λ(θ0, h3)|û|2m,r,∆̂

.

Similarly, for i = 2, 3, 4 we have

‖u− P∆u‖2
0,r,Ki

≤ Ch3
∆(r10 + h∆)2(r20 + h∆)2(4.13)

× [Λ(θ0, h3) + Λ(θ0 + h3, h3 + hK3
3 )]|û|2

m,r,∆̂
,

|u− P∆u|21,r,∆ ≤ Ch∆(r10 + h∆)2(r20 + h∆)2(4.14)

× [Λ(θ0, h3) + Λ(θ0 + h3, h3 + hK3
3 )]|û|2

m,r,∆̂
.

Set h∆ small enough such that h∆ < sin(2h∆); by affine transforms and detailed
analysis similar to (4.13), we have

|û|2
m,r,∆̂

≤ Cmax
{
1/ sin θ0, 1/ sin(θ0 + h3), 1/ sin(θ0 + h3 + hK3

3 )
}

(4.15)

× r−2
10 (r20 + h2)

−2h2m−3
∆ |u|2m,r,∆.

Combining (4.12)–(4.15), we obtain (4.5) by Lemma 4.1.
We can prove (4.5) for other macro elements similarly.

5. Finite element approximations. The equivalent weak form of (3.6) is the
following: Find (λ, u) ∈ R1 ×H1

0r(Ω) and u �= 0 such that

ar(u, v) = λ (u, v)0 ∀v ∈ H1
0r(Ω),(5.1)

where λ = K + E, K is the constant in (2.10), and

ar(u, v) =

∫
Ω

[
r2
1r

2
2

(
∂u

∂r1

∂v

∂r1
+

∂u

∂r2

∂v

∂r2

)
+ (r2

1 + r2
2)
∂u

∂θ

∂v

∂θ

+

(
2r2

1r
2
2√

r2
1 + r2

2 − 2r1r2 cos θ
− 4r2

1r2 − 4r1r
2
2

)
uv

]
sin θdr1dr2dθ.
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Since a(·, ·) is continuous and coercive on H1
0 (Ω̂), where Ω̂ is defined as that in (3.9),

we know that ar(·, ·) is continuous and coercive on H1
0r(Ω) by the proof of Lemma

3.1. We define ‖ · ‖1,r,Ω =
√
ar(·, ·) for the sake of simplicity in notation.

We consider the Lagrangian finite element approximation to (5.1). For any K ∈
Th, denote the set of nodes in K as

V(K) = {8 vertices and (k + 1)3 − 8 k-section points of K}.

∪K∈Th
V(K) is the set of nodes of Th. Define the finite element space as

Vh = {v(r1, r2, θ) ∈ C0(Ω) | v|∂Ω = 0, v|K ∈ Qk(K) ∀K ∈ �h}.

The discrete approximation of (5.1) is the following: Find (λh, uh) ∈ R1 × Vh and
uh �= 0 such that

ar(uh, vh) = λh (uh, vh)0 ∀vh ∈ Vh.(5.2)

Obviously, Vh ⊂ C0(Ω)∩H1
0r(Ω), and so (5.2) is the Galerkin approximation of (5.1).

We drop the subscript “B” in (2.13) (or (5.1)) and suppose that 0 < λ1 ≤ λ2 ≤ · · ·
are the eigenvalues of (5.1), 0 < λh1 ≤ λh2 ≤ · · · < λNh

are the eigenvalues of
(5.2), Nh = dim(Vh). Denote the eigenspaces associated with λi and λhj as Vi
and Vhj , respectively, 1 ≤ i ≤ · · · , 1 ≤ j ≤ Nh. By the minmax theorem [10],
λi ≤ λhi, 1 ≤ i ≤ Nh.

Let ∆̂ be a reference macro element and K̂ ⊂ ∆̂ be a reference element. Define

V(K̂) = {aK̂i | 1 ≤ i ≤ (k + 1)3}

associated with a basis {ϕ̂K̂i | 1 ≤ i ≤ (k + 1)3} of Qk(K̂). Assume

ϕ̂K̂i (aK̂j ) = δij , 1 ≤ i, j ≤ (k + 1)3,

where δij = 1 if i = j, δij = 0 if i �= j. For any v̂ ∈ H0
r (K̂), we define the finite

element interpolation operator by means of the local regularization as follows:

πK̂ v̂ =

(k+1)3∑
i=1

(P∆̂v̂)(aK̂i )ϕ̂K̂i .(5.3)

Suppose v ∈ H0
r (Ω). For any K = FK(K̂) ∈ Th, define the finite element interpolation

operator on ∆̂, K, and Ω as follows: π∆̂v̂|K̂ = πK̂ v̂, πKv = (πK̂ v̂)◦F−1
K , πv|K = πKv,

where K̂ ⊂ ∆̂ is some reference element. On any space of finite dimension, all norms
are equivalent. There exists a constant C such that

‖πK̂ v̂‖m,r,K̂ ≤ C‖P∆̂v̂‖0,∞,K̂ ≤ C‖P∆̂v̂‖0,r,K̂ ≤ ‖û‖0,r,∆̂.(5.4)

Thus the operator πK̂ : H0
r (∆̂) → Hm

r (K̂) is linear and continuous, m = 0, 1.
Theorem 5.1. There exists a constant C independent of h such that for any

v ∈ H2
r (Ω),

‖v − πv‖m,r,Ω ≤ Ch2−m|v|2,r,Ω, m = 0, 1.(5.5)
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Proof. Suppose that ∆̂ is a reference macro element and K̂ ⊂ ∆̂ is a reference
element. By the definition of the operators πK̂ , π∆̂, and P∆̂, we have

π∆̂p = p ∀p ∈ Pk(∆̂).(5.6)

By (5.4), (5.6), and Theorem 3.8, for any v̂ ∈ H2
r (∆̂) we have

‖v̂ − π∆̂v̂‖m,r,∆̂ ≤ C|v̂|2,r,∆̂, m = 0, 1.(5.7)

For any macro element ∆, by affine transforms, (5.7), and the argument in the proof
of Theorem 4.2, we know that there exists a constant C independent of h such that

‖v − πv‖m,r,∆ ≤ Ch2−m
∆ |v|2,r,∆, m = 0, 1.(5.8)

Summing up each side of (5.8) over all macro elements, we get (5.5).

Theorem 5.2. For any 1 ≤ i ≤ Nh, suppose (λi, ui) is an eigenpair of (5.1)
with ‖ui‖0,r,Ω = 1. There exist a constant C independent of h and an eigenfunction
uhi ∈ Vhi with ‖uhi‖0,r,Ω = 1 such that

|λi − λhi| < Ch2,(5.9)

‖ui − uhi‖m,r,Ω < Ch2−m, m = 0, 1.(5.10)

Proof. By the theory of abstract spectrum approximation (p. 699 of [10]), we
know that, for any 1 ≤ i ≤ Nh, there exists a constant C independent of h such that

|λi − λhi| < Cε(λi)
2,(5.11)

where

ε(λi) = sup
v∈Vi,‖v‖1,r,Ω=1

inf
vh∈Vh

‖v − vh‖1,r,Ω.(5.12)

Let {uij , 1 ≤ j ≤ Ni} be a basis of Vi, ‖uij‖1,r,Ω = 1, Ni = dimVi. By Theorem 5.1,
we have

ε(λi) ≤
Ni∑
j=1

‖uij − πuij‖1,r,Ω ≤ Ch

Ni∑
j=1

|uij |2,r,Ω ≤ Ch.(5.13)

Thus (5.9) is true.

We can prove (5.10) by Theorem 5.2 and the argument of Theorem 6.2 in [32, p.
235], but we do not give the tedious description here.

Remark 5.3. In real computation, we have introduced a variational equation
equivalent to (5.1). Define µ = cos θ; then Ω = [0, R] × [0, R] × [−1, 1], and the
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corresponding bilinear form, inner products, and norms are

(u, v)0 =

∫
Ω

uvr2
1r

2
2dr1dr2dµ, ‖u‖2

0,r,Ω =

∫
Ω

u2r2
1r

2
2dr1dr2dµ,

(u, v)1 = (u, v)0 +

∫
Ω

[
r2
1r

2
2

∂u

∂r1

∂v

∂r1
+ r2

1r
2
2

∂u

∂r2

∂v

∂r2

+(r2
1 + r2

2)(1− µ2)
∂u

∂µ

∂v

∂µ

]
dr1dr2dµ,

|u|21,r,Ω =

∫
Ω

[
r2
1r

2
2

(
∂u

∂r1

)2

+ r2
1r

2
2

(
∂u

∂r2

)2

+ (r2
1 + r2

2)(1− µ2)

(
∂u

∂µ

)2
]
dr1dr2dµ,

‖u‖2
1,r,Ω = ‖u‖2

0,r,Ω + |u|21,r,Ω, Hi
r(Ω) = {v| ‖v‖2

i,r,Ω < +∞}, i = 0, 1,

ar(u, v) =

∫
Ω

[
r2
1r

2
2

(
∂u

∂r1

∂v

∂r1
+

∂u

∂r2

∂v

∂r2

)
+ (r2

1 + r2
2)(1− µ2)

∂u

∂µ

∂v

∂µ

+

(
2r2

1r
2
2√

r2
1 + r2

2 − 2r1r2µ
− 4r2

1r2 − 4r1r
2
2

)
uv

]
dr1dr2dµ.

We define H1
0r(Ω) as in Remark 3.7. A variational equation equivalent to (5.1) is the

following: Find (λ, u) ∈ R1 ×H1
0r(Ω) and u �= 0 such that

ar(u, v) = λ (u, v)0 ∀v ∈ H1
0r(Ω).(5.14)

The partitions Th for Ω = [0, R] × [0, R] × [−1, 1] are similar to those in section 4.
∀K ∈ Th define

Qk(K) =

p
∣∣∣ p =

k∑
l,m,n=0

αlmnr
l
1r
m
2 µn, (r1, r2, µ) ∈ K

 .

The finite element approximation to (5.14) is: Find (λh, uh) ∈ R1 × Vh and uh �= 0
such that

ar(uh, vh) = λh (uh, vh)0 ∀v ∈ Vh,(5.15)

where

Vh = {v(r1, r2, µ) ∈ C(Ω)| v|K ∈ Qk(K) ∀K ∈ Th; v|∂Ω = 0}
is the finite element space.

Comparing (5.15) with (5.2) in real computation, we have found that (5.15) gives
more precise results with the same number of unknowns. The analysis for (5.15) will
be the subject of our future research.

6. Numerical results. Since Vh is a finite-dimensional space, defineN = dim(Vh).
We can choose a basis {Φ1, . . . ,ΦN} of Vh such that

suppΦi = ∪K∈�h,ai∈ΣK
K,

where ai is a node of Th. Let uh =
∑N

i=1 αiΦi and vh = Φi, 1 ≤ i ≤ N , in (5.2) and
(5.15). Then we obtain an equivalent generalized eigenvalue problem:

AX = λhM X,(6.1)
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where X = (α1, . . . , αN )T , A = (a(Φi,Φj))N×N , M = ((Φi,Φj))N×N .
We use the inverse iteration method [5] to solve the generalized eigenvalue problem

(6.1). This method is convenient for computing the smallest (real) eigenvalue of an
(unsymmetric) generalized eigenvalue problem with large and sparse matrices. In each
step of iteration, the main computational cost is the solution of the following system
of equations for Y :

AY = F.(6.2)

However, in fact we need only solve (6.2) in the first step if using LU -factorization of
A, since we can store the inverse matrix of A for all following steps.

The computational cost of (6.2) is of order O(N3) for a dense matrix. Since
the finite element matrices are banded, and their band widths are bounded by some
positive integer M � N , the cost of (6.2) is not more than 2MN2. Thus the first
iteration of our eigenvalue solver needs O(N2) floating point operations, but each of
the following iterations needs only O(N) floating point operations. For the solution of
large sparse generalized eigenvalue problems, improvements of this method have been
developed rapidly. They devote themselves to reducing the cost of the first iteration;
i.e., they solve (6.2) by efficient iterative methods instead of LU -factorization. Each
iterative step of their eigenvalue solvers (such as preconditioned inverse iteration [26])
needs only O(N) operations. For more detailed analyses, we refer to Neymeyr’s
excellent work [26], or to the journal articles [27], [28], [29] and references therein. We
consider the improvement of our eigenvalue solver as future work.

We carried out our computation on a personal computer: Intel PIII750 with
1G SDRAM. The experiment shows that 1. the energy errors decrease with R or the
number of nodes increasing; 2. with the considered state becoming more highly exited,
R should be larger, and more nodes far from the nucleus are needed; 3. very large R
makes no remarkable improvement in the precision.

The main error concerns the potential V = − 2
r1

− 2
r2

+ 1
r12

. For the triplet, the
wave function is antisymmetric with respect to the two electrons, so they cannot be
very close to each other. That is to say, when r12 is very small, the wave function

u tends to zero. When we calculate
∫
Ω

u2

r12
dr1dr2dµ with a Gaussian integration

formula [33], the error for the triplet is much smaller than that for the singlet with
the same number of Gaussian points. Furthermore, from the figures below, we can see
that the wave function |u| of the ground state is much larger than that of excited states
in the domain where r12 is small and in the neighborhood of the nucleus containing
the singularities. Thus we have used more and more Gaussian points and grid points
along the µ-direction, when the state varies from the triplet, the singlet to the ground
state.

All matrix elements are computed by the standard Gaussian integration formula.
With the number of Gaussian points increasing, the computing time becomes longer.
Let Ne be the number of elements associated with some partition of Ω, Ng be the
number of Gaussian points along one direction, and Te be the CPU time to compute a
pair of element matrices by the one-point Gaussian formula. The CPU time to obtain
the global stiffness matrix and mass matrix is

T ≈ Ne × Te ×N3
g .(6.3)

The number of degrees of freedom (DOF), number of Gaussian points (GPs), and the
computational time T are listed in Table 6.1.
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Table 6.1
Computational efforts for the S-states.

State 1s1s 1S 1s2s 1S 1s2s 3S
Number of DOF 57472 65320 68243
Number of GPs 27 × 27 × 27 21 × 21 × 21 9 × 9 × 9

CPU time T (hours) 44.3 20.6 1.62

Table 6.2
FEM results for the helium atom (all values in a.u.).

State 1s1s 1S 1s2s 1S 1s2s 3S
Highly precise

results [12], [23] −2.903724377034119 . . . −2.1459740460544 . . . −2.1752293782367 . . .
Results given

by (5.15) −2.903724106 −2.1459740042 −2.1752293277
Results given

by (5.2) −2.903715597 −2.1459703835 −2.1752288326
FEM [6] −2.9036118 −2.145960 −2.1752214
FEM [25] −2.90326
FEM [31] −2.90324

We place grid points symmetrically along r1 and r2 for all states. The grid points
are (for r1, r2, µ)

1. 1s1s 1S:
• 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.6, 2.0,
2.6, 3.2, 4.2, 6.0, 9.0, 15.0;

• −1.0, −0.6, −0.2, 0.2, 0.6, 1.0;
2. 1s2s 1S:

• 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0,
2.2, 2.4, 2.6, 3.0, 3.4, 3.8, 4.2, 4.8, 5.6, 8.0, 11.5, 15.0, 20.0;

• −1.0, −0.5, 0.5, 1.0;
3. 1s2s 3S:

• 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6,
1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 4.0, 4.5, 5.5, 7.0, 10.0,
13.0, 16.0, 20.0, 25.0;

• −1.0, 0.0, 1.0.

The relative error of our approximate eigenvalue for the ground (1s1s-) state
is 10−7a.u., and those for the 1s2s-states are 10−8a.u. by (5.15). The precisions of
existing finite element eigenvalues are generally 10−4 − 10−6a.u. (see Table 6.2).

From the graphs of approximate wave functions (see Figures 6.1–6.2), we can
get the following properties. 1. Although we add no physical assumptions to our
computations a priori, such as the symmetry (for the singlets) and the antisymmetry
(for the triplet), our approximate wave functions coincide with these properties very
well. 2. Wave functions oscillate heavily in the neighborhood of the nucleus where the
singularity of the Coulomb potential is very strange. This is well known by physicists
and chemists. 3. In a sufficiently small neighborhood of the nucleus, absolute values
|uh| of wave functions are very small. This implies that electrons seldom visit there.
4. With the distance between each electron and the nucleus increasing, wave functions
decrease quickly. Thus it is reasonable to solve the Schrödinger equation in bounded
domains.



72 WEIYING ZHENG AND LUNG-AN YING

0

5

10

15

0

5

10

15

−2

0

2

4

6

8

10

12

14

16

18

x 10
−8

u 
of

 th
e 

gr
ou

nd
 s

ta
te

r1 

r2 

0

5

10

15

0

5

10

15
−2

0

2

4

6

8

10

12

14

16

18

x 10
−8

r1 r2 

u 

of 

the 

state 

ground 

Fig. 6.1. Wave function of the 1s1s 1S-state.
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[8] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer-Verlag, New York, Berlin, 1998.

[9] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, Amsterdam,
New York, Oxford, 1978.

[10] P. G. Ciarlet and J. L. Lions, Handbook of Numerical Analysis II, in Finite Element Methods,
North–Holland, Amsterdam, 1989.

[11] P. Clément, Approximation by finite element functions using local regularization, RAIRO
Anal. Numér., 9 (1975), pp. 77–84.

[12] G. W. F. Drake, and Z.-C. Yan, Variational eigenvalues for the S states of helium, Chem.
Phys. Letters, 229 (1994), pp. 486–490.

[13] G. W. F. Drake, M. M. Cassar, and R. A. Nistor, Ground-state energies for helium, H−,
and Ps−, Phys. Rev. A, 65 (2002), paper 054501.

[14] M. Duff, H. Rabitz, A. Askar, A. Cakmak, and M. Ablowitz, A comparison between finite
element methods and spectral methods as applied to bound state problems, J. Chem. Phys.,
73 (1980), pp. 1543–1559.

[15] Ch. Froese–Fischer, The Hartree–Fock Method for Atoms, Wiley-Interscience, New York,
1977.

[16] M. Fridman, Y. Rosenfeld, A. Rabinovitch, and R. Thieberger, Finite element method for
solving the two-dimensional Schrödinger equation, J. Comput. Phys., 26 (1978), pp. 169–
180.

[17] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer-Verlag, Berlin, New York, 1983.

[18] M. I. Haftel and V. B. Mandelzweig, Precise nonvariation calculations on the helium atom,
Phys. Rev. A, 38 (1988), pp. 5995–5999.

[19] I. L. Hawk and D. L. Hardcastle, Finite-difference solution to the Schrödinger equation for
the helium isoelectronic sequence, Comput. Phys. Commun., 16 (1979), pp. 159–166.
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Abstract. The numerical treatment of the hyperbolic system of nonlinear wave equations with
linear viscosity, utt = div(σ(Du) +Dut), is studied for a large class of globally Lipschitz continuous
functions σ, including nonmonotone stress-strain relations. The analyzed method combines an im-
plicit Euler scheme in time with Courant (continuous and piecewise affine) finite elements in space
for a class of varying time steps with varying meshes. Explicit a priori error bounds in L∞(L2),
L2(W 1,2), and W 1,2(L2) are established for the solutions of the fully discrete scheme.
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1. Introduction. In this paper we study the numerical treatment of the non-
linear hyperbolic system

utt = div(σ(Du) +Dut) in Ω× (0, T )(1.1)

subject to the boundary and initial conditions

u = 0 on ∂Ω×(0, T ),
u = u0 in Ω×{0},
ut = v0 in Ω×{0}.

Here, u is a vector-valued mapping from Ω ⊂ R
n into R

m, and the initial data satisfy
u0 ∈ W 1,2

0 (Ω;Rm) and v0 ∈ L2(Ω;Rm).
The physical interest in this equation lies in the fact that it describes for m = n

the evolution of a viscoelastic body with reference configuration Ω. Nonmonotone
stress-strain relations, modeled by σ = DΦ for nonconvex energy density functions
Φ, are of main interest in simulations of solid-solid phase transitions; see, e.g., [1, 9,
10, 4, 5]. This equation arises also in the two-dimensional scalar case (n = 2 and
m = 1) for the out-of-plane displacement field of an antiplane shear deformation
[11]. Numerical experiments in [7] employed a discontinuous stabilized approximation
because of difficulties with Q1 finite elements. Our analysis shows that a P1 finite
element discretization leads to a convergent scheme provided that the solution is
sufficiently regular.

Inspired by the uniqueness proof for Lipschitz continuous stresses σ in [10, 6], we
present in this paper the a priori error analysis for an approximating scheme for the
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system (1.1) that combines continuous finite elements in spaces with a discontinuous
Galerkin approximation in time. We obtain estimates for the approximation error of
the deformation u, the deformation gradient Du, and the velocity field v = ut under
very general assumptions. In particular, the time step size kj has only to satisfy the
condition kj ≤ Qkj+1 for a global constant Q > 0, and the spatial triangulations are
only assumed to be quasiuniform at each time step with a typical diameter hj of the
elements. The spatial L2-approximation error is balanced with the time step error
through an interesting coupling of kj and hj . The quotient h

2
j/kj should not become

too large; i.e., the time steps should not be too small compared to the square of the
spatial discretization parameter hj . Our general result, Theorem 4.1, immediately
implies the following convergence estimates (see section 2 for the precise definitions).
Theorem 1.1. Let Ω be a bounded polygonal domain in R

n. Fix T > 0 and
define discrete times 0 = t0 < t1 < · · · < tN = T . Suppose that Tj is a regular
triangulation of Ω for j = 0, . . . , N such that Tj is a refinement of Tj−1. Assume that
S0,j(Tj) is the space of all continuous functions that vanish on ∂Ω and are affine on
the elements in Tj. Let Uj ∈ S0,j be the solution of the implicit Euler scheme defined
in section 2.3 and let

kj = tj − tj−1, k = max
j=1,...,N

kj , Q = max
j=2,...,N

kj
kj−1

, h = max
j=0,...,N

hj .

Assume, furthermore, that σ is globally Lipschitz continuous and that the solution u
of the system (1.1) belongs to W 1,∞(W 2,2) ∩ W 2,2(W 1,2). Finally, define the dis-
cretization errors ej and δj at the time step tj by

ej = u(tj)− Uj , δj = v(tj)− 1

kj

(
Uj − Uj−1

)
.

Then there exist constants c1 and c2 such that the following holds: If c1k < 1, then

max
ν=1,...,N

‖eν‖2 +

N∑
ν=1

kν
(‖δν‖2 + ‖Deν‖2

) ≤ c2(T + T 2 + h4 + h8) exp
(
c1T

)‖u‖2
h,k,

where

‖u‖2
h,k = k2‖ |utt|+ |Dutt|+ |Dut| ‖2

L2(L2) + h2

(
1 + max

j=1,...,N

h2
j

kj

)
‖u‖2

W 1,∞(W 2,2).

The constants c1 and c2 depend only on the Lipschitz constant of σ, on the shape of
the triangles in the triangulations Tj, and on kj via Q, but neither on hj nor on u.

Remarks. (1) The statement of the theorem assumes tacitly that the initial data
can be approximated sufficiently well; see estimate (2.7) below.

(2) The assumption c1k ≤ 1 implies that 2kj Lip(σ) < 1 for j = 1, . . . , N . This
condition ensures that the discrete scheme has a unique solution; see Theorem 2.2.

(3) The constants c1 and c2 depend on Lip(σ). The geometry of the mesh enters
via the quotient of the diameters of the largest ball contained in an element and the
smallest ball that contains the element. The definition of Q shows that the constants
do not depend on kj if the time steps are fixed or decreasing in j. The condition that
time step kj+1 should not be much bigger than the previous time step kj is related
to a discrete integration by parts formula in Proposition 3.5.

(4) The regularity assumptions in Theorem 4.1 (and thus in Theorem 1.1) are
stronger than the regularity properties guaranteed by the known existence results in
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Theorem 2.1. However, the class of equations covered by our general convergence
analysis includes, for example, the (smooth) solutions of the system

utt = ∆u+∆ut(1.2)

with smooth and consistent initial values. The regularity of solutions of (1.2) is
intermediate between that of the heat equation and the wave equation. This can be
seen by using the transformation v(t) = exp(t)u(t) in (1.2), which, after integration
in time, leads to the equation

vt = ∆v + F (v)(1.3)

for v and F (v)(t) = f+2v(t)−∫ t
0
v(τ)dτ . The regularity of solutions to the perturbed

heat equation (1.3) follows from a successive application of the regularity theory for
the heat equation.

(5) The existence result in Theorem 2.1 is obtained by analyzing a time-discrete
problem and the convergence of its solutions. A second natural technique is the
Galerkin method based on a spatial discretization and the solution of a family of
ordinary differential equations in time. It is an open question whether the Galerkin
method converges of not. This suggests that a (mild) constraint on the discretization
parameters in space and time might be necessary to guarantee convergence.

(6) In general, solutions of (1.1) may fail to be smooth, and hence it remains an
open problem whether or not the proposed numerical scheme converges under the reg-
ularity of the solutions guaranteed by Theorem 2.1. The coupling of the discretization
parameters discussed in remark (5) is one key point which requires higher regularity.

The paper is organized as follows. We define the discrete scheme in section 2 and
prove existence and uniqueness of the discrete solution. Section 3 contains a series of
estimates for the solutions of the approximating scheme which are used in section 4
to prove the general convergence result in Theorem 4.1 which contains Theorem 1.1
as a special case.

2. The discrete scheme. In this section, we introduce the relevant notation
and define the discrete scheme. Then we prove existence and uniqueness of the discrete
solutions and derive an identity in the spirit of Galerkin orthogonality. This relation
replaces in our convergence analysis the identity

(u− u)tt = div
(
σ(Du)− σ(Du) +D(u− u)t

)
for the difference of two solutions u and u of the system (1.1) and from which one
easily deduces uniqueness of solutions for Lipschitz continuous σ; see section 2.2.

2.1. Notation. We assume that Ω ⊂ R
n is a polygonal domain with boundary

Γ = ∂Ω and exterior normal ν to Γ. We use the standard notation for the Lebesgue
spaces Lp(Ω;Rm) with norm ‖·‖p, and we write (·, ·) for the inner product in L2. The
Sobolev spaces W k,p(Ω;Rm) are equipped with the standard norm ‖ · ‖k,p and the
seminorm | · |k,p, respectively. We frequently abbreviate X(0, T ;Y (Ω)) by X(Y ) if the
corresponding domain Ω, the time interval (0, T ), and the range of the functions is
clear from the context. Thus L2(L2) denotes, for example, both L2(0, T ;L2(Ω)) and
L2(0, T ;L2(Ω;Rm)). The space of all real m×n matrices M

m×n is equipped with the
Frobenius norm, |A|2 = tr(ATA), where AT denotes the transpose of the matrix A,
and with the inner product F : G that is induced by the scalar product in R

mn.
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Let 0 = t0 < t1 < · · · < tN = T be a partition of the time interval [ 0, T ] into
N subintervals Ij = (tj−1, tj) of length kj = tj − tj−1, j = 1, . . . , N . Suppose that
(Tj)j=0,...,N is a family of regular triangulations in the sense of [2] with maximal
mesh-size hj and that the union of all elements in Tj is equal to Ω. We denote by
S0,j = S0,j(Tj) the finite element space of continuous functions uh : Ω → R

m that
have zero boundary values on Γ and are affine on the elements in Tj . We use the
interpolation operator Πj onto S0,j , due to Scott and Zhang [13], which satisfies the
projection property

Πjv = v for all v ∈ S0,j ,(2.1)

the stability estimate

‖DΠju‖ ≤ cS‖Du‖ for all u ∈ W 1,2
0 (Ω),(2.2)

and the approximation estimate

‖u−Πju‖+ hj‖Du−DΠju‖ ≤ cAh
2
j‖D2u‖ for all u ∈ W 2,2(Ω) ∩W 1,2

0 (Ω).

(2.3)

Throughout the paper, u denotes the unique solution of the system (1.1) guaran-
teed by Theorem 2.1 below. We define the discrete solution Uj ∈ S0,j at the time step
tj in section 2.3, and we use Vj = (Uj−Uj−1)/kj for j = 1, . . . , N as an approximation
for the discrete velocities.

The goal of our analysis is to estimate the errors in u and in ut. To simplify the
notation, we set v = ut, uj = u(tj), vj = v(tj), and

ej = uj − Uj = u(tj)− Uj , δj = vj − Vj = v(tj)− Vj for j = 1, . . . , N.

2.2. Existence and uniqueness for Lipschitz continuous stress functions.
Our analysis relies on the existence result [6] for the system (1.1) which requires
that σ(F ) = ∂Φ(F )/∂F , where the stored energy function Φ has the following three
properties (H1), (H2), and (H3).
(H1) Φ ∈ C2(Mm×n).
(H2) There exist constants c, C > 0, and p ≥ 2 such that

c|F |p − C ≤ Φ(F ) ≤ C
(|F |p + 1), |σ(F )| ≤ C(|F |p−1 + 1)

for all F ∈ M
m×n.

(H3) There exists a constant K > 0 such that

−K|F −G|2 ≤ (σ(F )− σ(G)
)
: (F −G) for all F, G ∈ M

m×n.

Hypothesis (H3) follows, for example, from monotonicity or global Lipschitz continuity
of σ. In the latter case one can choose K = Lip(σ). In this situation, the following
existence result holds (see [4, 5] for related results).
Theorem 2.1 (see [6, Theorem 4.1]). Under the foregoing assumptions, the

system (1.1) has a weak solution

u ∈ L∞(0,∞;W 1,2
0 (Ω;Rm)) ∩W 1,∞(0,∞;L2(Ω;Rm))

∩W 1,2
loc ([0,∞);W 1,2(Ω;Rm)) ∩W 2,2

loc ([0,∞);W−1,2(Ω;Rm));
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i.e., u(·, 0) = u0, ut(·, 0) = v0, and, for all ζ ∈ C∞
0 (Ω× (0,∞);Rm),∫ ∞

0

∫
Ω

(
(σ(Du) +Dut) : Dζ − ut · ζt

)
dxdt = 0.(2.4)

Moreover, u satisfies the dissipation inequality

E[u(t), ut(t)]− E[u0, v0] ≤ −
∫ t

0

∫
Ω

|Dut|2dxds

for almost every t > 0, where the total energy is given by

E[u, v] =

∫
Ω

(
Φ(Du) +

1

2
|v|2
)
dx .

If σ is globally Lipschitz continuous, then the following inequalities imply unique-
ness of the weak solution u (see [6, 10]). Suppose that u and u are solutions with the
same initial and boundary conditions. If we test the difference of the two equations

utt = div
(
σ(Du) +Dut

)
, utt = div

(
σ(Du) +Dut

)
by u− u and integrate in space and time, then we obtain

∂T
1

2

(∫ T

0

∫
Ω

|Du−Du|2dxdt +
∫

Ω

|u(T )− u(T )|2dx
)

(2.5)

≤ Lip(σ)
∫ T

0

∫
Ω

(|Du−Du|2 + |ut − ut|2
)
dxdt.

Similarly, if we use ut − ut as a test function, we get

∂T
1

2

∫ T

0

∫
Ω

|ut − ut|2dxdt ≤ 1

4
Lip2(σ)

∫ T

0

∫
Ω

|Du−Du|2dxdt.(2.6)

The asserted uniqueness follows by applying Gronwall’s inequality (see, e.g., [12]) to
the sum of the two inequalities. A discrete version of this Gronwall argument is used
in section 3 as the key ingredient in Theorem 4.1.

2.3. Definition of the implicit scheme. In order to define the discrete scheme,
let U0, V0 ∈ S0 denote given approximations to u0 and v0. We assume that

‖e0‖ = ‖u0 − U0‖ ≤ cAh0‖Du0‖,
and additionally for u0 ∈ W 2,2(Ω;Rm) and v0 ∈ W 1,2(Ω;Rm), that

‖e0‖+ h0‖De0‖ ≤ cAh
2
0‖D2u0‖, ‖δ0‖ = ‖v0 − V0‖ ≤ cAh0‖Dv0‖.(2.7)

We then define successively the discrete solution Uj at time tj by minimizing
the variational integral (2.8) below. Since we allow a variable step-size in the time
discretization, we cannot discretize the second derivatives with a second difference
quotient, and we use a backward difference quotient for the discrete velocities instead.
Theorem 2.2. Suppose that σ = DΦ is Lipschitz continuous with Lipschitz

constant Lip(σ) and that k is small enough such that 2k Lip(σ) ≤ 1. Then there
exists for j = 1, . . . , N a unique solution Uj of the variational problem: Minimize∫

Ω

(
Φ(DU) +

1

2kj
|DU −DUj−1|2 + 1

2

∣∣∣∣ 1kj (U − Uj−1)− Vj−1

∣∣∣∣2)dx(2.8)
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among all functions U ∈ S0,j. The minimizer Uj is a solution of the corresponding
Euler–Lagrange system in weak form, i.e., a solution of∫

Ω

((
kjσ(DUj) +D(Uj − Uj−1)

)
: DWj + (Vj − Vj−1) ·Wj

)
dx = 0(2.9)

for all Wj ∈ S0,j.
Proof. We need only to show that the variational integral has a convex integrand.

Existence and uniqueness of solutions follow then from the direct method in the
calculus of variations (see, e.g., [3]). By assumption,

0 ≤ 1

kj
|A−B|2 − Lip(σ)|A−B|2 ≤

(
σ(A) +

1

kj
A−
(
σ(B) +

1

kj
B

))
: (A−B);

that is, σ(F ) + k−1
j F is monotone, and hence Φ(F ) + |F |2/(2kj) is convex.

Remark. The structural assumption σ = DΦ guarantees the existence of the
solution u and Uj of the continuous and the discretized system. The error analysis
below is entirely based on the Galerkin orthogonality (2.8) and does not rely on this
assumption.

2.4. Discrete orthogonality. The following version of the Galerkin orthogo-
nality is an important ingredient in the proof of Theorem 4.1.
Proposition 2.3. Suppose that u is the unique solution of the system (1.1) and

that {Uj} is the unique approximation constructed in (2.8). Then

(δj − δj−1,Wj) +

∫
Ij

(
σ(Du)− σ(DUj), DWj

)
dt + (Dej −Dej−1, DWj) = 0

(2.10)

for j = 1, . . . , N and for all Wj ∈ S0,j.
Proof. The idea is to test the weak formulation (2.4) by χjWj in order to get an

analogue of (2.9); χj denotes the characteristic function of the time interval Ij . Let
W �
j ∈ C∞

0 (Ω;R
m) be a sequence of smooth functions with ‖Wj −W �

j ‖W 1,2(Ω) → 0 as
. → ∞, and choose ψµ ∈ C∞

0 (Ij) with ψµ ≡ 1 on (tj−1 + µ, tj − µ). Then∫ ∞

0

∫
Ω

(
(σ(Du) +Dut) : DW

�
j (x)ψµ(t)− ut ·W �

j (x)
∂

∂t
ψµ(t)

)
dxdt = 0

for µ ∈ (0, kj/4) and . ∈ N. This expression converges for . → ∞ and µ → 0 to∫
Ij

(
σ(Du(t, x)) +Dut(t, x), DWj

)
dt + (vj − vj−1,Wj) = 0.

The assertion of the proposition follows by subtracting this equation from the Euler–
Lagrange equation (2.9).

2.5. A discrete Gronwall inequality. Our convergence result is based on the
following discrete Gronwall inequality.
Lemma 2.4 (see [8, Lemma 1.4.2]). Suppose that a > 0 and that {bν}, {τν} are

sequences of nonnegative real numbers. Assume that the sequence {ϕν} satisfies

ϕ0 ≤ a and ϕν ≤ a+

ν∑
j=1

bj +

ν−1∑
j=0

τjϕj
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for n ≥ 1. Then

ϕν ≤
(
a+

ν∑
j=1

bj

)
exp

(ν−1∑
k=0

τk

)
.

3. Estimates for the solution of the discrete system. In our estimates,
we will frequently express a difference (ej − ej−1)/kj of spatial errors as an error
in velocities, δj . The resulting correction term Kj is characterized in the following
lemma.

Lemma 3.1. Let Kj, j = 1, . . . , N, be given by

Kj =
1

kj

∫ tj

tj−1

(s− tj−1)utt(s)ds.

Then, for j = 1, . . . , N,

1

kj
(ej − ej−1) = δj +Kj(3.1)

and

‖Kj‖2 ≤ kj
3

∫ tj

tj−1

∫
Ω

u2
ttdxdt, ‖DKj‖2 ≤ kj

3

∫ tj

tj−1

∫
Ω

|Dutt|2dxdt.(3.2)

Proof. It follows from Taylor’s formula that

u(tj , x) = u(tj−1, x) + kjut(tj , x)−
∫ tj

tj−1

(s− tj−1)utt(s, x)ds.

This allows us to estimate

1

kj
(ej − ej−1) =

Uj − Uj−1

kj
− u(tj)− u(tj−1)

kj

= Vj − v(tj) +Kj = δj +Kj .

Finally, by Hölder’s inequality,

‖Kj‖2 =

∫
Ω

(
1

kj

∫ tj

tj−1

(s− tj)utt(s)ds

)2

dx

≤ 1

k2
j

(∫ tj

tj−1

(s− tj−1)
2ds

)(∫ tj

tj−1

∫
Ω

u2
ttdxdt

)

=
kj
3

∫ tj

tj−1

∫
Ω

u2
ttdxdt.

This concludes the proof of the lemma.

The next proposition is a discrete analogue of (2.6). The idea is to use the
orthogonality (2.10) with Πjδj = δj+(Πjδj−δj) and to recover the structure of (2.6)
plus approximation errors.



82 CARSTEN CARSTENSEN AND GEORG DOLZMANN

Proposition 3.2. The following estimate holds for j = 1, . . . , N:

1

2
‖δj‖2 − 1

2
‖δj−1‖2 +

1

4
‖δj − δj−1‖2

≤ 2c2S Lip2(σ)kj‖Dej‖2 − kj
2
‖Dδj‖2 + ‖δj −Πjδj‖2

+
5kj
2

‖Dδj −DΠjδj‖2 +
5kj
2

‖DKj‖2 + c2S Lip
2(σ) k2

j‖Dut‖2
L2(Ij ;L2).

Proof. It follows from (2.10) with Wj = Πjδj that

1

2
‖δj‖2 − 1

2
‖δj−1‖2 +

1

2
‖δj − δj−1‖2 = (δj , δj − δj−1)

= (δj − δj−1, δj −Πjδj)− (Dej −Dej−1, DΠjδj)

−
∫
Ij

(
σ(Du)− σ(DUj), DΠjδj

)
dt.

We denote the three terms on the right-hand side by T1, T2, and T3. Then

T1 ≤ 1

4
‖δj − δj−1‖2 + ‖δj −Πjδj‖2,

and by (3.1)

T2 = −kj
(
Dδj +DKj , Dδj −Dδj +DΠjδj

)
≤ kj

(
−3
4
‖Dδj‖2 +

5

2
‖DKj‖2 +

5

2
‖Dδj −DΠjδj‖2

)
.

We have by Hölder’s inequality, Young’s inequality, and the stability estimate (2.2)
that

|T3| ≤
∫
Ij

‖σ(Du)− σ(DUj)‖ ‖DΠjδj‖dt

≤√kj‖σ(Du)− σ(DUj)‖L2(Ij ;L2) ‖DΠjδj‖
≤ c2S Lip

2(σ)

∫
Ij

∫
Ω

|Du−DUj |2dxdt + kj
4c2S

‖DΠjδj‖2

≤ 2c2S Lip2(σ)

∫
Ij

∫
Ω

(|Du−Duj |2 + |Duj −DUj |2
)
dxdt +

kj
4
‖Dδj‖2.

Since

|Du−Duj |2 =
∣∣∣∣∫ tj

t

Dut(s)ds

∣∣∣∣2 ≤ (tj − t)

∫ tj

t

|Dut(s)|2ds

and∫ tj

tj−1

(tj − t)

∫ tj

t

|Dut|2dsdt ≤
∫ tj

tj−1

(tj − t)dt

∫ tj

tj−1

|Dut|2ds =
k2
j

2

∫ tj

tj−1

|Dut|2dt,

we obtain ∫
Ij

∫
Ω

|Du−Duj |2dxdt ≤ k2
j

2

∫
Ij

∫
Ω

|Dut|2dxdt.
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The assertion of the proposition follows easily from the foregoing estimates.
In the next proposition we derive the analogue of the estimate (2.5) for the discrete

scheme.
Proposition 3.3. The following estimate holds for j = 1, . . . , N:

1

2
‖Dej‖2 − 1

2
‖Dej−1‖2 +

1

4
‖Dej −Dej−1‖2

≤
(
c2S Lip

2(σ) +
1

2

)
kj‖Dej‖2 − (δj − δj−1, ej) +

kj
2
‖Dδj‖2

+
1

4
‖δj − δj−1‖2 + ‖ej −Πjej‖2 + kj‖Dej −DΠjej‖2

+
kj
2
‖DKj‖2 +

1

2
c2S Lip

2(σ)k2
j ‖Dut‖2

L2(Ij ;L2).

Proof. We obtain from (2.10) with Wj = Πjej that

1

2
‖Dej‖2 − 1

2
‖Dej−1‖2 +

1

2
‖Dej −Dej−1‖2 =

(
Dej −Dej−1, Dej −DΠjej

)
− (δj − δj−1,Πjej)−

∫
Ij

(
σ(Du)− σ(DUj), DΠjej

)
dt.

We denote the three terms on the right-hand side by T1, T2, and T3. By Lemma 3.1,

T1 = kj
(
Dδj +DKj , Dej −DΠjej

)
≤ kj

(
1

2
‖Dδj‖2 +

1

2
‖DKj‖2 + ‖Dej −DΠjej‖2

)
,

and by Young’s inequality

T2 = (δj − δj−1, ej −Πjej)− (δj − δj−1, ej)

≤ −(δj − δj−1, ej) +
1

4
‖δj − δj−1‖2 + ‖ej −Πjej‖2.

Finally, T3 can be estimates as in the proof of Proposition 3.2 by

T3 ≤√kj Lip(σ)‖Du−DUj‖L2(Ij ;L2)‖DΠjej‖
≤ 1

2
c2S Lip

2(σ) ‖Du−DUj‖2
L2(Ij ;L2) +

kj
2c2S

‖DΠjej‖2

≤ 1

2
c2S Lip

2(σ)k2
j ‖Dut‖2

L2(Ij ;L2) +

(
c2S Lip

2(σ) +
1

2

)
kj‖Dej‖2.

The assertion of the proposition follows from the foregoing inequalities.
We now combine the estimates in Propositions 3.2 and 3.3 to obtain an estimate

on the time interval Ij .
Corollary 3.4. Let Aj denote the approximation errors,

Aj = ‖δj −Πjδj‖2 +
5

2
kj‖Dδj −DΠjδj‖2 + ‖ej −Πjej‖2 + kj‖Dej −DΠjej‖2,

and Rj the terms depending on the regularity of u,

Rj =
kj
2

‖Kj‖2 + 3kj‖DKj‖2 +
3

2
c2S Lip

2(σ)k2
j‖Dut‖2

L2(Ij ;L2).



84 CARSTEN CARSTENSEN AND GEORG DOLZMANN

Then the following estimate holds for j = 1, . . . , N:

1

2
‖δj‖2 − 1

2
‖δj−1‖2 +

1

2
‖Dej‖2 − 1

2
‖Dej−1‖2 +

1

4
‖Dej −Dej−1‖2(3.3)

≤
(
3c2S Lip

2(σ) +
1

2

)
kj‖Dej‖2 − (δj − δj−1, ej) +Aj +Rj − kj

2
‖Kj‖2.

Remark. The discrete Gronwall inequality will be applied to the sum of (3.3) in
j. The sum of the terms −(δj − δj−1, ej) on the right-hand side is estimated by a
discrete summation by parts which leads to the (discrete) time integral of ‖δj‖2.
Proposition 3.5. Let

qj =
kj
kj−1

, Qν = max
j=2,...,ν

qj , c3 = max

{
3c2S Lip

2(σ) +
1

2
, QN +

1

2

}
.(3.4)

Then the following estimate holds for ν = 1, . . . , N:

1

2
‖δν‖2 +

1

2
‖Deν‖2 ≤ c3

ν∑
j=1

kj
(‖δj‖2 + ‖Dej‖2

)− (δν , eν) + (δ0, e1)
+

ν∑
j=1

(Aj +Rj) +
1

2
‖δ0‖2 +

1

2
‖De0‖2.

Proof. We take the sum of the inequality (3.3) for j = 1, . . . , ν and obtain

1

2
‖δν‖2 +

1

2
‖Deν‖2 ≤

(
3c2S Lip

2(σ) +
1

2

) ν∑
j=1

kj‖Dej‖2 −
ν∑
j=1

(
δj − δj−1, ej

)
+

ν∑
j=1

(
Aj +Rj − kj

2
‖Kj‖2

)
+
1

2
‖δ0‖2 +

1

2
‖De0‖2.

With a discrete summation by parts in the second term on the right-hand side, we
deduce that

−
ν∑
j=1

(
δj − δj−1, ej

)
= −(δν , eν) + (δ0, e1) +

ν−1∑
j=1

(
δj , ej+1 − ej

)
= −(δν , eν) + (δ0, e1) +

ν−1∑
j=1

kj+1

(
δj , δj+1 +Kj+1

)
≤ −(δν , eν) + (δ0, e1) +

ν−1∑
j=1

kj+1

(
‖δj‖2 +

1

2
‖δj+1‖2 +

1

2
‖Kj+1‖2

)
.

The assertion follows from this inequality since kj+1‖δj‖2 = qj+1kj‖δj‖2.
In order to apply Gronwall’s inequality, we need a further summation of the

inequality in Proposition 3.5. The term −(δν , eν) corresponds to the spatial integral
of utu = ∂t|u|2/2 which fits naturally in the formulation of Gronwall’s inequality in
section 2.2. This is not the case in the implicit time discretization used here.
Proposition 3.6. Let

ϕν = ‖eν‖2 +

ν∑
j=1

kj
(‖δj‖2 + ‖Dej‖2

)
.(3.5)
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Then

1

2
ϕN ≤

(
c3 +

1

2

) N∑
ν=1

kνϕν + T (δ0, e1) +
1

2
‖e0‖2

+
T

2

(‖δ0‖2 + ‖De0‖2
)
+ 2

N∑
ν=1

kν

ν∑
j=1

(Aj +Rj

)
,

and

∣∣T (δ0, e1)∣∣ ≤ k1

N∑
ν=1

kνϕν + 2k1TR1 +
3T

4
‖δ0‖2 + T‖e0‖2.(3.6)

Proof. We multiply the inequality in the assertion of Proposition 3.5 by kν and
take the sum of the resulting inequalities from ν = 1 to N . This leads to

1

2

N∑
ν=1

kν
(‖δν‖2 + ‖Deν‖2

) ≤ c3

N∑
ν=1

kν

ν∑
j=1

kj
(‖δj‖2 + ‖Dej‖2

)
−

N∑
ν=1

kν(δν , eν) + T (δ0, e1) +

N∑
ν=1

kν

ν∑
j=1

(Aj +Rj

)
+
T

2

(‖δ0‖2 + ‖De0‖2
)
.

In view of Lemma 3.1,

−
N∑
ν=1

kν(δν , eν) = −
N∑
ν=1

(eν − eν−1 − kνKν , eν)

= −1
2

N∑
ν=1

(‖eν‖2 − ‖eν−1‖2 + ‖eν − eν−1‖2
)
+

N∑
ν=1

kν(Kν , eν)

≤ −1
2
‖eN‖2 +

1

2
‖e0‖2 +

1

2

N∑
ν=1

kν
(‖eν‖2 + ‖Kν‖2

)
.

This implies

1

2

{
‖eN‖2 +

N∑
ν=1

kν
(‖δν‖2 + ‖Deν‖2

)}

≤
(
c3 +

1

2

) N∑
ν=1

kν

{
‖eν‖2 +

ν∑
j=1

kj
(‖δj‖2 + ‖Dej‖2

)}

+ T (δ0, e1) +
1

2
‖e0‖2 +

T

2

(‖δ0‖2 + ‖De0‖2
)
+ 2

N∑
ν=1

kν

ν∑
j=1

(Aj +Rj

)
.

It remains only to estimate the term T (δ0, e1) on the right-hand side. This is accom-
plished by showing that

∣∣T (δ0, e1)∣∣ ≤ k1

N∑
ν=1

kνϕν + 2k1TR1 +
3T

4
‖δ0‖2 + T‖e0‖2.
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Indeed, it follows from (3.1) that∣∣(δ0, e1)∣∣ ≤ ∣∣(δ0, e1 − e0)
∣∣+ ∣∣(δ0, e0)∣∣ ≤ ∣∣k1(δ0, δ1 +K1)

∣∣+ ∣∣(δ0, e0)∣∣
≤ 1

4
‖δ0‖2 + k2

1‖δ1‖2 +
1

4
‖δ0‖2 + k2

1‖K1‖2 +
1

4
‖δ0‖2 + ‖e0‖2.

By definition, k1‖K1‖2 ≤ 2R1 and k1‖δ1‖2 ≤ ϕν for ν = 1, . . . , N. Thus

T
∣∣(δ0, e1)∣∣ ≤ 3T

4
‖δ0‖2 + T‖e0‖2 + k1

N∑
ν=1

kνϕν + 2k1

N∑
ν=1

kνR1.

This implies the assertion of the proposition.

4. General convergence result. We are now in a position to state and prove
the convergence result for the approximation of solutions of the system (1.1) by the
implicit Euler scheme defined in section 2.3. Recall that Aj , Rj , and ϕν have been
defined in Proposition 3.4 and Corollary 3.6, respectively. Moreover, we set

A(T ) = 8(1 + k1

) N∑
ν=1

kν

ν∑
j=1

Aj , R(T ) = 8(1 + k1

) N∑
ν=1

kν

ν∑
j=1

Rj ,

and

a = 2(2T + 1)‖e0‖2 + 2T‖De0‖2 + 5T‖δ0‖2.(4.1)

Finally, we define c4 = c4(Lip(σ), QN ) and c5 = c5(Lip(σ), QN ) by

c4 = 4

(
c3 +

1

2
+ k1

)
, c5 = max

{
3

2
c2S Lip

2(σ), 1

}
,(4.2)

respectively.
Theorem 4.1. Suppose that Ω, Tj, and S0,j satisfy the assumptions in section 2.1

and that there exists a QN > 0 such that kj−1 ≤ QNkj for j = 2, . . . , N. Assume,
furthermore, that σ is globally Lipschitz continuous and that the unique solution of
the system (1.1) belongs to W 1,2(W 1,2). Suppose that k < 1/c4. Then

max
ν=1,...,N

‖eν‖2 +

N∑
ν=1

kν
(‖δν‖2 + ‖Deν‖2

) ≤ (a+A(T ) +R(T )) exp(c4T ).
Moreover, if u ∈ W 1,∞(W 2,2) ∩W 2,2(W 1,2), then

R(T ) ≤ 12c5T k2
(
‖utt‖2

L2(L2) + ‖Dutt‖2
L2(L2) + ‖Dut‖2

L2(L2)

)
,

and

A(T ) ≤ 60c2AT 2h2 max
j=1,...,N

(
h2
j

kj
+ 1

)
‖u‖2

W 1,∞(W 2,2) + C(T ),

where C(T ) is the coarsening error,

C(T ) = 12T
N∑
j=1

{
2

k2
j

∥∥Uj−1 −ΠjUj−1

∥∥+ 5

kj

∣∣Uj−1 −ΠjUj−1

∣∣2
1,2

}
,
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which vanishes if Tj is a refinement of Tj−1. Finally, if the approximation estimate
(2.7) holds, then

a ≤ c2Ah
2
0

(
(4T + 2)h2

0 + 4T
) (‖D2u0‖2 + ‖Dv0||2

)
.

Remark . Theorem 4.1 constitutes the best a priori estimates known for the sys-
tem (1.1) provided that the solution is sufficiently regular. Under the assumption
that the triangulation is only refined in time but not coarsened (i.e., that C(T ) = 0),
we obtain an estimate of order exp(T )(h2 + k2); cf. Theorem 1.1.

Proof of Theorem 4.1. Based on the estimates of section 3, we first show that ϕν
satisfies the assumptions in the discrete Gronwall inequality of Lemma 2.4. It follows
from Proposition 3.6 and (3.6) that

1

2
ϕN ≤

(
c3 +

1

2
+ k1

) N∑
ν=1

kνϕν + 2
(
1 + k1

) N∑
ν=1

kν

ν∑
j=1

(Aj +Rj)

+

(
T +

1

2

)
‖e0‖2 +

T

2
‖De0‖2 +

5T

4
‖δ0‖2.

By assumption, kN ≤ k and thus c4kN = 4
(
c3 + 1/2 + k1

)
kN ≤ 1. This allows us to

absorb the term
(
c3 +

1
2 + k1

)
kNϕN ≤ ϕN/4 on the left-hand side. We obtain

ϕN ≤ c4

N−1∑
ν=1

kνϕν + 8(1 + k1)

N∑
ν=1

kν

ν∑
j=1

(Aj +Rj)

+ 2(2T + 1)‖e0‖2 + 2T‖De0‖2 + 5T‖δ0‖2.

It follows that the assumptions in the discrete Gronwall inequality in Lemma 2.4 are
satisfied with a as defined in (4.1) and

bν = 8(1 + k1)kν

ν∑
j=1

(Aj +Rj

)
, τν = c4kν , ν = 1, . . . , N.

Thus

ϕN ≤
(
a+

N∑
ν=1

bν

)
exp(c4T ) =

(
a+A(T ) +R(T )) exp(c4T ).

We now estimate A(T ) and R(T ). By definition of Rj in Corollary 3.4 and by (3.2)
we infer

Rj ≤ c5k
2
j (‖utt‖2

L2(Ij ;L2) + ‖Dutt‖2
L2(Ij ;L2) + ‖Dut‖2

L2(Ij ;L2)).

This implies

N∑
ν=1

kν

ν∑
j=1

Rj ≤ c5T k2
(‖utt‖2

L2(L2) + ‖Dutt‖2
L2(L2) + ‖Dut‖2

L2(L2)

)
.

Since kc4 ≤ 1 implies k1 ≤ 1/2, we obtain
R(T ) ≤ 12c5T k2 (‖utt‖2

L2(L2) + ‖Dut‖2
L2(L2) + ‖Dut‖2

L2(L2)).
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It remains to estimate the approximation error. By definition of ej and (2.1),

ej −Πjej = u(tj)− Uj −Πj
(
u(tj)− Uj

)
= u(tj)−Πju(tj).

The approximation estimate (2.3) implies

‖ej −Πjej‖2 + kj‖Dej −DΠjej‖2 ≤ c2Ah
2
j

(
h2
j + kj

)‖D2u(tj)‖2.

Similarly,

δj −Πjδj = v(tj)−Πjv(tj) + 1

kj

(
Uj−1 −ΠjUj−1

)
.

This estimate and (2.2)–(2.3) yield

‖δj −Πjδj‖2 +
5

2
kj‖Dδj −DΠjδj‖2 ≤ 2c2Ah2

j

(
h2
j +

5

2
kj

)
‖D2ut(tj)‖2

+
2

k2
j

‖Uj−1 −ΠjUj−1‖2 +
5

kj
|Uj−1 −ΠjUj−1|21,2.

We conclude from the foregoing estimates that

N∑
j=1

Aj ≤ 5
N∑
j=1

h2
jc

2
A

(
h2
j + kj

)(‖D2u(tj)‖2 + ‖D2ut(tj)‖2
)
+

1

12T
C(T )

≤ 5c2ATh2 max
j=1,...,N

(
h2
j

kj
+ 1

)
‖u‖2

W 1,∞(W 2,2) +
1

12T
C(T ).

Hence

A(T ) ≤ 12T
N∑
j=1

Aj ≤ 60c2AT 2h2 max
j=1,...,N

(
1 +

h2
j

kj

)
‖u‖2

W 1,∞(W 2,2) + C(T ).

Clearly, if Tj is a refinement of Tj−1, then, by (2.1), C(T ) = 0. Finally, if (2.7) holds,
then

a ≤ c2A
(
2(2T + 1)h4

0 + 2Th
2
0

)‖D2u0‖2 + 4Th2
0‖Dv0‖2.

This proves the assertion of the theorem.
Proof of Theorem 1.1. This is a special case of Theorem 4.1.

Acknowledgment. It is our pleasure to thank Constantine Dafermos for dis-
cussions on the regularity of hyperbolic equations and remarks (4) and (5) in the
introduction.
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Abstract. This paper considers a multigrid algorithm suitable for efficient solution of indefinite
linear systems arising from finite element discretization of time harmonic Maxwell equations. In
particular, a “backslash” multigrid cycle is proven to converge at rates independent of refinement
level if certain indefinite block smoothers are used. The method of analysis involves comparing
the multigrid error reduction operator with that of a related positive definite multigrid operator.
This idea has previously been used in multigrid analysis of indefinite second order elliptic problems.
However, the Maxwell application involves a nonelliptic indefinite operator. With the help of a few
new estimates, the earlier ideas can still be applied. Some numerical experiments with lowest order
Nedelec elements are also reported.
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Gauss–Seidel, Poincaré inequality, finite element
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1. Introduction. The purpose of this paper is to study certain multigrid meth-
ods for the solution of the discrete equations which result from time harmonic Maxwell
equations. Since the introduction of Nedelec elements [22], finite element methods us-
ing these curl -conforming elements have become a popular choice for discretization
of Maxwell equations. An analysis of the finite element method in the time harmonic
case and lossless media was provided in [20]. However, the efficient solution of the
resulting linear systems has remained a challenge, mainly for two reasons: the linear
systems are indefinite, and the differential operator curlhas a large null space.

For the time harmonic problem, although a multigrid analysis has been lacking,
numerical experiments indicating the suitability of certain two-level and multilevel
algorithms can be found in literature [3, 4, 23]. Numerical results for parallel precon-
ditioners based on Schwarz overlapping techniques were reported in [23]. Computa-
tional experiments with a multigrid V -cycle have been reported [3, 4]. More recently,
an analysis for an additive overlapping preconditioner and a two-level multiplicative
variant were given in [16].

Two works that made recent advances related to the development of precondi-
tioners for Maxwell equations, [1] and [17], deserve special mention. Both provided
smoothers for use in a multigrid V -cycle for the positive definite bilinear form Λ(·, ·)
defined later in (2.1). These smoothers are based on two different subspace decompo-
sitions of the Nedelec space. Our smoothers for the indefinite problem are constructed
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based on the same decompositions, and our analysis makes use of the results in [1]
and [17].

The current paper provides an analysis for a multilevel algorithm. Specifically, we
prove that the so-called backslash cycle gives a convergent linear iterative method with
a convergence rate independent of mesh size, provided the coarse grid is sufficiently
fine. The latter restriction stems from the indefiniteness and seems unavoidable both
in theory and practice. Fundamentally different solution methods may be needed
to overcome this. Nonetheless, in spite of this restriction there are many practical
applications (of moderate frequencies) where a multigrid iteration using a relatively
fine coarse grid can reduce computational effort significantly.

The analysis we will provide is based on [16] and an earlier paper on multigrid
applied to elliptic nonsymmetric and indefinite problems [6] (see also [8]). In [6], a
perturbation technique to analyze a multigrid algorithm for indefinite or nonsymmet-
ric operators was developed. This involves comparing the error propagation operator
of the multigrid algorithm with that of a multigrid algorithm for a corresponding
positive definite operator. The difference between these operators was then proved
small for elliptic problems that may be nonsymmetric or indefinite. However, our
application involves a nonelliptic operator. We will show that techniques in [6] can
still be applied. In [16], some fundamental estimates were developed concerning the
approximation properties of the discrete solution operator corresponding to the time
harmonic Maxwell approximation. These estimates will play an important role in the
analysis given here.

The outline of the remainder of the paper is as follows. In section 2, we define
the problem and give the multigrid algorithm. Smoothers are defined and analyzed
in section 3. Convergence estimates for the multigrid algorithm are given in section
4. Finally, the results of numerical experiments are given in section 5.

2. The problem and multigrid algorithm. We set up a model problem aris-
ing from time harmonic Maxwell equations and a simple multigrid algorithm in this
section. First we establish notation for some spaces and their norms. Let Ω be an
open bounded connected polyhedral domain in R

3, and let L2(Ω) denote the space
of square integrable functions on Ω. We will use (·, ·)Ω and ‖ · ‖0,Ω to denote the
innerproduct and norm, respectively, in L2(Ω) or L2(Ω)3. The latter will often be
abbreviated to ‖ · ‖. In the space of vector functions in L2(Ω)3 with square integrable
curl , tangential traces n×u on the boundary ∂Ω are well defined [15], and we define

H0(curl ; Ω) = {u ∈ (L2(Ω))3 : curlu ∈ (L2(Ω))3, n× u = 0 on ∂Ω}.

Here n is the unit outward normal on the boundary ∂Ω. This space is normed with
‖·‖Λ,Ω = Λ(·, ·)1/2, where

Λ(u,v) = (u,v)Ω + (curlu, curlv)Ω.(2.1)

Analogous definitions hold for ‖ · ‖0,D, (·, ·)D, and ‖·‖Λ,D in domains D different from
Ω. In the notation for function spaces and their norms, when the domain is absent,
it is to be taken as Ω; for example, H0(curl) ≡ H0(curl ; Ω).

We restrict our attention to the time harmonic Maxwell equations in a homoge-
neous lossless media occupying Ω and also assume that the boundary of Ω is adjacent
to a perfect conductor. The following equation is a variational system for the electric
field U ∈ H0(curl ; Ω) given by Maxwell equations [11, 20] in the simple case of unit
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material properties:

A(U ,v) = (F ,v) for all v ∈ H0(curl ; Ω),(2.2)

where

A(U ,v) = (curlU , curlv)− ω2(U ,v).

The vector F , being a constant multiple of electric current, has zero divergence,
and consequently divU = 0. In (2.2), ω is a real number denoting frequency of
propagation. Note that there is a countable set of real values for ω for which (2.2)
does not have a unique solution [19]. Throughout this paper we assume that ω is not
one of these values and so (2.2) is uniquely solvable.

In our arguments later, we will need the solutions to (2.2) to be regular, and hence
we assume that Ω is convex. It is well known [14, 20] that U , curlU ∈ (H1(Ω))3 and
there is a constant CΩ depending only on Ω such that

‖U‖H1 + ‖curlU‖H1 ≤ CΩ‖F ‖.(2.3)

In (2.3), ‖ · ‖H1 denotes the norm in (H1(Ω))3 and H1(Ω) = {u ∈ L2(Ω) : grad u ∈
(L2(Ω))3}. For later use, let us also denote H1

0 (Ω) to be the set of functions in H
1(Ω)

which vanish on ∂Ω.
The preconditioner which we shall consider is developed in terms of multilevel

approximation subspaces of H0(curl). We start with a coarse partitioning of Ω into
(nonoverlapping) tetrahedra T1 = {τ i1 : i = 1, . . . , N0}. This forms a quasi-uniform
mesh of mesh size d1. A nested sequence of shape regular meshes Tk, k = 2, 3, . . . ,
can be obtained by successively refining T1, using, e.g., techniques given in [2]. For a
given tetrahedron τ , let hτ denote the radius of the largest ball contained in τ , and
let Hτ denote the diameter of τ . By uniformity, we assume that there is a constant ζ
not depending on Ti satisfying

ζhτ ≥ Hτ for all τ ∈ Ti, i = 1, . . . , j.(2.4)

Our goal is to solve the problem associated with the finest mesh Tj for some integer
j > 1. The mesh size of T1 will be denoted by d1 and can be taken to be the diameter
of the largest tetrahedron. The mesh size of Tk is essentially 21−kd1.

For theoretical and practical purposes, the coarsest grid in the multilevel algo-
rithm must be sufficiently fine. For k = 1, . . . , J , let Mk denote the lowest order
Nedelec finite element subspaces [22] of H0(curl) (of the first kind) based on Tk+L
for some L ≥ 0. The coarsest approximation subspace M1 can be made sufficiently
accurate by increasing L. Since the meshes are nested, it follows that

M1 ⊂M2 ⊂ · · · ⊂MJ .

The space Mk has a mesh size of hk = 21−L−kd1 = 21−kh1. Also let Wk be the
subspace of continuous scalar functions which are linear in every element of Tk+L. In
the appendix, we show how our results can be generalized to higher order Nedelec
elements.

It was shown in [20] (see also [21]) that the discrete problem of finding Uk ∈Mk

satisfying

A(Uk,v) = (F ,v) for all v ∈Mk(2.5)
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has a unique solution provided hk is small enough. We will assume that h1 is small
enough (or, equivalently, L is large enough) so that (2.5) is uniquely solvable for
k = 1, 2, . . . , J .

In our analysis, we shall use the projector P k : H0(curl) →Mk defined by

A(P ku,v) = A(u,v) for all v ∈Mk

and the orthogonal L2-projector Qk : (L
2(Ω))3 →Mk defined by

(Qku,v) = (u,v) for all v ∈Mk.

That P k is well defined (for k = 1, 2, . . . , J) follows from the unique solvability of
(2.5). Let us also introduce, for each k, an operator Ak :Mk →Mk defined by

(Aku,v) = A(u,v) for all v ∈Mk.

Problem (2.5), on level J , can be rewritten in the above notation as

AJUJ = QJF .(2.6)

We describe a simple multigrid algorithm for iteratively computing the solution
UJ of (2.6). Given an initial iterate u0 ∈ MJ , we define a sequence approximating
UJ by

ui+1 = MgJ(ui,QJF ).(2.7)

Here MgJ(·, ·) is the map of MJ ×MJ into MJ defined by the following algorithm.
Algorithm 2.1. Set Mg1(v,w) = A−1

1 w. Let k > 1 and v,w ∈Mk. Assuming
that Mgk−1(·, ·) has been defined, we define Mgk(v,w) as follows:

(1) Set x = v +Rk(w −Akv).
(2) Mgk(v,w) = x+Mgk−1(0,Qk−1(w −Akx)).
Here Rk : Mk → Mk is a linear smoothing operator. Note that in this multigrid

algorithm (often called a “backslash cycle”) we smooth only as we proceed to coarser
grids. Our smoothing operators will always be based on a generalized block Jacobi or
block Gauss–Seidel iteration. In this case, the Gramm matrix inversions associated
with Qk, k = 2, . . . , J , are avoided (see [5] or [24]). The smoother Rk will be defined
in section 3.

MgJ(·, ·) is a linear map from MJ × MJ into MJ . Moreover, the scheme is
consistent in the sense that v = MgJ(v,AJv) for all v ∈ MJ . It easily follows that
the linear operator E = MgJ(·, 0) is the error reduction operator for (2.7), that is,

u− ui+1 = E(u− ui).

Error reduction operators for variational multigrid algorithms generally have a
product representation (see, e.g., [7]). Let T k = RkAkP k for k > 1 and set T 1 = P 1.
Let Eku = u−Mgk(0,AkP ku) and E0 ≡ I, the identity operator. Then

Ek = Ek−1(I − T k)

and

E = (I − T 1)(I − T 2) · · · (I − T J).(2.8)



94 J. GOPALAKRISHNAN, J. PASCIAK, AND L. DEMKOWICZ

The product representation of the error operator given above will be a fundamental
ingredient in the convergence analysis presented in section 4.

The above algorithm is a special case of more general multigrid algorithms in
that we use only presmoothing. Alternatively, we could define an algorithm with just
postsmoothing or both pre- and postsmoothing. The analysis of these algorithms
is similar to that above and will not be presented. Algorithms with more than one
smoothing are not generally advised since the smoothing iteration may be unstable.

Our multigrid analysis is based on perturbation and the estimates for the positive
definite case. We define P̃ k, Λk, and T̃ k analogously to P k, Ak, and T k using the
form Λ instead of A.

3. Smoothers. In this section, we consider some smoothers appropriate for
the multigrid algorithm (Algorithm 2.1). These smoothers are generalized Jacobi
or Gauss–Seidel iterations, based on subspace decompositions of [1] and [17].

First, let us review the decomposition of [1]. For any k ∈ {2, 3, . . . , J}, let xk,i,
i = 1, . . . , N I

k, denote the interior vertices of the mesh Tk+L. Let ΩI
k,i denote the

interior of the union of the closures of the elements of Tk+L whose boundary contains
xk,i. Let M

I
k,i (resp., W

I
k,i) denote the functions in Mk (resp., Wk) whose support is

contained in Ω
I

k,i. Then Mk admits the decomposition

Mk =

N I
k∑

i=0

M I
k,i.

Next, consider the decomposition of [17]. Let {φk,i : i = 1, . . . , nMk } and {ψk,i :
i = 1, . . . , nWk } denote the usual nodal bases of Mk and Wk, respectively. Then this
decomposition is given by

Mk =

N II
k∑

i=0

M II
k,i,

where M II
k,i equals the span of φk,i for i = 1, . . . , nMk , while for i = nMk + j, j =

1, . . . , nWk , it equals the span of grad ψk,j , and N II
k = nMk + nWk . Also let ΩII

k,i be

such that Ω
II

k,i equals the support of nonzero functions in M
II
k,i,

M̊ I
k,i = {u ∈M I

k,i : (u,grad θ)ΩI
k,i

= 0 for all θ ∈W I
k,i} for i = 1, . . . , N I

k,

M̊ II
k,i =M II

k,i for i = 1, . . . , nMk ,

and let M̊ II
k,i for i = nMk + 1, . . . , N II

k be empty.
Our smoothers for the indefinite form are based on the above decompositions. Let

d ∈ {I, II}. Operators Qd
k,i, Λ

d
k,i, and Ad

k,i are defined analogously to Qk, Λk, and

Ak by replacingMk withM
d
k,i. The smoothing operators involve local solves onM

d
k,i,

so before we define them we must ensure that the operators {Ad
k,i} are invertible.

That this is the case if h1 is taken sufficiently small is a consequence of the Poincaré–
Friedrichs-type inequality of the next lemma. This inequality will also be important
for a subsequent perturbation analysis.

In the remainder of the paper, we adopt the convention of denoting by C or c a
generic constant independent of all mesh sizes {hk} and the number of levels J . It
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will be explicitly stated when such an independence holds only in a range 0 < hk < H
for some H (i.e., only for small enough mesh sizes).

Lemma 3.1. For any q ∈ M̊d
k,i, d ∈ {I, II}, k = 2, . . . , J ,

‖q‖ ≤ Chk‖curl q‖.(3.1)

Remark 3.1. Note that for discretely divergence free functions on a convex do-
main, such an inequality is proved in [15]. However, Ωdk,i may be nonconvex and we
need the constant in the inequality to be independent of the shape of the mesh patches.
The proof does not follow from a simple scaling argument as the discrete divergence
free condition does not carry over under linear mapping unless the transformation is
unitary.

Remark 3.2. In the case d = II and lowest order elements, this inequality is well
known [17] and a simple proof can be given by a scaling argument.

Proof. Consider first a tetrahedron τ with a face f contained in the x–y plane
with the origin at the barycenter of the face. A function φ in the lowest order Nedelec
edge space on τ with vanishing tangential components on f has the form

φ = (0, 0, η) + (α1, α2, 0)× (x, y, z).(3.2)

Here η, α1, and α2 are constants. Moreover, curlφ = 2α, where α = (α1, α2, 0). Also
note that if a is the vertex of τ not in f and c is any vertex of f , then the tangential
component of φ along the edge connecting a to c is given by

(η a3 + (α× c) · a)/|a− c|,(3.3)

where a3 is the z-component of a. We will now prove the lemma for decompositions
I and II separately.

Case d = I. Let D be the domain formed by a collection of unit sized tetrahedra
τj , j = 0, 1, . . . , N , meeting at vertex a, and let the corresponding approximation
spaces (of H0(curl ;D) and H1

0 (D), resp.) be denoted byM ′
D and W ′

D. Furthermore,

let M̊ ′
D = {v ∈M ′

D : (v,grad θ)D = 0 for all θ ∈W ′
D}. If we show that

‖v‖ ≤ C‖curlv‖ for all v ∈ M̊ ′
D,(3.4)

the required result follows easily by dilation.
Let φ ∈M ′

D, let fj denote the face of τj not containing a, and let c be a vertex of
fj . Let a and c have local coordinate triples aj ≡ (aj,1, aj,2, aj,3) and cj , respectively,
in the coordinate system on each tetrahedron which has fj in the x–y plane, and the
origin at its barycenter. Then, by (3.2), φ has the form φ = (0, 0, ηj) +αj × (x, y, z).
By (3.3), the tangential component of φ along the edge connecting a to c is given
by (ηj aj,3 + (αj × cj) · aj)/|aj − cj |. If τl is another tetrahedron in D sharing the
vertex c, then the same quantity is also given by (ηl al,3 + (αl × cl) · al)/|al − cl|.
Here subscripts l indicate coordinates in the τl system. Thus

ηl =
ηj aj,3 + (αj × cj) · aj − (αl × cl) · al

al,3
.(3.5)

Let v ∈ M̊ ′
D. We will construct a function φ in M ′

D which satisfies

curlφ = curlv and ‖φ‖ ≤ C‖curlv‖,(3.6)
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with C depending only on the quasi uniformity condition. Note that v − φ is a
gradient of a function in W ′

D, so

‖v‖ ≤ ‖φ‖ ≤ C‖curlv‖;
i.e., (3.4) follows if we construct φ satisfying (3.6).

We define φ = v−µgrad ψa, where ψa is the nodal function in W ′
D which is one

on a and µ is to be determined. Clearly, grad ψa has a local representation of the
form

grad ψa = (0, 0, ζj)

on τj with ζj �= 0. We choose µ so that η0 = 0 in the above representation of φ. All of
the remaining ηj ’s in the representation of φ can be determined from the αj ’s by (3.5).
By quasi uniformity, {al,3} are uniformly bounded away from zero, so magnitudes of
the ηl’s can be bounded in terms of the α’s. Now (3.6) follows by quasi uniformity
and the fact that the α’s can be bounded in terms of ‖curlv‖.

Case d = II. Let τ , f , a, and c be as in the beginning of this proof. Then,
in the coordinate system there, the nodal basis function φ of the edge connecting a
to c has the representation (3.2). Moreover, if b is an alternate vertex of f , then
η = −(α × b) · a/a3. Since η can be bounded by α = curlφ/2, the proof can be
finished in the same way as before.

Proposition 3.1. There exists an H > 0 such that whenever h1 ≤ H, any
solution pdk,i ∈Md

k,i of the square system

A(pdk,i,vk,i) = A(u,vk,i) for all vk,i ∈Md
k,i

satisfies ∥∥pdk,i∥∥Λ,Ωd
k,i

≤ C ‖u‖Λ,Ωd
k,i

(3.7)

for u ∈ Mk and for all i = 1, . . . , Nk and d ∈ {I, II}. It follows that Ad
k,i is nonsin-

gular.
Proof. In the case of decomposition I, the proof proceeds exactly as an analogous

result in [16, Lemma 4.2], and we omit it.
In the case d = II, for i = 1, . . . , nMk , (3.7) follows for sufficiently small hk from

‖curlpdk,i‖2 − ω2‖pdk,i‖2 = (curlu, curlpdk,i)− ω2(u,pdk,i)

by applying the Cauchy–Schwarz inequality on the right-hand side and Lemma 3.1
on the left-hand side. For the remaining i, since ω > 0,

‖pdk,i‖2 = (u,pdk,i),

so (3.7) follows.
Not only does Proposition 3.1 yield the invertibility of Ad

k,i, but it also implies

that the projection operator, P d
k,i :Mk →Mk,i, given by

A(P d
k,iu,vk,i) = A(u,vk,i) for all u ∈Mk,vk,i ∈Md

k,i, d ∈ {I, II},(3.8)

is well defined. Moreover, (3.7) implies∥∥∥P d
k,iu

∥∥∥
Λ,Ωd

k,i

≤ C ‖u‖Λ,Ωd
k,i

(3.9)
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for all u ∈Mk. Also define P̃
d
k,i analogously to P d

k,i by replacing A with Λ in (3.8).

Now that we have proven the invertibility of Ad
k,i, we can define the smoothers

for the indefinite problem. Jacobi-type smoothers J I
k and J II

k are given by

Jdk = γ

Nd
k∑

i=0

(Ad
k,i)

−1Qk,i, d ∈ {I, II},(3.10)

where γ is a scaling factor. Gauss–Seidel-type smoothersGd
k for d ∈ {I, II} are defined

by the following algorithm.
Algorithm 3.1 (indefinite Gauss–Seidel). Let f be in Mk. We define Gd

k by
the following:

(1) Set v0 = 0 ∈Mk.
(2) Define vi, for i = 1, . . . , Nd

k , by

vi = vi−1 + (Ad
k,i)

−1Qd
k,i(f −Akvi−1).

(3) Set Gd
kf = vNd

k
.

The analogous Jacobi and Gauss–Seidel smoothers were given in [1] and [17] for
the positive definite operators Λk. These are denoted here by J̃dk and G̃d

k and are
again defined by (3.10) and Algorithm 3.1, respectively, but with Λ in place of A.
The scaling factor γ in (3.10) is chosen such that the Λ-norm of I− J̃dkΛk is less than
or equal to one for k = 2, . . . , J . Such a γ can be chosen independent of J by the
limited overlap property of the subspaces.

Remark 3.3. In implementation, the application of the operator (Ad
k,i)

−1Qd
k,i

reduces to solving a linear system involving the stiffness matrix associated with the
indefinite form A(·, ·), and the Gramm matrix inversion corresponding to Qd

k,i is
avoided.

4. Analysis of the multigrid iteration. In this section we provide an analysis
of the multigrid iteration of section 2. This analysis is based on the product represen-
tation of the error operator (2.8). As done in [6] for second order elliptic problems, our
analysis is based on perturbation from the uniform multigrid convergence estimates
for a related symmetric positive definite problem.

We start with the estimate for the positive definite problem. For operators on
Mk, k = 1, . . . , J , we will use ‖·‖Λ to denote the operator norm induced by the vector
norm Λ(·, ·)1/2. Set R̃k to be any one of J̃ I

k, J̃
II
k , G̃

I
k, and G̃II

k . Let T̃ k = R̃kΛkP̃ k

for k > 1 and T̃ 1 = P̃ 1. Consider Algorithm 2.1 with Λk in place of Ak and R̃k in
place of Rk. Its error reduction operator is

Ẽ = (I − T̃ 1)(I − T̃ 2) · · · (I − T̃ J).(4.1)

The following result is contained in [1, Theorems 3.1 and 4.2], [17, Theorem 3.1], and
[18, Theorem 5.4].

Theorem 4.1. The multigrid error reduction operator in the case of the positive
definite problem satisfies

Λ(Ẽu, Ẽu) ≤ δ̂2Λ(u,u) for all u ∈MJ ,(4.2)

with 0 < δ̂ < 1 independent of J .
Remark 4.1. Although the results in [1] are formulated only for symmetric

smoothers, let us verify that (4.2) holds for the nonsymmetric Gauss–Seidel smoother
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G̃I
k as well, as stated in Theorem 4.1. Indeed, we can be more general and con-

sider instead the smoothing operator R̃k of a block successive overrelaxation iteration
(SOR(α)) with a relaxation parameter 0 < α < 2 (with the blocks based on {Md

k,i},
d ∈ {I, II}). We appeal to [9, Lemma 2.2], which shows that (4.2) holds for the
Ẽ obtained by any R̃k, provided

‖I − R̃kΛk‖Λ ≤ 1 and(4.3)

(R̃
−1

k u,u) ≤ CΛ(u,u) for all u ∈ (I − P̃ k−1)Mk,(4.4)

where R̃k = R̃k + R̃t
k − R̃t

kΛkR̃k. Here R̃t
k is the L2-adjoint of R̃k. That inequal-

ity (4.3) holds for the R̃k of SOR(α) follows immediately from the product represen-
tation,

I − R̃kΛk = (I − αP̃ I
k,Nk

) · · · (I − αP̃ I
k,1).

It remains to see that (4.4) holds for this smoother. Techniques in [1] can be used to
prove

inf
{ui}

Nd
k∑

i=1

Λ(ui,ui) ≤ CΛ(u,u) for all u ∈ (I − P̃ k−1)Mk,

where the infimum is taken over all decompositions u =
∑Nd

k
i=1 ui such that ui ∈Md

k,i.
It can be shown as in [7, Theorem 2.2] that for the R̃k of SOR(α),

(R̃
−1

k u,u) ≤ (1 + cα)2

2− α
inf
{ui}

Nd
k∑

i=1

Λ(ui,ui) for all u ∈Mk.

Thus, Theorem 4.1 holds for the SOR(α) smoother.
We will analyze the multigrid algorithm by examining the difference between E

and Ẽ. Let Zk = T k − T̃ k, and suppose we have

‖Z1‖Λ ≤ ε and(4.5)

‖Zk‖Λ ≤ C1hk for k = 2, . . . , J.(4.6)

Then, it can be shown that the difference Ek− Ẽk is small by an argument of [6] (see
also [8, Lemma 11.1]). We include the argument here for the sake of completeness:
First, note that by the triangle inequality, the Λ-norm of (I − T k) = (I − T̃ k −Zk)
is less than or equal to 1 + chk. Therefore,

‖Ek‖Λ,Ω ≤ (1 + cε)

k∏
i=2

(1 + chi),

which can be bounded by a convergent infinite product. Thus ‖Ek‖Λ,Ω ≤ C.
To continue, we observe the following recursion:

Ek − Ẽk = (Ek−1 − Ẽk−1)(I − T̃ k)−Ek−1Zk,(4.7)

which implies that for k > 1,

‖Ek − Ẽk‖Λ,Ω ≤ ‖Ek−1 − Ẽk−1‖Λ,Ω‖I − T̃ k‖Λ,Ω + ‖Ek−1‖Λ,Ω‖Zk‖Λ,Ω
≤ ‖Ek−1 − Ẽk−1‖Λ,Ω + Chk.
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Repeated application of this inequality shows that the difference Ek − Ẽk is small:

‖EJ − ẼJ‖Λ,Ω ≤ c(h1 + ε).

Thus, we have proven the following theorem.
Theorem 4.2. Let E satisfy (2.8) and Ẽ satisfy (4.1). Assume that (4.5)

and (4.6) hold. Then there are positive constants C, ĥ1, and ε̂ depending only on

C1 above such that if h1 ≤ ĥ1 and ε ≤ ε̂,

‖E‖Λ ≤ ‖Ẽ‖Λ + C(h1 + ε).

In (4.5) and (4.6), the operator norm of Zk can be taken to be that of Zk :
MJ → Mk or Zk : Mk → Mk, as both norms are equal. The proofs of our main
results proceed by verifying (4.5) and (4.6). In the verification of (4.5), the nature
of the subspace decompositions is immaterial, and a coarse grid estimate of [16] is
critical, as seen in the following lemma.

Lemma 4.3. There exists H > 0 such that if h1 ≤ H, then (4.5) holds with
ε = ch1.

Proof. For u,v ∈MJ , the following identity holds:

Λ(Z1u,v) = Λ(P 1u− u, P̃ 1v)

= A(P 1u− u, P̃ 1v) + (ω2 + 1)(P 1u− u, P̃ 1v)

= (ω2 + 1)(P 1u− u, P̃ 1v).

(4.8)

It is shown in [16], using a duality argument utilizing the regularity assumption, that
there exists H > 0 such that if h1 ≤ H, then

(u− P 1u,w) ≤ Ch1 ‖u− P 1u‖Λ ‖w‖Λ
for all u ∈MJ and w ∈M1. Thus, the lemma follows.

While verifying (4.6) for specific smoothers, it will be useful to have bounds for
the perturbation operators Zd

k,i :MJ →Md
k,i, d ∈ {I, II}, defined by

Zd
k,i = P d

k,i − P̃ d
k,i.

Note that in the case of subspaces of gradients of decomposition II,

ZII
k,i = 0 for i = nMk + 1, . . . , N II

k .

An identity similar to (4.8) can be obtained for Zd
k,i:

Λ(Zd
k,iu,v) = −(ω2 + 1)(u− P d

k,iu, P̃
d
k,iv).(4.9)

Lemma 4.4. There exists H > 0 such that if h1 ≤ H,

(u− P d
k,iu,vk,i) ≤ Chk‖u− P d

k,iu‖0,Ωd
k,i
‖curlvk,i‖0,Ωd

k,i

for all u ∈MJ and vk,i ∈Md
k,i, d ∈ {I, II}, k = 2, . . . , J .

Proof. In the case d = I, observe that for any u ∈MJ , u−P I
k,iu is L2-orthogonal

to functions of the form grad w for any w ∈W I
k,i. Decomposing vk,i = grad w + x,

where w ∈W I
k,i and x ∈ M̊ I

k,i, and applying Lemma 3.1 give

(u− P k,iu,vk,i) = (u− P k,iu,x) ≤ Chk‖u− P k,iu‖0,Ωk,i
‖curlx‖0,Ωk,i

= Chk‖u− P k,iu‖0,Ωk,i
‖curlvk,i‖0,Ωk,i

.



100 J. GOPALAKRISHNAN, J. PASCIAK, AND L. DEMKOWICZ

In the case d = II, the result immediately follows from Cauchy–Schwarz inequality
and Lemma 3.1 for vk,i ∈ M̊ II

k,i. For the remaining vk,i ∈ M II
k,i, both sides of the

inequality of the lemma are zero.
The following theorem is our main result.
Theorem 4.5. In Algorithm 2.1, set Rk to any of the smoothers J

I
k,G

I
k,J

II
k ,

and GII
k defined earlier. Then there exists an H > 0 such that whenever h1 ≤ H,

Λ(Eu,Eu) ≤ δ2Λ(u,u) for all u ∈MJ ,

for δ = δ̂ + ch1. Here δ̂ is less than one (and independent of J) and is given by
Theorem 4.1 applied to the corresponding smoother R̃k. In addition, c is independent
of h1.

Proof. We apply Theorem 4.2. By Lemma 4.3, we need only verify (4.6) for each
of the smoothers J I

k,G
I
k,J

II
k , and GII

k . Since the proof for the case of the latter two
smoothers is completely analogous to that for the case of the smoothers based on
decomposition I, we give only the proof for J I

k and GI
k.

In the case of Rk = J I
k, the perturbation operator Zk, k > 1, satisfies

Zku = γ

Nk∑
i=1

(P I
k,i − P̃ I

k,i)u = γ

Nk∑
i=1

ZI
k,iu

for any u ∈Mk. By (4.9), Lemma 4.4, and (3.9),

Λ(ZI
k,iu,v) = (ω2 + 1)(P I

k,iu− u, P̃ I
k,iv) ≤ chk ‖u‖Λ,ΩI

k,i
‖v‖Λ,ΩI

k,i
(4.10)

for any u,v ∈Mk. Hence,

Λ(Zku,v) ≤ chk

Nk∑
i=1

‖u‖Λ,ΩI
k,i

‖v‖Λ,ΩI
k,i
.

The inequality (4.6) now easily follows using the limited overlap properties of the
domains ΩI

k,i. This completes the proof of the theorem when Rk = J I
k.

Now consider the case Rk = GI
k. As before, it suffices to verify (4.6). Define Ẽi

and Ei by

Ẽi = (I − P̃ I
k,i)(I − P̃ I

k,i−1) · · · (I − P̃ I
k,1) and

Ei = (I − P I
k,i)(I − P I

k,i−1) · · · (I − P I
k,1),

and let Ẽ0 = E0 = I. Then the perturbation operator Zk : Mk → Mk for this
example is

Zk = T k − T̃ k = ẼNk
− ENk

.

We clearly have that

Ẽi − Ei = (I − P̃ I
k,i)(Ẽi−1 − Ei−1)−ZI

k,iEi−1.

Since the terms on the right are orthogonal with respect to Λ(·, ·),

‖(Ẽi − Ei)u‖2
Λ,Ω = ‖(I − P̃ I

k,i)(Ẽi−1 − Ei−1)u‖2
Λ,Ω + ‖ZI

k,iEi−1u‖2
Λ,Ω.
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It follows from (4.10) that ‖ZI
k,iv‖Λ,Ω ≤ Chk‖v‖Λ,ΩI

k,i
. This and the fact that the

Λ-operator norm of (I − P̃ I
k,i) is bounded by one imply that

‖(Ẽi − Ei)u‖2
Λ,Ω ≤ ‖(Ẽi−1 − Ei−1)u‖2

Λ,Ω + Ch2
k‖Ei−1u‖2

Λ,Ωk,i
.

Summing over i and obvious manipulations give

‖(ẼNk
− ENk

)u‖2
Λ,Ω ≤ Ch2

k

Nk∑
i=1

‖Ei−1u‖2
Λ,Ωk,i

.(4.11)

We shall now show that for sufficiently small h1,

Nk∑
i=1

‖Ei−1u‖2
Λ,Ωk,i

≤ C‖u‖2
Λ,Ω.(4.12)

We first note the identity

I − Ei =
i∑

m=1

P I
k,mEm−1.

Thus, by the arithmetic-geometric mean inequality, the definition of Ei, and the
limited interaction property, it follows that

Nk∑
i=1

‖Ei−1u‖2
Λ,ΩI

k,i
≤ 2

Nk∑
i=1

‖u‖2
Λ,ΩI

k,i
+ 2

Nk∑
i=1

‖u− Ei−1u‖2
Λ,ΩI

k,i

≤ C‖u‖2
Λ,Ω + 2

Nk∑
i=1

∥∥∥∥∥
i−1∑
m=1

P I
k,mEm−1u

∥∥∥∥∥
2

Λ,ΩI
k,i

≤ C

(
‖u‖2

Λ,Ω +

Nk∑
m=1

Nk∑
i=1

‖P I
k,mEm−1u‖2

Λ,ΩI
k,i

)

≤ C

(
‖u‖2

Λ,Ω +

Nk∑
m=1

‖P I
k,mEm−1u‖2

Λ,Ω

)
.

(4.13)

In order to estimate the last term on the right of (4.13), we write

‖P I
k,mEm−1u‖2

Λ,Ω = ‖Em−1u‖2
Λ,Ω − ‖Emu‖2

Λ,Ω

− 2Λ(P I
k,mEm−1u, (I − P I

k,m)Em−1u).

(4.14)

Now by (4.9),

Λ(P I
k,mEm−1u, (I − P I

k,m)Em−1u) = (1 + ω2)(P I
k,mEm−1u, (I − P I

k,m)Em−1u),

so by Lemma 4.4 we have

‖P I
k,mEm−1u‖2

Λ,Ω ≤ C(‖Em−1u‖2
Λ,Ω − ‖Emu‖2

Λ,Ω) + Ch2
k‖Em−1u‖2

Λ,ΩI
k,m

.
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Summing over m, we conclude that

Nk∑
m=1

‖P I
k,mEm−1u‖2

Λ,Ω ≤ C

(
‖u‖2

Λ,Ω + h2
k

Nk∑
m=1

‖Em−1u‖2
Λ,ΩI

k,m

)
.(4.15)

Clearly (4.15) and (4.13) yield (4.12) for small enough h1.
Finally, we obtain from (4.12) and (4.11) that for k > 1,

‖Zk‖Λ,Ω ≤ Chk.

The theorem follows from Lemma 4.3 and Theorem 4.2.
Remark 4.2. The same analysis could be used for the SOR(α) iteration considered

in Remark 4.1. In that case,

E l = (I − αP d
k,l)(I − αP d

k,l−1) · · · (I − αP d
k,1).

Also, by Remark 4.1, Theorem 4.1 holds with the SOR(α) smoother.

5. Numerical results. Numerical experiments were conducted using lowest or-
der Nedelec elements on cubes. We report results of some of these experiments in
this section. First, let us note that not only can Algorithm 2.1 be used as a linear
solver for (2.6), but it can also be used to develop a preconditioner. Specifically, the
operator BJ :MJ →MJ defined by BJg = MgJ(0, g) is a preconditioner for AJ in
the sense that the inequalities

(1− δ)Λ(u,u) ≤ Λ(BJAJu,u) and

Λ(BJAJu,v) ≤ (1 + δ)Λ(u,u)1/2Λ(v,v)1/2
(5.1)

hold for all u,v ∈ MJ , for sufficiently small coarse mesh sizes. These bounds easily
follow from Theorem 4.5, and δ is as in the theorem. They imply that when GMRES in
theΛ(·, ·) innerproduct is used to solve (2.6) withBJ as preconditioner, the number of
iterations remains bounded independently of refinement level [12, 16]. In this section
we will investigate the performance of BJ as a preconditioner for use in GMRES as
well as that of the linear solver MgJ(·, ·) given by Algorithm 2.1.

In all experiments, our computational domain was Ω = (0, 1)3. We investigate
only the multigrid algorithm with the smoother GI

k based on decomposition I. The
domain (0, 1)3 was meshed by a hierarchy of multilevel uniform cubic meshes. Each
mesh is obtained by breaking up every cubic element of a coarser mesh into eight
congruent cubes, the coarsest mesh being just {Ω}. Clearly, our analysis holds in this
situation. (In particular, a Poincaré–Friedrichs inequality like that of Lemma 3.1 is
obvious for uniform cubic meshes.)

The linear system (2.6) is solved on a fine (k = J) mesh of mesh size h using
one of the two above-mentioned iterative methods. The coarse solves of the multigrid
algorithm are done on a coarse (k = 1) mesh of mesh size H. All coarse solves were
done by direct methods of UMFPACK2.2 [10]. The right-hand side of (2.6) was chosen
so that the true solution equals the interpolant of U(x, y, z) = [y(1−y)z(1−z), yx(1−
x)z(1 − z), x(1 − x)y(1 − y)]. We report iteration counts for a set of combinations
of h and H. The starting iterate was always zero. When the linear multigrid solver
was used, the stopping criterion was that the Λ-norm of error be reduced by a factor
of 10−6. The stopping criterion for GMRES was that the Λ-norm of the residual
(premultiplied by BJ) was reduced by a factor of 10−6. GMRES was set to restart
after 50 iterations.
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Table 5.1
Preconditioned GMRES iteration counts for the ω = 1 case. Degrees of freedom at each refine-

ment level are also shown in the last column.

H Degrees of

h

1/2 1/4 1/8 1/16 1/32
1/4 6 – – – –
1/8 7 7 – – –
1/16 9 9 8 – –
1/32 10 10 9 7 –
1/64 11 10 10 8 7
1/128 11 11 10 9 8

of freedom
108
1176
10800
92256
762048
6193536

Table 5.2
Linear multigrid iteration counts with ω = 1.

H

h

1/2 1/4 1/8 1/16 1/32
1/4 6 – – – –
1/8 7 7 – – –
1/16 9 9 8 – –
1/32 10 11 10 8 –
1/64 11 11 10 10 8
1/128 12 11 10 10 10

Table 5.3
Linear multigrid iteration counts for ω = 7. An entry “�” indicates that the Λ-norm of iterates

became larger than 1099, and iterations were stopped.

H

h

1/2 1/4 1/8 1/16 1/32
1/4 � – – – –
1/8 � 35 – – –
1/16 � 110 23 – –
1/32 � 208 48 10 –
1/64 � 266 62 15 8
1/128 � 285 67 16 10

We start with the case ω = 1. GMRES iteration counts are reported in Table 5.1.
The preconditioner appears to be uniform, as iteration counts never exceeded 11 for
all combinations of h and H we considered. For comparison, the case h = 1/128
without preconditioner did not converge even after 5000 iterations.

Iteration counts obtained using the linear multigrid solver are reported in Ta-
ble 5.2, and these are in accordance with Theorem 4.5. Although, in the case ω = 1,
the algorithm gives uniform iteration counts for all choices of H considered, this is
no longer the case for a higher wave number, as seen in Table 5.3. This is again in
accordance with Theorem 4.5, as its conclusion holds only whenever the coarse mesh
is sufficiently fine.

We have also considered the performance ofBJ as a preconditioner in GMRES for
the case of a higher wave number ω = 10. It is a good preconditioner only for smaller
coarse mesh sizes, as Table 5.4 shows. In other (unreported) experiments, the linear
multigrid algorithm for this wave number converged only for one of the combinations of
h and H considered. Theoretically, (5.1) guarantees that BJ is a good preconditioner
only when MgJ(·, ·) is a good contraction. Nonetheless, our experiments indicate
that the coarse mesh size at which BJ becomes a good preconditioner is larger than
that required for MgJ(·, ·) to be a good contraction. Similar observations have been
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Table 5.4
Preconditioned GMRES iteration counts for ω = 10 case. An entry of the form n× indicates

that although the residual of the nth GMRES iterate met the stopping criterion, the iterate differed
from the true solution by more than 10−3 in the Λ-norm.

H

h

1/2 1/4 1/8 1/16 1/32
1/4 3× – – – –
1/8 2× 37 – – –
1/16 3× 48 18 – –
1/32 2× 78× 22 16 –
1/64 2× 78× 21 17 9
1/128 2× 79× 21 16 10

Table 5.5
Numerical convergence rates for the linear multigrid iteration.

H

h

1/2 1/4 1/8 1/16
1/4 0.32 — — —
1/8 0.40 0.40 — —
1/16 0.42 0.42 0.42 —
1/32 0.42 0.42 0.42 0.42
1/64 0.42 0.42 0.42 0.42

ω = 1

H
1/2 1/4 1/8 1/16

1/4 7.93 — — —
1/8 9.67 0.92 — —
1/16 10.01 0.65 0.60 —
1/32 10.06 0.58 0.44 0.43
1/64 10.07 0.58 0.43 0.43

ω = 5

made in studies of multigrid algorithms for the Helmholtz equation [13]. This may
be an argument in favor of using GMRES preconditioned with multigrid as a solution
strategy, rather than the linear multigrid solver. However, we must also keep in mind
that if too large a mesh size is used, GMRES may find the residual too small and
stop, even though the iterate is far from the true solution (see entries n×).

We conclude by providing numerical convergence rates for the linear multigrid
iteration which also confirm our theoretical results. Entries of Table 5.5 provide
estimates for ‖I − BJAJ‖Λ obtained by means of the power method in the cases
ω = 1 and ω = 5 for a few combinations of h and H. We see that the only difference
between the two cases is that larger ω requires a smaller coarse grid size. Note, though,
that once the coarse grid is small enough, both cases give rise to approximately the
same reduction rates.

Appendix. Here we will indicate how the main result of this paper can be
generalized to higher order Nedelec spaces (of the first kind). Let Mk be defined
with rth order Nedelec spaces on each tetrahedron, and let Wk be the corresponding
conforming approximation space with polynomials of degree at most r + 1. The
algorithms and definitions of subspace decompositions and smoothers generalize in
an obvious way for the case of decomposition I. As we shall see, Case II can also be
generalized provided a suitable choice of nodal basis is made.

Case I. First, note that Theorem 4.1 holds with the higher order spaces, as shown
in [1]. The only proof in the previous sections that depended on the order of the spaces
is that of Lemma 3.1. We will now prove that the inequality of the lemma holds for
higher order spaces as well.

We start by considering the set S of all possible quasi-uniform tetrahedral meshes
contained in the unit ball with at least one vertex on the unit sphere, every element
having the origin as a vertex and the origin being an interior point of the mesh. Note
that this implies that the resulting mesh domains are simply connected with only one
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connected boundary component.
Each element in S is represented by a list of vertices and a list of tetrahedra (a

tetrahedron number to vertex number list). We can assign labels to the members of S
so that two members have the same label if and only if they have the same tetrahedron
to vertex list. Quasi uniformity implies that the number of labels can be bounded
in terms of ζ appearing in (2.4). Let Rl be the subset of elements of S with the lth
label.

Any subdomain ΩI
k,i can be dilated and translated to an element of S. Thus, it

suffices to prove that (3.4) holds for each D in Rl with constant independent of D.
The general result holds, taking the minimum of these constants over {Rl}.

Clearly, each domain D ∈ Rl has the same number of vertices, say, m. We can
define a distance on Rl by using any norm on the vertex set, e.g., the Euclidean norm
on R

3m. It follows from quasi uniformity that Rl is a closed and bounded set in this
norm and hence compact.

Let D be in Rl. Denote the corresponding approximation spaces (of H0(curl ;D)
and H1

0 (D), resp.) by M ′
D and W ′

D, and set M̊ ′
D = {q ∈ M ′

D : (q,grad θ)D =
0, for all θ ∈W ′

D}. Let

I(D) = inf
q∈M̊ ′

D

‖curl q‖0,D

‖q‖0,D
.(A.1)

Note that since D is simply connected with a connected boundary, if curl q = 0 and
q ∈ M ′

D, then q is a gradient of a function in W ′
D. It follows that I(D) > 0 for any

D ∈ Rl. Thus, to prove that (3.4) holds uniformly for D ∈ Rl, it suffices to show that
I(D) is continuous.

Suppose p and q are vertex sets of two meshes in Rl, with corresponding domains
Dp and Dq, respectively. Let ε > 0 be given. For s ∈ {p, q}, let {esi}nl

i=1 denote a
nodal basis for M ′

Ds
. We identify functions in the above spaces with their extension

by zero to the unit ball B. Let z ∈ M̊ ′
Dp

be a function with ‖z‖0,B = 1 for which the

infimum in (A.1) is attained, and let

z =

nl∑
i=1

cie
p
i and z′ =

nl∑
i=1

cie
q
i .

By quasi uniformity, it is easy to see that if |p− q| is small enough (depending on ε),
‖z − z′‖Λ,B ≤ ε. Note that z′ is, in general, not in M̊ ′

Dq
. Define ψ′ ∈W ′

Dq
by

(grad ψ′,grad φ)B = (z′,grad φ)B for all φ ∈W ′
Dq
.

Then z′′ = z′ − grad ψ′ is in M̊ ′
Dq
. Moreover, if |p− q| is small enough, it can easily

be shown that ‖z′′ − z′‖Λ,B ≤ ε, so

‖z − z′′‖Λ,B ≤ 2ε.

Consequently,

I(q)− I(p) ≤ ‖curl z′′‖0,Dq

‖z′′‖0,Dq

− I(p) ≤ Cε.

Interchanging the roles of p and q in the above argument, we also get that I(p)−I(q) ≤
Cε. Thus, I(p) is continuous on Rl. This finishes the proof of Lemma 3.1 when d = I.
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Case II. Smoothing algorithms of this type can be generalized to higher order
spaces provided a suitable choice of nodal basis is made. Note that there are choices
of nodal basis for which Lemma 3.1 does not hold. We will provide one example of a
nodal basis for which our analysis generalizes.

Once a set of degrees of freedom for Mk is defined, a corresponding nodal basis
immediately follows. The particular choice of the degrees of freedom we have in mind
consists of edge, face, and tetrahedral moments. For any domain D, let Pl(D) denote
the set of polynomials of degree at most l, and let Pl(D) denote any basis for Pl(D).
For every interior edge e and interior face f of the kth level mesh, define the edge and
face moments

αpe(u) =

∫
e

p(u · t) dt, αq
f (u) =

∫
f

q · (u× n) ds

for p ∈ Pr−1(e) and q ∈ (Pr−2(f))
2. The tetrahedral moments are defined by mapping

to the reference tetrahedron τ̂ bounded by the planes x = 0, y = 0, z = 0, and
x + y + z = 1. Let Rr−3 be the set of all vector polynomials that are monomials
of degree at most r − 3 in one coordinate direction and zero in others; e.g., r =
(xiyjzk, 0, 0) is in Rr−3. For every tetrahedron τ in the kth level mesh, define the
tetrahedral moments

αr
τ (u) =

∫
τ̂

r · û dx,

where r ∈ Rr−3, û(x̂) = Btu(x), and B is the matrix in the affine correspondence

τ̂
Bx̂+b→ τ . The edge, face, and tetrahedral moments defined above form a set of

degrees of freedom for Mk and define a corresponding nodal basis B for Mk.
The basis B is divided into edge basis functions, face basis functions, and interior

basis functions. An edge basis function φpe corresponding to an interior edge e has
all of the above-defined degrees of freedom equal to zero except αpe(φ

p
e) = 1 for some

polynomial p ∈ Pr−1(e). Similarly, a face basis function φq
f has all its moments zero

except αq
f (φ

q
f ) = 1 for some interior face f and some q ∈ Pr−2(f)

2. Finally, we have
interior basis functions φr

τ supported on τ such that all its moments are zero except
αr
τ (φ

r
τ ) = 1 for some r ∈ Rr−3. Thus,

B ={φpe : for all interior mesh edges e and p ∈ Pr−1(e)}
∪{φq

f : for all interior mesh faces f and q ∈ (Pr−2(f))
2}

∪{φr
τ : for all r ∈ Rr−3 and all mesh tetrahedra τ}.

Our analysis generalizes to the case when Mk is decomposed as

Mk =
∑
φ∈B

span(φ) ⊕
∑
i

span(grad ψk,i),

where {ψk,i} is a local nodal basis forWk. To show this, we first note that Theorem 4.1
holds for this decomposition, as can be seen by following the arguments of [1]. The
only other ingredient in our analysis that requires generalization is Lemma 3.1. We
now show that ‖φ‖0,Ω ≤ Chk‖curlφ‖0,Ω for all φ ∈ B.

It suffices to prove that there is a Ĉ > 0 such that

‖φ̂‖0,τ̂ ≤ Ĉ‖curl φ̂‖0,τ̂(A.2)
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for all φ ∈ B with Ĉ independent of τ . Here, as before, φ̂(x̂) = Bt φ(x) for x ∈
τ for some τ on which φ is nonzero. Clearly, (3.1) follows from (A.2) by quasi

uniformity and standard affine equivalence arguments since ‖φ‖0,τ ≤ Ch
1/2
k ‖φ̂‖0,τ̂

and ‖curl φ̂‖0,τ̂ ≤ Ch
1/2
k ‖curlφ‖0,τ .

We prove (A.2) for each type of basis function. First, we consider φ̂pe. Let Lê
denote the space of functions v in the rth order Nedelec space on τ̂ for which all edge,
face, and tetrahedral moments are zero except those associated to the edge ê, which
is the image of e. Clearly, φ̂pe is in Lê. For any nonzero function φ̂ ∈ Lê, there exists
a p ∈ Pr−1(f̂) on a face f̂ adjacent to ê, such that

0 �= (φ̂ · t, p)∂f̂ = (p, curl φ̂ · n)f̂ − (grad p× n, φ̂)f̂ = (p, curl φ̂ · n)f̂ ,
where n is the outward unit normal on f̂ and t is a unit tangent vector on ∂f̂
(appropriately oriented). Since the left-hand side is nonzero, curl φ̂ �= 0. Thus by
the finite dimensionality of Lê, (A.2) holds for all φ̂ ∈ Lê and hence holds for φ̂pe.

Next, let us show (A.2) for a mapped face basis function φ̂q
f . Let Lf̂ denote the

subspace of the rth order Nedelec space on τ̂ for which all edge, face, and tetrahedral
moments are zero, except for moments on face f̂ . Clearly, φ̂q

f is in Lf̂ . For any

nonzero φ̂ ∈ Lf̂ , there is a q ∈ Pr−2(τ̂)
3 such that

0 �= (φ̂× n, q)∂τ̂ = (curl φ̂, q)τ̂ − (φ̂, curl q)τ̂ = (curl φ̂, q)τ̂ .

Thus, curl φ̂ �= 0 for all φ̂ ∈ Lf̂ and (A.2) follows for φ̂q
f .

Finally, consider an interior basis function φr
τ . Obviously, all face and edge mo-

ments of φ̂r
τ are zero. We will now show only that for r = (xiyjzk, 0, 0), curl φ̂r

τ �= 0,
as the argument is similar for other r ∈ Rr−3. We argue by contradiction. If
curl φ̂r

τ = 0, then φ̂r
τ = grad ψ for some ψ ∈ Pr(τ̂). Moreover, since face and

edge moments of φ̂r
τ are zero, ψ can be chosen such that ψ|∂τ̂ = 0. Therefore,

1 = (φ̂r
τ , r)τ̂ = −(ψ,div r)τ̂ .

If i = 0, i.e., r = (yjzk, 0, 0), then div r = 0, which is a contradiction. If i ≥ 1, then
by the definition of φr

τ , (φ̂
r
τ , r̃) = 0 for r̃ = (0, ixi−1yj+1zk/(j + 1), 0). However,

(φ̂r
τ , r̃)τ̂ = (φ̂r

τ , r)τ̂ , which is a contradiction. Therefore, curl φ̂r
τ �= 0, and (A.2)

follows for the interior basis functions as well. Thus, we have shown that Lemma 3.1
holds for the nodal basis functions of B.

It is easy to see that there are various other choices of nodal bases for which the
lemma does not hold. For instance, in the case r ≥ 4 the function grad (λ1λ2λ3λ4)
(where λi are the barycentric coordinates of a tetrahedron τ) is an example of an
interior basis function for which Lemma 3.1 does not hold. Another example is the
function λigrad λj+λjgrad λi in the case r = 2. This function has only one nonzero
edge moment so may be a candidate for an edge basis function. However, it has
nonzero face moments. Our analysis does not hold for decompositions based on such
basis functions, and it is not clear if the associated indefinite multigrid method is
convergent.
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Abstract. We study a multigrid finite element method for a viscoelastic fluid flow obeying
an Oldroyd-B–type constitutive law. The multigrid method is a time-saving method in which the
full nonlinear system is solved on a coarse grid, and subsequent approximations are generated on a
succession of refined grids by solving a linearized problem. We show that the linearized problem has
an approximate solution and present an error bound for a two-grid method. We also numerically
demonstrate that the multigrid method is significantly more efficient than the standard one-grid
finite element method.
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1. Introduction. In this paper we consider a multigrid method for a viscoelastic
fluid flow obeying an Oldroyd-B–type constitutive law. Over the last decades, signif-
icant progress has been made in developing finite element algorithms for viscoelastic
fluids, resulting in commercial software packages available today. The difficulty in ap-
proximating a solution to the viscoelastic flow model arises from the hyperbolic nature
of the constitutive equation, which requires stabilization in computation. Streamline
upwinding was first considered in [9] for viscoelastic flow, and in [4] the discontinuous
Galerkin method was implemented. In [1], a preconditioner for the GMRES itera-
tive solver was specifically tailored to the characteristics of the discrete elastic-viscous
split-stress method (DEVSS) algorithm. More mathematical studies on finite element
methods for the solution of viscoelastic fluid flow are found in [2] and [12]. In [2] a dis-
continuous Galerkin method was studied for approximating the stress, and in [12] the
streamline upwinding Petrov–Galerkin (SUPG) method for continuous approximation
of the stress was analyzed.

When a discontinuous Galerkin method is used for stabilizing the approximation,
the generated linear system is considerably larger than that resulting from a standard
Galerkin method. In this sense, a multigrid method can give more savings in comput-
ing time when used together with the discontinuous finite element method. In [8] we
studied a multigrid method derived from the decoupled algorithm presented in [10].
The advantage of that method is in the decoupling of a momentum equation from
a constitutive equation on a finer mesh. After solving a full nonlinear equation on
a coarse grid using an appropriate iteration method, one needs to solve two smaller
linear systems on a fine grid instead of one large system. However, convergence of
the decoupled algorithm is slow and mesh-dependent, so it is necessary to use several
iterations on a finer grid.

The multilevel method considered in this paper is based on Newton linearization.
A similar multigrid method for the Navier–Stokes equation was studied in [6] and [7].
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For the viscoelastic flow problem, we solve a full nonlinear system on a coarse grid
and one linear system on a fine grid with appropriately chosen coarse and fine grids.

An outline of this paper is as follows. In the remainder of this section, we introduce
the model equation, some notation that will be used throughout the paper, and a
weak formulation of the model equation. In section 2, a finite element approximation
for a standard one-grid method is described and the error estimate proved in [2] is
presented. In section 3, we present a multigrid algorithm and prove the existence of a
solution to the discrete linearized problem. An error bound of the multigrid method
is proved in section 4. Then, in the last section we present some numerical results
demonstrating efficiency of the method.

Let Ω be a bounded domain in R
2 with the Lipschitz continuous boundary Γ, and

let n be the unit outward normal to the boundary Γ. Consider the model problem

σ + λ(u · ∇)σ + λga(σ,∇u)− 2αd(u) = h in Ω ,(1.1)

−∇ · σ − 2(1− α)∇ · d(u) +∇p = f in Ω ,(1.2)

div u = g in Ω ,(1.3)

u = uΓ on Γ ,(1.4)

σ = σΓ− on Γ− ,(1.5)

where σ denotes the stress tensor, u the velocity vector, p the pressure of fluid, and
λ the Weissenberg number. Assume that p has zero mean value over Ω. In (1.1) and
(1.2), d(u) := (∇u+∇uT )/2 is the rate of the strain tensor, and α is a number such
that 0 < α < 1, which may be considered as the fraction of viscoelastic viscosity. In
(1.1), ga(σ,∇u) is defined by

ga(σ,∇u) := 1− a
2

(σ∇u+∇uTσ)− 1 + a

2
(∇uσ + σ∇uT )(1.6)

for a ∈ [−1, 1]. In (1.5), Γ− denotes the inflow boundary, where Γ− = {x ∈ Γ|u ·
n < 0}. Note that if uΓ = 0, then there is no inflow boundary, so the boundary
condition for the stress (1.5) is not necessary. The right-hand-side functions h and g
are usually set to be zero in viscoelastic model equations by a constitutive law and
the incompressibility condition.

We use the Sobolev spacesWm,p(D) with norms ‖·‖m,p,D if p <∞ and ‖·‖m,∞,D

if p =∞. We denote the Sobolev space Wm,2 by Hm, with the norm ‖ · ‖m. Let Hm

denote the corresponding spaces of vector-valued and tensor-valued functions. We
will denote H0 by L2 and the standard L2 inner product by (·, ·)D. If D = Ω, D is
omitted; i.e., (·, ·) = (·, ·)Ω and ‖ · ‖ = ‖ · ‖Ω.

An existence result for the problem (1.1)–(1.5) has been documented by Renardy
[11] for the case that h = 0, g = 0, and uΓ = 0, with the small data condition. He
showed that if f ∈ H2(Ω) and ‖f‖2 is sufficiently small, the problem (1.1)–(1.5) admits
a unique bounded solution (u,σ, p) ∈ H3(Ω)×H2(Ω)×H2(Ω). In order to simplify
our analysis, we make the assumption that h = 0, g = 0, and uΓ = 0. However, it
will be shown in section 5 that these conditions are not necessary for computations
by our multigrid method.

Next, we define the function spaces for the velocity u, the pressure p, and the
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stress σ, respectively:

H1
0(Ω) := {v ∈ H1(Ω) : v = 0 on Γ} ,

L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω
q dΩ = 0} ,

Σ := (L2(Ω))2×2 ∩ {τ = (τij) : τij = τji, u · ∇τ ∈ (L2(Ω))2×2 ∀u ∈ H1
0(Ω)} .

Under the assumption that h = 0, g = 0, and uΓ = 0, the corresponding variational
form of (1.1)–(1.5) is obtained in the standard manner. Taking the inner product of
(1.1)–(1.3) with stress, velocity, and pressure test functions, respectively, we obtain

(σ, τ ) + λ ((u · ∇)σ, τ ) + (ga(σ,∇u), τ )− 2α(d(u), τ ) = 0 ∀τ ∈ Σ ,(1.7)

(σ, d(v)) + 2(1− α)(d(u), d(v)) + (p,∇ · v) = (f ,v) ∀v ∈ H1
0(Ω) ,(1.8)

(q,∇ · u) = 0 ∀q ∈ L2
0(Ω) .(1.9)

We define the weak divergence free space

V := {v ∈ H1
0(Ω) : (q,∇ · v) = 0 ∀q ∈ L2

0(Ω)}(1.10)

to be used for the analysis. Note that, using (1.10), the weak formulation (1.7)–(1.9)
is equivalent to:

(σ, τ ) + λ ((u · ∇)σ, τ ) + (ga(σ,∇u), τ )− 2α(d(u), τ ) = 0 ∀τ ∈ Σ ,(1.11)

(σ, d(v)) + 2(1− α)(d(u), d(v)) = (f ,v) ∀v ∈ V .(1.12)

In the following finite element analysis we will use the bilinear form A defined on
Σ×V by

A((σ,u), (τ ,v))

:= (σ, τ )− 2α(d(u), τ ) + 2α(σ, d(v)) + 4α(1− α) (d(u), d(v)) .
(1.13)

It is easily shown that A is continuous and coercive on Σ×V, i.e.,

A((σ,u), (τ ,v)) ≤ ‖σ‖0‖τ‖0 + 2α‖∇u‖0‖τ‖0 + 2α‖σ‖0‖∇v‖0

+ 4α(1− α)‖∇u‖0‖∇v‖0

≤ C(‖σ‖0 + ‖∇u‖0)(‖τ‖0 + ‖∇v‖0)

≤ C
√
‖σ‖2

0 + ‖∇u‖2
0

√
‖τ‖2

0 + ‖∇v‖2
0

≤ C‖(σ,u)‖(L2(Ω))2×2×H1
0(Ω)‖(τ ,v)‖(L2(Ω))2×2×H1

0(Ω) ,(1.14)

and

A((σ,u), (σ,u)) = ‖σ‖2
0 + 4α(1− α)‖d(u)‖2

0

≥ C‖(σ,u)‖2
(L2(Ω))2×2×H1

0(Ω)

(1.15)

by the second Korn inequality. These properties of A will be used to show the existence
of the solution of a linear fine-grid problem and to obtain an error estimation.
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2. Finite element approximation. Suppose Ω is a polygonal domain and Th
is a triangulation of Ω such that Ω = {∪K : K ∈ Th}. Assume that there exist
positive constants c1, c2 such that

c1h ≤ hK ≤ c2ρK ,
where hK is the diameter of K, ρK is the diameter of the greatest ball included in K,
and h = maxK∈Th

hK .
Let Pk(K) denote the space of polynomials of degree less than or equal to k on

K ∈ Th. Then we define finite element spaces for the approximate of (u, p):
Xh := {v ∈ H1

0(Ω) ∩ (C0(Ω))2 : v|K ∈ P2(K)
2 ∀K ∈ Th} ,

Sh := {q ∈ L2
0(Ω) ∩ C0(Ω) : q|K ∈ P1(K) ∀K ∈ Th} ,

Vh := {v ∈ Xh : (q,∇ · v) = 0 ∀q ∈ Sh} .
The stress σ is approximated in the discontinuous finite element space of piecewise
linears:

Σh := {τ ∈ Σ : τ |K ∈ P1(K)
2×2 ∀K ∈ Th} .

The finite element spaces defined above satisfy the standard approximation properties
(see [3] or [5]), i.e., there exist an integer k and a constant C such that

inf
vh∈Xh

‖v − vh‖1 ≤ Ch2‖v‖3 ∀v ∈ H3(Ω) ,(2.1)

inf
qh∈Sh

‖q − qh‖0 ≤ Ch2‖q‖2 ∀ q ∈ H2(Ω) ,(2.2)

and

inf
τ h∈Σh

‖τ − τh‖0 ≤ Ch2‖τ‖2 ∀ τ ∈ H2(Ω) .(2.3)

It is also well known that the Taylor–Hood pair (Xh, Sh) satisfies the inf-sup (or LBB)
condition,

inf
0 �=qh∈Sh

sup
0 �=vh∈Xh

(qh,∇ · vh)
‖vh‖1‖qh‖0

≥ C ,(2.4)

where C is a positive constant independent of h.
Below we introduce some notation used in [2] in order to analyze an approximate

solution by the discontinuous Galerkin method. We define

∂K−(u) := {x ∈ ∂K, u · n < 0} ,
where ∂K is the boundary of K and n is the outward unit normal to ∂K,

Γh = {∪∂K,K ∈ Th} \ Γ,
and

τ±(u) := lim
ε→0±

τ (x+ εu(x)) .
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We also define

(σ, τ )h :=
∑
K∈Th

(σ, τ )K ,

〈σ±, τ±〉h,u :=
∑
K∈Th

∫
∂K−(u)

(σ±(u) : τ±(u))|n · u| ds,

‖τ‖0,Γh :=

( ∑
K∈Th

|τ |20,∂K
)1/2

for σ, τ ∈∏K∈Th
(L2(K))2×2 and

‖ξ‖m,p,h :=
( ∑
K∈Th

|ξ|pm,p,K
)1/p

for ξ ∈∏K∈Th
(Wm,p(K))2×2 if p <∞.

We introduce the operator Bh on Xh ×Σh ×Σh defined by

Bh(u,σ, τ ) := ((u · ∇)σ, τ )h + 1

2
(∇ · uσ, τ ) + 〈σ+ − σ−, τ+〉h,u.(2.5)

Note that the second term vanishes when ∇ · uh = 0. This extra term is used to
obtain coercivity of Bh. Using integration by parts, Bh may be written as

Bh(u,σ, τ ) = −((u · ∇)τ ,σ)h − 1

2
(∇ · u τ ,σ) + 〈σ−, τ− − τ+〉h,u.(2.6)

Hence, combining (2.5) and (2.6), we obtain

Bh(uh,σh,σh) =
1

2
〈σh+ − σh−,σh+ − σh−〉h,uh ≥ 0.(2.7)

The discontinuous Galerkin finite element approximation of (1.7)–(1.9) is then as
follows: find uh ∈ Xh, ph ∈ Sh, σh ∈ Σh such that

(σh, τh) + λBh(uh,σh, τh) + λ(ga(σ
h,∇uh), τh)(2.8)

− 2α(d(uh), τh) = 0 ∀τh ∈ Σh,

(σh, d(vh)) + 2(1− α) (d(uh), d(vh))− (ph,∇ · vh) = (f ,vh) ∀vh ∈ Xh,(2.9)

(qh,∇ · uh) = 0 ∀qh ∈ Sh.(2.10)

Existence of a solution to the discrete problem (2.8)–(2.10) is proved in [2], under the
assumption that there exists a bounded exact solution (u,σ, p) ∈ H3(Ω) ×H2(Ω) ×
H2(Ω). The following error estimations are also derived there:

‖σ − σh‖0 + ‖∇(u− uh)‖0 ≤ N h3/2 ,(2.11)

‖p− ph‖0 ≤ N h3/2(2.12)
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for some N > 0. It is then clear that

‖σh‖0 ≤M +N h3/2 ,(2.13)

‖∇uh‖0 ≤M +N h3/2 ,(2.14)

where M = max{‖u‖3, ‖σ‖2}. Note that, in view of (2.4), (2.8)–(2.10) are equivalent
to the following: find uh ∈ Vh and σ ∈ Σh such that

(σh, τh) + λBh(uh,σh, τh) + λ(ga(σ
h,∇uh), τh)(2.15)

− 2α(d(uh), τh) = 0 ∀τh ∈ Σh,

(σh, d(vh)) + 2(1− α) (d(uh), d(vh)) = (f ,vh) ∀vh ∈ Vh.(2.16)

Using the bilinear form A defined by (1.13), (2.15)–(2.16) can equivalently be written
as

A((σh,uh), (τh,vh)) + λBh(uh,σh, τh)

+ λ(ga(σ
h,∇uh), τh) = 2α(f ,vh) ∀(τh,vh) ∈ Σh ×Vh.(2.17)

3. Two-grid problem. We consider two finite element meshes with H > h
and finite element spaces (XH , SH ,ΣH), (Xh, Sh,Σh). The two-grid method for
approximating the solution of (1.7)–(1.9) is as follows.

Algorithm 3.1 (two-grid method).

Step 1. Solve the nonlinear problem on the coarse mesh H: find uH ∈ XH ,
pH ∈ SH , σH ∈ ΣH such that

(σH , τH) + λBH(uH ,σH , τH) + λ(ga(σ
H ,∇uH), τH)

− 2α(d(uH), τH) = 0 ∀τH ∈ ΣH ,

(σH , d(vH)) + 2(1− α) (d(uH), d(vH))− (pH ,∇ · vH)
= (f ,vH) ∀vH ∈ XH ,

(qH ,∇ · uH) = 0 ∀qH ∈ SH .

Step 2. Solve the linearized problem on the fine mesh h: find uh ∈ Xh, ph ∈ Sh,
σh ∈ Σh such that

(σh, τh) + λ
[
Bh(uH ,σh, τh) +Bh(uh,σH , τh) + (ga(σ

h,∇uH), τh)
+(ga(σ

H ,∇uh), τh)]− 2α(d(uh), τh)
= λ

[
Bh(uH ,σH , τh) + (ga(σ

H ,∇uH), τh)] ∀τh ∈ Σh,

(σh, d(vh)) + 2(1− α)(d(uh), d(vh))− (ph,∇ · vh) = (f ,vh) ∀vh ∈ Xh,

(qh,∇ · uh) = 0 ∀qh ∈ Sh.

In the second step of the above algorithm uH , σH are interpolates of uH , σH in
Vh and Σh, respectively. In the remainder of this section, we prove existence of a
solution to the linear problem in Step 2 under the assumption that λ is sufficiently
small.
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Using the discrete divfree space Vh, the linear problem in Step 2 may be written
in an equivalent form: find uh ∈ Vh, σ ∈ Σh such that

(σh, τh) + λ
[
Bh(uh,σH , τh) +Bh(uH ,σh, τh) + (ga(σ

h,∇uH), τh)
+ (ga(σ

H ,∇uh), τh)]− 2α(d(uh), τh)
= λ

(
Bh(uH ,σH , τh) + (ga(σ

H ,∇uH), τh)) ∀τh ∈ Σh,(3.1)

(σh, d(vh)) + 2(1− α)(d(uh), d(vh)) = (f ,vh) ∀vh ∈ Vh.(3.2)

Using the bilinear form defined by (1.13), (3.1)–(3.2) may be written as

A
(
(σh,uh), (τh,vh)

)
+ λ

[
Bh(uh,σH , τh) +Bh(uH ,σh, τh)

+ (ga(σ
h,∇uH), τh) + (ga(σH ,∇uh), τh)

]
= λ

[
Bh(uH ,σH , τh) + (ga(σ

H ,∇uH), τh)]
+ 2α(f ,vh) ∀(τh,vh) ∈ Σh ×Vh.

(3.3)

In order to simplify our notation, we introduce the bilinear operator Φ defined on
Σh ×Vh ×Σh ×Vh by

Φ((σh,uh), (τh,vh)) := A
(
(σh,uh), (τh,vh)

)
+ λ

[
Bh(uh,σH , τh)

+Bh(uH ,σh, τh) + (ga(σ
h,∇uH), τh) + (ga(σH ,∇uh), τh)

]
.(3.4)

Note that

Φ((σh,uh), (τh,vh))

= λ
[
Bh(uH ,σH , τh) + (ga(σ

H ,∇uH), τh)]+ 2α(f ,vh)(3.5)

if (σh,uh) satisfies (3.3).
Next, we present some inverse estimates (see [3] or [5]), which will be used to

prove theorems in this paper: for uh ∈ Vh and σh ∈ Σh

‖uh‖∞ ≤ Ch−1/2‖uh‖0,4 ,(3.6)

‖uh‖∞ ≤ Ch−1/2‖∇uh‖0 ,(3.7)

‖σh‖∞ ≤ Ch−1‖σh‖0 ,(3.8)

‖∇σh‖0,4,h ≤ Ch−3/2‖σh‖0 .(3.9)

The local inverse inequality [13, sec. 4.6.1]

‖σ‖2
0,∂K ≤ C

1

hK
‖σ‖2

0,K(3.10)

will be also used to bound the jump term of Bh, where hK denotes the local mesh
parameter. The local inverse inequality then implies that

〈σh+ − σh−, τh+〉h,u ≤ ‖u‖∞‖σh‖0,Γh‖τh‖0,Γh

≤ C‖u‖∞(h−1/2‖σh‖0,Ω)(h
−1/2‖τh‖0,Ω)

(3.11)

for σh, τh ∈ Σh.
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Theorem 3.2. The linear problem in Step 2 of the algorithm admits a unique
solution (uh,σh, ph) if λ is sufficiently small.

Proof. We will use the Lax–Milgram theorem to prove that (3.4) has a unique
solution. In the proof we use Ch to denote a constant depending on h.

(i) If λ is sufficiently small, then Φ is coercive and ‖(σh,uh)‖(L2(Ω))2×2×H1
0(Ω) is

bounded. Using the imbedding of H1 in L4, (2.13), (3.7)–(3.9), (3.11), the Poincaré–
Friedrichs inequality, and Young’s inequality with ε1 > 0, we have

Bh(uh,σH ,σh)

= ((uh · ∇)σH ,σh)h + 1

2
(∇ · uh σH ,σh) + 〈σH+ − σH−

,σh
−〉h,uh

≤ C1

[‖uh‖0,4 ‖∇σH‖0,4,h ‖σh‖0 + ‖∇uh‖0 ‖σH‖∞ ‖σh‖0

]
+ Ch1 ‖σH‖0 ‖σh‖0 ‖uh‖∞

≤ C2

[
‖∇uh‖0 (h

−3/2 ‖σH‖0) ‖σh‖0 + ‖∇uh‖0 (h
−1 ‖σH‖0) ‖σh‖0

]
+ Ch2 ‖σH‖0 ‖σh‖0 (h

−1/2‖∇uh‖0)

= ‖σH‖0

[
C2h

−3/2 + C2h
−1 + Ch2 h

−1/2
]
‖σh‖0 ‖∇uh‖0

≤ (M +NH3/2)

[
1

4ε1
‖σh‖2

0 + ε1 (C2h
−3/2 + C2h

−1 + Ch2 h
−1/2)2 ‖∇uh‖2

0

]
.(3.12)

Also, by (2.13)–(2.14) and (3.8),

(ga(σ
h,∇uH),σh) + (ga(σH ,∇uh),σh)

≤ C3

[‖σh‖0 ‖∇uH‖∞ ‖σh‖0 + ‖σH‖∞ ‖∇uh‖0 ‖σh‖0

]
≤ C4

[
h−1 ‖∇uH‖0 ‖σh‖2

0 + h
−1 ‖σH‖0 ‖∇uh‖0 ‖σh‖0

]
≤ C4 h

−1 (M +NH3/2)

[(
1 +

1

4ε2

)
‖σh‖2

0 + ε2 ‖∇uh‖2
0

]
,(3.13)

where ε2 > 0. Therefore, (1.15), (2.7), (3.12), and (3.13) imply that

Φ((σh,uh), (σh,uh))

≥ A((σh,uh), (σh,uh)) + λBh(uH ,σh,σh)− λ | Bh(uh,σH ,σh)
+(ga(σ

h,∇uH),σh) + (ga(σH ,∇uh),σh) |
≥
[
1− λ(M +NH3/2)

(
1

4ε1
+ C4h

−1

(
1 +

1

4ε2

))]
‖σh‖2

0

+
[
C5α(1− α)− λ(M +NH3/2)

·
(
ε1(C2h

−3/2 + C2h
−1 + Ch2 h

−1/2)2 + ε2C4h
−1
)]

‖∇uh‖2
0 .

Choosing ε1, ε2 appropriately and using the Poincaré–Friedrichs inequality, we have

Φ((σh,uh), (σh,uh)) ≥ Ch(‖σh‖2
0 + ‖∇uh‖2

0) ≥ Ch(‖σh‖2
0 + ‖uh‖2

1)(3.14)

if λ is sufficiently small.

On the other hand, using (3.11), the inverse estimates, and the imbedding of H1

in L4,
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Bh(uH ,σH , τh) + (ga(σ
H ,∇uH), τh)

= ((uH · ∇)σH , τh)h + 1

2
(∇ · uH σH , τh) + 〈σH+ − σH−

, τh
−〉h,uH

+ (ga(σ
H ,∇uH), τh)

≤ C6

[‖uH‖0,4 ‖∇σH‖0,4,h‖τh‖0 + ‖∇uH‖0 ‖σH‖∞‖τh‖0

]
+ Ch3 ‖σH‖0 ‖uH‖∞ ‖τh‖0 + C7‖σH‖0 ‖∇uH‖∞ ‖τh‖0

≤
[
C8

(‖∇uH‖0 (h
−3/2‖σH‖0) + ‖∇uH‖0 (h

−1‖σH‖0)

+ ‖σH‖0(h
−1 ‖∇uH‖0)

)
+ Ch4 ‖σH‖0 (h

−1/2‖∇uH‖0)
]
‖τh‖0

=
[
C8h

−3/2 + 2C8h
−1 + Ch4 h

−1/2
]
‖∇uH‖0 ‖σH‖0 ‖τh‖0 .(3.15)

Hence, using (3.5), (3.14), and (3.15), we have

‖(σh,uh)‖(L2(Ω))2×2×H1
0(Ω) ≤ Ch(‖∇uH‖0‖σH‖0 + ‖f‖−1) .

(ii) Φ is continuous. Using the imbedding of H1 in L4, (2.13)–(2.14), (3.7)–(3.9),
(3.11), and the Poincaré–Friedrichs inequality, we have

Bh(uH ,σh, τh) +Bh(uh,σH , τh)

= ((uH · ∇)σh, τh)h + 1

2
(∇ · uH σh, τh) + 〈σh+ − σh−, τh−〉h,uH

+((uh · ∇)σH , τh)h + 1

2
(∇ · uh σH , τh) + 〈σH+ − σH−

, τh
−〉h,uh

≤ [C9

( ‖uH‖0,4 ‖∇σh‖0,4,h + ‖∇uH‖0 ‖σh‖∞
)
+ Ch5 ‖σh‖0 ‖uH‖∞

+C10

(‖uh‖0,4 ‖∇σH‖0,4,h + ‖∇uh‖0 ‖σH‖∞
)

+Ch6 ‖σH‖0 ‖uh‖∞
] ‖τh‖0

≤
[
C11

(
‖∇uH‖0 (h

−3/2‖σh‖0) + ‖∇uH‖0 (h
−1‖σh‖0)

+‖∇uh‖0 (h
−3/2‖σH‖0) + ‖∇uh‖0 (h

−1‖σH‖0)
)

+Ch7

(
‖σh‖0 (h

−1/2‖∇uH‖0) + ‖σH‖0 (h
−1/2‖∇uh‖0)

)]
‖τh‖0

≤ (M +NH3/2)(C11h
−3/2 + C11h

−1 + Ch7 h
−1/2)

[‖σh‖0 + ‖∇uh‖0

] ‖τh‖0

≤ Ch8 (‖σh‖0 + ‖∇uh‖0) ‖τh‖0

≤ Ch9
√
‖σh‖2

0 + ‖∇uh‖2
0

√
‖τh‖2

0 + ‖∇vh‖2
0 .(3.16)

By (2.13)–(2.14) and (3.8),

(ga(σ
h,∇uH), τh) + (ga(σH ,∇uh), τh)

≤ C12

[ ‖σh‖0 ‖∇uH‖∞ + ‖σH‖∞ ‖∇uh‖0

] ‖τh‖0

≤ C13

[‖σh‖0 (h
−1 ‖∇uH‖0) + h

−1 ‖σH‖0 ‖∇uh‖0

] ‖τh‖0

≤ C13 (M +NH3/2)h−1
[ ‖σh‖0 + ‖∇uh‖0

] ‖τh‖0

≤ Ch10
√
‖σh‖2

0 + ‖∇uh‖2
0

√
‖τh‖2

0 + ‖∇vh‖2
0 .(3.17)

Therefore, using (1.14) and (3.16)–(3.17), we obtain

Φ((σh,uh), (τh,vh)) ≤ Ch
√
‖σh‖2

0 + ‖∇uh‖2
0

√
‖τh‖2

0 + ‖∇vh‖2
0 .(3.18)
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(iii) By the Lax–Milgram theorem, (3.4) has a unique solution (σh,uh) ∈ Σh×Vh.
Since (Xh, Sh) satisfies the LBB condition (2.4), there exists ph ∈ Sh such that

(σh, d(vh)) + 2(1− α) (d(uh), d(vh))− (ph,∇ · vh) = (f ,vh) ∀vh ∈ Xh .

Remark 3.3. The above theorem establishes existence and uniqueness of the solu-
tion (uh,σh, ph) in the fixed finite element space (Xh, Sh,Σh). (Note the dependence
of the continuity and coercivity constants on h.) In the error estimates below, more
involved analysis is used to establish bounds in which the constants are independent
of h.

Remark 3.4. The two-grid method is easily extended to a multigrid method as
follows. Consider a sequence of mesh spacings, hi, i = 1, 2, . . . ,K, such that H >
h1 > h2 > · · · > hK , and let (Xhi , Shi ,Σhi) be the finite element space corresponding
to each mesh size hi. Then in Step 2, we solve the linear problems.

• Set (σh0 ,uh0) = (σH ,uH).
• For i = 1, 2, . . . ,K, find uhi ∈ Xhi , phi ∈ Shi , σhi ∈ Σhi such that

(σhi , τhi) + λ
[
Bh(uhi−1 ,σhi , τhi) +Bh(uhi ,σhi−1 , τhi)

+(ga(σ
hi ,∇uhi−1), τhi) + (ga(σ

hi−1 ,∇uhi), τhi)
]− 2α(d(uhi), τhi)

= λ
[
Bh(uhi−1 ,σhi−1 , τhi) + (ga(σ

hi−1 ,∇uhi−1), τhi)
] ∀τhi ∈ Σhi ,

(σhi , d(vhi)) + 2(1− α)(d(uhi), d(vhi))− (phi ,∇ · vhi)
= (f ,vhi) ∀vhi ∈ Xhi ,

(qhi ,∇ · uhi) = 0 ∀qhi ∈ Shi .

Extending the analysis in the proof of Theorem 3.2 to the multigrid method is straight-
forward. Numerical tests by the multigrid method will be discussed in section 5.

4. Error estimate. In this section we derive an error estimation for the two-grid
method.

Theorem 4.1. The unique solution (uh,σh, ph) to the linear problem in Step 2
satisfies

‖σ − σh‖0 + ‖∇(u− uh)‖0

≤ C h2 + C λ1/2
[
M2 h+Mh1/2( ‖∇(u− uH)‖0 + ‖σ − σH‖0 )

+h−3/2 ‖σ − σH‖0 ‖∇(u− uH)‖0

]
if λ is sufficiently small, where C, C are constants independent of H and h.

Proof. If (u,σ) is an exact solution of the problem (1.1)–(1.4) with h = 0, g = 0,
and uΓ = 0, it also satisfies (1.11)–(1.12). Subtracting (3.1) and (3.2) from (1.11)
and (1.12), respectively, we have

(σ − σh, τh)− 2α(d(u− uh), τh)

+λ
[
((u,∇)σ, τh)−Bh(uH ,σh, τh)−Bh(uh,σH , τh)

+(ga(σ,∇u), τh)− (ga(σh,∇uH), τh)− (ga(σH ,∇uh), τh)
]

= −λ [Bh(uH ,σH , τh) + (ga(σH ,∇uH), τh)] ∀τh ∈ Σh,(4.1)

(σ − σh, d(vh)) + 2(1− α)(d(u− uh), d(vh)) = 0 ∀vh ∈ Vh.(4.2)
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Note that the exact solution (σ,u) satisfies the relation

((u · ∇)σ, τh) = Bh(u,σ, τh)
since σ is continuous and ∇ · u = 0. Multiplying (4.2) by 2α and adding to (4.1), we
get

A((σ − σh,u− uh), (τh,vh))

+λ
[
Bh(u,σ, τh)−Bh(uH ,σh, τh)−Bh(uh,σH , τh)

+(ga(σ,∇u), τh)− (ga(σh,∇uH), τh)− (ga(σH ,∇uh), τh)
]

= −λ [Bh(uH ,σH , τh) + (ga(σH ,∇uH), τh)] .(4.3)

Let σ̃h be the L2 projection of σ in Σh, and let ũh ∈ Vh be defined by

(∇(u− ũh),∇vh) = 0 ∀vh ∈ Vh.

We have then the following standard results from [10]: for u ∈ (H3(Ω)) and σ ∈
(H2(Ω))

‖∇(u− ũh)‖0 ≤ C h2‖u‖3 ,(4.4)

‖σ − σ̃h‖0 + h‖σ − σ̃h‖1 ≤ Ch2‖σ‖2 ,(4.5)

‖σ − σ̃h‖0,Γh ≤ Ch3/2‖σ‖2 .(4.6)

Note that A((σ − σh,u − uh), (τh,vh)) in (4.3) can be written as A((σ − σ̃h,u −
ũh), (τh,vh)) + A((σ̃h − σh, ũh − uh), (τh,vh)) by the definition of A. Adding and
subtracting ũh, σ̃h in (4.3) and letting τh = σ̃h − σh, vh = ũh − uh, we have

A((σ̃h − σh, ũh − uh), (σ̃h − σh, ũh − uh)) + λBh(uH , σ̃h − σh, σ̃h − σh)

= −A((σ − σ̃h,u− ũh), (σ̃h − σh, ũh − uh))− λ
[
Bh(u− ũh,σ, σ̃h − σh)(4.7)

+ Bh(u− ũh,σH − σ, σ̃h − σh) +Bh(ũh − uh,σH , σ̃h − σh)
+ Bh(uH ,σ − σ̃h, σ̃h − σh) +Bh(u− uH ,σ − σH , σ̃h − σh)
+ (ga(σ − σ̃h,∇uH), σ̃h − σh) + (ga(σ̃h − σh,∇uH), σ̃h − σh)
+ (ga(σ

H ,∇(u− ũh), σ̃h − σh) + (ga(σH ,∇(ũh − uh), σ̃h − σh)
+ (ga(σ − σH ,∇(u− uH), σ̃h − σh)

]
.

To prove the theorem, we will get a bound for the right-hand side of (4.7) in terms
of h, H, ‖∇(u− uH)‖0, ‖σ −σH‖0, ‖∇(ũh − uh)‖0, and ‖σ̃h −σh‖0. For simplicity
we assume that h < H < 1 throughout this proof.

(i) A term. From the definition of A, and using (4.4), (4.5), and Young’s inequal-
ity, we have

A((σ − σ̃h,u− ũh), (σ̃h − σh, ũh − uh))

≤ ‖σ − σ̃h‖0 ‖σ̃h − σh‖0 + 2α ‖∇(u− ũh)‖0 ‖σ̃h − σh‖0

+ 2α ‖σ − σ̃h‖0 ‖∇(ũh − uh)‖0 + 4α(1− α) ‖∇(u− ũh)‖0 ‖∇(ũh − uh)‖0

≤ 1

4ε1
‖σ − σ̃h‖2

0 + ε1 ‖σ̃h − σh‖2
0 +

(2α)2

4ε2
‖∇(u− ũh)‖2

0 + ε2 ‖σ̃h − σh‖2
0
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+
(2α)2

4ε3
‖σ − σ̃h‖2

0 + ε3 ‖∇(ũh − uh)‖2
0 +

(4α(1− α))2
4ε4

‖∇(u− ũh)‖2
0

+ ε4 ‖∇(ũh − uh)‖2
0

=

(
1

4ε1
+
α2

ε3

)
‖σ − σ̃h‖2

0 +

(
α2

ε2
+
4α2(1− α)2

ε4

)
‖∇(u− ũh)‖2

0

+ (ε1 + ε2) ‖σ̃h − σh‖2
0 + (ε3 + ε4) ‖∇(ũh − uh)‖2

0

≤ C1M
2

(
1

4ε1
+
α2

ε3
+
α2

ε2
+
4α2(1− α)2

ε4

)
h4(4.8)

+ (ε1 + ε2) ‖σ̃h − σh‖2
0 + (ε3 + ε4) ‖∇(ũh − uh)‖2

0 ,

where εi, i = 1, 2, 3, 4, are positive constants.
(ii) Bh terms. First, note that

〈σ+ − σ−, τh
−〉h,u−ũh = 0 ∀τh ∈ Σh,

since, by continuity, the jump of σ across any element boundary is zero. Using (2.5),
the embedding of H1 in L4, H2 in L∞, W 2,2 in W 1,4, (2.13), (3.7)–(3.9), (3.11), and
(4.4), we obtain a bound for the first and third Bh terms:

Bh(u− ũh,σ, σ̃h − σh) +Bh(ũh − uh,σH , σ̃h − σh)
≤ C2‖u− ũh‖0,4 ‖∇σ‖0,4 ‖σ̃h − σh‖0 + ‖∇(u− ũh)‖0 ‖σ‖∞ ‖σ̃h − σh‖0

+ ‖ũh − uh‖0,4 ‖∇σH‖0,4,h ‖σ̃h − σh‖0

+ ‖∇(ũh − uh)‖0 ‖σH‖∞ ‖σ̃h − σh‖0

+ h−1 ‖σH‖0 ‖σ̃h − σh‖0 ‖ũh − uh‖∞
≤ C3

[
‖∇(u− ũh)‖0 ‖σ‖2 + ‖∇(ũh − uh)‖0 (h

−3/2 ‖σH‖0)

+ ‖∇(ũh − uh)‖0 (h
−1 ‖σH‖0)

+ h−1 ‖σH‖0 (h
−1/2 ‖∇(ũh − uh) ‖0)

]
‖σ̃h − σh‖0 ,

≤ C4

[
M2h2 + h−3/2 (M +NH3/2) ‖∇(ũh − uh)‖0

]
‖σ̃h − σh‖0 .(4.9)

The boundedness of the remaining Bh terms can be shown using interpolates of
u. We establish the following two estimates. Let û be the P2 interpolate of u on V

h.
Then, by interpolation properties and (3.7) [3],

‖u− ũh‖∞ ≤ ‖u− û‖∞ + ‖û− ũh‖∞
≤ C5 (h

2 ‖u‖3 + h
−1/2 ‖∇(û− ũh)‖0)

≤ C5 (M h2 + h−1/2 ‖∇(û− u)‖0 + h
−1/2 ‖∇(u− ũh)‖0 )

≤ C6M (h2 + h3/2 )

≤ C7M h3/2 .(4.10)

Also, by (3.10) and (4.5)–(4.6),

‖σ − σH‖0,Γh ≤ ‖σ − σ̃h‖0,Γh + ‖σ̃h − σH‖0,Γh

≤ C8

[
M h3/2 + h−1/2 ‖σ̃h − σH‖0

]
≤ C8

[
M h3/2 + h−1/2 ( ‖σ̃h − σ‖0 + ‖σ − σH‖0 )

]
≤ C9

[
M h3/2 + h−1/2 ‖σ − σH‖0

]
.(4.11)
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Then, using (2.6), (3.7)–(3.10), (4.4), (4.10), and (4.11), we obtain a bound for
the second Bh term:

Bh(u− ũh,σH − σ, σ̃h − σh)
= −(((u− ũh) · ∇)(σ̃h − σh),σH − σ)h − 1

2
(∇ · (u− ũh)(σ̃h − σh),σH − σ)

+〈(σH − σ)−, (σ̃h − σh)− − (σ̃h − σh)+〉h,u−ũh

≤ C10

[
‖u− ũh‖0,4 ‖∇(σ̃h − σh)‖0,4,h ‖σH − σ‖0

+ ‖∇(u− ũh)‖0 ‖σ̃h − σh‖∞ ‖σH − σ‖0

+ ‖u− ũh‖∞ (h−1/2 ‖σ̃h − σh‖0 ) ‖σH − σ‖0,Γh

]
≤ C11

[
‖∇(u− ũh)‖0 ‖σH − σ‖0 (h

−3/2 ‖σ̃h − σh‖0 )

+ ‖∇(u− ũh)‖0 ‖σH − σ‖0 (h
−1 ‖σ̃h − σh‖0 )

+ M h−1/2 (h3/2 ) (M h3/2 + h−1/2 ‖σ − σH‖0 ) ‖σ̃h − σh‖0

]
≤ C12

[
M h1/2 ‖σ − σH‖0 +M

2 h5/2
]
‖σ̃h − σh‖0 .(4.12)

Consider the fourth Bh term,

Bh(uH ,σ − σ̃h, σ̃h − σh)
= − ((uH · ∇)(σ̃h − σh),σ − σ̃h)h − 1

2
(∇ · uH(σ̃h − σh),σ − σ̃h)(4.13)

+〈(σ − σ̃h)−, (σ̃h − σh)− − (σ̃h − σh)+〉h,uH

by (2.6). Since ∇ · u = 0, the second term can be written as 1
2 (∇ · (uH − u)(σ̃h −

σh),σ − σ̃h), and using (3.8) and (4.5),
1

2
(∇ · (uH − u)(σ̃h − σh),σ − σ̃h) ≤ C13 ‖∇(uH − u)‖0 ‖σ̃h − σh‖∞ ‖σ − σ̃h‖0

≤ C14 ‖∇(uH − u)‖0 (h
−1 ‖σ̃h − σh‖0) (M h2)

≤ C14M h ‖∇(uH − u)‖0 ‖σ̃h − σh‖0 .(4.14)

For the first term in (4.13), let ǔ be the P1 continuous interpolate of u on V
h. Then,

by the imbedding of H1 in L4, the Poincaré–Friedrichs inequality, and interpolation
properties,

‖uH − ǔ‖0,4 ≤ C15 ‖∇(uH − ǔ)‖0 ≤ C15(‖∇(uH − u)‖0 + ‖∇(u− ǔ)‖0)

≤ C16 (‖∇(uH − u)‖0 + hM) .(4.15)

Since ∇(σ̃h − σh) is in P0 on each K, then (ǔ · ∇)(σ̃h − σh) is in P1, and thus

((ǔ · ∇)(σ̃h − σh),σ − σ̃h) = 0(4.16)

since σ̃h is the L2 projection of σ in Σh. Now, using (3.9), (4.5), (4.15), and (4.16),
we have

((uH · ∇)(σ̃h − σh),σ − σ̃h)h = (((uH − ǔ) · ∇)(σ̃h − σh),σ − σ̃h)h
≤ C17‖uH − ǔ‖0,4 ‖∇(σ̃h − σh)‖0,4,h ‖σ − σ̃h‖0

≤ C18(‖∇(uH − u)‖0 +M h) (h−3/2 ‖σ̃h − σh‖0) (M h2)

≤ C18M h1/2(‖∇(uH − u)‖0 +M h) ‖σ̃h − σh‖0 .(4.17)
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For the third term in (4.13), we use the following result obtained by the imbedding
theorem of W 1,4 in L∞, (3.6), and (4.4):

‖uH‖∞ ≤ ‖u‖∞ + ‖u− ũh‖∞ + ‖ũh − uH‖∞
≤ C19

[
M + ‖u− ũh‖1,4 + h

−1/2 ‖ũh − uH‖0,4

]
≤ C20

[
M + h ‖u‖2,4 + h

−1/2 (‖∇(ũh − u)‖0 + ‖∇(u− uH)‖0)
]

≤ C21

[
M +M h+M h3/2 + h−1/2 ‖∇(u− uH)‖0

]
≤ C22

[
M + h−1/2‖∇(u− uH)‖0

]
.(4.18)

Using (4.6) and (4.18), the third term in (4.13) becomes

〈(σ − σ̃h)−, (σ̃h − σh)− − (σ̃h − σh)+〉h,uH

≤ C23 ‖σ − σ̃h‖0,Γh (h−1/2‖σ̃h − σh‖0) ‖uH‖∞
≤ C24M h ‖σ̃h − σh‖0

(
M + h−1/2‖∇(u− uH)‖0

)
.(4.19)

Therefore, by (4.5), (4.14), (4.17), and (4.19), we obtain

Bh(uH ,σ − σ̃h, σ̃h − σh)
≤ C25

[
M h1/2

(‖∇(u− uH)‖0 +M h
)
+M h ‖∇(u− uH)‖0

+M h
(
M + h−1/2‖∇(u− uH)‖0

)]
‖σ̃h − σh‖0 .(4.20)

We now estimate the last Bh term. Using û, the P2 interpolate of u on V
h,

‖u− uH‖∞ ≤ ‖u− û‖∞ + ‖û− uH‖∞
≤ C26

(
h2 ‖u‖3 + h

−1/2 ‖∇(û− uH)‖0

)
≤ C26

(
M h2 + h−1/2 ‖∇(û− u)‖0 + h

−1/2 ‖∇(u− uH)‖0

)
≤ C27

(
M h2 + h−1/2 (h2M) + h−1/2 ‖∇(u− uH)‖0

)
≤ C28

(
M h3/2 + h−1/2 ‖∇(u− uH)‖0

)
.(4.21)

Then, by (3.7)–(3.9), (4.11), and (4.21),

Bh(u− uH ,σ − σH , σ̃h − σh)
= − ((((u− uH) · ∇)(σ̃h − σh)),σ − σH)h − 1

2
(∇ · (u− uH)(σ̃h − σh),σ − σH)

+〈(σ − σH)−, (σ̃h − σh)− − (σ̃h − σh)+〉h,u−uH

≤ C29

[
‖u− uH‖0,4 ‖∇(σ̃h − σh)‖0,4,h ‖σ − σH‖0

+ ‖∇(u− uH)‖0 ‖σ̃h − σh‖∞ ‖σ − σH‖0

+ ‖σ − σH‖0,Γh ‖σ̃h − σh‖0,Γh ‖u− uH‖∞
]

≤ C30

[
‖∇(u− uH)‖0 (h

−3/2 ‖σ̃h − σh‖0 ) ‖σ − σH‖0
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+ ‖∇(u− uH)‖0‖σ − σH‖0 (h
−1 ‖σ̃h − σh‖0)

+ (M h3/2 + h−1/2 ‖σ − σH‖0 ) (h
−1/2 ‖σ̃h − σh‖0 )(

M h3/2 + h−1/2 ‖∇(u− uH)‖0

) ]
,

which implies

Bh(u− uH ,σ − σH , σ̃h − σh)
≤ C31

[
h−3/2 ‖∇(u− uH)‖0 ‖σ − σH‖0

+(M h+ h−1 ‖σ − σH‖0) (M h3/2 + h−1/2 ‖∇(u− uH)‖0 )
]
‖σ̃h − σh‖0 .(4.22)

Therefore, by (4.9), (4.12), (4.20), and (4.22), we have

Sum of Bh terms

≤ C32

[
M2 h2 + h−3/2 (M +NH3/2) ‖∇(ũh − uh)‖0

+ M h1/2 ‖σ − σH‖0 +M
2 h5/2

+ M h1/2 (‖∇(u− uH)‖0 +M h) +M h ‖∇(u− uH)‖0

+ M h (M + h−1/2 ‖∇(u− uH)‖0) + h
−3/2 ‖∇(u− uH)‖0 ‖σ − σH‖0

+ (M h+ h−1 ‖σ − σH‖0) (M h3/2 + h−1/2 ‖∇(u− uH)‖0)
]
‖σ̃h − σh‖0

= C32

[
M2 h2 +M2 h5/2 +M2 h3/2 +M2 h+M2 h5/2

+ M (3h1/2 + h) ‖∇(u− uH)‖0 + 2M h1/2 ‖σ − σH‖0

+ 2h−3/2 ‖∇(u− uH)‖0 ‖σ − σH‖0

]
‖σ̃h − σh‖0

+ h−3/2 (M +NH3/2) ‖∇(ũh − uh)‖0 ‖σ̃h − σh‖0

≤ C33

[
M2 h+M h1/2 ‖∇(u− uH)‖0 +M h1/2 ‖σ − σH‖0

+ h−3/2 ‖∇(u− uH)‖0 ‖σ − σH‖0

]
‖σ̃h − σh‖0

+ h−3/2 (M +NH3/2) ‖∇(ũh − uh)‖0 ‖σ̃h − σh‖0 .

We obtain, by Young’s inequality, that

Sum of Bh terms ≤ C33

[
ε5 R2 +

1

4ε5
‖σ̃h − σh‖2

0 +
1

4ε6
‖∇(ũh − uh)‖2

0(4.23)

+ C34 ε6 h
−3 ‖σ̃h − σh‖2

0

]
,

where

R ≤M2h+Mh1/2(‖∇(u− uH)‖0 + ‖σ − σH‖0)

+ h−3/2‖∇(u− uH)‖0‖σ − σH‖0 .

(iii) ga terms. Using (2.13)–(2.14), (3.8), and (4.4)–(4.5), we have

Sum of ga terms

≤ C35

[
‖σ − σ̃h‖0 ‖∇uH‖0 ‖σ̃h − σh‖∞ + ‖σ̃h − σh‖0 ‖∇uH‖∞ ‖σ̃h − σh‖0

+ ‖σH‖0 ‖∇(u− ũh)‖0 ‖σ̃h − σh‖∞ + ‖σH‖∞ ‖∇(ũh − uh)‖0 ‖σ̃h − σh‖0
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+ ‖σ − σH‖0 ‖∇(u− uH)‖0 ‖σ̃h − σh‖∞
]

≤ C36

[
(M h2) (‖∇(uH − u)‖0 + ‖∇u‖0) (h

−1‖σ̃h − σh‖0)

+ (h−1‖∇uH‖0) ‖σ̃h − σh‖2
0

+ (‖σH − σ‖0 + ‖σ‖0) (M h2) (h−1‖σ̃h − σh‖0)

+ (h−1‖σH‖0) ‖∇(ũh − uh)‖0 ‖σ̃h − σh‖0

+ ‖σ − σH‖0 ‖∇(u− uH)‖0 (h
−1‖σ̃h − σh‖0)

]
≤ C37

[
(M +NH3/2)h−1 ‖σ̃h − σh‖2

0

+
(‖∇(uH − u)‖0 + ‖σH − σ‖0 + 2M

)
M h ‖σ̃h − σh‖0

+ h−1 (M +NH3/2) ‖∇(ũh − uh)‖0 ‖σ̃h − σh‖0

+ h−1 ‖σ − σH‖0 ‖∇(u− uH)‖0 ‖σ̃h − σh‖0

]
= C37

[
h−1 (M +NH3/2) ‖σ̃h − σh‖2

0

+
(
2M2h+M h (‖∇(uH − u)‖0 + ‖σH − σ‖0)

+ h−1 ‖σ − σH‖0 ‖∇(u− uH)‖0

) ‖σ̃h − σh‖0

+ h−1 (M +NH3/2) ‖σ̃h − σh‖0 ‖∇(ũh − uh)‖0

]
.

Hence

Sum of ga terms ≤ C37

[
ε7 U2 +

1

4ε7
‖σ̃h − σh‖2

0 +
1

4ε8
‖∇(ũh − uh)‖2

0(4.24)

+ C38 ε8 h
−2 ‖σ̃h − σh‖2

0 + h
−1 (M +NH3/2) ‖σ̃h − σh‖2

0

]
,

where

U ≤ 2M2h+M h(‖∇(uH − u)‖0 + ‖σH − σ‖0) + h
−1‖σ − σH‖0‖∇(u− uH)‖0 .

(iv) Since Bh(uH , σ̃h − σh, σ̃h − σh) ≥ 0, (4.7) and the estimates (4.8), (4.23),
and (4.24) imply that

A((σ̃h − σh, ũh − uh), (σ̃h − σh, ũh − uh)) .

≤ C1M
2

(
1

4ε1
+
α2

ε3
+
α2

ε2
+
4α2(1− α)2

ε4

)
h4

+ (ε1 + ε2) ‖σ̃h − σh‖2
0 + (ε3 + ε4) ‖∇(ũh − uh)‖2

0

+ λC39

[
ε5 R2 +

(
1

4ε5
+ C34 ε6 h

−3

)
‖σ̃h − σh‖2

0 +
1

4ε6
‖∇(ũh − uh)‖2

0

+ ε7 U2 +

(
1

4ε7
+ C38 ε8 h

−2 + h−1 (M +NH3/2)

)
‖σ̃h − σh‖2

0

+
1

4ε8
‖∇(ũh − uh)‖2

0

]
.

Choosing sufficiently small λ and εi appropriately for i = 1, 2, . . . , 8 and using the
coercivity of A, we have

‖σ̃h − σh‖2
0 + ‖∇(ũh − uh)‖2

0 ≤ C h4 + Cλ(R2 + U2) .
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Hence

‖σ̃h − σh‖0 + ‖∇(ũh − uh)‖0

≤ C h2 + Cλ1/2
[
M2h+M h1/2(‖∇(u− uH)‖0 + ‖σ − σH‖0)

+ h−3/2‖σ − σH‖0‖∇(u− uH)‖0

]
,

and we conclude by (4.4)–(4.5) that

‖σ − σh‖0 + ‖∇(u− uh)‖0

≤ C h2 + Cλ1/2
[
M2h+M h1/2(‖∇(u− uH)‖0 + ‖σ − σH‖0)

+ h−3/2‖σ − σH‖0‖∇(u− uH)‖0

]
.

Remark 4.2. The result in Theorem 4.1 is a rough error estimate. It suggests
the optimal scaling H = h5/6 for linear convergence. However, the actual optimal
scaling and convergence rate obtained by numerical experiments with λ = 1 are much
better than the theoretical ones.

5. Numerical results. In this section we present the numerical results obtained
by multigrid algorithms. The domain is taken to be the unit square Ω = [0, 1]× [0, 1],
and the parameters α, a in the model equations are chosen as 0.5 and 0, respectively.
Although we assumed that h = 0, g = 0, and uΓ = 0 for simplicity of our analysis,
it turned out by various precalculations that these conditions are not necessary for
computations by the multigrid method. Hence, the right-hand side functions in (1.1)–
(1.3) are appropriately given so that the exact solution is

u =

(
sin(πx)y(y − 1)

sin(x) (x− 1)ycos(πy/2))
)
,

p = cos(2πx) y(y − 1),
σ = 2αd(u).

The example we choose for the numerical test satisfies homogeneous boundary con-
dition for u, but divu = g �= 0. Note that the example satisfies the compatibility
condition ∫

Ω

divu dΩ =

∫
Γ

uΓ · n dΓ = 0.

We first compute the solution to (2.8)–(2.10) with the replacement (qh,∇ ·uh) =
(g, qh) and nonzero right-hand side (h, τh) in the discrete constitutive equation using
a standard one-grid method. For λ = 0.1, 1, and 2, the nonlinear equation is solved by
the Newton iteration with the initial guess (u, p,σ) = (0, 0,0). We use the stopping
criterion defined by

‖change in successive values of u and σ‖2 < 10−9

for each mesh size chosen with the maximum number of iteration set at 15. Since we
have an exact solution, we compute errors and the experimental rate of convergence
computed by comparing the errors on two grids. All computations were performed
on a SUN Enterprise 4000 with six processors.
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Table 5.1
Results using a one-level method.

λ h No. of L2 error L2 rate H1 error H1 rate L2 error L2 rate

iter. of u of u of u of u of σ of σ

0.1 1
2

6 1.124 · 10−2 1.773 · 10−1 1.325 · 10−1

1
4

5 1.262 · 10−3 3.2 3.858 · 10−2 2.2 2.895 · 10−2 2.2

1
8

5 1.360 · 10−4 3.2 9.341 · 10−3 2.1 6.722 · 10−3 2.1

1
16

5 1.661 · 10−5 3.0 2.358 · 10−3 2.0 1.600 · 10−3 2.1

1.0 1
2

8 1.141 · 10−2 1.846 · 10−1 1.339 · 10−1

1
4

7 1.589 · 10−3 2.8 4.520 · 10−2 2.0 2.914 · 10−2 2.2

1
8

6 1.630 · 10−4 3.3 1.062 · 10−2 2.0 6.852 · 10−3 2.1

1
16

6 1.969 · 10−5 3.1 2.661 · 10−3 2.0 1.738 · 10−3 2.0

2.0 1
2

9 1.244 · 10−2 1.971 · 10−1 1.670 · 10−1

1
4

8 1.831 · 10−3 2.8 5.053 · 10−2 2.0 3.691 · 10−2 2.2

1
8

7 1.817 · 10−4 3.3 1.115 · 10−2 2.2 8.353 · 10−3 2.1

1
16

7 2.300 · 10−5 3.0 2.753 · 10−3 2.0 2.032 · 10−3 2.0

Table 5.2
Results using a two-level method.

H h CPU L2 error L2 rate H1 error H1 rate L2 error L2 rate

time of u of u of u of u of σ of σ

1
2

1
4

8.2 1.643 · 10−3 4.614 · 10−2 3.116 · 10−2

1
2

1
8

81.4 3.946 · 10−4 2.06 1.455 · 10−2 1.67 2.183 · 10−2 0.51

1
3

1
4

20.3 1.574 · 10−3 4.489 · 10−2 2.925 · 10−2

1
3

1
8

93.5 1.703 · 10−4 3.21 1.077 · 10−2 2.06 7.560 · 10−3 1.95

1
3

1
12

406.4 6.991 · 10−5 2.20 5.037 · 10−3 1.87 4.785 · 10−3 1.13

1
4

1
8

117.4 1.639 · 10−4 1.064 · 10−2 6.896 · 10−3

1
4

1
12

429.7 4.871 · 10−5 2.99 4.738 · 10−3 2.00 3.220 · 10−3 1.88

1
4

1
16

1290.4 2.192 · 10−5 2.78 2.697 · 10−3 1.96 1.998 · 10−3 1.66

1
5

1
8

168.4 1.632 · 10−4 1.062 · 10−2 6.850 · 10−3

1
5

1
12

482.3 4.696 · 10−5 3.07 4.709 · 10−3 2.01 3.071 · 10−3 2.00

1
5

1
16

1339.8 1.992 · 10−5 2.98 2.666 · 10−3 1.98 1.771 · 10−3 1.91

1
6

1
12

546.1 4.688 · 10−5 4.709 · 10−3 3.064 · 10−3

1
6

1
16

1405.8 1.979 · 10−5 3.00 2.662 · 10−3 1.98 1.771 · 10−3 1.91

1
8

1
16

1723.1 1.973 · 10−5 2.662 · 10−3 1.740 · 10−3

In Table 5.1 we present the results obtained using the one-grid method. It is
observed that the number of Newton iterations increases a little for a larger value of
λ. The experimental rates of u and σ are very close to theoretical rates when P2

and P1 elements are used for an elliptic problem, respectively. In [10], a decoupled
algorithm for the same model equation is presented, and the theoretical H1 and L2

rates of u and σ, respectively, are proved to be 1.5. In fact, the experimental rates
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Table 5.3
Results using three- and four-level methods.

H h1 h2 h3 CPU L2 error H1 error L2 error

time of u of u of σ

1
2

1
4

1
8

87.2 1.637 · 10−4 4.659 · 10−2

1
2

1
6

1
16

1278.2 2.196 · 10−5 2.672 · 10−3 1.774 · 10−3

1
3

1
6

1
16

1288.7 1.978 · 10−5 2.662 · 10−3 1.744 · 10−3

1
4

1
8

1
16

1381.2 1.973 · 10−5 2.662 · 10−3 1.740 · 10−3

1
2

1
4

1
8

1
16

1337.7 1.973 · 10−5 2.662 · 10−3 1.740 · 10−3

Table 5.4
Comparison of multilevel methods to a one-level method.

Grids CPU L2 error H1 error L2 error

time of u of u of σ

1
4

38.4 1.589 · 10−3 4.520 · 10−2 2.914 · 10−2

1
4
, 1
3

20.34 1.574 · 10−3 4.448 · 10−2 2.925 · 10−2

1
4
, 1
2

8.2 1.643 · 10−3 4.614 · 10−2 3.166 · 10−2

1
8

469.7 1.630 · 10−4 1.062 · 10−2 6.852 · 10−3

1
8
, 1
5

168.4 1.632 · 10−4 1.062 · 10−2 6.850 · 10−3

1
8
, 1
4

117.4 1.639 · 10−4 1.064 · 10−2 6.896 · 10−3

1
8
, 1
3

93.5 1.703 · 10−4 1.077 · 10−2 7.560 · 10−3

1
8
, 1
2

81.4 3.946 · 10−4 1.455 · 10−2 2.183 · 10−2

1
8
, 1
4
, 1
2

87.2 1.637 · 10−4 1.064 · 10−2 6.882 · 10−3

1
12

2342.2 4.672 · 10−5 4.706 · 10−3 3.056 · 10−3

1
12

, 1
6

546.1 4.688 · 10−5 4.709 · 10−3 3.064 · 10−3

1
12

, 1
5

482.3 4.696 · 10−5 4.709 · 10−3 3.071 · 10−3

1
12

, 1
4

429.7 4.871 · 10−5 4.738 · 10−3 3.220 · 10−3

1
12

, 1
3

406.4 6.991 · 10−5 5.037 · 10−3 4.785 · 10−3

1
16

7480.9 1.969 · 10−5 2.661 · 10−3 1.738 · 10−3

1
16

, 1
8

1723.1 1.973 · 10−5 2.662 · 10−3 1.740 · 10−3

1
16

, 1
6

1405.8 1.979 · 10−5 2.662 · 10−3 1.771 · 10−3

1
16

, 1
5

1339.8 1.992 · 10−5 2.666 · 10−3 1.771 · 10−3

1
16

, 1
4

1290.4 2.192 · 10−5 2.697 · 10−3 1.998 · 10−3

1
16

, 1
6
, 1
2

1278.2 2.196 · 10−5 2.672 · 10−3 1.774 · 10−3

1
16

, 1
6
, 1
3

1288.7 1.978 · 10−5 2.662 · 10−3 1.744 · 10−3

1
16

, 1
8
, 1
4

1381.2 1.973 · 10−5 2.662 · 10−3 1.740 · 10−3

1
16

, 1
8
, 1
4
, 1
2

1337.7 1.973 · 10−5 2.662 · 10−3 1.740 · 10−3

of convergence obtained by the decoupled algorithm are larger than 1.5 but less than
the rates presented in Table 5.1. See [8].

In Table 5.2 we present results for the same example using a two-grid method
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with λ = 1, and in Table 5.3 we present results using three- and four-grid methods
for the same value of λ. In presenting these computations, we fix the coarse grid H
and then vary the fine grid. The full nonlinear problem is solved on the coarse mesh,
and then one linearized Newton step is performed on the fine meshes. The rates of
convergence in Table 5.2 were obtained by comparing the errors on two consecutive
fine grids which used the same initial coarse grid. It is experimentally observed that
if a fine grid is fixed, the coarse grid H should be as small as H ≈ h2/3. For example,
when h = 1/8, h2/3 = 1/4, so the two-level method with H = 1/4 works as accurately
as the one-grid method. However, a choice of H = 1/3 yields larger errors, as seen in
Table 5.2. Similarly, if h = 1/12 or 1/16, the optimal scaling is (1/12)2/3 ≈ 1/5 or
(1/16)2/3 ≈ 1/6.

To compare the accuracy and relative efficiency of the standard one-grid method
with the multigrid method, we compare the results generated with a fixed value of
h for the one-grid method with the results obtained using a multigrid method where
the finest grid has the same mesh spacing h. Table 5.4 summarizes these results by
combining the results from Tables 5.1–5.3. It can be easily seen that calculation using
the multigrid method gave considerable savings in computational time for similar
accuracy. For example, when h = 1

16 , six Newton iterations are needed by the one-
grid method, requiring CPU time of 7480.9. The two-grid method with H = 1

8 and
h = 1

16 required six iterations on H to solve the nonlinear problem and one iteration
on h, requiring CPU time of 1723.1. Using the four-grid method with H = 1

2 , h1 =
1
4 ,

h2 =
1
8 , and h3 =

1
16 , the computational time is reduced to 1337.7, which is 18%

of CPU time required for the one-grid method. Note that the finer grid calculations
gave more savings in time, and most of the savings are already obtained by using the
two-grid method. More savings in time can be obtained by using three- or four-grid
methods.

Acknowledgment. The author thanks V. Ervin for his helpful discussions and
suggestions.
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Abstract. Accurate numerical modeling of complex physical, chemical, and biological systems
requires numerical simulation capability over a large range of length scales, with the ability to cap-
ture rapidly varying phenomena localized in space and/or time. Adaptive mesh refinement (AMR) is
a numerical process for dynamically introducing local fine resolution on computational grids during
the solution process, in response to unresolved error in a computation. Fast adaptive composite-
grid (FAC) methods are a class of algorithms that exploit the multilevel structure of AMR grids
to solve elliptic problems efficiently. This paper develops a theoretical foundation for AFACx, an
asynchronous FAC method. A new multilevel condition number estimate establishes that the con-
vergence rate of the AFACx algorithm does not degrade as the number of refinement levels in the
AMR hierarchy increases.
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solvers, FAC, AFAC, AFACx
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1. Introduction. Adaptive mesh refinement (AMR) is a numerical process for
dynamically introducing local fine resolution on computational grids during the solu-
tion process in response to unresolved error in a computation. Local fine resolution
is achieved by dynamically adapting the existing computational grid based on addi-
tional grid points (point-based AMR) or finer local grids (block-structured AMR).
AMR approaches are attractive because they often achieve orders of improvement in
computational efficiency and memory usage. AMR techniques were first introduced
by Brandt [19] in the early 1970s for general problems in a multilevel context and by
Berger and Oliger [6] in the 1980s for hyperbolic problems. Since then, AMR research
has been pursued by several groups (cf. [1, 2, 5, 29, 42, 43]).

For elliptic problems, when numerical simulations involve a large number of re-
finement levels and are extremely large, effective parallel methods for AMR must be
considered. It is then desirable to develop elliptic solvers that asynchronously process
all grids, or at least asynchronously process grids at a fixed refinement level. In ad-
dition, as the number of refinement levels increases, the convergence rate should not
degrade as a function of the number of refinement levels.
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The fast adaptive composite-grid (FAC) method was developed in the 1980s [32,
33, 34, 35] to provide more robust discretization and solution methods for elliptic
problems on AMR grids. Its strength lies in its ability to use existing single grid
solvers on uniform meshes for different refinement levels, with the combined effect of
solving a nonuniform composite-grid problem. Though FAC allows for asynchronous
processing of disjoint grids at a given refinement level and its convergence rate is
bounded independently of the number of refinement levels, the multiplicative way
it treats the various refinement levels imposes sequentialness in its processing. For
large-scale parallel AMR applications, this sequential nature of FAC, like that of other
AMR techniques, represents a serious bottleneck to full scalability.

This difficulty led to the development of the asynchronous version of FAC, called
AFAC [28, 33, 36, 37]. AFAC, like FAC, is blessed with level-independent convergence
bounds and the convenience of enabling uniform grid solvers. But it has the added
advantage of allowing asynchronous processing of all refinement levels. This impor-
tant asynchronous feature is obtained at the cost of only a modest fixed decrease in
convergence rates [33].

Further research into improving computational efficiency associated with the uni-
form grid solvers on local grid patches led to the development of AFACx [41]. AFACx
is very inexpensive because it uses only simple relaxation methods on all but the
coarsest grid. Numerical results [39, 41] show that the attendant reduction in com-
putational and communication costs of AFACx comes with no significant degradation
in convergence rates compared to AFAC based on multigrid solvers.

Convergence bounds for FAC were established in [32, 38] under certain regularity
assumptions. Widlund and Dryja proposed and analyzed variants of FAC [45, 23].
Reusken and Ferket [24] compared FAC with the local defect correction (LDC) method
[27] introduced by Hackbusch. AFAC was introduced by Hart and McCormick in [28].
Optimality in the multilevel case for AFAC applied to a model problem was shown in
[31]. This was followed by the development of AFACx [41]. Cheng [21, 22] established
optimal bounds on the condition number of the multilevel AFAC iteration operator
with exact solvers. Moe [39, 7] presented performance results for FAC and AFAC
on parallel machines. Quinlan, in his thesis [41], presented a two-level convergence
analysis for AFACx assuming a sufficient number of smoothing steps at each level
and showed that it is closely related to the convergence rate of AFAC. Shapira [44]
compared the performance of AFAC and AFACx. However, a multilevel theory for
AFACx remained a gap in the theory of multilevel FAC-type methods.

Closely related to AFACx are the additive preconditioners of Bramble, Pasciak,
Xu [16] and Bramble, Pasciak, and Vassilevski [18]. The theoretical framework de-
veloped by Bramble, Pasciak, Xu, Wang, Oswald, Griebel, and others [16, 15, 12, 14,
13, 17, 11, 47, 48, 50, 9, 8, 49, 26] presents a powerful tool for analyzing multilevel
methods. Relying heavily on this modern multilevel framework for multilevel meth-
ods and some of the assumptions therein, we present in this paper a new multilevel
condition number estimate for the AFACx operator.

The new theoretical results presented in this paper are strongly backed by nu-
merical evidence [41, 40] and performance results [41]. Recent numerical work [40, 30]
shows that AFACx can be applied successfully to elliptic PDE systems arising from
first-order system least squares (FOSLS) formulations on adaptively refined curvilin-
ear AMR grids. As increasingly complex PDE systems are simulated and the need
for AMR is increasingly crucial, theoretical and computational analyses of fast, paral-
lelizable, and efficient multilevel solvers and preconditioners such as AFACx and BPX
[16] become increasingly important for validating the results of complex simulations.
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This paper develops new multilevel estimates establishing that the condition num-
ber of the AFACx operator, like that for AFAC, is bounded independently of the
number of refinement levels. We start by introducing the model problem and nec-
essary preliminaries in section 2. In section 3, we introduce the various FAC-type
methods, and finally, in section 4, we establish the theory.

2. Model problem. Consider a linear, self-adjoint, second-order elliptic bound-
ary value problem in R

n, n = 2, 3, of the form Lu ≡ −
n∑

i,j=1

∂
∂xi
(aij(x)

∂u
∂xj
) = f in Ω,

u = 0 on ∂Ω,
(2.1)

where u is the unknown, f ∈ L2(Ω) is the source term, and aij are appropriate
coefficients. Assume that

• domain Ω ⊂ R
n is convex polygonal;

• coefficients aij(x) ∈ C0(Ω), 1 ≤ i, j ≤ n;
• matrix [aij(x)]1≤i,j≤n is symmetric almost everywhere in Ω; and
• operator L is uniformly elliptic in the sense that there exists a constant θ > 0
such that

∑n
i,j=1 aij(x)ξiξj ≥ θ|ξ|2 for almost all x in Ω and all ξ in R

n,
where | · | is the Euclidean norm.

This section is concerned with the numerical solution of the algebraic equations that
arise from discretizing problem (2.1) on adaptively refined curvilinear grids. We focus
on the plane R

2 for simplicity.

2.1. Variational formulation. Under the above assumptions, the natural lin-
ear space in which to seek a weak solution of (2.1) is V := H1

0 (Ω), and the variational
problem is Find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V,(2.2)

where the respective bilinear and linear forms are

a(u, v) =

∫
Ω

n∑
i,j=1

aij(x)
∂u

∂xj

∂v

∂xi
dΩ,(2.3)

f(v) =

∫
Ω

fvdΩ.(2.4)

It is known [25] that (2.2) has a unique solution, u ∈ V . Moreover, a(·, ·) :
V ×V → R is symmetric and continuous [25], so uniform ellipticity of L and Poincaré’s
inequality (cf. [10]) imply that a(·, ·) is coercive on V : there exists a constant γ > 0
such that

a(u, u) ≥ γ‖u‖2
V ∀u ∈ V.(2.5)

Coercivity, in turn, implies that a(·, ·) defines an equivalent inner product over space
V . Furthermore, by the Riesz representation theorem (cf. [10]), a(·, ·) induces a
bounded linear operator A : V → V uniquely determined by

a(u, v) = (Au, v) ∀u, v ∈ V.(2.6)
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2.2. Partially refined meshes. To discretize (2.2) on partially refined meshes,
we introduce the following notation. Let ΩJ ⊆ ΩJ−1 ⊆ · · · ⊆ Ω1 ≡ Ω be a
nested sequence of nonempty bounded open polygonal Lipschitz domains. Subdo-
mains Ωk, k = 2, 3, . . . , J , can be viewed as regions where the solution may vary on
increasingly finer scales and, hence, regions where local refinement patches are gener-
ated during the AMR process. Let T c

1 = {τ1
i }N1

i=1 be a triangulation of Ω1, N1 ≥ 4,
meaning that they cover Ω1 and do not overlap in the sense that the intersection of
any two triangles in the triangulation is either empty, a common vertex, or a common
edge. Assume that T c

1 is quasi-uniform. We assume also that the boundaries of Ω2

align with the edges of elements in T c
1 , and at least one edge of T c

1 is contained in
Ω2. Triangulation T c

k = {τki }Nk
i=1, k = 2, 3, . . . , J , of Ω, is obtained from T c

k−1 in the
following manner. Since Ωk ⊆ Ωk−1 and its boundary aligns with elements of T c

k−1,

then there exists a local “coarse” triangulation, T hk−1

k = {τk−1
ij

}Mk
j=1,Mk ≤ Nk−1,

consisting of elements of T c
k−1 that cover Ωk, where hk−1 is the length of the longest

edge of triangles in T hk−1

k . T hk−1

k is then a quasi-uniform triangulation of Ωk. Now

we uniformly refine elements of T hk−1

k by subdividing each triangle into four triangles

by connecting the midpoints of the edges. This yields a “fine” local triangulation T hk

k

of Ωk, which is regular in the sense of Bank, Dupont, and Yserentant [3]. Elements
of T c

k−1 that lie in the complement of Ωk and the elements of T hk

k together form

the elements of T c
k = (T c

k−1\T hk−1

k ) ∪ T hk

k . This process leads to a series of nested

triangulations {T c
k }Jk=1 of Ω that form partially refined locally quasi-uniform meshes.

2.3. Finite element spaces. Henceforth, we assume that conforming piecewise
linear finite elements are used, although our results will clearly apply to more gen-
eral cases. We thus define V c

k ⊂ H1
0 (Ω), k = 1, 2, . . . J , to be the space spanned by

standard piecewise linear nodal basis functions with local support about the nodes of
triangulation T c

k . Because of the conformity of the finite elements, note that there
are no degrees of freedom associated with fine nodes that lie on boundary ∂Ωk. Con-
tinuity implies that these “slave” nodes are evaluated simply by interpolation from
adjacent coarse nodes. Now, the “fine” local finite element space defined in the inte-
rior of domain Ωk is V

hk

k = V c
k ∩H1

0 (Ωk). By our use of H
1
0 (Ωk) here, we mean that

functions in V hk

k have support only in the interior of Ωk. Similarly, we define “coarse”

local finite element spaces by V
hk−1

k = V c
k−1 ∩ H1

0 (Ωk), V
hk−1

k ⊂ V hk

k , k = 2, . . . , J .
Note that the local spaces are nested: V c1 ⊆ V c

2 ⊆ · · · ⊆ V c
J ⊂ H1

0 (Ω). However,
the coarse local spaces are generally nonnested because they typically correspond to
increasingly smaller local subdomains.

2.4. The discrete variational problem. Having chosen finite-dimensional
composite-grid space V c

J , the discrete variational problem is Find u
c ∈ V c

J such that

a(uc, v) = f(v) ∀v ∈ V c
J .(2.7)

This problem is equivalent to solving the linear system

Acuc = fc,(2.8)

where Ac is a symmetric positive-definite matrix induced by the linear operator Ac

defined over composite-grid space V c
J . Note that V

c
J is a finite-dimensional subspace of

H1
0 (Ω). For notational convenience, denote spaces V

c
k by Vk, k = 1, 2, . . . , J ; operator

Ac by A; A-inner product a(·, ·) on VJ by A(·, ·); and the induced A-norm by ‖| · |‖.
The L2 inner product on VJ is denoted by (·, ·) and its induced norm by ‖ · ‖.
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2.5. Stationary linear iteration. A consistent stationary linear iterative pro-
cess for linear system

Au = f

can be written in the form

un+1 = un +B(f −Aun),(2.9)

where B is an approximate inverse of A. Here we are thinking of iteration (2.9) as one
of our FAC-type algorithms defined below. If B is symmetric with respect to the A
inner product, then the process is said to be symmetric. Letting en = u− un denote
the error in the nth iterate, then (2.9) implies that

en+1 = (I −BA)en.(2.10)

Therefore, for the iteration to converge in general, we must have ρ(I − BA) < 1,
where ρ(·) denotes the spectral radius. For common multiplicative-type algorithms, it
is often easy to establish this condition. However, for additive-type multilevel solvers,
typically all that can be shown is that κ(BA), the condition number of the operator
BA, is independent of the number of levels. Such a result implies that the “damped”
linear iteration

un+1 = un + ωB(f −Aun)(2.11)

converges for sufficiently small ω. It is this type of a result that we establish for the
AFACx algorithm defined below.

To describe the FAC algorithms, we need to define operators that approximate
(2.7) at the different refinement levels, projection operators that transfer data from
fine to coarse spaces, and smoothing operators on the different spaces, all in terms of
the discrete inner products (·, ·) and A(·, ·).

2.6. Approximating composite-grid operators on coarser levels.
Definition 1. For k = 1, 2, . . . , J , define operator Ak : Vk −→ Vk by

(Akw, φ) = A(w, φ) ∀φ ∈ Vk.

Note that operator Ak is symmetric and positive-definite in inner products A(·, ·)
and (·, ·).

2.7. Projection operators. We introduce the following projection operators
typically used in multilevel theory.

Definition 2. For k = 1, 2, . . . , J , define “elliptic projection” operator Pk :
VJ −→ Vk by

A(Pkw, φ) = A(w, φ) ∀φ ∈ Vk.

Definition 3. For k = 1, 2, . . . , J , define “L2 projection” operator Qk : VJ −→
Vk by

(Qkw, φ) = (w, φ) ∀φ ∈ Vk.

It can be shown that Pk and Qk are orthogonal projection operators satisfying
the following basic properties:

• PkPl = Pl, PlPk = Pl, QkQl = Ql, QlQk = Ql for l ≤ k.
Additionally, Pk and Qk are related according to

AkPk = QkA.(2.12)
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2.8. Smoothing operators. We can write one step of a general stationary
linear smoothing procedure applied to

Akuk = fk(2.13)

in the form

un+1
k = unk +Rk(fk −Aku

n
k ),(2.14)

where Rk : Vk −→ Vk. Note that (2.14) is of the same form as (2.9), but we use R
here and below (possibly with subscripts and hats) to signify smoothing. Now the
error, enk = uk − unk , obeys the following propagation equation:

en+1
k = (I −RkAk)e

n
k(2.15)

or

en+1
k = (I − Tk)e

n
k ,(2.16)

where Tk : VJ −→ Vk is defined by Tk = RkAkPk. For simplicity, we assume that
R1 = A−1

1 and that Rk, k = 2, 3, . . . , J , are symmetric with respect to the L
2 inner

product. Consider the special case Rk = R̂k ≡ 1
λk
I, where λk is the spectral radius

of Ak. The smoothing process is then just Richardson’s iteration defined by

un+1
k = unk +

I

λk
(fk −Aku

n
k ).(2.17)

Corresponding to R̂k, we define T̂k = R̂kAkPk.
To further quantify the properties that a simple smoother must satisfy, we make

the following assumptions commonly made in modern multilevel analyses. While
we do briefly comment on the motivation for each assumption and the conditions
under which they hold, we refer the reader to [11, 46, 15, 16, 12, 13, 48, 17, 47, 50]
for further details. It suffices to state that the assumptions are valid (cf. [11]) for
our model problem with partially refined locally quasi-uniform meshes and simple
smoothers like Richardson, damped Jacobi, and symmetric Gauss–Seidel.

The first assumption concerns the Richardson operator, R̂k.
A.1. There exist constants ε ∈ (0, 1) and γ > 0 such that

A(T̂kw,w) ≤ (γεk−l)2A(w,w) ∀w ∈ Vl, l ≤ k, k = 1, 2, . . . , J.(2.18)

Roughly speaking, assumption A.1 asserts that the smoother attenuates “smooth”
error components slowly; i.e., energy reduction in “smooth” components (represented
by components in subspaces Vl, l < k) is small compared to energy reduction in the
“oscillatory” components. This assumption is a generalization of the strengthened
Cauchy–Schwarz inequalities first introduced by Yserentant [49] for hierarchical bases
and used extensively in multilevel theory [47, 14, 11, 48]. Constant γ depends on
the ellipticity of the boundary value problem and the variation of the coefficients in
(2.1). For our model boundary value problem (2.1) discretized with piecewise linears
on simplices, (2.18) has been shown to hold (cf. [14, 48]). However, it is apparently
not known whether assumption A.1 holds when the coefficients in (2.1) are not very
smooth, e.g., when they are only bounded and measurable (cf. [11]).
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The next two assumptions allow for more general smoothers, Rk.
A.2. There exist constants a0 ∈ (0, 1) and a1 > 1 such that

a0
‖u‖2

λk
≤ (Rku, u) ≤ a1

‖u‖2

λk
∀u ∈ Vk, 2 ≤ k ≤ J.(2.19)

Assumption A.2 can also be written in the form

a0(R̂ku, u) ≤ (Rku, u) ≤ a1(R̂ku, u) ∀u ∈ Vk, 2 ≤ k ≤ J,(2.20)

which implies that smoothing operator Rk, k = 2, 3, . . . , J , is spectrally equivalent to
the Richardson smoothing operator R̂k. It is easy to see that A.2 implies that

a0 A(T̂ku, u) ≤ A(Tku, u) ≤ a1 A(T̂ku, u) ∀u ∈ VJ , k = 2, 3, . . . , J.(2.21)

Spectral equivalence of symmetric Gauss–Seidel to the Richardson smoother is shown
in [48]. The upper inequality in (2.21) holds in general for point-smoothers (cf. [11]).

A.3. There exists a constant θ ∈ (0, 2) such that

A(Tkv, Tkv) ≤ θA(Tkv, v) ∀v ∈ Vk, k = 1, 2, . . . , J.(2.22)

Assumption A.3 is a natural consequence of assuming that operators I − Tk are
contractive in the energy norm, i.e.,

‖|I − Tk|‖ < 1, k = 1, 2, . . . , J.(2.23)

Note that θ = 1 for Richardson, θ < 1 for under-damped Richardson, and θ = 1
for suitably scaled Jacobi and block Jacobi smoothers. In [13], (2.22) is shown to hold
for various line and point-based Jacobi and Gauss–Seidel smoothers.

Assumption A.3 can be derived from assumption A.1 under a suitable assumption
on γ and spectral equivalence of the smoothers to Richardson iteration. However, in
general, the assumption on γ cannot be established without special scaling of the
smoothers, so we choose to state both assumptions separately.

In addition to assumptions A.1–A.3 on smoothers Rk and R̂k, a “weak regular-
ity” assumption is required. This condition replaces the standard full regularity and
approximation assumption (cf. [12]) with a weaker assumption on operator A and
smoothers R̂k, k = 2, 3, . . . , J .

A.4. There exists a constant η > 0 such that

A(v, v) ≤ η

J∑
k=1

A(T̂kv, v) ∀v ∈ VJ .(2.24)

Assumption A.4 is shown to hold for our model problem discretization in [11].
However, it is also noted in [11] that, in the application to second-order elliptic equa-
tions for coefficients with large jumps, A.4 is not known to hold independent of the
size of the jumps.

3. Algorithms. We now describe the FAC, AFAC, and AFACx algorithms and
complete the section with a discussion of existing theory.
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3.1. FAC. Let unc ∈ VJ denote the current approximation to the solution of
composite-grid equation (2.8).

Algorithm 1. One iteration of the basic FAC algorithm consists of the following
steps.

For k = 1, 2, . . . , J , do:
find wk ∈ V hk

k such that

a(u
n+(k−1)/J
c + wk, v) = f(v) ∀v ∈ V hk

k ;

set u
n+k/J
c = u

n+(k−1)/J
c + wk.

As can be seen from this pseudolanguage, FAC involves the solution of the residual
equation on all refinement levels. The correction on a coarse level is computed before
the correction on the next finer level, thus providing boundary conditions for the finer
level equations. FAC is multiplicative, since it can be represented as a product of linear
operators. Multiplicative algorithms are inherently sequential because each operation
depends on its predecessor, making them less attractive in a parallel environment.

3.2. AFAC. Processing on each level in FAC attempts to resolve all components
of the solution to the composite-grid residual equation that are represented on a
refinement level and coarser levels. On the other hand, processing of each level by
AFAC [33, 36, 37] attempts only to resolve components that can be represented on
that refinement level. This objective is not dependent on resolving components of the
solution to the residual equation that are represented on coarser or finer levels, so it
provides for independent level processing. The principal step in AFAC is resolving
solution components on each composite-grid level. Let unc ∈ V denote the current
approximation to the solution of composite-grid equation (2.8).

Algorithm 2. One iteration of the AFAC algorithm consists of the following
steps.

For k = 1, 2, . . . , J , do:
find wfk ∈ V hk

k such that

a(unc + wfk , v) = f(v) ∀v ∈ V hk

k ;
if (k > 1), then

find wrk ∈ V
hk−1

k such that

a(unc + wrk, z) = f(z) ∀z ∈ V
hk−1

k ;
set wr1 = 0;

set un+1
c = unc +

∑J
k=1(w

f
k − wrk).

AFAC appears to have optimal or near-optimal complexity in a parallel com-
puting environment because it allows for simultaneous processing of all refinement
levels. This is important because the solution process on each grid, even with the
most efficient solvers, dominates computational complexity. This is especially true
for systems where the solution process is significantly more computationally intensive
than the evaluation of the residuals. Coupled with multigrid processing on each level
and nested iteration [32] on the composite-grids, the computational cost of AFAC is
proportional to the cost of a global-grid solve alone (see Hart and McCormick [28]
and McCormick [33] for further details).

The following two-grid result is proved in [32].
Theorem 3.1. Suppose Ac is positive-definite. Then the spectral radii of the

two-level exact solver forms of AFACc and FACc satisfy

ρ(AFACc) = ρ
1
2 (FACc).(3.1)

Here, FACc and AFACc denote the respective FAC and AFAC error propagation op-
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erators on the composite-grid space, and ρ(·) denotes spectral radius. The convergence
factor for one iteration of the two-level exact solver form of AFAC satisfies

‖|AFACc|‖| ≤
(

δ

1 + δ

) 1
4

,(3.2)

where constant δ > 0 is independent of h but depends on the regularity of (2.1) and
the approximation properties of its discretization (see [32] for further details).

Now, assume for each k, 1 ≤ k ≤ J , that there exists a bounded Lipschitz
polyhedral region Ω̂k such that Ωk ⊂ Ω̂k, (Ω̂k \Ωk)∩Ω = ∅, and ∂Ω̂k∩Ωk+1 = ∅, and
that the Lipschitz constants of Ω̂k\Ωk+1 are uniformly bounded. In addition, assume
there exist constants γ1 ≥ γ0 > 0 and q ∈ (0, 1) such that γ0q

k ≤ hk ≤ γ1q
k, k =

1, 2, . . . , J . Under these assumptions, the following theorem was proved in [21].
Theorem 3.2. The AFAC operator has a condition number that is bounded

independent of the number of refinement levels and the number of degrees of freedom.
It is important to note that the results hold when the exact solvers on each level in

FAC and AFAC are replaced by approximate solvers (e.g., multigrid solvers), provided
that they give a fixed local error reduction (see [32] and [21]). Note also that in [32],
the two-level results do not depend on the refinement ratios (hk+1/hk).

3.3. AFACx. AFAC removes the sequential nature inherent in the FAC algo-
rithm. However, it is possible to further reduce the computational effort on each level
by carefully replacing the local solvers in AFAC with smoothers. AFACx is exactly
such an algorithm.

To define this scheme, we introduce auxiliary bilinear forms brk(·, ·) : V hk−1

k ×
V
hk−1

k −→ R and bfk(·, ·) : V hk

k × V hk

k −→ R. These forms correspond to symmetric

positive-definite operators Br
k : V

hk−1

k −→ V
hk−1

k and Bf
k : V

hk

k −→ V hk

k that rep-

resent the action of smoothers on the “restricted” local coarse grid space V
hk−1

k and

the local “fine” grid space V hk

k . Let unc ∈ V denote the current approximation to the
solution of composite-grid equation (2.8).

Algorithm 3. One iteration of the AFACx algorithm consists of the following
steps.

For k = 1, 2, . . . , J , do:
if (k = 1), then

find uf1 ∈ V h1
1 such that

a(unc + uf1 , v) = f(v) ∀v ∈ V h1
1 ;

else
find wrk ∈ V

hk−1

k such that

brk(w
r
k, z) = f(z)− a(unc , z) ∀z ∈ V

hk−1

k ;

find ufk ∈ V hk

k such that

bfk(w
r
k + ufk , v) = f(v)− a(unc , v) ∀v ∈ V hk

k ;

set un+1
c = unc +

∑J
k=1 u

f
k .

The above pseudolanguage shows that AFACx replaces the solves on the local
restricted coarse and fine levels in AFAC on all but the coarsest level by smoothing
steps. Smoothing is performed on the restricted coarse level to obtain the correction
wrk on each level k. Smoothing on the fine level with initial guess w

r
k then yields u

f
k ,

which approximates the component of the correction that is representable only on
level k.
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AFACx is generally more efficient than AFAC because the various uniform grids
(the local fine and restricted coarse refinement levels) are processed only by smooth-
ing, instead of the somewhat more expensive multigrid solvers used in AFAC. This
reduction in cost apparently comes with no significant degradation in convergence
rates. The following two-level result is due to Quinlan [41].

Theorem 3.3. Consider the two-level AFACx algorithm that involves one smooth-
ing step on the fine grid patch and n smoothing steps on the restricted coarse grid.
Then, for sufficiently large n, the spectral radius of the AFACx error propagation op-
erator is bounded uniformly by a constant less than one, assuming only that this is
true for the AFAC error operator.

3.4. Symmetric AFACx. The operator corresponding to the AFACx algo-
rithm described above is not symmetric with respect to the A inner product. To
facilitate condition number estimates, we work instead with a symmetrized form of
AFACx developed as follows. Let unc ∈ V denote the current approximation to the
solution of composite-grid equation (2.8).

Algorithm 4. One iteration of the symmetrized AFACx algorithm consists of
the following steps.

For k = 1, 2, . . . , J , do:
if (k = 1), then

find uf1 ∈ V h1
1 such that

a(unc + uf1 , v) = f(v) ∀v ∈ V h1
1 ;

else
find wrk,0 ∈ V

hk−1

k such that

brk(w
r
k,0, z) = f(z)− a(unc , z) ∀z ∈ V

hk−1

k ;

find wfk,0 ∈ V hk

k such that

bfk(w
r
k,0 + wfk,0, v) = f(v)− a(unc , v) ∀v ∈ V hk

k ;

find wfk,1 ∈ V hk

k such that

bfk(w
f
k,1, v) = f(v)− a(unc , v) ∀v ∈ V hk

k ;

find wrk,1 ∈ V
hk−1

k such that

brk(w
r
k,1, z) = f(z)− a(unc + wfk,1, z) ∀z ∈ V

hk−1

k ;

set wfk,1 = wfk,1 + wrk,1;

set wfk,2 = wfk,1 − wrk,0;

set ufk = (w
f
k,0 + wfk,2)/2;

set un+1
c = unc +

∑J
k=1 u

f
k .

The pseudolanguage above principally involves computing two approximations
wfk,0 and w

f
k,2 and averaging them to form ufk at each level k. u

f
k then approximates

the component of the composite-grid correction that can be represented at level k.
wfk,0 is obtained in the following manner: smooth on the coarse-grid residual equation
and interpolate to the local fine level to obtain wrk,0, then smooth on the fine level

with initial guess wrk,0 to obtain wfk,0. To compute w
f
k,2, we first compute w

f
k,1 by

applying a two-level correction scheme (as described in [20, p. 33]) on the local fine

and restricted levels. wfk,2 is then set to be the difference w
f
k,1 −wrk,0. In practice, the

unsymmetric form of AFACx is used, while the symmetric form is useful for theoretical
analysis.



140 B. LEE, S. F. MCCORMICK, B. PHILIP, D. J. QUINLAN

4. Condition number estimates for AFACx. In this section, a new condition
number estimate is developed for the multilevel AFACx algorithm. We show that the
condition number of the symmetrized AFACx operator (Algorithm 4) is bounded
independently of the number of refinement levels.

The following lemma, which is a generalization of the standard Cauchy–Schwarz
inequality, is used extensively in the proofs that follow.

Lemma 4.1 (see [47]). Let T ∈ L(W ) be a nonnegative self-adjoint operator with
respect to 〈·, ·〉, where (W, 〈·, ·〉) is a finite-dimensional inner product space and L(W )
is the space of linear operators that map W into itself. Then

|〈Tu, v〉| ≤ 〈Tu, u〉 1
2 〈Tv, v〉 1

2 ∀u, v ∈ W.(4.1)

It is easy to show that the following lemma holds for operator Tk = RkAkPk.
Lemma 4.2 (see [11]). Operator Tk : VJ −→ VJ , k = 1, 2, . . . , J , is nonnegative

and self-adjoint with respect to the A inner product on VJ .

4.1. Full refinement. Consider first the case of full refinement: Ω1 = Ω2 =
· · · = ΩJ . Note that the “restricted coarse” grid is the entire global coarse grid, so
that V

hk−1

k = Vk−1, k = 2, 3, . . . , J , and the “local fine” grid is the entire global fine

grid, so that V hk

k = Vk, k = 1, 2, . . . , J . Define R0 = 0, P0 = 0, and Q0 = 0. Then
the operator corresponding to one iteration of AFACx (Algorithm 3) with a single
smoothing step each on the fine grid and the restricted coarse grid can be expressed
as

Ba =

J∑
k=1

(RkQk −RkAkRk−1Qk−1)A.(4.2)

To avoid theoretical complications in satisfying assumption A.3 for θ ∈ (1, 2) for
general smoothers, we work instead with the operator

Ba =

J∑
k=1

(
RkQk − 1

2
RkAkRk−1Qk−1

)
A,(4.3)

which corresponds to damping the restricted coarse grid smoothing by an additional
factor of 1

2 . Using relation (2.12), B
a may be rewritten as

Ba =

J∑
k=1

Tk

(
I − Tk−1

2

)
,(4.4)

where T0 is identically zero. Expressing Pk as the telescoping series
∑k
l=1(Pl−Pl−1),

we can then write

Ba =

J∑
k=1

Tk(Pk − Pk−1) +

J∑
k=1

k−1∑
l=1

Tk

(
I − Tk−1

2

)
(Pl − Pl−1).(4.5)

Interchanging the order of summation in the second term in (4.5) allows us to rewrite
Ba as

Ba =

J∑
l=1

Tl(Pl − Pl−1) +

J−1∑
l=1

J∑
k=l+1

Tk

(
I − Tk−1

2

)
(Pl − Pl−1).(4.6)
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4.2. Richardson smoothing. First, consider the case when Richardson itera-
tion is used as the smoother. We then have Rk = R̂k and Tk = T̂k. Let P0 ≡ 0 and
define wl = (Pl − Pl−1)v, l = 1, 2, . . . , J , for a given v ∈ VJ .

Our next lemma establishes a simple but important approximation property on
each level.

Lemma 4.3. Let Tk, k = 2, 3, . . . , J , satisfy bound (2.22). Then

A

(
Tk

(
I − Tk−1

2

)
wl,

(
I − Tk−1

2

)
wl

)

≤
(
1 +

γ
√
θ

2

)2

(γεk−l)2A(wl, wl), k = 2, 3, . . . , J, l < k.(4.7)

Proof. First, note that

A

(
Tk

(
I − Tk−1

2

)
wl,

(
I − Tk−1

2

)
wl

)
≤ A(Tkwl, wl) + |A(Tkwl, Tk−1wl)|+ 1

4
A(TkTk−1wl, Tk−1wl).(4.8)

Setting T = Tk, u = wl, and v = Tk−1wl in Cauchy–Schwarz inequality (4.1), we have

|A(Tkwl, Tk−1wl)| ≤ A(Tkwl, wl)
1
2A(TkTk−1wl, Tk−1wl)

1
2 .(4.9)

From (4.8) and (4.9), we thus have

A

(
Tk

(
I − Tk−1

2

)
wl,

(
I − Tk−1

2

)
wl

)
≤
(
A(Tkwl, wl)

1
2 +

1

2
A(TkTk−1wl, Tk−1wl)

1
2

)2

.(4.10)

Using assumption A.1 with w = Tk−1wl and applying assumption A.3, we see that
the last term in (4.10) is bounded according to

A(TkTk−1wl, Tk−1wl) ≤ (γε)2θA(Tk−1wl, wl).(4.11)

Applying assumption A.1 again, we have

A(Tk−1wl, wl) ≤ (γεk−l−1)2A(wl, wl).(4.12)

Combining (4.11) and (4.12) yields

A(TkTk−1wl, Tk−1wl) ≤ γ2θ(γεk−l)2A(wl, wl).(4.13)

Now, using assumption A.1 to bound the first term on the right-hand side of
(4.10) and (4.13) to bound the second term, we have

(4.14)

A

(
Tk

(
I − Tk−1

2

)
wl,

(
I − Tk−1

2

)
wl

)
≤
(
1 +

γ
√
θ

2

)2

(γεk−l)2A(wl, wl).

Before we prove the main results of this section, we state the following useful
identity (cf. [11, 47]).
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Lemma 4.4. Let wl = (Pl − Pl−1)v, v ∈ VJ , l = 1, 2, . . . , J , with P0 = 0. Then

J∑
l=1

A(wl, wl) = A(v, v).(4.15)

The next few lemmas are used to show that a symmetrized version of Ba has a
uniformly bounded condition number. We first show that Ba is bounded uniformly
in the A-norm.

Lemma 4.5. There exists constant C1 > 0, independent of the number of levels
J , such that

A(Bav, v) ≤ C1A(v, v) ∀v ∈ VJ .

Proof. From (4.6), we have

A(Bav, v) =

J−1∑
l=1

J∑
k=l+1

A

(
Tk

(
I − Tk−1

2

)
wl, v

)
+

J∑
l=1

A(Tlwl, v)

=

J−1∑
l=1

J∑
k=l+1

A

(
Tk

(
I − Tk−1

2

)
wl, Pkv

)
+

J∑
l=1

A(Tlwl, Plv).

Expressing Pk as a telescoping series, Pk =
∑k
j=1(Pj − Pj−1), we have

A(Bav, v) =

J−1∑
l=1

J∑
k=l+1

A

Tk (I − Tk−1

2

)
wl,

k∑
j=1

(Pj − Pj−1)v

+ J∑
l=1

A(Tlwl, Plv)

=
J−1∑
l=1

J∑
k=l+1

k∑
j=1

A

(
Tk

(
I − Tk−1

2

)
wl, wj

)
+

J∑
l=1

A(Tlwl, Plv).(4.16)

Now, applying Cauchy–Schwarz inequality (4.1) with T = Tk, u = (I − Tk−1)wl, and
v = wj yields

A

(
Tk

(
I − Tk−1

2

)
wl, wj

)
≤ A

(
Tk

(
I − Tk−1

2

)
wl,

(
I − Tk−1

2

)
wl

) 1
2

A(Tkwj , wj)
1
2 .(4.17)

Bounding the first factor on the right-hand side of (4.17) using Lemma 4.3 and the
second factor using assumption A.1 yields

(4.18)

A

(
Tk

(
I − Tk−1

2

)
wl, wj

)
≤
(
1 +

γ
√
θ

2

)
(γεk−l)A(wl, wl)

1
2 (γεk−j)A(wj , wj)

1
2 .

Finally, applying the arithmetic-geometric mean inequality in (4.18) yields

A

(
Tk

(
I − Tk−1

2

)
wl, wj

)
≤ (1 + γ

√
θ

2 )γ
2ε2k−l−j

2
(A(wl, wl) +A(wj , wj)).(4.19)
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Using bound (4.19) for the individual terms in (4.16), we have

A(Bav, v) ≤
(
(1 + γ

√
θ

2 )γ
2

2

)J−1∑
l=1

J∑
k=l+1

k∑
j=1

ε2k−l−j(A(wl, wl) +A(wj , wj))


+

J∑
l=1

A(Tlwl, Plv).(4.20)

We now bound each of the three terms on the right-hand side of (4.20) individually.
Term I. First write

S1 ≡
J−1∑
l=1

J∑
k=l+1

k∑
j=1

ε2k−l−jA(wl, wl) =
J−1∑
l=1

J∑
k=l+1

εk−lA(wl, wl)

 k∑
j=1

εk−j

 .

Hence,

S1 ≤
(

1

1− ε

) J−1∑
l=1

A(wl, wl)

(
J∑

k=l+1

εk−l
)
.

Again, bounding terms involving powers of ε and applying Lemma 4.4, we have

S1 ≤ ε

(1− ε)2

J∑
l=1

A(wl, wl) =
ε

(1− ε)2
A(v, v).(4.21)

Term II. Let

S2 ≡
J−1∑
l=1

J∑
k=l+1

k∑
j=1

ε2k−l−jA(wj , wj)

=

J−1∑
l=1

J∑
k=l+1

εk−l

 k∑
j=1

εk−jA(wj , wj)

 .(4.22)

Now, let α = (α1, α2, . . . , αJ)
t, where αj = A(wj , wj), j = 1, 2, . . . , J . Also, let

E = (Eij)1≤i,j≤J denote the J × J lower triangular matrix with entries given by

Eij =
{

εi−j : i ≥ j,
0 : i < j.

Finally, let β
l
= (β1l, β2l, . . . , βJl)

t, l = 1, 2, . . . , J , denote column vectors with entries
given by

βil =

{
0 : i ≤ l,

εi−l : i > l,

and define β̃t = (1, 1, . . . , 1). Then, (4.22) can be written as

S2 =

J−1∑
l=1

J∑
k=1

βkl

 J∑
j=1

Ekjαj
 = J−1∑

l=1

βt
l
E α =

(
J−1∑
l=1

βt
l

)
E α.(4.23)
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Each entry of the column vector
∑J−1
l=1 βt

l
can be bounded by ε

1−ε . Since all quantities
are nonnegative,

S2 ≤
(

ε

1− ε

)
β̃tE α =

(
ε

1− ε

) J∑
k=1

k∑
j=1

Ekjαj .(4.24)

Interchanging the order of summation and noting that E is lower triangular, we thus
have

S2 ≤
(

ε

1− ε

) J∑
j=1

J∑
k=j

Ekjαj

=

(
ε

1− ε

) J∑
j=1

J∑
k=j

εk−jA(wj , wj)

=

(
ε

1− ε

) J∑
j=1

A(wj , wj)

 J∑
k=j

εk−j


≤ ε

(1− ε)2

J∑
j=1

A(wj , wj).(4.25)

Applying Lemma 4.4 in (4.25), we therefore have

S2 ≤ ε

(1− ε)2
A(v, v).(4.26)

Term III. Again using the telescoping series Pk =
∑k
l=1(Pl − Pl−1), we have

S3 ≡
J∑
k=1

A(Tkwk, Pkv) = A(P1v, P1v) +

J∑
k=2

A(Tkwk, Pkv)

= A(P1v, P1v) +

J∑
k=2

A

(
Tkwk,

k∑
l=1

(Pl − Pl−1)v

)

= A(P1v, P1v) +

J∑
k=2

k∑
l=1

A(Tkwk, wl).

Let Ŝ3 =
∑J
k=2

∑k
l=1 A(Tkwk, wl). Then applying Cauchy–Schwarz inequality (4.1)

followed by assumption A.1 yields

Ŝ3 =

J∑
k=2

k∑
l=1

A(Tkwk, wl) ≤
J∑
k=2

k∑
l=1

A(Tkwk, wk)
1
2A(Tkwl, wl)

1
2

≤
J∑
k=2

k∑
l=1

γA(wk, wk)
1
2 (γεk−l)A(wl, wl)

1
2

≤ γ2
J∑
k=1

J∑
l=1

A(wk, wk)
1
2 (ε|k−l|)A(wl, wl)

1
2 .(4.27)
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Set αk = A(wk, wk)
1
2 . Then

Ŝ3 ≤ γ2
J∑
k=1

J∑
l=1

(ε|k−l|)αkαl = γ2〈〈Ê6α, 6α〉〉,

where Ê is the J × J symmetric positive-definite matrix with entries ε|k−l|, 6α is the
J × 1 column vector with entries αk, k = 1, 2, . . . , J , and 〈〈·, ·〉〉 is the Euclidean inner
product. The largest eigenvalue of Ê is bounded by its maximal row sum, which in
turn is bounded by 2

1−ε . Therefore,

Ŝ3 ≤ γ2

(
2

1− ε

)
〈〈6α, 6α〉〉

=

(
2γ2

1− ε

)( J∑
k=1

α2
k

)

=

(
2γ2

1− ε

)( J∑
k=1

A(wk, wk)

)
.(4.28)

From Lemma 4.4 and (4.28), we thus have

S3 = A(P1v, P1v) + Ŝ3

≤ A(v, v) +

(
2γ2

1− ε

)
A(v, v)

=

(
1 +

2γ2

1− ε

)
A(v, v).(4.29)

Substituting (4.21), (4.26), and (4.29) into (4.20), we therefore conclude that

A(Bav, v) ≤
 (1 + γθ

1
2

2 )γ
2ε

(1− ε)2
+ 1 +

2γ2

1− ε

A(v, v),(4.30)

which proves the lemma with

C1 =


(
1 + γθ

1
2

2

)
γ2ε

(1− ε)2
+ 1 +

2γ2

1− ε

 .

The next lemma shows that Ba is coercive in the A inner product.
Lemma 4.6. Under assumptions A.3 and A.4, there exists constant C0 > 0,

independent of the number of levels J , such that

A(Bav, v) ≥ C0A(v, v) ∀v ∈ VJ .
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Proof. From (4.4), we have that

A(Bav, v) =

J∑
l=1

A

(
Tl

(
I − Tl−1

2

)
v, v

)

=
J∑
l=1

A(Tlv, v)−
J∑
l=1

1

2
A(TlTl−1v, v)(4.31)

=

J∑
l=1

A(Tlv, v)−
J∑
l=1

1

2
A(Tl−1v, Tlv).(4.32)

Applying the standard Cauchy–Schwarz inequality yields

|A(Tl−1v, Tlv)| ≤ A(Tl−1v, Tl−1v)
1
2A(Tlv, Tlv)

1
2 .(4.33)

Applying assumption A.3 to (4.33), we get

|A(Tl−1v, Tlv)| ≤ θA(Tl−1v, v)
1
2A(Tlv, v)

1
2 .(4.34)

Hence, using the standard Cauchy–Schwarz inequality and nonnegativeness of opera-
tor TJ with respect to the A inner product we have

J∑
l=1

A(TlTl−1v, v) ≤ θ

J∑
l=1

A(Tl−1v, v)
1
2A(Tlv, v)

1
2

≤ θ

(
J∑
l=1

A(Tl−1v, v)

) 1
2
(

J∑
l=1

A(Tlv, v)

) 1
2

≤ θ

(
J∑
l=1

A(Tlv, v)

)
.(4.35)

Relations (4.32) and (4.35) and assumption A.4 combine to show that

A(Bav, v) ≥
(
1− θ

2

)( J∑
l=1

A(Tlv, v)

)

≥ 1

2η
(2− θ)A(v, v) ∀v ∈ VJ .(4.36)

The following theorem is a direct consequence of Lemmas 4.5 and 4.6.
Theorem 4.7. There exists constant C > 0, independent of the number of levels

J , such that

κ(Bs) ≤ C,

where Bs = 1
2 (B

a + (Ba)∗) is the operator corresponding to symmetrized AFACx
(Algorithm 4), with (Ba)∗ denoting the adjoint of Ba with respect to the A inner
product.
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4.3. More general smoothers. The estimates established above apply when
the smoother used on each level is a Richardson iteration. In practice, simple but
more robust smoothers such as damped Jacobi or Gauss–Seidel are usually employed.
Assumption A.2 now becomes important in establishing condition number estimates
for AFACx with general symmetric smoothers on each level. Lemma 4.3 is restated
as follows for general Rk �= R̂k that is symmetric in the L

2 inner product.
Lemma 4.8. Let Tk satisfy (2.21). Then

A

(
Tl

(
I − Tl−1

2

)
wk,

(
I − Tl−1

2

)
wk

)
≤ a1

(
1 +

γ
√
a1θ

2

)2 (
γεk−l

)2
A(wk, wk), l = 2, 3, . . . , J, k < l.(4.37)

The proof is along the same lines as that for Lemma 4.3.
Also, Lemma 4.5 now reads as follows.
Lemma 4.9. We have

A(Bav, v) ≤ C1A(v, v) ∀v ∈ VJ ,

where

C1 =

(
a1

(
1 +

γ
√
a1θ

2

)
γ2 ε

(1− ε)2
+ 1 +

2a1γ
2

(1− ε)

)
.

Lemma 4.6 becomes the following.
Lemma 4.10. We have

A(Bav, v) ≥ C0A(v, v) ∀v ∈ VJ ,

where C0 =
a0

2η (2− θ).
For symmetric smoothers that are spectrally equivalent to Richardson iteration,

the condition number of the symmetrized AFACx operator is therefore again bounded
independently of the number of levels.

4.4. Partial refinement. For the case of partial refinement, local “restricted

coarse” V
hk−1

k is a subspace of V hk

k ∩ Vk−1, and local “fine” V hk

k is a subspace of

Vk, k = 2, 3, . . . , J . However, spaces V
hk

k , k = 2, 3, . . . , J , need not be nested. To
treat this more general setting, we need to define operators at the different levels,
projection operators between levels, and smoothing operators. Note that, in what
follows, superscripts of “f” and “r” denote linear operators mapping to local “fine”

V hk

k and “restricted coarse” V
hk−1

k , respectively, for given level k.

Definition 4. For k = 2, . . . , J , define operator Afk : V
hk

k −→ V hk

k by

(Afkw, φ) = A(w, φ) ∀φ ∈ V hk

k , w ∈ V hk

k .

Definition 5. For k = 2, . . . , J , define operator Ark : V
hk−1

k −→ V
hk−1

k by

(Arkw, φ) = A(w, φ) ∀φ ∈ V
hk−1

k , w ∈ V
hk−1

k .

Orthogonal “elliptic” projection operators P fk , k = 1, 2, . . . , J , and P rk , k =
2, 3, . . . , J , are defined as follows.
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Definition 6. P fk : VJ −→ V hk

k is defined by

A(P fk w, φ) = A(w, φ) ∀φ ∈ V hk

k , w ∈ VJ .

Definition 7. P rk : VJ −→ V
hk−1

k is defined by

A(P rkw, φ) = A(w, φ) ∀φ ∈ V
hk−1

k , w ∈ VJ .

Orthogonal “L2” projection operatorsQfk , k = 1, 2, . . . , J , andQ
r
k, k = 2, 3, . . . , J ,

are defined as follows.
Definition 8. Qfk : VJ −→ V hk

k is defined by

(Qfkw, φ) = (w, φ) ∀φ ∈ V hk

k , w ∈ VJ .

Definition 9. Qrk : VJ −→ V
hk−1

k is defined by

(Qrkw, φ) = (w, φ) ∀φ ∈ V
hk−1

k , w ∈ VJ .

Symmetric positive-definite smoothing operators Rfk : Vk −→ V hk

k and Rrk :

Vk−1 −→ V
hk−1

k are also assumed to be defined.

The following relationships hold between the various operators: QfkA = AfkP
f
k ,

QrkA = ArkP
r
k , R

f
k = RfkQ

f
k , and R

r
k = RrkQ

r
k, k = 2, 3, . . . , J .

For the case of partial refinement, we present the proof for only the AFACx
operator with Richardson iteration as the smoother. It is obvious by now that the
case of more general symmetric smoothers that are spectrally equivalent to Richardson
iteration is easily handled through conditions like assumption A.2. Henceforth, let
Rf1 = (A

f
1 )

−1, Rfk =
1
λk
I, k = 2, 3, . . . , J , and Rrk =

1
λk−1

I, k = 2, 3, . . . , J . Define

T fk = RfkA
f
kP

f
k and T

r
k = RrkA

r
kP

r
k .

The following lemma is needed for the case of partial refinement.
Lemma 4.11. We have

A(T rk v, v) ≤ A(T fk−1v, v) ∀v ∈ VJ , k = 2, 3, . . . , J.(4.38)

Proof. From the basic properties of the L2 projection operators listed in section
2.7, we have

‖(Qfk−1 −Qrk)u‖2 = ((Qfk−1 −Qrk)u, (Q
f
k−1 −Qrk)u)

= ‖Qfk−1u‖2 + ‖Qrku‖2 − 2(Qfk−1u,Q
r
ku)

= ‖Qfk−1u‖2 + ‖Qrku‖2 − 2(Qfk−1u, (Q
r
k)

2u)

= ‖Qfk−1u‖2 + ‖Qrku‖2 − 2(QrkQfk−1u,Q
r
ku)

= ‖Qfk−1u‖2 + ‖Qrku‖2 − 2(Qrku,Qrku)
= ‖Qfk−1u‖2 − ‖Qrku‖2 ∀u ∈ VJ , k = 2, 3, . . . , J.(4.39)

Since ‖(Qfk−1 −Qrk)u‖2 ≥ 0, (4.39) implies that

‖Qrku‖2 ≤ ‖Qfk−1u‖2 ∀u ∈ VJ , k = 2, 3, . . . , J.(4.40)
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Let u = Av. Then

‖QrkAv‖2 ≤ ‖Qfk−1Av‖2

⇒ ‖ArkP rk v‖2 ≤ ‖Afk−1P
f
k−1v‖2

⇒ 1

λk−1
(ArkP

r
k v,A

r
kP

r
k v) ≤

1

λk−1
(Afk−1P

f
k−1v,A

f
k−1P

f
k−1v)

⇒ (RrkA
r
kP

r
k v,A

r
kP

r
k v) ≤ (Rfk−1A

f
k−1P

f
k−1v,A

f
k−1P

f
k−1v)

⇒ A(T rk v, v) ≤ A(T fk−1v, v).

Assumptions similar to A.1 and A.3 in the previous section are made for the case
of partial refinement. We refer to [14] for proof that the assumptions made below are
valid in the case of partial refinement.

A.5. There exist constants ε ∈ (0, 1) and γ > 0 such that
A(T fk w,w) ≤ (γεk−l)2A(w,w) ∀w ∈ V hl

l , l ≤ k, k = 1, 2, . . . , J.(4.41)

Then, from Lemma 4.11 and assumption A.5, we have

A(T rkw,w) ≤ (γεk−l−1)2A(w,w) ∀w ∈ V hl

l , l ≤ k − 1, k = 2, . . . , J.(4.42)

A.6. There exists constant θ ∈ (0, 2) such that
A(T fk v, T

f
k v) ≤ θA(T fk v, v) ∀v ∈ VJ(4.43)

and

A(T rk v, T
r
k v) ≤ θA(T rk v, v) ∀v ∈ VJ , k = 1, 2, . . . , J.(4.44)

In addition to the assumptions on the smoothers, a weak regularity assumption
analogous to A.4 is also needed.

A.7. There exists a constant η > 0 such that

A(v, v) ≤ η

J∑
k=1

A(T fk v, v) ∀v ∈ VJ .(4.45)

Finally, we make the following assumption.
A.8. Range(Pk − Pk−1) ⊆ V hk

k , k = 1, 2, . . . , J .
AFACx operator Ba for the case of partial refinement can be written as

Ba =

J∑
k=1

RfkA
f
kP

f
k

(
I − 1

2
RrkA

r
kP

r
k

)

=
J∑
k=1

T fk

(
I − T rk

2

)
.(4.46)

The proofs of the following lemmas are virtually the same as the proofs for Lem-
mas 4.5 and 4.6, respectively. Assumptions A.5–A.8 and Lemma 4.11 take the place
of assumptions A.1, A.3, and A.4.

Lemma 4.12. Under assumptions A.5, A.6, and A.8, there exists a constant
C1 > 0, independent of the number of levels J , such that

A(Bav, v) ≤ C1A(v, v) ∀v ∈ VJ .(4.47)
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Lemma 4.13. Under assumptions A.5–A.8, there exists a constant C0 > 0, inde-
pendent of the number of levels J , such that

A(Bav, v) ≥ C0A(v, v) ∀v ∈ VJ .(4.48)

The following theorem follows immediately from Lemmas 4.12 and 4.13.
Theorem 4.14. There exists constant C > 0, independent of the number of levels

J , such that

κ(Bs) ≤ C,

where Bs = 1
2 (B

a + (Ba)∗) is the operator corresponding to symmetrized AFACx
(Algorithm 4).

5. Conclusions. In this paper, we have presented a new multilevel condition
number estimate for the AFACx algorithm. This estimate shows that the condition
number of the AFACx operator does not degrade as the number of refinement lev-
els in the AMR hierarchy increases. Numerical results supporting these theoretical
estimates are presented in a forthcoming paper.
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Abstract. A high accurate difference-analytical method is introduced for the solution of the
mixed boundary value problem for Laplace’s equation on graduated polygons. The polygon can have
broken sections and be multiply connected. The uniform estimate of the error of the approximate

solution is of order O(h6), whereas it is of order O(h6/r
p−λj

j ) for the errors of p-order derivatives

(p = 1, 2, . . . ) in a finite neighborhood of reentry vertices; here, h is the mesh step, rj is the distance
from the current point to the vertex in question, λj = 1/(aαj), and a = 1 or 2 depending on the
types of boundary conditions. Further, αjπ is the value of the interior angle at the considered vertex.
Numerical experiments are illustrated in section 8 to support the analysis made.
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1. Introduction. As is well known, the use of the classical finite difference
method (FDM) or the finite element method (FEM) for the solution of elliptic bound-
ary value problems with singularities proves ineffective. A special construction is usu-
ally needed for the numerical scheme near the singularities. Various forms of these
methods are often used for both the FDM and the FEM. To start with, (a) the use
of a mesh refinement method dealing with the singular points (Volkov [23], [24] and
Dosiyev [9] for the FDM; Thatcher [20] for the FEM) and (b) the use of singular
terms of the series expansion of the exact solution around the singular points (Motz
[16], Fox and Sankar [11], Volkov [25], and Fryazinov [12] in the FDM; Fix [10], Wait
and Mitchell [30], Barnhill and Whiteman [5], Blum and Dobrowolski [6], and Olson,
Georgiou, and Schultz [17] in the FEM) are two such forms. In the mesh refinement
approach, the number of nodes, and consequently the number of unknowns, increase
up to O(h−2 lnh−1) [9], [23], [24]. The use of the singular term approach, on the
other hand, results in a system of ill-conditioned algebraic equations. This is because
singular terms with a nonlocal carrier are added to the basic piecewise-polynomial
functions with a local carrier, resulting in basic total functions that are “almost”
linearly dependent for small h. Other forms also exist: (c) the use of a modified differ-
ence approximation in a fixed neighborhood of corners (Babuska and Rosenzweig [3],
Andreev [1], [2], and Zenger and Gietl [34]) results in error bounds for a fixed point in
the interior of the domain that are of the same order as in the case of smooth solutions
but not uniform; and (d) a number of useful combinations of different methods can be
used to take into account the differential properties of the solution in different parts
of the domain and achieve an effective realization of the resulting system of algebraic
equations (see Li [14]).

To elaborate the methods further, Li, Mathon, and Sermer [13] (see also [14]) use
piecewise expansions into particular solutions to approximate the boundary conditions
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in a least-square sense. In this boundary method, to get high accurate results a large
number of particular solutions are needed: in application to the Motz problem, 34
solutions are needed to result in an absolute error in the maximum norm of order
5.47E−9. This large number of particular solutions may cause serious difficulties due
to the ill conditioning of the associated least-squares matrices. Here, the condition
number is 3.97E + 07, but it can be decreased to 3617 by dividing the given domain
in the Motz problem into three subdomains. Different numbers of particular solutions
are then used for each subdomain. However, even when the best combination of these
numbers is used, the accuracy is of order E − 06 only.

The method of auxiliary mapping (MAM) is introduced by Babuska and Oh [4]
in the context of the p-version of the FEM to deal with corner singularities. Several
extensions of the MAM that include boundary singularities and application to the
h-p version of the FEM are given by Lucas and Oh [15]. The best result due to [15]
in application to the Motz problem gives an absolute error in the maximum norm as
2.22E−08 with an optimal mesh refinement when p = 10. In [15], the results achieved
are compared with the extremely accurate results of [13].

A sequence of approximation to the exact boundary conditions at an artificial
boundary is given by Wu and Han [33]; exact boundary conditions are obtained
around each singular point as a series. The original problem is then reduced to a
boundary value problem in a domain away from the singularities; the FEM is applied
to the resulting problem. When this method is applied to the Motz problem (see [33]),
it is observed that only a few coefficients in the series expansion of the exact solution
around the singular points can be approximated. Further, these approximations are
not accurate, and increasing the number of terms in the approximation of the exact
boundary conditions at an artificial boundary yields no improvement.

Finally, we mention the block method (BM) given by Volkov [26] for solving
boundary value problems for Laplace’s equation as one that is not a difference method.
In the BM, the analytic properties of harmonic functions are most successfully used to
construct an approximate solution. The approximate solution is an approximation of
the integral representation of the harmonic function in a fixed number of blocks (sec-
tors, semicircles, and circles) covering the given domain. With boundary conditions
given by algebraic polynomials or analytic functions, the problem of convergence of the
approximate solution and its derivatives of any order is investigated. This method
was developed for different problems (see Volkov [29] and references therein). The
rates of convergence of the approximate solution and its derivatives of the BM are
higher (they converge exponentially with respect to the number of quadrature nodes)
than the results obtained in above-mentioned approaches, but the application of the
BM becomes restricted when the boundary function on some sides of polygon is given
as a nonanalytic function (see Volkov [28]).

In light of the above-reviewed methods, a new difference-analytical method, called
the block-grid method (BGM), for the solution of the mixed boundary value problems
for Laplace’s equation on graduated polygons is introduced. Thus, the proposed
method is a combination of two methods which takes only superiorities of each one of
them: the BM, which finely takes into account the behavior of the exact solution near
the vertices of interior angles �= π/2 of the polygon (on the “singular” part), and the
FDM, which has a simple structure and high accuracy on square grids of the rectangles
covering the remainder, “nonsingular”part of the polygon. A gluing operator of sixth
order of accuracy is constructed for gluing together the grids and blocks. Furthermore,
the restriction on the boundary functions to be algebraic polynomials is required only
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on the sides of interior angles �= π/2. The system of finite difference equations on
the union of all rectangles may be solved by the alternating method of Schwarz with
the number of iterations O(ln ε−1), where ε is the prescribed accuracy, by solving
standard 9-point difference equations of Laplace on the rectangular domain at each
iteration. The approximate solution on blocks is defined as a harmonic function, and
any order of derivatives can be found by simple differentiation. The uniform estimate
of the error of the approximate solution is of order O(h6), whereas it is of order

O(h6/r
p−λj

j ) for the errors of p-order derivatives (p = 1, 2, . . . ) in the “singular” part
of the polygon; here rj is the distance from the current point to the vertex of the block
in question, and λj depends on the magnitude of the angle at the vertex and the type
of boundary conditions on the sides of the considered block. Furthermore, when the
boundary conditions are either Dirichlet or mixed type on the sides of interior angles

�= π/2, then the error of approximate solution on the block sectors decreases as r
λj

j h6,
which gives the additional accuracy of this approach near the singular points, with
respect to existing FDM or FEM modifications for the singular problems. Finally, we
illustrate the effectiveness of the method in solving the problem in L-shaped polygons
with the corner and boundary singularities and the well-known Motz problem.

The BGM in the case of the Dirichlet problem on graduated polygons was given
in [7], [8].

2. Boundary value problem on polygons. Let G be an open simply con-
nected polygon with sides parallel to the x and y axes, let γj , j = 1, 2, . . . , N , be its
sides, including the ends, enumerated counterclockwise, and let αjπ, 0 < αj ≤ 2, be
the interior angle formed by its sides γj−1 and γj (γ0 = γN ). Denote by Aj the vertex
of the jth angle, by s the arclength, measured along the boundary of G in the positive
direction, and by sj the value of s at Aj . Let rj , θj be a polar system of coordinates
with pole in Aj , where the angle θj is taken couterclockwise from the side γj , and νj
is a parameter taking the values 0 or 1; further, νj = 1− νj .

We consider the boundary value problem

∆u = 0 on G,(2.1)

νju+ νju
(1)
n = νjϕj + νjψj on γj , j = 1, 2, . . . , N,(2.2)

where ∆ ≡ ∂2/∂x2 + ∂2/∂y2, u
(1)
n is the derivative along the inner normal, ϕj and ψj

are given functions, and

1 ≤ ν1 + ν2 + · · ·+ νn ≤ N,(2.3)

νjϕj + νjψj ∈ C6,λ(γj), 0 < λ < 1, 1 ≤ j ≤ N.(2.4)

Furthermore, at the vertices Aj for αj = 1/2 the conjugation conditions

νjϕ
(2q+δτ−2)
j + νjψ

(2q+δτ )
j = (−1)q+δτ+δτ−1

(
νj−1ϕ

(2q+δτ−1)
j−1 + νj−1ψ

(2q+δτ )
j−1

)
(2.5)

(except maybe for q = 3, when τ = 3) are satisfied; τ = νj−1 + 2νj , q = 0, 1, . . . , Q,
Q = [(6 − δτ−1 − δτ−2)/2] − δτ , and δw = 1 when w = 0; δw = 0 when w �= 0. At
the vertices Aj with αj �= 1/2 no compatibility conditions are required to hold for
the boundary conditions; in particular, the values of ϕj−1 and ϕj at Aj might be
different. In addition, we require that when αj �= 1/2 the boundary functions on γj−1

and γj be given as algebraic polynomials of arclength s measured along γ.
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We represent the given boundary functions (algebraic polynomials) on γj−1 and
γj for αj �= 1/2 in the form

τj−1∑
k=0

a0
jkr

k
j and

τj∑
k=0

b0jkr
k
j ,(2.6)

respectively; here a0
jk and b0jk are numerical coefficients, and τ j−1 and τ j are degrees

of those polynomials.
Let E = {j : αj �= 1/2, j = 1, 2, . . . , N}. In the neighborhood of Aj , j ∈ E, we

construct two fixed block-sectors T i
j = Tj(rji) ⊂ G, i = 1, 2, where 0 < rj2 < rj1 <

min{sj+1 − sj , sj − sj−1}, Tj(r) = {(rj , θj) : 0 < rj < r, 0 < θj < αjπ}.
On the closed sector T

1

j , j ∈ E, we consider a function Qj(rj , θj) with the follow-
ing properties:

(i) Qj(rj , θj) is harmonic and bounded on the open sector T 1
j ;

(ii) continuous on T
1

j everywhere, except for the point Aj (the vertex of the sector)
for νj = νj−1 = 1 and a0

j0 �= b0j0, where a0
j0 and b0j0 are given numbers from (2.6), i.e.,

for boundary conditions discontinuous at Aj ;

(iii) continuously differentiable on T
1

j \ Aj and satisfies the boundary conditions

(2.2) on γj−1 ∩ T
1

j and γj ∩ T
1

j , j ∈ E.
For definiteness we assume that Qj(rj , θj), with the above properties, has the

form (3.2)–(3.9) in [29].
Remark 2.1. For the case of νj−1 = νj = 1, we formally set the value of Qj(rj , θj)

and the solution u of problem (2.1), (2.2) at the vertex Aj equal to (a0
j0 + b0j0)/2.

We set (see Volkov [26])

R(m,m, r, θ, η) = R(r, θ, η) + (−1)mR(r, θ,−η),(2.7)

R(1−m,m, r, θ, η) = R(m,m, r, θ, η)− (−1)mR(m,m, r, θ, π − η),(2.8)

where

R(r, θ, η) =
1− r2

2π(1− 2r cos(θ − η) + r2)
(2.9)

is the kernel of the Poisson integral for a unit circle. We specify the kernel

Rj(rj , θj , η) = λjR

(
νj−1,νj,

(
rj
rj2

)λj

, λjθj , λjη

)
, j ∈ E,(2.10)

where

λj =
1

(2− νj−1νj − νj−1νj)αj
.(2.11)

The following lemma shows important properties of the solution, which will be
used to construct the proposed method.

Lemma 2.2. The solution u of the boundary value problem (2.1), (2.2) can be

represented on T
2

j \ Vj , j ∈ E in the form

u(rj , θj) = Qj(rj , θj) +

∫ αjπ

0

(u(rj2, η)−Qj(rj2, η))Rj(rj , θj , η)dη,(2.12)
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and the harmonic function un(rj , θj), which is obtained as a result of approximation
of the integral in (2.12) by the composite rectangular formula with n equally spaced
nodes, satisfies the inequality

| u− un |≤ cj exp(−djn) on T
3

j , 0 < rj3 < rj2,(2.13)

where Vj is the curvilinear part of the boundary of the sector T 2
j , and cj and dj are

positive constants independent on n.
The proof of Lemma 2.2 follows from Theorems 3.1 and 5.1 in [29].
Remark 2.3. The constants cj and dj in Lemma 2.2 depend on the radius rj3 of

T 3
j , and the sequence un(rj , θj), n = 1, 2, . . . , is unbounded in the open sector T 2

j and

hence diverges in T 2
j in the uniform metric. Therefore, the exponential convergence of

un(rj , θj), n = 1, 2, . . . , is guaranteed only in the sector T
3

j with the radius rj3 < rj2.

3. 9-point solution on rectangles. Let Π = {(x, y) : 0 < x < a, 0 < y < b}
be a rectangle, a/b be rational, γj (j = 1, 2, 3, 4) be the sides, including the ends,
enumerated counterclockwise starting from the left side (γ0 ≡ γ4, γ5 ≡ γ1), and let
γ = ∪4

j=1γj be the boundary of Π, let νj be a parameter taking the values 0 or 1, and
let νj = 1− νj .

We consider the boundary value problem (2.1)–(2.5) on G ≡ Π:

∆u = 0 on Π,(3.1)

νju+ νju
(1)
n = νjϕj + νjψj on γj , j = 1, 2, 3, 4.(3.2)

Let h > 0, with a/h ≥ 2, b/h ≥ 2, be integers. We assign Πh, a square net on Π,
with step h, obtained with the lines x, y = 0, h, 2h, . . . . Let γhj be a set of nodes on
the interior of γj , and let

.
γ
h
j = γj ∩ γj+1, γh =

⋃
(γhj ∪ .

γ
h
j ), Π

h
= Πh ∪ γh.

We consider the system of finite difference equations (see [22])

uh = Buh on Πh,(3.3)

uh = νjBjuh + Ejh(ϕj , ψj) on γhj ,(3.4)

uh = νjνj+1

.

Bjuh +
.

Ej,h(ϕj , ϕj+1,ψj , ψj+1) on
.
γ
h
j , j = 1, 2, 3, 4,(3.5)

where

Bu(x, y) ≡ (u(x+ h, y) + u(x, y + h) + u(x− h, y)

+u(x, y − h))/5 + (u(x+ h, y + h) + u(x− h, y + h)

+u(x− h, y − h) + u(x+ h, y − h))/20,(3.6)

the operators Bj , Ejh,
.

Bj ,
.

Ejh in the right coordinate system with the axis xj ,
directed along γj+1 and the axis yj , directed along γj have the expressions

Bju(0, yj) ≡ (2u(h, yj) + u(0, yj + h) + u(0, yj − h))/5(3.7)

+ (u(h, yj + h) + u(h, yj − h))/10,

Ejh(ϕj , ψj) ≡ νjϕj − νj

(
3h

5
ψj −

2h5

5!5
ψ

(4)
j − 2h7

7!
ψ

(6)
j

)
,(3.8)
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.

Bju(0, 0) ≡ (2u(h, 0) + 2u(0, h) + u(h, h))/5,(3.9)

.

Ej,h(ϕj , ϕj+1, ψj , ψj+1) ≡ νjϕj + νjνj+1ϕj+1 − νjνj+1

(
3h

5
(ψj + ψj+1)

+
h2

5
ψ

(1)
j+1 −

2h5

5!5

(
ψ

(4)
j + ψ

(4)
j+1

)
+

4h6

6!5

(
ψ

(5)
j + ψ

(5)
j+1

)
− 2h7

7!

(
ψ

(6)
j + ψ

(6)
j+1

))
.(3.10)

The system of finite difference equations (3.3)–(3.5) which has nonnegative coef-
ficients with the conditions (2.3) is uniquely solvable.

Theorem 3.1. Let u be the solution of problem (3.1), (3.2). Then

max
Π

h
| uh − u |≤ ch6,(3.11)

where uh is the solution of the system (3.3)–(3.5), and c is a constant independent of
h.

Proof. Theorem 3.1 is proved in the same way as Theorem 1.1 of [24] except that
instead of the function (1.14) of [24] we need to take the function

uj(x, y) = (−1)jνjνj+1

2
(
ϕ̃

(6)
j (sj+1) + ϕ̃

(6)
j+1(sj+1)

)
π6!

Im{(z − zj)
6 ln(z − zj)}

(making the corresponding changes), where ϕ̃l = νlϕl, z = x+ iy, and zj = xj + iyj
is the complex coordinate of the vertex γj ∩ γj+1.

4. Description of the block-grid method. Let us consider in addition to the
sectors T 1

j , T
2
j , and T 3

j (see section 2) in the neighborhood of each vertex Aj , j ∈ E,

of the polygon G, a sector T 4
j , where 0 < rj4 < rj3 < rj2, and let GT = G\ (∪j∈ET

4

j ).
The construction of the proposed method can be divided into the following steps.
Step 1. We blockade all singular corners Aj , j ∈ E, by the double sectors T i

j =

Tj(rji), i = 2, 3, with rj3 < rj2, T 2
k ∩ T 3

l = ∅, k �= l, k, l ∈ E, and cover the
given polygon by overlapping rectangles Πk, k = 1, 2, . . . ,M , and sectors T 3

j , j ∈ E,

such that the distance from Πk to the singular point Aj is not less than rj4 for all
k = 1, 2, . . . ,M and j ∈ E (see Figure 1, in the case when M = 4 and E = {1}; i.e.,
the singular point is only A1).

Step 2. On each rectangle Πk, we use the 9-point scheme for the approximation of
Laplace’s equation on square grids with the step size hk ≤ h, h being the parameter,

and as an approximate solution on T
3

j , j ∈ E (in singular parts), we take the harmonic
function un(rj , θj), defined in Lemma 2.2 (see also Remark 2.3).

Step 3. We construct the sixth order matching operator to connect the subsys-
tems.

Step 4. We use Schwarz’s alternating procedure by solving standard difference
equations of Laplace on the rectangular domain at each iteration.

Now we describe the procedure of obtaining the algebraic system of equations for
the numerical solution of problem (2.1), (2.2).

Let Πk ⊂ GT , k = 1, 2, . . . ,M (M < ∞) be certain fixed open rectangles
with sides a1k and a2k parallel to the x and y axes, with a1k/a2k rational and
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Fig. 1.

G ⊂ (∪M
k=1Πk)∪(∪j∈ET 3

j ) ⊂ G.We denote by ηk the boundary of the rectangle Πk and

by Vj the curvilinear part of the boundary of the sector T
2
j , and let tj = (∪M

k=1ηk)∩T
3

j .
The following general requirement is imposed on the arrangement of the rectangles
Πk, k = 1, 2, . . . ,M : any point P lying on ηk ∩GT , 1 ≤ k ≤ M , or located on Vj ∩G,
j ∈ E, falls inside at least one of the rectangles Πk(p), 1 ≤ k(p) ≤ M, depending on P ,
the distance from P to GT ∩ ηk(p) being not less than some constant κ0 independent
of P.

We will call the quantity κ0 the depth of a gluing of the rectangles Πk, k =
1, 2, . . . ,M. We introduce a parameter h ∈ (0, κ0/4] and define a square grid on Πk,
1 ≤ k ≤ M, with maximal possible step hk ≤ min{h,min{a1k, a2k}/6} such that the
boundary ηk lies entirely on the grid lines. Let Πh

k be the set of grid nodes on Πk, let

ηhk be the set of nodes on ηk, and let Π
h

k = Πh
k ∪ ηhk . We denote the set of nodes in

the closure of ηk ∩GT by ηhk0, the set of nodes on tj by thj , and the set of remaining

nodes on ηk by ηhk1. We also specify a natural number n ≥ [ln1+κ h−1] + 1, where
κ > 0 is a fixed number, and the quantities n(j) = max{4, [αjn]}, βj = αjπ/n(j),
and θmj = (m − 1/2)βj , j ∈ E, 1 ≤ m ≤ n(j). On the arc Vj , we choose the points
(rj2, θ

m
j ), 1 ≤ m ≤ n(j), and denote the set of these points by V n

j . Let

ωh,n =

(
M⋃
k=1

ηhk0

)
∪
⋃

j∈E
V n
j

 , G
h,n

∗ = ωh,n ∪
(

M⋃
k=1

Π
h

k

)
.

Let ϕj and ψj be given functions from the boundary conditions (2.2), and let ϕ =

{ϕj}Nj=1 and ψ = {ψj}Nj=1. On the set ωh,n we introduce the linear matching operator

S6. The value of S6(uh, ϕ, ψ) at the point P ∈ ωh,n is defined linearly in terms of
the values of the function uh at the nodes of the grid constructed on the rectangle
Πk(p) � P and the assigned boundary values of ϕ(m), m = 0, 1, . . . , 5 (or ψ(q), q =
0, 1, . . . , 4) at a fixed number of points. If there is more than one rectangle containing
P, we choose Πk(p) such that part of the boundary ηk(p),0 is the maximum distance

away from P. The pattern of the operator S6 lies in a neighborhood O(h) of the point
P, and in a uniform metric for ϕ ≡ 0 and ψ ≡ 0 its norm is not greater than one.
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Moreover, u − S6(u, ϕ, ψ) = O(h6) uniformly on ωh,n. An operator S6 with these
properties will be constructed in section 5 by developing the method given in [8] for
the Dirichlet problem.

Let

R
(q)
j (rj , θj) =

Rj(rj , θj , θ
q
j)

max
{
1, βj

∑n(j)
p=1 Rj(rj , θj , θ

p
j )
} ,(4.1)

where Rj(r, θ, η) is the kernel defined by (2.10). It is easy to check that

0 ≤ R
(q)
j (rj , θj) ≤ Rj(rj , θj , θ

q
j),(4.2)

where j ∈ E, 0 ≤ q ≤ n(j). Furthermore, from the estimation (2.29) in [26] follows
the existence of the positive constants n0 and σ such that, for n ≥ n0,

max
(rj ,θj)∈T 3

j

βj

n(j)∑
q=1

Rj(rj , θj , θ
q
j) ≤ σ < 1(4.3)

when νj−1 + νj ≥ 1, and on the basis of (4.1) and (4.2)

0 ≤ βj

n(j)∑
q=1

R
(q)
j (rj , θj) ≤ 1, j ∈ E(4.4)

when νj−1 = νj = 0.
Consider the system of linear algebraic equations

uh = Buh on Πh
k , uh = ν̄mBmuh + Emh(ϕ,ψ) on ηhk1 ∩ γm,(4.5)

uh = ν̄mν̄m+1Ḃmuh + Ėmh(ϕm, ϕm+1, ψm, ψm+1)

on ηhk1 ∩ γm ∩ γm+1,(4.6)

uh(rj , θj)

= Qj(rj , θj) + βj

n(j)∑
q=1

R
(q)
j (rj , θj)(uh(rj2, θ

q
j)−Qj(rj2, θ

q
j)), (rj , θj) ∈ thj ,(4.7)

uh = S6(uh, ϕ, ψ) on ωh,n,(4.8)

where 1 ≤ m ≤ N , 1 ≤ k ≤ M , j ∈ E; B, Bm,
.

Bm, Emh, and
.

Emh are defined by the
formulas (3.6)–(3.10), respectively; Qj(rj , θj) is the harmonic polynomial described
in section 2.

Definition 4.1. The solution of the system (4.5)–(4.8) is called a numerical

solution of the problem (2.1), (2.2) on G
h,n

∗ .
Definition 4.2. Let uh be the solution of the system (4.5)–(4.8). The function

Uh(rj , θj) = Qj(rj , θj) + βj

n(j)∑
q=1

Rj(rj , θj , θ
q
j)(uh(rj2, θ

q
j)−Qj(rj2, θ

q
j))(4.9)

is called an approximate solution of the problem (2.1), (2.2) on the closed block T
3

j ,
j ∈ E.

Definition 4.3. The system (4.5)–(4.9) is called the block-grid equations.
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5. Construction of the sixth order matching operator. Let Ω = {(x, y) :
x2 + y2 < 1} be a unit circle and u ∈ C6,0(Ω) be a harmonic function on Ω. On the
basis of Taylor’s formula for any point (x, y) ∈ Ω, we have

u(x, y) =

5∑
k=0

ak Re zk +

5∑
k=1

bk Im zk +O(r6),(5.1)

where r =
√

x2 + y2,

a0 = u(0, 0), a1 =
∂u(0, 0)

∂x
, a2 =

1

2

∂2u(0, 0)

∂x2
, a3 =

1

3!

∂3u(0, 0)

∂x3
,

a4 =
1

4!

∂4u(0, 0)

∂x4
, a5 =

1

5!

∂5u(0, 0)

∂x5
;(5.2)

b1 =
∂u(0, 0)

∂y
, b2 =

1

2

∂2u(0, 0)

∂x∂y
, b3 =

1

3!

∂3u(0, 0)

∂x2∂y
,

b4 =
1

4!

∂4u(0, 0)

∂x3∂y
, b5 =

1

5!

∂5u(0, 0)

∂y5
.(5.3)

We denote

F5(x, y) =

5∑
k=0

ak Re z
k +

5∑
k=1

bk Im zk.(5.4)

We construct the operator S6 from the condition that the expression S6(F5, ϕ, ψ)
gives the exact value of any harmonic polynomial F5(x, y) defined by the formula (5.4)
at each point P ∈ ωh,n. For simplicity, we will denote the step size of the square grid
in the rectangle containing the point P ∈ ωh,n by h.

Case 1. The point P ∈ ωh,n lies on a grid line. We place the origin of the
rectangular system of coordinates at the node P0 and direct the positive axis of x
along the grid line so that P = P (δh, 0), 1 ≤ δ ≤ 3/2. We take points P1(2h, 0),
P2(3h, 0), P3(2h, h), P4(h, h), P5(0, h). First, we find numerical coefficients λ′, λ′

k,
k = 1, . . . , 5, such that the representation

u0 = λ′u+ λ′
1u1 + λ′

2u2 + λ′
3u3 + λ′

4u4 + λ′
5u5(5.5)

is satisfied for the harmonic polynomials Re zn, n = 0, 1, . . . , 5, where u = u(P ),
uk = u(Pk), k = 0, 1, . . . , 5, z = x+ iy. We then have

λ′ + λ′
1 + λ′

2 + λ′
3 + λ′

4 + λ′
5 = 1,

δλ′ + 2λ′
1 + 3λ′

2 + 2λ′
3 + λ′

4 = 0,

δ2λ′ + 4λ′
1 + 9λ′

2 + 3λ′
3 − λ′

5 = 0,(5.6)

δ3λ′ + 8λ′
1 + 27λ′

2 + 2λ′
3 − 2λ′

4 = 0,

δ4λ′ + 16λ′
1 + 81λ′

2 − 7λ′
3 − 4λ′

4 + λ′
5 = 0,

δ5λ′ + 32λ′
1 + 243λ′

2 − 38λ′
3 − 4λ′

4 = 0.

Solving system (5.6), we obtain λ′ = 1/(1 − µ0), λ
′
q = −µq/(1 − µ0), q = 1, . . . , 5,
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where

µ1 = δ2(21− 34δ + 21δ2 − 4δ3)/20, µ2 = δ(δ − 1)(3δ3 − 12δ2 + 13δ − 2)/60,

µ3 = δ(18− 87δ + 153δ2 − 87δ3 + 15δ4)/120, µ4 = δ(6 + δ − 4δ2 + δ3)/10,

µ5 = δ(30− 49δ + 31δ2 − 9δ3 + δ4)/40, µ0 =

5∑
j=1

µi.

It is easy to check that the inequalities λ′ > 0, λ′
1 < 0, λ′

2 ≤ 0, λ′
3 < 0, λ′

4 < 0, λ′
5 < 0

hold for 1 ≤ δ ≤ 3/2, with λ′
2 = 0 only when δ = 1.

Now we take the nodal points P6(2h,−h), P7(h,−h), and P8(0,−h), respectively,
symmetric to the points P3, P4, and P5 with respect to the x-axis. Since Im zk = 0,
k = 0, 1, . . . , 5, for y = 0 and is odd with respect to y, and Re zk, k = 0, 1, . . . , 5, is
even with respect to y, from (5.5) we obtain the expression

S6u ≡
8∑

k=0

λkuk,(5.7)

which gives the exact value of the harmonic polynomial F5(x, y) at the point P , where

λ0 = 1− µ0, λ1 = µ1, λ2 = µ2, λq+3 = λq = µq/2, q = 3, 4, 5.(5.8)

It is easy to check that

λ2 ≥ 0, λq > 0, q �= 2;

8∑
k=0

λk = 1,(5.9)

and S6u ≡ Bu for δ = 1, where B is the operator of (3.6).
Case 2. The point P ∈ ωh,n lies inside a grid cell and in the rectangular system

of coordinates of Case 1 has coordinates P = P (δh, µh), 1 ≤ δ ≤ 3/2, 0 < µ ≤ 1/2.
On grid lines we take the additional points P ′

0 = (0, µh), P ′
1 = (2h, µh), P ′

2 = (3h, µh),
P ′

3 = (2h, h + µh), P ′
4 = (h, h + µh), P ′

5 = (0, h + µh), P ′
6 = (2h,−h + µh), P ′

7 =
(h,−h+µh), P ′

8 = (0,−h+µh). From the values of u at the points P ′
k, k = 0, 1, . . . , 8,

we form the expressions

S6u ≡
8∑

k=0

λku
′
k,

where u′
k = u(P ′

k), and λk, k = 0, . . . , 8, are found from (5.8). Since all the points
P ′
k, k = 0, 1, . . . , 8, lie on grid lines, we express all the values of u′

k, k = 0, 1, . . . , 8,
in terms of nodal values of the function u by formula (5.7) and finally obtain an
expression for S6u which gives the exact value of any harmonic polynomial of the
fifth degree at the point P (δh, µh):

S6u ≡
30∑
k=0

ξkuk,(5.10)

where

ξk ≥ 0,

30∑
k=0

ξk = 1.(5.11)
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If any of the points Pk in (5.7) or (5.10) are outside the domain G, there are two
possibilities to consider.

Case 3. The points emerge through the side γτ of the boundary γ, where τ = j−1
or τ = j, j ∈ E. Since for j ∈ E the function ϕτ or ψτ is given as an algebraic
polynomial of the arclength s, the harmonic function u−Qj , where Qj is the function
defined in section 2, is extendable as an odd function across γτ if the boundary
condition (2.2) on γτ is the Dirichlet type and is extendable as an even function if the
boundary condition is the Neumann type. Thus, an operator S6 has been constructed,
as in Cases 1 and 2, but only for the function u−Qj , and Qj(P ) must then be added
to the expression S6( u−Qj).

Case 4. The points emerge through the side γm when ϕm or ψm is given as a
function of the class C6,λ(γm) only.

Subcase 4a. νm = 1; i.e., u = ϕm on γm and ϕm ∈ C6,λ(γm), 0 < λ < 1. We
position the origin of the rectangular system of coordinates on γm so that the point
P lies on the positive y-axis, and the x-axis is in the direction of the vertex Am+1

along γm. Since

5∑
k=1

bk Im zk = 0 if y = 0,(5.12)

by representing the function ϕm ∈ C6,λ(γm) in the neighborhood of x = 0 using
Taylor’s formula, and using (5.2) for the solution of problem (2.1), (2.2) in the neigh-
borhood |z| ≤ 4h, z = x+ iy, of the origin, we find the coefficients ak, k = 0, 1, . . . , 5,
of (5.1) as

ak =
1

k!

dkϕm(0)

dxk
.

We put

ũ(x, y) ≡ u(x, y)−
5∑

k=0

ak Re z
k =

5∑
k=1

bk Im zk +O(h6)

for y > 0 and complete the definition with ũ(x, y) = −ũ(x,−y) for y < 0. Obviously,
in the given neighborhood ũ(x, y) is equal to the harmonic polynomial (5.12) with
accuracy O(h6) by virtue of the fact that this polynomial is odd relative to the x-axis.
We then form the expression for S6ũ using (5.7) or (5.10), adding the quantity(

5∑
k=0

ak Re z
k

)
(P ).

Subcase 4b. νm = 0; i.e., u
(1)
n = ψm on γm. Let

Πτ = {(x, y) : −a1τ/2 < x < a1τ/2, 0 < y < a2τ}

be one of the rectangles chosen in section 4 for which P ∈ Πτ , (Πτ ∩ γ) ⊆ γm. Since
ψm ∈ C6,λ(γm), the solution u of the problem (2.1), (2.2) in any rectangle

Π′
τ = {(x, y) : −a′1τ/2 < x < a′1τ/2, 0 < y < a′2τ},
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where 0 < a′iτ < aiτ , i = 1, 2, and P ∈ Π′
τ is

u ∈ C7,λ(Π
′
τ ).(5.13)

Then in the neigborhood |z| ≤ 4h of the origin by using Taylor’s formula we have

∂u(x, y)

∂y

∣∣∣∣ y=0 =
∂u(0, 0)

∂y
+ x

∂2u(0, 0)

∂x∂y
+

x2

2

∂3u(0, 0)

∂x2∂y
+

x3

3!

∂4u(0, 0)

∂x3∂y
+

x4

4!

∂5u(0, 0)

∂x4∂y

+
x5

5!

∂6u(0, 0)

∂x5∂y
+O(h6).(5.14)

Furthermore, taking into account the boundary condition u
(1)
n = ψm we have

∂u(x, y)

∂y

∣∣∣∣ y=0 ≡ ψm(x) = ψm(0) + x
dψm(0)

dx
+

x2

2

d2ψm(0)

dx2
+

x3

3!

d3ψm(0)

dx3

+
x4

4!

d4ψm(0)

dx4
+

x5

5!

d5ψm(0)

dx5
+O(h6).(5.15)

On the basis of (5.14) and (5.15) we obtain

∂u(x, y)

∂y
= ψm(0),

∂2u(0, 0)

∂x∂y
=

dψm(0)

∂x
,
∂3u(0, 0)

∂x2∂y
=

d2ψm(0)

∂x2
,
∂4u(0, 0)

∂x3∂y
=

d3ψm(0)

∂x3
,

∂5u(0, 0)

∂x4∂y
=

d4ψm(0)

∂x4
,

∂6u(0, 0)

∂x5∂y
=

d5ψm(0)

∂x5
.(5.16)

By (5.3) and (5.16), for the coefficients bk, k = 1, 2, . . . , 5, in the representation (5.1),
we have

bk =
1

k!

dk−1ψm(0)

dxk−1
, k = 1, 2, . . . , 5.

We define, for y > 0, the function

˜̃u(x, y) ≡ u(x, y)−
5∑

k=1

bk Im zk =

5∑
k=0

ak Re zk +O(h6)

and complete the definition for y < 0 with ˜̃u(x, y) = ˜̃u(x,−y). It is evident that in the

neighborhood |z| ≤ 4h the function ˜̃u(x, y) coincides with the harmonic polynomial

5∑
k=0

ak Re z
k

with an accuracy O(h6) by virtue of the fact that this polynomial is even relative to

the x-axis. We then form the expression for S6˜̃u using (5.7) or (5.10), adding the
quantity (

5∑
k=1

bk Im zk

)
(P ).
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Remark 5.1. In Cases 1 and 2, it is assumed that all points Pk as well as P are

in G
h,n

∗ . We denote the set of such points P by ωh
1 . Similarly, we denote the set of

P in Cases 3 and 4 by ωh
2 and ωh

3 , respectively. Furthermore, let ωh
3a and ωh

3b be the
subsets of ωh

3 , which are defined in Subcases 4a and 4b, respectively. It is obvious that
ωh

3 = ωh
3a ∪ ωh

3b and ωh
3a ∩ ωh

3b = ∅. Then the matching operator S6 can be expressed
as follows:

S6(u, ϕ, ψ) =



S6u on ωh
1 ,

S6(u−Qj) +Qj(P ) on ωh
2 ,

S6

(
u−

5∑
k=0

ak Re zk
)
+

(
5∑

k=0

ak Re zk
)
(P ) on ωh

3a,

S6

(
u−

5∑
k=1

bk Im zk
)
+

(
5∑

k=1

bk Im zk
)
(P ) on ωh

3b.

6. Analysis of the block-grid equations.

Theorem 6.1. There is a natural number n0 such that for all n ≥ n0 the system
of equations (4.5)–(4.8) has a unique solution.

Proof. The proof is obtained on the basis of (4.3), (4.4), (5.7)–( 5.11), and Remark
5.1 by analogy with [8].

Let

εh = uh − u,(6.1)

where uh is a solution of system (4.5)–(4.8), and u is the trace on G
h,n

∗ of the solution
of (2.1), (2.2). On the basis of (2.1), (2.2), (4.5)–(4.8), and ( 6.1) the error εh satisfies
the system of difference equations

εh = Bεh + r1
h on Πh

k ,

εh = νmBmεh + r2
h on ηhk1 ∩ γm,

εh = νmνm+1

.

Bmεh + r3
h on ηhk1 ∩ γm ∩ γm+1,

εh(rj , θj) = βj

n(j)∑
q=1

R
(q)
j (rj , θj)εh(rj2, θ

q
j) + r4

jh, (rj , θj) ∈ thj ,(6.2)

εh = S6εh + r5
h on ωh,n,

where 1 ≤ m ≤ N, 1 ≤ k ≤ M, j ∈ E,

r1
h = Bu− u on

M⋃
k=1

Πh
k ,(6.3)

r2
h = νmBmu− u+ Emh(ϕm,ψm) on γm ∩

(
M⋃
k=1

ηhk1

)
,(6.4)

r3
h = νmνm+1

.

Bmu− u+
.

Emh(ϕm, ϕm+1, ψm, ψm+1)

on γm ∩ γm+1 ∩
(

M⋃
k=1

ηhk1

)
,(6.5)
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r4
jh = βj

n(j)∑
q=1

R
(q)
j (rj , θj)(u(rj2, θ

q
j)−Qj(rj2, θ

q
j))

− (u(rj , θj)−Qj(rj , θj)) on
⋃
j∈E

thj ,(6.6)

r5
h =



S6u− u on ωh
1 ,

S6(u−Qj)− (u−Qj)(P ) on ωh
2 ,

S6

(
u−

5∑
k=0

ak Re z
k

)
−
(
u−

5∑
k=0

ak Re z
k

)
(P ) on ωh

3a,

S6

(
u−

5∑
k=1

bk Im zk

)
−
(
u−

5∑
k=1

bk Im zk

)
(P ) on ωh

3b.

(6.7)

In what follows and for simplicity, we will denote constants which are independent
of h by c.

Lemma 6.2. There exists a natural number n0 such that for all n ≥
max

{
n0,
[
ln1+κ h−1

]
+ 1
}
, κ > 0 being a fixed number,

max
j∈E

∣∣r4
jh

∣∣ ≤ ch6.(6.8)

Proof. On the basis of (6.6), Lemma 2.2, (4.1), Lemma 6.5 in [29], and by virtue

of thj ⊂ T
3

j and the boundedness of the difference u(rj2, θ
q
j)−Qj(rj2, θ

q
j), 1 ≤ q ≤ n(j),

we obtain

∣∣r4
jh

∣∣ ≤
∣∣∣∣∣∣βj

n(j)∑
q=1

Rj(rj , θj , θ
q
j)(u(rj2, θ

q
j)−Qj(rj2, θ

q
j))

−
∫ αjπ

0

Rj(rj , θj , η)(u(rj2, η)−Qj(rj2, η))dη

∣∣∣∣∣∣
+βj

n(j)∑
q=1

∣∣∣R(q)
j (rj , θj)−Rj(rj , θj , θ

q
j)
∣∣∣ ∣∣u(rj2, θqj)−Qj(rj2, θ

q
j)
∣∣

≤ c0j exp
{−d0

jn
}
, j ∈ E,(6.9)

where c0j and d0
j > 0 are constants independent of n. Putting c0 = maxj∈E

{
c0j
}
and

d0 = minj∈E
{
d0
j

}
from (6.9) we have

max
j∈E

∣∣r4
jh

∣∣ ≤ c0 exp
{−d0n

}
.(6.10)

Let n0 be a natural number to hold the inequality (4.3). Then, for all n ≥
max

{
n0,
[
ln1+κ h−1

]
+ 1
}
, where κ > 0 is a fixed number, we have the inequality

(6.8).
Since the set of points ωh,n located from the vertices of the polygon G at the

distance exceeding some positive quantity independent of h, then by virtue of (2.4),
(2.5), and estimation (4.64) in [21], from (6.7) we obtain

max
ωh,n

∣∣r5
h

∣∣ ≤ ch6.(6.11)
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Theorem 6.3. Assume that conditions (2.3)–(2.5) hold. Then there exists a
natural number n0 such that for all n ≥ max

{
n0,
[
ln1+κ h−1

]
+ 1
}
, κ > 0 being a

fixed number,

max
G

h,n

∗

|uh − u| ≤ ch6.

Proof. Let us take an arbitrary rectangular grid Πh
k∗ , and let thk∗j = Π

h

k∗ ∩ thj . Let

thk∗j �= ∅, and let vh be a solution of system (6.2) in the case when the discrepancies

r1
h, r

2
h, r

3
h, r

4
jh, and r5

h in Π
h

k∗ are the same as in (6.3)–(6.7) but are zero in G
h,n

∗ \ Π
h

k∗ .
It is easy to show that

W = max
G

h,n

∗

|vh| = max
Π

h

k∗
|vh| .(6.12)

We represent the function vh on G
h,n

∗ as

vh =

4∑
κ=1

vκh ,(6.13)

where the functions vκh , κ = 2, 3, 4, are defined on Π
h

k∗ as a solution of the system of
equations

vκh = Bvκh + rκ(h) on Πh
k∗ ,

vκh = νmBmvκh + rκ(h) on ηhk∗1 ∩ γm,

vκh = νmνm+1

.

Bmvκh + rκ(h) on ηhk∗1 ∩ γm ∩ γm+1,(6.14)

vκh(rj , θ) = rκj (h), (rj , θj) ∈ thk∗j ,

vκh = rκ5 (h) on ωh,n;

with

vκh = 0, κ = 2, 3, 4, on G
h,n

∗ \Πh

k∗ ,(6.15)

rκ(h) = 0, κ = 2, 3; rκj (h) = 0, κ = 3, 4, r2
j (h) = r4

jh; r
κ
5 (h) = 0, κ = 2, 4, r3

5(h) = r5
h;

r4(h) =


r1
h on Πh

k∗ ,
r2
h on ηhk∗1 ∩ γm,

r3
h on ηhk∗1 ∩ γm ∩ γm+1.

Hence according to (6.13)–(6.15) the function v1
h satisfies the system of equations

v1
h = Bv1

h on Πh
k ,

v1
h = νmBmv1

h on ηhk1 ∩ γm,

v1
h = νmνm+1

.

Bmv1
h on ηhk1 ∩ γm ∩ γm+1,

v1
h(rj , θj) = βj

n(j)∑
q=1

R
(q)
j (rj , θj)

4∑
κ=1

vκh(rj2, θ
q
j), (rj , θj) ∈ thkj ,(6.16)

v1
h = S6

(
4∑

κ=1

vκh

)
on ωh,n, 1 ≤ m ≤ N, 1 ≤ k ≤ M, j ∈ E,

where the functions vκh , κ = 2, 3, 4, are assumed to be known.
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Taking into account (6.8), (6.11), and (6.15), on the basis of the structure of

operators B, Bm, and
.

Bm and the principle of maximum, we have

W2 = max
G

h,n

∗

∣∣v2
h

∣∣ ≤ ch6,(6.17)

W3 = max
G

h,n

∗

∣∣v3
h

∣∣ ≤ ch6.(6.18)

The function v4
h being a solution of the system (6.14), when κ = 4, with (6.15) is

the error function of the finite difference solution, with step hk∗ ≤ h, of the boundary
value problem (3.1)–(3.2). By virtue of Theorem 3.1 we have

W4 = max
G

h,n

∗

∣∣v4
h

∣∣ = max
Π

h

k∗

∣∣v4
h

∣∣ ≤ ch6.(6.19)

We estimate the function v1
h, which is, according to Theorem 6.1 , the unique

solution of system (6.16). On the basis of (4.3), (4.4), (6.16), and the gluing condition
of the figures Πk, k = 1, 2, . . . ,M, T 2

j , j ∈ E, there exists a real number λ∗, 0 < λ∗ <

1, independent of h, such that for all n ≥ max
{
n0,
[
ln1+κ h−1

]
+ 1
}
we have

W1 = max
G

h,n

∗

∣∣v1
h

∣∣ ≤ λ∗W +

4∑
i=2

max
G

h,n

∗

∣∣vih∣∣ .(6.20)

From (6.12), (6.13), and (6.17)–(6.20) we obtain

W = λ∗W + 2

4∑
i=2

Wi ≤ λ∗W + ch6, 0 < λ∗ < 1,

i.e.,

W = max
G

h,n

∗

|vh| ≤ ch6.(6.21)

In the case when thk∗j ≡ ∅ the function v2
h ≡ 0 on G

h,n

∗ and the inequality (6.21)

hold true. Since the number of grid rectangles in G
h,n

∗ is finite, for the solution of
(6.2) we have

max
G

h,n

∗

|εh| ≤ ch6.

Now we consider the question of convergence of function Uh(rj , θj) defined by the
formula (4.9). Taking into account the properties of functions Qj(rj , θj), j ∈ E, and
the fact that the kernel Rj(rj , θj , η) satisfies the homogeneous boundary condition

defined by (2.2) on (γj−1 ∪ γj) ∩ T
2

j , the function Uh(rj , θj) is bounded, harmonic
on T ∗

j = Tj(r
∗
j ), r

∗
j = (rj2 + rj3)/2, j ∈ E, and continuous up to the boundary of T ∗

j ,
except for the vertex Aj when the specified boundary values are discontinuous at Aj .
Moreover, on the rectilinear parts of the boundary of T ∗

j , except, maybe, the vertex
Aj , the function Uh(rj , θj) satisfies the boundary conditions defined in (2.2).

Theorem 6.4. There is a natural number n0 such that for all n ≥
max

{
n0,
[
ln1+κ h−1

]
+ 1
}
, κ > 0 being a fixed number, the following inequalities

are valid: ∣∣∣∣ ∂p

∂xp−q∂yq
(Uh(rj , θj)− u(rj , θj))

∣∣∣∣ ≤ cph
6 on T

3

j ,(6.22)
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first, for integer λj and any νj−1 and νj when p ≥ λj and, second, for νj−1 = νj = 0
and any λj when p = 0;∣∣∣∣ ∂p

∂xp−q∂yq
(Uh(rj , θj)− u(rj , θj))

∣∣∣∣ ≤ cph
6/r

p−λj

j on T
3

j ,(6.23)

for any λj , if νj−1+ νj ≥ 1, 0 ≤ p < λj or νj−1 = νj = 0, 1 ≤ p < λj ;∣∣∣∣ ∂p

∂xp−q∂yq
(Uh(rj , θj)− u(rj , θj))

∣∣∣∣ ≤ cph
6/r

p−λj

j on T
3

j\Aj(6.24)

for noninteger λj and any νj−1 and νj when p > λj . Everywhere, 0 ≤ q ≤ p, λj
is the quantity (2.11), νj−1 and νj are parameters entering into the boundary condi-
tions (2.2), u is a solution of the problem (2.1), (2.2), cp, p = 0, 1, . . . , are constants
independent of rj = rj(x, y), θj = θj(x, y), and h.

Proof. On the bases of (4.9) and Lemma 2.2, on the closed block T
∗
j , j ∈ E, we

have

Uh(rj , θj)− u(rj , θj) = βj

n(j)∑
q=1

Rj(rj , θj , θ
q
j)(u(rj2, θ

q
j)−Qj(rj , θ

q
j))

−
∫ αjπ

0

Rj(rj , θj , η)(u(rj2, η)−Qj(rj2, η))dη

+βj

n(j)∑
q=1

Rj(rj , θj , θ
q
j)(uh(rj2, θ

q
j)− u(rj , θ

q
j)).(6.25)

Since r∗j = (rj2+rj3)/2 by analogy with the proof of Lemma 6.2 for n ≥ [ln1+κ h−1
]
+

1, κ > 0 being a fixed number, we have∣∣∣∣∣βj
n(j)∑
q=1

Rj(rj , θj , θ
q
j)(u(rj2, θ

q
j)−Qj(rj , θ

q
j))

−
∫ αjπ

0

Rj(rj , θj , η)(u(rj2, η)−Qj(rj2, η))dη

∣∣∣∣∣
≤ ch6 on T

∗
j , j ∈ E.(6.26)

On the basis of Theorem 6.3 and the boundedness of βj
∑n(j)

q=1 Rj(rj , θj , θ
q
j) for all

n ≥ max
{
n0,
[
ln1+κ h−1

]
+ 1
}
we obtain∣∣∣∣∣∣βj

n(j)∑
q=1

Rj(rj , θj , θ
q
j)(uh(rj2, θ

q
j)− u(rj , θ

q
j))

∣∣∣∣∣∣ ≤ ch6 on T
∗
j , j ∈ E.(6.27)

From (6.25)–(6.27) for all n ≥ max
{
n0,
[
ln1+κ h−1

]
+ 1
}
we have

|Uh(rj , θj)− u(rj , θj)| ≤ ch6 on T
∗
j , j ∈ E.(6.28)

Since T 3
j ⊂ T

∗
j , j ∈ E, then from the inequality (6.28) the proof of (6.22) follows when

p = 0.
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To establish the validity of remainder inequalities of Theorem 6.4 we put

εh(rj , θj) = Uh(rj , θj)− u(rj , θj) on T
∗
j , j ∈ E.(6.29)

From (4.9), (6.29), and Remark 2.1 it follows that the function εh(rj , θj) is con-

tinuous on T
∗
j and is a solution of the boundary value problem

∆εh = 0 on T ∗
j ,

νmεh + νm(εh)
′
n = 0 on γm ∩ T

∗
j , m = j − 1, j,(6.30)

εh(r
∗
j , θj) = Uh(r

∗
j , θj)− u(r∗j , θj), 0 ≤ θj ≤ αjπ.

Taking into account (6.28)–(6.30), from Lemma 6.12 given by Volkov [29] follows all
remainder inequalities of Theorem 6.4.

Remark 6.5. From the error estimation formula (6.23) of Theorem 6.4 it follows
that, when on the sides of interior angles �= π/2, the boundary conditions are either
Dirichlet or mixed type, then the error of approximate solution on the block sectors

decreases as r
λj

j h6, which gives an additional accuracy of the BGM near the singular
points, with respect to existing FDM or FEMmodifications for the singular problems.

7. The use of Schwarz’s alternating method to solve the system of
block-grid equations. According to Definitions 4.1–4.3, the approximate solution

of problem (2.1), (2.2) must first be found in the domain G
h,n

∗ as the solution of the
system of difference equations (4.5)–(4.8), and the solution itself and its derivatives

of order p, p = 1, 2, . . . , at any point of T
3

j , j ∈ E, except maybe the vertex Aj , can
then be found using formula (4.9). Therefore, it is sufficient to justify the possibility
of finding a solution of system (4.5)–(4.8) by Schwarz’s alternating method.

We denote by γD the union of all sides of polygon G on which the boundary
condition is Dirichlet type, i.e.,

γD =
⋃

j:νj=1

γj .

From (2.3) it follows that γD �= ∅.We define the following classes: Φτ , τ = 1, 2, . . . , τ∗,
of rectangles Πk, k = 1, 2, . . . ,M (see [8]). Class Φ1 includes all rectangles whose
intersection with γD contains a certain segment of positive length. Class Φ2 contains
all the rectangles which are not in class Φ1 and whose intersection with rectangles of
Φ1 contains a segment of finite length, and so on. Let Πh

k0 be the set of nodes of the

grid Π
h

k which are not less than l0 = min {min1≤k≤M min {a1k, a2k} , κ0} /8 from the
set ηk0. Let

Φh
τ0 =

⋃
k:Πk∈Φτ

Πh
k0, τ = 1, 2, . . . , τ∗; Gh

∗0 =
τ∗⋃
τ=1

Φh
τ0.

Suppose we have a zero approximation u
(0)
h to the exact solution uh of (4.5)–(4.8).

Finding u
(1)
h on ηk0 by the formula (4.8) and for all j ∈ E on thj by (4.7), we solve the

system (4.5), (4.6) on each grid Π
h

k of rectangles, first from class Φ1, then from class
Φ2, and so on. The next iteration is similar.
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Consequently, we have the sequence u
(1)
h , u

(2)
h , . . . , defined as follows:

u
(m)
h = S6

(
u

(m−1)
h , ϕ, ψ

)
on ωh,n,

u
(m)
h (rj , θj) = Qj(rj , θj)

+βj

n(j)∑
q=1

R
(q)
j (rj , θj)(u

(m)(rj2, θ
q
j)−Qj(rj2, θ

q
j)) on thj ,(7.1)

u
(m)
h = Bu

(m)
h on Πh

k ,

u
(m)
h = ν̄pBpu

(m)
h + Eph(ϕ,ψ) on ηhk1 ∩ γp,

u
(m)
h = ν̄pν̄p+1Ḃpu

(m)
h + Ėph(ϕp, ϕp+1, ψp, ψp+1) on ηhk1 ∩ γp ∩ γp+1,

where 1 ≤ k ≤ M, 1 ≤ p ≤ N, j ∈ E, m = 1, 2, . . . .
Theorem 7.1. For any n ≥ max

{
n0,
[
ln1+κ h−1

]
+ 1
}
the system (4.5)–(4.8)

can be solved by Schwarz’s alternating method with any accuracy ε > 0 in a uniform
metric with the number of iterations O(ln ε−1), independent of h and n, where n0

and κ mean the same as in Theorem 6.4.
Proof. Let

ε(m) = u
(m)
h − uh on G

h,n

∗ ,(7.2)

where uh is the exact solution of (4.5)–(4.8), and u
(m)
h is the mth iteration defined by

(7.1), m = 1, 2, . . . .
By virtue of (4.5)–(4.8), (7.1), (7.2), and Remark 5.1, for any m, we have

ε
(m)
h = S6

(
ε
(m−1)
h

)
on ωh,n,(7.3)

ε
(m)
h (rj , θj) = βj

n(j)∑
q=1

R
(q)
j (rj , θj)ε

(m)
h (rj2, θ

q
j) on thj ∩ ηk,(7.4)

ε
(m)
h = Bε

(m)
h on Πh

k ,(7.5)

ε
(m)
h = ν̄pBpε

(m)
h on ηhk1 ∩ γp,(7.6)

ε
(m)
h = ν̄pν̄p+1Ḃpε

(m)
h on ηhk1 ∩ γp ∩ γp+1,(7.7)

where 1 ≤ k ≤ M, 1 ≤ p ≤ N, j ∈ E, m = 1, 2, . . . .
We denote

W
(m)
h = max

G
h,n

∗

∣∣∣ε(m)
h

∣∣∣ .
On the basis of (4.3), (4.4), (5.9), (5.11), (7.3), and (7.4) for n ≥ n0 we have

max
∪M

k=1
ηh
k,0

∣∣∣ε(m)
h

∣∣∣ ≤ max
Gh

∗0

∣∣∣ε(m−1)
h

∣∣∣ ≤ W
(m−1)
h ,(7.8)

max
∪j∈Eth

j

∣∣∣ε(m)
h (rj , θj)

∣∣∣ ≤ max
Gh

∗0

∣∣∣ε(m−1)
h

∣∣∣ ≤ W
(m−1)
h , m = 1, 2, . . . .(7.9)

By virtue of (7.8), (7.9), and the maximum principle, from (7.5)–(7.7) we obtain

W
(0)
h ≥ W

(1)
h ≥ W

(2)
h ≥ · · · ,(7.10)

W
(m)
h ≤ max

Gh
∗0

∣∣∣ε(m−1)
h

∣∣∣ , m = 1, 2, . . . .(7.11)
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Taking into account the sequence of calculation over classes Φτ , τ = 1, 2, . . . , τ∗,
and the inequalities (7.10) and (7.11), by means of [8], we obtain

W
(m+1)
h ≤ µmτ∗W

(0)
h , m = 1, 2, . . . ,(7.12)

where µτ∗ < 1 is independent of m and h.
From (7.12) follows the statement of Theorem 7.1.

8. Numerical examples. We computed two numerical examples in order to
test the effectiveness of the BGM. In Example 8.1, the polygon G is L-shaped (Figure
2), and the exact solution is known: it has both the boundary (discontinuity of the
boundary functions) and the angle singularities at vertex A1 of the interior angle
(α1π = 3π/2). In Example 8.2 (Motz problem), the solution has singularities at the
vertex A1, with the interior angle α1π = π (Figure 3), caused by abrupt changes in
the type of boundary conditions. The exact solution of the Motz problem is unknown,
and comparisons are made with the existing best results.

Let us describe the method of realization of Schwarz’s iterations defined by (7.1):
Let Π = {(x, y) : 0 < x < a, 0 < y < b}, where a = 2ph0, b = 2qh0, h0 > 0 is a fixed
number, and p and q are integers. We introduce a square grid with the lines x = ih,
y = jh, h = 2−mh0, m ≥ 0 being an integer, i = 0, 1, . . . , 2p+m, j = 0, 1, . . . , 2q+m.
Let Πh = {(x, y) : x = xi = ih, 0 < i < 2p+m, y = yj = jh, 0 < j < 2q+m}, Γh be a
set of nodes on Γ (the boundary of Π), Γ1h = {(x, y) : x = ih, 1 ≤ i ≤ 2p+m, y = 0}.

We consider the finite difference problem

uh = Buh on Πh,(8.1)

uh =

{
ϕh on Γ1h,
0 on Γh\Γ1h,

(8.2)

where ϕh is a given function on Γ1h.
The solution of (8.1), (8.2) has the representation (see [31], [18])

uh(x, y) =

2p+m−1∑
n=1

bn
sinh(βn(1− y/b))

sinhβn
sin

nπx

a
,(8.3)

where

bn = 21−p−m
2p+m−1∑
k=1

ϕh(kh) sin
nπkh

a
,(8.4)

βn =
2b

h
sinh−1

 sin nπh
2a√

1− 2 sin2(nπh/2a)/3

 .(8.5)

If the boundary condition (8.2) is nonhomogeneous on the whole boundary Γh, then
we subtract a second order algebraic polynomial which is a solution of (8.1) and with
the given values of the boundary function at vertices of Π and then subdivide the
given problem into four problems of the type (8.1), (8.2).

In Example 8.1, the four overlapping rectangles and in Example 8.2 three over-
lapping rectangles are taken, as shown in Figures 2 and 3, respectively. Furthermore,
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according to the boundary conditions on γ0 and γ1, Q1(r, θ) = θ is taken for Example
8.1, and Q1(r, θ) = 0 for Example 8.2. The results of realization of the iteration (7.1)
by the formulas (8.3)–(8.5) for the solution of the Dirichlet problem in Example 8.1
are given in Tables 1 and 2. We use the same approach for the problem in Example
8.2 (Motz problem) after reducing the problem for each rectangle Πk, k = 1, 2, 3 (see
Figure 3), to the Dirichlet problem by extending the solution through the sides of Πk

as an even function when the homogeneous Neumann condition is given. Using the
formulas (8.3)–(8.5) in (7.1) is effective, because the method of discrete fast Fourier
transform is applicable for their realization. Some results for the solution of the Motz
problem are given in Tables 3 and 4. In both problems, we request the maximum
successive error on the sides of overlapping rectangles on G to be reduced by a factor
of 10−14 as a convergence test for the Schwarz procedure, and all the computations
are carried out in double precision. In all computations, we have used the starting



174 A. A. DOSIYEV

Table 1
r12 = 0.87.

(h−1, n) ‖εh‖C(G
h,n
NS

)
‖εh‖C(GS)

‖εh‖C(G0.5
S

) ‖εh‖C(G0.125
S

)

(8, 50) 1.42D − 6 2.17D − 6 1.39D − 7 2.82D − 8
(8, 80) 1.40D − 6 2.24D − 8 1.85D − 8 6.28D − 9
(16, 60) 5.85D − 8 1.32D − 7 9.61D − 9 2.88D − 9
(16, 80) 2.21D − 8 7.42D − 10 3.68D − 10 3.08D − 11
(32, 60) 5.21D − 8 1.25D − 7 5.72D − 9 1.84D − 9
(32, 80) 3.66D − 10 4.97D − 10 2.00D − 11 4.97D − 12

(h−1, n) ‖ε(1)
h

‖C(GS)
‖ε(1)

h
‖C(G0.125

S
) ‖ε(2)

h
‖C(GS)

‖ε(2)
h

‖C(G0.125
S

) Iter.

(8, 80) 3.25D − 7 1.53D − 8 4.33D − 6 5.21D − 9 31
(16, 100) 4.41D − 9 7.82D − 11 7.50D − 8 3.30D − 10 36
(32, 60) 8.23D − 6 5.30D − 9 9.85D − 5 7.67D − 9 38
(32, 80) 4.35D − 8 5.83D − 12 2.51D − 6 2.66D − 11 35
(32, 120) 8.55D − 11 7.02D − 13 4.77D − 10 1.79D − 12 37

Table 2
r12 = 0.93.

(h−1, n) ‖εh‖C(G
h,n
NS

)
‖εh‖C(GS)

‖ε(1)
h

‖C(GS)
‖ε(2)

h
‖C(GS)

Iter.

(8, 35) 2.39D − 6 5.89D − 6 2.25D − 4 5.54D − 3 25
(8, 50) 1.41D − 6 9.05D − 8 1.32D − 6 4.68D − 5 25
(8, 60) 1.40D − 6 9.96D − 9 5.67D − 8 1.22D − 6 26
(16, 60) 2.17D − 8 5.00D − 10 4.07D − 8 7.11D − 7 27
(16, 80) 2.20D − 8 2.43D − 10 1.88D − 9 2.77D − 8 27
(32, 60) 3.65D − 10 6.18D − 10 4.17D − 8 6.94D − 7 29
(32, 80) 3.59D − 10 1.05D − 11 3.89D − 11 2.49D − 9 30

value u
(0)
h = 0 for the Dirichlet problem on the L-shaped domain and u

(0)
h = 30 for the

Motz problem. Furthermore, for both problems the radius r13 of sector T 3
1 is taken

0.72.
In all tables the following notation is used:
Π∗

1 = G\(∪M
k=1Πk), GNS = G\Π∗

1 “nonsingular part” of G; GS = G∩Π∗
1 “singular

part” of G, G#
S = GS ∩ {r ≤ A}, Gh,n

NS = GNS ∩G
h,n

∗ , ‖w‖C(Ω) = maxΩ |w| .
Example 8.1. Let G be L-shaped and defined as follows (see Figure 2):

G = {(x, y) : −1 < x < 1,−1 < y < 1} \G1,

where G1 = {(x, y) : 0 ≤ x ≤ 1,−1 ≤ y ≤ 0} . Let γ be the boundary of G. Consider
the following problem:

∆u = 0 on G,(8.6)

u = v(r, θ) on γ,(8.7)

where

v(r, θ) = θ + r
2
3 sin

2θ

3
(8.8)

is the exact solution of this problem.

In Tables 1 and 2, for the errors εh = Uh − u, ε
(1)
h = r

1
3 (∂Uh

∂x − ∂u
∂x ), ε

(2)
h =

r
4
3 (∂

2Uh

∂x2 − ∂2u
∂x2 ) in maximum norm between the block-grid solution Uh and the exact

solution u of the problem in Example 8.1 are given.
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Table 3
r12 = 0.87.

(h−1, n) ‖εh‖C(G
h,n
NS

)
‖εh‖C(GS)

‖εh‖C(G0.5
S

) Cond. Iter.

(8, 40) 5.68D − 5 5.57D − 5 3.70D − 6 116 71
(16, 50) 8.15D − 7 9.58D − 7 1.73D − 7 424 87
(16, 60) 7.96D − 7 1.14D − 7 9.15D − 8 429 79
(32, 60) 2.31D − 8 4.25D − 7 2.48D − 9 1630 80
(32, 80) 2.10D − 8 3.71D − 9 1.06D − 9 1634 82

(h−1, n) ‖ε(1)
h

‖C(GS)
‖ε(1)

h
‖C(G0.5

S
) ‖ε(2)

h
‖C(GS)

‖ε(2)
h

‖C(G0.5
S

)

(16, 60) 1.17D − 6 1.31D − 7 2.00D − 5 4.11D − 7
(16, 80) 2.31D − 7 1.40D − 7 1.52D − 6 4.46D − 7
(32, 80) 7.24D − 8 4.72D − 9 1.32D − 5 1.05D − 8
(32, 100) 5.00D − 9 3.40D − 9 3.64D − 8 7.33D − 9

Table 4
r12 = 0.93.

(h−1, n) ‖εh‖C(G
h,n
NS

)
‖εh‖C(GS)

‖ε(1)
h

‖C(GS)
‖ε(2)

h
‖C(GS)

Cond. Iter.

(8, 40) 5.12D − 5 3.24D − 6 1.18D − 5 2.40D − 4 114 62
(8, 50) 5.13D − 5 3.03D − 6 8.32D − 6 4.75D − 5 117 64
(16, 40) 8.35D − 7 1.92D − 7 1.38D − 5 2.40D − 4 409 72
(16, 60) 8.15D − 7 6.89D − 8 1.41D − 7 8.41D − 7 419 66
(32, 60) 2.18D − 8 1.96D − 9 4.03D − 9 3.42D − 8 1583 73
(32, 80) 2.10D − 8 3.39D − 9 3.91D − 9 2.13D − 8 1593 73
(32, 120) 2.22D − 8 1.13D − 9 3.05D − 9 1.38D − 8 59

Example 8.2. (Motz problem). Let G = {(x, y) : −1 < x < 1, 0 < y < 1}, and
let γ be its boundary (Figure 3). We consider the following problem:

−∆u = 0 in G,

u = 0 on y = 0, −1 ≤ x ≤ 0,

u = 500 on x = 1,

∂u

∂n
= 0 on the other boundary segments of γ.

The Motz problem is used [5], [13], [15], [16], [17], [19], [30], [32],[33] as a bench-
mark in many approaches for the singular problems. An extremely accurate result
is obtained in [13], where piecewise expansions into particular solutions are used to
approximate the boundary conditions in a least-square sense. To obtain high accurate
results (for instance, the maximum error on x = 1 is 5.47E − 9) by this boundary
method, a large number (34) of particular solutions are needed, and this may result in
serious difficulties due to ill conditioning of the associated least-squares matrices (the
condition number is 3.97E+07). To decrease the condition number (down to 3617) in
[13], different subdivisions of the given domain into three subdomains are considered.
Different numbers of particular solutions are then used for each subdomain. However,
even when the best combination of these numbers is used, the accuracy is of order
E−06 only. Lucas and Oh [15] used the MAM in the context of the h-p version of the
finite element method, and the best result (maximum error is 2.22E− 08) is obtained
when p = 10. Comparisons in [15] were made with the extremely accurate results
obtained in [13].

The results given in Tables 3 and 4 are obtained for the Motz problem. The errors
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Table 5

‖εh‖C(G) in [13] Cond. ‖εh‖C(G) in BGM Cond.

7.73D − 5 731 5.68D − 5 116
3.25D − 6 3617 9.58D − 7 424

‖εh‖C(x=1) = 5.47D − 9, ‖ ∂v
∂n

‖C(ΓN ) ≈ 10−7 in [13] cond = 3.97E + 7

‖εh‖C(G) = 2.10D − 8 in BGM cond = 1593

Table 6

(h−1, n) (8, 40) (8, 50) (16, 40) (16, 60) (32, 60) (32, 80) (32, 120)
iter 55 56 61 56 73 61 57

εh = Uh − v, ε
(1)
h = r

1
2 (∂Uh

∂x − ∂v
∂x ), ε

(2)
h = r

3
2 (∂

2Uh

∂x2 − ∂2v
∂x2 ) are defined between the

block-grid solution Uh and the extremely accurate solution v (M = 34) from [13] after
correction of the 31st coefficient (dividing by 10), discovered by Lucas and Oh [15].

The results in Tables 1–4 show that when we decrease the step size h to improve
an accuracy of the approximate solution, the number of nodes n of the quadrature
formula must be increased (see Theorem 6.3); the results support the theoretical rate
O(h6) for all of (h−1, n). For the Motz problem (the exact solution is unknown), the
comparisons are made with the results of Li, Mathon, and Sermer [13], and, as shown
in Tables 3 and 4, the errors in nonsingular part are not better than 2.10E − 8 when
(h−1, n) = (32, 80), and it is not obvious which approximate solution is better.

In Tables 3 and 4, for the Motz problem some condition numbers of the matrix
of the block-grid equations (4.5)–(4.8) are given. They grow slower than O(h−2),
which is true for the usual FDM. In Table 5, the condition numbers together with the
corresponding absolute errors in maximum norm for the BGM and boundary method
in [13] are given.

Remark 8.3. As follows from Tables 1–4, the results in the “singular part” for
rj2 = 0.93 are better than for rj2 = 0.87. Moreover, as shown in Tables 1 and 3, the
results get better around the singular point, which support Remark 6.5. Therefore,
in applications of the BGM the difference rj2 − rj3 should be taken not less than
some fixed number k0 > 0. To emphasize this important computational aspect, we
present the following results obtained when r12 = 0.75 : (i) in the case of Example 8.1
for (h−1, n) = (32, 80), we get ‖εh‖C(Gh,n

NS
) = 2.08D − 3, ‖εh‖C(GS) = 4.27D − 3; (ii)

in the case of Example 8.2 for (h−1, n) = (16, 60), we get ‖εh‖C(Gh,n
NS

) = 5.34D + 1,

‖εh‖C(GS) = 4.74D + 1. The explanation of this divergency follows from Remark
2.3, Definition 4.2, and Theorem 6.4. According to the construction of the matching
operator (see section 5, Cases 3 and 4), the increase of the difference r12 − rj3 does
not cause any problem.

Remark 8.4. The number of iterations can be decreased if for every Schwarz
iteration a few simple subiterations (without using the first and the second equations
in (7.1)) are performed to improve the results on the interior boundaries of the rect-

angles Πk, k = 1, 2, . . . ,M outside of Π
∗
1. The results given in Table 6 are obtained

for the Motz problem in the case of r12 = 0.93, where the five simple subiterations
are used. In [14] for the solution of the algebraic system of equations obtained in the
combination of the Ritz–Galerkin method and FDM the iterative subtracting method
is proposed. This method requires a lower number of iterations.
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9. Concluding remarks. In the proposed BGM, by making an artificial bound-
ary, the problem with singularities is reduced to a domain without singularities. Exact
boundary conditions on the artificial boundary are the integral representation of the
solution in which the composite midpoint rule converges exponentially. To approxi-
mate the official boundary condition and Laplace’s equation on the obtained domain,
the sixth order finite difference schemes are used. On the singular parts (on blocks

T
3

j , j ∈ E), the approximate solution is defined by the formula (4.9), itself being
a harmonic function which acquires completely all singularities of the derivatives of
the required solution u via the function Qj , appearing because of the consistency
conditions at Aj , j ∈ E, not being fulfilled. The angle singularities are passed on suf-
ficiently exactly to the approximate solution via kernel Rj . Furthermore, to connect
the grids and the blocks, the sixth order matching operator is constructed. These
properties are a prerequisite for a high rate of convergence established by Theorems
6.3 and 6.4 and by numerical results given in section 8. As it follows from Tables 1–4,
the absolute error in the singular part (in GS) of G is smaller than in the smoother
part (in GNS) of G, which agrees with the results obtained in Theorems 6.3 and 6.4
(see Remark 6.5).

If on the sides of the right interior angles of polygon G the boundary functions
are given also as an algebraic polynomial of s, then, without conjugate conditions
(2.5), the approximate solution in a neighborhood of vertices of these angles can be
defined by the formula (4.9), and derivatives of any order can be found by its simple
differentiation.

A parallelism of the sides of graduated polygon G to the x- and y-axis is assumed
only for simplicity of presentation.

The method and results of this paper are valid for multiply connected graduated
polygons.

The sixth order matching operator constructed in section 5 can also be used to
build other highly accurate combined or domain decomposition methods.
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Abstract. Scalar conservation laws with a flux function discontinuous in space are approximated
using a Godunov-type method for which a convergence theorem is proved. The case where the flux
functions at the interface intersect is emphasized. A very simple formula is given for the interface
flux. A numerical comparison between the Godunov numerical flux and the upstream mobility flux
is presented for two-phase flow in porous media. A consequence of the convergence theorem is an
existence theorem for the solution of the scalar conservation laws under consideration. Furthermore,
for regular solutions, uniqueness has been shown.
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1. Introduction. Let f and g be continuous functions on an interval I ⊂ R,
and define the flux function F (x, u) = H(x)f(u)+ (1−H(x))g(u), where H(x) is the
Heaviside function. Let u0 ∈ L∞(R, I), and consider the following scalar conservation
law:

∂u

∂t
+

∂

∂x
F (x, u) = 0 for x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.(1.1)

This type of problem appears, for example, in modelling two-phase flow in a
porous medium [8, 13], in sedimentation problems [7, 5], and in traffic flow [24].

It is well known that after a finite time (1.1) does not in general possess a con-
tinuous solution even if u0 is sufficiently smooth. Hence by a solution of (1.1) we
mean a solution in the weak sense. That is, u ∈ L∞

loc(R × R+) such that for all
ϕ ∈ C∞

0 (R × R+)∫ ∞

−∞

∫ ∞

0

(
u
∂ϕ

∂t
+ F (x, u)

∂ϕ

∂x

)
dtdx+

∫ ∞

−∞
u0(x)ϕ(x, 0)dx = 0 .(1.2)

Denoting ut =
∂u
∂t , ux = ∂u

∂x , then u satisfies (1.2) if and only if in the weak sense u
satisfies

ut + g(u)x = 0, x < 0, t > 0,
ut + f(u)x = 0, x > 0, t > 0,

(1.3)

and, at x = 0, u satisfies the Rankine–Hugoniot condition; namely, for almost all t,

f(u+(t)) = g(u−(t)),(1.4)

where u+(t) = limx→0+ u(x, t), u−(t) = limx→0− u(x, t) .
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Because of the discontinuity of the flux F at x = 0, the Kruzkov method [19] does
not guarantee a weak solution of (1.1), and, even if the solution exists, it may not be
unique.

When there is no discontinuity of F at x = 0, that is, when f ≡ g, the problem
has been studied and well understood. In this case, existence of a weak solution
was obtained by Kruzkov [19] in the class of functions satisfying the Lax–Oleinik
entropy condition [21, 25]. The solution thus obtained can be represented by an L1-
contractive semigroup [18, 19]. The method adopted in this case is that of vanishing
viscosity. Furthermore, finite difference schemes are constructed using a numerical
flux based on exact or approximate Riemann solvers such as Lax–Friedrich, Godunov,
Engquist–Osher, upstream mobility, etc. . . . Convergence of these schemes is based
on the following properties: conservation, consistency, monotonicity, and Lipschitz
continuity. Using these properties, one obtains that the finite difference schemes are
TVD (total variation diminishing) and satisfy the maximum principle and a numerical
entropy condition. This allows one to pass to a limit to obtain a unique weak solution
satisfying the Lax–Oleinik entropy condition.

When f �= g, this problem was considered from the theoretical or numerical point
of view in several papers [3, 20, 8, 13, 6, 5, 15, 1, 28, 29]. In general, the solution to (1.2)
is not unique. To choose a correct solution, in [8] it was suggested to choose a solution
which has |u+(t)− u−(t)| minimum, but the problem of uniqueness was left open in
the case of a general Cauchy problem. Nevertheless, this led to the construction of
a numerical flux which was actually the same as the one used in [3, 14]. It turns
out that the solution to the Riemann problem and the flux function given in [8] and
the numerical scheme given in [3, 14, 28, 29] are correct when assuming that the flux
functions f and g are not intersecting, even though this was not stated explicitly.
Actually, they may intersect but in such a way that no undercompressive waves are
produced, which is not the case when f ′ > 0, g′ < 0 at the intersection point. It
should be noted that in [28, 29] at the intersection points derivatives of fluxes f and
g have the same sign. At an intersection point, if the derivative of g is negative and
that of f is positive, then the problem becomes more difficult. Later, in [6, 7, 5] the
problem was studied in the general case with a source term, and it was suggested
to choose a solution with a minimal variation in the x-direction. For this purpose a
condition called the Γ-condition was introduced, an explicit formula was given for a
solution to the Riemann problem, and uniqueness was proved. Diehl’s construction
allows undercompressive waves; hence it is not clear that the solution thus obtained
can be represented by an L1-contractive semigroup.

In [15] it was shown that the solution to the Riemann problem with the numerical
flux built upon it in [3, 8, 13] was not correct when the flux functions f and g
intersect in the undercompressive case, and a correct solution was given for this case.
Independently, in [1], the authors asked themselves the following question: “What is
an appropriate condition on x = 0 so that the solution can be represented by an L1-
contractive semigroup?” Assuming that f and g are strictly convex with superlinear
growth, using the Hamilton–Jacobi theory, they constructed an explicit weak solution
satisfying an explicit interface entropy condition at x = 0, different from the Lax–
Oleinik entropy condition satisfied for x �= 0 . This interface entropy condition means
that it does not allow the undercompressive waves. Furthermore, it was shown that
this solution is unique by proving that the solution can be represented by an L1-
contractive semigroup. The solution to the Riemann problem thus obtained is actually
the same as in [15], though written in a more compact form. This leads to a very simple
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way of calculating the interface flux and to derive its main properties: monotonicity
and Lipschitz continuity. One should also note that the solution to the Riemann
problem does not satisfy the maximum principle nor is it TVD.

Finally, we mention two papers which recently appeared and also investigate the
problem of a nonlinear conservation law with a discontinuous flux function [17, 16].

In this paper, we consider the general case which includes the case where the flux
functions are intersecting. Using the solution to the Riemann problem obtain in [15, 1]
and the corresponding numerical flux, we study the resulting finite difference scheme
and prove its convergence. In section 2 we present the continuous problem, defining
in particular an interface entropy condition at x = 0, and we state an existence and
uniqueness theorem for the solution to the continuous problem. In section 3 we present
a Godunov-type method to calculate this solution, and in section 4, the core of this
paper, we prove convergence of this numerical scheme. This scheme is conservative
and monotone but not consistent in the usual sense. Due to the nonconsistency, it
does not satisfy the maximum principle. In spite of this we show that the scheme
is L∞-bounded and L1-stable. Furthermore, using the singular mapping technique
introduced by Temple [27], we show that the scheme converges pointwise to weak
solutions. These weak solutions satisfy the Lax–Oleinik entropy condition for x �= 0
and the interface entropy condition at x = 0. This ensures the uniqueness of the limit
solutions.

In section 5 we study the case of two-phase flow in porous media and introduce the
alternative of the upstream mobility numerical flux [2]. One-dimensional numerical
experiments are presented in section 6, and a comparison is made between these two
numerical fluxes.

A consequence of the convergence theorem proved in section 4 is an existence
theorem for the continuous problem for a larger class of functions f and g than the
one studied in [1], where they were assumed to be convex. Uniqueness is shown
in the appendix by proving that the solutions to the continuous problem form an
L1-contractive semigroup.

2. The continuous problem. Let s < S denote the endpoints of the interval
of the definition of f and g. In the following we will assume that f and g are smooth
functions with the same endpoints and each one with one global minimum, reached
at θf and θg, respectively, and with no other local minimum (see Figure 1).

Hypotheses. Assume that f, g are Lipschitz continuous functions on [s, S] satisfy-
ing

(H1) f(s) = g(s), f(S) = g(S),
(H2) f and g have one global minimum and no other local minimum in [s, S].

Denote by Lip (f) and Lip (g) the Lipschitz constants of f and g. We will need
also the constant

M = max {Lip (f),Lip (g)} .

In order to state an existence and uniqueness theorem for the continuous problem
we need to define regular solutions and entropy conditions. Since the flux function is
not continuous, there are actually two different entropy conditions, one in the interior
(which is the same as the usual Lax–Oleinik entropy condition) and the other at the
interface which was introduced in [1].
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s S

f
g

θf θg u−1Ã(u−1) A

Fig. 1. Flux functions f and g satisfying hypothesis (H2).

Entropy pairs. For i = 1, 2, (ϕi, ψi) are said to be entropy pairs if ϕi is a convex
function on [s, S] and (ψ′

1(θ), ψ
′
2(θ)) = (ϕ′

1(θ)f
′(θ), ϕ′

2(θ)g
′(θ)) for θ ∈ [s, S].

Let u0 ∈ L∞(R) be the initial data with s ≤ u0(x) ≤ S for all x ∈ R, and let u
be a weak solution of (1.2) with s ≤ u(x, t) ≤ S for all (x, t) ∈ R × R+.

Interior entropy condition. With u0 and u as above, u is said to satisfy an interior
entropy condition if for any entropy pairs (ϕi, ψi), i = 1, 2, u satisfies in the sense of
distributions

∂ϕ1(u)

∂t
+
∂ψ1(u)

∂x
≤ 0 in x > 0, t > 0,

∂ϕ2(u)

∂t
+
∂ψ2(u)

∂x
≤ 0 in x < 0, t > 0.

(2.1)

Interface entropy condition. With u0 and u as above, assume that u+(t) =
limx→0+ u(x, t) and u−(t) = limx→0− u(x, t) exist for almost all t > 0, and define

L =
{
t > 0; u+(t) ∈ (θf , S], u

−(t) ∈ [s, θg)
}
,

U =
{
t ∈ L; u+(t) = u−(t) = S

} ∪ {t ∈ L; u−(t) = u+(t) = s
}
.

Then u is said to satisfy the interface entropy condition if

meas {L \ U} = 0 .(2.2)

This means that the characteristics must connect back to the x-axis on at least one
side of the jump in F ; i.e., undercompressive waves are not allowed.

Regular solution. u is said to be a regular solution of (1.2) if the discontinuities
of u form a discrete set of Lipschitz curves.

We need also an estimator N(f, g, u0) of the total variation of the flux function
evaluated at u0. This estimator will be defined precisely below at (3.5).

We can now state our existence and uniqueness theorem for the continuous prob-
lem.

Theorem 2.1. Let u0 ∈ L∞(R) such that s ≤ u0(x) ≤ S for all x ∈ R and
Nh(f, g, u0) < ∞. Then there exists a weak solution u ∈ L∞(R×R+) of (1.2) satisfying
the following:

(i) For almost all t > 0 and x ∈ R, u(x+, t), u(x−, t) exist.
(ii) u satisfies the interior entropy condition (2.1).
(iii) If u is regular, then it satisfies also the interface entropy condition (2.2) and

it is unique. Moreover, if f = g, then u is the unique entropy solution for the initial
value problem studied in [19].
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An existence and uniqueness theorem was proved in [1] for convex functions f
and g using arguments from the Hamilton–Jacobi theory. However, functions satis-
fying hypotheses (H1) and (H2) are not necessarily convex, as shown Figure 1, and a
consequence of the convergence theorem, Theorem 3.2, proved below is that existence
in Theorem 2.1 is valid for such functions. Uniqueness follows by showing that the
solutions form an L1-contractive family, which is done in the appendix.

We remark that a similar analysis to what is done in this paper for f and g
satisfying hypothesis (H2) can be done for the case where f and g satisfy hypothesis
(H3) instead:

(H3) f and g have one global maximum and no other local maximum in [s, S],

as shown in Figure 2. θf and θg would denote the points at which the maxima of f
and g are reached. In the analysis below only the case where f and g satisfy (H2) will
be considered.

s S

g

f

θg θf

Fig. 2. Flux functions f and g satisfying hypothesis (H3).

3. A Godunov-type finite volume method. Let F be the Godunov numer-
ical flux with respect to f :

F (a, b) =


min
θ∈[a,b]

f(θ) if a < b,

max
θ∈[b,a]

f(θ) if a ≥ b,
(3.1)

and similarly for the numerical flux G with respect to g.

Taking advantage of hypothesis (H2), equivalent formulas can be used [1]:

F (a, b) = max{F (a, S), F (s, b)} = max{F (a, θf ), F (θf , b)}
= max{f(θf )(1−H(a1)) + f(a)H(a1), f(θf )H(a1) + f(b)(1−H(a1))}
= max{f(max{a, θf}), f(min{θf , b})},

where a1 = (a−θf ) andH is the Heaviside function. Note that the last two expressions
are much simpler to use in calculations than formula (3.1).

In the case where f satisfies hypothesis (H3) instead, the equivalent formulas are

F (a, b) = min{F (a, s), F (S, b)} = min{F (a, θf ), F (θf , b)}
= min{f(θf )H(a1) + f(a)(1−H(a1)), f(θf )(1−H(a1)) + f(b)H(a1)}
= min{f(min{a, θf}), f(max{θf , b})}.
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Interface flux F . At the point x = 0 where the flux function changes we introduce
the numerical flux F calculated by using the Riemann problem solution given in [1]:

F (a, b) = max{G(a, S), F (s, b)} = max{G(a, θg), F (θf , b)}
= max{g(θg)(1−H(a1)) + g(a)H(a1),

f(θf )H(b1) + f(b)(1−H(b1))}
= max{g(max{a, θg}), f(min{θf , b})},

(3.2)

where a1 = (a− θg), b1 = (b− θf ).
These four expressions of F are equivalent, but only the last two are useful for

computational purposes. This flux F coincides with the one given in [15]. When f
and g do not intersect this numerical flux reduces to the one given in [3, 9, 13, 6].

Remark 3.1. In the case where f and g satisfy hypothesis (H3) the definition of
the interface flux should be

F (a, b) = min{G(a, s), F (S, b)} = min{G(a, θg), F (θf , b)}
= min{g(θg)H(a1) + g(a)(1−H(a1)),

f(θf )(1−H(b1)) + f(b)H(b1)}
= min{g(min{a, θg}), f(max{θf , b})},

(3.3)

where θf and θg are now the maxima of f and g.
Let h > 0 and define the space grid points as follows:

x−1/2 = x1/2 = 0, xj+1/2 = j h for j ≥ 0, xj−1/2 = jh for j ≤ 0.

We will also use the midpoints of the intervals:

xj =

(
2j − 1

2

)
h for j ≥ 1, xj =

(
2j + 1

2

)
h for j ≤ −1.

For time discretization the time step is ∆t > 0, and let tn = n∆t, λ = ∆t
h .

For an initial data u0 ∈ L∞(R) we define

u0
j+1 =

1

h

∫ xj+3/2

xj+1/2

u0(x)dx if j ≥ 0, u0
j−1 =

1

h

∫ xj−1/2

xj−3/2

u0(x)dx if j ≤ 0,

Nh(f, g, u0) =
∑
i<−1

|G(u0
i , u

0
i+1)−G(u0

i−1, u
0
i )|+

∑
i>1

|F (u0
i , u

0
i+1)− F (u0

i−1, u
0
i )|

+|F (u0
−1, u

0
1)−G(u0

−2, u
0
−1)|+ |F (u0

1, u
0
2)− F (u0

−1, u
0
1)|,(3.4)

N(f, g, u0) = sup
h>0

Nh(f, g, u0).(3.5)

It is easy to see that if u0 ∈ BV (R), then N(f, g, u0) ≤ C||u0||BV , where C is a
constant depending only on the Lipschitz constants of f and g.

Now we can define the explicit finite volume scheme {uni } inductively as follows:

un+1
1 = un1 − λ(F (un1 , u

n
2 )− F (un−1, u

n
1 )),

un+1
i = un1 − λ(F (uni , u

n
i+1)− F (uni−1, u

n
i )) if i > 1,

un+1
−1 = un−1 − λ(F (un−1, u

n
1 )−G(un−2, u

n
−1)),

un+1
i = uni − λ(G(uni , u

n
i+1)−G(uni−1, u

n
i )) if i < −1.

(3.6)
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Observe that this is, a Godunov scheme for i �= ±1, that is, away from x = 0, and
that for i = ±1 the scheme is not consistent; that is, in general F (u, u) need not be
equal to f(u) or g(u). Because of this, the maximum principle does not hold.

For u0 ∈ L∞(R) and grid length h and ∆t with λ = ∆t
h fixed, define the function

uh ∈ L∞(R × R+) associated with {uni } calculated by the scheme (3.6):

uh(x, t) = uni for (x, t) ∈ [xi−1/2, xi+1/2)× [n∆t, (n+ 1)∆t), i �= 0.(3.7)

Now we can state the following convergence theorem.

Theorem 3.2. Assume that λ,M satisfies the CFL condition λM ≤ 1. Let
u0 ∈ L∞(R) such that s ≤ u0(x) ≤ S for all x ∈ R and N(f, g, u0) < ∞. For h > 0,
let λ = ∆t

h and uh be the corresponding calculated solution given by (3.6), (3.7). Then
there exists a subsequence hk → 0 such that uhk

converges a.e. to a weak solution
u of (1.2) satisfying interior entropy condition (2.1). Suppose the discontinuities of
every limit function u of {uh} is a discrete set of Lipschitz curves; then uh → u in
L∞
loc(R+, L

1
loc(R)) as h → 0, and u satisfies the interface entropy condition (2.2).

The proof of this theorem is the object of the next section.

Remark 3.3. The CFL condition still reads λM ≤ 1 in the case of a discontinuous
flux function.

4. Proof of the convergence theorem, Theorem 3.2.

4.1. Properties of the numerical flux. Before going into the details of the
proof, we need to study the properties of the numerical flux F,G, and F .

From definitions (3.1), (3.2), F,G, F , are nondecreasing functions in the first vari-
able and nonincreasing functions in the second variable. Furthermore, the functions
F,G, and F satisfy for any a, a1, a2, b, b1, b2 ∈ [s, S]

(|F (a1, b)− F (a2, b)|, |F (a, b1)− F (a, b2)|) ≤ M(|a1 − a2|, |b1 − b2|),
(|G(a1, b)−G(a2, b)|, |G(a, b1)−G(a, b2)|) ≤ M(|a1 − a2|, |b1 − b2|),
(|F (a1, b)− F (a2, b)|, |F (a, b1)− F (a, b2)|) ≤ M(|a1 − a2|, |b1 − b2|).

(4.1)

The following lemma is easy to prove.

Lemma 4.1. Let f and g satisfy (H1) and (H2). Then F satisfies

F (s, s) = f(s) = g(s), F (S, S) = f(S) = g(S),
F (a, b) = F (a, b) if f ≡ g .

Now we define for X,Y, Z ∈ [s, S]

H−2(X,Y, Z) = Y − λ(F (Y,Z)−G(X,Y )),
H−1(X,Y, Z) = Y − λ(G(Y,Z)−G(X,Y )),
H1(X,Y, Z) = Y − λ(F (Y,Z)− F (X,Y )),
H2(X,Y, Z) = Y − λ(F (Y,Z)− F (X,Y )).

Then we have the following lemma.

Lemma 4.2. Let λM ≤ 1 and a ∈ [s, S]; then we have the following:

(i) H±1(a, a, a) = a, and H±2(s, s, s) = s,H±2(S, S, S) = S.

(ii) Hi is nondecreasing in each of its variables.
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(iii) Let {Ti}i∈z\{0} be a sequence in [s, S], and define Pi = (Ti−1, Ti, Ti+1) if
|i| ≥ 2, P1 = (T−1, T1, T2), and P−1 = (T−2, T−1, T1). Then for |i| ≥ 3,

∂H1

∂X
(Pi+1) +

∂H1

∂Y
(Pi) +

∂H1

∂Z
(Pi−1) = 1,

∂H−1

∂X
(Pi+1) +

∂H−1

∂Y
(Pi) +

∂H−1

∂Z
(Pi−1) = 1,

∂H1

∂X
(P3) +

∂H1

∂Y
(P2) +

∂H2

∂Z
(P1) = 1,

∂H−2

∂X
(P−1) +

∂H−1

∂Y
(P−2) +

∂H−1

∂Z
(P−3) = 1,

∂H2

∂X
(P1) +

∂H−2

∂Y
(P−1) +

∂H−1

∂Z
(P−2) = 1,

∂H1

∂X
(P2) +

∂H2

∂Y
(P1) +

∂H−2

∂Z
(P−1) = 1.

Proof. From Lemma 4.1, F (s, s) = f(s) = g(s), F (S, S) = f(S) = g(S), and for
all a ∈ [s, S], F (a, a) = f(a), G(a, a) = g(a). Hence H±1(a, a, a) = a,H±2(s, s, s) =
s,H±2(S, S, S) = S. This proves (i). By symmetry it is enough to prove (ii) for H2.
Let (X,Y, Z), X1 ≤ X2, Y1 ≤ Y2, Z1 ≤ Z2, be given. Then

H2(X1, Y, Z)−H2(X2, Y, Z) = λ(F (X1, Y )− F (X2, Y )) ≤ 0.

Without loss of generality we can assume that g(θg) = min g ≥ min f = f(θf ).

For X ≥ θg, Z ≤ θf , define Ã(X) ≤ θf and B̃(Z) ≥ θf by f(Ã(X)) = g(X) and

f(Z) = f(B̃(Z)). Then we have by direct calculations

I1 = F (Y1, Z)− F (Y2, Z) =



f(B̃(Z))− f(Y2) if Z ≤ θf , Y1 ≤ B̃(Z) ≤ Y2,

f(Y1)− f(Y2) if Z ≤ θf , Y1 ≥ B̃(Z)

or Z ≥ θf , Y1 ≥ θf ,

f(θf )− f(Y2) if Z ≥ θf , Y1 ≤ θf ≤ Y2,

0 otherwise,

I2 = F (X,Y1)− F (X,Y2) =


f(Y1)− f(min(Y2, Ã(X))) if X ≥ θg, Y1 ≤ Ã(X),

f(Y1)− f(min(Y2, Ã(θg))) if X ≤ θg, Y1 ≤ Ã(θg),

0 otherwise.

Let I = −λ(I1 − I2). Then from the above calculation, I = −λI1 if Y1 ≥ θf and
I = λI2 if Y2 ≤ θf . In either case we have |I| ≤ λM |Y1 − Y2|. Now suppose that
Y1 ≤ θf ≤ Y2; then we have

|I| ≤ (|I1|+ |I2|) ≤ λM(|Y2 − θf |+ |Y1 − Ã(θg)|) = λM |Y1 − Y2|.
Hence, since F and F are nondecreasing in the first variable and nonincreasing in the
second variable, we obtain

H2(X,Y1, Z)−H2(X,Y2, Z) = Y1 − Y2 − λ(F (Y1, Z)− F (Y2, Z))
+λ(F (X,Y1)− F (X,Y2))

= Y1 − Y2 − λ(I1 − I2) ≤ Y1 − Y2 + λM |Y1 − Y2|
≤ (1− λM)(Y1 − Y2) ≤ 0,

H2(X,Y, Z1)−H2(X,Y, Z2) = −λ(F (Y,Z1)− F (Y,Z2)) ≤ 0.

This proves (ii).
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Let i ≥ 3; then

∂H1

∂X
(Pi+1) +

∂H1

∂Y
(Pi) +

∂H1

∂Z
(Pi−1)

= λ
∂F

∂a
(Ti, Ti+1) + 1− λ

(
∂F

∂a
(Ti, Ti+1)− ∂F

∂b
(Ti−1, Ti)

)
− λ

∂F

∂b
(Ti−1, Ti) = 1.

This proves the first equality in (iii). The proof is similar for the second equality in
(iii). For the third, fourth, fifth, and sixth equalities we have

∂H1

∂X
(P3) +

∂H1

∂Y
(P2) +

∂H2

∂Z
(P1) = λ

∂F

∂a
(T2, T3) + 1

−λ
(
∂F

∂a
(T2, T3)− ∂F

∂b
(T1, T2)

)
− λ

∂F

∂b
(T1, T2) = 1,

∂H−2

∂X
(P−1) +

∂H−1

∂Y
(P−2) +

∂H−1

∂Z
(P3) = λ

∂G

∂a
(T−2, T−1) + 1

−λ
(
∂G

∂a
(T−2, T−1)− ∂G

∂b
(T−3, T−2)

)
− λ

∂G

∂b
(T−3, T−2) = 1,

∂H2

∂X
(P1) +

∂H−2

∂Y
(P−1) +

∂H−1

∂Z
(P−2) = λ

∂F

∂a
(T−1, T1) + 1

−λ
(
∂F

∂a
(T−1, T1)− ∂G

∂b
(T−2, T−1)

)
− λ

∂G

∂b
(T−2, T−1) = 1,

∂H1

∂X
(P2) +

∂H2

∂Y
(P1) +

∂H−2

∂Z
(P−1) = λ

∂F

∂a
(T1, T2) + 1

−λ
(
∂F

∂a
(T1, T2)− ∂F

∂b
(T−1, T1)

)
− λ

∂F

∂b
(T−1, T1) = 1.

This completes the proof of Lemma 4.2.

4.2. L∞ and TV bounds. The next lemmas show that the scheme (3.6) is
L1-contractive and the idea of the proof is taken from [11].

Lemma 4.3. Let u0 ∈ L∞(R, [s, S]) be the initial data, and let {uni } be the
corresponding solution calculated by the finite volume scheme (3.6). When λM ≤ 1,
then

s ≤ uni ≤ S ∀i, n.(4.2)

Proof. Since s ≤ u0 ≤ S, hence for all i, s ≤ u0
i ≤ S. By induction, assume that

(4.2) holds for n. Then from (i) and (ii) of Lemma 4.2 we have

s = H−1(s, s, s) ≤ H−1(u
n
i−1, u

n
i , u

n
i+1) = un+1

1 ≤ H−1(S, S, S) = S if i ≤ −2,
s = H1(s, s, s) ≤ H1(u

n
i−1, u

n
i , u

n
i+1) = un+1

i ≤ H1(S, S, S) = S if i ≥ 2,
s = H−2(s, s, s) ≤ H−2(u

n
−2, u

n
−1, u

n
1 ) = un+1

−1 ≤ H−2(S, S, S) = S,
s = H2(s, s, s) ≤ H2(u

n
−1, u

n
1 , u

n
2 ) = un+1

1 ≤ H2(S, S, S) = S.

This proves (4.2).

Lemma 4.4. Let u0, v0 ∈ L∞(R, [s, S]) be initial datas, and let {uni } and {vni } be
the corresponding solutions calculated by the finite volume scheme (3.6). Let λM ≤ 1
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and i0 ≤ j0; then∑
i0≤i≤j0
i �=0

|un+1
i − vn+1

i | ≤
∑

i0−1≤i≤j0+1

i �=0

|uni − vni |,

∑
i �=0

|un+1
i − uni | ≤

∑
i �=0

|uni − un−1
i |.

Lemma 4.4 is a localized version of the Crandall–Tartar lemma [4], which we will
prove along the lines of [11].

Proof. The first inequality in Lemma 4.4 will be proved for i0 ≤ −1 and j0 ≥ 1 .
The other cases follow in the same manner. For θ ∈ [0, 1], let pni (θ) = θuni +(1− θ)vni
and

Pn
i (θ) =


(pni−1(θ), p

n
i (θ), p

n
i+1(θ)) if |i| ≥ 2,

(pn−2(θ), p
n
−1(θ), p

n
1 (θ)) if i = −1,

(pn−1(θ), p
n
1 (θ), p

n
2 (θ)) if i = 1.

From Lemma 4.3 we have pni (θ) ∈ [s, S] for all i, n, and θ. From their defini-
tions, the Hi’s are uniformly continuous functions, and from (ii) in Lemma 4.2 a.e.
(X,Y, Z), ∂Hi

∂X ≥ 0, ∂Hi

∂Y ≥ 0, ∂Hi

∂Z ≥ 0 . Hence from the mean value theorem

−2∑
i0

|un+1
i − vn+1

i | =
−2∑
i0

|H−1(u
n
i−1, u

n
i , u

n
i+1)−H−1(v

n
i−1, v

n
i , v

n
i+1)|

≤
−2∑
i0

|uni−1 − vni−1|
∫ 1

0

∂H−1

∂X
(Pn

i (θ))dθ

+

−2∑
i0

|uni − vni |
∫ 1

0

∂H−1

∂Y
(Pn

i (θ))dθ + |uni+1 − vni+1|
∫ 1

0

∂H−1

∂Z
(Pn

i (θ))dθ

= |uni0−1 − vni0−1|
∫ 1

0

∂H−1

∂X
(Pn

i0(θ))dθ

+
−3∑
i0

|uni − vni |
∫ 1

0

(
∂H−1

∂X
(Pn

i+1(θ)) +
∂H−1

∂Y
(Pn

i (θ)) +
∂H−1

∂Z
(Pn

i−1(θ))

)
dθ

+ |un−2 − vn−2|
∫ 1

0

(
∂H−1

∂Y
(Pn

−2(θ)) +
∂H−1

∂Z
(Pn

−3(θ))

)
dθ

+ |un−1 − vn−1|
∫ 1

0

∂H−1

∂Z
(Pn

−2(θ))dθ.

Now ∂H−1

∂X (X,Y, Z) = λ ∂G
∂a (X,Y ) ≤ λM ≤ 1, and from the second equality of (iii) in

Lemma 4.2 we obtain

−2∑
i0

|un+1
i − vn+1

i | ≤
−3∑
i0−1

|uni − vni |+ |un−1 − vn−1|
∫ 1

0

∂H−1

∂Z
(Pn

−2(θ))dθ

+ |un−2 − vn−2|
∫ 1

0

(
∂H−1

∂Y
(Pn

−2(θ)) +
∂H−1

∂Z
(Pn

−3(θ))

)
dθ.

Since ∂H1

∂Z = −λ∂F
∂b ≤ λM ≤ 1, the following inequalities result from the first equality
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of (iii) in Lemma 4.2:

j0∑
2

|un+1
i − vn+1

i | ≤
j0+1∑

3

|uni − vni |+ |un1 − vn1 |
∫ 1

0

∂H1

∂X
(Pn

2 (θ))dθ

+ |un2 − vn2 |
∫ 1

0

(
∂H1

∂Y
(Pn

2 (θ)) +
∂H1

∂X
(Pn

3 (θ))

)
dθ.

Moreover,

|un+1
−1 − vn+1

−1 |+ |un+1
1 − vn+1

1 |
= |H−2(u

n
−2, u

n
−1, u

n
1 )−H−2(v

n
−2, v

n
−1, v

n
1 )|+ |H2(u

n
−1, u

n
1 , u

n
2 )−H2(v

n
−1, v

n
1 , v

n
2 )|

≤ |un−2−vn−2|
∫ 1

0

∂H−2

∂X
(Pn

−1(θ))dθ+|un−1−vn−1|
∫ 1

0

(
∂H2

∂X
(Pn

1 (θ))+
∂H−2

∂Y
(Pn

−1(θ))

)
dθ

+ |un1 −vn1 |
∫ 1

0

(
∂H2

∂Y
(Pn

1 (θ))+
∂H−2

∂Z
(Pn

−1(θ))

)
dθ + |un2 −vn2 |

∫ 1

0

∂H2

∂Z
(Pn

1 (θ))dθ.

Summing up all the above three inequalities and from the last four equalities of (iii)
in Lemma 4.2 we obtain∑

i0≤i≤j0
i �=0

|un+1
i − vn+1

i | ≤
−3∑
i0−1

|uni − vni |+
j0+1∑

3

|uni − vni |

+ |un−2 − vn−2|
∫ 1

0

(
∂H−2

∂X
(Pn

−1(θ)) +
∂H−1

∂Y
(Pn

−2(θ)) +
∂H−1

∂Z
(Pn

−3(θ))

)
dθ

+ |un−1 − vn−1|
∫ 1

0

(
∂H2

∂X
(Pn

1 (θ)) +
∂H−2

∂Y
(Pn

−1(θ)) +
∂H−1

∂Z
(Pn

−2(θ))

)
dθ

+ |un1 − vn1 |
∫ 1

0

(
∂H1

∂X
(Pn

2 (θ)) +
∂H2

∂Y
(Pn

1 (θ)) +
∂H−2

∂Z
(Pn

−2(θ))

)
dθ

+ |un2 − vn2 |
∫ 1

0

(
∂H1

∂X
(Pn

3 (θ)) +
∂H1

∂Y
(Pn

2 (θ)) +
∂H2

∂Z
(Pn

1 (θ))

)
dθ

=
∑

i0−1≤i≤j0+1

i �=0

|uni − vni | .

Take the special choice of v0 by v0(x) = u1
i in [xi−1/2, xi+1/2). Then it follows easily

that vni = un+1
i . Now substituting this in the first inequality of the lemma and taking

i0 = −∞, j0 = ∞ we obtain the second inequality. This completes the proof of
Lemma 4.4.

Next we use the singular mapping technique introduced in [27, 23, 22, 28] to
obtain TV bounds for the transformed scheme, and this allows us to pass to the limit
as h → 0.

Let k : [s, S] → R be a Lipschitz continuous function satisfying (H2), and let K
be the corresponding numerical flux as in (3.1). Let θk denote the unique minima of
k. For A ∈ [s, S], a, b ∈ R, {uj−1, uj , uj+1, uj+2} ⊂ [s, S], define

ψk,A(u) =

∫ u

A

|k′(θ)|dθ, χ−(k
′(u)) =

{
0 if u ∈ (θk, S],
1 if u ∈ [s, θk],

χ(a, b) =

{
1 if a ≤ b,
0 if a > b,

χ
+(k

′(u)) =

{
1 if u ∈ [θk, S],
0 if u ∈ [s, θk),

and Hi+1/2 = K(ui, ui+1) for j − 1 ≤ i ≤ j + 1.
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Apart from χ− , χ+ we will use the standard notation

a+ = max(a, 0), a− = min(a, 0), a = a+ + a−, |a| = a+ − a−.

Lemma 4.5. With the above notation we have the following inequalities:

−χ(uj , uj+1)

∫ uj+1

uj

k′−(θ)dθ ≤ χ−(k
′(uj))|Hj+1/2 −Hj−1/2|,(4.3)

χ(uj , uj+1)

∫ uj+1

uj

k′+(θ)dθ ≤ χ+(k
′(uj+1))|Hj+3/2 −Hj+1/2|(4.4)

−(ψk,A(uj)− ψk,A(uj+1))− = χ(uj , uj+1)

{∫ uj+1

uj

k′+(θ)dθ −
∫ uj+1

uj

k′−(θ)dθ

}
≤ χ−(k

′(uj))|Hj+1/2 −Hj−1/2|+ χ+(k
′(uj+1))|Hj+3/2 −Hj+1/2|.(4.5)

The proof of this lemma can be found in [28, Lemma 3.3], just replacing the
requirement of a single maximum by a single minimum.

Singular mappings. Let f, g satisfy the hypotheses (H1) and (H2). Let θf , θg be
the respective minima for f and g. Define the singular mappings ψ1, ψ2 associated
with f and g as follows.

Case 1. f(θf ) ≤ g(θg). Choose A ≥ θf such that f(A) = g(θg) and for u ∈ [s, S]

ψ1(u) = ψg,θg (u) =

∫ u

θg

|g′(θ)|dθ, ψ2(u) = ψf,A(u) =

∫ u

A

|f ′(θ)|dθ.

Case 2. f(θf ) ≥ g(θg). Choose A ≤ θg such that f(θf ) = g(A) and for u ∈ [s, S]

ψ1(u) = ψg,A(u) =

∫ u

A

|g′(θ)|dθ, ψ2(u) = ψf,θf (u) =

∫ u

θf

|f ′(θ)|dθ.

In order to obtain TV bounds for the transformed sequence under the singular
mappings, we have to estimate the error term E defined as below. This error estimate
will be carried out in the next two lemmas.

For {u−2, u−1, u1, u2}⊂ [s, S], define z1=ψ2(u1), z−1=ψ1(u−1), H3/2=F (u1, u2),

H1/2 = H−1/2 = F (u−1, u1), H−3/2 = G(u−2, u−1), and

E = −(z−1 − z1)− − χ(u1, u2)

∫ u2

u1

f ′
−(θ)dθ + χ(u−2, u−1)

∫ u−1

u−2

g′+(θ)dθ

−|H−1/2 −H−3/2| − |H3/2 −H1/2|.

Lemma 4.6. With the above notation, for any sequence {u−2, u−1, u1, u2} ⊂
[s, S], we have E ≤ 0.

Proof. Without loss of generality we can assume that θf ≤ θg and f(θf ) ≤ g(θg)
(see Figure 1). Now ψ2(S) = f(S) − f(A) = g(S) − g(θg) = ψ1(S) and ψ2(s) =
−(f(s)− f(θf ))− (f(A)− f(θf )) ≤ −(f(A)− f(s)) = (g(θg)− g(s)) = ψ1(s). Hence
the range of ψ1 is contained in the range of ψ2. Therefore for each u ∈ [s, S] there
exists a unique ρ(u) ∈ [s, S] such that ψ1(u) = ψ2(ρ(u)) and u �→ ρ(u) is an increasing
function since ψ1, ψ2 are increasing functions.

For u−1 ≥ θg, define Ã(u−1) ≤ θf by f(Ã(u−1)) = g(u−1) (see Figure 1).
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Step 1. Let u−1 ≥ θg, u1 ≥ Ã(u−1).
In this case it is easy to see that H1/2 = H−1/2 = F (u−1, u1) = g(u−1) and

χ(u−2, u−1)

∫ u−1

u−2

g′+(θ)dθ = χ(u−2, u−1)(g(u−1)− g(max(θg, u−2))),

|H−1/2 −H−3/2| = |F (u−1, u1)−G(u−2, u−1)| = |g(u−1)− g(max(θg, u−2))|
≥ χ(u−2, u−1)

∫ u−1

u−2

g′+(θ)dθ.

Hence

χ(u−2, u−1)

∫ u−1

u−2

g′+(θ)dθ − |H−1/2 −H−3/2| ≤ 0.(4.6)

Since u−1 ≥ θg this implies that 0 ≤ g(u−1)− g(θg) = ψ1(u−1) = ψ2(ρ(u−1)). Hence
ρ(u−1) ≥ A and f(ρ(u−1)) = g(u−1).

Now (z−1 − z1)− �= 0 if and only if ψ2(ρ(u−1)) = ψ1(u−1) < ψ2(u1). This implies
that ρ(u−1) < u1. Therefore for A ≤ ρ(u−1) < u1 we have

−(z−1 − z1)− = ψ2(u1)− ψ2(ρ(u−1)) =

∫ u1

ρ(u−1)

|f ′(θ)|dθ = f(u1)− f(ρ(u−1)).

Hence

−(z−1 − z1)− =

{
f(u1)− f(ρ(u−1)) if A ≤ ρ(u−1) < u1,
0 otherwise.

(4.7)

Now for Ã(u−1) ≤ u1, 0 ≤ F (u−1, u1) − g(θg) = g(u−1) − g(θg) = ψ1(u−1) =
ψ2(ρ(u−1)) = f(ρ(u−1))− f(A), and therefore F (u−1, u1) = f(ρ(u−1)). Hence either
u1 ≤ u2 or ρ(u−1) < u1, and for all u2 we have

|H3/2 −H1/2| = |F (u1, u2)− F (u−1, u1)| = |F (u1, u2)− f(ρ(u−1))|
≥

{ |f(u1)− f(ρ(u−1))| if u1 ≥ θf ,
|f(min(u2, θf ))− f(ρ(u−1))| if u1 ≤ θf ,

(4.8)

−χ(u1, u2)

∫ u2

u1

f ′
−(θ)dθ =

{
0 if u1 ≥ θf ,
f(u1)− f(min(u2, θf )) if u1 ≤ θf .

(4.9)

Let E1 = −(z−1−z1)−−χ(u1, u2)
∫ u2

u1
f ′
−(θ)dθ−|H1/2−H3/2|. Suppose ρ(u−1) <

u1; then u1 ≥ θf , and hence from (4.7), (4.8), and (4.9) we have

E1 ≤ f(u1)− f(ρ(u−1))− |f(u1)− f(ρ(u−1))| ≤ 0.

Suppose u1 ≤ ρ(u−1); then (z−1−z1)− = 0. If θf ≤ u1, then E1 = −|H1/2−H3/2| ≤ 0.

Let θf > u1 ≥ Ã(u−1); then by the definition of Ã(u−1) we have f(Ã(u−1)) =
g(u−1) = f(ρ(u−1)). If u2 ≤ u1, then clearly E1 = −|H1/2 −H3/2| ≤ 0. Let u1 ≤ u2.

Now f(Ã(u−1)) = g(u−1) = f(ρ(u−1)), and hence f(u1) ≤ f(Ã(u−1)) = f(ρ(u−1)).
Hence from (4.7), (4.8), and (4.9),

E1 ≤ f(u1)− f(min(u2, θf ))− |f(ρ(u−1))− f(min(u2, θf ))| ≤ 0.

This together with (4.6) implies that E ≤ 0.
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Step 2. u−1 ≥ θg, u1 < Ã(u−1).
In this case F (u−1, u1) = f(u1) and g(u−1) ≤ f(u1).

|H−1/2 −H−3/2| = |F (u−1, u1)−G(u−2, u−1)| = |f(u1)− g(max(u−2, θg))|
≥ χ(u−2, u−1)|g(u−1)− g(max(u−2, θg))|

≥ χ(u−2, u−1)

∫ u−1

u−2

g′+(θ)dθ,(4.10)

|H3/2 −H1/2| = |F (u1, u2)− F (u−1, u1)| = |f(min(u2, θf ))− f(u1)|

≥ −χ(u1, u2)

∫ u2

u1

f ′
−(θ)dθ.(4.11)

From Step 1, (z−1 − z1)− �= 0 if and only if A < ρ(u−1) < u1. Hence (z−1 − z1)− = 0.
Combining this with (4.10) and (4.11) gives E ≤ 0.

Step 3. u−1 < θg, u1 ≥ Ã(θg) (see Figure 1).

In this case F (u−1, u1) = f(A) = g(θg). Since u1 ≥ Ã(θg) this implies that
f(u1) ≤ f(A) if u1 ≤ θf . Let u1 ≤ u2; then

−χ(u1, u2)

∫ u2

u1

f ′
−(θ)− |H3/2 −H1/2| ≤


−|f(u1)− f(A)| if u1 ≥ θf ,
f(u1)− f(min(u2, θf )),
−|f(u1)− f(min(u2, θf ))| if u1 ≤ θf .

(4.12)

Since u−1 ≤ θg, hence χ(u−2, u−1)
∫ u−1

u−2
g′+(θ)dθ = 0. Let (z−1 − z1)− = 0; then from

(4.12) we have E ≤ 0. Suppose (z−1 − z1)− �= 0; then ρ(u−1) ≤ u1 and

−(z−1 − z1)− = ψ2(u1)− ψ2(ρ(u−1)) =

∫ u1

ρ(u−1)

|f ′(θ)|dθ,
|H−1/2 −H−3/2| = G(u−2, u−1)− F (u−1, u1)

≥ g(u−1)− g(θg) = −ψ1(u−1) = −ψ2(ρ(u−1)).

Hence from (4.12) we have

E ≤


−(z−1 − z1)− − |H−1/2 −H−3/2| ≤

∫ u1

ρ(u−1)

|f ′(θ)|dθ −
∫ A

ρ(u−1)

|f ′(θ)|dθ ≤ 0

if u1 ≤ A,∫ u1

ρ(u−1)

|f ′(θ)|dθ −
∫ A

ρ(u−1)

|f ′(θ)|dθ −
∫ u1

A

|f ′(θ)|dθ = 0 if u1 ≥ A.

Hence in all cases E ≤ 0.
Step 4. Let u−1 ≤ θg, u1 ≤ Ã(θg). In this case F (u−1, u1) = f(u1) and

χ(u−2, u−1)
∫ u−1

u−2
g′+(θ)dθ = 0. Let u1 ≤ u2, u−2 ≤ u−1; then

|H3/2 −H1/2| = |F (u1, u2)− F (u−1, u1)| = |f(min(u2, θf ))− f(u1)|
= −χ(u1, u2)

∫ u2

u1

f ′
−(θ)dθ.

(4.13)

If u1 ≤ ρ(u−1), then (z−1 − z1)− = 0, and therefore from (4.13) E ≤ 0. Hence
assume that ρ(u−1) < u1; then f(ρ(u−1)) > f(u1). Since ψ2(ρ(u−1)) = ψ(u−1) this
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implies that

f(ρ(u−1))− f(θf ) + f(A)− f(θf ) =

∫ A

ρ(u−1)

|f ′(θ)|dθ = −ψ2(ρ(u−1))

= −ψ1(u−1) =

∫ θg

u−1

|g′(θ)|dθ = g(u−1)− g(θg).

Hence f(ρ(u−1))− g(u−1) = 2(f(θf )− f(A)) ≤ 0, and therefore f(u1) ≤ f(ρ(u−1)) ≤
g(u−1). This implies that

|H−3/2 −H−1/2| = |G(u−2, u−1)− F (u−1, u1)| ≥ g(u−1)−f(u1).

Since f(A) = f(Ã(θg)) we have

E ≤ −(z−1 − z1)− − |H−3/2 −H−1/2| ≤
∫ u1

ρ(u−1)

|f ′(θ)dθ − |g(u−1)− f(u1)|
= f(ρ(u−1))− g(u−1) ≤ 0.

This proves Lemma 4.6.
Lemma 4.7. Let u0 ∈ L∞(R) such that s ≤ u0(x) ≤ S for all x ∈ R and

N(f, g, u0) < 0. Let {uni } be the scheme defined as in (3.6). Let ψ1 and ψ2 be as in
Lemma 4.6. We introduce the constant

L = max{Lip(ψ1), Lip(ψ2), ‖ψ1‖∞, ‖ψ2‖∞}
and define

zni =

{
ψ2(u

n
i ) if i ≥ 1,

ψ1(u
n
i ) if i ≤ −1,

TV (zn) =
∑

i �=0,−1

|zni − zni+1|+ |zn−1 − zn1 |.
(4.14)

Then

TV (zn) ≤ 2/λ
∑
i �=0

|un+1
i − uni | ≤ 2/λ

∑
i �=0

|u1
i − u0

i | = 2Nh(f, g, u0),(4.15)

∑
i �=0

|zni − zmi | ≤ λL|n−m|N(f, g, P, u0).(4.16)

Proof.
Define H1/2 = H−1/2 = F (un−1, u

n
1 ) and

Hj+1/2 =

{
F (unj , u

n
j+1) if j ≥ 1,

G(unj , u
n
j+1) if j ≤ −2.

Since 0 =
∑

i �=0,−1(z
n
i − zni+1) + (zn−1 − zn1 ),

1

2
TV (zn) =

1

2

( ∑
i �=0,−1

|zni − zni+1|+ |zn−1 − zn1 |
)

= −
( ∑

i �=0,−1

(zni − zni+1)− + (zn−1 − zn1 )−

)
= I1 + I2 + I3,
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where

I1 = −
∑
i≤−3

(zni − zni+1)−, I2 = −
∑
i≥2

(zni − zni+1)−,

I3 = −(zn−2 − zn−1)− − (zn−1 − zn1 )− − (zn1 − zn2 )−.

From (4.3) to (4.5) we have

I1 = −
∑
i≤−3

(zni − zni+1)− = −
∑
i≤−3

(ψ1(u
n
i )− ψ1(u

n
i+1))−

≤
∑
i≤−3

χ−(g
′(uni ))|Hi+1/2 −Hi−1/2|+ χ+

(g′(uni+1))|Hi+3/2 −Hi+1/2|

≤
∑
i≤−3

|Hi+1/2 −Hi−1/2|+ χ+(g
′(un−2))|H−3/2 −H−5/2|,

I2 = −
∑
i≥2

(zni − zni+1)− = −
∑
i≥2

(ψ2(u
n
i )− ψ2(u

n
i+1))−

≤
∑
i≥2

χ−(f
′(uni ))|Hi+1/2 −Hi−1/2|+ χ+(f

′(uni+1))|Hi+3/2 −Hi+1/2|

≤
∑
i≥3

|Hi+1/2 −Hi−1/2|+ χ−(f
′(un2 ))|H5/2 −H3/2|,

−(zn−2 − zn−1)− = χ(un−2, u
n
−1)

(∫ un
−1

un
−2

g′+(θ)dθ −
∫ un

−1

un
−2

g′−(θ)dθ

)

≤ χ(un−2, u
n
−1)

∫ un
−1

un
−2

g′+(θ)dθ + χ−(g
′(un−2))|H−3/2 −H−5/2|,

−(zn1 − zn2 )− = χ(u1, u2)

(∫ un
2

un
1

f ′
+(θ)dθ −

∫ un
2

un
1

f ′
−(θ)dθ

)

≤ χ+
(f ′(un2 ))|H5/2 −H3/2| − χ(un1 , u

n
2 )

∫ un
2

un
1

f ′
−(θ)dθ.

Combining all the above three inequalities we obtain

1

2
TV (zn) ≤

∑
|i|≥2

|Hi+1/2 −Hi−1/2|+ χ(un−2, u
n
−1)

∫ un
−1

un
−2

g′+(θ)dθ

−χ(un1 , un2 )
∫ un

2

un
1

f ′
−(θ)dθ − (zn−1 − zn1 )−

=

∞∑
i=−∞

|Hi+1/2 −Hi−1/2|+ E,

where

E = −(zn−1 − zn1 )− − χ(un1 , u
n
2 )

∫ un
2

un
1

f ′
−(θ)dθ + χ(un−2, u

n
−1)

∫ un
−1

un
−2

g′+(θ)dθ

− |H−1/2 −H−3/2| − |H3/2 −H1/2|.
From Lemma 4.6, E ≤ 0; hence from Lemma 4.4

TV (zn) =
∑

i �=0,−1

|zni − zni+1|+ |zn−1 − zn1 | ≤ 2
∑

|Hi+1/2 −Hi−1/2|

=
2

λ

∑
i �=0

|un+1
i − uni | ≤

2

λ

∑
i �=0

|u1
i − u0

i | = 2Nh(f, g, u0).

This proves (4.15).
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Without loss of generality assume that n ≥ m; then from Lemma 4.4 we have∑
i �=0

|zni − zmi | =
∑
i≤−1

|zni − zmi |+
∑
i≥1

|zni − zmi | ≤ L
∑
i �=0

|uni − umi |

≤ L
∑
i �=0

n−m+1∑
j=0

|un−j
i − un−j−1

i |

≤ L|n−m|
∑
i �=0

|u1
i − u0

i | = λL|n−m|Nh(f, g, u0).

This proves (4.16) and hence Lemma 4.7.
The following lemma is the analogue of Lemma 4.7 in terms of functions instead

of point values.
Lemma 4.8. Let u0, v0 ∈ L∞(R, [s, S]) such that N(f, g, u0) < ∞, N(f, g, v0) <

∞ are initial datas, and let uh and vh be the corresponding solutions obtained by the
finite volume scheme (3.6) and defined as in (3.7). Let {zni } defined as in (4.14) for
u0 and zh be the corresponding function defined as in (3.7). Then

s ≤ uh(x, t) ≤ S ∀ (x, t) ∈ R × R+,(4.17)

||zh||∞ ≤ L, TV (zh(·, t)) ≤ 2Nh(f, g, u0),(4.18) ∫
R

|uh(x, t)− uh(x, τ)|dx ≤ Nh(f, g, u0)(2∆t+ |t− τ |),(4.19) ∫
R

|zh(x, t)− zh(x, τ)|dx ≤ LNh(f, g, u0)(2∆t+ |t− τ |).(4.20)

Moreover, for a ≤ b and τ < t,∫ b

a

|uh(x, t)− vh(x, t)|dx ≤
∫ b+ 1

λ (t−τ)

a− 1
λ (t−τ)

|uh(x, τ)− vh(x, τ)|dx+ 4(S − s)h.(4.21)

Proof. Inequalities (4.17) and (4.18) follow from (4.2) and (4.15). For inequality
(4.19) let tn ≤ t < tn+1 and tm ≤ τ < tm+1 so that

|n−m|∆t = |tn − tm| ≤ |tn − t|+ |t− τ |+ |τ − tm| ≤ 2∆t+ |t− τ |.
Hence from Lemma 4.2 we obtain∫

R

|uh(x, t)− uh(x, τ)|dx = h
∑
i �=0

|uni − umi | ≤ h
∑
i �=0

n−m+1∑
j=0

|un−j
i − un−j−1

i |

≤ h|n−m|
∑
i �=0

|u1
i − u0

i | ≤
∆t|n−m|

λ

∑
i �=0

|u1
i − u0

i |

≤ (2∆t+ |t− τ |)Nh(f, g, u0).

The proof of (4.20) follows from (4.19):∫
R

|zh(x, t)− zh(x, τ)|dx ≤ h
∑
i �=0

|zni − zmi | ≤ Lh
∑
i �=0

|uni − umi |

≤ LNh(f, g, u0)(2∆t+ |t− τ |).
We prove inequality (4.21) for a < 0, b > 0. The proofs are similar for the other cases.
Let

xi0−3/2 < a ≤ xi0−1/2, xj0+1/2 ≤ b < xj0+3/2,
tn+1 ≤ t < tn+2, tn−p+1 ≤ τ < tn−p+2;
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so we have xi0−p−3/2 ≤ a − ph ≤ xi0−p−1/2, xj0+p+1/2 ≤ b + ph < xj0+p+3/2, and
t−∆t ≤ τ + p∆t ≤ t+∆t. From (4.17) |uh − vh| ≤ (S − s); hence∫ b

a

|uh(x, t)− vh(x, t)|dx =

∫ xi0−1/2

a

|uh(x, t)− vh(x, t)|dx

+

∫ xj0+1/2

xi0−1/2

|uh(x, t)− vh(x, t)|dx+

∫ b

xj0+1/2

|uh(x, t)− vh(x, t)|dx

≤ 2(S − s)h+ h
∑

i0≤i≤j0
i�=0

|un+1
i − vn+1

i |.

Using Lemma 4.4 it follows that∫ b

a

|uh(x, t)− vh(x, t)|dx
≤ 2(S − s)h+ h

∑
i0−p≤i≤j0+p

i�=0

|un+1−p
i − vn+1−p

i |

= 2(S − s)h+

∫ xj0+p+1/2

xi0−p−1/2

|uh(x, τ)− vh(x, τ)|dx

= 2(S − s)h+

∫ b+ph

a−ph

|uh(x, τ)− vh(x, τ)|dx

−
∫ xi0−p−1/2

a−ph

|uh(x, τ)− vh(x, τ)|dx−
∫ b+ph

xj0+p+1/2

|uh(x, τ)− vh(x, τ)|dx

≤ 2(S − s)h+

∫ b+ t−τ
λ

a− t−τ
λ

|uh(x, τ)− vh(x, τ)|dx

+

∫ a−ph

a− t−τ
λ

|uh(x, τ)− vh(x, τ)|dx+

∫ b+ t−τ
λ

b+ph

|uh(x, τ)− vh(x, τ)|dx

≤ 2(S − s)h+ 2| t−τ
λ − ph|(S − s) +

∫ b+ t−τ
λ

a− t−τ
λ

|uh(x, τ)− uh(x, τ)|dx

≤ 4(S − s)h+

∫ b+ t−τ
λ

a− t−τ
λ

|uh(x, τ)− vh(x, τ)|dx .

This completes the proof of Lemma 4.8.

4.3. Convergence of a subsequence to the weak solution. From hypothe-
ses (H1) and (H2) we will construct a solution to the Riemann problem with under-
compressive data which will enable us to prove that the solution satisfies the interface
entropy condition (2.2). For α, β ∈ [s, S], let

v0(x, α, β) =

{
α if x < 0,
β if x ≥ 0 .

Then we have the following lemma.
Lemma 4.9. Assume that f, g satisfy hypotheses (H1) and (H2). Let α, β ∈ [s, S]

be such that α ≤ θg and β ≥ θf . Let vh(x, t, α, β) be the solution given by the finite
volume scheme (3.6) with initial data v0(x, α, β) and λM ≤ 1 . Assume that for a
subsequence hk → 0, vhk

(x, t, α, β) → v(x, t, α, β) on L∞
loc(R+, L

1
loc(R)) . Then

lim
x→0−

v(x, t, α, β) = θg if min g > min f,

lim
x→0+

v(x, t, α, β) = θf if min g ≤ min f.
(4.22)
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Proof. We will prove the lemma for min g > min f. The other cases can be proved
in a similar manner. Let A ≥ θf be such that f(A) = g(θg) (see Figure 1). Since
α ≤ θg, β ≥ θf it follows from (3.2) that

F (α, β) = max {g(θg), f(θf )} = g(θg).(4.23)

Then if {vni } are the grid values corresponding to the initial data v0(x, α, β),

v1
i =


α− λ(g(θg)− g(α)) if i = −1,
α if i ≤ −2,
β − λ(f(β)− g(θg)) if i = 1,
β if i ≥ 2.

This implies that v1
−1 = α − λ(g(θg) − g(α)) and v1

−1 = α + λ(g(α) − g(θg)) ≤
α + λM |α − θg| < α + θg − α = θg. Let β ∈ [θf , A]; then f(β) ≤ f(A) = g(θg), and
hence v1

1 = β − λ(f(β) − g(θg)) ≥ β and v1
1 = β + λ(g(θg) − f(β)) = β + λ(f(A) −

f(β)) ≤ β + (A − β) = A. If β ∈ [A,S], then f(β) > f(A) = g(θg), and hence
v1
1 = β − λ(f(β)− g(θg)) < β and v1

1 = β − λ(f(β)− f(A)) ≥ β − λM(β − A) ≥ A .
Hence {v1

i } satisfies

α ≤ v1
−1 ≤ θg,

β ≤ v1
1 ≤ A if β ∈ [θf , A],

A ≤ v1
1 ≤ β if β ∈ [A,S],

v1
i =

{
α if i ≤ −2,
β if i ≥ 2.

(4.24)

Now we claim that {vni } satisfies

α ≤ vn−n ≤ vn−n+1 ≤ · · · ≤ vn−1 ≤ θg,

β ≤ vn1 ≤ · · · ≤ vnn ≤ A if β ∈ [θf , A],

A ≤ vn1 ≤ · · · ≤ vnn ≤ β if β ∈ [A,S],

vni =

{
α if i ≤ −n− 1,
β if i ≥ n+ 1.

(4.25)

From (4.24) the claim is true for n = 1. Assume that it is true up to n − 1. Since
vn−1
1 ≥ θf and vn−1

−1 ≤ θg, hence as in (4.23) F (vn−1, v
n
1 ) = g(θg). Hence by the same

argument as in (4.24), it follows that α ≤ vn−1 ≤ θg, β ≤ vn1 ≤ A if β ∈ [θf , A]
and A ≤ vn1 ≤ β if β ∈ [A,S]. Now (4.25) follows since the scheme is monotone and
consistent for |i| ≥ 2. This proves (4.25).

From (4.25) it follows that v(x, t, α, β) satisfies

α ≤ v−(t, α, β) = lim
x→0−

v(x, t, α1, β) ≤ θg,

β ≤ v+(t, α, β) = lim
x→0+

v(x, t, α, β) ≤ A if β ∈ [θf , A],

A ≤ v+(t, α, β) = lim
x→0+

v(x, t, α, β) ≤ β if β ∈ [A,S].

From (4.25) and hypothesis (H2) on the shape of f and g we observe that {v(n)
i }i≤−1

is independent of β as long as β ≥ θf . Hence v−(t, α, β) is independent of β, and hence
v−(t, α, β) = v−(t, α, θf ). Since v+(t, α, θf ) ≤ A and g(v−(t, α, β)) = f(v+(t, α, β)),
hence v−(t, α, β) = θg. This completes the proof of Lemma 4.9.
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Proof of Theorem 3.2. Let λ = ∆t
h ≤ 1

M be fixed. Since N(f, g, u0) < ∞, then
from Lemma 4.8 and by a standard argument there exists a subsequence hk → 0 such
that zhk

converges to z in L∞(0, T, L1
loc(R)) and for almost all fixed t, zhk

(., t) → z(., t)
in L1

loc(R). Let

u(x, t) =

{
ψ−1

2 (z(x, t)) if x > 0, t > 0,
ψ−1

1 (z(x, t)) if x < 0, t > 0.

Now for x > 0, uhk
(x, t) = ψ−1

2 (zhk
(x, t)) and for x < 0, uhk

(x, t) = ψ−1
1 (zhk

(x, t))
and ψ1 and ψ2 are continuous, and therefore for almost all t, uhk

(., t) → u(., t) a.e.
in R. From (4.18), for a.e. t, z(., t) ∈ BV (R), and hence z(x+, t), z(x−, t) exist for
all x ∈ R. This implies that u(x+, t), u(x−, t) exist for all x ∈ R and a.e. t. We will
complete the proof of the theorem in two steps.

Step 1. Let us prove that u is a weak solution of (1.2) satisfying the interior
entropy condition (2.1). Remember that the scheme is not consistent. However, the
proof follows almost as in the Lax–Wendroff theorem [10, Theorem 1.1].

Let ϕ ∈ C1
0 (R × R+), and let

ϕnj = ϕ(xj , tn), j ∈ Z \ (0), n ≥ 0 .

Multiplying (3.6) by ϕnj and summing over j and n we obtain

h

∞∑
n=1

∑
i �=0

uni (ϕ
n−1
i − ϕni ) + ∆t

∞∑
n=0

−1∑
−∞

G(uni−1, u
n
i )(ϕ

n
i−1 − ϕni )

+∆t

∞∑
n=0

∞∑
2

F (uni−1, u
n
i )(ϕ

n
i−1−ϕni )+∆t

∞∑
n=0

F (un−1, u
n
1 )(ϕ

n
−1−ϕn1 )− h

∑
i �=0

u0
iϕ

0
i =0.

Let

gh(x, t) = G(uni−1, u
n
i ), i≤−1, x∈(xi−1, xi], t ∈ [n∆t, (n+ 1)∆t),

fh(x, t) = F (uni−1, u
n
i ), i≥2, x∈(xi−1, xi], t∈ [n∆t, (n+ 1)∆t),

Fh(t) = F (un−1, u
n
1 ), t∈ [n∆t, (n+ 1)∆t),

ϕh(t) = ϕ(h2 , n∆t)− ϕ(−h
2 , n∆t), t∈ [n∆t, (n+ 1)∆t);

then the above equalities read as∫ ∞

−∞

∫ ∞

∆t

uh(x, t)

(
ϕh(x, t)− ϕh(x, t−∆t)

∆t

)
dtdx

+

∫ x−1

−∞

∫ ∞

0

gh(x, t)

(
ϕh(x+ h

2 , t)− ϕh(x− h
2 , t)

h

)
dtdx

+

∫ ∞

x1

∫ ∞

0

fh(x, t)

(
ϕh(x+ h

2 , t)− ϕh(x− h
2 , t)

h

)
dtdx

+

∫ ∞

0

Fh(t)ϕh(t)dt+

∫ ∞

−∞
uh(x)ϕh(x)dx = 0 .

Let h = hk in the above equation, and by going to a subsequence if necessary, by using
by the fact that |F (t)| ≤ ‖F‖∞ + ‖G‖∞ and by the dominated convergence theorem,
it follows that as k → ∞, uhk

→ u in L∞
loc(R, L

1
loc(R)) and the above equation gives

that∫ ∞

−∞

∫ ∞

0

[
u
∂ϕ

∂t
+ (H(x)f(u) + (1−H(x))g(u))

∂ϕ

∂x

]
dtdx+

∫ ∞

−∞
u0(x)ϕ(x, 0)dx = 0,

where H(x) is the Heaviside function. This proves that u is a weak solution.



CONSERVATION LAWS WITH A DISCONTINUOUS FLUX FUNCTION 199

In order to prove the interior entropy condition, for l ∈ R define

A(a, b) = F (a ∧ l, b ∧ l)− F (a ∨ l, b ∨ l), B(a, b) = G(a ∧ l, b ∧ l)−G(a ∨ l, b ∨ l),

An
j+1/2 = A(unj , u

n
j+1), Bn

j+1/2 = B(unj , u
n
j+1).(4.26)

Then as in [4, 10], for |i| ≥ 2, uni satisfies

|un+1
i − l| ≤ |uni − l| − λ(An

i+1/2 −An
i−1/2) if i ≥ 2,(4.27)

|un+1
i − l| ≤ |uni − l| − λ(Bn

i+1/2 −Bn
i−1/2) if i ≤ −2.(4.28)

Let 0 ≤ ϕ ∈ C1
0 (R+ × R+). Then there exists α > 0 such that supp (ϕ) ⊂

{(x, t);x > α, t > α} . Hence for hk small, ϕhk
(x, t) = 0 for x ≤ x4, t ≥ ∆t. Let

l ∈ R, A, and Ai+1/2 be defined as in (4.26). Let Ah(x, t) = An
i+1/2 for xi ≤ x <

xi+1, tn ≤ t < tn+1 . Then multiplying (4.27) by ϕni and summing we obtain∫ ∞

0

∫ ∞

0

|uhk
− l|

(
ϕhk

(x, t)− ϕhk
(x, t−∆t

∆t

)
+

∫ ∞

0

∫ ∞

x3

Ahk
(x, t)

(
ϕ(x+ hk

2 , t)− ϕ(x− hk

2 , t)

hk

)
dxdt ≥ 0 .

Now letting hk → 0 yields
∫∞
0

∫∞
0

[ |u− l|∂ϕ∂t + (f(u)− f(l))sign(u− l)∂ϕ∂x ] dx dt ≥ 0,
and similarly for x < 0. Hence u satisfies the interior entropy condition (2.1), and this
complete the proof of Step 1.

Step 2. We will now show that if u is the weak solution constructed in Step 1
for some hk → 0, and assuming that the set of discontinuities of u is a discrete set of
Lipschitz curves {Γj}, then u satisfies the interface entropy condition (2.2), and the
solution thus obtained is unique.

The main ingredient to prove this is the choice of the solution constructed in
Lemma 4.9. Without loss of generality we can assume that min g ≥ min f . Since
x → z(x, t) is TV bounded, hence z(0+, t) and z(0−, t) exist. This implies that u+(t)
and u−(t) exist. Suppose that u does not satisfy the interface entropy condition (2.2).
Then meas {L \ U} �= 0. Since for t ∈ L \ U u+(t) > θf , u

−(t) < θg, from hypothesis
(H2) we obtain, for almost all t ∈ L \ U u−(t) < S, u+(t) > s and

meas
{
t ∈ L;u−(t) < S, u+(t) > s

} �= 0.

Hence from the hypothesis on u and (H2) we can choose t0 ∈ L \ U, α, β, ε ∈ R+

such that they satisfy

t0 = nk∆t, uhk
(x, t0) → u(x, t0) in L1

loc(R) and u+(t0) > θf , u
−(t0) < θg,(4.29)

u is continuous in [−β, 0)× [t0 − α, t0 + α] and (0, β]× [t0 − α, t0 + α],

u−(t0)− ε ≤ u(x, t) ≤ u−(t0) + ε < θg in [−β, 0)× [t0 − α, t0 + α],
θf < u+(t0)− ε ≤ u(x, t) ≤ u+(t0) + ε in (0, β]× [t0 − α, t0 + α].

(4.30)

On R × {t0}, define the functions

Vk(x, t0) = uhk
(x, t0)

Vk,ε(x, t0) =


uhk

(x, t0) if |x| ≥ β,
max(uhk

(x, t0), u
−(t0)− ε) if −β ≤ x ≤ 0,

max (uhk
(x, t0), u

+(t0)− ε) if 0 ≤ x ≤ β,

V0 =

{
max(s, u−(t0)− ε) if x ≤ 0,

u+(t0)− ε if x > 0.

(4.31)
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From (4.29) and (4.30) it follows that as k → ∞, for almost every x ∈ R

Vk(x, t0) → u(x, t0), Vk,ε(x, t0) → u(x, t0).(4.32)

With t0 as the initial time and hk, λ = ∆t
hk

, as the grid lengths, let Ṽhk
, Ṽhk,ε

, andWhk

be the respective solutions calculated with the finite volume scheme (3.6) for t ≥ t0
and associated with Vk, Vk,ε, V0 as initial data at t = t0. Since Vk, Vk,ε, and V0 are such
that N(f, g, Vk), N(f, g, Vk,ε), N(f, g, V0) are bounded, one can extract a subsequence

still denoted by hk such that Ṽhk
, Ṽhk,ε

,Whk
converge to u (since uhk

= Ṽhk
), v, w

a.e., respectively. Letting hk → 0 in (4.21) for any a > 0, t > t0, we have∫ a

−a

|u(x, t)− v(x, t)|dx ≤
∫ a+t0/λ

−a−t0/λ

|u(x, t0)− v(x, t0)|dx = 0 .

Hence u ≡ v.
From (4.31), V0(x, t0) ≤ Vk,ε(x, t0) for x ∈ [−β, β] . Hence by monotonicity of the

scheme (see (ii) of Lemma 4.2), Whk
(x, t) ≤ Ṽk,ε(x, t) + o(∆t) for −β + t−t0

λ ≤ x ≤
β − t−t0

λ , and hence for a.e. (x, t) with t > t0, −β + t−t0
λ ≤ x ≤ β − t−t0

λ ,

w(x, t) ≤ u(x, t).

From this inequality, Lemma 4.9, and (4.30) we have for a.e. t ∈ (t0, min(t0+λβ, t0−
α))

θg = w−(t) ≤ u−(t) ≤ u−(t0) + ε < θg,

which is a contradiction. Hence u satisfies the interface entropy conditions.
Let u, v be two limit points of the scheme {uh} such that u and v have a discrete

set of Lipschitz curves as discontinuities. From Steps 1 and 2, u and v satisfy the
entropy conditions (2.1) and (2.2), and hence from Lemma A.1, for b > Mt,∫ b+Mt,

−b+Mt

|u(x, t)− v(x, t)|dx ≤
∫ b

−b

|u(x, 0)− v(x, 0)|dx = 0 .

Hence u ≡ v. This proves Step 2.
Furthermore, let u and v be the weak solutions of (1.2), constructed in Steps 1

and 2 for the initial data u0 and v0, respectively. Then by taking a = −∞, b = +∞,
and letting h → 0 in (4.21) we obtain∫

R

|u(x, t)− v(x, t)|dx ≤
∫

R

|u0(x)− v0(x)|dx .

Finally, if f ≡ g, then by Lemma 4.1 F (a, b) = F (a, b), and hence the scheme is
Godunov’s scheme. Now Theorem 3.2 follows from Steps 1 to 2.

Note that the scheme defined in (3.6) using the interface flux F gives a much
stronger bound, i.e., E ≤ 0. This helps us to extend the result for a flux F (x, u)
having more discontinuities in the space variable, as stated in the next remark.

Remark 4.10. The above analysis can be extended readily to the equation

ut + f(k(x), u)x = 0,

where f(a, b) ∈ C1(R × R) and k is a piecewise smooth function satisfying
(i) f(a, s) = f(b, s), f(a, S) = f(b, S) for all a, b ∈ R,
(ii) for all a the function u −→ f(a, u) satisfies (H2).
Remark 4.11. In a forthcoming paper we will extend the above analysis to all

E-schemes, including Engquist–Osher, Lax–Friedrich, etc. The case of the upstream
mobility is considered in the next section, where it is compared with scheme (3.6).
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5. Two-phase flow in porous media. Capillary-free two-phase incompressible
flow in a porous medium with a rock type changing at x = 0 is modelled by (1.3),
(1.4), where u is the saturation of one of the two phases, say phase 1. Equations (1.3)
represent conservation of phase 1 inside each rock type, and (1.4) ensures conservation
of the same phase at the interface between the two rock types. The functions f and
g are the Darcy velocities (divided by the porosity) of phase 1 in each rock type, and
they have the form

f = f1 =
1

φ

λ1

λ1 + λ2
[q + (c1 − c2)λ2] for x > 0,

g = g1 =
1

φ

µ1

µ1 + µ2
[q + (c1 − c2)µ2] for x < 0,

(5.1)

where φ is the porosity of the rock and q, a constant in space, is the total Darcy
velocity, that is, the sum of the Darcy velocities of the two phases, q = φ(f1 + f2) =
φ(g1+g2). The Darcy velocities (divided by the porosity) of phase 2 denoted by f2, g2
are given by

f2 =
1

φ

λ2

λ1 + λ2
[q + (c2 − c1)λ1], g2 =

1

φ

µ2

µ1 + µ2
[q + (c2 − c1)µ1].

The quantities λ1, µ1 and λ2, µ2 are the effective mobilities of the two phases.
They are functions of u satisfying the following properties:

λ1, µ1 are increasing functions ofu, λ1(s) = µ1(s) = 0,
λ2, µ2 are decreasing functions ofu, λ2(S) = µ2(S) = 0.

(5.2)

The gravity constants c1, c2 of the phases are proportional to their density.

In such a context the flux functions f and g satisfy hypotheses (H1), (H2), or
(H3), and Theorems 2.1, and 3.2 apply, provided that an appropriate CFL condition
is satisfied. In numerical computations one can, of course, use the numerical fluxes
F,G defined in (3.1) inside the rock types and F , defined in (3.2) at the interface.

However, petroleum engineers have designed, from simple physical considerations,
another numerical flux called the upstream mobility flux. It is an ad hoc flux for two-
phase flow in porous media which corresponds to an approximate solution to the
Riemann problem. It is given by the following formula:

FUM (a, b) =
1

φ

λ∗1
λ∗1 + λ∗2

[q + (c1 − c2)λ
∗
2],

λ∗) =

{
λ)(a) if q + (c) − ci)λ

∗
) > 0, i = 1, 2, i �= @,

λ)(b) if q + (c) − ci)λ
∗
) ≤ 0, i = 1, 2, i �= @,

@ = 1, 2,
(5.3)

and similarly for GUM associated with g. As we can see, the flux is calculated using
the mobilities of the phases which are upstream with respect to the flow of the phases.
When the two phases are flowing in the same direction, the Godunov flux and the
upstream mobility flux give the same answer and coincide with standard upstream
weighting, but they differ when the phases are flowing in opposite directions. This flux
has been shown to have all the desired properties for convergence of the associated
finite difference scheme [26, 2] in the case of a flux function which does not vary with
space (one rock type).
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The generalization of the upstream mobility flux to the case of two rock types is
straightforward, and at the interface the corresponding flux is

F
UM

(a, b) =
1

φ

λ∗1
λ∗1 + λ∗2

[q + (c1 − c2)λ
∗
2],

λ∗) =

{
µ)(a) if q + (c) − ci)λ

∗
) > 0, i = 1, 2, i �= @,

λ)(b) if q + (c) − ci)λ
∗
) ≤ 0, i = 1, 2, i �= @,

@ = 1, 2.

(5.4)

This upstream mobility flux at the interface satisfies the consistency condition of
Lemma 4.1:

F
UM

(s, s) = f(s) = g(s) = 0, F
UM

(S, S) = f(S) = g(S) =
q

φ
.

6. Numerical experiments. We consider an idealized experiment in which two
phases of different densities are flowing in a vertical closed core. This core is made of
two rock types, the top part being associated with the flux function g and the bottom
part associated with the function f defined in (5.1). The data associated with the
problem are as follows:

φ = 1, q = 0, c1 = 2, c2 = 1,
s = 0., S = 1., λ1 = 10u2, λ2 = 20(1− u)2, µ1 = 50u2, µ2 = 5(1− u)2,

which gives the flux function f and g represented in Figure 3. Note that we are in
the case where f and g satisfy hypothesis (H3). Phase 1 is the heavy phase, and it
moves downwards while phase 2, the light phase, moves upward.

0  0.2 0.4 0.6 0.8 1  
0

0.4

0.8

1.2

1.6

2

f

g

Fig. 3. The flux functions at the interface for the numerical experiments.

We present here two simulations which differ by the initial condition. In the first
case we start with discontinuous data u0(x) = 1 if x < 0, u0(x) = 0 if x > 0; that
is, at initial time the core is saturated with the heavy fluid (phase 1) in the upper
half and with the light fluid (phase 2)in the lower half. The calculated solution is
shown in Figure 4. In the second case we start with a constant initial data u0 = .5
which corresponds to a situation where the two phases are “mixed.” In this case the
solution is shown in Figure 5.

In all figures the top part of the core is on the left of the picture and the bottom
part is on the right. As expected, observe as time goes on the heavy fluid moving
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t = .5
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Fig. 4. Finite difference solutions calculated with numerical flux (3.1), (3.3) (ERS) and with
the upstream mobility flux (5.3), (5.4) at different times for a discontinuous initial data (h = 1/100).

downward which is represented by its saturation u decreasing on the left and increasing
on the right. Obviously, in the case of the continuous initial data we reach earlier
the stationary state where the heavy phase occupies the bottom half of the core
(u(x) = 0 if x < 0, u(x) = 1 if x > 0). However, one can observe the complexity of
the solution, which presents several shocks.

In Figures 4 and 5 we compare the finite difference solutions calculated when
using the numerical flux based on the exact Riemann solver (ERS) (3.1), (3.3) and
the one calculated when using the upstream mobility flux (5.3), (5.4). We can observe
that the latter is doing very well even in these complex situations. However, small
differences can be seen. In particular, a small boundary layer appears on the left side
of the interface. For these numerical examples these differences vanish when h → 0 if
they are measured in the L1 norm.

Finally, in Figure 6 we present the solution given by the numerical flux which was
presented in [3, 8, 13, 6] (ERS-NIF) and which is not valid when the flux functions
intersect in the undercompressive case, which is our situation. The picture in Figure
6 is to be compared with the bottom picture in Figure 4. As expected, this numerical
flux is not able to capture the complexity of the solution.
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Fig. 5. Finite difference solutions calculated with numerical flux (3.1), (3.3) (ERS) and with
the upstream mobility flux (5.3), (5.4) at different times for a constant initial data (h = 1/100).
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Fig. 6. Finite difference solution calculated when using the numerical flux for nonintersecting
fluxes.

7. Conclusion. The calculation of the solutions of conservation laws with a flux
function discontinuous in space needs appropriate numerical methods. We presented
a Godunov method which uses an exact Riemann solver, and we proved convergence
of the corresponding numerical scheme. We compared numerically with the upstream
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mobility numerical flux used for multiphase flow in porous media, showing that the
latter still works well in the case of a discontinuous flux function. A consequence of
the proof of the convergence of the numerical scheme is an existence and uniqueness
of the solution to the continuous problem.

Appendix A. End of the proof of existence and uniqueness theorem,
Theorem 2.1. In this appendix we terminate the proof of Theorem 2.1 for nonconvex
functions as in Figure 1. Existence was a consequence of the convergence theorem,
Theorem 3.2, and to prove uniqueness we need to show that all solutions of (1.2)
satisfying entropy conditions (2.1) and (2.2) can be represented by an L1-contractive
semigroup. The proof is as in [1], so we sketch only the proof. The main idea of this
proof goes back to Kruzkov [19].

Lemma A.1. Let u, v ∈ L∞(R × R+) with s ≤ u, v ≤ S be two solutions of (1.2)
with initial data u0, v0 ∈ L∞(R), respectively. Assume the following:

(i) For almost every t, u(x+, t), v(x+, t), u(x−, t), and v(x−, t) exist.
(ii) The set of discontinuities of u and v is a discrete set {Γj}j∈N of Lipschitz

curves.
(iii) u and v satisfies the entropy conditions (2.1) and (2.2).
Then for any M ≥ M, a < 0, b > 0, b− a ≥ 2Mt the function

t �→
∫ b−Mt

a+Mt

|u(x, t)− v(x, t)|dx

is nonincreasing.
Proof. The first three steps are exactly as in Kruzkov’s proof (see [12, p. 24]),

and the interface entropy condition (2.2) is used to prove Step 4.
Step 1. Let l ∈ R, ϕl(θ) = |θ − l|, f̃(θ, l) = (f(θ) − f(l)) sign (θ − l). Let

0 ≤ ρ ∈ C∞
0 (R × R+). Let Γ+

j = Γj ∩ {(x, t) : x > 0, t > 0} and νj = (νj1 , ν
j
2) be

the a.e. normal to Γ+
j . Then by integration by parts and using the interior entropy

condition (2.1) we obtain∫ ∞

0

∫ ∞

0

(ϕl(u(x, t))
∂ρ

∂t
+ f̃ (u(x, t), l)

∂ρ

∂x
dxdt

=
∞∑
j=1

∫
Γ+
j

([ϕl(u)]ν
j
1 + [f̃(u, l)]νj2)ρdσ −

∫ ∞

0

f̃(u+(t), l)ρ(0, t)dt

≥ −
∫ ∞

0

f̃(u+(t), l)ρ(0, t)dt,(A.1)

where [ϕl(u)] = ϕl(u
−)−ϕl(u+), the jump across of Γ+

j , [f̃(u, l)] = f̃(u−, l)−f̃(u+, l),

the jump across of Γ+
j , and u+(t) = u(0+, t) .

Step 2. Let A(x, t, y, s) = f(u(x,t))−f(v(y,s))
u(x,t)−v(y,s) , α ∈ C1

0 ((−1, 0) × (−1, 0)) with∫
R

2 α(z)dz = 1 and β ∈ C1
0 (R+ × R+) . Let ε1 > 0, ε2 > 0, and define

ρε(x, t, y, τ) =
1

ε1ε2
α

(
x− y

ε1
,
t− τ

ε2

)
β(y, s) .

Now taking l = v(y, τ) and ρ = ρε(x, t, y, τ) in (A.1) we integrate with respect to
(y, τ) ∈ R+ × R+. Then using symmetry and letting ε1 → 0, ε2 → 0 we obtain∫ ∞

0

∫ ∞

0

|u(x, t)−v(x, t)|
{
∂β

∂t
+A(x, t, x, t)

∂β

∂x

}
dxdt≥ −

∫ ∞

0

f̃(u+(t), v+(t))β(0, t)dt.
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Step 3. Let b ≥ 0 and χε be a decreasing smooth function in (0,∞) converging
to χ[0,b] as ε → 0 . Let 0 ≤ ϕ ∈ C1

0 (R+), and let β(x, t) = χε(|x| +Mt)ϕ(t) in the
above equation. Letting ε → 0 we can write

∫ ∞

0

ϕ′(t)
∫ b−Mt

0

|u(x, t)− v(x, t)|dt ≥ −
∫ b/M

0

f̃(u+(t), v+(t))ϕ(t)dt .

Similarly for x ≤ 0,

∫ ∞

0

ϕ1(t)

∫ 0

a+Mt

|u(x, t)− v(x, t)|dt ≥
∫ b/M

0

g̃(u−(t), v−(t))ϕ(t)dt.

Adding both inequalities we obtain

∫ ∞

0

ϕ′(t)
∫ b−Mt

a+Mt

|u(x, t)− v(x, t)|dx ≥
∫ b/M

0

(g̃(u−(t), v−(t))− f̃(u+(t), v+(t))ϕ(t))dt.

Step 4. So far, all the above steps are standard, and now we will make use of the
interface entropy condition (2.2) to prove Lemma A.1. In order to prove the lemma
it is sufficient to show that for almost all t, I(t) ≥ 0, where

I(t) = g̃(u−(t), v−(t))− f̃(u+(t), v+(t)) = |u−(t)− v−(t)|g(u
−(t))− g(v−(t))
u−(t)− v−(t)

−|u+(t)− v+(t)|f(u
+(t))− f(v+(t))

u+(t)− v+(t)
.

Without loss of generality, we can assume that u+(t) > v+(t). If f(u+(t)) ≤ f(v+(t)),
then I(t) ≥ 0. Hence let f(u+(t)) > f(v+(t)). Since u+(t) > v+(t), from hypothesis
(H2) we have u

+(t) ∈ (θf , S]. From the interface entropy condition (2.2) either u+(t) =
u−(t) = S or u−(t) ∈ (θg, S]. In the first case, I(t) = 0 . In the latter case from the
Rankine–Hugoniot condition, g(u−(t)) > g(v−(t)) and from hypothesis (H2) u

−(t) >
v−(t), and hence I(t) = 0. This completes the proof of (A.2) and of Lemma A.1.

Lemma A.1 implies that

∫ b−Mt

a+Mt

|u(x, t)− v(x, t)|dx ≤
∫ b

a

|u(x, 0)− v(x, 0)|dx.

Letting a → −∞, b → +∞ we obtain the L1 contractivity and terminate the proof of
Theorem 2.1.
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Abstract. Let µ be a positive measure on R
d invariant under the group of reflections and

permutations, and let m be a natural number. We describe a method to construct cubature formulae
of degree m with respect to µ, with n positive weights and n points in the support of µ and such
that n grows at most like dm with the dimension d. We apply this method to classical measures to
explicitly construct cubature formulae of degree 5 with the number of points growing at most like d3.

Key words. cubature formulae, orthogonal array, t-design
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1. Introduction. We will denote by R[X1, . . . , Xd] the space of polynomials in
d variables with real coefficients and by Rm[X1, . . . , Xd] its subspace made of polyno-
mials of total degree less than or equal to m. Note that dimRm[X1, . . . , Xd] =

(
m+d
d

)
.

We will write δx for the Dirac probability at the point x.
Definition 1.1. Let µ be a positive measure on R

d, d ≥ 1, and m be a positive
integer. We say that the points x1, . . . ,xn ∈ R

d and the weights λ1, . . . , λn ∈ R define
a cubature formula of degree m, with respect to the measure µ, if∫

R
d

P (z)µ(dz) =

n∑
k=1

λkP (xk)(1)

holds for all polynomials P in Rm[X1, . . . , Xd].
When d = 1 people use the term quadrature in place of cubature.
Remark 1.2. The existence of a cubature formula of degree m is equivalent to

the existence of a finite measure ξ (a measure of the form ξ =
∑n

i=1 λiδxi) such that,
for all polynomials P of degree less than or equal to m, the integral of P with respect
to ξ is equal to the integral of P with respect to µ.

Once we have a cubature formula, using the notation of the previous definition,
we can approximate the integral of a smooth function f with respect to µ by

n∑
i=1

λif(xi).

The following theorem was first published by Tchakaloff (in the special case of a
compactly supported measure). See [25], [28], [29] for its proof.

Theorem 1.3. Let d and m be positive integers and let µ be a positive measure
on R

d with the property that
∫ |P (z)|µ(dz) < ∞ for all P ∈ Rm[X1, . . . , Xd]. Then we

can find n points x1, . . . ,xn in the support of µ and n positive real numbers λ1, . . . , λn,
with

n ≤ dimRm[X1, . . . , Xd],
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such that the cubature relation (1) holds for all P ∈ Rm[X1, . . . , Xd].
Unfortunately, this is only an existence theorem and does not provide any effi-

cient method to obtain such cubature formulae. Hundreds of papers are devoted to
the construction of cubature formulae. See the books [9], [18], [23], [28], the papers
[5], [6], [7], [8], and the references therein. In [1], some Gaussian cubature formulae
(i.e., cubature formulae with a minimum number of points) were constructed in high
dimension. However, the measures considered there are rather artificial and exotic. It
seems that no one has constructed explicit cubature formulae for classical measures
of degree m ≥ 4 in high dimension (i.e., in any given dimension) with no more than
dimRm[X1, . . . , Xd] =

(
m+d
m

)
points, despite Tchakaloff’s theorem. Stroud, in the in-

troduction of his celebrated book Approximate Calculation of Multiple Integrals [28],
explains the need to construct such formulae. There exist some cubature formulae
of degree 3 with few points, but the degree is not high enough to make the approxi-
mation accurate. Few points means, in this paper, that the number of points grows
polynomially with the dimension.

Paraphrasing [18], an ideal cubature formula with respect to a positive measure
should have points within the domain of integration, as few points as possible (in
particular, fewer points than the dimension of the polynomial space Rm[X1, . . . , Xd]),
and positive weights. Also, cubature formulae of higher degree will provide more
accurate approximations of integrals. Nonetheless, the “space of cubature formulae
is not totally ordered.” By this, we mean that a cubature formula of degree 7 with
some negative weights and another one of degree 5 with positive weights and with
the same number of points cannot really be compared. Indeed, it is easy to find some
functions whose integral will be better approximated by the first method and some
other functions whose integral will be better approximated by the second method.

In this paper, we describe a method to construct cubature formulae with few
points in any given dimension with respect to measures which are invariant under
reflection and permutation of the axes. This method works particularly well for cuba-
ture formulae of degree 3 (where we get formulae with O(d) points) and 5 (where we
get formulae with O(d3) and even sometimes O(d2), which is well under the Tchakaloff
bound), but we have not yet applied it for higher degrees.

In the next section, we will explain how combinatorics and coding theory help to
construct cubature formulae with respect to the finite measure

1

2d

∑
g∈{−1,1}d

δg.

Formulae of degree 2m+1 in d dimensions will require only O(dm) points. Some other
combinatorial objects will allow us to construct cubature formulae with few points for
measures of the form

1

|Sd.x|
∑

y∈Sd.x

δy,

where we let Sd, the group of permutation of order d, act naturally on R
d. We also

let Gd � ({−1,+1}d, ∗), the group of reflections of the axes, and GSd, the group of
permutations and reflections of the axes, act naturally on R

d. We will show that for a
GSd-invariant measure µ, there exists a GSd-invariant cubature formula of degree m,
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i.e., a formula of the form∫
P (z)µ(dz) =

k∑
i=1

λi
1

|GSd.xi|
∑

y∈GSd.xi

P (y) ∀P in Rm[X1, . . . , Xd].

In this formula, we can find the points x1, . . . ,xk with the number of points k bounded
by a term which depends only on m, the degree of the cubature formula. For example,
for a cubature formula of degree 5, this upper bound is equal to 4, and it is possible to
find two points that give the formula. Then, using the techniques described in the next
two sections, we will construct cubature formulae with respect to 1

|GSd.x|
∑

y∈GSd.x
δy.

Those new approximations will give us a cubature formula of degree m with respect
to µ and with few points. This explains why we first constructed some cubature for-
mulae with respect to finite measures—that is, why we constructed finite measures
approximating some other finite measures! The last section will deal with concrete
examples of construction of such cubature formulae of degree 5 with respect to clas-
sical measures, such as the Gaussian measure and the Lebesgue measure on the unit
hypercube, on the surface of the unit sphere, and on the whole unit sphere. We also
include a table of formulae similar to those found in [7], [8].

2. Codes and orthogonal arrays.

2.1. Definitions and link with cubature formulae. In this section, we de-
scribe how we can find a cubature formula of degree 2m+1 with respect to the measure
of total mass one which puts equal mass at all of the vertices of a d-dimensional hy-
percube, i.e., with respect to

δGd
=

1

2d

∑
g∈{−1,1}d

δg.

We will need to define orthogonal arrays. See [14] for a full description of these
combinatorial objects.

Definition 2.1. An N × k array A with entries from a set S is said to be an
orthogonal array with |S| levels, strength t, and index λ (for some t in the range
0 ≤ t ≤ k) if every N × t subarray of A contains each t-uple based on S exactly λ
times as a row.

Such an array will be denoted by OA(N, k, |S|, t). We do not put λ explicitly in
this notation, as it is quite easy to see that λ = N/|S|t.

Theorem 2.2. The points defined to be the rows of an orthogonal array with pa-
rameters OA(N, d, 2, 2m+1) and with entries in {−1, 1}, associated with the constant
weight 1/N , define a cubature formula of degree 2m+ 1 with respect to δGd

.
Proof. Let x1, . . . ,xN be the rows of an OA(N, d, 2, 2m + 1) with entries in

{−1, 1}. Let P1 be the square of a monomial with leading coefficient 1. Then, using
the particular form of P1,

N∑
k=1

1

N
P1(xk) =

N∑
k=1

1

N
1 =

∫
P1(z)δGd

(dz).

Now let P2 = Q2R, where R = Xα1
1 . . . Xαd

d , αi ∈ {0, 1} with 1 ≤∑d
i=1 αi ≤ 2m+ 1,

and Q is any monomial. Then

N∑
k=1

1

N
P2(xk) =

N∑
k=1

1

N
R(xk) =

N∑
k=1

1

N

∏
i: αi=1

xik.
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If λ is the index of the orthogonal array OA(N, d, 2, 2m+ 1), then for any functional
Υ, l ≤ 2m+ 1 and different indices i1, . . . , il,

N∑
k=1

Υ(xi1k , . . . , x
il
k ) = λ

∑
(y1,...,yl)∈{−1,1}l

Υ(y1, . . . , yl).

Hence, if l =
∑d

i=1 αi,

N∑
k=1

1

N

∏
i: αi=1

xik =
λ

N

∑
(y1,...,yl)∈{−1,1}l

l∏
j=1

yj

= 0 =

∫
P (z)δGd

(dz).

We have proved that, for all monomials of degree less than or equal to 2m+ 1,

N∑
k=1

1

N
P (xk) =

∫
P (z)δGd

(dz).

We are now going to link orthogonal arrays and codes. Let us first give the
definition of a code.

Definition 2.3. Let S be a set of symbols of size s. A code is a collection C
of vectors in Sk. These vectors are called codewords. The distance dC of the code is
defined by

dC = min
u,v∈C,u 
=v

card {j ∈ {1, . . . , k}, uj �= vj}.

Such a code will be denoted by (k, card C, dC)s.
Definition 2.4. Let C be a (k,N, dC)s code on S, and assume that S is a finite

field. Define the dual code of C by

C⊥ =

{
v ∈ Sk,∀u ∈ C, uv⊥ =

k∑
i=1

uivi = 0

}
.

Its distance dC⊥ will be called the dual distance of the code C.
The following is due to Delsarte [10].
Theorem 2.5. Let A be the N × k array such that its rows are the code-

words of a (k,N, d)s code over a finite field S, with dual distance d⊥. Then A is
an OA(N, k, s, d⊥ − 1).

Thus we see that the codewords of a code with parameters (k,N, dC)2 over Z/2Z,
with dual distance 2m+ 2, give us a cubature formula of degree 2m+ 1 with respect
to δGd

. We will now give some examples of such orthogonal arrays.

2.2. Degree 3. We are going to describe the orthogonal arrays with parame-
ters OA(N, d, 2, 3), preferably with N as low as possible. This is closely related to
Hadamard matrices. Write In for the n×n identity matrix and AT for the transpose
of a matrix A.

Definition 2.6. A Hadamard matrix of degree n is a matrix H ∈ Mn({−1, 1})
such that HHT = nIn.

Proposition 2.7. If there exists a Hadamard matrix of degree n, then n ∈ {1, 2}
or 4 divides n.
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We can construct an OA(N, d, 2, 3) in the following way. Consider the least n
greater than or equal to d, for which we have a Hadamard matrix A of degree n.
Then consider the 2n × n matrix B, such that the rows of B are made of the rows
of A and of −A. Then delete n − d columns of B. That gives us an OA(2n, d, 2, 3).
The Hadamard matrices have been heavily studied. Hadamard conjectured that if
n ∈ {1, 2} or if 4 divides n, then a Hadamard matrix exists. It still has not been
proved or disproved. Such matrices have been constructed for all n ≤ 1000, except
for n = 428, 668, 716, 764, 892. Moreover, there exists an easy way to construct them
when n is a power of 2.

Definition 2.8. Let A = (aij)1≤i,j≤n ∈ Mn(R) and B ∈ Mm(R). Then we
define the tensor product of A and B, A⊗B by the nm× nm matrix a11B . . . a1nB

...
. . .

...
an1B . . . annB

 .

Proposition 2.9. Let Ha and Hb be Hadamard matrices of degree a and b. Then
Ha ⊗Hb is a Hadamard matrix of degree ab.

Corollary 2.10. Let H1 = (1) and H2 = ( 1 1−1 1 ). Then define H2m = H1 ⊗
(
⊗m

i=1 H2). Then H2m ∈ M2m({−1, 1}) is a Hadamard matrix.
These matrices H2m are called the Hadamard matrices of Sylvester type. There

exists an extensive literature (e.g., [12], [14]) on techniques which deal with the con-
struction of Hadamard matrices.

2.3. Degree 5. The arrays we are interested in are OA(N, d, 2, 5). We saw that
we can construct such an array by using the codewords of a code (d,N, dC)2 with
dual distance 6. Lower-dimension constructions are easier.

2.3.1. d = 5, N = 2d = 32. The rows of an OA(N, d, 2, 5) correspond to the
N = 2d points in {−1, 1}d.

2.3.2. d = 6, 7, 8, N = 2d−1. Let A be the OA(2d, d, 2, 5) constructed above.

Then define Ai,d =
∏d−1

j=1 Ai,j . That gives us an OA(2d−1, d, 2, 5).

2.3.3. d = 9, N = 128 = 2d−2. This is the first example of an orthogonal
array constructed from a code, a cyclic code. We will describe in this particular case
how to construct this array (or those codewords). Let G be the 7×9 matrix in GF (2)
(the Galois field with 2 elements, i.e., Z/2Z):

G =



1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1 1


.

G is called a cyclic generator matrix. Define the set of points C in GF (2)9:

C = {xG, x ∈ GF (2)7},



214 NICOLAS VICTOIR

the calculation being done in GF (2). Let

Φ2 : GF (2) −→ {−1, 1},
0 �→ −1,

1 �→ 1.

Now we can construct a matrix A with rows that are the points in Φ2(C) ⊂ {−1, 1}9.
A is an OA(128, 9, 2, 5).

2.3.4. d = 10, . . . , 16, N = 256. The OA(256, 16, 2, 5) is constructed using a
Nordstrom–Robinson code. Define the generator matrix G in M4,8(Z/4Z) by

G =


1 3 1 2 1 0 0 0
1 0 3 1 2 1 0 0
1 0 0 3 1 2 1 0
1 0 0 0 3 1 2 1

 .

Define the set of points

C = {xG, x ∈ (Z/4Z)4},

the calculation being done in Z/4Z. Let us define the Gray map

Φ4 : Z/4Z −→ {−1, 1}2,

0 �→ (−1,−1),

1 �→ (−1, 1),

2 �→ (1, 1),

3 �→ (1,−1).

Now we can construct a matrix A with rows that are the elements of Φ4(C) ⊂
{−1, 1}16. A is an OA(256, 16, 2, 5). To get an OA(256, k, 2, 5) for k = 10, . . . , 15, we
just delete 16− k columns of A.

2.3.5. Higher dimension. OA(512, 20, 2, 5) and OA(1024, 24, 2, 5) are de-
scribed in [14]. Many more OA(N, d, 2, 5) for higher d are known, in particular with
d = 2m +1 and N = 22m+1 when m ≥ 5. They come from BCH codes [14], [20]. The
X4 construction [14] allows the construction of some OA(24m+1, 22m + 2m, 2, 5) for
m ≥ 2. Finally, Kerdock codes ([20] for their original construction or [13] for a simpler
one) gives us orthogonal arrays of the form OA(42m, 4m, 2, 5) for m ≥ 2. Those codes
allow us to write N5(d) = O(d2).

2.4. A notation. We will denote by Gm
d the set of points of a cubature formula

of degree m with respect to δGd
(with points in {−1,+1}d), such that we do not know

another cubature formula with points in {−1,+1}d, of the same degree with respect to
the same measure but with fewer points. When d ≥ m, Gm

d is described in term of an
OA(|Gm

d |, d, 2,m). Gm
d can be also seen as a subset of the group Gd � ({−1,+1}d, ∗).

When d ≤ m, necessarily, we have Gm
d = Gd.

Hadamard matrices allow us to write |G3
d | = 2d anytime that there exists a

Hadamard matrix and |G3
d | = O(d). Kerdock and BCH codes allow us to write

|G5
d | = O(d2). For a general m, coding theory tells us that |G2m+1

d | = O(dm).
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3. Permutation sets. Let us consider a point x = (x1, . . . , xd) ∈ R
d and the

measure of total mass one which puts equal mass at all the points of the form σ.x =
(xσ(1), . . . , xσ(d)) for σ ∈ Sd, i.e.,

δSd,x =
1

|Sd.x|
∑

y∈Sd.x

δy

where Sd denotes the symmetric group. We want to describe a cubature formula of
degree m with respect to δSd,x.

3.1. Block designs. We assume in this subsection that x1 = · · · = xk = α and
xk+1 = · · · = xd = β, where α �= β. Hence, we are looking for a cubature formula of
degree t with respect to the measure on R

d:

δSd,x =
1(
d
k

) ∑
y∈Sd.x

δy.

Knowledge of some t-designs will allow us to construct some cubature formulae of
degree t.

Definition 3.1. Let V be a finite set of size v and let B be a collection of k-
subsets of V , called blocks. Then (V,B) is a t-design with parameters t-(v, k, λ) if
every t-subset of V is in exactly λ blocks.

The incidence matrix A of a design (V,B) = ({1, . . . , v}, {B1, . . . , Bb}) is defined,
for i = 1, . . . , b and j = 1, . . . , v, by

Ai,j = 1{j∈Bi}.

It is easily seen that a t-design with parameters (v, k, λ) is a (t − 1)-design with

parameters (v, k, λ v−(t−1)
k−(t−1) ) [2]. Also, every 0-subset (i.e., the empty set) is included

in all the blocks, so a t-design with parameters (v, k, λ) is a 0-design with parameters
(v, k, b), where b = |B| is the number of blocks of the design. Hence, if a t-design has
parameters (v, k, λ) and has b blocks, then

λ = b
k(k − 1) . . . (k − (t− 1))

v(v − 1) . . . (v − (t− 1))
= b

(
k
t

)(
v
t

) .
A 2-design is usually called a balanced incomplete block design or just a block design.
For a block design, if the number of blocks b is equal to v, we say that the design is
symmetric (or square for some authors).

Example 3.2. Let q be a prime power, n ≥ 2 be an integer, and V (n, q) be a
n-dimensional vector space over GF (q) (the Galois field of order q). V (n, q) contains
qn vectors. A one-dimensional space is made of q − 1 nonzero vectors (it is made of
the vectors bx, where b ranges over GF (q) − {0} and where x is a nonzero vector);

hence there are qn−1
q−1 one-dimensional spaces. If x = (x1, . . . , xn) is a nonzero vector,

then the set of vectors y = (y1, . . . , yn) such that

x1y1 + · · ·+ xnyn = 0

define a subspace of V (n, q) of dimension n − 1 (a hyperplane), and conversely, for
any hyperplane, we can find a vector x = (x1, . . . , xn) such that, for each vector
y = (y1, . . . , yn) of the hyperplane,

x1y1 + · · ·+ xnyn = 0.
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Thus we have qn−1
q−1 hyperplanes. Each hyperplane contains qn−1−1

q−1 one-dimensional

spaces (itself being a vector space of dimension n − 1), and the intersection of two

hyperplanes is a subspace of V (n, q) of dimension n − 2, which contains qn−2−1
q−1

one-dimensional spaces. Hence, the hyperplanes of V (n, q) as blocks and the one-

dimensional spaces of V (n, q) as objects form a symmetric block design ( q
n−1
q−1 , q

n−1−1
q−1 ,

qn−2−1
q−1 ).

We refer to [2], [3], [12] for more details on designs, and for tables of known block
designs.

Let Jb,d be the b×d matrix with each entry set to be 1, and we remind the reader
that x is defined in this subsection by x1 = · · · = xk = α and xk+1 = · · · = xd = β,
with α �= β.

Theorem 3.3. Let A be the incidence matrix of a t-design with parameters
t − (d, k, λ) and with b blocks. Let x1, . . . ,xb ∈ R

d be the rows of (α − β)A + βJb,d.
Then those points associated to the constant weight 1/b (b is the number of blocks of
the t-design) define a cubature formula of degree t with respect to δSd,x.

Proof. First of all, note that, by considering the polynomials which are products

of some
(Xj−β)k

(α−β)k
in place of the monomials, we see that we may take α = 1 and β = 0.

Since for all k1, . . . , kd ≥ 0,
∫
P (zk1

1 , . . . , zkd

d )δSd,x(dz) =
∫
P (z1, . . . , zd)δSd,x(dz), and

since permuting the rows of the incidence matrix of a block design gives another block
design with the same parameters, we have only to check that∫

P (z)δSd,x(dz) =
1

b

b∑
i=1

P (xi)

for the polynomials X1, X1X2, . . . , X1 . . . Xt. Define λt = λ, and for i < t, λi =
λi+1(d − i)/(k − i), so that A is the incidence matrix of an i − (d, k, λi) design,
i = 1, . . . , t. Let P = X1 . . . Xi. Then

1

b

b∑
j=1

P (xj) =
λi
b

=

(
k
i

)(
d
i

) .
The proof is then finished by noticing that∫

P (z)δSd,x(dz) =

(
d− i

k − i

)
/

(
d

k

)
=

(
k
i

)(
d
i

) .
For cubature formulae of degree 2, symmetric block designs will be very interest-

ing, as they provide formulae with the minimum number of points.

3.2. k-homogeneous permutation sets. We now return to the more general
case, i.e., we do not assume anything about the structure of the point x = (x1, . . . , xd),
and we recall that we are looking for a cubature formula of degree t with respect to
the d-dimensional measure

δSd,x =
1

|Sd.x|
∑

y∈Sd.x

δy.

The symmetric group Sd acts on the set T = {1, . . . , d} and acts naturally on T {k},
the set of k-element subsets of T . For A,B in T {k}, [A;B] denotes the subset of Sd
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which consists of all permutations that move A to B. A nonempty subset Zd of Sd

is said to be k-homogeneous on T if the cardinality of Zd ∩ [A;B] is independent of
A and B in T {k}. The cardinality of Zd ∩ [A;B] is called the k-multiplicity of Zd.
When this cardinality is one, we say that Zd is sharply k-homogeneous on T . If Zd is
k-homogeneous on T , then Zd is (k− 1)-homogeneous on T (when 2 ≤ k ≤ d/2 [24]).
See [4] for the construction of such sets. Particular cases of k-homogeneous sets are
k-homogeneous groups [17].

Example 3.4. Let K = GF (q) be the Galois field of order q, where q is a prime
power. Let Γ be the group of mappings from K to K : x → ax+ b, where b ∈ K and
a is in the group of nonzero square of K. Then Γ is a sharply 2-homogeneous group
on K. |Γ| = q(q − 1)/2.

The link with our problem is explained in the following theorem.
Theorem 3.5. Let Zd be a t-homogeneous set on T = {1, . . . , d}. Then the set

of points σ.x, for σ ∈ Zd, with constant weight 1/|Zd.x| defines a cubature formula of
degree t with respect to δSd,x.

Proof. It is straightforward to check the cubature relation for all monomials of
degree less than or equal to t.

3.3. A notation. We will denote by Sm,x
d a subset of Sd such that the prob-

ability measure 1
|Sm,x

d
.x|
∑

y∈Sm,x
d

.x δy defines a cubature formula of degree m with

respect to δSd,x (with points inside the support of δSd,x and with positive weights)
and such that we do not know another formula with fewer points (with points inside
the support of δSd,x and with positive weights).

4. Invariant cubature formulae. Now that we have constructed some cuba-
ture formulae with few points with respect to some discrete measures, we are going to
see how these can be useful for the construction of cubature formulae with respect to
a “symmetric” measure. First of all, we should remind the reader of the application
to cubature of invariant theory. See [18] for a more detailed presentation.

4.1. Invariant theory. Let G be a group of bijective linear transformations on
R
d. A set Ω of R

d is said to be G-invariant if, for all g ∈ G, g.Ω = Ω. A function f on
Ω is said to be G-invariant if, for all g ∈ G, f ◦ g = f . Finally, a measure µ is said to
be G-invariant if its support is G-invariant and if, for all measurable sets A and for all
g ∈ G, g.A is measurable and µ(g.A) = µ(A). We will denote by Rm[X1, . . . , Xd](G)
the space of all G-invariant polynomials of maximum degree m.

Definition 4.1. A cubature formula with points x1, . . . ,xn and weights λ1, . . . , λn
is said to be G-invariant if {x1, . . . ,xn} is G-invariant and g.xi = xj implies λi = λj.
Equivalently, the cubature formula is G-invariant if ∑n

i=1 λiδxi
is a G-invariant mea-

sure.
G.xi = {g.xi, g ∈ G} is called the orbit of the point xi. All the weights associated

with the points inside the same orbit are equal.
A subset {xi1 , . . . ,xik} is called a generator set of the above cubature formula if

G.xi1 , . . . ,G.xik forms a partition of {x1, . . . ,xn}. We will also say that the collection
of orbits G.xij and weights λij |G.xij |, j = 1, . . . , k, generate the above G-invariant
cubature formula.

The following theorem is due to Sobolev [26].
Theorem 4.2. Let µ be a G-invariant measure. Then the orbits G.x1, . . . ,G.xk

and their weights λ1, . . . , λk are the generators of a G-invariant cubature formula of
degree m with respect to µ if and only if for all G-invariant polynomials P of degree
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less than or equal to m, ∫
P (z)µ(dz) =

k∑
i=1

λiP (xi).

From Tchakaloff’s theorem and Sobolev’s theorem, we obtain the following corol-
lary.

Corollary 4.3. Let d and m be positive integers and let µ be a positive G-
invariant measure on R

d with the property that
∫ |P (z)|µ(dz) < ∞ for all P ∈

Rm[X1, . . . , Xd]. Then we can find k orbits G.x1, . . . ,G.xk (in the support of µ)
and weights λ1, . . . , λk that generate a G-invariant cubature formula of degree m with
respect to µ with

k ≤ dimRm[X1, . . . , Xd](G).

Proof. By Tchakaloff’s theorem, we can find n points x̃1, . . . , x̃n in the support

of µ together with their weights λ̃1, . . . , λ̃n that define a cubature formula of degree
m with respect to µ. Then the points x̃g,i = g.x̃i, g ∈ G, i = 1, . . . , n, and the

weights λ̃g,i =
λ̃i

|G| define a G-invariant cubature formula of degree m with respect to

µ. Let G.x̂1, . . . ,G.x̂k′ be some orbits and λ̂1, . . . , λ̂k′ some weights that generate this

G-invariant cubature formula. G.x̂1, . . . ,G.x̂k′ and λ̂1, . . . , λ̂k′ generate a G-invariant
cubature formula of degree m with respect to µ. If k

′
> dimRm[X1, . . . , Xd](G),

using the same convex analysis argument as in Tchakaloff’s theorem, it is possible to
find k ≤ dimRm[X1, . . . , Xd](G) orbits G.x1, . . . ,G.xk ∈ {G.x̂1, . . . ,G.x̂k′} and some
new weights λ1, . . . , λk that generate a G-invariant cubature formula of degree m with
respect to µ.

Assume that the orbits G.x1, . . . ,G.xk together with their weights λ1, . . . , λk gen-
erate a G-invariant cubature formula of degree m with respect to µ. In other words,
ξ =

∑k
i=1 λiξG,xi

, where ξG,xi
= 1

|G.xi|
∑

y∈G.xi
δy, is the measure associated with a

cubature formula of degreem with respect to µ. Now assume that, for all i, we can find
a cubature formula with ni points and positive weights with respect to the (discrete)

measure ξG,xi . Let ξ̃G,xi denote the measures associated with these cubature formulae.

Then ξ̃ =
∑k

i=1 λiξ̃G,xi is still a measure associated with a cubature formula of degree
m with respect to µ. Note that this cubature formula is no longer G-invariant. Its
number of points is

∑k
i=1 ni. We are going to show that, in the case where G is the

group of permutations and reflections of the axes, dimRm[X1, . . . , Xd](G) does not
depend on the dimension d and that we can find (and construct) cubature formulae
with respect to ξG,xi

with the number of points bounded by the Tchakaloff bound.
Hence, if we have some orbits and weights generating a G-invariant cubature formula
with respect to µ, it is possible to find a cubature formula with respect to µ which
has a number of points which grows polynomially with the dimension (at least when
G is the group of permutations and reflections of the axes).

4.2. Invariance under reflection. Let us consider a positive measure µ on R
d

invariant with respect to the group of reflections of the axes Gd � ({−1,+1}d, ∗).
The Lebesgue measure on the hypercube and on the unit sphere and the Gaussian
measure on R

d are examples of such a measure.
Gd acts on R

d in a natural way: for a point x = (x1, . . . , xd) and an element of
the group g = (g1, . . . , gd), we define g.x = (g1x1, . . . , gdxd).
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For x ∈ R
d, Gd.x is of cardinality 2e(x), where e(x) is the number of nonzero

coordinates of x. That allows us to define the action of Ge(x) on x: Assume that
i1, . . . , ie(x) are the e(x) nonzero coordinates of x; then for g ∈ Ge(x), we define the il
coordinate of g.x to be glxil , while the coordinates which are zero remain zero under
the action of g. This just means that we consider only the reflection with respect to
the ith axis when xi �= 0. Obviously, Gd.x = Ge(x).x.

Corollary 4.3 tells us that there exists k (with k ≤ dimRm[X1, . . . , Xd](Gd))
orbits Gd.x1, . . . ,Gd.xk in the support of the measure µ and k weights λ1, . . . , λk that
generate a Gd-invariant cubature formula of degree m with respect to µ. The measure∑k

i=1 λiξGd,xi , where ξGd,xi =
1

|Gd.xi|
∑

y∈Gd.xi
δy, is then associated with a cubature

formula of degree m with respect to µ. But the measure

ξ̃Gd,xi =
1

2e(xi)

∑
g∈Gm

e(xi)

δg.xi

defines a cubature formula of degree m with respect to ξGd,xi
(Gm

e(xi)
has been defined

in terms of orthogonal arrays in section 2). Hence, the finite measure
∑k

i=1 λiξ̃Gd,xi

defines a cubature formula of degree m with respect to µ.
The number of points in this cubature formula is

∑k
i=1 |Gm

e(xi)
| ≤ k|Gm

d |. We

saw that |Gm
d | = O(d[m/2]). We therefore need to find a way to find k generators,

with k growing polynomially with the dimension. First, let us write the problem in
equivalent terms.

For x ∈ R
d, let us denote

x2 =
((
x1
)2

, . . . ,
(
xd
)2)

and

√
x =

(√
x1, . . . ,

√
xd
)
.

We associate with our measure µ the measure ν = µ ◦ √
. with support included in

R
d
+, such that, for all integrable functions f ,∫

f(z2)µ(dz) =

∫
f(z)ν(dz).

Assume that the orbits Gd.x1, . . . ,Gd.xk in the support of the measure µ and the
weights λ1, . . . , λk generate a Gd-invariant cubature formula of degree m with respect
to µ. Then the points x2

1, . . . ,x
2
k and the weights λ1, . . . , λk define a Gd-invariant

cubature formula of degree [m/2] with respect to ν. Indeed, let P be a polynomial of
degree less than or equal to [m/2], and let Q = P (X2). Then

k∑
i=1

λiP (x2
i ) =

k∑
i=1

λiQ(xi) =

k∑
i=1

λi
1

2e(xi)

∑
y∈Gd.xi

Q(y)

=

∫
Q(z)µ(dz) =

∫
P (z)ν(dz).

It is straightforward to check that, reciprocally, if the points x1, . . . ,xk in the support
of the measure ν and the weights λ1, . . . , λk define a cubature formula of degree [m/2]
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with respect to ν, then the orbits Gd.
√
x1, . . . ,Gd.

√
xk in the support of the measure

µ and the weights λ1, . . . , λk generate a Gd-invariant cubature formula of degree m
with respect to µ.

Therefore, to find these k generators, Gd.x1, . . . ,Gd.xk is equivalent to finding a
cubature formula of degree [m/2] with respect to ν = µ ◦ √

.. We are now going to
show that this problem is simpler when ν is invariant with respect to the group of
permutation of the axes Sd (which is equivalent to the fact that µ is invariant with
respect to the group of permutation of the axes Sd).

4.3. Invariance under permutation. Let us consider a positive measure ρ on
R
d invariant with respect to the group of permutation of the axes Sd. The Lebesgue

measure on the hypercube and on the unit sphere and the Gaussian measure on R
d

are again examples of such a measure.
Corollary 4.3 tells us that there exist k (with k ≤ dimRm[X1, . . . , Xd](Sd)) or-

bits Sd.x1, . . . ,Sd.xk in the support of the measure ρ and k weights λ1, . . . , λk that
generate a Sd-invariant cubature formula of degree m with respect to ρ. Then, by
definition,

∑k
i=1 λiδSd,x, (where δSd,x = 1

|Sd.x|
∑

y∈Sd.x
δy) is the measure associated

with a cubature formula of degree m with respect to ρ. But the measure

δ̃Sd,x =
1

|Sm,x
d .xi|

∑
σ∈Sm,xi

d

σ.xi

defines a cubature formula of degree m with respect to δSd,x (Sm,x
d has been defined

in terms of designs and permutation sets in section 3). Hence, the finite measure∑k
i=1 λiδ̃Sd,x defines a cubature formula of degree m with respect to ρ. This formula

has
∑k

i=1 |Sm,xi

d | points.
Rm[X1, . . . , Xd](GSd) is generated by

∑
σ∈Sd

Xp1

σ(1) . . . X
pd

σ(d) for (p1, . . . , pd) de-

scribing Pm,d, where

Pm,d = {p = (p1, . . . , pd), |p| ≤ m, m ≥ p1 ≥ p2 ≥ · · · ≥ pd ≥ 0}.

For all d ≥ m, |Pm,d| = |Pm,m|. This cardinality can be expressed in terms of number
of Young tableaux [19]. The very important point here is that k, the number of
generators, is bounded by a term (|Pm,m|) which does not depend on the dimension.
Thus, to get a cubature formula with respect to a symmetric measure with few points,
one has to find k generators (and we know that we can do it with k bounded by |Pm,m|)
and “good” cubature formulae with respect to δSd,x (this is a combinatorial problem;
we gave some indications on how to do so in section 3).

4.4. Invariance under permutation and reflection. We now put the two
previous sections together. Recall that GSd is the group generated by all reflections
and permutations of the axes. µ will now denote a positive measure on R

d which is
GSd-invariant. The Lebesgue measure on the hypercube and on the unit sphere and
the Gaussian measure on R

d are, once again, examples of such a measure.
We summarize our technique to find cubature formulae of degree m with respect

to our GSd-invariant measure µ.
1. Find k orbits GSd.x1, . . . ,GSd.xk (with their elements in the support of µ) and

k positive weights λ1, . . . , λk that generate a GSd-invariant cubature formula
of degree m with respect to µ. This is equivalent to the fact that orbits
Sd.x

2
1, . . . ,Sd.x

2
k and the weights λ1, . . . , λk that generate an Sd-invariant
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cubature formula of degree [m/2] with respect to ν = µ ◦ √.. One should be
able to find these generators with k ≤ |P[m/2],[m/2]|.

2. For all i = 1, . . . , k, construct, using the methods of section 3, a cubature
formula of degree [m/2] with respect to δSd,x. Those points are the points in

S [m/2],xi

d .x2
i = {x2

i,1, . . . ,x
2
i,ni

}. The points x2
i,j , i = 1, . . . , k, j = 1, . . . , ni,

with the weights λi

ni
now define a cubature formula of degree [m/2] with

respect to µ◦√.. Equivalently, the orbits Gd.xi,j and the weights λi

ni
generate

a Gd-invariant cubature formula of degree m with respect to µ.
3. The points in g.xi,j , i = 1, . . . , k, j = 1, . . . , ni, g ∈ Gm

e(xi)
, with the weights

λi

ni|Gm
e(xi)

| define a cubature formula of degree m with respect to µ.

Example 4.4. Consider a GSd-invariant measure µd on R
d (for example, the

Gaussian measure or the Lebesgue measure on the unit cube or on the unit sphere).

Let V be the volume of µd, and assume that x =
√

1
V

∫
z2µd(dz) belongs to the

support of µd. Then the generator Gd.x and its weight V generate a Gd-invariant
cubature formula of degree 3 with respect to µd (hence it provides a cubature formula
with 2d points). Using our construction, we see that the points g.x, g ∈ G3

d , with
their weight V/|G3

d |, define a cubature formula of degree 3 with respect to µd. It has
|G3

d | = O(d) points. Recall that G3
d was defined in terms of Hadamard matrices and

that whenever there exists a Hadamard matrix of degree d, |G3
d | = 2d (which is the

Möller lower bound [22]).
Let us now construct cubature formula of degree 5 with few points for some

classical measures.

5. Application to some classical regions. In this section, we will describe
cubature formula of degree 5 for the region Cd, E

r2

d , Ud, Sd.

5.1. Er2

d , the Gaussian measure on R
d. Our definition of Er2

d differs very
slightly from the one given by Stroud. We consider the measure on R

d

µd(dx) =
1

(2π)d/2
exp

(
−x2

1 + · · ·+ x2
d

2

)
dx1 . . . dxd.

We choose this definition of Er2

d so that
∫
f(z)µd(z) = E(f(N)), where N is a d-

dimensional normal random variable. First of all, we write νd = µd ◦ √
.. One can

easily see that νd = ν1 ⊗ · · · ⊗ ν1 and that∫
1ν1(dx) = 1,

∫
xν1(dx) = 1,

∫
x2ν1(dx) = 3.

We will provide two constructions.

5.1.1. First solution. When the dimension d is of the form d = 3k − 2, the
orbits GSd.x0 and GSd.x1, where

x0 = (0, . . . , 0), x1 = (
√
3, . . . ,

√
3, 0, . . . , 0)

(k coordinates of x1 are equal to
√
3, 2k − 2 to 0), with the weights

ω0 = 2
d+2 , ω1 = d

d+2 ,

generate a GSd-invariant cubature formula of degree 5 with respect to µd. Thus we
need to find a cubature formula of degree 2 with respect to

δSd,x =
1

|Sd.x1|
∑

y∈Sd.x2
1

δy.
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According to section 3, this can be done by using a 2-design with parameters

2− (3k − 2, k, λ)

for a given λ. A few symmetric block designs will give us good answers. There
exist symmetric block designs with parameters (7, 3, 1), (16, 6, 2), (25, 9, 3) [3], and
(70, 24, 8) [16] and more generally with parameters (3k+2 − 2, 3k+1, 3k) [15], [21] and
(2.9k+1 − 2, 6.9k, 2.9k) [27]. Symmetric design of the form (9λ − 2, 3λ, λ) do not
exist when λ = 4, 5, 6, 7. We give an example of the simplest of these block designs,
described by its incidence matrix,

A7,3,1 =



0 0 0 1 0 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0


.(2)

Therefore, assume that there exists a symmetric block design A with parameters
2− (d, (d+2)/3, (d+2)/9). Now define x1,i, i = 1, . . . , d, to be

√
3 times the ith row

of A. Then x2
1,1, . . . ,x

2
1,d together with equal weights 1/d define a cubature formula of

degree 2 with respect to δSd,x. Then the point x0 with its weight 2
d+2 and the points

g.
√
x1,i for g ∈ G5

(d+2)/3, i = 1, . . . , d, with their weights equal to 1
|G5

(d+2)/3
|(d+2)

, define

a cubature formula of degree 5 with respect to the Gaussian measure µd. Thus, every
time that there exists a design (d = 9λ−2, 3λ, λ), we can construct a cubature formula
of degree 5 with respect to the d-dimensional Gaussian measure, with the number of
points being equal to d|G5

(d+2)/3|+ 1 = O(d3). If we want to find a cubature formula

for a given dimension for which the above method does not work (as we need the
existence of some specific design), we choose the least d

′
greater than d such that the

method works; then we project our points on a d-dimensional subspace of R
d
′
to get a

cubature formula of degree 5 with respect to µd. It is interesting to note that, for λ = 1
(hence d = 7), that leads to a formula with 7|G5

3 |+1 = 57 points, which is exactly the
Möller lower bound [22]. Considering that known cubature formulae of degree greater
than 4 in dimension greater than 3 attaining the Möller lower bound are quite rare, it
is surprising that this formula is actually the second cubature formula (with positive

weights) for Er2

d attaining the Möller lower bound. (See [28] for a description of the
first one.)

5.1.2. Second solution. Let

x0 = (r, 0, . . . , 0), x1 = (s, . . . , s),

where

r2 = d+2
2 , s2 = d+2

d−2 .

Then the orbits GSd.x0 and GSd.x1, with the weights

w0 = 8d
(d+2)2 , w1 =

(
d−2
d+2

)2

,
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generate a GSd-invariant cubature formula of degree 5 with respect to µd. We denote
by (a, b), for a, b ∈ {1, . . . , d}, the permutation which swaps a and b and leaves
invariant all the other elements.

Then the points ±(1, i).x0, i = 1, . . . , d, with their weights w0

2d and g.x1, g ∈ G5
d ,

with their weights w1

|G5
d
| , define a cubature formula of degree 5 with respect to the

Gaussian measure µd. The formula has |G5
d |+ 2d = O(d2) points. The orbits and the

weights were obtained from the cubature formula Er2

n : 5− 3 [28, p. 317].

5.2. Cd, the d-dimensional cube. We place on [−1, 1]d the measure

µd(dx) =
1

2d
dx1 . . . dxd.

Thus once again, we want to find a symmetric cubature formula of degree 2 with
respect to the measure associated with µd. This measure νd is actually equal to

νd(dx) =
1

2d
1√

x1 . . . xd
dx1 . . . dxd.

Assume that the dimension d is odd and let

α =
√

1
3 + 2

3
√

5
, β =

√
1
3 − 2

3
√

5
.

Define x0 = (α, . . . , α) and x1 ∈ R
d such that xi1 = α if i = 1, . . . , (d − 1)/2 and

xi1 = β if i = (d+ 1)/2, . . . , d. Then the orbits GSd.x0 and GSd.x1, with the weights

w0 = 1
d+1 , w1 = d

d+1 ,

generate a GSd-invariant cubature formula of degree 5 with respect to µd. To find a
cubature formula with respect to δSd,x, we need to find a 2− (d, (d− 1)/2, λ) design.

Symmetric block design with parameter (4k − 1, 2k − 1, k) are called Hadamard
designs, and they exist whenever a Hadamard matrix of degree 4k exists [2, Chap-
ter I.9]. Indeed, let A be a Hadamard matrix of degree 4k; we can always take its first
column and first row to be full of 1’s. Then replace the −1 by 0 and delete the first
row and the first column. This gives the incidence matrix B of a 2-(4k− 1, 2k− 1, k)
design. Denote by x1,1, . . . ,x1,d the d rows of (α − β)B + βJd,d (xi,j ∈ R

d). Then
x2

1,1, . . . ,x
2
1,d and the equal weights 1

d define a cubature formula of degree 2 with
respect to δSd,x.

This implies that x2
0,x

2
1,1, . . . ,x

2
1,d with equal weights 1/(d+1) defines a cubature

formula of degree 2 with respect to νd. To simplify the notation, let x1,0 = x0. The
points g.x1,i, i = 0, . . . , d, g ∈ G5

d , with equal weights, define a cubature formula of
degree 5 with respect to µd. This formula has (d+ 1)|G5

d | points when there exists a
Hadamard matrix of degree d+ 1.

If we want to find a cubature formula for a given dimension which is not the
degree of a Hadamard matrix minus one, once again we choose the lower d

′
greater

than d such that we know a Hadamard matrix of degree d + 1; then we project our

points on a d-dimensional subspace of R
d
′
to get a cubature formula of degree 5 with

respect to µd. We get once again a formula with O(d3) points.
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We could have described a formula of the same form as that described in sec-
tion 5.1.2, but that would lead to points outside the hypercube.

5.3. Ud, the surface of the unit sphere. We consider the Lebesgue mea-
sure µd on the surface of the d-dimensional unit sphere, i.e., the set of points x =
(x1, . . . , xd) such that x2

1 + · · · + x2
d = 1. We denote by V =

∫
1µd(dx) the surface

of the unit sphere. We propose here a solution comparable to the one proposed in
section 5.1.2. Indeed, let

x0 = (1, 0, . . . , 0), x1 =
(√

1
d , . . . ,

√
1
d

)
and

w0 = 2V
d+2 , w1 = dV

d+2 .

The orbits GSd.x0 and GSd.x1, with the weights w0 and w1, generate a GSd-invariant
cubature formula of degree 5 with respect to µd. This leads to a cubature formula of
degree 5 with respect to the Lebesgue measure on the unit sphere, with |G5

d | + 2d =
O(d2) points. The orbits and the weights were obtained from the cubature formula
Un : 5− 2 [28, p. 294].

5.4. Sd, the unit sphere. We consider the Lebesgue measure µd on the unit
sphere in R

d, i.e., the set of points x = (x1, . . . , xd) such that x2
1 + · · ·+ x2

d ≤ 1. We
denote by V =

∫
1µd(dx) the volume of the unit sphere. Let

x0 = (r, 0, . . . , 0), x1 = (s, . . . , s)

and

w0 = 2dV
(d+2)(d+4)r4 , w1 = V

(d+2)(d+4)s4 ,

where

r2 = 1−
√

2
d+4 , s2 =

d(d+4)+2
√

2(d+4)

(d2+2d−4)(d+4) .

The orbits GSd.x0 and GSd.x1, with the weights w0 and w1, generate a GSd-invariant
cubature formula of degree 5 with respect to µd. This leads, once again, to a cubature
formula of degree 5 with respect to the Lebesgue measure on the unit sphere, with
|G5

d |+2d = O(d2) points. The orbits and the weights were obtained from the cubature
formula Sn : 5− 3 [28, p. 270].

5.5. Tables. In this section, we present some tables of the same type as those
found in [7], [8]. PI means that the weights are positive and the points are inside
the support of the measure. EI means that the weights are all equal (and positive)
with the points inside the support of the measure. We saw that the number of points
depends on the existence on some combinatorial objects and thus cannot easily be
expressed as a function of the dimension. We make precise for which d our cubature
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formulae are very close (or equal) to the Möller lower bound.

Region Degree Number of points Quality Ref.

Er2

d 3
|G3d | = O(d)

2d if ∃ Hadamard
matrix of degree d

EI Example 4.4

Cd 3
|G3d | = O(d)

2d if ∃ Hadamard
matrix of degree d

EI Example 4.4

Sd 3
|G3d | = O(d)

2d if ∃ Hadamard
matrix of degree d

EI Example 4.4

Er2

d 5
|G5d | + 2d = O(d2)

d2 + 2d if d is a power of 4
PI section 5.1.2

Er2

d 5
O(d3)

Möller lower bound
for d = 7

PI section 5.1.1

Cd 5 O(d3) EI section 5.2

Ud 5
|G5d | + 2d = O(d2)

d2 + 2d if d is a power of 4
PI section 5.3

Sd 5
|G5d | + 2d = O(d2)

d2 + 2d if d is a power of 4
PI section 5.4

For d ∈ {3, 24}, we determine the exact number of points in these formulae, so that
one can compare them with the ones in [7], [8]. No other formulae (of degree 5) with
quality PI or EI have fewer points when d ≥ 8.

dim Er2

d 5.1.1
degree 5

Cd

degree 5
Ud, Sd, E

r2

d 5.1.2
degree 5

Er2

d , Cd, Sd

degree 3
3 19 32 14 8
4 25 128 24 8
5 35 256 42 16
6 41 256 44 16
7 57 512 78 16
8 149 1536 144 16
9 189 1536 146 24
10 225 3072 276 24
11 289 3072 278 24
12 321 4096 280 24
13 417 4096 282 32
14 481 4096 284 32
15 513 4096 286 32
16 513 5120 288 32
17 1027 10240 546 36
18 1185 10240 548 36
19 1473 10240 550 36
20 1761 12288 552 36
21 2049 24576 1066 40
22 2625 24576 1068 40
23 3009 24576 1070 40
24 3201 28672 1072 40

6. Conclusion. The main but basic idea of this paper is to find some measures
ξ1, . . . , ξk such that their sum provides a cubature formula with respect to a given
measure µ and such that it is relatively easy to find cubature formulae with respect
to the measures ξ1, . . . , ξk. Here, we have found these measures ξ1, . . . , ξk using the
invariance of µ with respect to some group of symmetries and the cubature formulae
with respect to ξ1, . . . , ξk using some (well-known) combinatorial objects. We believe
that many new cubature formulae (with positive weights, points inside the support
of µ, and with few points) can be found using this method.
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CONVERGENCE OF FINITE VOLUME APPROXIMATIONS
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Abstract. We study the approximation by finite volume methods of the model parabolic-
elliptic problem b(v)t = div (|Dv|p−2Dv) on (0, T ) × Ω ⊂ R × R

d with an initial condition and the
homogeneous Dirichlet boundary condition. Because of the nonlinearity in the elliptic term, a careful
choice of the gradient approximation is needed. We prove the convergence of discrete solutions to the
solution of the continuous problem as the discretization step h tends to 0, under the main hypotheses
that the approximation of the operator div (|Dv|p−2Dv) provided by the finite volume scheme is still
monotone and coercive, and that the gradient approximation is exact on the affine functions of x ∈ Ω.
An example of such a scheme is given for a class of two-dimensional meshes dual to triangular meshes,
in particular for structured rectangular and hexagonal meshes. The proof uses the rewriting of the
discrete problem under a “continuous” form. This permits us to directly apply the Alt–Luckhaus
variational techniques which are known for the continuous case.

Key words. doubly nonlinear elliptic-parabolic equations, finite volume methods, convergence
of approximate solutions, continuous approach
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1. Introduction. Let Ω be an open bounded polygonal domain in R
d, d ≥ 1,

and T > 0. We consider the initial boundary value problem for a system of nonlinear
elliptic-parabolic equations:

b(v)t = div ap(Dv) on Q = (0, T )× Ω,
v = 0 on Σ = (0, T )× ∂Ω,
b(v)(0, ·) = u0 on Ω,

(1.1)

where 1 < p < ∞ and div ap(Dv) = div (|Dv|p−2Dv) is the N -dimensional p-
Laplacian, i.e.,

ap : ξ = (ξ1, . . . , ξN ) ∈ (Rd)N �→ |ξ|p−2ξ =

(∑
i,j

|ξji |2
)p/2−1

(ξ1, . . . , ξN ) ∈ (Rd)N .

We assume that{
b : R

N → R
N is continuous cyclically monotone; i.e.,

there exists a convex differentiable function Φ : R
N → R s.t. b = ∇Φ,

(1.2)

normalized by b(0) = 0 and Φ(0) = 0. Moreover, we assume

u0 ∈ L1(Ω)N with Ψ(u0) ∈ L1(Ω),(1.3)
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where Ψ is the Legendre transform of Φ given by

Ψ : z ∈ R
N �→ sup

σ∈R
N

∫ 1

0

(z − b(sσ))σ ds = sup
σ∈R

N

(σz − Φ(σ)).

Equations of elliptic-parabolic type (1.1) arise as models of the flow of fluids
through porous media (cf., e.g., [6, 12]). They have already been studied extensively
in the literature in the last decade from a theoretical point of view (cf., e.g., [1, 21,
22, 12, 7, 26, 8, 10, 2]). Existence of weak solutions of general systems of elliptic-
parabolic equations has been proved in [1], using Galerkin approximations and time-
discretization. Similar results have been obtained later by other authors using different
methods (e.g., using a semigroup approach as in [7, 8] in the case N = 1).

In particular, it is known that in the case of the system (1.1), for any u0 satisfying
(1.3), there exists a weak solution of (1.1), where the weak solution is defined as
follows. Denote by E the Banach space Lp(0, T ;W 1,p

0 (Ω))N and by E′ its dual; E′ =
Lp

′
(0, T ;W−1,p′

(Ω))N , where p′ = p/(p − 1) is the conjugate exponent of p. Denote
by 〈·, ·〉E′,E the duality pairing between E′ and E.

Definition 1.1. A function v ∈ E is a weak solution of the problem (1.1) if
b(v) ∈ L∞(0, T ;L1(Ω))N and b(v)t ∈ D′(Q)N can be extended to a functional χ on E
satisfying

〈χ, φ〉E′,E +

∫∫
Q

ap(Dv) ·Dφ = 0 for all φ ∈ E,(1.4)

〈χ, ξ〉E′,E = −
∫∫

Q

b(v) ξt −
∫

Ω

u0(·) ξ(0, ·) for all ξ ∈ E with
ξt ∈ L∞(Q)N , ξ(T, ·) = 0.

(1.5)

Note that if v is a weak solution of (1.1), then, by the “chain rule” lemma of [1],
one has

B(v) ∈ L∞(0, T ;L1(Ω))N , where

B : z ∈ R
N �→ b(z)z − Φ(z) ≡

∫ 1

0

(b(z)− b(sz))zds ≡ Ψ(b(z)) ∈ R.
(1.6)

From the results of [26, 10] it also follows that, in the scalar case N = 1, there is
uniqueness of a weak solution of (1.1). To our knowledge, the question of uniqueness
is open in the case N ≥ 2.

In this paper we study the convergence of time-implicit approximations by finite
volume numerical schemes for the model nonlinear elliptic-parabolic problem (1.1).
Finite volume methods are well suited for numerical simulation of processes where
extensive quantities are conserved, and they are popular methods among engineers in
hydrology where equations of this type arise. Therefore justification of convergence
of this numerical approximation process is of particular interest. In [17] the finite
volume method has been studied and convergence of this approximation procedure
has been proved for problem (1.1) in the particular case p = 2, N = 1. The same
method has also been studied for this equation (i.e., p = 2, N = 1) in the presence
of an additional convection term (cf. [18, 14]), and for a nonlinear diffusion problem
in [16]. To our knowledge, in the case p �= 2, only the convergence of finite element
methods has been studied (cf. [19, 11, 5, 20] and their references).
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Let us emphasize that our main object is not only to prove the convergence of
some finite volume methods for (1.1), but also to develop a “continuous” approach for
this proof. The main idea of this adaptation is to rewrite the discrete finite volume
scheme under an equivalent continuous form and to apply known stability techniques
for the continuous equation (cf. [1] and [2, Chap. V] for the version we use) in order
to get convergence of discrete solutions to a solution of the continuous problem. The
“continuous” approach and the convergence result have already been presented in [3].

In section 2, we describe the finite volume schemes and in particular the admissi-
ble flux approximations we use. We show the existence and uniqueness of the solution
of a finite volume scheme and give some a priori estimates on discrete solutions. Then
we state the convergence result. In section 3, we show in Proposition 3.3 that the
solution of a finite volume scheme, originally satisfying a discrete system of algebraic
equations, also verifies a “continuous” formulation similar to (1.4), (1.5). This repre-
sentation makes clear in which sense finite volume schemes approximate the elliptic
operator in (1.1); we prove that this approximation is consistent. In section 4 we
prove the convergence theorem, passing to the limit in the “continuous” formulation
of Proposition 3.3. In section 5, we analyze the two admissibility conditions imposed
in section 2. For d = 2, we propose a scheme on meshes dual to triangular meshes that
enters into our framework; in particular, we have the convergence result on structured
rectangular and hexagonal meshes.

We consider the p-Laplacian as a prototype of a class of the so-called Leray–Lions-
type operators; in [4], we discuss the extension of the techniques presented above to
a particular case of the p-Laplacian operator with convection, studied in [12].

In order to simplify the notation, we restrict the exposition to the scalar equation
(N = 1). The proofs of the auxiliary results used in section 4 can be found in [4].

2. The numerical method. In order to construct approximate solutions to
the problem (1.1), we will use the implicit discretization in time and a finite volume
scheme in space.

2.1. Finite volume meshes, discrete gradients and finite volume sche-
mes for the problem (1.1). Let Ω be an open bounded polygonal subset of R

d. A
finite volume mesh T of Ω is given by a family of open polygonal convex subsets of
Ω with positive measure, called “control volumes,” a family of subsets of Ω contained
in hyperplanes of R

d, with positive (d−1)-measure (these are the interfaces between
control volumes), and a family of points of Ω, one per control volume (these are
the “centers” of the volumes). For a volume K with center xK ∈ K, the interfaces
contained in ∂Ω are considered as additional “boundary” volumes, unless xK ∈ ∂Ω.

For the sake of simplicity, we shall denote by T the family (K)K∈T of control
volumes; (xK)K∈T denotes the family of their centers. The set of all volumes K such
that xK ∈ ∂Ω is denoted by Text, and the set of all volumes K with xK ∈ Ω is denoted
by Tint. The set of interfaces K|L such that K or L or both belong to Tint is denoted
by E , and K|L denotes the interface between two neighbors K, L ∈ T . For all K|L, K̂L

denotes the “diamond” over K|L, i.e., the smallest convex set of R
d containing K|L, xK

and xL. Whenever we use K, K|L, or n to index objects and make summations, we
mean that K ∈ T , K|L ∈ E , and n ∈ {1, . . . , [T/k]+1}, where k is the time step of the
scheme.

Following [15], we give the following definition.
Definition 2.1. We say that T is a finite volume mesh of Ω if the following

hold:
(2.1 i) The closure of the union of all control volumes is Ω.
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(2.1 ii) For any (K, L) ∈ (T )2 with K �= L, either the (d−1)-dimensional measure of
K∩L is 0 or K∩L = σ for some σ ∈ E (in which case we denote σ = K|L = L|K).

(2.1 iii) For any K ∈ T , there exists a subset EK of E such that ∂K = ∪σ∈EK
σ.

Furthermore, E = ∪K∈T EK. We will denote by NK the set of volumes adjacent
to K; i.e., NK = {L ∈ T , K|L ∈ EK}.

(2.1 iv) The family of points (xK)K is such that xK ∈ K for all K ∈ T , and it is
assumed that the straight line joining xK and xL is orthogonal to K|L whenever
L ∈ NK.

Denote by m(K) and d(K) the d-dimensional measure and the diameter of K ∈ T ,
respectively; and denote by m(K|L) the (d−1)-dimensional measure of K|L ∈ E . A mesh
T is characterized, in particular, by the following numbers:

size(T ) = max
K

d(K), ζ∗(T ) = min
K

min
σ∈EK

dist (xK , σ)

d(K)
,

M(T ) = max
K

card(EK), ζ∗(T ) =
minK minσ∈EK

dist (xK , σ)

size(T )
.

A finite volume method for (1.1) requires a family
(
(T h, kh)

)
h

of meshes and

corresponding time steps kh > 0 such that both the size of the mesh and the time
step go to zero. We will assume in our notation that the family is parametrized with
h in some subset of (0, 1) whose closure contains zero, and size(T h) + kh ≤ h. A
couple (T h, kh) will be called a space-time grid.

In relation to a family
(
(T h, kh)

)
h
, we define the numbers

M = sup
h
M(T h) ∈ N, ζ∗ = inf

h
ζ∗(T h) ∈ R

+, and ζ∗ = inf
h
ζ∗(T h) ∈ R

+.(2.1)

Definition 2.2. We say that the family of meshes (T h)h is weakly proportional if
M <∞ and ζ∗ > 0. We say that the family of meshes (T h)h is strongly proportional
if, in addition, ζ∗ > 0.

Weak proportionality is standard (cf. [18]). Strong proportionality is a technical
assumption which ensures that (T h)h has the interpolation property (cf. sections 2.5
and 5.2).

Given a grid (T h, kh), to each time-space volume Qn
K = I

n×K, I
n = (kh(n −

1), khn) one associates an unknown value vnK ∈ R
N . In order to obtain a finite volume

scheme for (1.1), one “integrates” the equation in (1.1) over each grid volume Qn
K .

The time derivative in the left-hand side is approximated by the corresponding finite
difference. On the right-hand side, one uses the Green formula and then needs to
replace the flux on the lateral boundary of Qn

K by some function of the unknowns
(vnK)K,n. For problem (1.1), this amounts to finding a substitution for Dv in the
expression

∫∫
In×K|Lap(Dv) · νK,L (where νK,L is the unit normal vector to K|L pointing

from K into L). We will assume that this substitution is in Lp on each interface
I
n×K|L, typically constant in time and piecewise constant in space. We therefore

consider “discrete gradient” operators Dh of the form{ Dh : (vnK)K,n �→ (Dn
K|L)K|L,n,

Dn
K|L ∈ Lp(In×K|L) for all K|L, n.

(2.2)

It seems natural, though not necessary, to require that Dh be a linear operator.
A finite volume scheme for (1.1) is defined by a grid (T h, kh) and a discrete

gradient Dh associated with the grid. Finally, a finite volume method for (1.1) is
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given by a family
(
(T h, kh,Dh)

)
h

of grids and associated discrete gradient operators

Dh. In sections 2.3 and 2.5 we state the admissibility conditions for such methods.
Now we are able to write the equations for a scheme (T h, kh,Dh):

m(K)
b(vnK)− b(vn−1

K )

kh
=

∑
L∈NK

∫
K|L
ap(D

n
K|L(x))dx · νK,L for all K ∈ T h

int,

for all n ∈ {1, . . . , [T/kh]+1}.
(2.3)

The homogeneous Dirichlet boundary condition is taken into account by assigning

vnK = 0 for all K ∈ T h
ext, for all n ∈ {1, . . . , [T/kh]+1}.(2.4)

The initial condition is given by any values v0K ∈ b−1(u0K), where

u0K =
1

m(K)

∫
K

u0 for all K ∈ T h
int.(2.5)

We denote by uh0 the piecewise constant initial function
∑

K
u0K1lK , where 1lK is the

characteristic function of the set K. Other choices of u0K are possible, provided one
has uh0 → u0 a.e. on Ω and Ψ(uh0 ) → Ψ(u0) in L1(Ω) as h→ 0, where Ψ is defined in
the introduction. These properties hold for u0K given by (2.5), due to the convexity
of Ψ.

We denote by (Sh) the system (2.3), (2.4), (2.5) corresponding to a given finite
volume scheme (T h, kh,Dh).

2.2. Memento on notation. In this section we collect the most used notation
related to the finite volume schemes.

T : a finite volume mesh;

Text, Tint: the set of exterior,interior control volumes;

E : the set of interfaces between control volumes;

K,L: control volumes of T ;
K|L : the interface between the two neighbors K and L;

EK : the set of all interfaces surrounding K;

NK : the set of all neighbors of K;

xK : the “center” of K;

dK,L: the distance between xK and xL, dK,L = |xK − xL|;
dK,K|L: the distance between xK and K|L; one has dK,K|L + dL,K|L = dK,L;

νK,L: the unit normal vector to K|L pointing from K to L;

K̂L: the smallest convex set of R
d containing K|L, xK , and xL;

d(K),m(K): the diameter and the d-dimensional measure of K, respectively;

size(T ): the size of the mesh T , size(T ) = maxK d(K);

m(K|L): the (d−1)-dimensional measure of K|L;
|R|: the (d+1)-dimensional measure of a set R ⊂ R

+ × R
d;

I
n: the time interval, I

n = ((n−1)k, nk);

Qn
K : the time-space grid element, Qn

K = I
n×K;

Σn
K : the lateral boundary of Qn

K , Σn
K = I

n×∂K;

Υς(K): the union of all control volumes of (T ) that are separated from K

by at most (ς − 1) other control volumes;
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1lA: the characteristic function of a set A;

(T h, kh,Dh): a finite volume scheme (mesh, time step, discrete gradient);

(Sh): the corresponding system of equations (2.3),(2.4),(2.5);

h: the discretization parameter, h ≥ size(T h) + kh;

M, ζ∗: the weak proportionality bounds for (T h)h,

M = suph maxK card(NK), and ζ∗ = infh minK
minL∈NK

dK,K|L
d(K) ;

ζ∗: the strong proportionality bound for (T h)h,

ζ∗ = infh
minK,L∈NK

dK,K|L
size(T ) ;

vnK : the unknown of the scheme (Sh) corresponding to the volume Qn
K ;

vh: a discrete solution for the scheme (T h, kh,Dh), vh =
∑

K,n v
n
K1lQn

K
;

uh0 : the discrete initial data, uh0 =
∑

K
u0K1lK ;

Dn
K|L: the discrete gradient values on I

n×K|L, Dn
K|L ∈ Lp(In×K|L);

Dh: the discrete gradient operator, Dh : (vnK)K,n �→ (Dn
K|L)K|L,n;

Dn
⊥,K|L: the value Dn

⊥,K|L=
vnL−vnK
dK,L

, featuring in the “discrete Lp(0, T ;W 1,p(Ω))

norm” of vh;
Dh

⊥: the corresponding operator, Dh
⊥ : (vnK)K,n �→ (Dn

⊥,K|L)K|L,n.

It is convenient to extend Dh (as well as Dh
⊥) to an operator acting from E into Lp(Q).

Let Ph be the operator from Ω to
⋃

K|L which projects x ∈ K on ∂K along the ray
joining xK to x. We define the appropriate lifting operator Lh and averaging operator
Mh by

Lh
[
(Dn

K|L)K|L,n

]
(t, x) =

∑
K|L,n

Dn
K|L(Ph(x)) 1l

In×K̂L
(t, x),

Mh : η ∈ L1(Q) �→ Mh [η] = (ηnK)K,n ⊂ R
N , ηnK =

1

|Qn
K |
∫∫

Qn
K

η.

We will abusively write Dh for the operators Dh, Lh ◦Dh, and Lh ◦Dh ◦Mh; and the
same for Dh

⊥.
The following notations, specific to the “continuous” approach, are introduced in

sections 2.5 and 3.1.

uh: the continuous in t interpolation of b(vh), affine on each time interval I
n;

vh: an interpolated solution in E for vh (cf. Definition 2.8);

Gh: the interpolated gradient operator produced by (T h, kh,Dh) (cf. Defini-
tion 3.2);

A: the elliptic operator in (1.1), A : η ∈ E �→ −div ap(Dη) ∈ E′;
Ah: the finite volume approximation of A produced by the scheme

(T h, kh,Dh), given by Ah : η ∈ E �→ −div ap(Gh[η]) ∈ E′.

2.3. Admissible flux approximations. For simplicity, we consider only the
gradients that yield fully implicit schemes; in this case Dh,Dh

⊥ act independently on
each set

(
vnK

)
K
, and the dependence on n does not matter for their definition.

Let us introduce the operator Dh
⊥, which appears naturally in the a priori esti-

mates of section 2.4:

Dh
⊥ : (vK)K �→ (D⊥,K|L)K|L, D⊥,K|L =

vL − vK
dK,L

∈ R.(2.6)
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For ς ∈ N, denote by Υς(K) the union of all control volumes of T that are separated
from K by at most (ς − 1) other control volumes; for instance, Υ1(K) =

⋃
L∈NK

L.
The choice of ς corresponds to the choice of control volumes that are really involved
in the construction of Dh on ∂K.

Now we can make precise the assumptions on discrete gradient operators of the
form (2.2).

Definition 2.3. Let (T h,Dh)h be a family of finite volume meshes and corre-
sponding discrete gradient operators. The gradient approximation provided by Dh is
admissible if the following hold.

(2.3 i) Dh is linear and injective;
(2.3 ii) Dh provides a strictly monotone scheme; i.e., for all (vK)K , (ṽK)K ⊂ (Rd)N

that do not coincide,

1

d

∑
K|L

(
(vL−vK)− (ṽL−ṽK)

)∫
K|L

(
ap(DK|L(x))−ap(D̃K|L(x))

)
dx ·νK,L > 0,

where (DK|L)K|L = Dh
[
(vK)K

]
, (D̃K|L)K|L = Dh

[
(ṽK)K

]
;

(2.3 iii) Dh provides a scheme coercive at zero; i.e., there exists a constant C∗ > 0, in-
dependent of h, such that for all (vK)K ⊂ (Rd)N and (DK|L)K|L = Dh

[
(vK)K

]
,

one has

1

d

∑
K|L

(
vL − vK

)∫
K|L
ap(DK|L(x))dx · νK,L ≥ C∗

∥∥∥Dh
⊥[(vK)K ]

∥∥∥p
Lp(Ω)

;

and there exists ς ∈ N, independent of h, such that the following hold.

(2.3 iv) For each h, Dh is consistent with affine functions. More exactly, assume
that, for K ∈ T h given, there exists an affine function w on Ω such that vL =

1
m(L)

∫
L
w whenever L ⊂ Υς(K). Then DK|L(x) = Dw = const for all x ∈

K|L for all L ∈ NK .

(2.3 v) There exists a constant C∗, independent of h, such that, for all K̃ ∈ T h and
all sets of values (vK)K of R

N ,∫
K̃

∣∣∣Dh[(vK)K ]
∣∣∣p ≤ C∗

∫
Υς(K̃)

∣∣∣Dh
⊥[(vK)K ]

∣∣∣p.
Conditions (2.3 ii) and (2.3 iv) imply strong restrictions on the gradient approxi-

mation. We provide some examples of methods with admissible gradient approxima-
tion in section 5.1.

2.4. Discrete solutions. Recall that we consider as unknowns the values vnK
on K ∈ Tint, assigning vnK to be zero in K ∈ Text. We will repeatedly use the following
“summation by parts” formula (cf., e.g., [15]).

Remark 2.4. Let T be a finite volume mesh of Ω in the sense of Definition 2.1.
Let (vK)K∈T ⊂ R

N , (FK,L)(K,L)∈T 2 ⊂ R
N . Assume vK = 0 for all K ∈ Text and

FK,L = −FL,K for all K|L ∈ E . Then∑
K

vK
∑

L∈NK

FK,L =
∑
K|L

(vK − vL)FK,L.
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If (vnK)K,n verifies (Sh), we say that the function vh =
∑

K,n v
n
K1lQn

K
is the corre-

sponding discrete solution. We prove the discrete version of the Lp(0, T ;W 1,p
0 (Ω))- a

priori estimate on vh (which is exactly the estimate on Dh
⊥[vh] in Lp), and the discrete

version of (1.6).
Proposition 2.5. Let

(
(T h, kh)

)
h

be a family of finite volume grids and let(Dh
)
h

be a family of corresponding discrete gradient operators satisfying property

(2.3 iii) of Definition 2.3. Then, for any solution vh of the discrete problem (Sh),
there exists a constant C which depends only on p, d,Ω, T , on C∗ in (2.3 iii), and on
‖Ψ(u0)‖L1(Ω) such that

(i)
∥∥∥Dh

⊥[vh]
∥∥∥p
Lp(Q)

=
1

d

∑
K|L,n

m(K|L)dK,L

∣∣∣vnL − vnK
dK,L

∣∣∣p ≤ C;

(ii)
∥∥∥B(vh)

∥∥∥
L∞(0,T ;L1(Ω))

= sup
n∈{1,...,[T/kh]+1}

∑
K

m(K)B(vnK) ≤ C.

Proof. Take i ∈ {1, . . . , [T/kh]+1} and multiply each term in (2.3) by viK . By
(2.3 iii), using Remark 2.4 and (2.4), one gets∑

K

m(K)(b(viK)− b(vi−1
K )) viK + C∗khd

∫
Ω

∣∣Dh
⊥[vh]

∣∣p ≤ 0.

By the convexity of Φ, one has (b(viK) − b(vi−1
K )) viK ≥ B(viK) − B(vi−1

K ). Summing
over i from 1 to n ∈ {1, . . . , [T/kh]+1} and taking into account the convexity of Ψ,
we infer∑

K

m(K)B(vnK) + C∗d
∫ nkh

0

∫
Ω

∣∣Dh
⊥[vh]

∣∣p
≤
∑
K

m(K)Ψ(u0K) =
∑
K

m(K)Ψ

(
1

m(K)

∫
K

u0
)

≤
∫

Ω

Ψ(u0).

Next, let us prove the discrete version of the Poincaré inequality and of the com-
pact embedding of W 1,p(Ω) in L1(Ω). Note that we do not need any proportionality
assumptions on the mesh.

Lemma 2.6. Let Ω ⊂ R
d be a polygonal domain of diameter d(Ω), and let T be a

finite volume mesh of Ω. Let vh =
∑

K
vK1lK such that (vK)K∈T ⊂ R and vK = 0 for

all K ∈ Text. Then there exists a constant C which depends only on p and d such that

(i) ‖vh‖Lp(Ω) ≤ C d(Ω)
∥∥∥Dh

⊥[vh]
∥∥∥
Lp(Ω)

;

(ii) for all ∆ > 0, sup
|∆x|≤∆

∫
R

d

|vh(x+∆x)− vh(x)| dx ≤ ∆ ×
∥∥∥Dh

⊥[vh]
∥∥∥
L1(Ω)

.

Proof. (i) For x ∈ Ω, set ψK|L(x) = 1 in the case that the orthogonal projection of
K|L on the hyperplane {x1 = 0} contains (0, x2, . . . , xd), and set ψK|L(x) = 0 otherwise.
One has

|vh(x)|p ≤ 1

2

∑
K|L

ψK|L(x)
∣∣∣|vL|p − |vK |p

∣∣∣
≤ C

∑
K|L

ψK|L(x) dK,L
|vL − vK |
dK,L

(
|vK |p−1 + |vL|p−1

)
.
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Since
∫

Ω
ψK|L(x) dx ≤ m(K|L) d(Ω), one has by the Hölder inequality∫

Ω

|vh(x)|p dx

≤ Cd(Ω)

(∑
K|L

1

d
m(K|L) dK,L

∣∣∣vL − vK
dK,L

∣∣∣p) 1
p
(∑

K|L

1

d
m(K|L) dK,L

(|vK |p + |vL|p
)) p−1

p

.

Denote h = size(T ). Assertion (i) will follow by the Young inequality if we show that∑
K|L

1

d
m(K|L) dK,L

(|vK |p + |vL|p
)

≤ (1 + 2p)
∑
K

m(K) |vK |p + 2(2h)p
∑
K|L

1

d
m(K|L) dK,L

∣∣∣vL − vK
dK,L

∣∣∣p,(2.7)

since h ≤ d(Ω). Denote by R the left-hand side of (2.7). We have dK,L= dK,K|L+dL,K|L;
thus

R =
∑
K

m(K)|vK |p +
∑
K|L

1

d
m(K|L)(|vK |pdL,K|L + |vL|pdK,K|L).

Note that

|vK |pdL,K|L ≤
{

2p|vL|pdL,K|L if |vK | ≤ 2|vL|,
(2h)p

∣∣∣ vL−vK
dK,L

∣∣∣pdK,L otherwise.

Indeed, if |vK | > 2|vL|, one has |vL − vK | > 1
2 |vK | so that

|vK |pdL,K|L ≤ |vK |pdK,L ≤ 2p|vL − vK |pdK,L ≤ 2php
∣∣∣vL − vK
dK,L

∣∣∣pdK,L.

Using the same argument for |vL|pdK,K|L, we obtain the desired estimate (2.7).

(ii) Now for x ∈ R
d, set ψK|L(x) = 1 in the case where the segment [x, x + ∆x]

crosses K|L, and set ψK|L(x) = 0 otherwise. Note that
∫

R
dψK|L(x) dx ≤ m(K|L)∆; hence

(ii) follows, since∫
R

d

|vh(x)− vh(x+∆x)| dx ≤
∫

R
d

∑
K|L

ψK|L(x)|vL − vK | dx

≤ ∆
∑
K|L

m(K|L)dK,L

∣∣∣vL − vK
dK,L

∣∣∣.
Now we can state the result for existence and uniqueness of a discrete solution.

Theorem 2.7. Let T h be a finite volume mesh of Ω, kh > 0, and let Dh be
a discrete gradient associated to T h. If Dh satisfies (2.3 iii), there exists a solution
(vnK)K,n to the discrete problem (Sh). If Dh satisfies (2.3 ii), the solution is unique.

Proof of Theorem 2.7. Using Remark 2.4 and the coercivity of the scheme, we
apply the Brouwer fixed point theorem and get existence. Uniqueness follows from
the monotonicity of b(·) and the strict monotonicity of the scheme. See [3] for more
detailed proofs.
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2.5. Interpolation property and main result. Consider a family of finite
volume schemes

(
(T h, kh,Dh)

)
h

such that h tends to 0. Let (vnK)K,n be a solution to

the scheme (Sh) and vh the corresponding discrete solution.
We require the existence of what will be called “interpolated solutions” for vh,

denoted by vh, such that vh ∈ E; these should be close to vh (asymptotically as h→ 0)
and satisfy the a priori estimate in E analogous to the estimate of Proposition 2.5(i)
on vh. Moreover, the values (vnK)K,n should be recoverable from vh. To this end, we
require Mh[vh] = (vnK)K,n.

Definition 2.8. A family of grids
(T h, kh

)
h

has the interpolation property in E

if, for any family (vh)h of functions such that vh|Qn
K

= vnK ≡ const for each K ∈ T h,

n ∈ {1, . . . , [T/kh]+1}, with vnK = 0 for K ∈ T h
ext and with

∥∥Dh
⊥[vh]

∥∥
Lp(Q)

≤ C for all

h, there exists a family (vh)h ⊂ E such that

‖vh − vh‖Lp(Q) → 0 as h→ 0,(2.8)

Mh[vh] = (vnK)K,n,(2.9)

‖vh‖E ≤ I(C) with some function I : R
+ �→ R

+ independent of h.(2.10)

If vh is a solution to a finite volume scheme, we say that vh is an interpolated solution
for vh.

The interpolation property is the main technical assumption required by the “con-
tinuous” approach. In section 5.2 we give two conditions ensuring this property. Now
let us state the main result of this paper.

Theorem 2.9. Let
(
(T hm , khm ,Dhm)

)
m∈N

be a sequence of finite volume sche-

mes, where khm +size(T hm) ≤ hm → 0 as m→ ∞. Assume that the family of meshes
is weakly proportional, the gradient approximation is admissible, and the interpolation
property holds (cf. Definitions 2.2, 2.3, and 2.8).

For m ∈ N, let vhm be a discrete solution of (Shm). Then there exists a subse-
quence (hml

)l∈N such that vhml ⇀ v in Lp(Q) as l → ∞, where v is a weak solution
of the problem (1.1).

Note that it suffices to strengthen slightly assumption (2.3 ii) of Definition 2.3
in order to get the strong convergence of vhml to v in Lp(Q) (cf. [4, Corollary 1]).
Moreover, in the case when N = 1 the whole sequence converges to the unique solution
of (1.1). In this case error estimates can be proved (cf., e.g., [15] for the linear case),
but this is not the purpose of the present paper.

In what follows, we write k instead of kh and omit subscripts in sequences (hm)
and(hml

), simply writing that h tends to zero.

3. The “continuous” approach. Take the discrete solution vh =
∑

K,n v
n
K1lQn

K

produced by the finite volume scheme (Sh). Let vh ∈ E be a corresponding interpo-
lated solution. We will show that there exist functions uh ∈ L1(Q) and Gh ∈ Lp(Q)
such that uh(0, ·) = uh0 (·) and uht = div ap(G

h) in the weak sense of Definition 1.1,
and the functions uh, Gh can be recovered from the interpolated solution. More ex-
actly, we prove in Proposition 3.3 below that uht ∈ D′ can be extended to χh ∈ E′

and

〈χh, φ〉E′,E +

∫∫
Q

ap(Gh[vh]) ·Dφ = 0 for all φ ∈ E,(3.1)
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〈χh, ξ〉E′,E = −
∫∫

Q

uh ξt −
∫

Ω

uh0 (·) ξ(0, ·) for all ξ ∈ E with
ξt ∈ L∞(Q)N , ξ(T, ·) = 0,

(3.2)

with an operator Gh : E �→ Lp(Q) to be defined.
The analogy of (3.1), (3.2) with (1.4), (1.5) in Definition 1.1 plays the key role in

the proof of the convergence result of Theorem 2.9.

3.1. Interpolated gradient and the “continuous” form of the scheme.
First define uh as the piecewise affine in t interpolation of b(vh):

uh =
∑
K,n

(
b(vnK) +

t− kn
k

(b(vnK)− b(vn−1
K ))

)
1lQn

K
.(3.3)

Then (3.2) holds, since uh(0, ·) = uh0 (·) and the piecewise constant function uht ex-
tends to χh ∈ E′ by

〈χh, φ〉E′,E =

∫∫
Q

uht φ for all φ ∈ E.(3.4)

Next, note that in (Sh) the numerical flux is prescribed on the boundary of
each control volume; we will extend it to Q as follows. For given K ∈ T h

int,n and a
function Fn

K : ∂K �→ R, consider the following Neumann problem in the factor space
W(K) =W 1,p(K)/R: div ap(Dw) =

1

m(K)

∑
K∈NK

∫
K|L
Fn

K on K,

ap(Dw) · νK |∂K = Fn
K ,

(3.5)

where νK is the exterior unit normal vector to ∂K. For K ∈ T h
ext with m(K) > 0, we

drop in (3.5) the Neumann boundary condition on ∂K ∩ ∂Ω and seek w ∈ W 1,p(K)
with w|∂K∩∂Ω = 0.

Lemma 3.1. Let Fn
K ∈ Lp′

(∂K) (Fn
K ∈ Lp′

(∂K \∂Ω), if K ∈ T h
ext). Then (3.5)

admits a unique solution.
The proof is standard, using the coercivity and monotonicity argument [25, Chap.

2, Th. 2.1]. Now we can introduce the interpolated gradient operator.
Definition 3.2. The interpolated gradient operator Gh : E �→ Lp(Q) maps η ∈ E

into Gh[η] given by

Gh[η] =
∑

K,n
DηnK1lQn

K
, where ηnK ∈ W(K) solves

−
∫
K

ap(Dη
n
K) ·Dϕ+

∑
L∈NK

∫
K|L
ϕap(D

n
K|L) · νK =

1

m(K)

∫
K

ϕ
∑

L∈NK

∫
K|L
ap(D

n
K|L) · νK

for all ϕ ∈W 1,p(K) (for all ϕ ∈W 1,p(K) with ϕ|∂K∩∂Ω = 0, in case K ∈ T h
ext)

and the values Dn
K|L(x) are given by (Dn

K|L)K|L,n = Dh[η].

If vh solves (Sh), we set Gh = Gh[vh]. We remark that Gh = Gh[vh] by property
(2.9) of interpolated solutions vh. We show that (3.1) follows from (3.4) and the
conservation of fluxes.

Proposition 3.3. Assume that (vnK)K,n is a solution of (Sh). Let vh be a corre-
sponding interpolated solution, let uh and χh be defined by (3.3) and (3.4), respectively,
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and let Gh be the interpolated gradient operator of Definition 3.2. Then (3.1), (3.2)
hold.

Proof. It remains to check (3.1). By (3.3), for all K ∈ T h and n, we have

uht − div ap(G
h) =

b(vnK)− b(vn−1
K )

k
− 1

m(K)

∑
L∈NK

∫
K|L
ap(D

n
K|L(x))dx · νK,L = 0

everywhere on Qn
K because of (2.3). Therefore, using (3.4) and integrating by parts

in each Qn
K , we have

〈χh, φ〉E′,E+

∫
Q

ap(Gh[vh]) ·Dφ
∫∫

Q

uhtφ+ ap(G
h) ·Dφ

=
∑
K,n

∫∫
Qn

K

(uht − div ap(G
h))φ +

∑
K,n

∑
L∈NK

∫∫
In×K|L

φ ap(D
n
K|L) · νK,L

= 0 +
∑
K|L,n

∫∫
In×K|L

φ ap(D
n
K|L) · (νK,L + νL,K) = 0.

3.2. Properties of the interpolated gradient and consistency. In view of
(3.1) and (1.4), it is natural to compare the elliptic operator in (1.1),

A : η ∈ E �→ −div ap(Dη) ∈ E′,(3.6)

with the operators

Ah : η ∈ E �→ −div ap(Gh[η]) ∈ E′.(3.7)

Indeed, Ah can be considered as the finite volume approximation of A, whence the
following definition.

Definition 3.4. Let
(
(T h, kh,Dh)

)
h

be a family of finite volume schemes for

the problem (1.1), with size(T h) + kh ≤ h → 0. We say that the approximation of
(1.1) by these schemes is consistent if, for all η ∈ E, one has Ah[η] → A[η] in E′ as
h→ 0.

In this section we prove the following result.
Theorem 3.5. Let

(
(T h, kh,Dh)

)
h

be a family of finite volume schemes with a
weakly proportional family of meshes and an admissible gradient approximation (cf.
Definitions 2.2 and 2.3). Then it provides a consistent approximation of (1.1), in the
sense of Definition 3.4.

The proof of Theorem 3.5 is based upon the following properties of the interpo-
lated gradient operator Gh.

Proposition 3.6. Let
(
(T h, kh,Dh)

)
h

be a family of finite volume schemes with
admissible gradient approximation and weakly proportional family of meshes.

(i) There exists a constant C such that for all η ∈ E and H ⊂ Q such that
H =

⋃m
i=1Q

ni
Ki

, ∫∫
H

∣∣∣Gh[η]
∣∣∣p ≤ C

∫∫
Υς+1(H)

|Dη|p,

where Υς+1(H) =
⋃m

i=1 I
ni ×Υς+1(Ki). In particular,

(Gh
)
h

are uniformly
bounded on E and ∥∥Gh[η]

∥∥
Lp(Q)

≤ C ‖η‖E .(3.8)
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(ii) The operators (Gh)h are locally equicontinuous on E. More exactly, there ex-
ists a constant C(R) such that, whenever ‖η‖E ≤ R and ‖µ‖E ≤ R,∥∥Gh[η]− Gh[µ]

∥∥
Lp(Q)

≤ C(R)
(‖η − µ‖E)min{p−1, 1

p−1},(3.9) ∥∥ap(Gh[η])− ap(Gh[µ])
∥∥
Lp′ (Q)

≤ C(R)
(‖η − µ‖E)min{(p−1)2, 1

p−1}.(3.10)

In the statement above and in the rest of this section, C denotes a generic constant
that depends only on p, d,Ω, onM, ζ∗ of (2.1), and on C∗, C∗, ς of Definition 2.3, unless
the additional dependence on R is specified. The proof uses the standard properties
of the function ap(·) (cf. [19, 12]): for all y1, y2 ∈ R

d,
|ap(y1)− ap(y2)|p′ ≤ C |y1 − y2|p, 1 < p ≤ 2;

|ap(y1)− ap(y2)|p′ ≤ C |y1 − y2|p′
(
|y1|p + |y2|p

) p−2
p−1

, p ≥ 2;
(3.11)

 |y1 − y2|p ≤ C
[
(ap(y1)− ap(y2)) · (y1 − y2)

]p
2
[
|y1|p + |y2|p

]2−p
2

, 1 < p ≤ 2;

|y1 − y2|p ≤ C (ap(y1)− ap(y2)) · (y1 − y2), p ≥ 2.
(3.12)

Before turning to the proofs of Proposition 3.6 and Theorem 3.5, note the follow-
ing three lemmas.

Lemma 3.7. Let K ⊂ R
d be a bounded convex domain of R

d of diameter d(K) and
d-dimensional measure m(K). Assume that K contains a ball of radius ζ∗d(K) > 0.
Then there exists a constant C such that, assigning w = 1

m(K)

∫
K
w, one has∫

∂K

|w − w|p ≤ C (d(K))p−1

∫
K

|Dw|p

for all w ∈W 1,p(K), where w|∂K is understood in the sense of traces.
Proof. Applying, e.g., the proofs of [13, Theorems 59, 60, and 76] with p = 2

replaced by a general p ∈ (1,+∞), we obtain the claim of the lemma with C depending
on p, d, and the Lipschitz continuity of ∂K. Due to the convexity of K, C actually
depends only on p, d, and ζ∗.

Lemma 3.8. Let (T h)h be a weakly proportional family of meshes, and let (Dh
⊥)h

be the operators defined by (2.6). Then there exists a constant C such that for all K, n
for all η ∈ E, ∫∫

Qn
K

∣∣∣Dh
⊥[η]

∣∣∣p ≤ C
∫∫

In×Υ1(K)

|Dη|p.

Proof. Let
(
ηnK

)
K,n

= Mh[η] and ηnK|L = 1
km(K|L)

∫∫
In×K|Lη in the sense of traces.

By definition,∫∫
Qn

K

∣∣∣Dh
⊥[η]

∣∣∣p =
∑
K|L

1

d
km(K|L) dK,K|L

∣∣∣∣ηnL − ηnK
dK,L

∣∣∣∣p
≤ C

∑
K|L

1

d
km(K|L) dK,K|L

(∣∣ηnK|L − ηnK
∣∣p

(dK,K|L)
p +

∣∣ηnK|L − ηnL
∣∣p

dK,K|L (dL,K|L)
p−1

)
≤ C

∑
K|L

1

d
km(K|L) dK,K|L

∣∣∣∣ηnK|L − ηnK
dK,K|L

∣∣∣∣p + C
∑
K|L

1

d
km(K|L) dL,K|L

∣∣∣∣ηnK|L − ηnL
dL,K|L

∣∣∣∣p .
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By the convexity of the function z �→ |z|p and Lemma 3.7,

km(K|L) |ηnK|L − ηnK |p ≤
∫∫

In×K|L
|η − ηnK |p ≤ C d(K)

p−1

∫∫
Qn

K

|Dη|p,

and the same holds if K and L are exchanged. Hence by (2.1) we have∫∫
Qn

K

∣∣∣Dh
⊥[η]

∣∣∣p ≤ C
∑

L∈NK

(∫∫
Qn

K

|Dη|p +

∫∫
Qn

L

|Dη|p
)

≤ C
∫∫

In×Υ1(K)

|Dη|p.

Lemma 3.9. Let
(
(T h, kh,Dh)

)
h

be a family of finite volume schemes with a
weakly proportional family of meshes and an admissible gradient approximation. Then
the following hold:

(i) For all R > 0 there exists a constant C(R) such that, whenever ‖η‖E ≤ R
and ‖µ‖E ≤ R,∑

K,n

d(K)

∫∫
Σn

K

∣∣∣ap(Dh[η])− ap(Dh[µ])
∣∣∣p′

≤ C(R)
(
‖η − µ‖E

)min{p,p′}
.

(ii) There exists a constant C such that for all η ∈ E and H,Υς+1(H) as in
Proposition 3.6 one has

m∑
i=1

d(Ki)

∫∫
Σ
ni
Ki

∣∣∣Dh[η]
∣∣∣p ≤ C

∫∫
Υς+1(H)

|Dη|p.

Proof. First take K and consider ϕK =
∣∣ap(Dh[η])−ap(Dh[µ])

∣∣p′
∈ L1(∂K). Recall

that the values of Dh have been extended from ∂K inside K by means of the projection
operator Ph (cf. section 2.2). Hence by (2.1) we have

d(K)

∫
∂K

|ϕK | = d(K)

∑
L∈NK

∫
K|L

|ϕK |

= d
∑

L∈NK

d(K)

dK,K|L

∫
K̂L∩K

|ϕK ◦ Ph| ≤ d

ζ∗

∫
K

|ϕK ◦ Ph|.
(3.13)

If 1 < p ≤ 2, (3.13) and (3.11) yield∑
K,n

d(K)

∫∫
Σn

K

∣∣∣ap(Dh[η])− ap(Dh[µ])
∣∣∣p′

≤ C
∑
K,n

∫∫
Qn

K

∣∣∣Dh[η]−Dh[µ]
∣∣∣p.

In turn, (2.3 i), (2.3 iv), Lemma 3.8, and (2.1) imply that∑
K,n

∫∫
Qn

K

∣∣∣Dh[η]−Dh[µ]
∣∣∣p ≤ C

∑
K,n

∫∫
In×Υς(K)

∣∣∣Dh
⊥[η − µ]

∣∣∣p
≤ C

∑
K,n

∫∫
In×Υς+1(K)

∣∣∣D(η − µ)
∣∣∣p ≤ C

∫∫
Q

|Dη −Dµ|p = C
(
‖η − µ‖E

)p

,
(3.14)

which was the claim of (i) for 1 < p ≤ 2. Furthermore, we remark that (3.14) also
holds for p ≥ 2, in particular with η = 0 or µ = 0. Therefore for p ≥ 2, using (3.13),
and then (3.11) and the Hölder inequality, we get

∑
K,n

d(K)

∫∫
Σn

K

∣∣∣ap(Dh[η])−ap(Dh[µ])
∣∣∣p′

≤ C
(∑

K,n

∫∫
Qn

K

∣∣∣Dh[η]−Dh[µ]
∣∣∣p)

p′
p

×
(
Rp

) p−2
p−1

.
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Thus, in the case p ≥ 2, (i) also follows from (3.14).
The proof of (ii) is similar, using the identity |ap(y)|p′

= |y|p instead of inequalities
(3.11).

Proof of Proposition 3.6. Recalling Definition 3.2, for all K ∈ Tint and n, denote
by ηnK (respectively, by µnK) a function in W 1,p(K) that solves (3.5) with Fn

K(x) =
ap(D

n
K|L(x))·νK for x ∈ K|L ∈ EK , where (Dn

K|L)K|L,n = Dh[η] (respectively, (Dn
K|L)K|L,n =

Dh[µ]). In other words, each of ηnK , µ
n
K verifies the integral identity corresponding to

(3.5) with all test functions in W 1,p(K). Taking for the test function (ηnK −µnK),
subtracting the two identities, and integrating in t ∈ I

n, we obtain∫∫
Qn

K

(
ap(Dη

n
K)− ap(DµnK)

)
·
(
DηnK −DµnK

)
=

∫
In

∫
∂K

(
ηnK−µnK − ηnK−µnK

) (
ap(Dh[η])− ap(Dh[µ])

)
· νK ,

(3.15)

where ηnK−µnK = 1
m(K)

∫
K
ηnK−µnK for a.a. t ∈ I

n. Summing over K, n, using the Hölder

inequality and Lemmas 3.7 and 3.9(i), we have from (3.15)∫∫
Q

(
ap(Gh[η])− ap(Gh[µ])

)
·
(
Gh[η]− Gh[µ]

)
≤

∑
K,n

∫
In

∫
∂K

d(K)
−1

p′ | ηnK − µnK − ηnK − µnK |

× d(K)
1
p′
∣∣∣ap(Dh[η])− ap(Dh[µ])

∣∣∣
≤

(∑
K,n

∫
In

d(K)
1−p

∫
∂K

| ηnK − µnK − ηnK − µnK |p
) 1

p

×
(∑

K,n

d(K)

∫∫
Σn

K

∣∣∣ap(Dh[η])− ap(Dh[µ])
∣∣∣p′

) 1
p′

≤
(∑

K,n

∫∫
Qn

K

|DηnK −DµnK |p
) 1

p

‖η − µ‖min{p/p′,1}
E

=
∥∥∥Gh[η]− Gh[µ]

∥∥∥
Lp(Q)

‖η − µ‖min{p/p′,1}
E .

(3.16)

In the same manner, taking µ = 0 and using Lemma 3.9(ii), we get

∫∫
H

∣∣∣Gh[η]
∣∣∣pC (∫∫

H

∣∣∣Gh[η]
∣∣∣p) 1

p

(∫∫
Υς+1(H)

|Dη|p
) 1

p′

,

which proves (i).
Now if 1 < p ≤ 2, (3.12), (3.16), and the Hölder inequality yield∥∥∥Gh[η]− Gh[µ]

∥∥∥p
Lp(Q)

≤ C
(∥∥∥Gh[η]− Gh[µ]

∥∥∥
Lp(Q)

‖η − µ‖
p

p′
E

) p
2
(∥∥∥Gh[η]

∥∥∥p
Lp(Q)

+
∥∥∥Gh[µ]

∥∥∥p
Lp(Q)

) 2−p
2

.

Using (3.8), we obtain (3.9). Now (3.10) follows by (3.11).
If p ≥ 2, (3.12) and (3.16) readily yield (3.9); hence (3.10) follows by (3.11).
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Proof of Theorem 3.5. We have to prove that
∥∥ap(Dη)− ap(Gh[η])

∥∥
Lp′ (Q)

→ 0 as

h→ 0.
Let us first prove the theorem for the case of η ∈ E that is piecewise constant in

t and piecewise affine in x. Let J ⊂ Q be the set of discontinuities of Dη. Clearly, J
is of finite d-dimensional Hausdorff measure Hd(J).

For ς given in Definition 2.3, let us introduce Hh =
⋃

{K,n | In×Υς(K)∩J �=Ø}Q
n
K .

Note that |Hh| ≤ (ς + 1)hHd(J) → 0 as h → 0; likewise, |Υς+1(H
h)| → 0 as h → 0.

Therefore, by Proposition 3.6(i), we have∫∫
Hh

∣∣∣ap(Dη)− ap(Gh[η])
∣∣∣p′

≤ C
(∫∫

Hh

|Dη|p +

∫∫
Υς+1(Hh)

|Dη|p
)

→ 0

as h → 0. Moreover, for all Qn
K such that Qn

K ∩ Hh = Ø, we have Gh[η] ≡ Dη on
Qn

K . Indeed, we have D[η] ≡ const on Υς+1(Q
n
K). Therefore Dh[η]|Qn

K
≡ Dη = const

by property (2.3 iv) of admissible gradient approximations. Hence Dw = Dη satisfies
the boundary condition in (3.5); the equation is also satisfied, since div ap(Dη) ≡ 0
on K and 1

m(K)

∫
∂K
ap(Dh[η]) · νK = ap(Dη) ·

∫
∂K
νK = 0.

It follows that
∥∥ap(Dη)− ap(Gh[η])

∥∥
Lp′ (Q)

→ 0 as h→ 0, which was our claim.

Now let us approximate an arbitrary function η in E by functions ηl that are
piecewise constant in t and piecewise affine in x. Note that we can always choose
this sequence ηl in E such that ηl → η in E and a.e. on Q as l → ∞, and |Dηl|p are
dominated by an L1(Q) function independent of l. We have∥∥∥ap(Dη)− ap(Gh[η])

∥∥∥
Lp′ (Q)

≤
∥∥∥ap(Dη)− ap(Dηl)∥∥∥

Lp′ (Q)

+
∥∥∥ap(Dηl)− ap(Gh[ηl])

∥∥∥
Lp′ (Q)

+
∥∥∥ap(Gh[ηl])− ap(Gh[η])

∥∥∥
Lp′ (Q)

.
(3.17)

As l → 0, the first term in the right-hand side of (3.17) converges to zero by the
Lebesgue dominated convergence theorem, independently of h. The second one con-
verges to zero as h → 0 for all l fixed. Finally, by Proposition 3.6(ii), the third one
converges to zero as l→ ∞ uniformly in h. Hence the result follows.

4. Proof of Theorem 2.9. In the context of continuous dependence upon the
data of weak solutions to “general” elliptic-parabolic problems (cf. [2, Chap.V]), the
proof of convergence of weak solutions of approximating problems is based upon the
three essential arguments (A), (B), and (C) below.

(A) A priori estimates, using (1.2) and the Alt–Luckhaus chain rule lemma (cf.
[1, 26, 10]).

(B) Strong compactness in the parabolic term, using a variant of the Kruzhkov
lemma (cf. [23]):

Lemma 4.1 (cf. [4], [2, Chap. V]). Let Ω be an open domain in R
d, Q =

(0, T )×Ω, and let the families of functions (uh)h, (F
h
α )h,α be bounded in L1(Q)

and satisfy ∂
∂tu

h =
∑

|α|≤mD
αFh

α in D′(Q). Assume that uh can be extended
by zero outside Q, and one has

sup
|∆x|≤∆

∫∫
R

d+1

|uh(t, x+ ∆x)− uh(t, x)| dxdt ≤ ω(∆), with lim
∆→0

ω(∆) = 0,(4.1)

where ω(·) does not depend on h. Then (uh)h is relatively compact in L1(Q).
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(C) Convergence in the elliptic term, using a variant of the Minty–Browder argu-
ment (cf., e.g., [25]).

Lemma 4.2 (cf. [4], [2, Chap. V]). Let E be a Banach space, E′ its dual and
〈·, ·〉E′,E denote the duality product of elements of E′ and E. Let (vh)h ⊂ E
and vh ⇀ v as h → 0. Let Ah be a sequence of monotone operators from E
to E′ such that Ah[vh]

∗
⇀ −χ for some χ ∈ E′. Assume that Ah converge

pointwise to some operator A, and A is hemicontinuous (i.e., continuous in
the weak-∗ topology of E′ along each direction). Assume that

lim inf
h→0

〈Ah[vh], vh〉E′,E ≤ 〈−χ, v〉E′,E .(4.2)

Then χ+A[v] = 0, and (4.2) necessarily holds with equality.
Taking advantage of the “continuous” form (3.1), (3.2) of the discrete problem

(Sh), we can prove the convergence of finite volume approximate solutions in the
same way, using the discrete a priori estimates shown in Propositions 2.5 and 3.6(i),
using next Lemma 4.1, and then using finally Lemma 4.2 together with the essential
consistency result of Theorem 3.5.

Proof of Theorem 2.9. Let vh be the solution of (Sh). Let vh be a corresponding
interpolated solution, and let Ah be the finite volume approximate of the operator A
in (1.1) (cf. (3.6), (3.7)). Note that all the convergences we state below take place up
to extraction of a subsequence.

(A) By Proposition 2.5(i),
∥∥Dh

⊥[vh]
∥∥
Lp(Q)

≤ const uniformly in h so that the

family (vh)h is bounded in E, by (2.10). Hence there exists a function v ∈ E such
that vh ⇀ v in E as h→ 0. By (2.8), one also has vh ⇀ v in Lp(Q).

(B) We claim that the family (uh)h given by (3.3) is relatively compact in L1(Q).
Indeed, let us check the assumptions of Lemma 4.1. We have uht = div ap(Gh[vh]) in

D′(Q) by (3.1), (3.2), and the family
(
ap(Gh[vh])

)
h

is bounded in Lp
′
(Q) by Propo-

sition 2.5(i), equation (2.10), and Proposition 3.6(i) (note that
(Ah[vh]

)
h

is thus
bounded in E′). Furthermore, (3.3) yields

‖uh‖L1(Q) ≤ 2

∫∫
Q

|b(vh)|+ kh
∑
K

m(K)|u0K |,

and one has |b(z)| ≤ δB(z) + sup|ζ|≤1/δ |b(ζ)| for all δ > 0 (cf., e.g., [1]). By Propo-

sition 2.5(ii) and since uh0 =
∑

K
m(K)|u0K | → u0 in L1(Ω) as h → 0, it follows that

(uh)h is bounded in L1(Q).
Finally, by Proposition 2.5(i) and Lemma 2.6(ii), we obtain (4.1) with uh replaced

by vh. Hence the estimate (4.1) for uh follows by (3.3), as in the continuous case (cf.
[1]); see [4] for the detailed proof.

Thus the claim of (B) follows, and there exists a function u ∈ L1(Q) such that
uh → u in L1(Q) and a.e. on Q. In addition, we claim that u = b(v), where v is
the weak limit of vh in E. It suffices to show that vh ⇀ v in L1(Q) and b(vh) → u
in L1(Q), and then apply the monotonicity argument of [9]; see [4] for the detailed
proof.

(C) By (A), we have vh ⇀ v in E. We claim that v is a weak solution of (1.1).
By Proposition 3.3, χh + Ah[vh] = 0 in E′ and the initial condition (3.2) is

verified for all h. The family
(Ah[vh]

)
h

is bounded in E′ (cf. (B)), thus (χh)h is
weak-∗ relatively compact in E′. By (3.4), (B), and Definition 1.1, we also have

χh = uht → b(v)t = χ in D′(Q). Hence Ah[vh] = −χh ∗
⇀ −χ in E′.
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Moreover, passing to the limit in (3.2), using (B) and the convergence of uh0 to
u0 in L1(Ω), we get (1.5). Consequently, by the chain rule argument [1, Lemma 1.5]
we have

〈−χ, v〉E′,E = −
∫

Ω

Ψ(b(v(T, ·))) +

∫
Ω

Ψ(u0).(4.3)

On the other hand, by (3.4), (3.3), (2.9), and the monotonicity of b(·), we have

〈−χh, vh〉E′,E = −1

k

∑
K,n

(b(vnK)− b(vn−1
K ))

∫∫
Qn

K

vh

= −
∑
K,n

m(K)(b(vnK)− b(vn−1
K )) vnK

≤ −
∑
K

m(K)Ψ(b(v
[T/kh]+1
K )) +

∑
K

m(K)Ψ(u0K)

= −
∫

Ω

Ψ(b(vh(T, ·))) +

∫
Ω

Ψ(uh0 ).

Recall that Ψ(uh0 ) → Ψ(u0) in L1(Ω). Without loss of generality, we can assume that
vh(T, ·) → v(T, ·) a.e. on Ω; hence by the Fatou lemma and (4.3) we get (4.2).

Next, the operators Ah are monotone. Indeed, take ϕ ∈ E and (ϕnK)K,n = Mh[ϕ].
Arguing as in the proof of Proposition 3.3, integrating by parts in Qn

K , and cancelling
the boundary terms, we get

〈Ah[η], ϕ〉E′,E =

∫∫
Q

ap(Gh[η]) ·Dϕ = −
∑
K,n

∫∫
Qn

K

ϕ div ap(Gh[vh])

= −
∑
K,n

∫∫
Qn

K

ϕ× 1

m(K)

∑
L∈NK

∫
K|L
ap(D

n
K|L(x))dx · νK,L

= − k
∑
K,n

ϕnK
∑

L∈NK

∫
K|L
ap(D

n
K|L(x))dx · νK,L.

(4.4)

Substituting (4.4) and applying Remark 2.4, we infer by property (2.3 ii) of Defini-
tion 2.3 that

〈Ah[η]−Ah[η̃], η − η̃〉E′,E

=
1

d
k
∑
K|L,n

(
(ηnL−ηnK)− (η̃nL−η̃nK)

)∫
K|L

(
ap(D

n
K|L(x))− ap(D̃n

K|L(x))
)
dx · νK,L ≥ 0,

where (ηnK)K,n = Mh[η], (Dn
K|L)K|L,n = Dh[η], and the same for η̃.

Finally, by Theorem 3.5, Ah converge pointwise to the hemicontinuous operator
A · = −div ap(D ·). By Lemma 4.2 we conclude that χ + A[v] = 0 in E′. Thus (1.4)
holds and v is a weak solution of (1.1).

5. Examples of admissible methods. By an admissible method, we mean a
method which provides an admissible gradient approximation and weakly proportional
meshes satisfying the interpolation property. Recall that in this case, we have the
convergence of the finite volume approximation (cf. Theorem 2.9). In this section, we
prove that such admissible methods exist.
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5.1. On discrete gradients. In this section we construct an admissible gradient
for a family (T h)h of finite volume meshes of the Voronöı kind dual to a family (T̂ h)h
of triangular meshes.

Let us introduce some notation. We use Ô to denote a triangle of the mesh T̂ h; for
all Ô ∈ T̂ h, there exist K, L,M ∈ T h such that Ô = ∆xKxLxM (the triangle with the
corners xK , xL, xM). The three interfaces K|L, L|M,M|K intersect at point x

Ô
, which is

the center of the circumscribed circle of triangle Ô. We require it to be inside Ô. Let us
denote by S

Ô
, SK,L, SL,M , and SM,K the surfaces of ∆xKxLxM ,∆xÔ

xKxL,∆xÔ
xLxM ,

and ∆x
Ô
xMxK , respectively. One has S

Ô
= SK,L+SL,M +SM,K .

Recall that νK,L = −−−→xKxL/dK,L, νL,M = −−−→xLxM/dL,M , νM,K = −−−→xMxK/dM,K . Note the
following elementary lemma.

Lemma 5.1. Let Ô = ∆xKxLxM be a triangle in R
2, let x

Ô
be the center of its

circumscribed circle, and let x
Ô
∈ ∆xKxLxM . With the above notation, for all r in

R
2, we have

r =
2

S
Ô

{
SK,L(r · νK,L)νK,L + SL,M(r · νL,M)νL,M + SM,K(r · νM,K)νM,K

}
.

This property can be generalized to any polygon in R
2 which admits the circum-

scribed circle.
Furthermore, for Ô ∈ T̂ h such that Ô = ∆xKxLxM , let vh,0

Ô
: R

2 → R
N be the

affine function that takes the values vK , vL, vM at the points xK , xL, xM , respectively.
The discrete gradient operator Dh,0 = Lh ◦ Dh,0 is defined by

Dh,0 : (vK)K �→
∑

Ô∈T̂ h

Dvh,0
Ô
(x)1l

Ô
(x).

In the case of structured hexagonal meshes, as well as that of structured rectangular
ones, the family (Dh,0)h is admissible (this will be proved in Proposition 5.2, as a
particular case). In general, this construction does not work. Indeed, if the points xK

are not the barycenters of K ∈ T h, property (2.3 iv) fails.
This can be overcome, for instance, in the following way. For all K ∈ T h, let yK

be the barycenter of K and set σK = xK − yK . For Ô ∈ T̂ h such that Ô = ∆xKxLxM ,
let vh

Ô
: R

2 → R
N be the affine function that takes the values vK , vL, vM at the points

yK , yL, yM , respectively. The discrete gradient operator Dh = Lh ◦ Dh is defined by

Dh : (vK)K �→
∑

Ô∈T̂ h

Dvh
Ô
(x)1l

Ô
(x);(5.1)

i.e., the affine interpolation over the triangle ∆yKyLyM is actually used in the triangle
∆xKxLxM .

We will take advantage of considering Dh as a perturbation of Dh,0. For all
Ô ∈ T̂ h, let us define the correction operators

R
Ô

: r ∈ R
2 �→ 2

S
Ô

{
SK,L

(
r · σL − σK

dK,L

)
νK,L + SL,M

(
r · σM − σL

dL,M

)
νL,M

+ SM,K

(
r · σK − σM

dM,K

)
νM,K

}
,



FINITE VOLUME APPROXIMATIONS: A “CONTINUOUS” APPROACH 247

with the notation introduced above. We need to guarantee that the Euclidiean norm
of R

Ô
is less than min{p− 1, 1/(p− 1)} for all Ô ∈ T h.

Proposition 5.2. Assume that (T h)h is a family of meshes dual to a family of

meshes (T̂ h)h such that all Ô ∈ T̂ h are triangles with angles less than or equal to π/2.

Assume that for all h, for all Ô ∈ T̂ h,

2

S
Ô

{
SK,L

|σL − σK |
dK,L

+ SL,M
|σM − σL|
dL,M

+ SM,K
|σK − σM |
dM,K

}
< min{p− 1, 1/(p− 1)},

where σK is the difference between the “center” xK of the volume K and its barycenter,
etc.

Then the family of discrete gradient operators (Dh)h on (T h)h defined by (5.1) is
admissible in the sense of Definition 2.3.

Proof. Since, for any affine function w on K, one has 1
m(K)

∫
K
w(x)dx = w(yK),

where yK is the barycenter of K, property (2.3 iv) holds for Dh (with ς = 1, by
construction). Next, (2.3 i) is clear.

Let us establish the relation between Dh,0 and Dh. Denote by D0

Ô
, D

Ô
the values

on Ô of Dh,0[(vK)K ] and Dh[(vK)K ], respectively. Let us show that for all Ô ∈ T̂ h,

D0

Ô
= (I −R

Ô
)D

Ô
.(5.2)

Indeed, if Ô = ∆xKxLxM , one has

D
Ô
· νK,L =

vh
Ô
(xL)− vh

Ô
(xK)

dK,L
=

(vL +D
Ô
· σL)− (vK +D

Ô
· σK)

dK,L

=
vL − vK
dK,L

+D
Ô
· σL − σK

dK,L
= D0

Ô
· νK,L +D

Ô
· σL − σK

dK,L
.

Writing the same relation for L,M and M,K, from Lemma 5.1, we get D
Ô
− D0

Ô
=

R
Ô
D

Ô
, whence (5.2) follows.

By Lemma 5.1 and the definition of Dh
⊥ = Lh ◦ Dh

⊥ for all Ô ∈ T̂ h such that
Ô = ∆xKxLxM we have∫

Ô

∣∣∣Dh,0[(vK)K ]
∣∣∣p = S

Ô

∣∣∣Dh,0[(vK)K ]
∣∣∣p

≤ C∗
{
SK,L

∣∣∣vL − vK
dK,L

∣∣∣p + SL,M

∣∣∣vM − vL
dL,M

∣∣∣p + SM,K

∣∣∣vK − vM
dM,K

∣∣∣p}
= C∗

∫
Ô

∣∣∣Dh
⊥[(vK)K ]

∣∣∣p
(5.3)

with a constant C∗ that depends only on p. Since for given K̃ ∈ T h and Ô ∈ T̂ h we
have K̃ ∩ Ô �= Ø if and only if Ô ∈ Υ1(K̃), it follows that property (2.3 v) holds for the
discrete gradient Dh,0, with ς = 1. Now set θ

Ô
= ‖R

Ô
‖. We have θ

Ô
< 1. One has

|D
Ô
| ≤ ‖(I −R

Ô
)−1‖ |D0

Ô
| ≤ 1

1−θ
Ô

|D0

Ô
|; therefore (2.3 v) also holds for Dh.

Next, each term in the sum in (2.3 iii) splits into two terms corresponding to

the two parts of the interface K|L included in different triangles Ô1, Ô2 ∈ T̂ h. Let us
write down all the terms corresponding to the same triangle Ô ∈ T̂ h, Ô = ∆xKxLxM ,



248 B. A. ANDREIANOV, M. GUTNIC, AND P. WITTBOLD

combine them using Lemma 5.1, and estimate using (5.2):

SK,L(ap(DÔ
) · νK,L)(D

0

Ô
· νK,L) + SL,M(ap(DÔ

) · νL,M)(D0

Ô
· νL,M)

+ SM,K(ap(DÔ
) · νM,K)(D0

Ô
· νM,K) =

S
Ô

2
ap(DÔ

) ·D0

Ô

=
S

Ô

2
ap(DÔ

) · (I −R
Ô
)D

Ô
≥ 1− θ

Ô

2
S

Ô
|D

Ô
|p ≥ 1− θ

Ô

2(1 + θ
Ô
)p
S

Ô
|D0

Ô
|p.

Property (2.3 iii) for Dh follows, because one has |D0| ≥ |D0

Ô
·νK,L| = |vL−vK |

dK,L
= Dh

⊥,K|L
so that ∑

Ô∈T̂ h

S
Ô
|D0

Ô
|p =

∥∥∥Dh,0[(vK)K ]
∥∥∥p
Lp(Ω)

≥
∥∥∥Dh

⊥[(vK)]
∥∥∥p
Lp(Ω)

.

The proof of (2.3 ii) is similar. Denoting the values D̃0

Ô
, D̃

Ô
of Dh,0[(ṽK)K ] and

Dh[(ṽK)K ], respectively, on Ô, one can rewrite the sum in (2.3 ii) as∑
Ô∈T̂ h

{
SK,L

(
(ap(DÔ

)− ap(D̃Ô
)) · νK,L

)(
(D0

Ô
− D̃0

Ô
) · νK,L

)
+ SL,M

(
(ap(DÔ

)− ap(D̃Ô
)) · νL,M

)(
(D0

Ô
− D̃0

Ô
) · νL,M

)
+ SM,K

(
(ap(DÔ

)− ap(D̃Ô
)) · νM,K

)(
(D0

Ô
− D̃0

Ô
) · νM,K

)}
=

1

2

∑
Ô∈T̂ h

S
Ô
(ap(DÔ

)− ap(D̃Ô
)) · (D0

Ô
− D̃0

Ô
).

Using (5.2) and denoting by H the Hessian matrix of the function x ∈ R
2 �→ 1

p |x|p,
we get

(ap(DÔ
)−ap(D̃Ô

)) · (D0

Ô
−D̃0

Ô
)

= (D
Ô
−D̃

Ô
)t
[∫ 1

0

H(D̃
Ô
+τ(D

Ô
−D̃

Ô
)) dτ (I−R

Ô
)

]
(D

Ô
−D̃

Ô
).

For all x ∈ R
2, x �= 0, H(x) is a symmetric matrix with positive eigenvalues λ1, λ2

such that λ1/λ2 = p − 1. Thus the condition ‖R
Ô
‖ < min{p − 1, 1/(p − 1)} ensures

that, for all τ ∈ [0, 1],

rt
[
H(D̃

Ô
+ τ(D

Ô
− D̃

Ô
)) (I −R

Ô
)
]
r ≥ a rt

[
H(D̃

Ô
+ τ(D

Ô
− D̃

Ô
))
]
r > 0

for all r ∈ R
2, r �= 0, with some constant a > 0. Now (2.3 ii) follows.

5.2. On interpolated solutions. First note that it is sufficient to prove the
interpolation property in W 1,p

0 (Ω) if we require, in addition to the time-independent
analogs of (2.8), (2.9) (referred to as (2.8′), (2.9′)), that

(2.10 ′) ‖vh‖W 1,p
0 (Ω) ≤ c×

∥∥∥Dh
⊥[vh]

∥∥∥
Lp(Ω)

with a constant c independent of h. We obtain the interpolation property in E with
the function I : C �→ c × C by taking vh constant on each I

n and summing in
n ∈ {1, . . . , [T/kh]+1}.
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Lemma 5.3. Let (T h)h be a strongly proportional family of finite volume meshes
of Ω ⊂ R

d. Then it has the interpolation property in W 1,p
0 (Ω).

In order to prove the lemma, we first show that the strong proportionality al-
lows us to majorate the Lp norm of the translates of the discrete solutions vh in
Lemma 2.6(ii) by const∆ (h + ∆)p−1. Then we convolute vh with the appropriate
mollifier; finally, we restore the average over each mesh volume as in Lemma 5.4
below. The complete proof is given in [4].

Note that the interpolation property can fail on weakly proportional meshes, at
least for p > 2.

Indeed, consider Ω = (0, 1)2. For s ≥ 2, let T s be the finite volume mesh of Ω
such that T s

int = {Ks, Ls}, where K
s = {(x, y) ∈ Ω | x+ y < 1/s} with xKs = ( 1

4s ,
1
4s ),

and L
s is the interior of the complementary of K

s with xLs = ( 1
2 ,

1
2 ). Take vs such that

vs ≡ s1/p on K
s and vs ≡ 0 on L

s. Then
∫

Ω

∣∣Dh
⊥[vs]

∣∣p ≤ const uniformly in s. If there

exist vs ∈W 1,p
0 (Ω) interpolated solutions for vs, we have ‖vs‖W 1,p

0 (Ω) ≤ const. Hence

by the standard embedding theorem, vs are uniformly bounded. This contradicts the
fact that 1

m(Ks)

∫
Ksvs = s1/p → +∞ as s→ +∞.

Nevertheless, we have the following result in the situation close to that of Propo-
sition 5.2.

Lemma 5.4. Assume that (T h)h is a weakly proportional family of meshes of

Ω ⊂ R
2 dual to a family of meshes (T̂ h)h such that all Ô ∈ T̂ h are triangles with angles

less than or equal to π/2. Then (T h)h has the interpolation property in W 1,p
0 (Ω).

Proof. Take discrete solutions vh =
∑

K
vK1lK on each of T h such that, for all h∥∥Dh

⊥[vh]
∥∥
Lp(Q)

≤ C. Denote by c the generic constant that depends only on p and ζ∗.

Let vh,0 be the continuous piecewise affine function on Ω that interpolates the values
vK , vL, vM at the points xK , xL, xM over Ô for all Ô ∈ T̂ h (we use the construction and
notation of section 5.1). We have vh,0 ∈ W 1,p

0 (Ω) and Dvh,0 ≡ Dh,0[vh] so that (5.3)
yields ‖Dvh,0‖Lp(Ω) ≤ c× C. Note that for all x ∈ K ∈ T h,

|vh,0(x)− vh(x)| = |vh,0(x)− vh,0(xK)| ≤ d(K) |Dvh,0(x)|.(5.4)

Hence ‖vh,0 − vh‖Lp(Ω) ≤ h ‖Dvh,0‖Lp(Ω) → 0 as h → 0. Now take a continuously
differentiable function π : R

2 → R
+ such that suppπ = {x ∈ R

2 | |x| ≤ 1} and∫
R

2 π = 1. For all K ∈ T h
int set ϕK = m(K)

(ζ∗d(K))2 π
(

x−xK

ζ∗d(K)

)
(for boundary volumes K

of nonzero measure; i.e., if xK ∈ ∂Ω, an easy modification is needed in order to keep
the trace on ∂Ω equal to zero). Set

vh = vh,0 +
∑
K

αKϕK , with αK = vK − 1

m(K)

∫
K

vh,0.

Since suppϕK ⊂ K, by the choice of αK , the family (vh)h verifies (2.9′). Moreover,

since m(K)

d(K)2
≤ c for all K ∈ T h, for all h, by the Hölder inequality we get∫

Ω

|vh − vh,0|p =
∑
K

|αK |p
∫
K

|ϕK |p

≤ c
∑
K

1

m(K)p

∣∣∣∣∣
∫
K

vh −
∫
K

vh,0

∣∣∣∣∣
p

m(K)

(m(K)

d(K)
2

)p

≤ c
∑
K

1

m(K)p
m(K)

p′/p
∫
K

|vh − vh,0|pm(K) = c

∫
Ω

|vh − vh,0|p → 0
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as h→ 0. Thus (vh)h satisfies (2.8′). In the same manner, using (5.4) we have∫
Ω

|Dvh −Dvh,0|p =
∑
K

|αK |p
∫
K

|DϕK |p

≤
∑
K

c
∑
K

1

m(K)p
m(K)

p′/p
∫
K

|vh − vh,0|p × m(K)

(m(K)

d(K)
3

)p

≤ c
∑
K

1

d(K)
p

∫
K

|vh − vh,0|p ≤ c
∑
K

1

d(K)
p d(K)

p

∫
K

|Dvh,0|p = c

∫
Ω

|Dvh,0|p.

Hence ‖vh‖W 1,p
0 (Ω) ≤ c ‖vh,0‖W 1,p

0 (Ω) ≤ c × C, so (vh)h satisfies (2.10′). Thus (vh)h

can be chosen as interpolated solutions for (vh)h.
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Abstract. In this paper we analyze a nonsymmetric discontinuous Galerkin method for elliptic
problems proposed by Oden, Babuška, and Baumann. Our main results are a complete inf-sup
stability analysis and, as a consequence, error estimates in a mesh dependent energy norm allowing
variable meshsize and order of polynomials. The analysis is carried out in two spatial dimensions on
an unstructured triangulation.

Key words. discontinuous Galerkin method, error estimates, stability, energy norm, elliptic
problem, nonsymmetric discontinuous Galerkin method
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1. Introduction. The discontinuous Galerkin (dG) method is a classical tech-
nique for numerical approximation of partial differential equations which have recently
received new interest, motivated by some attractive features including a flexible dis-
cretization allowing easy implementation of h-p adaptivity, nonmatching grids, and
a local conservation property. Of course there are disadvantages too; the number
of degrees of freedom is larger (see [8]), and efficient iterative solvers are not yet
developed.

In this paper we are concerned with the analytical and numerical study of the
recent nonsymmetric dG method for elliptic problems proposed by Oden, Babuška,
and Baumann in [12]. This method does not contain the stabilizing (penalty) term
as the classical symmetric Nitsche method [11]. Plenty of numerical results were
presented in [12], showing that a remarkable stability is hidden in the nonsymmetric
form for polynomials of order higher than or equal to two in one and two spatial
dimensions. The desire to analytically understand the stability properties of the
nonsymmetric dG method is the motivation for the present paper. In an earlier
paper [9] Larson and Niklasson showed complete stability estimates for a family of
dG methods, including both the nonsymmetric method and the symmetric Nitsche
method, in one spatial dimension. These results extended the analytical stability
estimates presented by Babuška, Baumann, and Oden in [3] for polynomials of order
three or higher in one spatial dimension. The analysis presented in this paper builds
on the ideas in [9].

Our main result in this work is a complete discrete stability analysis, where we
prove that the method is inf-sup stable with respect to a mesh dependent energy norm
for quadratic and higher order polynomials on a general unstructured triangulation
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in two spatial dimensions. We present numerical calculations of the inf-sup constant
confirming our analytical estimates. Our analytical and numerical results confirm
the numerical observations reported in [12]. The case of linear ploynomials is also
investigated, and we show that the inf-sup constant either is zero or depends on the
meshsize (depending on boundary conditions) if the mesh is of checkerboard type.

From the study of the discrete stability properties we immediately obtain optimal
order a priori error estimates in the energy norm, in terms of local meshsize and local
degree of polynomials. We present numerical results illustrating our error estimates.
In two recent papers, Riviére, Wheeler, and Girault [13], [14], prove an a priori error
estimate of the L2 norm of the gradient of the error for the nonsymmetric dG method
by relating it to a method where the discontinuities on each edge have average zero.
However, no stability estimate for the nonsymmetric dG method is presented. We
also mention the comprehensive overview and analysis of a large class of dG methods
by Arnold, Brezzi, Cockburn, and Marini [2].

Key to our analysis is a splitting of the space of all discontinuous piecewise polyno-
mials into a sum of a space of functions with constrained discontinuities, representing
continuous scales, and a space of discontinuous functions with small spatial mean
value. This splitting, properly constructed, leads to a triangular system which can be
analyzed.

The remainder of this paper is organized as follows: in section 2 we introduce
the nonsymmetric dG method and the necessary notation; in section 3 we present the
splitting of the discontinuous piecewise polynomial space and the two-scale formula-
tion of the dG method; and finally, in section 4 we show the stability estimate and
the error estimate in the energy norm.

2. The model problem and the dG method.

2.1. A model problem. Let Ω be a polygonal domain in R2 with boundary Γ
divided into two disjoint parts Γ = ΓN ∪ΓD. We consider the following linear elliptic
model problem: find u : Ω → R such that

−∇ · σ(u) = f in Ω,(2.1)

u = gD on ΓD,

σn(u) = gN on ΓN .

Here the flux σ(u) is defined by

σ(u) = A∇u,(2.2)

with A a constant (or piecewise constant) symmetric positive definite matrix, and
σn(u) denotes the normal flux

σn(u) = n ·A∇u,(2.3)

where n is the exterior unit normal of Γ. It is well known that there is a unique
solution in H1(Ω) for f ∈ H−1(Ω), gD ∈ H1/2(ΓD), and gN ∈ H−1/2(ΓN ) to (2.1)
(see [6]), where Hs(ω) denote the standard Sobolev spaces on the set ω.

2.2. Discrete spaces. We let K be a triangulation of Ω into affine triangles K
satisfying the minimal angle condition, implying that the trace inequality (2.17) and
inverse inequality (2.19) below hold. We denote the set of all edges E by E and divide
E into three disjoint sets

E = EI ∪ ED ∪ EN ,(2.4)
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where EI is the set of all edges in the interior of Ω, ED the edges on the Dirichlet part
of the boundary ΓD, and EN the edges on the Neumann part ΓN . We let h : Ω → R
denote the mesh function such that h|K = hK = diam(K) and h|E = hE = diam(E),
i.e., the length of the edge E. We let

V =
⊕
K∈K

Pp(K),(2.5)

where Pp(K) is the space of all polynomials of degree less than or equal to p defined
on K. The degree of polynomials, as well as the meshsize, may vary from element to
element so that p|K = pK , and thus we allow h-p adaptivity.

2.3. The nonsymmetric dG method. In [12] Oden, Babuška, and Baumann
proposed the following nonsymmetric dG method: find uh ∈ V such that

a(uh, v) = l(v) for all v ∈ V.(2.6)

Here a(·, ·) is a bilinear form defined by

a(v, w) = aK(v, w)− aE(v, w) + aE(w, v),(2.7)

where

aK(v, w) =
∑
K∈K

(σ(v),∇w)K ,(2.8)

aE(v, w) =
∑

E∈EI∪ED

(〈σn(v)〉, [w])E ,(2.9)

and l(·) is a linear functional defined by

l(v) = (f, v) +
∑
E∈EN

(gN , v)E +
∑
E∈ED

(gD, 〈σn(v)〉)E .(2.10)

We employed the notation

〈v〉 =
{
(v+ + v−)/2, E ∈ EI ,
v+, E ∈ ED,

(2.11)

for the average and

[v] =

{
v+ − v−, E ∈ EI ,
v+, E ∈ ED,

(2.12)

for the jump at an edge E, where u±(x) = limt→0,t>0 u(x∓ tn), x ∈ E, and n is the
exterior unit normal to E for E ∈ ED ∪ EN and a fixed, but arbitrary, unit normal to
E for E ∈ EI ; see Figure 2.1.

Lemma 2.1. If f ∈ L2, gD ∈ H1/2(ΓD), and gN ∈ L2(ΓN ), then the linear
functional l(·) is bounded on V and the exact solution u of (2.1) satisfies

a(u, v) = l(v)(2.13)

for all v ∈ V.
Proof. The first statement is obvious. For the second we note that the normal

trace σn(u) of σ(u) is well defined in L2(E) on all edges E ∈ E since the stability
estimate ‖σ(u)‖+ ‖∇ · σ(u)‖ ≤ c(‖f‖+ ‖gD‖1/2,ΓD

+ ‖gN‖ΓN
) holds.

Here and below we let ‖v‖s,ω and |v|s,ω denote the standard Sobolev norms and
seminorms, respectively, for v ∈ Hs(ω) on the set ω ⊂ Ω. For brevity we write
‖v‖s = ‖v‖s,Ω, ‖v‖ω = ‖v‖0,ω, and ‖v‖ = ‖v‖0,Ω for the L2 norm.
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n

u+ u−

Fig. 2.1. The plus and minus sides of an edge.

2.4. The energy norm and some useful inequalities. We equip V with the
mesh dependent energy norm

|||v|||2 = |||v|||2K + ‖〈σn(v)〉‖2
E + ‖h−1[v]‖2

E ,(2.14)

where

|||v|||2K =
∑
K∈K

(A∇v,∇v)K ,(2.15)

‖w‖2
E =

∑
E∈EI∪ED

‖h1/2w‖2
E .(2.16)

Next we recall some useful standard inequalities which we will need in our devel-
opments. First we have the trace inequality

‖v‖2
∂K ≤ c‖v‖K

(
h−1
K ‖v‖K + ‖v‖1,K

)
for v ∈ H1(K),(2.17)

where c is a constant independent of h. This inequality follows by mapping to the
unit size reference element K̃, employing the trace inequality

‖v‖2
∂K̃

≤ c‖v‖K̃‖v‖1,K̃ for v ∈ H1(K̃)(2.18)

(see Brenner and Scott [5]) and finally transforming back to K. Furthermore, the
following inverse estimate will be useful:

‖〈σn(v)〉‖E ≤ C|||v|||K for v ∈ V,(2.19)

with constant C dependent on the degree of polynomials p but not on the meshsize
h. This estimate can be shown by scaling; see Thomée [15] for details.

3. A two-scale formulation of the dG method.

3.1. A splitting of V.
Theorem 3.1. For p ≥ 2 there is a decomposition of V into a direct sum

V = Vc + Vd,(3.1)

where

Vd = {v ∈ V : aK(w, v)− aE(w, v) = 0 for all w ∈ V},(3.2)

Vc = {v ∈ V : aE(w, v) = 0 for all w ∈ Vd},(3.3)
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with bilinear forms defined in (2.8) and (2.9). Furthermore, for p ≥ 2 the following
norm equivalence holds:

c1|||v|||2 ≤ |||vc|||2K + |||vd|||2K ≤ c2|||v|||2,(3.4)

with constants c1 and c2 independent of h but dependent on p.
For the proof of Theorem 3.1 we need the following two lemmas.
Lemma 3.1. For each edge E ∈ EI ∪ ED there is a function ϕE ∈ Vd such that

[ϕE ] = 1 on E,(3.5) ∫
E′
[ϕE ]v = 0 for all v ∈ Pp−1(E

′) and E′ ∈ E \ E,(3.6)

where Pp−1(E
′) denotes the space of polynomials of order p− 1 defined on E′.

Proof. We consider the case E ∈ EI . The case E ∈ ED is similar, and it is also easy
to see that the proof does not work out for E ∈ EN . We construct ϕE elementwise.
Let K+,K− ∈ K be the triangles which share an interior edge E. Let z denote the
coordinate orthogonal to E with positive direction into K+, let H± be the height of
K±, and let

ϕE |K± =

{
−Lp(2(z/H

±)∓ 1)/2, odd p,

±Lp(2(z/H
±)∓ 1)/2, even p,

(3.7)

where Lp denotes the Legendre polynomial (see [1]) of order p defined on [−1, 1]. We
begin by verifying that ϕE ∈ Vd. Note that the condition

aK(w, v)− aE(w, v) = 0(3.8)

for all w ∈ V is equivalent to

−(∇ · σ(w), v)K = (σn(w), 〈v〉)∂K(3.9)

for all w ∈ VK and K ∈ K. Note that, from the fact that the Legendre polynomial
Lp is orthogonal to all polynomials of order p− 1, it follows that ϕE satisfies

−(∇ · σ(w), ϕE)K = 0,(3.10)

(σn(w), 〈ϕE〉)∂K = 0,(3.11)

where in the last equality we also used that 〈ϕE〉 = 0 on E. Thus ϕE is in Vd. The
properties (3.5) and (3.6) of ϕE are direct consequences of the construction.

Lemma 3.2. For p ≥ 2 there is a w ∈ Vd for each v ∈ V such that

‖h−1P0[v]‖2
E =

∑
E∈EI∪ED

(〈σn(w)〉, P0[v])E ,(3.12)

|||w|||K ≤ c‖h−1P0[v]‖E ,(3.13)

with constant c independent of h and p, and P0 the edgewise L2-projection on constant
functions.

Proof. Let K be a triangle, E one of the edges of K, H the height of K orthogonal
to E, and z ∈ [0, H] the coordinate orthogonal to E. Then the normal derivative of
the function z(z/H − 1) is one on E and has average zero on the two other edges.
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Based on this observation and the fact that A is positive definite, we conclude that
for p ≥ 2 we can construct a w′ ∈ Vd for each v ∈ V such that∑

E∈EI∪ED

(〈σn(w′)〉, P0[v])E = ‖h−1P0[v]‖2
E ,(3.14)

|||w′|||K ≤ c‖h−1P0[v]‖E .(3.15)

Next, for p ≥ 2, we define w ∈ Vd by
aK(w, v) = aK(w′, v) for all v ∈ Vd.(3.16)

We note that setting v = w and using the Cauchy–Schwarz inequality give

|||w|||K ≤ |||w′|||K,(3.17)

and thus it follows that

|||w|||K ≤ c‖h−1P0[v]‖E .(3.18)

Using the definition of Vd, we get
aE(w, v) = aE(w′, v) for all v ∈ Vd,(3.19)

and choosing v = ϕE (see Lemma 3.1), we find that

P0〈σn(w)〉 = P0〈σn(w′)〉 on E(3.20)

for each edge E ∈ EI ∪ ED.
Remark 3.1. The construction of w′ is a consequence of the classical noncon-

forming quadratic Morley element [10]. The degrees of freedom of the Morley element
are the nodal values and the values of the normal derivative at the midpoints of the
edges.

Lemma 3.3. It holds that

‖h−1(I − P0)[v]‖E ≤ c|||v|||K for all v ∈ V,(3.21)

with constant c independent of h and p, and with P0 the edgewise L2-projection on
constant functions.

Proof. Note that we may subtract the projection of v onto piecewise constants
π0v as follows:

‖h−1(I − P0)[v]‖2
E = ‖h−1(I − P0)[v − π0v]‖2

E(3.22)

≤ c
∑
K∈K

h−1‖v − π0v‖K
(
h−1‖v − π0v‖K + ‖v − π0v‖1,K

)
(3.23)

≤ c|||v|||2,(3.24)

where we finally used the interpolation estimate (4.12) below together with the fact
that the H1 seminorm can be estimated by the energy norm.

Proof of Theorem 3.1. Clearly V = Vc + Vd by the definition. Assume that
v ∈ Vc ∩ Vd. Then we conclude that aK(v, v) = 0, and thus v is a piecewise constant
function. It follows that aE(w, v) = 0 for all w ∈ Vd. Invoking Lemma 3.2, we find
that v = 0. Therefore, the sum is direct for p ≥ 2.
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Starting with the left inequality in (3.4), we first observe that, using the inverse
inequality (2.19) and the triangle inequality, we have

|||v|||2 ≤ c|||v|||2K + ‖h−1[v]‖2
E

≤ c
(
|||vc|||2K + |||vd|||2K

)
+ ‖h−1[v]‖2

E ,(3.25)

and thus we need to estimate ‖h−1[v]‖2
E . Using the triangle inequality, we have

‖h−1[v]‖E ≤ ‖h−1(I − P0)[v]‖E + ‖h−1P0[v]‖E .(3.26)

For the first term on the right-hand side in (3.26) we have, using Lemma 3.3,

‖h−1(I − P0)[v]‖E ≤ c|||v|||K ≤ c
(
|||vd|||K + |||vc|||K

)
.(3.27)

Next, for the second, invoking Lemma 3.2 gives

‖h−1P0[v]‖2
E =

∑
E∈EI∪ED

(〈σn(w)〉, P0[v])E(3.28)

=
∑

E∈EI∪ED

(〈σn(w)〉, [v])E −
∑

E∈EI∪ED

(〈σn(w)〉, (I − P0)[v])E .(3.29)

For the first term on the right-hand side in (3.29) we have the estimate∑
E∈EI∪ED

(〈σn(w)〉, [v])E =
∑

E∈EI∪ED

(〈σn(w)〉, [vd])E(3.30)

=
∑
K∈K

(σ(w),∇vd)K(3.31)

≤ |||w|||K|||vd|||K(3.32)

≤ c‖h−1P0[v]‖E |||vd|||K,(3.33)

where we used the fact that w ∈ Vd in (3.30), the definition of Vd in (3.31), the Cauchy–
Schwarz inequality in (3.32), and finally the stability estimate (3.13) in (3.33). For
the second term,∑

E∈EI∪ED

(〈σn(w)〉, (I − P0)[v])E ≤ ‖〈σn(w)〉‖E‖(I − P0)h
−1[v]‖E(3.34)

≤ c|||w|||K|||v|||K(3.35)

≤ c‖h−1P0[v]‖E |||v|||K,(3.36)

where we used the Cauchy–Schwarz inequality in (3.34), the inverse inequality (2.19)
and Lemma 3.3 in (3.35), and finally the stability estimate (3.13) in (3.36).

Starting from (3.29) and using the triangle inequality together with estimates
(3.33) and (3.36) and finally dividing with ‖h−1P0[v]‖E give

‖h−1P0[v]‖E ≤ c
(
|||vd|||K + |||vc|||K

)
,(3.37)

which together with (3.25), (3.26), and (3.27) proves the left inequality in (3.4).
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We now turn to the proof of the right inequality in (3.4). Starting from the
definition (3.2) of Vd in Theorem 3.1 and setting w = vd, we get

|||vd|||2K = aK(vd, vd)(3.38)

= aE(vd, v)(3.39)

≤ ‖〈σn(vd)〉‖E‖h−1[v]‖E(3.40)

≤ c|||vd|||K|||v|||,(3.41)

where we used the Cauchy–Schwarz inequality, and, at last, the inverse inequality
(2.19) and the obvious fact that ‖h−1[v]‖E ≤ |||v|||. Finally, dividing by |||vd|||K and
squaring both sides give

|||vd|||2K ≤ c|||v|||2.(3.42)

Next, for vc we simply have

|||vc|||2K = |||v − vd|||2K(3.43)

≤ c
(
|||v|||2K + |||vd|||2K

)
(3.44)

≤ c|||v|||2,(3.45)

which together with (3.42) prove the right inequality in (3.4). At last, tracing con-
stants, we find that both c−1

1 and c2 are of the form cC2+c, where c denotes constants
independent of both h and p, and C is the constant in the inverse inequality (2.19),
which depends on p.

3.2. A two-scale formulation of the dG method. Here we shall derive a
system of equations corresponding to (2.6) using the splitting given in Theorem 3.1.
Writing u = uc + ud and v = vc + vd and using the identities

a(uc, vd) = 0,(3.46)

a(ud, vc) = 2aK(ud, vc),(3.47)

a(ud, vd) = aK(ud, vd),(3.48)

which are direct consequences of Theorem 3.1, we obtain a triangular system of the
following form: find u = uc + ud ∈ Vc + Vd such that

a(uc, vc) + 2aK(ud, vc) = l(vc),(3.49)

aK(ud, vd) = l(vd).

We note that, with this particular splitting of V, the discontinuous scales Vd are in
fact not coupled to the continuous scales Vc.

3.3. Checkerboard solutions for p = 1. For p = 1 the splitting (3.1) in
Theorem 3.1 is not direct and the norm equivalence (3.4) does not hold in general.
This fact can be seen as follows. Using Green’s formula, we have∑
K∈K

(∇w,A∇v)K =
∑
K∈K

(−∇ · ∇w, v)K

+
∑
E∈EI

([σn(w)], 〈v〉)E + (〈σn(w)〉, [v])E +
∑

E∈ED∪EN

(σn(w), v)E .
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Now if v is a piecewise constant function, then ∇v = 0, and if w is a piecewise linear
function, then −∇ ·A∇w = 0 (recall that A is piecewise constant). Using these facts,
we get

aE(w, v) = −
∑
E∈EI

([σn(w)], 〈v〉)E −
∑
E∈EN

(σn(w), v)E ,

and thus if EN is empty and 〈v〉 = 0 on each edge, then aE(w, v) = 0 for all w ∈ V.
Going back to the splitting V = Vc + Vd, in Theorem 3.1 we find that v ∈ Vc ∩ Vd
and thus the splitting is not direct. Further it is easy to see that |||v|||K = 0, while
|||v|||2 �= 0 and thus c1 must be zero; i.e., (3.4) does not hold. However, a piecewise
constant function v, with 〈v〉 = 0 on each E ∈ EI , does exist only on a checkerboard
mesh, i.e., a mesh which could be colored as a checkerboard with two colors. In
Figure 3.1 we give an example of such a function v on an unstructured checkerboard
triangulation of the unit square. In the case when EN is not empty but the mesh
is a checkerboard mesh, we instead get that c1 → 0 as h → 0. However, a general
unstructured triangulation is usually quite far from being a checkerboard mesh, and
in such a situation the norm equivalence will in general hold even for p = 1. See the
computations of the inf-sup constant presented below.

(a) (b)

Fig. 3.1. (a) Checkerboard solution with black = −1 and white = 1 and (b) the corresponding
triangulation of the unit square.

4. Stability analysis and error estimates in the energy norm.

4.1. Stability analysis. Our main result in this section is a proof that the inf-
sup constant (see, for instance, [5]) is positive and independent of the meshsize. This
stability result is, as is well known, key for proving existence and uniqueness of the
discrete solution as well as error estimates in the energy norm.

Theorem 4.1. If p ≥ 2, then there is a constant m > 0 such that

inf
u∈V

sup
v∈V

a(u, v)

|||u||| |||v||| ≥ m.(4.1)

The constant m is independent of h but depends on p.
Proof. Using identities (3.46)–(3.48), we have

a(uc + ud, vc + vd) = aK(uc, vc) + 2aK(ud, vc) + aK(ud, vd).(4.2)
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Setting

vc + vd = uc + γud,(4.3)

where γ ∈ R is a parameter, we get

a(uc + ud, vc + vd) = |||uc|||2K + 2aK(ud, uc) + γ|||ud|||2K(4.4)

≥ |||uc|||2K − 2 |||ud|||K|||uc|||K + γ|||ud|||2K(4.5)

≥ (1− ε)|||uc|||2K + (γ − ε−1)|||ud|||2K.(4.6)

Here we used the Cauchy–Schwarz inequality and the inequality 2ab ≤ εa2 + ε−1b2

for any a, b, and ε ∈ R with ε > 0. Choosing ε such that 1− ε ≥ m′ and γ ≥ 1 such
that γ − ε−1 ≥ m′, we get

a(uc + ud, uc + γud) ≥ m′
(
|||uc|||2K + |||ud|||2K

)
.(4.7)

Next, using the norm equivalence (3.4), we note that, for γ ≥ 1, we have

c1|||uc + γud|||2 ≤ |||uc|||2K + γ2|||ud|||2K(4.8)

≤ γ2
(
|||uc|||2K + |||ud|||2K

)
,(4.9)

and thus we conclude that

|||uc + ud||| |||uc + γud||| ≤ c−1
1 γ

(
|||uc|||2K + |||ud|||2K

)
.(4.10)

Combining (4.7) and (4.10), we immediately get the desired inf-sup bound

inf
u∈V

sup
v∈V

a(u, v)

|||u||| |||v||| ≥
c1m

′

γ
= m.(4.11)

Remark 4.1. In [2] the concept of weak stability m|||v|||2K ≤ a(v, v) is discussed.
We note that, while weak stability is obvious for the nonsymmetric dG method, it is
nontrivial to derive error estimates of |||u−uh||| since the bilinear form is not bounded
with respect to the ||| · |||K. Further, ||| · |||K is only a seminorm while ||| · ||| is a norm.

Example: Computation of the inf-sup constant. We compute the inf-sup con-
stant for the discrete Laplacian defined by (2.6) on the unit square Ω = [0, 1]2 with
homogenous Dirichlet conditions on Γ. The triangulations are quasi-uniform unstruc-
tured with N elements. For details on such computations we refer to Oden, Babuška,
and Baumann [12]. In Table 4.1 we present the inf-sup constant m for a variety of tri-
angulations and p = 1, . . . , 4. We note that the inf-sup constant is independent of the
number of elements (or meshsize) and decreases with increasing p ≥ 2, as expected.
Note also that for p = 1 the inf-sup constant is indeed strictly positive due to the fact
that these computations are done on an unstructured grid in two spatial dimensions,
which is typically not close to a checkerboard mesh.

4.2. Error estimates in the energy norm. We first recall that given u ∈
Hs(K), there is πKu ∈ Pp(K) such that the following estimate holds:

‖u− πKu‖r,K ≤ cpr−sK hµ−rK |u|s,K ,(4.12)
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Table 4.1
The inf-sup constant m for different p and meshes with Nelements.

N p = 1 p = 2 p = 3 p = 4
72 0.054 0.116 0.071 0.047
290 0.022 0.115 0.068 0.044
1300 0.022 0.115 0.067 0.044
2604 0.021 0.116 0.070 –
5366 0.023 0.115 – –

where 0 ≤ r ≤ s, µ = min(p+1, s), and c is a constant independent of h and p; see [4].
Further, we let πu ∈ V be defined by (πv)|K = πK(v|K). Using (4.12), we get the
following lemma.

Lemma 4.1. The following interpolation error estimate holds:

|||u− πu||| ≤ c

(∑
K∈K

p
−(2s−3)
K h

2(µ−1)
K |u|2s,K

)1/2

.(4.13)

Proof. With η = u− πu we have

|||η|||2 = |||η|||2K + ‖〈σn(η)〉‖2
E + ‖h−1[σn(η)]‖2

E .

Using the boundedness of A, we get |||η|||2K ≤ c
∑
K∈K ‖η‖2

1,K . For the second term
we invoke the trace inequality (2.17) elementwise to obtain

‖〈σn(η)〉‖2
E ≤ c

∑
K∈K

h‖∇η‖K
(
h−1‖∇η‖K + ‖∇η‖1,K

)
≤ c

∑
K∈K

‖η‖1,K

(
‖η‖1,K + h‖η‖2,K

)
.

For the third term we get in the same way

‖h−1[η]‖2
E ≤ c

∑
K∈K

h−1‖η‖K
(
h−1‖η‖K + ‖η‖1,K

)
.

Now (4.13) follows directly from the interpolation error estimate (4.12).
Here we used the multiplicative trace inequality to estimate the edge contribu-

tions. We refer to [7] for a discussion of the suboptimality with respect to p resulting
from this trace inequality and an alternative estimate.

Using the stability estimate in Theorem 4.1 and the interpolation error estimate
in Lemma 4.1, we obtain the following energy norm error estimate using standard
arguments. The error estimate is optimal in h but suboptimal in p by a factor 1/2
modulo the dependence of m on p.

Theorem 4.2. The following energy norm error estimate holds:

|||u− uh|||2 ≤ c(1 +m−1)

(∑
K∈K

p
−(2s−3)
K h

2(µ−1)
K |u|2s,K

)1/2

,

where c denotes constants independent of h and p. The constant m, defined in Theo-
rem 4.1, is independent of h but depends on p.
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Fig. 4.1. The energy error as a function of the average meshsize hav for p = 1, . . . , 4.

Example: The error in the energy norm. We consider the Poisson equation (2.1)
on the unit square, Ω = [0, 1]2, with homogeneous Dirichlet boundary conditions,
u = 0, on the boundary Γ and the right-hand side f chosen so that the exact solution
is u(x, y) = sin(πx) sin(πy). The triangulation is unstructured and all triangles are
approximately the same size. In Figure 4.1 we plot the error as a function of the
average meshsize hav defined by hav =

√
2N , where N is the number of elements. We

observe the expected convergence of order p− 1 for polynomials of order p.
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[3] I. Babuška, C. E. Baumann, and J. T. Oden, A discontinuous hp finite element method for
diffusion problems: 1-d analysis, Comput. Math. Appl., 37 (1999), pp. 103–122.
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Abstract. A new class of methods for the solution of stiff initial value problems is introduced
that is parallel by design. It has a two-step character and propagates s different “peer” solution
variables with essentially identical characteristics from step to step. The main work lies in the
solution of s independent linear stage equations which may be solved in parallel. Convergence of
order s−1 and stability for general stepsize sequences are proved. Conditions for order s and stronger
stability criteria are addressed as well. Promising methods up to order 7 are identified by numerical
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1. Introduction. Parallel solution methods for large and stiff initial value prob-
lems

y′ = f(t, y), t0 ≤ t ≤ te, y(t0) = y0 ∈ R
n,(1)

may be based on many different strategies. In this paper we will consider a new class
of time integration schemes with inherent “method parallelism” [8]. This feature is
independent of “parallelism across the system” since both kinds of parallelism may
be applied simultaneously in many situations. Approaches for method parallelism
may start with well-known classical methods and try to parallelize expensive parts of
its numerical components, like the solution of the large nonlinear systems in implicit
Runge–Kutta methods (e.g., [1]). Similarly, parallel iteration schemes may be applied
to classical one-step or multistep methods as in some works of van der Houwen and
Sommeijer and van der Houwen and de Swart [11, 12] and Burrage and Suhartanto [3].
For a recent textbook on parallel methods, see [2]. Other approaches are based on new
kinds of methods that are parallel by design. Within the wide class of general linear
methods (GLMs), the subclass of diagonally implicit multistage integration methods
(DIMSIMs) suitable for parallel implementation has been proposed by Butcher [5].
Here, the equations for the internal stages of the GLM may be solved in parallel since
the corresponding part of the coefficient matrix is diagonal. The papers [6, 7] are
concerned with implementation issues of such methods. Unfortunately, the practical
experience with these methods is not overly positive compared to RADAU [10] or
parallel software for implicit differential equations (PSIDE) [12].

In order to circumvent some of the theoretical bottlenecks in the structure of clas-
sical one-step and multistep methods, the class of linearly implicit parallel two-step W-
methods (PTSW-methods) has been discussed recently by Podhaisky and the authors
[15]. These PTSW-methods are similar to ordinary Rosenbrock–Wanner (ROW)- or
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W-methods (cf. [13], [10, IV.7]) but use s stage increments from the previous time
step only. So, all s current stages can be processed in parallel. The PTSW-methods
are already quite competitive [16, 19] even in sequential computations. They are par-
ticularly attractive in very stiff or singularly perturbed problems since they do not
suffer an order reduction due to high stage orders. One of their weaknesses, however,
is some critical dependence on stepsize ratios in the stiff case.

Literally speaking, many parallel and classical time integration methods have a
set of distinguished or “master” variables and compute additional “slave” variables
to improve accuracy or stability properties of the masters. In fact, these methods
usually employ only one n-dimensional master approximation for the solution in each
time interval with distinguished accuracy and stability properties. In contrast to these
schemes, we now consider methods having only peer variables sharing the same ac-
curacy and stability properties (with minor modifications). An immediate advantage
of this approach is the existence of a continuous extension for these methods by us-
ing an interpolating polynomial. In this paper we restrict the discussion to two-step
methods that compute several solution approximations Ymi, i = 1, . . . , s, associated
with a time interval [tm, tm+1] from the information contained in the variables Ym−1,i

from the previous interval. Generalization to methods using even earlier information
is obvious but will not be considered here. Moreover, we will concentrate on linearly
implicit methods avoiding the solution of nonlinear systems of equations. In parallel
“peer” two-step W-methods (PPSW-methods), the solutions Ymi, i = 1, . . . , s, are
related to points

tmi := tm + hmci, i = 1, . . . , s,(2)

associated with the time interval [tm, tm+1] but not necessarily contained in it. The
PPSW-methods are given by

(I − γihmTm)Ymi =

s∑
j=1

(
bijI + hmγijTm

)
Ym−1,j(3)

+ hm

s∑
j=1

aijf
(
tm−1,j , Ym−1,j

)
, i = 1, . . . , s.

The terms γi > 0, bij , γij , aij are the parameters of the method. The matrix Tm should
be an approximation of the Jacobian fy(tm, y(tm)) for stability reasons only. In fact,
the accuracy of these methods is derived for arbitrary Tm in the sense of W-methods.
In this context it is no essential restriction to consider autonomous problems, and we
will do this for simplicity. The subclass of these methods with γi = 0, γij = 0 may
also be attractive for nonstiff problems but will not be discussed here.

Introducing the stage vectors Ym = (Ymi)
s
i=1 ∈ R

sn and coefficient matrices

G := diag(γi), A = (aij), B = (bij), Γ = (γij), β := A+ Γ,(4)

a more compact version of the PPSW-method is

(I − hmG⊗ Tm)Ym = (B ⊗ I + hmΓ⊗ Tm)Ym−1 + hm(A⊗ I)f(Ym−1).(5)

The matrix β introduced in (4) will play an important role in the analysis. In (5) it is
easily seen that for methods using G = γI the matrix I − hmG⊗ Tm commutes with
all other matrices in the scheme. Hence the stability analysis simplifies considerably.
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Similar to the notion in implicit Runge–Kutta methods, we will also call methods
using

γi ≡ γ, G = γI(6)

singly implicit. We will concentrate on this kind of method in the present paper and
display its specific form for ease of reference:(

I ⊗ (I − γhmTm)
)
Ym = (B ⊗ I + hmΓ⊗ Tm)Ym−1 + hm(A⊗ I)f(Ym−1).(7)

Such methods may be attractive already in a sequential computing environment since
the matrix decomposition of I − γhmTm may be used in all stages. A situation of
interest on parallel machines is the use of expensive parallel preconditioners for this
matrix. Still, multi-implicit methods with a general diagonal matrix G offer additional
design options and will be discussed in [18].

The emphasis of our discussion lies on higher-order methods with an order near
the number of stages s. Here, a critical source of problems is the fact that the
coefficients of the methods depend on the current stepsize ratio σm defined in (8).
Stepsize increases will be restricted by an upper bound

σm := hm/hm−1 ≤ σ̄(8)

for all steps, but no lower bound is assumed since this might be a severe restriction in
practice. When discussing nonlocal effects we will occasionally add an additional step-
index m to the coefficient matrices A,B,Γ, β (see (4)) to indicate this dependence,
and the same notation will be used for other quantities. Convergence results are
formulated in terms of the maximal stepsize

H := max
j≥0

hj .(9)

Further abbreviations are 1l = (1, . . . , 1)T, ei for the ith unit vector. The spectral
radius of a matrix is denoted by ρ.

After this introduction the paper continues with basic aspects of stability and ac-
curacy of the schemes. Conditions for stability with general stepsizes and the structure
of the stability matrix are derived as well as basic order conditions. The conditions
for order s − 1 lead to explicit representations of the coefficients of the scheme. We
concentrate on these high-order schemes in section 3 and identify one class where the
general stability conditions from section 2 can be established easily. We also discuss
conditions for improving the order to s. For the singly implicit methods in the form
(7) it is unlikely that this can be achieved by improving all local errors by one order.
However, we show that there is some superconvergence effect for the global error for
certain parameter choices. Unfortunately, this effect can be conveniently exploited for
constant stepsizes only. In section 4 we finally discuss implementation issues like er-
ror estimation and present numerical results with different test problems and methods
with up to eight stages.

2. Basic properties.

2.1. Stability issues. Due to the two-step structure of the scheme and the σ-
dependence of its coefficients, the stability analysis encounters many of the difficulties
of multistep methods. In addition to the step recursion (5), we consider a second one
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with additional perturbations hmgm = hm(gmi)
s
i=1 ∈ R

sn and solutions Ym + Xm.
So, for the error Xm we have the recursion

(I − hmGm ⊗ Tm)Xm = (Bm ⊗ I + hmΓm ⊗ Tm)Xm−1(10)

+ hm(Am ⊗ I)(f(Ym−1 +Xm−1)− f(Ym−1)) + hmgm,

where the coefficient matrices are supplemented by the step-index m. The stability
of the recursion (10) is covered by the theory for multistep methods; see [9]. For ease
of reference we formulate it in the following lemma. The crucial assumption (11) will
be verified for our methods in section 3.1.

Lemma 2.1. Assume that for some fixed σ̄ > 1 and stepsize sequences with
hm ≤ σ̄hm−1 a uniform bound b̄ exists for all products

‖Bm+k · · ·Bm+1Bm‖ ≤ b̄, m, k ≥ 0,(11)

where
∑m+k
j=m hj ≤ te − t0. Let the maps X 	→ (I − hmGm ⊗ Tm)−1((Gmβm + Γm)⊗

Tm)X+(Am⊗I)(f(Ym−1+X)−f(Ym−1)) be uniformly Lipschitz continuous in some
neighborhood of zero. Then there exists a constant C such that

‖Xm‖ ≤ C(‖X0‖+ m
max
j=1

‖gj‖) for t0 ≤ tm ≤ te.

The standard application of this stability lemma concerns the convergence of
the scheme, where the “perturbed” solution Ym + Xm = y(tm) is the solution of
the initial value problem and the perturbations gm are the corresponding residuals
defined in (13). Here, Lemma 2.1 shows that the scheme (3) converges with order p,
i.e., Xm = O(Hp), if the local error is of order p too; i.e., gm = O(Hp). So we do not
need to distinguish between the local and global order of the method except in the
case of superconvergence; cf. section 3.2.

In the stiff context it is appropriate to consider the linear autonomous problem

y′ = Jy

as a test equation, where the eigenvalues of J lie in the left complex halfplane. With
the choice

Tm = J

the scheme (3) reduces to the recursion (see (4))

Ym = Mm(hmJ)Ym−1, Mm(z) := (I − zGm)−1(Bm + zβm),(12)

where Mm(·) is the stability matrix of the scalar test equation y′ = λy and z = hmλ.
Unfortunately, Mm depends on the current stepsize ratio σm, and only for constant
stepsizes the spectral radius of M is an appropriate measure for the longtime behavior
of the recursion (12). In the case σ ≡ 1 we may apply some standard stability notions
to the scalar function ρ(M(z)).

Definition 2.2. Let M(.) be the stability matrix of a PPSW-method (3) as
defined in (12) with σ = 1. Then, the method is called zero-stable if ρ(M(0)) = 1 and
the eigenvalues on the unit circle are simple. It is A-stable if ρ(M(z)) < 1 in the open
left complex halfplane, z ∈ C− := {z ∈ C : Re z < 0}, and L-stable if, additionally,
ρ(M(∞)) = 0.
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Remarks. (a) Any consistent method must reproduce constant solutions for λ = 0.
Since this requirement leads to the identity B1l = 1l, the spectral radius of M(0) = B
cannot be smaller than one.

(b) For singly implicit methods (7) we have M(∞) = − 1
γβ, and L-stability re-

quires ρ(β) = 0.
(c) It is convenient to introduce the variable w = z/(1−γz) satisfying (1+γw)(1−

γz) = 1. For z ∈ C− the variable w is contained in the circle centered at −1/(2γ) and
going through the origin. Now, the stability matrix of singly implicit methods (7) is
a linear function of w given by

M(z) = (1 + γw)B + wβ = B + w(γB + β).

This form may be conveniently employed to check the A-stability of the scheme since
M has an eigenvalue λ = eiθ on the unit circle if w is an eigenvalue of the generalized
eigenvalue problem [17],

(eiθI −B)x = w(γB + β)x, x ∈ C
s.

A thorough and general analysis of stability properties of our methods is quite
difficult since the stability matrix Mm depends on the actual stepsize ratio σm for
accuracy reasons. However, this is a common problem for multistep methods where
even proving zero-stability is nontrivial for general stepsize sequences. For PPSW-
methods this case will be dealt with in section 3.1 by verifying (11). A similar result
covering the stiff limit z = hλ → ∞ for arbitrary stepsize ratios is presented there
too. However, stronger z-uniform stability results for these methods with nonconstant
stepsize sequences are not yet available.

2.2. Accuracy conditions. The structure of the coefficient matrices is deter-
mined to a large extent by accuracy requirements. The accuracy of the PPSW-
methods may be analyzed in a standard way by considering the residuals ∆mi ob-
tained when the exact solution is put into the method. From now on we discuss singly
implicit methods (7) only. Using the information f(tm−1,j , y(tm−1,j)) = y′(tm−1,j),
we consider

hm∆mi := (I − γhmTm)y(tmi)−
s∑
j=1

(
bijI + hmγijTm

)
y(tm−1,j)(13)

− hm

s∑
j=1

aijy
′(tm−1,j), i = 1, . . . , s.

We will use Taylor expansion at tm but write the error in terms of hm−1 since σm is
bounded from above only, so hm = O(hm−1) but not vice versa. Separating the terms
depending on Tm from the others, we see that

hmTm

γy(tmi) +

s∑
j=1

γijy(tm−1,j)

 = O(hq+1
m−1)

holds if condition (see (2))

Γ(q) : γcki +

s∑
j=1

γij(cj − 1)kσ−k
m = 0, k = 0, . . . , q − 1,(14)
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is satisfied for a sufficiently smooth solution. Second, it holds that

y(tmi)−
s∑
j=1

bijy(tm−1,j)− hm

s∑
j=1

aijy
′(tm−1,j) = O(hqm−1)

if condition

AB(q) : cki −
s∑
j=1

bij

(
cj − 1

σm

)k
− k

s∑
j=1

aij

(
cj − 1

σm

)k−1

= 0, k = 0, . . . , q − 1,(15)

is true, where the tacit convention is used that the second sum is not evaluated for
k = 0 and cancelled by the factor k holds. In both conditions q denotes the number
of conditions.

Lemma 2.3. If the conditions Γ(q) and AB(q + 1) are satisfied with q ≥ 1 and
the solution y of (1) is sufficiently smooth, then the residuals (13) for the scheme (3)
are of order q; i.e., ‖∆m‖ = O(hqm−1).

With respect to the order, the most critical condition seems to be Γ(q) in (14)
since it depends on the s2 + 1 coefficients γ, γij only. In fact, requiring Γ(s) leads to
the explicit relation

Γm = −γΘm, Θm := V SmPV −1,(16)

with the Vandermonde matrix V and the Pascal matrix P defined by

V =
(
cj−1
i

)s
i,j=1

, P =

((
j − 1

i− 1

))s
i,j=1

.(17)

We also need the diagonal matrices

Sm = diag(1, σm, . . . , σ
s−1
m ), D := diag(1, . . . , s).(18)

The matrix Θm will be encountered quite often since it describes the polynomial
extrapolation from the subgrid {tm−1 + hm−1ci, i = 1, . . . , s} to {tm + hmci, i =
1, . . . , s}.

In a similar way, explicit solutions for the order conditions (15) may be obtained

by requiring AB(s). Here, we note that the matrix
(
(
cj−1
σm

)k−1
)s
j,k=1

= V P−1S−1
m

multiplies B (see (4)) from the right in (15). The corresponding factor for A is
obtained from this one by scaling and shifting its columns to the right. The shift is
described by the matrix F0 = (δi−1,j), which gives rise to the identities

PDFT
0 = DFT

0 P, FT
0 Sm = σmSmF

T
0 ,(19)

with the matrices defined in (17), (18). The first relation in (19) corresponds to the
identity

(
j−2
i−1

)
(j − 1) = i

(
j−1
i

)
. Now, condition (15) has the matrix form 0 = V −

BV P−1S−1
m − AV P−1S−1

m DFT
0 . Multiplying with SmPV −1 and using the relations

(19), we obtain

Bm = Θm − σmAmV DFT
0 V −1.(20)

Since stability properties depend on the matrix βm = Am+Γm, by (12) it is convenient
to replace the coefficient Am in the last equation by using βm and the first order
condition (14) as well.
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Lemma 2.4. If the PPSW-method (7) satisfies AB(s) and Γ(s − 1), then its
coefficient matrices Bm and βm are related through

Bm = (I + γE)Θm + σmβmE, E = −V DFT
0 V −1.(21)

The matrices E and Θm commute for σm = 1, since EΘm = σmΘmE.
Proof. In matrix form the condition Γ(s− 1) amounts to γV SmP + ΓmV = ueT

s

with an arbitrary last column u. Using this equation and replacing Am = βm − Γm
in (20) give

Bm = Θm − σm(βmV + γV SmP )DFT
0 V −1,

since the last column of ΓmV drops out after multiplication with the shift matrix FT
0 .

Combining the two identities in (19) yields DFT
0 SmP = σmSmPDFT

0 . So we see that
two factorizations σmΘmE = σmV SmPV −1V DFT

0 V −1 = σmV (SmPDFT
0 )V −1 =

V DFT
0 SmPV −1 = EΘm are possible.

3. High-order methods.

3.1. Convergence for variable stepsize. In the case of one single parameter
value γ as considered here, all coefficient matrices have a simpler structure in the
monomial basis (cj−1)sj=1 contained in the Vandermonde matrix V . The transformed
version of the matrix B of (21) is given by (see (16) and (18))

B̃m := V −1BmV = SmP − γDFT
0 SmP − σmβ̃mDFT

0 , β̃m := V −1βmV.(22)

Note that the first column of B̃m is the first unit vector. According to (12), and
considering that Gm = γI, the stability matrix at infinity is Mm(∞) = − 1

γβm, and

optimal stiff damping could be obtained by the choice βm = 0. However, (22) shows
that this choice violates the condition of zero-stability for σm ≥ 1 since the leading
matrix SmP − γDFT

0 SmP is upper triangular and has the eigenvalues σi−1
m . Hence

β̃m is needed for the stabilization of Bm. The following theorem provides a convenient
compromise between stability for stiff problems and zero-stability.

Theorem 3.1. Let the method (3) satisfy the conditions AB(s) and Γ(s−1) and
use one single γ = γi, i = 1, . . . , s. Then, with the choice

β̃m = V −1βmV = F0SmD
−1,(23)

the method is both zero-stable and L(α)-stable if it is A(α)-stable. In fact, both ma-
trices Bm − 1eT

1 and βm are nilpotent.
Proof. The only nonzero elements of β̃m are β̃i+1,i = 1

i σ
i−1
m , i = 1, . . . , s −

1. So, clearly, β̃m is nilpotent. This choice leads to σmβ̃mDFT
0 = SmF0F

T
0 =

Sm diag(0, 1, . . . , 1) in (22) and cancels the main diagonal of B̃m beyond the first
entry. In fact, we have

B̃m := V −1BmV = e1e
T
1 + Sm(P − I)− γDFT

0 SmP,(24)

and B̃m− e1u
T is nilpotent for any vector u with uTe1 = 1. So, V (B̃m− e1u

T)V −1 =
Bm − 1leT

1 is nilpotent with u = eT
1V = (1, c1, . . .).

By Theorem 3.1, the transformed coefficient matrix B̃m is fully specified. Due to
the upper triangular structure, for any s, this matrix really is part of the large matrix

1 1− γσ 1− 2γσ 1− 3γσ · · ·
0 2σ(1− γσ) 3σ(1− 2γσ) · · ·

0 3σ2(1− γσ) · · ·
. . .

 .(25)
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Although the ratio σ (and even γ) may change between intervals, this representation
shows that the nilpotency discussed in Theorem 3.1 is structurally stable. It really
holds for general stepsize sequences since the Vandermonde transformation used in
(24) is the same everywhere.

Lemma 3.2. Let the matrices Bm, m ≥ 1, be given by (22) and the matrices
βm be as defined in Theorem 3.1. Then each product of at least s − 1 matrices βj,
respectively, Bj, has rank one at most. In fact, it holds that

βmβm−1 · · ·βm−k = 0, m, k ≥ s− 1,

BmBm−1 · · ·Bm−k = 1l vT, m, k ≥ s− 2,(26)

with vT1l = 1.
Proof. Without restriction we may consider the matrices β̃j , B̃j defined in (22)

since they are all transformed by the same matrix V . The result for the matrices β̃j
is trivial due to their common triangular structure. Equation (24) shows that each
B̃j has the structure

B̃j =

(
1 vT

j

0 B̃
(j)
22

)
,(27)

where B̃
(j)
22 is strictly upper triangular. Hence B̃

(m)
22 B̃

(m−1)
22 · · · B̃(m−k)

22 = 0 for k ≥
s− 2 and in the product B̃mB̃m−1 · · · B̃m−k only the first row is nontrivial and starts
with the element 1: let us denote it by wT. Consequently, from (24) it follows that
V −1Bm · · ·Bm−kV = e1w

T, and then Bm · · ·Bm−k = 1lwTV −1 =: 1lvT. Finally,
vT1l = wTV −1V e1 = wTe1 = 1.

Remark. We note that the row vector vT in (26) depends on the stepsize ratios
of the s − 1 rightmost matrices in the product. However, since stepsize changes are
bounded above by σ̄, the vector v in (26) is bounded by some fixed power of σ̄ (and
γ).

This verifies the main assumption of the stability Lemma 2.1, and we may sum-
marize most of the previous results in the following theorem.

Theorem 3.3. Let a grid (tm)m≥0 be given with bounded stepsize changes σm ≤
σ̄, and let 0 ≤ γ ≤ γ̄. Let the method (7) satisfy AB(s) and Γ(s − 1), and let βm
be chosen by (23). If the initial values are accurate, i.e., ‖Y0i − y(t0i)‖ = O(hs−1

0 ),
i = 1, . . . , s, then the PPSW-method converges with order s− 1, i.e.,

‖Ymi − y(tmi)‖ = O(Hs−1), t0 ≤ tm ≤ te, i = 1, . . . , s.

Proof. For Xmi = y(tmi) − Ymi the recursion (10) holds with gm = ∆m defined
in (13) which is of order O(hs−1

m−1) by assumption and Lemma 2.3. Since the main
assumption (11) of the stability Lemma 2.1 has been verified in Lemma 3.2, with the
present assumptions the assertion follows.

The representations (21) and (24) show that the extrapolation matrix Θm defined
in (16) is an important contribution in both coefficients Bm and Γm (see (21) and
(16)). Applying a standard reformulation of W-methods to the scheme (7), avoiding
unnecessary multiplications with Tm, reveals a different interpretation. For high-order
methods satisfying Γ(s) this version reads

(I − γhmI ⊗ Tm)
(
Ym − (Θm ⊗ I)Ym−1

)
=
(
(Bm −Θm)⊗ I

)
Ym−1(28)

+ hm(Am ⊗ I)f(Ym−1),
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where Am = γΘm + βm (see (4) and (16)). It may be interpreted as a corrector
equation for the predictor (Θm⊗ I)Ym−1 obtained by polynomial extrapolation. The
implementation of PPSW-methods will be based on this formulation in section 4.

3.2. Superconvergence of PPSW-methods. So far, we have considered meth-
ods of order s−1 only. It would be of interest, of course, to achieve even higher orders
in PPSW-methods. In light of Lemma 2.3, order s requires that the conditions Γ(s)
and AB(s + 1) hold. While the first condition is already satisfied by Γm = −γΘm
defined in (16), the second one, AB(s + 1), leads to s additional nonlinear restric-
tions. Before formulating this result, we point out that the representation (24) of the
coefficient matrix Bm may be written as the rule

s∑
j=1

bijψ(cj) = ψ(1 + σmci)− ψ(σmci) + ψ(0)− γσmψ
′(1 + σmci),(29)

i = 1, . . . , s, for any polynomial ψ of degree s− 1.
Lemma 3.4. Consider the PPSW-method with Γ(s) and the coefficients defined

in Theorem 3.1, let φ(t) :=
∏s
i=1(t− ci) be the knot polynomial of the scheme, and let

the solution y be sufficiently smooth. Then, for each i, 1 ≤ i ≤ s, the condition

γσmφ
′(1 + σmci) = φ(1 + σmci)− φ(σmci) + (σmci)

s + φ(0)(30)

implies ∆mi = O(hsm−1).
Proof. With Γ(s) and (24) the residual (13) has the form

hm∆mi =
hsm−1

s!

(1 + σmci)
s −

s∑
j=1

bijc
s
j − σms

s∑
j=1

aijc
s−1
j

 y(s)(tm−1)(31)

+ O(hs+1
m−1),

where Taylor expansion at tm−1 was used for convenience. For the terms (see (4))
aijc

s−1
j = (βij − γij)c

s−1
j the condition Γ(s) gives

∑
j γijc

s−1
j = −γ(1 + σmci)

s−1.

Since the last column of β̃m in Theorem 3.1 is zero, the corresponding contribution∑s
j=1 βijc

s−1
j = 0 is missing. So, the leading bracket in (31) has the form

(1 + σmci)
s − σmsγ(1 + σmci)

s−1 −
s∑
j=1

bijc
s
j =: ui.(32)

By defining the polynomial ψ(t) := φ(t)− ts, we observe that ψ(cj) = −csj . Moreover,
it has degree s− 1 so that (29) applies. Consequently, from (32) we obtain

ui = (1 + σmci)
s − σmsγ(1 + σmci)

s−1 +

s∑
j=1

bijψ(cj)(33)

= (1 + σmci)
s + ψ(1 + σmci)− σmγ

(
s(1 + σmci)

s−1 + ψ′(1 + σmci)
)

− ψ(σmci) + ψ(0)

= φ(1 + σmci)− σmγφ
′(1 + σmci)− ψ(σmci) + ψ(0)

= φ(1 + σmci) + (σmci)
s − φ(σmci) + φ(0)− σmγφ

′(1 + σmci).

So, ui = 0 implies ∆mi = O(hsm−1) in (31).
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Since the recursion (10) combines all previous errors, the gain of one order from
s − 1 to s in the global error requires that condition (30) hold for all stages i =
1, . . . , s. However, these s conditions are very severe restrictions for the remaining
s+1 parameters γ, c1, . . . , cs and are unlikely to be satisfied for some interesting range
of σ-values. So, we will not pursue this line of research further. However, later on,
we will discuss an application of using one single superconsistency condition (30) in
error control. For multi-implicit methods, i.e., methods in the general form (3), the
corresponding conditions (30) can easily be satisfied by using different γi; see [18].

For some PPSW-methods there is a different global effect leading to order-s con-
vergence in the error. Unfortunately, this superconvergence may be conveniently
exploited for constant stepsizes only.

By a careful choice of parameters the structural information (26) may be used to
eliminate the leading term in the global error. In fact, adding the error residuals ∆m

from (13), the exact solution ym =
(
y(tmi)

)s
i=1

obeys the modified time step recursion

I ⊗ (I − γhmTm)ym = (Bm ⊗ I + hmΓm ⊗ Tm)ym−1 + hm(Am ⊗ I)f(ym−1) + hm∆m,

and the error Xm = (Ymi − y(tmi))
s
i=1 satisfies (10), which we now write as

Xm = (Bm ⊗ I + hmDm)Xm−1 − hm
(
I ⊗ (I − γhmTm)−1

)
∆m.(34)

The matrix Dm = I ⊗ (I − γhmTm)−1((Γm + γBm)⊗ Tm + (Am ⊗ I)Jm) is obtained
by using the representation

f(Ymi)− f(ymi) = Jmi(Ymi − ymi), Jmi =

∫ 1

0

f ′(ymi + t(Ymi − ymi)) dt

with the block diagonal matrix Jm = diag(Jmi). The structural result in Lemma 3.2
shows that the following computations may still be performed for nonconstant step-
sizes. However, the dependence on the different stepsize ratios becomes overly com-
plicated for higher-order methods and may be of no practical use. So we will restrict
this discussion to the case σm ≡ σ = 1. Then, all matrices Bm are identical and we
drop the index. Furthermore, the vector v in (26) is a fixed vector, namely, the left
eigenvector of B to the eigenvalue 1 and will be given explicitly below. As a first step
we simplify the recursion (34) by assuming O(‖DmXm−1‖) = O(‖Xm−1‖). Since our
main argument is independent of the dimension n, we write only the scalar case n = 1
for simplicity. We obtain

Xm = BXm−1 − h∆m +O(h‖Xm−1‖+ h2‖∆m‖)

= −h

m−1∑
j=0

Bj∆m−j +BmX0 +

m−1∑
j=1

O(h‖Xm−j‖+ h2 ‖∆m−j+1‖)

= −h1l

m−1∑
j=s−1

vT∆m−j

− h

s−2∑
j=0

Bj∆m−j +BmX0 +

m∑
j=1

O(h‖Xm−j‖+ h2‖∆m−j+1‖).

Now, if the method has order s− 1 and the initial error X0 is of appropriate size, all
terms in the last equation are of order hs except the first one, where (26) was used.
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However, by an appropriate choice of the vector v in B∞ = 1lvT the leading error
term in vT∆m−j , j ≥ s− 1, may be eliminated as well.

Theorem 3.5. Let the method (7) satisfy AB(s) and Γ(s), and use the matrix
βm from Theorem 3.1. Then, for constant stepsizes the vector vT in (26) depends
only on γ and the knots ci. In fact, vTV depends on γ only and is given by the first
s components of the vector

ṽT = (1, 1− γ, 3− 6γ + 2γ2, 13− 39γ + 30γ2 − 6γ3, . . .).

If the solution y of (1) is smooth enough, then

vT∆m = ṽs+1
hs−1

s!
y(s)(tm−1) +O(hs).

Proof. Since the stepsize ratio is constant, σ = 1, the upper triangular matrix
B̃ (see (27)) depends on γ only and is explicitly given by the principal submatrix
of order s of (25). Hence its left eigenvector vTV to the eigenvalue 1 is a function
of γ, and its ith component ṽi depends on the first i columns of B̃ only. These
components may be computed by computer algebra and the first ones are given in
the statement. Introducing the s-vector ϕ = (φ0, . . . , φs−1)

T of coefficients of the
knot polynomial φ(t) = (t− c1) · · · (t− cs) =

∑s
k=0 φkt

k defined above, we may write
0 = (φ(ci))

s
i=1 = V ϕ+ (csi )

s
i=1. In order to obtain a vector representation of the local

residual (31) we introduce additional terms in (33), again canceling the highest power
csi . By considering that now σ = 1, this yields

u =

(1 + ci)
s − φ(ci)− sγ(1 + ci)

s−1 +

s∑
j=1

bij
(
φ(cj)− csj

)s

i=1

=

(
s∑

k=1

(
s

k − 1

)
ck−1
i

)s
i=1

− V ϕ− sγV Pes +BV ϕ.

Since the coefficient vector ϕ is multiplied by the matrix (B−I)V , it may be observed
here that ϕ drops out in the product vTu since v is the left eigenvector of B, and so
vT(B − I) = 0. We show now that the terms

V −1(u− (B − I)V ϕ) =

((
s

i− 1

))s
i=1

− sγPes

are elements of column s+1 in (24) if this explicit representation of B̃ is extended to
size (s+1)× (s+1); see also (17), (18). For all these matrices we denote the extended
versions by bold face and recall that the main diagonal of the upper triangular matrix
B̃− I is −1 below the first row. We obtain(

V −1u
−1

)
=

(((
s
i−1

))s
i=1

− γsPes + (B̃ − I)ϕ

−1

)

= (P− I− γDFT
0P)es+1 +

(
(B̃ − I)ϕ

−1

)
,

where sPes contains the nontrivial elements of the last column of DFT
0P; see (18),

(19). Comparing with (24) for dimension s+ 1 and σ = 1, i.e.,

P− I− γDFT
0P = B̃− e1e

T
1 ,
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yields (
V −1u
−1

)
=

(
(B̃ − I)ϕ

0

)
+
(
B̃− I

)
es+1 =

(
B̃− I

)(ϕ
1

)
.(35)

Due to the triangular shape of B̃, its left eigenvector to the eigenvalue 1 has the form
(vTV, ṽs+1) and from (35) follows

vTu− ṽs+1 = (vTV, ṽs+1)

(
V −1u
−1

)
= (vTV, ṽs+1)

(
B̃− I

)(ϕ
1

)
= 0.

Recalling that u (see (32)) contains the error constants in (31), the statement
follows.

Remark. The theorem shows that the leading error constant of the scheme is a
multiple of the component ṽs+1, which itself is a polynomial in the parameter γ. So
there are a few exceptional values for γ where the method has global order s for any
set of off-step knots ci. In Table 1 we present explicit formulas for ṽs+1(γ) and some
of the parameters γ̂ with superconvergence, ṽs+1(γ̂) = 0, that were used in specific
PPSW-methods. The fourth column contains a numerical estimate of the angle of
A(α) stability in degrees, and the last column contains the name of the corresponding
method consisting of the number of stages and a letter labeling the zero of ṽs+1(γ)
(“a” is the leftmost zero). A special name was given only to those methods used in
the numerical tests in section 4.

Table 1
Superconvergence conditions and name of methods.

s ṽs+1 γ̂ α Method

2 3− 6γ + 2γ2 1
2
(3±√

3) 90
3 13− 39γ + 30γ2 − 6γ3 1.32088 90
4 75− 300γ + 372γ2 − 168γ3 + 24γ4 0.468147 52.4 4a

0.912763 89.9 4b
5 541− 2705γ + 4660γ2 − 3420γ3 + 1080γ4 0.722499 79.6 5b

−120γ5
6 4683− 28098γ + 62130γ2 − 64200γ3 0.619411 57.5 6b

+32760γ4 − 7920γ5 + 720γ6 1.087080 87.9 6c
7 47293− 331051γ + 894810γ2 − 201410γ3 0.557132 23.9 7 b

+864360γ4 − 335160γ5 + 65520γ6 − 5040γ7 0.885444 81.3 7c
8 545835− 4366680γ + 13959176γ2

−23146032γ3 + 21724080γ4 − 11847360γ5

+3689280γ6 − 604800γ7 + 40320γ8 0.758671 67.2 8c

The superconvergence property can easily be observed in numerical computations
with constant stepsizes. For variable stepsizes a similar effect might still be obtained
by clever strategies for a step-dependent choice of the parameter γ. However, for
higher-order methods such strategies are probably too complicated to be of practical
use. Still, we expect that superconvergence for σ = 1 has some beneficial effect on the
general performance, especially for sharp tolerances where stepsize ratios are clustered
around one.

4. Implementation and numerical tests. For practical implementations the
form (28) of the PPSW-methods is preferable. Since the coefficients of the method
depend on the actual stepsize ratio, they have to be recomputed before (28) can be
solved. However, since the expense of these computations is O(s3) only, it is negligible
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compared to the solution of the stage equations for large dimensions n. We also note
that in case of a step rejection it is possible to reuse the function evaluations f(Ym−1)
and the matrix Tm, which is a difference approximation to fy(tm−1,s, Ym−1,s).

Estimates for the local error are required for stepsize selection procedures. As
mentioned before, (28) may be interpreted as a corrector equation and its solution
Km := Ym− (Θm⊗ I)Ym−1 is an obvious candidate for an error estimate. Yet, it is of
the same order s−1 as the error in Ym that it should estimate. However, this situation
can be improved by requiring order s of consistency (30) for one single stage only—for
instance, i = s. Then, Kms becomes an asymptotically correct order-s estimate for the
local error of Yms. Unfortunately, only for low-order methods (s ≤ 4) is it possible to
find methods satisfying this additional condition and minimal stability requirements,
i.e., A(0)-stability for σ = 1. So, only Method 4a uses this error estimate with the
superconvergence value γ = 0.468147 and knots ci, yielding (30) for i = s and σ = 1.
In order to obtain a sound error estimate in higher-order methods (s ≥ 5) too, we
compare the latest approximate Yms with the polynomial predictor of order s−2 that
ignores Ym−1,1 and interpolates the values Ym−1,i, i = 2, . . . , s, only.

With the exception of Method 4a, which has a superconsistent stage, the knots
are nearly equidistributed in [−1, 1] and cs = 1 was always used. For the sake of
completeness we show them in Table 2.

Table 2
Knots ci of specific methods.

Method c1 c2 c3 c4 c5 c6 c7 c8
4a −1 −0.6779303684 0.5 1
4b −1 −0.3 0.7 1
5b −1 −0.5 0 0.5 1
6b, c −1 −0.5 0 0.4 0.8 1
7b, c −1 −0.7 −0.2 0 0.2 0.6 1
8c −1 −0.7 −0.3 0 0.3 0.5 0.7 1

Based on the error estimates described above, the new stepsize was computed in
a standard manner; cf. [16]. The maximally allowed increase of the stepsize was set to
σmax = 1.5 for all PPSW-methods. Presently the stage equations (28) are solved by
LU decomposition. Since this decomposition is the most expensive part and a severe
sequential bottleneck for large systems, a remarkable parallel speed-up with PPSW-
methods is not likely to be achieved yet. From our experience with PTSW-methods
we expect superior parallel performance for large problems only in combination with
Krylov solvers for the s independent linear stage systems (see [16, 17]). The first
results for Krylov implementations of PPSW methods are reported in the article [20].
We decided to present tests here with sequential computations only, but we compare
these with the state-of-the-art linearly implicit one-step code RODAS [10] with the
default coefficient set (iwork(2)=1). RODAS was also used to compute the starting
values Y1 for the PPSW-methods. We think that the benchmark with RODAS gives
a good insight into basic properties and the potential of these methods and assists
in choosing suitable ones. We used Delphi 5 for comfortable programming. Since
the reference results have been computed with the original Fortran-code RODAS, we
compare the number of steps instead of the computing time. Note that the com-
putational amount of work per step of RODAS is comparable to that of a six-stage
PPSW-method in sequential runs. An advantage of our W-type methods over RODAS
is that the Jacobian could be kept constant for several steps, but we did not exploit
this possibility here.
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Fig. 1. Results for OREGO.

The following stiff test problems from [10] were used in our numerical tests:
OREGO with te = 360, ROBER with te = 108, VDPOL with te = 11, and PLATE.
A problem with a strongly varying Jacobian is KREISS from [14], defined by

y′ = R(t)Λ(ε)R−1(t), y(0) =

(
1
2.6

)
, 0 ≤ t ≤ 1,

R(t) =

(
cos(−θt) sin(−θt)
− sin(−θt) cos(−θt)

)
, Λ(ε) =

(− 1
ε 0
0 −1

)
.

We used ε = 10−6 and θ = 1 here. A reference solution for these problems was
computed with RADAU5 [10] and high accuracy. Computations were performed for
atol = rtol = 10−2, . . . , 10−9 except for ROBER, where atol = 10−6rtol was set (cf.
[10]). In Figures 1–5 we present results for some special methods from Table 1. The
logarithm of the final error at the endpoint for Yms is shown versus the number of
steps including the rejected ones. Although the work per step of the methods (7) is
one LU decomposition and s function evaluations and back substitutions, we think
that this presentation is appropriate for two reasons. First, for larger problems the LU
decomposition dominates the computational effort. However, more importantly, we
recall that these methods were designed for parallel implementation with s processors.

A general observation for most PPSW-methods is that both the error and the
angle α of L(α)-stability increase with the parameter γ. So for all examples except
PLATE we present the results for the methods with smallest γ from Table 1 since
these produced slightly better results. The problem PLATE, however, requires a
stability angle α ≥ 71◦ (cf. [10]). Some of the previously mentioned methods had
difficulties here, namely, Method 4a for all tolerances and Method 6b for some of
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Fig. 2. Results for PLATE.
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Fig. 3. Results for ROBER.
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Fig. 5. Results for the Kreiss problem.
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them. By choosing methods from Table 1 with larger γ and having larger stability
angles, suitable PPSW-methods for this problem could be identified, too. Surprisingly,
Methods 7b and 8c solved this problem without difficulties for all tolerances.

From these figures it is seen that the presented methods are interesting and have
a large potential for stiff equations. The smooth curves show that the stepsize control
works reliably but may still be improved. The irregular behavior of the seven- and
eight-stage methods in the problem ROBER is an exception that is probably caused
by rounding errors due to large values in the coefficients. This problem has been
observed with other methods [4] too, and we tried to ameliorate it by distributing the
knots ci over the interval [−1, 1] instead of [0, 1]. In comparison to PPSW-methods,
RODAS is clearly superior for weak tolerances. This is mainly due to the ability of
RODAS to increase the stepsize faster than our methods. Another reason may be that
the initial stepsize for the PPSW-methods were too small. However, for medium and
stringent tolerances especially, the higher-order PPSW-methods are often superior to
RODAS. This is also the case for the six-stage methods whose computational expense
is comparable to that of RODAS (in sequential implementations). The choice of
the knots ci is still heuristic, and their influence on accuracy and robustness of the
methods needs further research.

5. Conclusions. A new class of linearly implicit methods for stiff initial value
problems has been presented with a nearly optimal potential of method parallelism.
Its essential new feature is the use of s peer solution variables per time interval.
Methods of order s − 1 with s stages have been derived possessing good stability
properties. The global error improves to order s for special parameter values and
constant stepsizes since a certain superconvergence property has been identified. In a
sequential implementation using automatic stepsize control and LU-decompositions,
several methods with up to s = 8 stages have been tested and were found to be
competitive with the code RODAS. The full potential of parallelization for PPSW-
methods in the solution of large stiff ODEs is expected only in combination with
Krylov techniques. Here the use of multi-implicit methods in the general form (3)
using different parameters γi offers additional options and will be investigated in [18].
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1. Introduction. In this paper, we give a new characterization of hybridized
mixed methods. This characterization allows us to obtain an explicit formula for the
entries of the matrix equation for the so-called Lagrange multipliers. It also allows
comparison of hybridized versions of different mixed methods. For example, we give
conditions under which the multipliers of the Raviart–Thomas (RT) method and those
of the Brezzi–Douglas–Marini (BDM) method of comparable order coincide.

We consider the hybridized version [1] of the standard RT mixed method [13] for
the elliptic boundary value problem

−∇ · ( a∇u ) + d u = f in Ω ⊂ R
2,(1.1)

u = g on ∂Ω,(1.2)

where a(x) is a symmetric positive definite matrix-valued function, d(x) is a nonneg-
ative function, and Ω is a polygonal domain in R

2. We assume that a(x) and d(x)
are bounded. We consider this a simple setting for transparent presentation of the
main ideas. As will be clear later, our techniques can be applied to other hybridized
methods and more general second order elliptic problems.

Before describing the results, recall that mixed finite element methods seek ap-
proximations (qh, uh) to (−a∇u, u) in appropriate finite element spaces. They give
rise to a matrix equation of the form(

A −B
t

B D

)(
Q

U

)
=

(
G

F

)
,

where Q and U are the vectors of coefficients of qh and uh with respect to their cor-
responding finite element basis, respectively. Since the system is not positive definite,
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solving for Q and U is not always easy. Although one can arrive at a positive definite
system by elimination of Q from the equations, this requires inverting A and main-
taining A

−1, which is typically a full matrix. Fortunately, by “hybridizing” the mixed
method, this difficulty can be overcome. Let us now briefly recall the hybridization
procedure.

First, the so-called Lagrange multiplier λh is introduced. This gives rise to a
matrix equation of the formA −Bt −Ct

B D 0
C 0 0

Q
U
Λ

 =

G
F
0

 ,(1.3)

where Λ is the vector of degrees of freedom associated to the multiplier λh. We will
precisely state the underlying finite element spaces later. As is now well known, the
new vectors of degrees of freedom Q and U actually define the same approximation
(qh, uh) as the original mixed method. Moreover, both Q and U can now be easily
eliminated to obtain an equation for the multiplier only, namely,

EΛ = H,

where E and H are given by

E = CA−1
(
A−Bt(BA−1Bt +D)−1B

)
A−1Ct,

H = Hg +Hf ,

Hg = −CA−1
(
A−Bt(BA−1Bt +D)−1B

)
A−1G,

Hf = −CA−1Bt(BA−1Bt +D)−1 F .

(1.4)

That the inverses taken above exist follows from the properties of the underlying
finite element spaces. Considering this matrix equation instead of the previous one
has several advantages: (i) the matrix E is symmetric and positive definite, so it can
be numerically inverted by using methods like the conjugate gradient method; (ii)
the number of degrees of freedom of the multiplier is remarkably smaller than the
number of degrees of freedom of the original mixed method; (iii) once Λ has been
obtained, both Q and U can be efficiently computed element by element; and (iv) the
multiplier λh can actually be used to improve the approximation to u by means of
a local postprocessing, as shown in [1]. This shows that the use of hybridized mixed
methods is indeed very advantageous; however, the complicated relation between the
matrices E and H, and the matrices A, B, C, F and G, can easily dissuade one from
basing an implementation on E and H.

In this paper, we show that the entries of the matrices E and H can be expressed
as a weighted L2-inner product of some discontinuous auxiliary functions, the weights
being nothing but the matrix a−1 and the function d. These auxiliary functions are
easily constructed in terms of the geometry of the mesh, the matrix a, the function
d, and the spaces of the hybridized mixed finite element method. Their definition
induces a natural decomposition of the approximate solution (qh, uh) of the form

(qh, uh) = (qh, uh)λh
+ (qh, uh)g + (qh, uh)f ,

where (qh, uh)λh
is a lifting of the Lagrange multiplier λh and (qh, uh)g and (qh, uh)f

can be computed locally only in terms of the data. The introduction of other discrete
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lifting operators has proved useful in another context earlier, namely, the analysis of
discontinuous Galerkin methods for elliptic problems [2, 7, 8].

We then present two applications of this result. As a first application, we present
a technique to assemble the matrix of the Lagrange multiplier equation using simple
local element matrices. Next, we compare the matrices E and H of the RT method
with those of the BDM method of similar order and give necessary and sufficient
conditions for the multipliers to be exactly the same. This happens, for example,
when d = 0 and f = 0, a case that occurs in many situations of practical interest.

The paper is organized as follows. In section 2, we introduce the hybridized version
of the mixed method of Raviart and Thomas and then state, discuss, and prove the
characterization result, Theorem 2.1. In section 3, we show how to assemble the
matrices for the multipliers, and in section 4, we compare the matrices of the RT
method with those of the BDM method of similar order. Finally, in section 5, we end
with some concluding remarks.

2. The main result. We begin this section by introducing the classical mixed
method of Raviart and Thomas [13]; then, following [1], we hybridize the method.
Finally, we state, discuss, and prove the main result, Theorem 2.1.

2.1. The hybridized mixed method. Given a triangulation of Ω, Th, made
of triangles, the mixed method seeks an approximation (qh, uh) to the solution (q, u)
of the model problem

c q = −∇u in Ω,(2.1)

∇ · q + d u = f in Ω,(2.2)

u = g on ∂Ω,(2.3)

where c = a−1. The approximation (qh, uh) is sought in the finite element space
Vh × Wh given by

Vh = {v ∈ H(div,Ω) : v|K ∈ P k(K)× P k(K) + xP k(K) for all K ∈ Th},
Wh = {w ∈ L2(Ω) : w|K ∈ P k(K) for all K ∈ Th},

where P k(K) denotes the space of polynomials on K of degree at most k, k ≥ 0, and
is defined by requiring that, for all (v, w) ∈ Vh ×Wh,∫

Ω

c qh · v dx−
∫

Ω

uh∇ · v dx = −
∫
∂Ω

g v · n ds,(2.4) ∫
Ω

w∇ · qh dx+

∫
Ω

d uh w dx =

∫
Ω

f w dx.(2.5)

It is easy to see that the above weak formulation gives rise to a system of equations
of the form (

A −B
t

B D

)(
Q

U

)
=

(
G

F

)
.

We can try to solve this equation by first eliminating Q from the equations and then
solving the resulting equation for U, namely,(

B A
−1

B
t + D

)
U = F+ B A

−1
G.



286 BERNARDO COCKBURN AND JAYADEEP GOPALAKRISHNAN

Unfortunately, the matrix A is not easy to invert since the elements of Vh, being
functions in H(div,Ω), have their normal components continuous across element in-
terfaces. If qh were totally discontinuous, A would be block-diagonal and hence easily
invertible. The idea of the hybridized mixed methods is to relax this continuity con-
straint to render A block-diagonal.

Indeed, it was Fraejis de Veubeque [10], back in 1965, who realized that this can
be achieved by introducing additional unknowns λh, associated to element interfaces,
called Lagrange multipliers. Let Ei,h denote the set of edges of the mesh Th that are in
the interior of the domain Ω. The multipliers are then nothing but approximations to
the trace of u on each e ∈ Ei,h. As we show next, their introduction allows elimination
of both qh and uh and reduction of the system to a single matrix equation for the
multipliers.

In our particular case, the hybridized mixed method seeks an approximation
(qh, uh, λh) to (q, u, u|Ei,h

) in the finite element space Vh ×Wh ×Mh given by

Vh = {v ∈ L2(Ω)× L2(Ω) : v|K ∈ P k(K)× P k(K) + xP k(K) for all K ∈ Th},
Wh = {w ∈ L2(Ω) : w|K ∈ P k(K) for all K ∈ Th},
Mh = {µ ∈ L2(Ei,h) : µ|e ∈ P k(e) for all e ∈ Ei,h}.

It is defined by requiring that, for all (v, u, µ) ∈ Vh ×Wh ×Mh,∫
Ω

c qh · v dx−
∑
K∈Th

∫
K

uh∇ · v dx+
∑
e∈Ei,h

∫
e

λh [[v]] ds = −
∫
∂Ω

g [[v]] ds,(2.6)

∑
K∈Th

∫
K

w∇ · qh dx+

∫
Ω

d uh w dx =

∫
Ω

f w dx,(2.7)

∑
e∈Ei,h

∫
e

µ [[qh]] ds = 0,(2.8)

where [[v]] = v · n on ∂Ω and [[v]] = v+
e · n+

e + v
−
e · n−

e on e ∈ Eh. Here, n denotes
the outward unit normal to Ω, n+

e = −n−
e is an arbitrary unit vector normal to the

e ∈ Ei,h, and v±e (x) = limε↓0 v(x− ε n±
e ).

2.2. Two local mappings. Next, we introduce two mappings in terms of which
the characterization result will be expressed. They are defined using (2.6) and (2.7).

The first mapping lifts functions on edges of the triangulation Th to functions on
Ω. Let Eh be the set of all edges of the triangulation Th. Notwithstanding a slight
abuse of notation, we shall denote the set of all square integrable functions on the
union of all edges of Eh by L2(Eh). The lifting associates to each m ∈ L2(Eh) the pair
of functions (qh, uh)m ≡ (qh,m, uh,m) ∈ Vh ×Wh defined by requiring that∫

Ω

c qh,m · v dx−
∑
K∈Th

∫
K

uh,m∇ · v dx = −
∑
e∈Eh

∫
e

m [[v]] ds,(2.9)

∑
K∈Th

∫
K

w∇ · qh,m dx+

∫
Ω

d uh,m w dx = 0(2.10)

hold for all (v, w) ∈ Vh ×Wh.
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The second mapping associates to the function f ∈ L2(Ω) the element (qh, uh)f ≡
(qh,f , uh,f ) ∈ Vh ×Wh and is defined by requiring that∫

Ω

c qh,f · v dx−
∑
K∈Th

∫
K

uh,f∇ · v dx = 0,(2.11)

∑
K∈Th

∫
K

w∇ · qh,f dx+

∫
Ω

d uh,f w dx =

∫
Ω

f w dx(2.12)

hold for all (v, w) ∈ Vh ×Wh.
Note that these mappings can be computed in an element-by-element fashion.

Indeed, they are uniquely defined on each element because of the surjectivity of the
map (∇·) : Vh �→ Wh restricted to an element. Moreover, on each element K ∈ Th,
the lifting (qh, uh)m can be thought of as a result of a one element discretization of
the boundary value problem

c qm = −∇um in K,

∇ · qm + d um = 0 in K,

um = m on ∂K,

and that the mapping (qh, uh)f is an approximation to the solution of

c qf = −∇uf in K,

∇ · qf + d uf = f in K,

uf = 0 on ∂K.

2.3. Characterization of the approximate solution. Before stating the re-
sult, let us introduce the following convention: The extension by zero of the function
η ∈ L2(Fh), where Fh is a subset of Eh, to Eh is also denoted by η. In this way, if
m = λh on Ei,h and m = g on ∂Ω, we simply write m = λh + g; as a consequence we
also write

(qh, uh)m = (qh, uh)λh
+ (qh, uh)g.

We now have all that is needed to state the main result.
Theorem 2.1 (characterization of (qh, uh, λh)). Let (qh, uh, λh) be the solution

of the hybridized RT method (2.6), (2.7), and (2.8). Then

(qh, uh) = (qh, uh)λh
+ (qh, uh)g + (qh, uh)f .

The Lagrange multiplier λh ∈ Mh is the unique solution of

ah(λh, µ) = bh(µ) for all µ ∈ Mh,(2.13)

where

ah(λh, µ) =

∫
Ω

c qh,λh
· qh,µ dx+

∫
Ω

d uh,λh
uh,µ dx

and

bh(µ) =

∫
∂Ω

g [[qh,µ]] ds+

∫
Ω

f uh,µ dx.
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Remark 2.1. Although the normal components of the functions qh,g, qh,f (which
can be computed locally only in terms of the data) and qh,λh

are not necessarily con-
tinuous across interelement boundaries, the normal components of their sum, namely,
qh, are. Marini [12] pointed out this fact for the lowest order RT method when d = 0
and a is a piecewise-constant scalar function.

Remark 2.2. Just as for classical finite element methods, the variational formula-
tion (2.13) gives rise to a matrix equation for the degrees of freedom of the multiplier
Λ of the form

E Λ = H.

Thus the entries of the matrices E and H are obtained as a weighted L2-inner product
of discontinuous functions, as claimed in the introduction.

We end this section with a proof of Theorem 2.1.

2.4. Proof of Theorem 2.1. We prove this result in three steps. In the first,
we observe some identities that result from the equations of the method. In the next
step, we show that the continuity condition on the jumps of the fluxes results in a
variational equation for the Lagrange multiplier unknowns. In the last step, we collect
these two results and conclude.

2.4.1. Step 1.
Lemma 2.2 (elementary identities). We have, for any m, µ ∈ L2(Eh), and f ∈

L2(Ω),

(i)−
∑
e∈Eh

∫
e

µ [[qh,m]] ds =

∫
Ω

c qh,m · qh,µ dx+

∫
Ω

d uh,m uh,µ dx,

(ii)

∫
Ω

c qh,f · qh,m dx+

∫
Ω

d uh,f uh,m dx = 0,

(iii)−
∑
e∈Eh

∫
e

m [[qh,f ]] ds = −
∫

Ω

f uh,m dx.

Proof. Let us begin by proving the identity (i). First, take v = qh,µ in (2.9).
Then, replace m by µ in (2.10) and take w = uh,m. The identity (i) follows by simply
adding these two equations.

To prove (ii), simply take w = uh,f in (2.10) and v = qh,m in (2.11) and add the
equations.

Finally, to prove (iii), take v = qh,f in (2.9) and w = uh,m in (2.12) and add the
two equations to obtain

−
∑
e∈Eh

∫
e

m [[qh,f ]] ds = −
∫

Ω

f uh,m dx+Θ,

where

Θ =

∫
Ω

c qh,f · qh,m dx+

∫
Ω

d uh,f uh,m dx.

Thus (iii) follows from (ii). This completes the proof.



CHARACTERIZATION OF HYBRIDIZED MIXED METHODS 289

2.4.2. Step 2. In the following lemma, we explore equivalent characterizations
of the continuity requirement on fluxes imposed by the method.

Lemma 2.3 (jump condition). Let (qh, uh, λh) be the solution of the hybridized
RT method (2.6), (2.7), and (2.8), and let m be an arbitrary member of Mh. Then
the following statements are equivalent:

1.
∑
e∈Ei,h

∫
e
µ [[qh,m + qh,g + qh,f ]] ds = 0 for all µ ∈ Mh.

2. (qh, uh) = (qh, uh)m + (qh, uh)g + (qh, uh)f .
3. m = λh.
4. ah(m, µ) = bh(µ) for all µ ∈ Mh.
Proof. (1) =⇒ (2): Set

(q̃h, ũh) = (qh, uh)m + (qh, uh)g + (qh, uh)f .

Then, combining the equations defining the local mappings, we get that∫
Ω

c q̃h · v dx−
∑
K∈Th

∫
K

ũh∇ · v dx+
∑
e∈Ei,h

∫
e

m [[v]] ds = −
∫
∂Ω

g [[v]] ds,

∑
K∈Th

∫
K

w∇ · q̃h dx+

∫
Ω

d ũh w dx =

∫
Ω

f w dx

for all (v, w) ∈ Vk × Wh. Therefore, whenever (1) holds, q̃h and ũh satisfy all the
equations of the hybridized RT method. By uniqueness of solutions of the method,
q̃h = qh and ũh = uh, so (2) follows.

(2) =⇒ (3): By linear superposition, qh = qh,λh
+ qh,g + qh,f . Moreover,∫

e
µ[[qh]] ds = 0 for all e ∈ Ei,h. From the implication (1) =⇒ (2), it follows that

(qh, uh) = (qh, uh)λh
+ (qh, uh)g + (qh, uh)f .

Consequently, (2) implies that

(qh, uh)m−λh
= 0,

from which it follows that m − λh = 0.
(3) =⇒ (4): Now we observe that the following identity holds for any m ∈ Mh:

−
∫

Ω

c qh,m · qh,µ dx−
∫

Ω

d uh,m uh,µ dx+

∫
∂Ω

g [[qh,µ]] ds+

∫
Ω

f uh,µ dx

=
∑
e∈Eh

∫
e

µ [[qh,m + qh,g + qh,f ]] ds for all µ ∈ Mh.
(2.14)

This equality follows from the identities of Lemma 2.2. Moreover, whenever m = λh,
the last equation of the hybridized mixed method asserts that the right-hand side
of (2.14) is zero. From the definition of the forms ah and bh in Theorem (2.1), we see
that (4) follows.

(4) =⇒ (1): We apply (2.14) again. Whenever (4) holds, the left-hand side
of (2.14) is zero. Therefore, (1) follows. This completes the proof.

2.4.3. Step 3. To conclude the proof of Theorem 2.1 observe that the first
assertion of the theorem follows from the equivalence of the identities (1) and (2) of
Lemma 2.3. The second assertion of the theorem follows again from Lemma 2.3, this
time from the equivalence of (3) and (4). This completes the proof of Theorem 2.1.
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Remark 2.3. The characterization theorem we just proved states that the solution
(qh, uh) is the sum of the lifting of m = λh + g, (qh, uh)m and the contribution from
f , (qh, uh)f . By the identity (ii) of Lemma 2.2, we see that these two are orthogonal
with respect to the bilinear form on (Vh ×Wh)

2 defined by

〈〈 (q1, u1), (q2, u2) 〉〉 =
∫

Ω

c q1 · q2 dx+

∫
Ω

d u1 u2 dx.

3. The matrix entries.

3.1. The local matrices. To compute the matrices E and H, we can proceed
in the traditional finite element way. Let e denote an interior edge of the mesh Th,
and let {Le,� }k�=0 denote a basis for the set of polynomials of degree at most k on e.
For example, we can choose properly scaled Legendre polynomials. Then, we set

(qe,�, ue,�) = (qh, uh)Le,�
.

Now, for each element K, we compute the so-called local matrices, whose entries are

EK;e,�;e′,�′ =

∫
K

c qe,� · qe′,�′ dx+
∫
K

d ue,� ue′,�′ dx,

HgK;e,� =

∫
∂K∩∂Ω

g qe,� · n dx,

HfK;e,� =

∫
K

ue,� f dx.

Then the global matrices can be easily assembled by noting that

Λte,�EΛe′,�′ =
∑
K∈Th

EK;e,�;e′,�′ ,

Λte,� Hg =
∑
K∈Th

HgK;e,�,

Λte,� Hf =
∑
K∈Th

HfK;e,�.

Since the lifting (qe,�, ue,�) is supported only on the triangles sharing the edge
e, to compute the local matrices, we have to provide only the numbers EK;e,�;e′,�′ ,
HgK;e,�, and HfK;e,� for any two edges e and e′ of K and any two integers ! and !′

between 0 and k; all the remaining entries are equal to zero. This also implies that
the matrix E is a matrix of (k+1)× (k+1) blocks which has at most four off-diagonal
blocks in each block column.

3.2. An example. The above computations can easily be carried out for the
hybridized version of the RT method of lowest order. In this example, as the subscript
! in qe,� and ue,� is superfluous, we drop it.

We begin by computing the lifting m �→ (qh, uh)m. Let m take the constant value
λi on the edge ei of the triangle K, i = 1, 2, 3. Then, on K,

(qh, uh)m =

3∑
i=1

(qei , uei)λi,
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e

Ke
+

Ke
-

ne
+

ne
-

e

ne

Ke

-

-
-

Fig. 1. A representation of the lifting qh,m when m = χe for interior and boundary edges e. In
this case, we have taken d = 0 and c = Id.

where, for x ∈ K and i = 1, 2, 3,

qei(x) = − | ei |
|K | (c̄)

−1ni − 1

2

(
d̄ ρi

1 + d̄ h2

)
(x−B), uei(x) =

ρi
1 + d̄ h2

,

and

c̄ =
1

|K |
∫
K

c dx, d̄ =
1

|K |
∫
K

d dx, ρi =
| ei | (mi −B) · ni

2 |K | ,

h2 =
1

4 |K |
∫
K

c (x−B) · (x−B) dx, B = (c̄)−1

∫
K

cx dx

|K | .

Here mi denotes the midpoint of the edge ei and ni its outward unit normal. Note
that if c is the identity, B is the barycenter of the triangle; if, moreover, K is an
equilateral triangle of diameter h, then ρi = 1/3 and h2 = h2/48. The case of c
equaling the 2× 2 identity and vanishing d is illustrated in Figure 1.

Now, it is easy to compute the entries of the local matrices:

EK;ei;ej =
| ei | | ej |
|K | nj · (c̄)−1nj +

d̄ |K |
1 + d̄ h2

ρi ρj ,

HgK;ei
= −

∑
ej⊂∂K∩∂Ω

( | ei |
|K | (c̄)

−1ni · nj + |K |
| ej |

(
d̄

1 + d̄ h2

)
ρi ρj

) ∫
ej

g(s) ds,

HfK;ei
=

ρi
1 + d̄ h2

∫
K

f(x) dx.

3.3. The reference element. A convenient implementation results if the local
matrices for the multiplier can be computed by using quadratures on a reference
element alone.

To achieve it, we need to define local mappings on the reference element and map
spaces on the reference element K̂ to corresponding ones on any triangle K. Let K̂
be mapped one-to-one onto K by the standard affine mapping

x = DK x̂+ bK ,
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and let us set

û(x̂) ≡ u(x), q̂(x̂) ≡ |detDK |D−1
K q(x)

for scalar-valued functions u and vector-valued functions q, respectively. Finally, set

V̂ = P k(K̂)× P k(K̂) + xP k(K̂),

Ŵ = P k(K̂),

M̂ = {m̂ ∈ L2(∂K̂) : m̂|̂
e
∈ P k(ê) for all ê ∈ ∂K̂}.

Now, suppose we are given a symmetric positive definite 2× 2 matrix function Ĉ
and a scalar nonnegative function D̂ on K̂. For each m̂ in M̂ , we define the element
(Q̂

m̂
, Û

m̂
) ∈ V̂ × Ŵ by requiring that∫

K̂

Ĉ Q̂
m̂
· V dx̂−

∫
K̂

Û
m̂
∇̂ · V dx̂ = −

∑
ê∈∂K̂

∫
ê

m̂ [[V ]] dŝ,

∫
K̂

W ∇̂ · Q̂
m̂
dx̂+

∫
K̂

D̂ Û
m̂
W dx̂ = 0

hold for all (V ,W ) ∈ V̂ × Ŵ . Then, we have the following result.
Proposition 3.1. Let K be any triangle and e be one of its edges. Set

Ĉ(x̂) = |detDK |−1 Dt
K c(x)DK and D̂(x̂) = |detDK | d(x).

Then, the lifting (qe,�, ue,�) on K when mapped to K̂ satisfies

q̂e,� = Q̂L̂e,�
and ûe,� = Û

L̂e,�
.

Moreover,

EK;e,�;e′,�′ = −
∫
ê

L̂e,� Q̂̂Le′,�′
· n̂ dŝ,

HgK;e,� =

∫
ê

ĝ Q̂
L̂e,�

· n̂ dŝ,

HfK;e,� =

∫
K̂

Û
L̂e,�

f̂ |detDK | dx̂.

This result can be easily proved by a straightforward change of variables and
application of Lemma 2.2. Note that if the functions Ĉ and D̂ are constant, there is
no need to use quadrature rules to find the matrix entries.

4. Comparison with the hybridized BDM method. Now we compare the
multipliers given by the hybridized version of the RT method and those given by the
hybridized version of the corresponding BDM method.

4.1. Statement of the results. To state our comparison results, we first intro-
duce the hybridized BDM method. The approximate solution given by this method,
(qBDM

h , uBDM

h , λBDM

h ), is sought in the finite element space V BDM

h × WBDM

h × Mh given
by

V BDM

h = {v ∈ L2(Ω)× L2(Ω) : v|K ∈ P k(K)× P k(K) for all K ∈ Th},
WBDM

h = {w ∈ L2(Ω) : w|K ∈ P k−1(K) for all K ∈ Th},
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where k ≥ 1, and is defined by requiring that, for all (v, u, µ) ∈ V BDM

h ×WBDM

h ×Mh,∫
Ω

c qBDM

h · v dx−
∑
K∈Th

∫
K

uBDM

h ∇ · v dx+
∑
e∈Ei,h

∫
e

λBDM

h [[v]] ds = −
∫
∂Ω

g [[v]] ds,

∑
K∈Th

∫
K

w∇ · qBDM

h dx+

∫
Ω

d uBDM

h w dx =

∫
Ω

f w dx,

∑
e∈Ei,h

∫
e

µ [[qBDM

h ]] ds = 0.

Note that the approximate solution of the BDM method satisfies exactly the same
weak formulation as the approximate solution of the RT method; the only difference
is the choice of the finite element spaces. As a consequence, the characterization
theorem (Theorem 2.1) holds for the hybridized version of the BDM method. This
is the key fact that allows us to compare the hybridized versions of the RT and the
BDM methods.

In comparing the RT and BDM methods, for the sake of readability, we shall
superscript the notation previously introduced in connection with the RT method by
“RT.” When superscripted by “BDM,” such notation is to be understood as defined
exactly as before except that the RT spaces are replaced by the BDM spaces. For
example, (qh, uh)

BDM
m ≡ (qBDM

h,m , uBDM

h,m ) ∈ V BDM

h ×WBDM

h is defined by requiring that∫
Ω

c qBDM

h,m · v dx−
∑
K∈Th

∫
K

uBDM

h,m ∇ · v dx = −
∑
e∈Eh

∫
e

m [[v]] ds,

∑
K∈Th

∫
K

w∇ · qBDM

h,m dx+

∫
Ω

d uBDM

h,m w dx = 0

hold for all (v, w) ∈ V BDM

h ×WBDM

h .
To state our first comparison theorem, we need the following additional notation:

Denote by Pk the L2-orthogonal projection into the space of functions which are
piecewise polynomials of degree k on each triangle K ∈ Th. Let Rf = Pk f − Pk−1 f
for all f ∈ L2(Ω). Define the form

bRT

h,Rf (µ) =
∫

Ω

Rf uRT

h,µ dx for all µ ∈ Mh

and the function ρh ≡ ρh(Rf) ∈ Mh by

aRT

h (ρh, µ) = bRT

h,Rf (µ) for all µ ∈ Mh.

Also set

Ψ(µ, g, f) = (0,RuRT

h,µ) + (0,RuRT

h,g) + (0,RuRT

h,Pk−1f
) and

Υ(Rf) = (qh, uh)
RT

ρh
+ (qh, uh)

RT

Rf .

Now we can state the theorem.
Theorem 4.1 (comparison of the RT and BDM methods for d = 0).
Assume that d(x) = 0 almost everywhere in Ω.
1. Suppose f ∈ L2(Ω) is such that (Pk − Pk−1)f = 0. Then, the Lagrange
multiplier components of the RT and BDM solutions coincide:

λRT

h = λBDM

h .
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2. If f ∈ L2(Ω) is arbitrary, then the following statements hold:

(α) aRT

h (m, µ) = aBDM

h (m, µ) for all m, µ ∈ L2(Eh).
(β) bRT

h (µ) = bBDM

h (µ) + bRT

h,Rf (µ) for all µ ∈ L2(Eh).
(γ) λRT

h = λBDM

h + ρh(Rf).

(δ) (qRT

h , uRT

h ) = (qBDM

h , uBDM

h ) + Ψ(λBDM

h , g, f) + Υ(Rf).

Before proving the theorem, let us discuss the result and some of its consequences.
Remark 4.1. Statements (α) and (β) can be easily rewritten in matrix form as

follows:

(α′) E
RT = E

BDM,

(β′) H
RT = H

BDM +H
RT

Rf ,

where the matrix E
N is the stiffness matrix associated to the bilinear form aN

h(·, ·),
and the matrix H

N is the right-hand side matrix associated to the linear form bN

h(·) for
N ∈ {RT, BDM}. The matrix H

RT

Rf is, of course, the right-hand side matrix associated to
the linear form bRT(·)h,Rf . This means that, when d = 0, the stiffness matrices of the
multipliers of both methods coincide. However, the right-hand side matrices differ.
But they differ by a matrix which vanishes when Rf = 0—hence the coincidence of
the Lagrange multipliers whenever Rf = 0.

Remark 4.2. The coincidence of Lagrange multipliers asserted by the theorem in
the case Rf = 0 (and d = 0) appears to have gone unnoticed hitherto even numeri-
cally. This case occurs, e.g., when f is a polynomial of degree k− 1 on every element
of the mesh and in several applications of practical interest, e.g., incompressible flow
in porous media (where f = 0 usually). The condition Rf = 0 is not only sufficient
but also necessary for such a coincidence: From the characterization theorem, it is
clear that the only part of f that determines λRT

h is Pkf , while the only part of f that
determines λBDM

h is Pk−1f . Therefore, setting f to a polynomial of degree k for which
0 = Pk−1f �= Pkf , we can make λRT

h �= λBDM

h .
Remark 4.3. Statement (δ) of the theorem shows how the solution components

other than the multipliers are related. Obviously, Υ(Rf) depends linearly on Rf .
Therefore, when Rf = 0, the solution (qRT

h , uRT

h ) differs from (qBDM

h , uBDM

h ) only by
Ψ(λBDM

h , g, f), a function that can be computed locally element by element. In par-
ticular, this means that it is possible to implement the less expensive BDM method
and locally recover the RT solution uRT

h , which is one order higher in accuracy (under
certain regularity assumptions). In this sense, (δ) can be thought of as yielding a post-
processing technique. Of course, one can then further postprocess the RT solution by
the technique of [1] and gain one further order in accuracy.

Remark 4.4. It is well known that the Lagrange multiplier of both the RT and
the BDM methods approximates the traces of the exact solution u on mesh edges.
Specifically, under certain regularity assumptions, [5, Lemma 4.1] asserts that when
Th is a quasi-uniform mesh with mesh size h, as h → 0,

‖λBDM

h − PMh
u‖Eh

= O(hk+3/2−δk1),(4.1)

where PMh
denotes the L2-orthogonal projection onto Mh, ‖ ·‖Eh

denotes the L2(Eh)-
norm, and δk1 is zero for all k except for k = 1, in which case it equals one. The
analogous estimate for the RT method [1, Corollary 1.5] is

‖λRT

h − PMh
u‖Eh

= O(hk+3/2).
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However, obviously whenever λRT

h = λBDM

h , there can be no difference in the con-
vergence rates. Therefore, when k = 1 and Rf = 0, by virtue of Theorem 4.1,
we conclude that although (4.1) provides for only O(h3/2)-convergence, in fact the
convergence rate is at least O(h5/2).

When d �= 0, the liftings qRT

h,m and qBDM

h,m are no longer divergence-free on each
element, in general. In fact, as we show later, there are multipliers m for which
RuRT

h,m �= 0. This property implies that the statements of Theorem 4.1 do not hold in
general. In particular, the following theorem provides a case wherein statement (α)
does not hold. Obviously, whenever statement (α) fails to hold, one cannot expect
coincidence of RT and BDM Lagrange multipliers.

Theorem 4.2 (comparison of the RT and BDM methods for d ≥ 0). Assume
that c(x) and d(x) are constant on each element of the mesh. Then, whenever d(x)
is positive on at least one element, statement (α) of Theorem 4.2 does not hold.

Now, we prove Theorems 4.1 and 4.2.

4.2. Proof of Theorem 4.1. The proof proceeds by establishing a connection
between the BDM and RT liftings and applying the characterization theorem. Two
properties of the finite element spaces of the RT and BDM methods play a crucial role.
The first is simply that the multipliers of both methods share the same space. The
second is that the elements of V RT

h whose divergence on each element is a polynomial
of degree k − 1 also belong to the space V BDM

h . Let us begin by proving the latter
property.

Lemma 4.3. The following containment holds:

{qh ∈ V RT

h : ∇ · qh|K ∈ P k−1(K) for all K ∈ Th} ⊂ V BDM

h .

Proof. If qh ∈ V RT

h , then qh|K = vk + xp̃k for some vk ∈ P k(K) × P k(K) and
some homogeneous polynomial p̃k(x) of degree k on K. Taking the divergence, we
find that

∇ · (qh|K) = ∇ · vk + (k + 2)p̃k.

Therefore, ∇ · (qh|K) ∈ P k−1(K) implies that p̃k = 0, and consequently qh|K ∈
P k(K)× P k(K). Hence qh ∈ V BDM

h . This completes the proof.
The next result uses the above lemma and the definition of the local mappings to

establish key relations between the local mappings of the RT and BDM methods.
Lemma 4.4. Assume that d = 0. Then, for all m ∈ L2(Eh) and f ∈ L2(Ω),

(i) qRT

h,m = qBDM

h,m , uRT

h,m = uBDM

h,m +RuRT

h,m,

(ii) qRT

h,f = q
BDM

h,f + qRT

h,Rf , uRT

h,f = uBDM

h,f +RuRT

h,Pk−1f
+ uRT

h,Rf .

Proof. Let us begin by proving (i). From (2.9), we have∫
Ω

c
(
qRT

h,m − qBDM

h,m

) · v dx−
∑
K∈Th

∫
K

(
uRT

h,m − uBDM

h,m

)∇ · v dx = 0 for all v ∈ V BDM

h ,

and from (2.10), ∇ · qRT

h,m|K = 0 and ∇ · qBDM

h,m |K = 0 for all K ∈ Th. Since by
Lemma 4.3 qRT

h,m ∈ V BDM

h , we can take v = qRT

h,m − qBDM

h,m in the first equation of this
proof to get that qRT

h,m = qBDM

h,m . It immediately follows that

−
∑
K∈Th

∫
K

(
uRT

h,m − uBDM

h,m

)∇ · v dx = 0 for all v ∈ V BDM

h ,

which implies that Pk−1 uRT

h,m = uBDM

h,m . This proves (i).
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Now, let us prove (ii). It suffices to show that for p = Pk−1f ,

qRT

h,p = q
BDM

h,p and uRT

h,p = uBDM

h,p +RuRT

h,p.(4.2)

Indeed, once we have (4.2), by linearity and the obvious equality

(qh, uh)
BDM

Pk−1f
= (qh, uh)

BDM

f ,

we get that

(qh, uh)
RT

f = (qh, uh)
RT

p + (qh, uh)
RT

Rf
= (qh, uh)

BDM

p + (0,RuRT

h,p) + (qh, uh)
RT

Rf ,

and (ii) follows. To show (4.2), first observe that since p|K = (Pk−1f)|K ∈ P k−1(K),
(2.12) implies that

∇ · qRT

h,p|K = p and ∇ · qBDM

h,p |K = p for all K ∈ Th.
Therefore, using Lemma 4.3 again, qRT

h,p ∈ V BDM

h . Now, (2.11) yields∫
Ω

c
(
qRT

h,p − qBDM

h,p

) · v dx−
∑
K∈Th

∫
K

(
uRT

h,p − uBDM

h,p

)∇ · v dx = 0 for all v ∈ V BDM

h .

Since we have shown that qRT

h,p ∈ V BDM

h , we can choose v = qRT

h,p − qBDM

h,p above. Then
the first equality of (4.2), namely, qRT

h,p = qBDM

h,p , immediately follows. The second
equality of (4.2) also follows, because by (i) we have Pk−1 uRT

h,p = uBDM

h,p . This completes
the proof.

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. First, observe that the first conclusion of the theorem,

namely, λRT

h = λBDM

h whenever Rf = 0, follows from statement (γ), because ρh(Rf)
depends linearly on Rf . Therefore, we shall prove only statements (α)–(δ).

Applying the characterization theorem with d = 0, we find that

aN

h(m, µ) =

∫
Ω

c qN

h,m · qN

h,µ for N ∈ {RT, BDM},

so the equality of (α) follows from the first equality of Lemma 4.4(i). Similarly, since

bN

h(µ) =

∫
∂Ω

g [[qN

h,µ]] ds+

∫
Ω

f uN

h,µ dx for N ∈ {RT, BDM},

the second equality, namely, (β), also follows from Lemma 4.4(i). Now, statement (γ)
obviously follows from (α), (β), and the definitions of the multipliers.

To prove statement (δ), we start again from the characterization theorem, apply
statement (γ), and use the identities of Lemma 4.4 in succession:

(qRT

h , uRT

h ) = (qh, uh)
RT

λRT
h
+ (qh, uh)

RT

g + (qh, uh)
RT

f

= (qh, uh)
RT

(λBDM
h

+ρh) + (qh, uh)
RT

g + (qh, uh)
RT

f

= (qh, uh)
BDM

λBDM
h

+ (0,RuRT

h,λBDM
h

+ uRT

h,ρh
) + (qBDM

h,g , uBDM

h,g +RuRT

h,g)

+ (qBDM

h,f + qRT

h,Rf , uBDM

h,f +RuRT

h,Pk−1f
+ uRT

h,Rf )

= (qh, uh)
BDM

λBDM
h

+ (qh, uh)
BDM

g + (qh, uh)
BDM

f

+Ψ(λBDM

h , g, f) + Υ(Rf).

The first three terms on the right-hand side of the last equality sum to the BDM so-
lution. This completes the proof of Theorem 4.1.
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4.3. Proof of Theorem 4.2. To prove this result, we begin by studying the
local spaces of the RT method, namely,

V RT

K = P k(K)× P k(K) + x P k(K),

WRT

K = P k(K),

MRT

K = {µ ∈ L2(∂K) : µ|e ∈ P k(e) for each edge of K}.
It turns out that, when d > 0, the lifting maps induce a natural orthogonal decom-
position of the local space V RT

K , namely,

V RT

K = V 0
K ⊕ V ⊥

K ,

where

V 0
K = {v ∈ V RT

K : v · ne = 0 on each edge e of K},
V ⊥
K = {v ∈ V RT

K : ((v, q)) = 0 for all q ∈ V 0
K},

and

((v1,v2)) =

∫
K

cv1 · v2 dx+

∫
K

1

d
∇ · v1 ∇ · v2 dx.

Indeed, the following result states that the local space V ⊥
K is nothing but the image

of the lifting map m �→ qRT

h,m.
Lemma 4.5. Assume that d(x) is a positive constant on an element K ∈ Th, and

let {mi}3(k+1)
i=1 be a basis of MRT

K . Then, {qRT

h,mi
}3(k+1)
i=1 is a basis of V ⊥

K .
Proof. By (2.10), we have for any m ∈ MRT

K

uRT

h,m = −1
d
∇ · qRT

h,m.(4.3)

Substituting this expression for uRT

h,m into (2.9), we see that (2.9) can be rewritten as
follows:

((qRT

h,m,v)) = −
∑
e∈∂K

∫
e

m [[v]] ds.

As a consequence

{qRT

h,mi
}3(k+1)
i=1 ⊂ V ⊥

K .

Since the dimension of V ⊥
K is 3(k+ 1), it remains only to show that the elements

of the set {qRT

h,mi
}3(k+1)
i=1 are linearly independent. So, assume that there are scalars

αi such that

3(k+1)∑
i=1

αi q
RT

h,mi
= 0.

By the linearity of the lifting, this implies that qRT

h,m = 0, where

m =

3(k+1)∑
i=1

αi mi.
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However, since by (4.3)

uRT

h,m = −1
d
∇ · qRT

h,m = 0,

we have that the lifting (qRT

h,m, uRT

h,m) is zero. Consequently, m = 0. Since {mi}3(k+1)
i=1

is a basis for MRT

K , it follows that αi = 0 for all i = 1, . . . , 3(k + 1). This completes
the proof.

Now, we use the above result to show that the lifting uRT

h,m is not always a poly-
nomial of degree at most k − 1 on all the elements of the triangulation.

Lemma 4.6. Assume that c(x) is constant on an element K ∈ Th. Also assume
that d(x) is a positive constant on K. Then there is a function m ∈ MRT

K such that

RuRT

h,m �= 0 on K.

Proof. Since by (4.3)

uRT

h,m = −1
d
∇ · qRT

h,m,

an application of Lemma 4.3 shows that RuRT

h,m = 0 if and only if

qRT

h,m ∈ P k(K)× P k(K) for all m ∈ MRT

K .(4.4)

We claim that this is not possible for all m ∈ MRT

K . Indeed, if this were the case, V ⊥
K ⊂

P k(K)×P k(K). This implies that the orthogonal complement of P k(K)×P k(K) in
V RT

K with respect to the inner product ((·, ·)), which we denote by WK , satisfies

WK ⊂ V 0
K .(4.5)

However, as we shall now see, this implies that WK = {0}, which is a contradiction.
In the orthogonality relation∫

K

cφ · v dx+
1

d

∫
K

(∇ · φ)(∇ · v) dx = 0 for all v ∈ P k(K)× P k(K),

let us choose v = c−T∇η for some η ∈ P k+1(K) (where c−T denotes the inverse of
the transpose of c):∫

K

φ · ∇η dx+
1

d

∫
K

(∇ · φ)(∇ · c−T∇η) dx = 0.(4.6)

By (4.5) and integration by parts∫
K

φ · ∇η dx+

∫
K

η∇ · φ dx =

∫
∂K

η(φ · n) ds = 0.(4.7)

Subtracting (4.6) from (4.7), we have∫
K

(
η − 1

d
∇ · c−T∇η

)
(∇ · φ) dx = 0 for all η ∈ P k+1(K).(4.8)

Now we show that (4.8) implies that ∇ · φ = 0. Choosing η ∈ P 1(K) in (4.8),
we conclude that ∇ · φ is L2(K)-orthogonal to P 1(K). For k ≥ 2, if ∇ · φ is L2(K)-
orthogonal to P k−1(K), then choosing η ∈ P k(K) we find that ∇ · φ is L2(K)-
orthogonal to P k(K) as well, because ∇ · (c−T∇η) ∈ P k−2(K). Thus, by induction,
∇ · φ is zero.
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It follows from ∇ · φ = 0 that φ = 0: Indeed, any φ ∈ W can be written as
φ(x) = xp̃k −Qk(xp̃k), where Qk is the orthogonal projection onto P k(K)× P k(K)
in the ((·, ·))-inner product, and p̃k is a homogeneous polynomial of degree k. Therefore,

0 = ∇ · φ = (k + 2)p̃k −∇ · Qk(xp̃k).

Since the latter term is in P k−1(K), we conclude that p̃k = 0, so φ = 0. Thus (4.4)
does not hold, and the lemma is proved.

The next result establishes an equivalent criterion for statement (α) of Theo-
rem 4.1 in terms of the liftings.

Lemma 4.7. Assume that d(x) is constant on every element of the mesh. Let
m ∈ L2(∂K). Then

aRT

h (m,m) = aBDM

h (m,m)

if and only if

(i) qRT

h,m = qBDM

h,m on Ω and

(ii) uRT

m = uBDM

m on all elements K ∈ Th, where d > 0.

Proof. Set J(m) = aRT

h (m,m) − aBDM

h (m,m). Since, by Theorem 2.1, we have, for
N ∈ {RT, BDM},

aN

h(m,m) =

∫
Ω

c qN

h,m · qN

h,m dx+

∫
Ω

d uN

h,m uN

h,m dx,

a straightforward use of the identity a2 − b2 = (a− b)2 +2 b (a− b) allows us to write
J(m) = Θ(m) + D(m), where

Θ(m) =

∫
Ω

c (qRT

h,m − qBDM

h,m ) · (qRT

h,m − qBDM

h,m ) dx+

∫
Ω

d (uRT

m − uBDM

m )2 dx

and

D(m) = 2

∫
Ω

c qBDM

h,m · ( qRT

h,m − qBDM

h,m

)
dx+ 2

∫
Ω

d uBDM

h,m

(
uRT

h,m − uBDM

h,m

)
dx.

We will now show that D(m) = 0. Consider the first term in the definition of D(m).
By (2.9),∫

Ω

c qBDM

h,m · ( qRT

h,m − qBDM

h,m

)
dx =

∫
Ω

c qRT

h,m · qBDM

h,m dx−
∫

Ω

c qBDM

h,m · qBDM

h,m dx

=−
∑
K∈Th

∫
K

(
uRT

h,m − uBDM

h,m

) ∇ · qBDM

h,m dx.

Hence, using also (2.10), we have∫
Ω

c qBDM

h,m · ( qRT

h,m − qBDM

h,m

)
dx =−

∑
K∈Th

∫
K

(Pk−1u
RT

h,m − uBDM

h,m

) ∇ · qBDM

h,m dx

=−
∫

Ω

d uBDM

h,m

(Pk−1u
RT

h,m − uBDM

h,m

)
dx.
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Inserting this expression in the definition of D, we get

D(m) = 2

∫
Ω

d uBDM

h,m

(
uRT

h,m − Pk−1u
RT

h,m

)
dx = 0,

because d is constant on each element of the mesh. In other words, J(m) = Θ(m).
This implies that J(m) = 0 if and only if Θ(m) = 0. The lemma follows from the

definition of Θ(m) and the fact that c(x) is positive definite.
We are now ready to prove Theorem 4.2.
Proof of Theorem 4.2. Since there is at least one element K ∈ Th wherein d is a

positive constant, Lemma 4.6 asserts the existence of at least one function m ∈ MRT

K

for which RuRT

h,m �= 0 on K. This implies that uRT

h,m �= uBDM

h,m on K. Therefore, by
Lemma 4.7, for any µ ∈ Mh such that µ|∂K = m, we have aRT

h (µ, µ) �= aBDM

h (µ, µ).
Consequently, statement (α) of Theorem 4.1 does not hold. This completes the
proof.

5. Concluding remarks. The characterization theorem obtained in this pa-
per for the hybridized RT method on triangular meshes also holds for various other
methods. For example, it holds for the RT method on simplicial meshes in any space
dimension as well as on rectangular and cubic meshes. It also holds for the hybridized
versions of the mixed methods of Brezzi, Douglas, and Marini [5, 6] on rectangles, the
method of Brezzi et al. [3] on tetrahedra and bricks, and the method of Brezzi et al.
[4] on triangles, rectangles, tetrahedra, and bricks.

As a consequence, the matrix entries for the multipliers of all of the above-
mentioned methods can be computed as described in section 3. Moreover, a result
similar to the comparison theorem (Theorem 4.1) holds for the RT and BDM meth-
ods on multidimensional simplices. However, when the elements are rectangles or
bricks, the subspace of divergence-free members of the RT and BDM spaces on an
element are not identical. Therefore, in general, we cannot expect a result analogous
to Theorem 4.1 to hold in this case.

Other applications of the characterization theorem are studied elsewhere. Indeed,
in [11] it is shown how to use the characterization theorem to construct a Schwarz pre-
conditioner for the multiplier equation of the RT and BDM hybridized mixed methods
of any order. Such preconditioners were known only for the lowest order hybridized
RT method. Also, in a forthcoming paper, we show how to use the characterization
result to obtain error estimates for the multipliers without relying on error estimates
on the other variables, as is customarily done.

Finally, let us briefly comment on the relation between the hybridized mixed
methods and the discontinuous Galerkin methods. It is not difficult to see that the
counterpart of the multiplier λh is nothing but the so-called numerical trace of the ap-
proximation uh given by the discontinuous Galerkin method. How to exploit this link
to achieve a better theoretical understanding of both methods remains a challenging
open problem; see [9].

Acknowledgment. The authors would like to thank Wolfgang Dahmen, whose
stimulating visit to the I.M.A., University of Minnesota, in the Spring of 2001,
prompted them to explore ways of characterizing stiffness matrices of mixed methods
by using discontinuous test functions. This paper is the unexpected outcome of such
exploration.
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Abstract. In this article we study the convergence of an adjoint-based iterative method recently
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numerical solution of a class of nonlinear robust control problems in fluid mechanics. Under weaker
assumptions than those of [T. Tachim Medjo, Numer. Funct. Anal. Optim., 23 (2002), pp. 849–873],
we prove the convergence of the algorithm, and we obtain an estimate of the convergence rate.
Numerical solutions of a robust control problem related to data assimilation in oceanography are
presented to illustrate the method.
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1. Introduction. Optimal control of fluid flows such as those governed by the
Navier–Stokes equations has long been the subject of extensive studies, and appli-
cations to engineering and sciences are tremendous. In recent years, the control of
fluid flows has also become the subject of intense study in the mathematical com-
munity. Due to advances in computer technology, the application of optimal control
theory to complex phenomena such as weather forecasting and oceanography is be-
coming a reality [1, 2, 6, 9, 11, 14, 15, 16, 17, 25, 26, 27, 28]. A classical control
problem arising in meteorology and oceanography, and related to data assimilation,
is the adjustment of initial conditions in order to obtain a flow that agrees with the
observations. This has been the subject of extensive studies in the past, and a lot of
progress has been made both mathematically and computationally to understand the
subject [1, 2, 6, 9, 11, 14, 15, 16, 17, 25, 26, 27, 28].

In general, the application of optimal control theory to complex problems in
fluid mechanics has proven to be quite effective when complete state information
from high resolution numerical simulations is available [6]. As suggested in [6], in
order to extend this infinite-dimensional optimization approach to control externally
disturbed flows in which the controls must be determined based on limited noisy flow
measurements alone, it is necessary that the controls computed be insensitive to both
state disturbances and measurement noise.

As described in [6], robust control theory, which generalizes optimal control the-
ory, can be represented as a differential game between an engineer seeking the “best”
control that stabilizes the flow perturbation with limited control effort and, simulta-
neously, nature seeking the “maximally malevolent” disturbance that destabilizes the
flow perturbation with limited disturbance magnitude. In [6], the authors present a
general framework for robust control problems in fluid mechanics. Given a fairly gen-
eral cost functional J = J (ψ, φ), the authors in [6] proved the existence of a saddle
point (ψ̄, φ̄), which maximizes J with respect to the disturbance ψ and minimizes J
with respect to the control φ, subject to the Navier–Stokes equations. Chaotic prob-
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lems, such as weather systems, are highly susceptible to the small disturbances present
in all physical systems. The robust control framework presented in [6] should help
to reduce the component of the initial state most susceptible to external disturbance
and therefore to improve the accuracy of the forecast. Numerical solutions of linear
robust control problems of small state dimension can be accurately obtained using
traditional methods such as the Riccati solver [5]. However, for linear problems with
large state dimension or nonlinear problems in fluid mechanics, methods that require
the storage of a large quantity of fields become less appropriate; as suggested in [1],
iterative methods seem to be very attractive for these types of problems. Iterative
methods based on repeated computations of the adjoint flow have been proven to be
very successful in numerical solutions of optimal control problems [1, 15, 17, 18]. The
analysis of stability and convergence of a class of such methods is given in [17, 18, 28].
In [6], the authors proposed some iterative algorithms based on repeated computations
of the adjoint flow for the numerical solution of a class of robust control problems.
In [22], the author proved the convergence of the iterative methods proposed in [6] for
the linearized problems. The nonlinear problem was considered in [21], in which the
author proved the convergence of the iterative methods proposed in [6] when the cost
parameters (γ, l) are large enough and for only one particular choice of the iteration
parameter. Although the result of [21] is interesting because the iteration parameters
are given explicitly, it is not physically reasonable that the condition (γ, l) be large
enough. In fact, let us recall that l large enough corresponds to prohibitive control.
In this article, we revisit the method in [21], and we prove the convergence of the
adjoint-based iterative method of [6] for γ large enough and l > 0.

The article is divided as follows. In the next section, we present the mathematical
models. The third section recalls from [6] the robust control problems and proves the
existence and uniqueness of their solutions using a contraction mapping argument.
This section ends by proving the convergence of the algorithm of [6] under a weaker
assumption than those in [21]. The fourth section presents some numerical simulations
of a robust control problem related to data assimilation in oceanography in order to
illustrate the algorithm.

2. Governing equations and mathematical setting.

2.1. Governing equations. Hereafter, Ω is an open domain in R2. The flow
U and the forcing F satisfy the Navier–Stokes equations in Ω × (0,∞) given by

∂U

∂t
− ν∆U + (U · ∇)U + ∇P = F,

div U = 0,

U = 0 on ∂Ω,

U = U0 at t = 0.

(2.1)

A stationary or nonstationary solution U with the corresponding forcing F will be re-
ferred to as target flow for the control problem. If no target flow is given, U and F are
taken as zero. We are interested in the robust regulation of the deviation of the flow
from the target (U,F ). As in [6], we will consider the control of the linearized equa-
tion, which models small perturbations (u, f) to the target flow (U,F ) with Dirichlet
boundary conditions and known initial conditions such that, in Ω × (0,∞), we have

∂u

∂t
− ν∆u+ (u · ∇)U + (U · ∇)u+ ∇p = f, u = 0 on ∂Ω, u = g at t = 0.(2.2)
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We will also consider the control of the full nonlinear equation which models large
perturbations (u, f) to the target flow (U,F ) such that, in Ω × (0,∞), we have

∂u

∂t
− ν∆u+ (u · ∇)U + (U · ∇)u+ (u · ∇)u+ ∇p = f, u = 0 on ∂Ω, u = g at t = 0.

(2.3)

We will generalize our results to control problems related to data assimilation in
oceanography.

2.2. Mathematical setting. Let Ω be a bounded open set of R2 with boundary
∂Ω, and let �n be the unit outward normal vector to ∂Ω. We denote by Hs(Ω), for
s ∈ R, the Sobolev spaces constructed on L2(Ω), and by Hs

0(Ω), for s > 1/2, the
closure of C∞

0 (Ω) in Hs(Ω). As in [6, 30], we set M = {u ∈ (C∞
0 )2; div u = 0} and

denote by H (resp., V ) the closure of M in (L2(Ω))2 (resp., (H1(Ω))2); we have

H = {u ∈ (L2(Ω))2; div u = 0 in Ω, u · �n = 0 on ∂Ω}
and

V = {u ∈ (H1
0 (Ω))2; div u = 0 in Ω},

where �n denotes the outward normal vector to ∂Ω. The scalar product in H is
denoted by (u, v) =

∫
Ω
u · vdx, that on V is denoted by ((u, v)) =

∫
Ω
∇u · ∇vdx,

and the associated norms are denoted by | · | and ‖ · ‖, respectively. Hereafter, if Z
is any other Hilbert space, we will denote by 〈·, ·〉Z the scalar product in Z and by
‖ · ‖Z the associated norm. We also set Y = L2(0, T ;V ) and W = {u ∈ L2(0, T ;V ),
du
dt ∈ L2(0, T ;V ′)} endowed with the norm

‖u‖W =

(
‖u‖2

L2(0,T ;V ) +

����dudt
����2

L2(0,T ;V ′)

) 1
2

.

We denote by A the Stokes operator, defined as an isomorphism from V onto the dual
V ′ of V such that, for u ∈ V , Au is defined by

〈Au, v〉V ′,V = ((u, v)) ∀u, v ∈ V,

where 〈·, ·〉V ′,V is the duality bracket between V ′ and V . The operator A is extended
to H as a linear unbounded operator with domain D(A) = (H2(Ω))2 ∩ V when ∂Ω is
a C2 surface. We also denote by P the Leray–Hopf projector, which is the orthogonal
projector of the space L2(Ω) ≡ (L2(Ω))2 onto the divergence-free space H. The Stokes
operator is related to P by

Au = −P(∆u) ∀u ∈ D(A).

We also define the bilinear mapping B by

B(u, v) = P ((u · ∇)v) ∀u, v ∈ V,

which is a bilinear mapping from V into V ′. To simplify the notation, we define the
nonlinear application B from V into V ′ by

B(u) = B(u, u) ∀u ∈ V.(2.4)
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Then B is differentiable, and we have

B′(u)v = B(u, v) +B(v, u) ∀u, v ∈ V.(2.5)

We will denote by B′(u)∗ the adjoint operator of B′(u) for the duality between V and
V ′. Define a continuous trilinear form b on V such that, with u, v, w ∈ (H1(Ω))2, we
have

b(u, v, w) = 〈B(u, v), w〉V ′,V =

∫
(u · ∇)v · wdx.(2.6)

Then the following properties hold true (see [6]):

b(u, v, v) = 0 ∀u ∈ V, v ∈ V,

|b(u, v, w)| ≤ c|u| 12L2‖u‖ 1
2 ‖v‖ 1

2 |Av| 12L2 |w|L2 ∀u ∈ V, v ∈ D(A), w ∈ H,

|b(u, v, w)| ≤ c|u| 12L2 |Au|
1
2

L2‖v‖|w|L2 ∀u ∈ D(A), v ∈ V,w ∈ H,

|b(u, v, w)| ≤ c|u| 12L2‖u‖ 1
2 ‖v‖|w| 12L2‖w‖ 1

2 ∀u ∈ V, v ∈ V,w ∈ V,

(2.7)

where c = c(Ω) is a constant depending only on Ω. The estimates developed in this
work involve integration by parts and the following inequalities, which are repeated
here for the sake of clarity: the Cauchy–Schwarz inequality |〈u, v〉| ≤ |u|L2 |v|L2 ;
Hölder’s inequality∫

fgdx ≤
(∫

|f |p
) 1

p
(∫

|g|q
) 1

q

,
1

p
+

1

q
= 1;(2.8)

the Poincaré inequality |u|L2 ≤ c‖u‖; Young’s inequality

ab ≤ ε

p
ap +

ε−q/p

q
bq, 1 < p < ∞,

1

p
+

1

q
= 1;(2.9)

and Gronwall’s lemma

dy

dt
≤ gy + h ∀t ≥ 0

=⇒ y(t) ≤ y(0) exp

(∫ t

0

g(τ)dτ

)
+

∫ t

0

h(s) exp

(∫ t

s

g(τ)dτ

)
ds ∀t ≥ 0.

(2.10)

Using the operators A and B, the linearized Navier–Stokes equations (2.2) become
du

dt
+ νAu+B(U, u) +B(u, U) = Pf,

u ∈ V,

u = g at t = 0,

(2.11)

where the regularity required on f, g is

f ∈ L2(0, T ;L2(Ω)) ∀T > 0, g ∈ V ; U ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)).(2.12)
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Similarly, application of the Leray projector to the fully nonlinear problem (2.3) gives
(with τ = 1) 

du

dt
+ νAu+B(U, u) +B(u, U) + τB(u, u) = Pf,

u ∈ V,

u = g at t = 0.

(2.13)

Hereafter, τ ∈ R is a nondimensional parameter.

3. Robust control.

3.1. Body force control framework. Following the framework presented in
[6], the interior forcing f is decomposed into a disturbance ψ ∈ L2(0, T ;L2(Ω)) and a
control φ ∈ L2(0, T ;L2(Ω)), with T > 0. Thus, we write

f = B1ψ +B2φ,

where B1 and B2 are bounded operators on (L2(Ω))2. We will also write

Pf = B1ψ + B2φ,

where B1 = PB1 and B2 = PB2 are mappings from L2(Ω) to H. In this section, the
cost functional is given by

J (ψ, φ) =
1

2

∫ T

0

|C1u|2L2 dt+
1

2
|C2u(T )|2L2 − 1

2

∫ T

0

〈
C3ν

∂u

∂n
,�r

〉
L2(∂Ω)

dt

+
1

2

∫ T

0

[
l2 |φ|2L2 − γ2 |ψ|2L2

]
dt,

(3.1)

where the scalar control parameters γ and l are given, �r is a known vector field on
∂Ω, �n is the unit normal vector to ∂Ω, and C∗

3�r · �n = 0. The operators C1 and C2 are
unbounded linear operators on L2(Ω) satisfying

|Civ|L2(Ω) ≤ c‖v‖ for i = 1, 2, ∀v ∈ V,(3.2)

and C3 is a bounded linear operator of L2(∂Ω). The reader is referred to [6] for more
details. Some particular interesting cases are

• C1 = d1I and C2 = C3 = 0 =⇒ regulation of the turbulent kinetic energy;
• C1 = d2∇× and C2 = C3 = 0 =⇒ regulation of the square of the vorticity;
• C2 = d3I and C1 = C3 = 0 =⇒ terminal control of the turbulent kinetic

energy;
• C3 = d4I and C1 = C2 = 0 =⇒ minimization of the time-average skin-friction

in the direction of the vector �r integrated over the boundary of the domain.
We consider the following robust control problem, referred to as Problem I.

Problem I. Find (ψ̄, φ̄) ∈ L2(0, T ;L2(Ω)) × L2(0, T ;L2(Ω)) such that

J (ψ̄, φ̄) = min
φ∈D

sup
ψ∈X

J (ψ, φ) = max
ψ∈X

inf
φ∈D

J (ψ, φ),

subject to the Navier–Stokes equations (2.13), where X = D = L2(0, T ;L2(Ω)). With
Problem I we associate the following coupled system (3.3)–(3.5):

du

dt
+ νAu+B(U, u) +B(u, U) + τB(u, u) = B1ψ + B2φ,

u ∈ V,

u = g at t = 0,

(3.3)



ADJOINT-BASED ITERATIVE METHOD 307
−dũ

dt
+ νA∗ũ+B′(U)∗ũ+ τB′(u)∗ũ = C∗

1C1u,

ũ(t) ∈ Vr =
{
v ∈ (H1(Ω))2; div v = 0 in Ω, v = C∗

3�r on ∂Ω
}
, t < T,

ũ(T ) = C∗
2C2u(T ) ∈ H,

(3.4)

{
γ2ψ − B∗

1 ũ = 0,

l2φ+ B∗
2 ũ = 0,

(3.5)

where A∗ is the unbounded operator on H ∩ (H1(Ω))2 defined by

〈u′, A∗ũ〉 = 〈Au′, ũ〉 +

〈
∂u′

∂n
, ũ

〉
L2(∂Ω)

for u′ ∈ D(A), ũ ∈ H ∩ (H1(Ω))2.(3.6)

In [6], the authors proposed an iterative method for the numerical solution of Prob-
lem I. This method is based on a repeated computation of the state equation (3.3) and
the adjoint equation (3.4). The purpose of this article is to prove the convergence of
the algorithm proposed in [6]. To achieve that goal, we rewrite the system (3.3)–(3.5)
as a fixed-point problem. Then, using a contraction mapping argument, we prove the
convergence of the algorithm, and we obtain its rate of convergence as well.

Linear case. Hereafter, we assume that C3 = 0. We consider the problem
(3.3)–(3.5) in which τ = 0. For τ = 0 and C3 = 0, we obtain the following sys-
tem: 

du

dt
+ νAu+B(U, u) +B(u, U) = B1ψ + B2φ,

u ∈ V,

u = g at t = 0,

(3.7)


−dũ

dt
+ νA∗ũ+B′(U)∗ũ = C∗

1C1u,

ũ(t) ∈ V, t < T,

ũ(T ) = C∗
2C2u(T ) ∈ H,

(3.8)

{
γ2ψ − B∗

1 ũ = 0,

l2φ+ B∗
2 ũ = 0.

(3.9)

The following result was proven in [6].
Proposition 3.1. If γ is large enough, then (3.7)–(3.9) has a unique solution.
The purpose of this part is to prove the existence and uniqueness of solutions to

(3.7)–(3.9) using a contraction mapping method, and therefore we derive an iterative
method (fixed-point iteration method) for the numerical solution of (3.7)–(3.9). Let
ρ > 0 be a constant, and consider the operator G defined from Z ≡ L2(0, T ;L2(Ω))×
L2(0, T ;L2(Ω)) into itself by

G(ψ, φ) = (ψ, φ) − ρ (γ2ψ − B∗
1 ũ, l

2φ+ B∗
2 ũ),(3.10)

where ũ is given by (3.7)–(3.8). It is easy to check that (ψ, φ) is a fixed point of G if
and only if (ψ, φ) solves (3.7)–(3.8). The following result holds true.

Proposition 3.2. Assume that γ is large enough. Then there exists ρ0 > 0 such
that G is a contraction from Z into itself for ρ < ρ0.
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Proof. Let (ψi, φi) ∈ Z = L2(0, T ;L2(Ω))×L2(0, T ;L2(Ω)), i = 1, 2. Let (ψ, φ) =
(ψ1, φ1) − (ψ2, φ2), u = u1 − u2, ũ = ũ1 − ũ2. Then we have

du

dt
+ νAu+B(u, U) +B(U, u) = B1ψ + B2φ,

u ∈ V,

u = 0 at t = 0,

(3.11)


−dũ

dt
+ νA∗ũ+B′(U)∗ũ = C∗

1C1u,

ũ(t) ∈ V, t < T,

ũ(T ) = C∗
2C2u(T ) ∈ H.

(3.12)

If we set G(ψ, φ) = G(ψ1, φ1) −G(ψ2, φ2), then we have

‖G(ψ, φ)‖2
Z =

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds− 2ργ2

∫ T

0

|ψ(s)|2ds− 2ρl2
∫ T

0

|φ(s)|2ds

+ 2ρ

∫ T

0

(ψ,B∗
1 ũ)ds− 2ρ

∫ T

0

(φ,B∗
2 ũ)ds+ ρ2

∫ T

0

|γ2ψ − B∗
1 ũ|2ds

+ ρ2

∫ T

0

|l2φ+ B∗
2 ũ|2ds.

(3.13)

Thanks to (3.11) and (3.12), we have

−2ρ

∫ t

0

(φ,B∗
2 ũ)ds = 2ρ

∫ t

0

(ψ,B∗
1 ũ)ds− 2ρ

∫ t

0

|C1u(s)|2ds− 2ρ|C2u(T )|2.(3.14)

Reporting (3.14) in (3.13), we get

‖G(ψ, φ)‖2
Z =

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds− 2ργ2

∫ T

0

|ψ(s)|2ds− 2ρl2
∫ T

0

|φ(s)|2ds

+ 4ρ

∫ T

0

(ψ,B∗
1 ũ)ds− 2ρ

∫ T

0

|C1u(s)|2ds

− 2ρ|C2u(T )|2 + ρ2

∫ T

0

|γ2ψ − B∗
1 ũ|2ds+ ρ2

∫ T

0

|l2φ+ B∗
2 ũ|2ds.

(3.15)

Using Young’s inequality and the continuity of the operators B∗
1 and B∗

2 in (3.15), we
obtain the estimate

‖G(ψ, φ)‖2
Z ≤ (1 − 2ργ2 + 2ρ

ε + 2ρ2γ4)

∫ T

0

|ψ(s)|2ds+ 2ρc1ε

∫ T

0

|ũ(s)|2ds

+ (1 − 2ρl2 + 2ρ2l4)

∫ T

0

|φ(s)|2ds+ 4ρ2c1

∫ T

0

|ũ(s)|2ds− 2ρ

∫ T

0

|C1u(s)|2ds
− 2ρ|C2u(T )|2,

(3.16)

where here and in what follows, c1 denotes different positive constants depending only
on Ω, U , and T .
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To complete the proof of this proposition, it remains to conveniently estimate the
integrals involving ũ.

From (3.12), by applying the Cauchy–Schwarz, Poincaré, and Young’s inequali-
ties, we obtain that

− 1
2
d
dt |ũ|2 + ν‖ũ‖2 ≤ |b(ũ, U, ũ)| + c|C1u|‖ũ‖

≤ c|C1u|2 + ν
4‖ũ‖2 + c‖U‖|ũ|‖ũ‖,(3.17)

which gives

− 1
2
d
dt |ũ|2 + ν‖ũ‖2 ≤ c|C1u|2 + ν

2‖ũ‖2 + c‖U‖2|ũ|2.(3.18)

Gronwall’s inequality gives

|ũ(t)|2 ≤ eN0(t)|ũ(T )|2 + ceN0(t)

∫ T

t

|C1u(s)|2ds

≤ c1|C2u(T )|2 + c1

∫ T

0

|C1u(s)|2ds,
(3.19)

where N0(t) = c
∫ T
t
‖U(s)‖2ds and c is a constant depending only on Ω.

From (3.11), we also have (see [6])

|u(t)|2 ≤ ceM0(t)

∫ t

0

(|ψ(s)|2 + |φ(s)|2) ds
≤ c1

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds,(3.20)

where M0(t) = c
∫ t
0
‖U(s)‖2ds. Thanks to (3.20) and the continuity of the operators

C1 and C2, we derive from (3.19) that

|ũ(t)|2 ≤ c1

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds.(3.21)

Reporting (3.19) and (3.21) in (3.16), we find

‖G(ψ, φ)‖2
Z ≤ (1 − 2ργ2 + 2c1ρ

ε + 2ρ2γ4)

∫ T

0

|ψ(s)|2ds+ 2ρc1ε

∫ T

0

|C1u(s)|2ds

+ 2ρc1ε|C2u(T )|2 + (1 − 2ρl2 + 2ρ2l4)

∫ T

0

|φ(s)|2ds+ 4ρ2c1

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds
− 2ρ

∫ T

0

|C1u(s)|2ds− 2ρ|C2u(T )|2.

(3.22)

Choosing ε = c−1
1 in (3.22) yields

‖G(ψ, φ)‖2
Z ≤ (1 − 2ργ2 + 2c1ρ+ 2ρ2(γ4 + 2c1))

∫ T

0

|ψ(s)|2ds

+ (1 − 2ρl2 + 2ρ2(l4 + 2c1))

∫ T

0

|φ(s)|2ds

≤ max{1 − 2ργ2 + 2c1ρ+ 2ρ2(γ4 + 2c1), 1 − 2ρl2 + 2ρ2(l4 + 2c1)}

×
∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds.

(3.23)
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It is then obvious to check that G is a contraction if γ is large enough and ρ <

min{ γ2−c1
γ4+2c1

, l2

l4+2c1
}; this completes the proof of Proposition 3.2.

Nonlinear case. In this part we study the nonlinear problem, that is (3.3)–(3.5)
with τ = 1. For (ψ, φ) ∈ Z ≡ L2(0, T ;L2(Ω)) × L2(0, T ;L2(Ω)), we set

G(ψ, φ) = (ψ, φ) − ρ (γ2ψ − B∗
1 ũ, l

2φ+ B∗
2 ũ),(3.24)

where ρ > 0 is a constant and ũ is given by (3.3)–(3.4). We will prove that G is a
contraction defined on an appropriate subset X of Z.

Some a priori estimates. Now let R > 0 and

X (R) =

{
(ψ, φ) ∈ Z;

∫ T

0

(|ψ(s)|2L2 + |φ(s)|2L2)ds ≤ R2

}
.

Hereafter we will denote by c1 a positive constant that depends on Ω, T , and U and
whose values may be different in each inequality. Multiplying (3.3)1 by u and applying
the Cauchy–Schwarz, Poincaré, and Young’s inequalities, we obtain (see [6])

|u(t)|2L2 ≤ eM0(t)|u0|2L2 + ceM0(t)

∫ t

0

(|ψ(s)|2L2 + |φ|2L2)ds,

1

t

∫ t

0

‖u(s)‖ds ≤ 1

t
eM0(t)|g|2L2 +

1

t
eM0(t)

∫ t

0

(|ψ(s)|2L2 + |φ|2L2)ds,

(3.25)

where

M0(t) = c

∫ t

0

‖U‖2dτ ≤ c1.(3.26)

Now, multiplying (3.4)1 by ũ and applying the Cauchy–Schwarz, Poincaré, and Young’s
inequalities, we obtain

− 1
2
d
dt |ũ|2L2 + ν‖ũ‖2 ≤ |b(ũ, U + u, ũ)| + |b(U + u, ũ, ũ)| + c|C1u|L2‖ũ‖

≤ c|C1u|2 + ν
4‖ũ‖2 + c|ũ|L2‖ũ‖‖U + u‖

≤ c|C1u|2 + ν
2‖ũ‖2 + c(‖U‖2 + ‖u‖2)|ũ|2,

(3.27)

from which we derive

|ũ(t)|2L2 ≤ eN0(t)|ũ(T )|2L2 + eN0(t)

∫ T

t

|u(s)|2L2ds

≤ c1|C2u(T )|2L2 + c1

∫ T

0

|C1u(s)|2L2ds,

(3.28)

where N0(t) = c
∫ T
t

(‖U(s)‖2 + ‖u(s)‖2)ds ≤ c1.
Proposition 3.3. Assume that γ is large enough and that R and |g|L2 are small

enough. Then there exists ρ1 > 0 such that G maps X (R) into X (R) for ρ ≤ ρ1.
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Proof. Let (ψ, φ) ∈ X (R). We shall prove that G(ψ, φ) ∈ X (R) for γ large
enough, R, |g|L2 , and ρ small enough. As in the linear case, it is easy to check that

‖G(ψ, φ)‖2
Z =

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds− 2ργ2

∫ T

0

|ψ(s)|2ds− 2ρl2
∫ T

0

|φ(s)|2ds

+ 2ρ

∫ T

0

(ψ,B∗
1 ũ)ds− 2ρ

∫ T

0

(φ,B∗
2 ũ)ds+ ρ2

∫ T

0

|γ2ψ − B∗
1 ũ|2ds

+ ρ2

∫ T

0

|l2φ+ B∗
2 ũ|2ds.

(3.29)

It follows from (3.3) and (3.4) that

−2ρ

∫ T

0

(φ,B∗
2 ũ)ds = 2ρ

∫ T

0

(ψ,B∗
1 ũ)ds− 2ρ

∫ T

0

|C1u(s)|2ds− 2ρ|C2u(T )|2

+ 2ρ(g, ũ(0)) + 2ρ

∫ T

0

b(u, u, ũ)ds.

(3.30)

Reporting (3.30) in (3.29), we get

‖G(ψ, φ)‖2
Z =

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds− 2ργ2

∫ T

0

|ψ(s)|2ds− 2ρl2
∫ T

0

|φ(s)|2ds

+ 4ρ

∫ T

0

(ψ,B∗
1 ũ)ds− 2ρ

∫ T

0

|C1u(s)|2ds+ 2ρ

∫ T

0

b(u, u, ũ)ds

− 2ρ|C2u(T )|2 + ρ2

∫ T

0

|γ2ψ − B∗
1 ũ|2ds+ ρ2

∫ T

0

|l2φ+ B∗
2 ũ|2ds+ 2ρ(g, ũ(0)).

(3.31)

Thanks to the continuity of the operators B∗
1 and B∗

2 , we have∫ T

0

|B∗
i ũ(s)|2ds ≤ c

∫ T

0

|ũ(s)|2ds ≤ c1

∫ T

0

|C1u(s)|2ds+ c1|C2u(T )|2.(3.32)

On the other hand, (2.7), (3.25), and (3.28) show that∫ T

0

|b(u, u, ũ)|ds ≤ c1
{|g|2 +R2

}{∫ T

0

|C1u(s)|2ds+ |C2u(T )|2
} 1

2

.(3.33)

Using Young’s inequality as well as (3.32) and (3.33) in (3.31), we find

‖G(ψ, φ)‖2
Z ≤

(
1 − 2ργ2 +

2c1ρ

ε
+ 2ρ2γ4

)∫ T

0

|ψ(s)|2ds+ 2ρε

∫ T

0

|C1u(s)|2ds

+ 2ρε|C2u(T )|2 + (1 − 2ρl2 + 2ρ2l4)

∫ T

0

|φ(s)|2ds

+ 4ρ2c1

{∫ T

0

|C1u(s)|2ds+ |C2u(T )|2
}

+ ρη

{∫ T

0

|C1u(s)|2ds+ |C2u(T )|2
}

+
ρ

η
c1|g|2

+ ρδ

{∫ T

0

|C1u(s)|2ds+ |C2u(T )|2
}

+
ρ

δ
c1(|g|2 +R2)2

− 2ρ

∫ T

0

|C1u(s)|2ds− 2ρ|C2u(T )|2 ∀ε, η, δ > 0.

(3.34)
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Choosing ε = η = δ = 1
4 and

ρ ≤ 1

4c1
(3.35)

in (3.34), it follows that

‖G(ψ, φ)‖2
Z ≤ (1 − 2ργ2 + 8c1ρ+ 2ρ2γ4)

∫ T

0

|ψ(s)|2ds+ 4ρc1|g|2 + 4ρc1(|g|2 +R2)2

+ (1 − 2ρl2 + 2ρ2l4)

∫ T

0

|φ(s)|2ds.

(3.36)

We notice that, for the inequality ‖G(ψ, φ)‖Z ≤ R to hold, we shall have

1 − 2ργ2 + 8c1ρ+ 2ρ2γ4 + 4ρc1

{ |g|2 + (|g|2 +R2)2

R2

}
≤ 1(3.37)

and

1 − 2ρl22ρ2l4 + 4ρc1

{ |g|2 + (|g|2 +R2)2

R2

}
≤ 1.(3.38)

It is obvious that, for γ large enough, (3.37) holds true with

ρ ≤ γ2 − 4c1 − 2c1
{ |g|2+(|g|2+R2)2

R2

}
γ4

.(3.39)

As for (3.38), the inequality holds for l large enough; however, choosing l large enough
makes the control very expensive, so for practical reasons, we will avoid this choice.
The price to pay is to choose R and g small enough. We now make precise what we
mean by choosing R and g small. Let θ ∈ (0, 1), and assume that |g|2 ≤ R2+θ. Then
(3.38) holds true, provided

−2l2 + 2ρl4 + 4c1
{
Rθ +R2(Rθ + 1)2

} ≤ 0.(3.40)

For (3.40) to hold, it is enough to choose R and ρ so that

−l2 + 4c1
{
Rθ +R2(Rθ + 1)2} ≤ 0,

−l2 + 2ρl4 ≤ 0.
(3.41)

Since we may choose R as small as we want, this completes the proof.
Proposition 3.4. Assume that γ is large enough and that R and |g|L2 are small

enough. Then there exists ρ2 > 0 such that G is a contraction from X (R) into X (R)
for ρ < ρ2.

Proof. Let (ui, ũi) be the solution of (3.3)–(3.4) with (ψ, φ) replaced by (ψi, φi),
i = 1, 2. Let u = u1 − u2, ψ = ψ1 − ψ2, and φ = φ1 − φ2. Then (u, ũ, ψ, φ) satisfies

du

dt
+ νAu+B(u, U) +B(U, u) +B(u1, u) +B(u, u2) = B1ψ + B2φ,

u ∈ V,

u = 0 at t = 0,

(3.42)
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−dũ

dt
+ νA∗ũ+B′(U + u1)

∗ũ+B′(u)∗ũ2 = C∗
1C1u,

ũ(t) ∈ V, t < T,

ũ(T ) = C∗
2C2u(T ) ∈ H,

(3.43)

{
γ2ψ − B∗

1 ũ = 0,

l2φ+ B∗
2 ũ = 0.

(3.44)

Now set G(ψ, φ) = G(ψ1, φ1)−G(ψ2, φ2), where G is given as in (3.24). We shall prove
that G is a contraction on X (R). To this end, it suffices to show that ‖G(ψ, φ)‖Z ≤
k‖(ψ, φ)‖Z for some 0 < k < 1. For this purpose we need some estimates on u and ũ.

Multiplying (3.42)1 by u, we derive

|u(t)|2L2 ≤ eM1(t)

∫ t

0

(|ψ(s)|2L2 + |φ|2L2)ds,

1

t

∫ t

0

‖u(s)‖2ds ≤ 1

t
eM1(t)

∫ t

0

(|ψ(s)|2L2 + |φ|2L2)ds,

(3.45)

where

M1(t) = c

∫ t

0

(‖U(s)‖2 + ‖u2(s)‖2)ds ≤ c1.(3.46)

Let us notice that

〈B′(U + u1)
∗ũ+B′(u)∗ũ2, ũ〉V ′,V = b(U + u1, ũ, ũ)

+ b(ũ, U + u1, ũ) + b(u, ũ, ũ2) + b(ũ, u, ũ2).

(3.47)

Moreover,

|b(ũ, U + u1, ũ)| ≤ c|ũ|L2‖ũ‖(‖U‖ + ‖u1‖)
≤ ν

8‖ũ‖2 + c(‖U‖2 + ‖u1‖2)|ũ|2L2 ,
(3.48)

|b(u, ũ, ũ2)| ≤ c|u| 12L2‖u‖ 1
2 ‖ũ‖|ũ2|

1
2

L2‖ũ2‖ 1
2

≤ ν
8‖ũ‖2 + c|u|L2‖u‖|ũ2|L2‖ũ2‖,

(3.49)

|b(ũ, u, ũ2)| ≤ c|ũ| 12L2‖ũ‖ 1
2 ‖u‖|ũ2|

1
2

L2‖ũ2‖ 1
2

≤ ν
8‖ũ‖2 + c|ũ| 23L2‖u‖ 4

3 |ũ2|
2
3

L2‖ũ2‖ 2
3

≤ ν
8‖ũ‖2 + c‖u‖2|ũ2|L2 + c|ũ|2L2‖ũ2‖2.

(3.50)

Multiplying (3.43)1 by ũ and using (3.47)–(3.50), we obtain

− 1
2
d
dt |ũ|2L2 + ν‖ũ‖2 ≤ c|C1u|2L2 + ν

2‖ũ‖2 + c‖u‖2|ũ2|L2 + c(‖U‖2 + ‖u1‖2)|ũ|2L2

+ c|u|L2‖u‖|ũ2|L2‖ũ2‖ + c|ũ|2L2‖ũ2‖2,

(3.51)
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from which we derive (using (3.45))

|ũ(t)|2L2 +

∫ T

t

‖ũ(s)‖2ds ≤ eN1(t)|C2u(T )|2L2 + eN1(t)

∫ T

t

|C1u(s)|2L2ds

+ eN1(t)

∫ T

t

(‖u‖2|ũ2|L2 + |u(s)|L2‖u(s)‖|ũ2|L2‖ũ2(s)‖)ds

≤ eN1(t)|C2u(T )|2L2 + eN1(t)

∫ T

t

|C1u(s)|2L2ds+ eN1(t)

∫ T

t

‖u‖2|ũ2|L2ds

+ eN1(t) sup
s∈[0,T ]

|u(s)|L2

∫ T

t

|ũ2(s)|L2

(∫ T

t

‖u(s)‖2ds

) 1
2
(∫ T

t

‖ũ2(s)‖2ds

) 1
2

≤ c1
(
(R2 + |g|2) 1

2 +R2 + |g|2) ∫ T

0

(|ψ(s)|2L2 + |φ(s)|2L2)ds

+ c1

∫ T

0

|C1u(s)|2ds+ c1|C2u(T )|2,

(3.52)

where N1(t) = c
∫ T
t

(‖U(s)‖2 + ‖u1(s)‖2 + ‖ũ2(s)‖2)ds ≤ c1.
Now, proceeding as in the proof of Proposition 3.3, we get

‖G(ψ, φ)‖2
Z =

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds− 2ργ2

∫ T

0

|ψ(s)|2ds− 2ρl2
∫ T

0

|φ(s)|2ds

+ 4ρ

∫ T

0

(ψ,B∗
1 ũ)ds− 2ρ

∫ T

0

|C1u(s)|2ds+ 2ρ

∫ T

0

b(u, u, ũ)ds+ 4ρ

∫ T

0

b(u, u, ũ2)ds

− 2ρ|C2u(T )|2 + ρ2

∫ T

0

|γ2ψ − B∗
1 ũ|2ds+ ρ2

∫ T

0

|l2φ+ B∗
2 ũ|2ds.

(3.53)

Thanks to Young’s inequality and the continuity of the operators B∗
1 and B∗

2 , it follows
from (3.53) that

‖G(ψ, φ)‖2
Z ≤

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds− 2ργ2

∫ T

0

|ψ(s)|2ds− 2ρl2
∫ T

0

|φ(s)|2ds

+ 4ρc1
ε

∫ T

0

|ψ|2ds+ (ερ+ 4ρ2c1)

∫ T

0

|ũ|2ds− 2ρ

∫ T

0

|C1u(s)|2ds+ 2ρ

∫ T

0

b(u, u, ũ)ds

+ 4ρ

∫ T

0

b(u, u, ũ2)ds− 2ρ|C2u(T )|2 + 2ρ2γ4

∫ T

0

|ψ|2ds

+ 2ρ2l4
∫ T

0

|φ|2ds.

(3.54)

On the other hand, using (3.45) and (3.52), we get

∫ T

0

|b(u, u, ũ)|ds ≤ c1

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds{∫ T

0

|C1u(s)|2ds+ |C2u(T )|2

+
[
(R2 + |g|2) + (R2 + |g|2) 1

2

] ∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds} 1
2

≤ c1R

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds for R small enough.

(3.55)



ADJOINT-BASED ITERATIVE METHOD 315

Similarly, one can show that∫ T

0

|b(u, u, ũ2)|ds ≤ c1R

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds.(3.56)

Reporting (3.55) and (3.56) in (3.53), using (3.52), and choosing ε = 2
c1

, we find

‖G(ψ, φ)‖2
Z ≤

∫ T

0

(|ψ(s)|2 + |φ(s)|2) ds
+ (−2ργ2 + 2ρc1 + 2ρ

c1
R + 2ρ2γ4 + 4ρ2c1 + 6ρRc1)

∫ T

0

|ψ(s)|2ds

+ (−2ρl2 + 2ρ2l4 + 4ρ2c1 + 2ρ
c1
R + 6ρRc1)

∫ T

0

|φ(s)|2ds.

(3.57)

One easily derives from (3.57) that, for G to be a contraction, one shall have

1 − 2ργ2 + 2ρc1 +
2ρ

c1
R + 2ρ2γ4 + 4ρ2c1 + 6ρRc1 < 1(3.58)

and

1 − 2ρl2 + 2ρ2l4 + 4ρ2c1 +
2ρ

c1
R + 6ρRc1 < 1.(3.59)

It is obvious that, for γ large enough, (3.58) holds true with

ρ <
γ2 − c1 − 3c1R− R

c1

γ4 + 2c1
.(3.60)

As for (3.59), it is easily seen that it holds for R and ρ satisfying

ρ <
l2

2(l4 + 2c1)
, R <

l2

2(3c1 + 2
c1

)
,(3.61)

which completes the proof of Proposition 3.4.
Proposition 3.5. Under the hypotheses of Propositions 3.3 and 3.4, the system

(3.3)–(3.5) has a unique solution (u, ũ, ψ, φ) for which (ψ, φ) ∈ X (R).
Proof. It follows from Propositions 3.3 and 3.4 and the fact that if (ψ, φ) is a

fixed point of G, then (u, ũ, ψ, φ) is a solution to (3.3)–(3.5), where (u, ũ) is given by
(3.3)–(3.4).

3.2. Data assimilation. A classical control problem arising in meteorology and
oceanography in relation to data assimilation is the adjustment of initial conditions
in order to obtain a flow that agrees with a desired target flow (i.e., the observations).
Chaotic problems, such as weather system, are highly susceptible to the small distur-
bance present in all physical systems. Given a set of measurements of some actual
flow v on [0, T ], the problem is to determine a “best” estimate as to the initial state of
the model u that leads to the observed system behavior, while simultaneously forcing
the model with the worst-case disturbance which perturbs u away from the observed
system behavior v. Define w = u − v as the amount by which the estimated flow
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u differs from the observed flow v. The cost function considered for this problem is
given by

J (ψ, φ) =
1

2

∫ T

0

|C1w|2L2 dt+
1

2
|C2w(T )|2L2 +

1

2

∫ T

0

����C3ν
∂w

∂n

����2

L2(∂Ω)

dt

+
l2

2
|φ|2L2 − γ2

∫ T

0

|ψ|2L2 dt,

(3.62)

where C∗
3C3ν(∂w/∂n) · �n = 0. The measurements of the actual flow C1v, C2v(T ), and

C3ν(∂v/∂n)|∂Ω are assumed to be given. More detail on the functional J is given
in [6]. The results given in this subsection are generalizations of the ones given in
the previous subsection; therefore we will omit the proofs. We consider the following
robust control problem, related to data assimilation and referred to as Problem II.

Problem II. Find (ψ̄, φ̄) ∈ L2(0, T ;L2(Ω)) × L2(Ω) such that

J (ψ̄, φ̄) = min
φ∈D

sup
ψ∈X

J (ψ, φ) = max
ψ∈X

inf
φ∈D

J (ψ, φ),

subject to the Navier–Stokes equation
du

dt
+ νAu+B(U, u) +B(u, U) + τB(u, u) = B1ψ,

u ∈ V,

u = B2φ at t = 0,

(3.63)

where X = L2(0, T ;L2(Ω)) and D = L2(Ω). Hereafter, we assume that C3 ≡ 0. To
Problem II we associate the following coupled system:

du

dt
+ νAu+B(U, u) +B(u, U) + τB(u, u) = B1ψ,

u ∈ V,

u = B2φ at t = 0,

(3.64)


−dũ

dt
+ νAũ+B′(U)∗ũ+ τB′(u)∗ũ = C∗

1C1(u− v),
ũ(t) ∈ V, t < T,

ũ(T ) = C∗
2C2(u− v)(T ) ∈ H,

(3.65)

{
γ2ψ − B∗

1 ũ = 0,

l2φ+ B∗
2 ũ(0) = 0,

(3.66)

where A∗ is defined by

〈u′, A∗ũ〉 = 〈Au′, ũ〉 for u′ ∈ D(A) and ũ ∈ V,(3.67)

and B2 is a mapping from L2(Ω) to V . For the data assimilation (3.64)–(3.66), the
operator G is defined from Z ≡ L2(0, T ;L2(Ω)) × L2(Ω) into itself by

G(ψ, φ) = (ψ, φ) − ρ
(
γ2ψ − B∗

1 ũ, l
2φ+ B∗

2 ũ(0)
)
,(3.68)
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where ρ is a positive constant and ũ is given by (3.64)–(3.65). The results obtained
for the body force control extend to the data assimilation problem. In particular, if
we set

χ(R) = {(ψ, φ) ∈ Z, ‖(ψ, φ)‖Z ≤ R},

then we have the following result.
Proposition 3.6. Assume that γ is large enough and that ρ, v, and R are small

enough. Then G is a strict contraction from X (R) into itself.
Proof. The proof is completely similar to that of Proposition 3.4.

3.3. Iterative method. In this section, we study an iterative method for the nu-
merical solution of the robust control problems presented in this article. This method
was proposed in [6] for the numerical solution of Problems I and II. Hereafter, we
prove the convergence of the algorithm and we obtain an estimate to the convergence
rate. We restrict ourselves to the nonlinear body force control problem (3.3)–(3.5),
although the method also applies to the data assimilation problem (3.64)–(3.66). For
the sake of clarity, we recall the algorithm proposed in [6].

Algorithm.
(1) Initialize k = 0 and (ψ0, φ0) = 0 on t ∈ [0, T ], where k is the iteration index

and (ψk, φk) is the numerical approximation of the disturbance and the control at the
kth iteration of the algorithm.

(2) Determine the state uk on [0, T ] from the state equation based on the initial
conditions g with the forcing (ψk, φk).

(3) Determine the state ũk on [0, T ] from the adjoint equation based on the
state uk.

(4) Determine the local expression of the gradients

DJ
Dψ

(ψk, φk) and
DJ
Dφ

(ψk, φk).

(5) Determine the updated disturbance ψk+1 with

ψk+1 = ψk + αk
DJ
Dψ

(ψk, φk),

where 0 < M1 ≤ αk ≤ M2 < 1, where M1 and M2 depend on the second derivative
of J .

(6) Determine the updated control φk+1 with

φk+1 = φk − βk
DJ
Dφ

(ψk, φk),

where 0 < M1 ≤ βk ≤ M2 < 1.
(7) Increment index: k = k + 1. Repeat from step (2) until convergence.
Hereafter, we will prove the convergence of the previous algorithm when the

iteration parameters αk and βk are constant and small enough.
To proceed, set

Y =

{
L2(0, T ;L2(Ω)) for the linear case,

X (R) for the nonlinear case.
(3.69)
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Propositions 3.2, 3.4, and 3.6 prove that, under certain conditions, G is a strict
contraction from Y into Y. From the contraction mapping principle, G has a unique
fixed point (ψ, φ) ∈ Y, which is a solution to the robust control problem (3.3)–(3.5).
To approximate the solution (ψ, φ), we consider the following well known fixed-point
iterative method:

Choose (ψ0, φ0) ∈ Y,
(ψk+1, φk+1) = G(ψk, φk) for k ≥ 0.

(3.70)

Then the following results hold true.
Proposition 3.7. For γ and l large enough, the sequence (ψk, φk) defined by

(3.70) converges to the unique solution (ψ, φ) ∈ Y of the robust control problem
(3.3)–(3.5) given by Proposition 3.5. Moreover, we have the following estimate of
the convergence rate:(‖ψk − ψ‖2

Y + ‖φk − φ‖2
Y

) 1
2 ≤ Qk(1 −Q)−1

(‖ψ0 − ψ‖2
Y + ‖φ0 − φ‖2

Y

) 1
2 ,(3.71)

where 0 < Q < 1, with

Q2 =


max{1 − 2ργ2 + 2c1ρ+ 2ρ2(γ4 + 2c1), 1 − 2ρl2 + 2ρ2(l4 + 2c1)}

for the linear case,

max{1 − 2ργ2 + 2ρc1 + 2ρ
c1
R + 2ρ2γ4 + 4ρ2c1 + 6ρRc1,

1 − 2ρl2 + 2ρ2l4 + 4ρ2c1 + 2ρ
c1
R + 6ρRc1} for the nonlinear case,

(3.72)

where γ is large enough and ρ and R are small enough.
Proof. Notice that

‖G(ψ1, φ1) −G(ψ2, φ2)‖Z ≤ Q
(‖ψ1 − ψ2‖2

X + ‖φ1 − φ2‖2
X

) 1
2

for all (ψ1, φ1), (ψ2, φ2) ∈ Y. Therefore the proof follows directly from the contraction
mapping theory [17].

Remark 3.1. Let us notice that (ψk+1, φk+1) = G(ψk, φk) is computed as
duk

dt
+ νAuk +B(U, uk) +B(uk, U) +B(uk, uk) = B1ψ

k + B2φ
k,

uk ∈ V,

uk = g at t = 0,

(3.73)


−dũk

dt
+ νA∗ũk +B′(U + uk)∗ũk = C∗

1C1u
k,

ũk(t) ∈ V, t < T,

ũk(T ) = C∗
2C2u

k(T ) ∈ H,

(3.74)

{
ψk+1 = ψk − ρ(γ2ψk − B∗

1 ũ
k),

φk+1 = φk − ρ(l2φk + B∗
2 ũ

k).
(3.75)

Since (see [6])

DJ

Dψ
(ψk, φk) = B∗

1 ũ
k − γ2ψk and

DJ

Dφ
(ψk, φk) = B∗

2 ũ
k + l2φk,(3.76)



ADJOINT-BASED ITERATIVE METHOD 319

it follows that (3.75) can be rewritten as{
ψk+1 = ψk + ρDJ

Dψ (ψk, φk),

φk+1 = φk − ρDJ
Dφ (ψk, φk),

(3.77)

which is exactly steps (5) and (6) of the algorithm proposed in [6]. The first to fourth
steps are given by (3.73)–(3.75). Therefore, the fixed-point iteration method (3.70) is
a particular case of the algorithm proposed in [6] with βk = ρ and αk = ρ. This proves
the convergence of the aforementioned iterative method. Moreover, Proposition 3.7
gives an estimate of the convergence rate.

4. Numerical results. In this section, we present some numerical solutions of
the data assimilation problem (3.64)–(3.66) obtained using the fixed-point iteration
method described in the previous section. A major advantage of the algorithm is that
it requires less storage of the fields than do conventional methods such as the Riccati
solver. The method is based on repeated computations of the adjoint field (which is
just as complicated as the state field). The equations considered in this section are
the quasi-geostrophic equations of the ocean given by

∂ω

∂t
− ν∆ω + J(ψ, ω) + β

∂ψ

∂x
= f,

ω = 0 on ∂Ω,

ω(x, 0) = ω0,

(4.1)

where ψ is defined by {
∆ψ = ω,

ψ = 0 on ∂Ω.
(4.2)

The unknown function ω represents the vorticity of the fluid, and the function ψ is
the streamfunction. The constant β > 0 is the meridional gradient of the Coriolis
parameter, and ν > 0 is a constant. The Jacobian operator J is defined by

J(u, v) =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
.

The system (4.1)–(4.2) has been extensively used in analytical and numerical study of
ocean models [4, 7, 8, 10, 24]. This system is relatively simple as compared to other
ocean models such as the primitive equations of the ocean [12, 13] or the multilayer
shallow water equations in [29], but we prefer to emphasize in this article the control
aspects and do not look for the most involved ocean model. Another advantage of the
system (4.1)–(4.2) is that it captures the key features of large scale oceanic circulation
and filters out undesired fast (high frequency) oscillations, which are not easy to
handle numerically. Using the notation of [20], we can rewrite the quasi-geostrophic
equations into the form

dω

dt
+ νAω +B(ω, ω) + Eω = f,

ω ∈ V,

ω = ω0 at t = 0.

(4.3)



320 T. TACHIM MEDJO AND L. R. TCHEUGOUE TEBOU

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 1. Target (streamfunction) flow and state (streamfunction) flow at t = T = 0.1, for
ν = 0.1, γ = 20.0, l = 20.0.

Define w = ω − v as the amount by which the estimated flow ω differs from the
observed flow v. The cost function considered in this section is given by (3.62).
For simplification, the linear operators C1, C2, and C3 are chosen as C1w = d1w,
C2w = d2w, and C3 = 0, where d1 and d2 are constants. The functional J (f1, f2)
measures the errors C1w and C2w on the interior and at the final time, respectively.
To find the best estimate ω of the actual flow v, we seek the best initial condition f2

subject to the worst-case disturbance forcing f1 such that J is minimized with respect
to f1 and maximized with respect to f1, where ω is a solution of the quasi-geostrophic
equations (4.3). More detail on the numerical results presented hereafter will appear
elsewhere.

Experiment. The focus of this numerical experiment is to apply the algorithm
described previously to approximate the solutions of the data assimilation problem
(3.64)–(3.66). In our simulations, the (nondimensional) domain is the rectangular
basin [0, 1] × [0, 2]. In order to compute the solutions of (3.64)–(3.66), we need to
discretize the problem in both time and space. For the time discretization, the nu-
merical scheme presented in [19] is used for the time integration of the state and
the adjoint equation. For the space discretization, we use a centered finite-difference
scheme of order 2. For the Jacobian operator, we use Arakawa’s method [3]. The
total (nondimensional) integration time is T = 0.1, and the time step ∆t = 1.10−4 in
our computations. The total number of grid points is 60× 120 (i.e., ∆x = ∆y = 1

60 ).
For the iteration parameters, we set ρ = 10−2 in the computations presented in this
article. In all the computations presented hereafter, the observed (vorticity) flow v is
obtained by running the quasi-geostrophic model (4.1) with the forcing f = −Γ sinπy
and the initial conditions ω(0) = 0 until steady state is reached. We then use the
results as given data. For the values of the (nondimensional) viscosity ν used in our
computations, the observed flow is time-independent, and it is obtained as a steady
state of the quasi-geostrophic equation (4.1). The purpose of our simulations is to re-
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Fig. 2. Control φ and disturbance ψ at t = T = 0.1, for ν = 0.1, γ = 20.0, l = 20.0.
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Fig. 3. Absolute error (4.4) for ν = 0.05, γ = 20.0, l = 20.0.

construct the observed flow using the robust control model (3.64)–(3.66). To achieve
that, we apply the fixed-point iteration method described in the previous section until
convergence is reached. The criterion for the termination of the algorithm is given by

( |ψk+1 − ψk|2 + |φk+1 − φk|2
|ψk+1|2 + |φk+1|2

) 1
2

< ε,(4.4)
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Fig. 4. Target (streamfunction) flow and state (streamfunction) flow at t = T = 0.3, for
ν = 0.05, γ = 1.0, l = 10.0.
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Fig. 5. Control φ and disturbance ψ at t = T = 0.3, for ν = 0.05, γ = 1.0, l = 10.0.

where ε = h2, h is the space step in the finite-difference approximation, and | · | is
a finite-difference approximation of the L2(0, T ;L2(Ω))-norm. The following figures
present the numerical results obtained from the simulations at time t = T for differ-
ent values of the “cost” parameter (γ, l) and (nondimensional) viscosity number ν.
Figure 1 presents the target (streamfunction) flow at t = T , the state (streamfunc-
tion) flow at t = T for the (nondimensional) viscosity number ν = 0.1, and the cost
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Fig. 6. Target (streamfunction) flow and state (streamfunction) flow at t = T = 0.1, for
ν = 0.05, γ = 10.0, l = 10.0.
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Fig. 7. Control φ and disturbance ψ at t = T = 0.1, for ν = 0.05, γ = 10.0, l = 10.0.

parameter (γ, l) = (20.0, 20.0). Figure 2 presents the perturbation ψ at t = T and the
control φ for the (nondimensional) viscosity number ν = 0.1 and the cost parameter
(γ, l) = (20.0, 20.0). For these parameters, the state flow accurately approximates the
target flow. In fact, as for the target flow, the state flow is characterized by two gyres,
one cyclonic in the northern part of the basin and one anticyclonic in the southern
part. The two gyres are separated by a meandering jet [23, 24]. As shown in Figure 2,
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the contour lines for the control and the disturbances are the same in shape except
that they have opposite signs. This suggests that the algorithm has converged to a
saddle point of the functional J . In fact, a saddle point must satisfy the condition
(3.66) and in our simulations Bi = diI, where I is the identity operator and di > 0
is a constant. This is also confirmed by the convergence rate given in Figure 3. A
similar phenomenon appears in Figures 4–5 and Figures 6–7, for which the param-
eters (ν, γ, l) are (0.05, 1.0, 10.0) and (0.05, 10.0, 10.0), respectively. More numerical
simulations will be presented elsewhere.
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Abstract. A general framework is introduced to analyze the approximation properties of
mapped Legendre polynomials and of interpolations based on mapped Legendre–Gauss–Lobatto
points. Optimal error estimates featuring explicit expressions on the mapping parameters for several
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1. Introduction. In a spectral method, global polynomials are used as trial
functions to approximate solutions of partial differential equations (PDEs); if the un-
derlying solutions are smooth throughout the domain, the spectral method will pro-
vide very accurate approximations with significantly fewer degrees of freedom when
compared with finite difference or finite element methods (cf. [13, 8, 7]). However,
if the solutions of PDEs exhibit localized rapid variations such as spikes, sharp inter-
faces, or internal layers, standard spectral methods usually fail to produce accurate
approximations with a reasonable number of degrees of freedom, for the grid is fixed
in a standard spectral method and does not take into account the localized solution
behaviors. Thus, for problems with localized rapid variations, it is advisable to use a
grid adapted to the localized solution behaviors rather than a standard fixed grid.

However, unlike in a finite difference or finite element method, spectral methods
cannot gracefully handle an arbitrarily locally refined grid, for the spectral accuracy
will usually be lost due to the fact that the locally refined grid cannot, in general, be
“smoothly” mapped to the standard spectral grid. Thus the adaptivity for spectral
methods is best realized through a “smooth” map which transforms a function having
sharp interfaces in the physical domain to a slow varying function on the computa-
tional domain. Hence two questions need to be addressed: (i) what is the influence
of the mapping on the accuracy of the spectral methods? (ii) how do we adaptively
determine a suitable mapping? In this paper, we aim to provide a complete answer to
the first question, which is a first step toward a long-term goal of designing a robust
adaptive spectral method for solving PDEs.

In general, a coordinate transformation takes the form

x = g(y;λ), y ∈ [−1, 1], λ ∈ Dλ,(1.1)
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such that

g′(y;λ) > 0, g(±1, λ) = ±1, λ ∈ Dλ,(1.2)

where λ is a parameter vector and Dλ is the feasible domain of λ, and ′ denotes the
derivative with respect to y so (1.1) maps the interval [−1, 1] univalently onto itself.
Without loss of generality, we assume that the mapping (1.1) is explicitly invertible
and denote

y = g−1(x;λ) := h(x;λ), x, y ∈ [−1, 1], λ ∈ Dλ.

Several interesting mappings have been proposed and implemented in practice.
In particular, Kosloff and Tal-Ezer [20] introduced the one-parameter mapping

x = g(y;λ) =
arcsin(λy)

arcsinλ
, 0 < λ < 1.(1.3)

This mapping stretches the Chebyshev–Gauss–Lobatto grid toward a uniform grid as
λ → 1−. Bayliss et al. [3] used a mapped Chebyshev method to treat the boundary
layer problem with the mapping

x = g(y;λ) = (4/π) arctan(tan(π(y − 1)/4)/λ) + 1, λ > 0.(1.4)

The mapping clusters more and more points near x = −1 (resp., x = 1) as λ → 0+

(resp., as λ → +∞). Bayliss and Turkel [4] introduced a two-parameter mapping

x = g(y;λ) = λ2 + tan(a1(y − a0))/λ1, λ1 > 0, −1 ≤ λ2 < 1,(1.5)

where a0 and a1 are chosen to satisfy (1.2). Here, as λ1 increases, more and more
points are clustered near x = λ2. These mappings have been successfully used to
treat some practical problems with localized rapid variations. We note that in [1],
the authors used properties special to Chebyshev polynomials to derive some error
estimates on projection and interpolation errors of the mapped Chebyshev methods
with the mapping (1.3). However, as far as we know, there is neither a systematic
framework for analyzing the mapped spectral methods for solving PDEs nor a precise
rigorous analysis on how the mapping parameter(s) would affect the accuracy. For
example, there have been controversies as to whether λ (with λ close to 1) in [20]
would degrade the accuracy [20, 9, 1, 23].

The main purposes of this paper are: (i) to establish a general framework for
analyzing the mapped Legendre spectral methods as a first step toward an efficient
adaptive spectral method; (ii) to provide precise information on how the mapping
parameters affect the accuracy of the mapped spectral method.

For a given mapping, there are essentially two approaches to implement (and
analyze) a mapped spectral method. In the first approach, we use x = g(y;λ) to
transform the original equation (with localized rapid variations in x) to a mapped
equation (with smooth behaviors in y), and then apply a standard spectral method
(in y) to the mapped equation (see, for instance, [14, 17]). The main advantage of this
approach is that standard spectral approximation results can be used for the analysis,
but its main disadvantage is that the mapped equation is usually very complicated
and its analysis is often cumbersome. In the second approach, we do not transform the
equation, but we approximate its solution using a new family of orthogonal functions
{pk(h(x;λ))}, which are obtained by applying the mapping y = h(x;λ) to classical
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orthogonal polynomials {pk(y)} (see, for instance, [6, 18, 16]) and which are suitable
for capturing the localized rapid variations in the solution of the given problem. The
analysis of this approach will require approximation results by using the new family of
orthogonal functions. The advantage of this approach is that once these approxima-
tion results are established, it can be directly (i.e., without using a transform) applied
to a large class of problems. We shall take the second approach and establish approx-
imation results for the mapped Legendre polynomials. We emphasize that the two
approaches will yield essentially the same approximate solutions (although the two
implementations can be quite different). Hence the dependence of the error estimates
on the mapping parameters established here for the second approach is essentially
valid for the first approach.

The remainder of the paper is organized as follows. In the next section, we
introduce the general framework for the mapped Legendre spectral and pseudospectral
approximations. In section 3, we apply our general results to the specific mappings
(1.3)–(1.5). In section 4, we consider the mapped Legendre approximations for a
model problem and present some illustrative numerical results. Some concluding
remarks are given in section 5.

2. The general framework. In this section, we introduce a general framework
for the error analysis of Legendre spectral methods using mapping (1.1) with (1.2).
We assume that for a certain positive integer r ≥ 1,

h(x;λ) ∈ Cr((−1, 1)), λ ∈ Dλ.(2.1)

2.1. Preliminaries. We first introduce some notation. Let I = (−1, 1), and let
χ(x) > 0 be a given weight function on I. We define

L2
χ(I) = {v | v is measurable on I and ‖v‖χ < ∞},

equipped with the following inner product and norm:

(u, v)χ =

∫
I

u(x)v(x)χ(x)dx, ‖v‖χ = (v, v)
1
2
χ .

The weighted Sobolev spaces Hm
χ (I) and Hm

0,χ(I) are defined as usual. The norm of
Hm

χ (I) is defined as

‖v‖m,χ =

(
m∑
k=0

‖∂k
xv‖2

χ

) 1
2

.

In case χ(x) ≡ 1, we shall drop the subscript χ in the notation for the sake of
simplicity.

Let ωα,β(x) = (1−x)α(1+x)β be the Jacobi weight function and N be the set of
all nonnegative integers. For any m ∈ N, we define the nonuniformly weighted Hilbert
space

Am(I) = {v | ∂k
xv ∈ L2

ωk,k(I), 0 ≤ k ≤ m}(2.2)

equipped with the inner product, the seminorm, and the norm as follows:

(u, v)m,A =

m∑
k=0

(∂k
xu, ∂k

xv)ωk,k , |v|m,A = ‖∂m
x v‖ωm,m , ‖v‖m,A = (v, v)

1
2

m,A.
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For any real r > 0, we define the space Ar(I) and its norm by space interpolation.
We shall use the expression A � B to mean that there exist a generic positive

constant c, independent of any function, N , and the parameters of the mappings, such
that A ≤ cB.

Let Ll(y) be the Legendre polynomial of degree l, which is the eigenfunction of
the Sturm–Liouville problem

∂y((1− y2)∂yv(y)) + µv(y) = 0, y ∈ I,(2.3)

with the corresponding eigenvalues µl = l(l + 1), l = 0, 1, 2, . . . . We have Ll(±1) =
(±1)l and the following recurrence relations:

Ll+1(y) =
2l + 1

l + 1
yLl(y)− l

l + 1
Ll−1(y), l ≥ 1,(2.4)

(2l + 1)Ll(y) = ∂yLl+1(y)− ∂yLl−1(y), l ≥ 1.(2.5)

The set of Legendre polynomials forms an L2(I)-orthogonal system, i.e.,∫
I

Ll(y)Lm(y)dy = γlδl,m, with γl =
2

2l + 1
.(2.6)

For any v ∈ L2(I), we write

v(y) =

∞∑
l=0

v̂lLl(y), with v̂l =
1

γl
(v, Ll).

We have the following equivalence (see [17]):

‖∂r
yv‖ωr,r ∼

( ∞∑
l=r

µr
l v̂

2
l γl

) 1
2

∀v ∈ Ar(I).(2.7)

We now recall some results on the Legendre spectral approximations. Let PN be
the set of all polynomials of degree less than or equal to N and P0

N = {φ ∈ PN :

φ(±1) = 0}. We define P̂N : L2(I)→ PN the L2(I)-orthogonal projector by

(P̂Nv − v, φ) = 0 ∀φ ∈ PN .(2.8)

The following result was proved in [11] (see also [2, 15]).
Lemma 2.1.

‖∂µ
y (P̂Nv − v)‖ωµ,µ � Nµ−r‖∂r

yv‖ωr,r , 0 ≤ µ ≤ r, v ∈ Ar(I).(2.9)

We define the H1(I)-orthogonal projector P̂ 1
N : H1(I)→ PN by

(P̂ 1
Nv − v, φ)1 = 0 ∀φ ∈ PN(2.10)

and the H1
0 (I)-orthogonal projector P̂ 1,0

N : H1
0 (I)→ P0

N by

(∂y(P̂
1,0
N v − v), ∂yφ) = 0 ∀φ ∈ P0

N .(2.11)
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As two special cases of Theorem 3.1 and Theorem 3.4 in Guo and Wang [19], we have
the following lemma.

Lemma 2.2. If v ∈ H1(I) and ∂r
yv ∈ L2

ωr−1,r−1(I), then

‖P̂ 1
Nv − v‖µ � Nµ−r‖∂r

yv‖ωr−1,r−1 , 0 ≤ µ ≤ 1 ≤ r.(2.12)

If v ∈ H1
0 (I) and ∂r

yv ∈ L2
ωr−1,r−1(I), then

‖P̂ 1,0
N v − v‖µ � Nµ−r‖∂r

yv‖ωr−1,r−1 , 0 ≤ µ ≤ 1 ≤ r.(2.13)

Next, let ζN,j , 0 ≤ j ≤ N, be the Legendre–Gauss–Lobatto (LGL) points, which
are the zeros of (1 − y2)∂yLN (y). We assume that they are arranged in ascending
order. There exists a unique set of Christoffel numbers {ωN,j} such that∫

I

φ(y)dy =

N∑
j=0

φ(ζN,j)ωN,j ∀φ ∈ P2N−1.(2.14)

In fact, we have

ωN,0 = ωN,N =
2

N(N + 1)
, ωN,j =

2

N(N + 1)
(LN (ζN,j))

−2, 1 ≤ j ≤ N − 1.
(2.15)

We define the discrete inner product and discrete norm as

(u, v)N =

N∑
j=0

u(ζN,j)v(ζN,j)ωN,j , ‖v‖N = (v, v)
1
2

N .

Note that we have (see, for instance, formula (21.8) of Bernardi and Maday [5])

‖φ‖ ≤ ‖φ‖N ≤
√
2 +N−1‖φ‖ ∀φ ∈ PN .(2.16)

On the other hand, we also have (see Theorem 4.9 of Guo and Wang [15])

‖v‖N � ‖v‖+N−1‖∂yv‖ω1,1 ∀v ∈ H1
0 (I).(2.17)

2.2. Mapped Legendre orthogonal approximations. For a given mapping
y = h(x;λ), we define the mapped Legendre polynomials by

L(λ)
l (x) = Ll(y) = Ll(h(x;λ)), l = 0, 1, 2, . . . .(2.18)

Due to h(±1;λ) = ±1, we have L(λ)
l (±1) = (±1)l. We denote the weight function

ωλ(x) := h′(x;λ) =
1

g′(y;λ)
.(2.19)

Thanks to (2.5), we have the recurrence relation

(2l + 1)ωλ(x)L(λ)
l (x) = ∂xL(λ)

l+1(x)− ∂xL(λ)
l−1(x), l ≥ 1.(2.20)



MAPPED LEGENDRE METHODS 331

By virtue of (2.6), the set {L(λ)
l }∞l=0 forms a complete orthogonal system in L2

ωλ
(I),

and consequently, for any v ∈ L2
ωλ
(I), we can write

v(x) =
∞∑
l=0

v̂
(λ)
l L(λ)

l (x), with v̂
(λ)
l =

1

γl
(v,L(λ)

l )ωλ
.(2.21)

Moreover, L(λ)
l is the eigenfunction of the Sturm–Liouville problem

w−1
λ (x)∂x(ω̃λ(x)∂xL(λ)

l (x)) + µlL(λ)
l (x) = 0, x ∈ I,

with ω̃λ(x) = (1−h2(x;λ))ω−1
λ (x). This implies that {∂xL(λ)

l }∞l=1 forms an orthogonal
system in L2

ω̃λ
(I), i.e.,∫

I

∂xL(λ)
l (x)∂xL(λ)

m (x)ω̃λ(x)dx = µlγlδl,m.(2.22)

We now consider error estimates for approximations using the orthogonal system

{L(λ)
l }∞l=0. For λ ∈ Dλ, we set VN,λ = span{L(λ)

0 ,L(λ)
1 , . . . ,L(λ)

N }. Let PN,λ : L2
ωλ
(I)→

VN,λ be the L2
ωλ
(I)-orthogonal projector defined by

(PN,λv − v, φ)ωλ
= 0 ∀φ ∈ VN,λ.(2.23)

For clarity, the following notation will be used in what follows:

Vλ(y) = v ◦ g(y;λ) = v(x), Φλ(y) = φ ◦ g(y;λ) = φ(x), x, y ∈ I, λ ∈ Dλ.(2.24)

For λ ∈ Dλ and r ∈ N, we define

Ar
λ(I) = {v ∈ L2

ωλ
(I) | |v|Ar

λ
= ‖(1− y2)

r
2 ∂r

yVλ‖ < ∞, y = h(x;λ)}(2.25)

and

Br
λ(I) = {v ∈ L2

ωλ
(I) | |v|Br

λ
= ‖(1− y2)

r−1
2 ∂r

yVλ‖ < ∞, y = h(x;λ)}.(2.26)

The following is a fundamental result for the mapped Legendre spectral approxi-
mations.

Theorem 2.1. For any v ∈ Ar
λ(I), λ ∈ Dλ, and r ≥ 1,

‖∂x(PN,λv − v)‖ω̃λ
+N‖PN,λv − v‖ωλ

� N1−r|v|Ar
λ
.(2.27)

Moreover, for r > 1,

|PN,λv(±1)− v(±1)| � N1−r|v|Ar
λ
.(2.28)

Proof. For v ∈ L2
ωλ
(I), we have Vλ ∈ L2(I), so we can write

v(x) =
∞∑
l=0

v̂
(λ)
l L(λ)

l (x) =

∞∑
j=0

V̂
(λ)
l Ll(y) = Vλ(y)(2.29)

with

v̂
(λ)
l =

1

γl
(v,L(λ)

l )ωλ
=
1

γl
(Vλ, Ll) = V̂

(λ)
l .(2.30)
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Let P̂N and PN,λ be the projectors defined in (2.8) and (2.23). We derive from
(2.30) and Lemma 2.1 with µ = 0 that

‖PN,λv −v‖2
ωλ
=

∞∑
l=N+1

(v̂
(λ)
l )2γl =

∞∑
l=N+1

(V̂
(λ)
l )2γl = ‖P̂NVλ − Vλ‖2

� N−2r‖(1− y2)
r
2 ∂r

yVλ‖2 = N−2r|v|2Ar
λ
.

(2.31)

On the other hand, since {∂yLl} is L2
ω1,1(I)-orthogonal, we derive from (2.22), (2.30),

and Lemma 2.1 with µ = 1 that

‖∂x(PN,λv − v)‖2
ω̃λ
=

∞∑
l=N+1

µlγl(v̂
(λ)
l )2 =

∞∑
l=N+1

µlγl(V̂
(λ)
l )2

= ‖∂y(P̂NVλ − Vλ)‖2
ω1,1 � N2(1−r)|v|2Ar

λ
.

Next, since |L(λ)
l (±1)| = 1, we derive from (2.7), (2.29), and (2.30) that

|PN,λv(±1)− v(±1)| ≤
∞∑

l=N+1

|V̂ (λ)
l | ≤ CN,r

( ∞∑
l=N+1

µr
l (V̂

(λ)
l )2γl

) 1
2

� CN,r‖∂r
yVλ‖ωr,r � CN,r|v|Ar

λ
,

where for r > 1,

CN,r =

( ∞∑
l=N+1

µ−r
l γ−1

l

) 1
2

�
( ∞∑

l=N+1

l1−2r

) 1
2

�
(∫ ∞

N

x1−2rdx

) 1
2

� N1−r.

The proof is complete.
When analyzing mapped Legendre spectral methods for numerical solutions of

PDEs, we often need to consider the H1
ωλ
(I)-orthogonal projection P 1

N,λ : H1
ωλ
(I)→

VN,λ defined by

(P 1
N,λv − v, φ)1,ωλ

= 0 ∀φ ∈ VN,λ.

Theorem 2.2. For any v ∈ H1
ωλ
(I) ∩ Br

λ(I), λ ∈ Dλ, and r ≥ 1,

‖P 1
N,λv − v‖1,ωλ

� (dλ,1 + 1)N
1−r|v|Br

λ
,(2.32)

where dλ,1 = maxx∈Ī |ωλ(x)|.
Proof. By (2.19) and (2.24),

‖φ − v‖2
1,ωλ

=

∫
I

(∂y(Φλ(y)− Vλ(y)))
2
(dy

dx

)2

dy +

∫
I

(Φλ(y)− Vλ(y))
2dy

≤ (dλ,1 + 1)
2‖Φλ − Vλ‖2

1.
(2.33)

Next, we take φ(x) = Φλ(y) = P̂ 1
NVλ(y) in (2.33), where P̂ 1

N is defined in (2.10), and
we obtain from the projection theorem and Lemma 2.2 that

‖P 1
N,λv − v‖1,ωλ

= inf
φ∈VN,λ

‖φ − v‖1,ωλ
≤ (dλ,1 + 1)‖P̂ 1

NVλ − Vλ‖1

� (dλ,1 + 1)N
1−r‖∂r

yVλ‖ωr−1,r−1 � (dλ,1 + 1)N
1−r|v|Br

λ
.
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Next, we consider the bilinear form

a(ν)
ωλ
(u, v) = ν1(∂xu, ∂x(vωλ)) + ν2(u, v)ωλ

(where ν = (ν1, ν2) and νi > 0, i = 1, 2) associated to the mapped Legendre spectral
approximation of the model elliptic equation

−µ1vxx + µ2v = f, v(±1) = 0.(2.34)

Due to the nonuniform weight function ωλ(x), the bilinear form a
(ν)
ωλ (u, v) is not sym-

metric. We first study its continuity and coercivity.
Lemma 2.3. For any u, v ∈ H1

ωλ
(I),

a(ν)
ωλ
(u, v) ≤ ν1(dλ,2 + 1)|u|1,ωλ

‖v‖1,ωλ
+ ν2‖u‖ωλ

‖v‖ωλ
,(2.35)

where

dλ,2 = max
x∈Ī

|ω−1
λ (x)∂xωλ(x)|.(2.36)

For any v ∈ H1
0,ωλ

(I),

a(ν)
ωλ
(v, v) ≥ ν1|v|21,ωλ

+
(

ν2 − ν1

2
dλ,3

)
‖v‖2

ωλ
,(2.37)

where

dλ,3 = max
x∈Ī

{ω−1
λ (x)∂2

xωλ(x)}.(2.38)

Proof. By the Cauchy inequality,

a
(ν)
ωλ (u, v) ≤ ν1|(∂xu, ∂xv)ωλ

+ (∂xu, v∂xωλ)|+ ν2|(u, v)ωλ
|

≤ ν1(|u|1,ωλ
|v|1,ωλ

+max
x∈Ī

|ω−1
λ (x)∂xωλ(x)||u|1,ωλ

‖v‖ωλ
) + ν2‖u‖ωλ

‖v‖ωλ

≤ ν1(dλ,2 + 1)|u|1,ωλ
‖v‖1,ωλ

+ ν2‖u‖ωλ
‖v‖ωλ

.

On the other hand,

a
(ν)
ωλ (v, v) = ν1|v|21,ωλ

+ ν2‖v‖2
ωλ
+

ν1

2

∫
I

∂x(v
2(x))∂xωλ(x)dx

= ν1|v|21,ωλ
+ ν2‖v‖2

ωλ
− ν1

2

∫
I

v2(x)∂2
xωλ(x)dx

≥ ν1|v|21,ωλ
+

(
ν2 − ν1

2
dλ,3

)
‖v‖2

ωλ
.

(2.39)

This lemma indicates that if ν2 > ν1

2 dλ,3, then ‖|v‖|1,ωλ
:=

√
a
(ν)
ωλ (v, v) is a norm

for the space H1
0,ωλ

(I).

Next, we set V0
N,λ = H1

0,ωλ
(I) ∩ VN,λ and define the orthogonal projector P 1,0

N,λ :

H1
0,ωλ

(I)→ V0
N,λ by

a(ν)
ωλ
(P 1,0

N,λv − v, φ) = 0 ∀φ ∈ V0
N,λ.(2.40)
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Theorem 2.3. If ν2 > ν1

2 dλ,3, then for any v ∈ H1
0,ωλ

(I) ∩ Br
λ(I), λ ∈ Dλ, and

r ≥ 1,

‖|P 1,0
N,λv − v‖|1,ωλ

� (ν
1
2
1 (dλ,1 + 1)(dλ,2 + 1)

1
2 + ν

1
2
2 N−1)N1−r|v|Br

λ
,(2.41)

where dλ,i, i = 1, 2, 3, are the same as before.
Proof. By the projection theorem, (2.33), and (2.35),

‖|P 1,0
N,λv −v‖|21,ωλ

= inf
φ∈V0

N,λ

‖|φ − v‖|21,ωλ

≤ ν1(dλ,2 + 1)|φ − v|1,ωλ
‖φ − v‖1,ωλ

+ ν2‖φ − v‖2
ωλ

≤ ν1(dλ,1 + 1)
2(dλ,2 + 1)‖Φλ − Vλ‖2

1 + ν2‖Φλ − Vλ‖2.

(2.42)

Let P̂ 1,0
N be the H1

0 (I)-orthogonal projection as in Lemma 2.2. Hence, by taking

φ(x) = Φλ(y) = P̂ 1,0
N Vλ(y) in (2.42), where P̂ 1,0

N is defined in (2.11), we can obtain
the desired result thanks to Lemma 2.2.

2.3. Mapped Legendre pseudospectral approximations. In this subsec-
tion, we consider the interpolation operator based on the mapped Legendre–Gauss–
Lobatto (MLGL) points.

Let {ζN,j}Nj=0 and {ωN,j}Nj=0 be the LGL points and weights. The MLGL points
and weights are defined by

ξ
(λ)
N,j = g(ζN,j ;λ), ω

(λ)
N,j = ωN,j , 0 ≤ j ≤ N, λ ∈ Dλ.(2.43)

It is clear that ξ
(λ)
N,0 = −1 and ξ

(λ)
N,N = 1, and thanks to (2.14),∫

I

φ(x)ωλ(x)dx =

∫
I

φ(g(y;λ))dy =

N∑
j=0

φ(ξ
(λ)
N,j)ω

(λ)
N,j ∀φ ∈ V2N−1,λ.(2.44)

Let the discrete inner product and discrete norm be defined as

(u, v)ωλ,N =

N∑
j=0

u(ξ
(λ)
N,j)v(ξ

(λ)
N,j)ω

(λ)
N,j , ‖v‖ωλ,N = (v, v)

1
2

ωλ,N
.

We have from (2.16) that

‖φ‖ωλ
≤ ‖φ‖ωλ,N ≤

(
2 +

1

N

) 1
2 ‖φ‖ωλ

∀φ ∈ VN,λ.(2.45)

Let IN,λv be the interpolation of v(x) in VN,λ at points ξ
(λ)
N,j . We first establish

a result on the stability of IN,λ.
Lemma 2.4. For any v ∈ L2

ωλ
(I) ∩ H1

ω̃λ
(I) and λ ∈ Dλ,

‖IN,λv‖ωλ
� ‖v‖ωλ

+N−1(|v(1)|+ |v(−1)|+ |v|1,ω̃λ
).(2.46)

Proof. By (2.15), (2.43), and (2.45),

‖IN,λv‖2
ωλ

≤ ‖IN,λv‖2
ωλ,N

=
2

N(N + 1)
(v2(−1) + v2(1)) +

N−1∑
j=1

v2(ξ
(λ)
N,j)ω

(λ)
N,j

=
2

N(N + 1)
(v2(−1) + v2(1)) +

N−1∑
j=1

V 2
λ (ζN,j)ωN,j .

(2.47)
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Thanks to (2.17), we have from (2.24) that

N−1∑
j=1

V 2
λ (ζN,j)ωN,j ≤ ‖Vλ‖2

N � ‖Vλ‖2 +N−2‖∂yVλ‖2
ω1,1

� ‖v‖2
ωλ
+N−2|v|21,ω̃λ

.

(2.48)

This completes the proof.
Remark 2.1. For the treatment of nonlinear problems, we often need to estimate

the terms such as IN,λφ with φ ∈ V0
M,λ, M > N. By the formula (5.9) in [5], we have

the following inverse inequality:

|φ|1,ω̃λ
= |Φλ|1,ω1,1 ≤

√
2N‖Φλ‖ =

√
2N‖φ‖ωλ

∀φ ∈ VN,λ.(2.49)

So we obtain from (2.46) that for any φ ∈ V0
M,λ and ψ ∈ V0

L,λ,

‖IN,λφ‖ωλ
� ‖φ‖ωλ

+N−1|φ|1,ω̃λ
�
(
1 +

M

N

)
‖φ‖ωλ

.(2.50)

On the other hand, by (2.45),

|(φ, ψ)ωλ,N | = |(IN,λφ, IN,λψ)ωλ,N | ≤ ‖IN,λφ‖ωλ,N‖IN,λψ‖ωλ,N

≤
(
2 +

1

N

)
‖IN,λφ‖ωλ

‖IN,λψ‖ωλ

�
(
1 +

M

N

)(
1 +

L

N

)
‖φ‖ωλ

‖ψ‖ωλ
.

(2.51)

The following is the main result on the MLGL interpolation.
Theorem 2.4. For any v ∈ Ar

λ(I), λ ∈ Dλ, and r > 1,

‖∂x(IN,λv − v)‖ω̃λ
+N‖IN,λv − v‖ωλ

� N1−r|v|Ar
λ
.(2.52)

Proof. By (2.27), (2.28), and (2.46),

‖IN,λv −PN,λv‖ωλ
= ‖IN,λ(PN,λv − v)‖ωλ

� ‖PN,λv − v‖ωλ
+N−1(|PN,λv(1)− v(1)|

+ |PN,λv(−1)− v(−1)|+ ‖∂x(PN,λv − v)‖ω̃λ
)

� N−r|v|Ar
λ
.

(2.53)

Due to (2.49), we obtain from (2.53) that

|IN,λv − PN,λv|1,ω̃λ
� N‖IN,λv − PN,λv‖ωλ

� N1−r|v|Ar
λ
.

We then derive from (2.27) that

|IN,λv −v|1,ω̃λ
+N‖IN,λv − v‖ωλ

≤ |IN,λv − PN,λv|1,ω̃λ
+N‖IN,λv − PN,λv‖ωλ

+ |PN,λv − v|1,ω̃λ
+N‖PN,λv − v‖ωλ

� N1−r|v|Ar
λ
.

Remark 2.2. As a direct consequence, we can estimate the difference between the
continuous and discrete inner products. In fact, we deduce from (2.27), (2.44), (2.45),
and (2.52) that for any v ∈ Ar

λ(I) and φ ∈ VN,λ with r > 1 and λ ∈ Dλ,

|(v, φ)ωλ
− (v, φ)ωλ,N |

≤ |(v, φ)ωλ
− (PN−1,λv, v)ωλ

|+ |(PN−1,λv, φ)ωλ,N − (IN,λv, φ)ωλ,N |
≤ ‖PN−1,λv − v‖ωλ

‖φ‖ωλ
+ ‖PN−1,λv − IN,λv‖ωλ,N‖φ‖ωλ,N

� N−r|v|Ar
λ
‖φ‖ωλ

.

(2.54)
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3. The upper bounds of |v|Ar
λ
and |v|Br

λ
. In this section, we provide upper

bounds of |v|Ar
λ
and |v|Br

λ
in terms of derivatives of v(x) for the mappings (1.3)–(1.5).

We also derive explicit bounds on the positive constants dλ,i (i = 1, 2, 3) defined in
the previous section. These bounds provide, in particular, explicit information on how
the mapping parameters affect the accuracy of the mapped Legendre approximation.

3.1. The mapping (1.3). In this case, we have Dλ = (0, 1). The inverse of the
mapping (1.3) is

y = h(x;λ) =
sin(ax)

λ
, a = arcsinλ, λ ∈ (0, 1).(3.1)

Moreover,

ωλ(x) =
dy

dx
=

a

λ
cos(ax) =

(dx

dy

)−1

=
a

λ

√
1− λ2y2.(3.2)

Since a → λ as λ → 0, λ
a is uniformly bounded for λ ∈ (0, 1). For clarity, let Ql(y;λ)

be a polynomial of degree l with respect to y. Then for any integer k ≥ 1,

dkx

dyk
=

λ

a

k−1∑
j=0

(
k − 1

j

)(
(1− λy)−

1
2

)(j)(
(1 + λy)−

1
2

)(k−j−1)

=

k−1∑
j=0

Ek
j (λ)(1− λy)−

1
2−j(1 + λy)

1
2+j−k

= (1− λ2y2)
1
2−k

k−1∑
j=0

Ek
j (λ)(1− λy)k−1−j(1 + λy)j

= (1− λ2y2)
1
2−kQk−1(y;λ),

(3.3)

where Ek
j (λ) is a constant in terms of j, k, and λ. By direct calculations,

∂yVλ(y) = ∂xv(x)
dx

dy
= (1− λ2y2)−

1
2 Q0(y;λ)∂xv(x),

∂2
yVλ(y) = ∂2

xv(x)
(dx

dy

)2

+ ∂xv(x)
d2x

dy2

= (1− λ2y2)−1Q0(y;λ)∂
2
xv(x) + (1− λ2y2)−

3
2 Q1(y;λ)∂xv(x),

∂3
yVλ(y) = ∂3

xv(x)
(dx

dy

)3

+ 3∂2
xv(x)

dx

dy

d2x

dy2
+ ∂xv(x)

d3x

dy3

= (1− λ2y2)−
3
2 Q0(y;λ)∂

3
xv(x) + (1− λ2y2)−2Q1(y;λ)∂

2
xv(x)

+ (1− λ2y2)−
5
2 Q2(y;λ)∂xv(x).

(3.4)

Thus an induction argument leads to

∂k
yVλ(y) =

k∑
j=1

(1− λ2y2)
j
2−kQk−j(y;λ)∂

j
xv(x), k ≥ 1,(3.5)

where Ql(y;λ) (0 ≤ l ≤ k) are uniformly bounded for all y ∈ Ī and λ ∈ (0, 1). Then,
by the definition of |v|Ar

λ
, we derive from (3.5) that for r ≥ 1,

|v|2Ar
λ
= ‖∂r

yVλ‖2
ωr,r �

r∑
j=1

∫
I

(1− λ2y2)j−2r(1− y2)r(∂j
xv(x))2ωλ(x)dx,(3.6)
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where y = g(x;λ) ∈ Ī . Since 1− y2 ≤ 1−λ2y2 and A0
λ(I) = L2

ωλ
(I), we conclude that

|v|Ar
λ

� (1− λ2)
1
2− r

2 ‖v‖r,ωλ
, r ≥ 0, λ ∈ (0, 1).(3.7)

Similarly, we derive from by the definition of Br
λ(I) that

|v|Br
λ

� (1− λ2)−
r
2 ‖v‖r,ωλ

, r ≥ 1, λ ∈ (0, 1).(3.8)

Next, we derive from (3.1) and (3.2) that the values of dλ,i, 1 ≤ i ≤ 3, in (2.32),
(2.35), and (2.38) are

dλ,1 =
a

λ
, dλ,2 =

aλ√
1− λ2

, dλ,3 = −a2.(3.9)

In summary, we have proved the following results.
Corollary 3.1. For any v ∈ Hr

ωλ
(I), λ ∈ (0, 1), and r ≥ 1,

‖∂x(PN,λv − v)‖ω̃λ
+N‖PN,λv − v‖ωλ

� (1− λ2)
1
2− r

2 N1−r‖v‖r,ωλ
,(3.10)

‖P 1
N,λv − v‖1,ωλ

� (1− λ2)−
r
2 N1−r‖v‖r,ωλ

,(3.11)

and for r > 1,

‖∂x(IN,λv − v)‖ω̃λ
+N‖IN,λv − v‖ωλ

� (1− λ2)
1
2− r

2 N1−r‖v‖r,ωλ
.(3.12)

If ν1, ν2 > 0 and v ∈ H1
0,ωλ

(I) ∩ Hr
ωλ
(I) with r ≥ 1, then

‖|P 1,0
N,λv − v|‖1,ωλ

� (ν
1
2
1 (1− λ2)−

1
4 + ν

1
2
2 N−1)(1− λ2)−

r
2 N1−r‖v‖r,ωλ

.(3.13)

Remark 3.1. For λ = 0, (1.3) becomes the identity map. So we obtain the same
results as in the standard Legendre case, i.e.,

|v|Ar
λ

� ‖(1− x2)
r
2 ∂r

xv‖, |v|Br
λ

� ‖(1− x2)
r−1
2 ∂r

xv‖, λ → 0.

Remark 3.2. For λ = 1, (1.3) becomes y = sin(πx/2). This mapping has singu-
larities at x = ±1, and therefore, (3.7)–(3.8) are no longer valid. However, we find
from (3.1), (3.2), and (3.6) that

|v|Ar
1

�
(

r∑
j=1

∫
I

(1− y2)j−r(∂j
xv(x))2ωλ(x)dx

) 1
2

�
(

r∑
j=1

∫
I

(1− x2)j−r+ 1
2 (∂j

xv(x))2dx

) 1
2

.

This implies that |v|Ar
1
is bounded if v ∈ Hr(I) and for some σ < 1,

(1− x2)j−r+ 1
2 (∂j

xv(x))2 � 1

(1− x2)σ
as |x| → 1, 1 ≤ j ≤ r.(3.14)

In particular, one can verify that (3.14) is satisfied if

∂j
xv(±1) = 0, 1 ≤ j ≤ r − 2, v ∈ Hr(I).(3.15)
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Indeed, by the Hardy’s inequality (see [12]), we have that for α < 1,∫
I

u2(x)(1− x2)α−1dx �
∫
I

u2(x)(1− x2)α−2dx �
∫
I

(∂xu(x))2(1− x2)αdx,

provided that u(±1) = 0 and the right-hand side of the inequality is finite. Using this
equality and the condition (3.15), we have for 1 ≤ j ≤ r − 2,∫

I

(∂j
xv(x))2 (1− x2)j−r+ 1

2 dx �
∫
I

(∂j+1
x v(x))2(1− x2)j−r+ 3

2 dx

� · · · �
∫
I

(∂r−1
x v(x))2(1− x2)−

1
2 dx.

Then, by the inequality (13.5) in [5], we have that for α > 1,∫
I

u2(x)(1− x2)α−2dx �
∫
I

((∂xu(x))2 + u2(x))(1− x2)αdx,

which implies that∫
I

(∂r−1
x v(x))2(1− x2)−

1
2 dx �

∫
I

((∂r
xv(x))2 + (∂r−1

x v(x))2)(1− x2)
3
2 dx.

A combination of the above estimates show that under the condition (3.15), we have

|v|Ar
1

� (‖(1− x2)
3
4 ∂r−1

x v‖+ ‖(1− x2)
1
4 ∂r

xv‖).(3.16)

Similar results can also be derived for |v|Br
1
. The estimates indicate, in particular,

that, for the mapping (1.3) with λ = 1, the convergence rate of the mapped Legendre
method is of order r if (3.15) is satisfied. In particular, only a second-order convergence
rate can be expected if the function does not vanish at the end-points.

Remark 3.3. If the parameter λ was chosen as (cf. [1] and [10])

λ = λ(N, ε) = sech
( | ln ε|

N

)
=

2

ε1/N + ε−1/N
∼ 1− 1

2
(ln2 ε)N−2 for N � 1,(3.17)

where ε is the desired accuracy, then we find from (3.7) and (3.8) that for any v ∈
Hr

ωλ
(I),

|v|Ar
λ
∼ (| ln ε|)1−rNr−1, |v|Br

λ
∼ (| ln ε|)−rNr,

which, along with Corollary 3.1, implies that

‖PN,λv − v‖ωλ
∼ | ln ε|1−rN−1, ‖P 1

N,λv − v‖1,ωλ
∼ | ln ε|−rN.

Thus a lower order (< r) of accuracy is expected by choosing (3.17), except when ε
and N are such that ε � exp(−γN), γ > 0.

3.2. The mapping (1.4). In this case, Dλ = {λ | λ > 0}, and (1.4) is

y = h(x;λ) = (4/π) arctan(λ tan(π(x − 1)/4)) + 1, λ > 0,(3.18)

ωλ(x) =
dy

dx
=

λ

1 + (λ2 − 1) sin2(π(x − 1)/4) .(3.19)
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In particular, h(x;λ) = x and ωλ(x) = 1 for λ = 1.
Let us denote

Cλ =

{
λ−1, 0 < λ ≤ 1,

λ, λ > 1,
C1 =

{
1, 0 < λ ≤ 1,

λ−2, λ > 1,
C2 =

{
λ2, 0 < λ ≤ 1,

1, λ > 1.

We have C1, C2 ≤ 1 for λ > 0, and by (3.19),

dx

dy
= (cos2(π(x − 1)/4) + λ2 sin2(π(x − 1)/4))/λ

= Cλ(C1 cos
2(π(x − 1)/4) + C2 sin

2(π(x − 1)/4)).
(3.20)

We set

Tl = span{cos(kπ(x − 1)/4), sin(kπ(x − 1)/4), 1 ≤ k ≤ l}, l ∈ N.

For j ≥ 1, we denote by Tk,j(x) some functions in Tl with coefficients in terms of C1

and C2. Then, by (3.18) and (3.20),

∂yVλ(y) = ∂xv(x)
dx

dy
= CλT2,1(x)∂xv(x),

∂2
yVλ(y) =

d(∂yVλ(y))

dx

dx

dy
= C2

λ(T4,2(x)∂
2
xv(x) + T4,1(x)∂xv(x)).

Hence, by an induction argument, we find that for k ≥ 1,

∂k
yVλ(y) = Ck

λ

k∑
j=1

Tk,j(x)∂
j
xv(x),(3.21)

where Tk,j(x) (1 ≤ j ≤ k) are uniformly bounded for all x ∈ Ī and λ > 0. Let

ω
(r)
λ (x) := ωλ(x)(1− y2)r = ωλ(x)(1− h2(x;λ))r (� ωλ(x), x ∈ I, λ > 0).

By (3.18) and (3.20),

lim
x→1

1− h(x;λ)

1− x
= λ, lim

x→−1

1 + h(x;λ)

1 + x
= λ−1.

By virtue of (3.21) and the definitions of |v|Ar
λ
and |v|Br

λ
, we derive that

|v|Ar
λ

� Cr
λ‖v‖

r,ω
(r)

λ

, |v|Br
λ
≤ Cr

λ‖v‖
r,ω

(r−1)

λ

, λ > 0.(3.22)

Next, we deduce from (3.18)–(3.20) that the values of the constants dλ,i, 1 ≤ i ≤
3, are

dλ,1 = Cλ, dλ,2 =
π/4|λ2 − 1‖ sin(π(x − 1)/2)|

cos2(π(x − 1)/4) + λ2 sin2(π(x − 1)/4) ≤
π|λ2 − 1|
4λ

,

dλ,3 =



max{π2

8 (1− λ2), Sλ(z0)} if 0 < λ ≤ e0,

π2

8 (1− λ2) if e0 < λ ≤ 1,

π2(λ2−1)
8λ2 if 1 < λ ≤ e1,

max{π2(λ2−1)
8λ2 , Sλ(z0)} if λ > e1,

(3.23)



340 JIE SHEN AND LI-LIAN WANG

where e0 =

√√
97−5
6 , e1 =

√
5
3 , z0 =

5λ2−3
3(1−λ4) , and

Sλ(z) =
π2b(−2bz2 + (3b − 2)z + 1)

8(1− bz)2
, with b = 1− λ2.

The estimate on dλ,2 is derived using a simple inequality a2+ b2 ≥ 2ab. The estimate
on dλ,3 is nontrivial and its derivation is given in Appendix A.

In summary, we obtained the following approximation results for mapping (1.4).
Corollary 3.2. For any v ∈ Hr

ω
(r)

λ

(I), λ ∈ (0, 1), and r ≥ 1,

‖∂x(PN,λv − v)‖ω̃λ
+N‖PN,λv − v‖ωλ

� Cr
λN1−r‖v‖

r,ω
(r)

λ

,(3.24)

and for r > 1,

‖∂x(IN,λv − v)‖ω̃λ
+N‖IN,λv − v‖ωλ

� Cr
λN1−r‖v‖

r,ω
(r)

λ

,(3.25)

while for any v ∈ Hr

ω
(r−1)

λ

(I) and r ≥ 1,

‖P 1
N,λv − v‖1,ωλ

� Cr+1
λ N1−r‖v‖

r,ω
(r−1)

λ

.(3.26)

If, in addition, ν2 > ν1

2 dλ,3 and v ∈ H1
0,ωλ

(I), then

|||P 1,0
N,λv − v|||1,ωλ

� (ν
1
2
1 (dλ,1 + 1)(dλ,2 + 1)

1
2 + ν

1
2
2 N−1)N1−r‖v‖

r,ω
(r−1)

λ

,(3.27)

where dλ,i, i = 1, 2, 3 are given in (3.23).

3.3. The mapping (1.5). In this case, λ = (λ1, λ2) and Dλ = {(λ1, λ2) | λ1 >
0, − 1 ≤ λ2 < 1}. The mapping (1.5) is explicitly invertible:

y = h(x;λ) = a0 + arctan(λ1(x − λ2))/a1.(3.28)

The values of a0 and a1 are

a0 = a0(λ) =
κ1 − κ2

κ1 + κ2
, a1 = a1(λ) =

κ1 + κ2

2
,(3.29)

where

κ1 = arctan(λ1(1 + λ2)), κ2 = arctan(λ1(1− λ2)).(3.30)

With the above choice, we find that

−1 ≤ a0 < 1, 0 < a1 <
π

2
.(3.31)

The weight functions are

ωλ(x) =
dy

dx
=

λ1

a1(1 + λ2
1(x − λ2)2)

=
(dx

dy

)−1

=
λ1

a1
cos2(a1(y − a0)),(3.32)

ω̃λ(x) = a−1
1 λ−1

1 (κ1 − q(x;λ))(κ2 + q(x;λ))(1 + λ2
1(x − λ2)

2),(3.33)
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where q(x;λ) = arctan(λ1(x − λ2)).
For simplicity, we rewrite (3.32) as

dx

dy
=

a1(λ1 + 1)
2

λ1

(
1

(λ1 + 1)2
+

λ2
1

(λ1 + 1)2
(x − λ2)

2

)
:= Cλ(D1 +D2(x − λ2)

2).

(3.34)

Since a1 → λ1 as λ1 → 0, we have that for all λ ∈ Dλ,

Cλ � λ1 + 1, 0 < C−1
λ , D1, D2 ≤ 1.(3.35)

Let us denote by Ql(x − λ2) a polynomial of degree l with respect to x − λ2 with
coefficients in terms of D1, D2, and C−1

λ . Then, by (3.28) and (3.34),

∂yVλ(y) = ∂xv(x)
dx

dy
= CλQ2(x − λ2)∂xv(x),

∂2
yVλ(y) =

d(∂yVλ(y))

dx

dx

dy
= C2

λ(Q4(x − λ2)∂
2
xv(x) +Q3(x − λ2)∂xv(x)).

Hence, by an induction argument, we find that for k ≥ 1,

∂k
yVλ(y) = Ck

λ

k∑
j=1

Qk+j(x − λ2)∂
j
xv(x),(3.36)

where Qk+j(x−λ2) (1 ≤ j ≤ k) are uniformly bounded for all x ∈ Ī and λ ∈ Dλ. Let
us denote

Sλ(x; r) := (1− y2)r =
1

a2r
1

(
κ2 − arctan(λ1(x − λ2))

)r(
κ1 + arctan(λ1(x − λ2))

)r
.

(3.37)

We have Sλ(x; r) ≤ 1, and

lim
x→1

κ2 − arctan(λ1(x − λ2))

1− x
=

λ1

1 + λ2
1(1− λ2)2

,

lim
x→−1

κ1 + arctan(λ1(x − λ2))

1 + x
=

λ1

1 + λ2
1(1 + λ2)2

.

Consequently,

lim
|x|→1

Sλ(x; r) = Gr
λ(1− x2)r with Gλ =

λ2
1

a2r
1 (1 + λ2

1(1− λ2)2)(1 + λ2
1(1 + λ2)2)

.

(3.38)

Next, let

=
(r)
λ (x) := ωλ(x)Sλ(x; r) � ωλ(x), x ∈ I, λ ∈ Dλ.

By the definition of |v|Ar
λ
and (3.35),

|v|Ar
λ

� (λ1 + 1)
r‖v‖

r,�
(r)

λ

, r ≥ 0, λ ∈ Dλ.(3.39)



342 JIE SHEN AND LI-LIAN WANG

Similarly, we deduce that

|v|Br
λ

� (λ1 + 1)
r‖v‖

r,�
(r−1)

λ

, r ≥ 1, λ ∈ Dλ.(3.40)

Remark 3.4. We find from (3.28)–(3.30) and (3.32) that

a0 → λ2, a1 → 1, h(x;λ)→ x, ωλ(x)→ 1, as λ1 → 0.

So we have the same estimate as for the standard Legendre case:

|v|Ar
λ

� ‖(1− x)
r
2 ∂r

xv‖, |v|Br
λ

� ‖(1− x)
r−1
2 ∂r

xv‖.

Remark 3.5. We observe from the derivation of (3.36) that if the function v
possesses certain special properties as specified below, more precise estimates can be
derived. For instance, if the rapid variational region of v(x) is contained in Oε(λ2) :=
(λ2 − ε, λ2 + ε) for some ε > 0, we can assume

sup
x∈Iε

|∂j
xv(x)| ≤ δ(ε)C−r

λ , 0 ≤ j ≤ r,

where Iε = Ī \ Oε(λ2), and δ(ε) is a small positive number corresponding to ε. Then

|v|Ar
λ

�
(

δ(ε) + ar1λ−r
1 (1 + λ2

1ε2)r‖v‖Hr

ω
(r)

λ
(Oε(λ2))

)
.

In particular, if

supp{∂j
xv(x)} ⊆ Oε(λ2) ⊆ [−1, 1], 0 ≤ j ≤ r,

then we have

|v|Ar
λ

�
(

ar1λ−r
1 (1 + λ2

1ε2)r‖v‖Hr

ω
(r)

λ
(Oε(λ2))

)
.

The above analysis is also valid for |v|Br
λ
.

Next, we compute the values of dλ,i, i = 1, 2, 3. Using (3.28) and (3.32) yields

dλ,1 = a1λ−1
1 , dλ,2 = max

x∈Ī
2λ2

1|x − λ2|
1 + λ2

1(x − λ2)2
≤ λ1, dλ,3 ≤ 3

2
λ2

1.(3.41)

The derivation of dλ,3 is a little complicated, so we defer it to Appendix B.
A combination of Theorems 2.1–2.4 and the above estimates leads to the following

approximation results.
Corollary 3.3. For any v ∈ Hr

�
(r)

λ

(I), λ ∈ Dλ, and r ≥ 1,

‖∂x(PN,λv − v)‖ω̃λ
+N‖PN,λv − v‖ωλ

� (λ1 + 1)
rN1−r‖v‖

r,�
(r)

λ

,(3.42)

and for r > 1,

‖∂x(IN,λv − v)‖ω̃λ
+N‖IN,λv − v‖ωλ

� (λ1 + 1)
rN1−r‖v‖

r,�
(r)

λ

,(3.43)

while for any v ∈ Hr

�
(r−1)

λ

(I) and r ≥ 1,

‖P 1
N,λv − v‖1,ωλ

� (λ1 + 1)
rN1−r‖v‖

r,�
(r−1)

λ

.(3.44)

If, in addition, ν2 > ν1

2 dλ,3 and v ∈ H1
0,ωλ

(I), then

|||P 1,0
N,λv − v|||1,ωλ

� (ν
1
2
1 (dλ,1 + 1)(dλ,2 + 1)

1
2 + ν

1
2
2 N−1)N1−r‖v‖

r,�
(r−1)

λ

,(3.45)

where dλ,i, i = 1, 2, 3, are given in (3.41).
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3.4. Some other mappings. We consider here several useful mappings which
do not quite fit into our framework.

Let us consider first the mapping

C(s) = (1− b)
sinh(θs)

sinh(θ)
+ b

tanh(θ(s+ 1/2))− tanh(θ/2)

2tanh(θ/2)
, s ∈ [−1, 0],(3.46)

which was first introduced by Song and Haidvogel [26] as part of the so-called s-
coordinates in their ocean circulation model. The two parameters 0 ≤ θ ≤ 20 and
0 ≤ b ≤ 1 are used to fit the surface and bottom topography.

In order to apply our general framework, we set s = y−1
2 , x = 2C(s) + 1, λ1 = θ,

and λ2 = b in (3.46) to get

x = g(y;λ) = 2(1− λ2)
sinh(λ1(y − 1)/2)

sinh(λ1)
+ λ2

tanh(λ1y/2)− tanh(λ1/2)

tanh(λ1/2)
+ 1,

y ∈ [−1, 1], λ1 ≥ 0, 0 ≤ λ2 ≤ 1.

(3.47)

Clearly, it maps the interval [−1, 1] univalently onto itself with g(±1;λ) = ±1, and it
is an identity mapping when λ1 = 0. However, this mapping is not explicitly invertible.
For simplicity, we consider only the special case λ2 = 0 and denote λ := λ1. In this
case, the weight function is

ωλ(x) =
(dx

dy

)−1

=
sinhλ

λ
sech(λ(y − 1)/2) > 0, x, y ∈ I, λ > 0.(3.48)

One can verify readily that

tanhλ

λ
≤ ωλ(x) ≤ sinhλ

λ
, x ∈ I, λ > 0.

To estimate the corresponding upper bounds of |v|Ar
λ
and |v|Br

λ
(cf. section 2),

we can follow the same procedure as for the mapping (1.3). Since

dkx

dyk
=

2

sinhλ

(λ

2

)k{sinh(λ(y − 1)/2) if k is even,

cosh(λ(y − 1)/2) if k is odd,

we find ∣∣∣dkx

dyk

∣∣∣ � λkcothλ, x ∈ Ī , λ > 0, k ≥ 1.

As in the derivations of (3.4)–(3.6), we obtain that for any v ∈ Hr
ωλ
(I),

|v|Ar
λ
, |v|Br

λ
� λr(cothλ)r||v||r,ωλ

.(3.49)

In view of the facts

cothλ ∼ λ−1 if λ � 1, cothλ ∼ 1 if λ � 1,

we conclude that for small λ, this mapping is close to the identity mapping, while for
large λ, an extra factor λr appears in the error estimates.
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The mapping techniques have been successfully used in spectral methods to re-
solve boundary layers. For instance, the following mapping is used in [21] and [22]:

x = g(y;m) = −1 + σm

∫ y

−1

(1− t2)mdt, with σm = 2
/∫ 1

−1

(1− y2)mdy, m ∈ N.

(3.50)

Clearly, we have g(±1;m) = ±1, and

ωm(x) = σ−1
m (1− y2)−m, x, y ∈ I.(3.51)

As m increases, more and more Gauss-type collocation points are clustered near the
end-points ±1 so it is suitable for resolving very thin boundary layers. However, the
mapping is singular at the end-points, which implies in particular that dλ,1 =∞. The
same is true for the iterated mappings introduced by Tang and Trummer [27],

x0 = y, xm = sin
(π

2
xm−1

)
, m ≥ 1,(3.52)

which are very effective mappings for problems with thin boundary layers. Hence
we cannot directly apply our general framework to these mappings. Although it is
possible to derive some special estimates as we did in Remark 3.2, the computations
would be very tedious. However, we shall consider in a forthcoming paper the mapped
Jacobi method in which we will be able to handle mappings with singularities at the
end-points.

4. The mapped Legendre methods for a model equation. To illustrate
how the results we developed in previous sections can be applied to analyze the
mapped Legendre spectral and pseudospectral methods for PDEs, we consider the
following model equation:{−ε∂2

xu(x) + u(x) = f(x), x ∈ I,

u(±1) = 0.
(4.1)

Let ν1 = ε and ν2 = 1 and ωλ(x), a
(ν)
ωλ (·, ·) be the same as in section 2. A weighted

variational formulation for (4.1) is to find u ∈ H1
0,ωλ

(I) such that

a(ν)
ωλ
(u, v) = (f, v)ωλ

∀v ∈ H1
0,ωλ

(I).(4.2)

It is clear from Lemma 2.3 that, if εdλ,3 < 2 and f ∈ L2
ωλ
(I), (4.2) admits a unique

solution.

4.1. Error estimates. The mapped Legendre spectral approximation for (4.2)
is to find uN ∈ V0

N,λ such that

a(ν)
ωλ
(uN , vN ) = (f, vN )ωλ

∀vN ∈ V0
N,λ.(4.3)

Let P 1,0
N,λ be the projector as in Theorem 2.3. Then, by (2.40), (4.2), and (4.3),

a(ν)
ωλ
(u − uN , vN ) = a(ν)

ωλ
(P 1,0

N,λu − uN , vN ) = 0 ∀vN ∈ V0
N,λ.

As a consequence of Theorem 2.3, we have the following theorem.



MAPPED LEGENDRE METHODS 345

Theorem 4.1. Let u and uN be, respectively, the solutions of (4.2) and (4.3). If
εdλ,3 < 2, u ∈ H1

0,ωλ
(I) ∩ Br

λ(I), λ ∈ Dλ, and r ≥ 1, then

|||u − uN |||1,ωλ
� (ε

1
2 (dλ,1 + 1)(dλ,2 + 1)

1
2 +N−1)N1−r|u|Br

λ
,(4.4)

where dλ,i, i = 1, 2, 3, are the same as in Theorem 2.3. For the mappings (1.3)–(1.5),
the upper bound of |u|Br

λ
and the values of dλ,i, i = 1, 2, 3, are given in section 3.

Unlike in the standard Legendre–Galerkin method, where the linear system can
be made sparse by choosing suitable basis functions [24], the linear system associated
to (4.3) is in general full (unless a very special mapping is used), and furthermore, it
is very costly to evaluate the entries of the linear system. Hence it is often convenient
to use the mapped Legendre collocation method: find uN ∈ V0

N,λ such that

−ε∂2
xuN (ξ

(λ)
N,j) + uN (ξ

(λ)
N,j) = f(ξ

(λ)
N,j), 1 ≤ j ≤ N − 1,(4.5)

where {ξ
(λ)
N,j}Nj=0 are the mapped LGL points defined in (2.43). Taking the discrete

inner product of (4.5) with any vN ∈ V0
N,λ, thanks to (2.44), we find that (4.5) is

equivalent to the following: find uN ∈ V0
N,λ such that

ε(∂xuN , ∂x(ωλvN )) + (uN , vN )ωλ,N = (f, vN )ωλ,N ∀vN ∈ V0
N,λ.(4.6)

We note that the linear system associated with the above formulation is full and ill
conditioned. However, as demonstrated in [24, 25], it can be efficiently solved by
using a preconditioned conjugate gradient–type iterative method with the standard
Legendre–Galerkin method for (4.1) as a preconditioner. Note that with the collo-
cation approach, there is no additional cost involved if the original PDE (4.1) has
variable coefficients.

Theorem 4.2. Let u and uN be, respectively, the solutions of (4.2) and (4.6). If
εdλ,3 < 2, u ∈ H1

0,ωλ
(I) ∩ Br

λ(I), and f ∈ As
λ(I), λ ∈ Dλ with r ≥ 1 and s > 1, then

|||u − uN |||1,ωλ
� (ε

1
2 (dλ,1 + 1)(dλ,2 + 1)

1
2 +N−1)N1−r|u|Br

λ
+N−s|f |As

λ
,(4.7)

where dλ,i, i = 1, 2, 3, are the same as in Theorem 2.3. For the mappings (1.3)–(1.5),
the upper bounds of |u|Br

λ
, |f |As

λ
and the values of dλ,i, i = 1, 2, 3, are given in section

3.

Proof. Let UN = P 1,0
N,λu and êN = UN − uN . Then by (2.40), (4.2), and (4.6),

ε(∂xêN , ∂x(ωλvN )) + (êN , vN )ωλ,N = (UN , vN )ωλ,N − (UN , vN )ωλ

+(f, vN )ωλ
− (f, vN )ωλ,N ∀vN ∈ V0

N,λ.
(4.8)

Taking vN = êN in (4.8), we have from (2.45) that

a
(ν)
λ (êN , êN ) ≤ ε(∂xêN , ∂x(ωλêN )) + ‖êN‖2

ωλ,N

≤ |(UN , êN )ωλ,N − (UN , êN )ωλ
|+ |(f, êN )ωλ

− (f, êN )ωλ,N |.
(4.9)

By Remark 2.3,

|(f, êN )ωλ
− (f, êN )ωλ,N | � N−s|f |As

λ
‖êN‖ωλ

.



346 JIE SHEN AND LI-LIAN WANG

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

ζ
64,j

  and  ξ
64,j
(λ)

Mapping (1.5) (λ
1
=16,λ

2
=0) 

Mapping (1.4) (λ=10) 

Mapping (1.4) (λ=0.1) 

Mapping (1.3) (λ=0.99) 

LGL nodes 

Fig. 1. LGL vs. MLGL points.

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
10

-14

10
 -12

10
 -10

10
 -8

10
 -6

10
 -4

10
 -2

10
0

λ

E
rr

or
s
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Moreover, by (2.44), (2.45), and Theorem 2.3,

|(UN , êN )ωλ,N − (UN , êN )ωλ
| ≤ |(UN − P 1,0

N−1,λu, êN )ωλ,N |+ |(UN − P 1,0
N−1,λu, êN )ωλ

|
� ‖UN − P 1,0

N−1,λu‖ωλ
‖eN‖ωλ

� (|||UN − u|||1,ωλ
+ |||P 1,0

N−1,λu − u|||1,ωλ
)‖êN‖ωλ

� (ε
1
2 (dλ,1 + 1)(dλ,2 + 1)

1
2 +N−1)N1−r|u|Br

λ
‖êN‖ωλ

.

The desired results follow from the above estimates.

4.2. Numerical results. We now present some numerical results with emphasis
on how the accuracy depends on the choice of the parameters in the mappings (1.3)–
(1.5).

We first illustrate the effects of the parameters on the distributions of the MLGL
points. In Figure 1, we plot the LGL points vs. the MLGL points (N = 64) with
several typical parameters. It is clear that the mapping (1.3) stretches the grid evenly
as λ → 1; the mapping (1.4) clusters the points to x = −1 (resp., x = 1) for λ < 1
(resp., λ > 1); and the mapping (1.5) clusters the points to x = λ2 for λ1 > 1.

Example 1. We consider (4.1) with the exact solution

u(x) =
e(1+x)/

√
ε − e−(1+x)/

√
ε

e2/
√
ε − e−2/

√
ε

− 1 + x

2
.

This solution exhibits a boundary layer of width O(
√

ε) at x = −1.
We first take ε = 0.1 so the solution is smoothly varying throughout the domain.

We use (4.5) with the mapping (1.3) and N = 100 to approximate (4.1). In Figure
2, we plot the maximum absolute errors between u and uN at the MLGL points
with λ ∈ [0.9, 1]. We see that the error increases very quickly as λ → 1, which is in
agreement with the theoretic analysis in Corollary 3.1 and Theorem 4.2. Hence it is
not advisable to use mapping (1.3) with λ close to 1.

Next we take ε = 10−8 so the solution has a thin boundary layer at x = −1, and
we use (4.5) with the mapping (1.4) and N = 100 to approximate (4.1). We plot in
Figure 3 the errors with λ ∈ [20, 200]. The results indicate that the errors grow as λ
increases, as predicted by Corollary 3.2 and Theorem 4.2.

Example 2. We take u(x) = tanh(ax) with a = 150. This solution has a large
derivative at x = 0; see Figure 4. We use (4.5) with mapping (1.5) and N = 100. In
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Fig. 5. Errors for mapping (1.5) with λ2 = 0 and various λ1 (left), and with λ1 = 51 and
various λ2 (right).

Figure 5, we plot the maximum absolute errors at the MLGL points with λ2 = 0 and
various λ1 (left panel) and with λ1 = 51 and different λ2 (right panel). Note that the
accuracy is very sensitive to the choice of the parameter λ2, which should be at the
location of large variation, but less sensitive to the values of λ1, which represents the
intensity of the mapping at x = λ2. Again, the numerical results are in agreement
with Corollary 3.3 and Theorem 4.2.

5. Concluding remarks. We presented a general framework for analyzing the
approximation properties of mapped Legendre polynomials and of interpolations based
on MLGL points and derived optimal error estimates for general mappings. More
precisely, we introduced a new family of orthogonal functions which are obtained by
applying the mapping to Legendre polynomials, and we analyzed various projection
and interpolation operators based on these mapped Legendre functions.

As an application of our general results, we considered the popular mappings
(1.3)–(1.5) introduced in [20, 3, 4] and derived error estimates featuring explicit ex-
pressions on the mapping parameters. We used a model equation to show that these
results not only play an important role in numerical analysis of mapped Legendre
spectral and pseudospectral methods for differential equations but also provide quan-
titative criteria for the choice of parameters in these mappings.

This paper is a first step toward a long-term goal of designing a robust adaptive
spectral method for solving PDEs.
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Appendix A. The derivation of dλ,3 in (3.23). For λ = 1, we have dλ,3 ≡ 0.
We next consider λ �= 1. For simplicity, let z = sin2(π(x − 1)/4) and b = 1 − λ2. By
(3.19) and a direct calculation, we find that

Sλ(z) := ω−1
λ (x)∂2

xωλ(x) =
π2b(−2bz2 + (3b − 2)z + 1)

8(1− bz)2

and

S′
λ(z) =

π2b(3b(b − 2)z + 5b − 2)
8(1− bz)3

.

Let us denote

z0 = − 5b − 2
3b(b − 2) =

5λ2 − 3
3(1− λ4)

, e0 =

√√
97− 5
6

, e1 =

√
5

3
.

We find that

if 0 < λ ≤ e0 or λ ≥ e1, then |z0| ≤ 1.

Hence

dλ,3 = max
z∈[0,1]

Sλ(z) = max{Sλ(0), Sλ(z0), Sλ(1)}

=



max{π2

8 (1− λ2), Sλ(z0)} if 0 < λ ≤ e0,

π2

8 (1− λ2) if e0 < λ ≤ 1,

π2(λ2−1)
8λ2 if 1 < λ ≤ e1,

max{π2(λ2−1)
8λ2 , Sλ(z0)} if λ > e1.

Appendix B. The derivation of dλ,3 in (3.41). By (3.28), (3.32), and a
direct calculation, we find

Wλ(x) := ω−1
λ (x)∂2

xωλ(x) =
2λ2

1(3λ
2
1(x − λ2)

2 − 1)
(1 + λ2

1(x − λ2)2)2

and

∂xWλ(x) =
4λ2

1(x − λ2)(5− 3λ2
1(x − λ2)

2)

(1 + λ2
1(x − λ2)2)3

.

Clearly, Wλ(λ2) = −2λ2
1, and if x is such that λ2

1(x−λ2)
2 = 5

3 , we have Wλ(x) =
9
8λ2

1.
Hence

Wλ(λ2) ≤ Wλ(±1) = 2λ2
1(3λ

2
1(±1− λ2)

2 − 1)
(1 + λ2

1(±1− λ2)2)2
≤ 6λ2

1

( λ1| ± 1− λ2|
1 + λ2

1(±1− λ2)2

)2

≤ 3

2
λ2

1.

Therefore,

−2λ2
1 ≤ Wλ(x) ≤ 3

2
λ2

1, x ∈ Ī .

This completes the proof.
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Abstract. A semi-Lagrangian scheme is proposed for solving the periodic one-dimensional
Vlasov–Poisson system in phase space on unstructured meshes. The distribution function f(t, x, v)
and the electric field E(t, x) are shown to converge to the exact solution values in the L∞ norm. The
rate of convergence is in O(h4/3).
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1. Introduction. The numerical resolution of the Vlasov equation is usually
performed by Lagrangian methods like particles-in-cell methods (PIC), which consist
of approximating the plasma by a finite number of macroparticles. The trajectories
of these particles are computed from the characteristic curves given by the Vlasov
equation, whereas self-consistent fields are computed by gathering the charge and
current densities of the particles on a mesh of the physical space (see Birdsall and
Langdon [10] for more details). Although this method allows us to obtain satisfying
results with a small number of particles, it is well known that the numerical noise
inherent to the particle method becomes too large to allow a precise description of
the tail of the distribution function, which plays an important role in charged particle
beams. To remedy this problem, Eulerian methods have been proposed which consist
of discretizing the Vlasov equation on a mesh of phase space. For example, finite
volume schemes, which are known to be robust and computationally cheap, have been
implemented by Boris and Book [11], Cheng and Knorr [13], and more recently Mineau
[32], Fijalkow [19], and Filbet, Sonnendrücker, and Bertrand [21]. Nevertheless, finite
volume schemes are low order, too dissipative, and restricted by a CFL condition.

Other kinds of Eulerian method are the semi-Lagrangian methods which, in some
particular cases, can be regarded as local versions of characteristic Galerkin methods
[3, 4], which have been used in convection-diffusion problems [17, 35, 25]. Semi-
Lagrangian methods were introduced at the beginning of the 1980s for the time-
advection of various atmospheric and fluid dynamics models [43, 42, 37], which can
be formulated as abstract Liouville systems (ALS). Semi-Lagrangian advection at-
tempts to combine the advantages of both Eulerian and Lagrangian advection schemes
while ameliorating their drawbacks. Eulerian advection schemes have good resolution
properties, but CFL condition number, which is a necessary condition for achieving
numerical stability, often leads to overly restrictive time steps. On the other hand,
Lagrangian advection schemes allow one to use larger time steps, but, at later times,
Lagrangian distortion (an initial regularly spaced set of particles will generally become
highly irregularly spaced over long times) implies that important features of the flow
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may not be well described. A semi-Lagrangian method uses a regular Cartesian mesh
and different sets of particles. At each time step the set of particles is chosen such
that they arrive exactly at the points of the mesh at the end of the time step, and is
advected by the characteristic curves of the ALS. More precisely, the method consists
of directly computing the distribution function of the ALS on a fixed Cartesian grid
of phase space, by integrating (or following) the characteristic curves backward (from
the end of the characteristic, which is a point of the fixed mesh, to the beginning
of characteristic, during a time step) at each time step and interpolating the value
at the base of the characteristics. In recent applications of semi-Lagrangian meth-
ods to lower-dimensional relativistic Vlasov–Maxwell (RVM) calculations [1, 2, 40],
cubic splines are used for the interpolation scheme, linear interpolation being too dis-
sipative. Semi-Lagrangian methods have been efficiently implemented using parallel
computers [41] and give considerable promise for displaying the detailed structure of
distribution functions in weak density regions.

The author extends semi-Lagrangian schemes on unstructured meshes with a dif-
ferent kind of high order local interpolation operator and with the possibility of having
a positive and conservative method by introducing a linear combination of low order
solutions and high order solutions tempered by a limiter coefficient (cf. [9]). Here we
present the convergence of the method for the simplest interpolation operator, that
is, the Lagrange first order interpolation operator. The scheme preserves positiv-
ity because the basis functions associated with the Lagrange first order interpolation
operator are always positive. Additionally, the scheme is not limited by a CFL con-
dition. More complicated interpolation on a triangle, which involves knowledge of
the gradient of the distribution function, has been implemented successfully (cf. [9]),
but it seems to be a challenge to show the convergence of these methods because we
advect not only the distribution function f but also its gradients. A first result on
the convergence analysis of semi-Lagrangian methods with propagation of gradients
is stated in [8].

Let us note that a first work on convergence of one-dimensional particle methods is
[33], where Neunzert and Wick consider nonuniform initial loadings of particles asymp-
totically distributed with respect to initial data. Cottet and Raviart [16] present a
mathematical analysis of the particle method for solving the one-dimensional Vlasov–
Poisson system, where uniform initial loadings of particles are considered. A number
of additional authors have studied the convergence of particle methods for the multidi-
mensional Vlasov–Poisson system [22, 45, 46, 49]. They have also proved convergence
results on random and deterministic particle methods for the Vlasov–Poisson–Fokker–
Planck kinetic equations [26, 27]. Finally, Glassey and Schaeffer have done the conver-
gence analysis of a particle method for the RVM system [24]. Schaeffer [39] has also
proved the convergence of a finite difference scheme for the one-dimensional Vlasov–
Poisson–Fokker–Planck system, and Filbet [20] has shown the convergence of a finite
volume scheme for the one-dimensional Vlasov–Poisson system.

Although a number of papers present satisfactory numerical results using semi-
Lagrangian methods [43, 13, 40, 1, 2, 18, 9], few rigorous mathematical results on con-
vergence analysis of semi-Lagrangian methods have been stated. Although interesting
a priori estimates have been pointed out (cf. [4, 5, 18]), a lot of work still remains to
give complete and rigorous results in more general situations. The more difficult step
in the convergence analysis of semi-Lagrangian methods is obtaining a stability result
for the interpolation operators. If stability results in the L∞ norm seem inaccessible
for high order interpolation operators because of the Runge phenomena (artificial os-
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cillations, whose amplitude increases with the degree of the polynomial in the case of
Lagrange interpolation, appear at the edges of finite elements), a more appropriate
mathematical framework is L2 stability. If Fourier analysis tools as Fourier series are
useful for proving L2 stability in the case of grids, convenient mathematical tools are
lacking for unstructured meshes such as triangulation and have to be developed in the
future. Nevertheless new results on the convergence analysis of classes of high order
schemes can be found in [7, 8, 6].

This paper is organized as follows. In the first part we present the continuous
problem. In the second part we expose the discrete problem and the numerical scheme
to solve it. Then we study the convergence of our numerical scheme. In the last section
we give refined convergence results.

2. The continuous problem. We consider a noncollisional plasma of charged
particles (electrons and ions) in one dimension. We take into account the electrostatic
forces and neglect the magnetic effects. Due to the great inertia of the ions compared
to the electrons, we assume that the ions form a neutralizing uniform background.

Denoting by f(t, x, v) ≥ 0 the distribution function of electrons in phase space
(with mass normalized to one, the charge to plus one), and by E(t, x) the self-
consistent electric field, the adimensional Vlasov–Poisson system reads

∂f

∂t
+ v

∂f

∂x
+ E(t, x)

∂f

∂v
= 0,(2.1)

dE

dx
(t, x) = ρ(t, x) =

∫ +∞

−∞
f(t, x, v)dv − 1.(2.2)

We consider a periodic plasma of period L. Hence in (2.1) and (2.2) we have x ∈ [0, L],
v ∈ R, t ≥ 0, and the functions f and E satisfy the periodic boundary conditions

f(t, 0, v) = f(t, L, v), v ∈ R, t ≥ 0,(2.3)

and

E(t, 0) = E(t, L) ⇐⇒ 1

L

∫ L

0

∫ +∞

−∞
f(t, x, v)dvdx = 1, t ≥ 0,(2.4)

which means that the plasma is globally neutral. In order to have a well-posed
problem, we add to (2.1)–(2.4) a zero-mean electrostatic condition,∫ L

0

E(t, x)dx = 0, t ≥ 0,(2.5)

and an initial condition,

f(0, x, v) = f0(x, v), x ∈ [0, L], v ∈ R.(2.6)

If we introduce the electrostatic potential φ = φ(t, x) such that

E(t, x) = −∂φ
∂x

(t, x),

and if we denote by G = G(x, y) the Green function associated with our problem—
that is to say, for y ∈ ]0, L[, G(., y) is the solution of

−∂
2G

∂x2
(x, y) = δ(x− y), x ∈ [0, L], G(0, y) = G(L, y),
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where δ is the Dirac distribution—then G(x, y) and K(x, y) = −∂xG(x, y) are given
by

G(x, y) =

⎧⎪⎨⎪⎩
x
(
1 − y

L

)
, 0 ≤ x ≤ y,

y
(
1 − x

L

)
, y ≤ x ≤ L,

K(x, y) =

⎧⎪⎨⎪⎩
( y
L

− 1
)
, 0 ≤ x < y,

y

L
, y < x ≤ L.

Therefore φ is given by

φ(t, x) =

∫ L

0

G(x, y)

(∫ +∞

−∞
f(t, y, v)dv − 1

)
dy,

and E can be rewritten as

E(t, x) =

∫ L

0

K(x, y)

(∫ +∞

−∞
f(t, y, v)dv − 1

)
dy.(2.7)

In addition, assuming that the electric field E is smooth enough, we can solve (2.1),
(2.3), and (2.6) in the classical sense as follows. For the existence, uniqueness, and
regularity of the solutions of the following differential system we refer the reader to
[12] and [36].

We consider the first order differential system

dX

dt
(t; s, x, v) = V (t; s, x, v),

dV

dt
(t; s, x, v) = E(t,X(t; s, x, v))

(2.8)

and denote by t → (X(t; s, x, v), V (t; s, x, v)) the characteristic curves, which are the
solution of (2.8) with the initial conditions

X(s; s, x, v) = x, V (s; s, x, v) = v.(2.9)

Then the solution of problem (2.1), (2.6) is given by

f(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v)), x, v ∈ R, t ≥ 0.(2.10)

We note that the periodicity in x of f0(x, v) and E(t, x) implies the periodicity in x
of f(t, x, v). Moreover, as ∣∣∣∣∂(X,V )

∂(x, v)

∣∣∣∣ = 1,

we get

1

L

∫ L

0

∫ +∞

−∞
f(t, x, v)dvdx =

1

L

∫ L

0

∫ +∞

−∞
f0(x, v)dvdx = 1.

Therefore, according to the previous considerations, an equivalent form of the
Vlasov–Poisson periodic problem is to find a pair (f,E), smooth enough, periodic
with respect to x, with period L, and solving (2.7), (2.8), (2.9), and (2.10).
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2.1. Definitions and notation. We now introduce basic notation. If N denotes
the set of nonnegative integers, a multi-index α is an n-tuple of nonnegative integers
α := (α1, . . . , αn), αi ∈ N, i = 1, . . . , n. We have the following definitions:

|α| = α1 + · · · + αn,

Dα = ∂α1
x1
. . . ∂αn

xn
.

Let Ω be a domain in R
n. For any nonnegative integer m let Cm(Ω) be the vector

space consisting of all functions φ that, together with all their partial derivatives Dαφ
of orders |α| ≤ m, are continuous on Ω.

We define the vector space Cm
b (Ω) of all functions φ ∈ Cm(Ω) for which Dαφ is

bounded and uniformly continuous on Ω for 0 ≤ |α| ≤ m. Cm
b (Ω) is a Banach space

with the norm given by

||φ||Cm
b (Ω) = max

0≤|α|≤m
sup
z∈Ω

|Dαφ(z)|.

We define Cm
c (Ω) as the subspace of Cm

b (Ω) consisting of those functions φ for which,
for 0 ≤ |α| ≤ m, Dαφ has compact support in Ω.

If 0 < λ ≤ 1, we define Cm,λ(Ω) to be the subspace of Cm
b (Ω) consisting of those

functions φ for which, for 0 ≤ |α| ≤ m, Dαφ satisfies in Ω a Hölder condition of
exponent λ; that is, there exists a constant K such that

|Dαφ(x) −Dαφ(y)| ≤ K|x− y|λ, x, y ∈ Ω.

Cm,λ(Ω) is a Banach space with norm given by

||φ||Cm,λ(Ω) = ||φ||Cm
b (Ω) + max

0≤|α|≤m
sup

x, y ∈ Ω
x �= y

|Dαφ(x) −Dαφ(y)|
|x− y|λ .

For all φ : R
n −→ R we let

Lip(φ) = sup
x, y ∈ Ω
x �= y

|φ(x) − φ(y)|
|x− y| .

Furthermore,

Lip(Ω) = {φ : R
n −→ R | Lip(φ) <∞}

is a Banach space with the norm given by

||φ||Lip(Ω) = ||φ||C0,1(Ω).

We define Cm
b,perxi

(Ωxi×Ωn−1) as the subspace of Cm
b (Ω) consisting of those functions

φ which are periodic with respect to the variable xi and bounded with respect to other
variables. We also define Cm

c,perxi
(Ωxi × Ωn−1) as the subspace of Cm

c (Ω) consisting

of those functions φ which are periodic with respect to the variable xi and compactly
supported with respect to the other variables.
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We denote by Lp(Ω), 1 ≤ p ≤ ∞, the space of all equivalence classes of real-valued
Lebesgue-measurable functions. Lp(Ω) is a Banach space with the norm given by

||φ||Lp(Ω) =

{∫
Ω

|φ|pdΩ
}1/p

, 1 ≤ p <∞,

||φ||L∞(Ω) = ess sup
z∈Ω

|φ(z)|.

We define Wm,p(Ω) to be the Sobolev space consisting of all functions φ which, to-
gether with all their partial derivativesDαφ taken in the sense of distribution of orders
|α| ≤ m, belong to the Lp(Ω) space. If we define the seminorm as

|φ|Wk,p(Ω) =

⎧⎨⎩ ∑
|α|=k

|Dαφ|pLp(Ω)

⎫⎬⎭
1/p

, 1 ≤ p <∞,

|φ|Wk,∞(Ω) = max
|α|=m

ess sup
z∈Ω

|Dαφ(z)|,

then we provide Wm,p(Ω) with the norm

||φ||Wm,p(Ω) =

{
m∑
k=0

|φ|p
Wk,p(Ω)

}1/p

, 1 ≤ p <∞,

||φ||Wm,∞(Ω) = max
0≤k≤m

|φ|Wk,∞(Ω).

Let X be a Banach space with norm || · ||X . We denote by Cm(0, T ;X), 0 < T < +∞,
the space of m-times continuously differentiable functions from (0, T ) into X, and by
Lp(0, T ;X) the space of all strongly measurable functions φ : t −→ φ(t) from (0, T )
into X. The following norms are defined:

||φ||C (0,T ;X) = sup
t∈[0,T ]

||φ(t)||X ,

||φ||Cm(0,T ;X) =

m∑
k=0

∥∥∥∥dkφdtk
∥∥∥∥

C (0,T ;X)

,

||φ||Lp(0,T ;X) =

{∫ T

0

||φ(t)||pXdt
}1/p

, 1 ≤ p <∞,

||φ||L∞(0,T ;X) = ess sup
0<t<T

||φ(t)||X .

Finally, we introduce the space �∞(0, T ;X) defined by

�∞ (0, T ;X) :=

{
f : {t0, . . . , tM} → X| ||f ||�∞(0,T ;X) = max

1≤n≤M
||f(tn)||X <∞

}
,

where X denotes a functional space (in our context X should be Lp, p ∈ [1,∞]), and
the space L1,∞ defined by

L1,∞ =
{
f ∈ L1 ∩ L∞ | ‖f‖L1,∞ <∞}

,

where

‖f‖L1,∞ = ‖f‖L1 + ‖f‖L∞ .
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2.2. Existence, uniqueness, and regularity of the solution of the contin-
uous problem. In this section we recall a theorem of existence of a classical solution
for the Vlasov–Poisson system. The following theorem gives the existence, unique-
ness, and regularity of the classical solutions, global in time, of the Vlasov–Poisson
periodic system in one dimension.

Theorem 2.1. Assuming f0 ∈ C 1
c,perx(Rx × Rv), positive, periodic with respect

to the variable x with period L, and Q(0) ≤ R with R > 0 and Q(t) defined as

Q(t) = 1 + sup {|v| : ∃x ∈ [0, L], τ ∈ [0, t] | f(τ, x, v) �= 0}

and

1

L

∫ L

0

∫ +∞

−∞
f0(x, v)dvdx = 1,

then the periodic Vlasov–Poisson system has a unique classical solution (f,E), peri-
odic in x, with period L, for all time t in [0, T ], such that

f ∈ C 1
b

(
0, T ; C 1

c,perx(Rx × Rv)
)
,

E ∈ C 1
b

(
0, T ; C 1

b,perx(R)
)
,

and there exists a constant C = C (R, f0) dependent on R and f0 such that

Q(T ) ≤ CT.

Moreover, if we assume f0 ∈ Cm
c,perx(Rx × Rv), then (f,E) ∈ Cm

b (0, T ; Cm
c,perx(Rx ×

Rv)) × Cm
b (0, T ; Cm

b,perx
(R)) for all finite time T.

Proof. We do not write out the proof because it is a straightforward adaptation
of the proof done by Schaeffer in [38]. We refer the reader to the articles [34, 28, 29,
23, 15, 30, 31].

2.3. Regularity assumptions for the continuous problem. For our pur-
pose, we first suppose that f0(x, v) satisfies the following regularity assumptions:

f0 ∈ C 2
c,perx(Rx × Rv).

Then, as is proven in Glassey [23], if f0 is smooth and compactly supported, the
solution of the Vlasov–Poisson system remains smooth and compactly supported for
all time. Theorem 2.1 gives the existence and uniqueness of the solution (f,E) such
that

f ∈ C 2
b

(
0, T ; C 2

c,perx(Rx × Rv)
)
,(2.11)

E ∈ C 2
b

(
0, T ; C 2

b,perx(R)
)
.(2.12)

Further, we prove that we still have convergence under weaker regularity assumptions.

3. The discrete problem.

3.1. Space of approximation and the interpolation operator. Let Q =
[0, L] × R, Ω = [0, L] × [−R,R] with R > 0, and Th be a triangulation of Q.



CONVERGENCE OF A SEMI-LAGRANGIAN SCHEME 357

Before going further we impose some regularity assumptions on the triangulation
Th as follows:

(H1) The triangulation Th is regular; that is to say, there exists a constant σ such
that

hT
ρT

≤ σ ∀T ∈ Th,

and the quantity h = max{T∈Th} hT approaches zero, where hT and ρT de-
note, respectively, the exterior and the interior diameter of a finite element
T .

(H2) All the finite elements (T, PT ,ΣT ), T ∈ Th, are affine equivalent to a single

reference finite element (T̂ , P̂ , Σ̂) (see [14]).
Let Pm be the space Lagrange polynomial of degree less than or equal to m, and

let Xh be the space defined by

Xh = {g ∈W 1,∞ ∩W 1,p(Q), g|T ∈ Pm ∀T ∈ Th}.
Let πh be a continuous linear interpolation operator from Wm+1,∞∩Wm+1,p(Q),

1 ≤ p <∞, onto Xh. The interpolation error estimations in Sobolev spaces (see [14])
give, with k ∈ {0, 1} and q ∈ {p,∞},

||f − πhf ||Wk,q(Q) ≤ Chm+1−k|f |Wm+1,q ∀f ∈Wm+1,∞ ∩Wm+1,q(Q).(3.1)

The space Xh is characterized by its basis functions, denoted by {ψk}.
3.2. Transport operators. Now we introduce some transport operators. Let

T1 and T2 be the operators defined as

T1g(t, x, v) = g

(
t, x− v

∆t

2
, v

)
,

T2g(t, x, v) = g(t, x, v − ∆tẼ(t, x)),

where Ẽ(t, x) is the solution of the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dẼ

dx
(t, x) =

∫
v

T1g(t, x, v)dv − 1,∫ L

0

Ẽ(t, x)dx = 0.

(3.2)

Let T̃1 be the transport operator defined as

T̃1g(t, x, v) = πhg

(
t, x− v

∆t

2
, v

)
,

where

πhg(t, x, v) =
∑
k

g(t, xk, vk)ψk(x, v),

and let T̃2 be defined as

T̃2g(t, x, v) = πhg(t, x, v − ∆tẼ(t, x)).
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Finally we introduce

T̃ �
2 g(t, x, v) = πhg(t, x, v − ∆tEh(t, x)),

where Eh(t, x) is the solution of the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dEh
dx

(t, x) =

∫
v

T̃1g(t, x, v)dv − 1,∫ L

0

Eh(t, x)dx = 0.

(3.3)

Notice that (2.7) implies that Ẽ(t, x) and Eh(t, x) are respectively given by

Ẽ(t, x) =

∫ L

0

K(x, y)

(∫ +∞

−∞
T1g(t, y, v)dv − 1

)
dy

and

Eh(t, x) =

∫ L

0

K(x, y)

(∫ +∞

−∞
T̃1g(t, y, v)dv − 1

)
dy.

4. The numerical scheme. We suppose that we know fh(t
n) defined on Th.

Therefore the numerical scheme which allows us to go from time tn to tn+1 and
compute fh(t

n+1) can be described in four steps:
(A1) We evaluate the distribution at time tn at the foot of the field-free characteris-

tics starting at (x, v) at time tn+1/2 using a Lagrange interpolation operator.

This action is described by the transport operator T̃1.
(A2) The output from (A1) is integrated with respect to velocity to provide an

approximation for the density at time tn+1/2, which is then substituted into
the Poisson equation (3.3) to compute the approximation of the electric field
at time tn+1/2.

(A3) The result obtained from (A1) is evaluated at the foot of the velocity char-
acteristic starting at (x, v) at time tn+1 with the acceleration field found in
(A2) using a Lagrange interpolation operator. This action is described by the

transport operator T̃ �
2

(A4) Between time tn+1/2 and tn+1, we apply step (A1) to the output from (A3).

This action is described by the transport operator T̃1. Then we obtain
fh(t

n+1), which is the new initial data for the algorithm (A1)–(A4).
Using transport operators defined above in section 3.2, the numerical scheme can be
written as

fh(t
n+1, x, v) = T̃1 ◦ T̃ �

2 ◦ T̃1fh(t
n, x, v),

where fh(0, x, v) = πhf0(x, v) is a discretization of f0 for the initial data,

fh(t
n, x+ L, v) = fh(t

n, x, v) ∀|v| ≤ Q(T )

is the boundary condition in x, and

fh(t
n, x, v) = 0 ∀|v| > Q(T ), ∀x ∈ [0, L]

is the boundary condition in v.
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5. Convergence analysis.

5.1. Main theorem. We next give the convergence theorem.
Theorem 5.1. Assuming f0 ∈ C 2

c,perx(Rx × Rv), positive, periodic with respect
to the variable x with period L, then the numerical solution of the Vlasov–Poisson
system (fh, Eh), computed by the numerical scheme exposed in section 4, converges
toward the solution (f,E) of the periodic Vlasov–Poisson system, and there exists a
constant C = C(||f ||C2(0,T ;W 2,∞(Q))) independent of ∆t, h such that

||f − fh||�∞(0,T ;L∞(Q)) ≤ C
(||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 + h2 +

h2

∆t

)
and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C
(||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 + h2 +

h2

∆t

)
.

Remark 5.2. In Theorem 5.1 we have a lot of choices for the time step. We
note that the convergence rate is slightly better than first order: If we make the
choice ∆t = h2/3, then the error estimate involves h4/3 rather than h to the first
power. Therefore we see that the main reason for using semi-Lagrangian schemes in
lieu of particle schemes comes from the nice flexibility of the error estimates stated in
Theorem 5.1, because they allow us to choose larger time steps and get convergence
rates higher than one.

5.2. Idea of the proof. We want to evaluate the global error at time tn+1:

en+1 = ||f(tn+1, x, v) − fh(t
n+1, x, v)||L∞(Q).

Therefore we decompose f(tn+1, x, v) − fh(t
n+1, x, v) as

f(tn+1, x, v) − fh(t
n+1, x, v) = f(tn+1, x, v) − T1 ◦ T2 ◦ T1f(tn, x, v)

+ T1 ◦ T2 ◦ T1f(tn, x, v) − T̃1 ◦ T̃2 ◦ T̃1f(tn, x, v)

+ T̃1 ◦ T̃2 ◦ T̃1f(tn, x, v) − T̃1 ◦ T̃ �
2 ◦ T̃1f(tn, x, v)

+ T̃1 ◦ T̃ �
2 ◦ T̃1(f(tn, x, v) − fh(t

n, x, v)).

In order to estimate en+1 we will estimate the four terms on the right-hand side
of this equation. These estimations are described in the following section.

5.3. A priori estimates. We begin with the following lemma, which gives an
estimate of the time discretization error.

Lemma 5.3. Assume that f ∈ C 2
b (0, T ; C 2

c,perx(Rx × Rv)); then there exists a
constant C such that∥∥f(tn+1) − T1 ◦ T2 ◦ T1f(tn)

∥∥
L∞(Q)

≤ C
(‖f‖C2(0,T ;W 2,∞(Q))

)
∆t3.

Proof. As f is constant along the characteristic curves, we have

f(tn+1, x, v) = f(tn+1, X(tn+1; tn+1, x, v), V (tn+1; tn+1, x, v))

= f(tn, X(tn; tn+1, x, v), V (tn; tn+1, x, v))

= f(tn, X(tn), V (tn)),
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where X(tn) = X(tn; tn+1, x, v) and V (tn) = V (tn; tn+1, x, v). On the other hand, we
have

T1 ◦ T2 ◦ T1f(tn) = T1 ◦ T2 ◦ T1f(tn, x, v)

= T1 ◦ T2f
(
tn, x− v∆t

2 , v
)

= T1f
(
tn, x− v∆t

2 + ∆t2

2 Ẽ(tn+1/2, x), v − ∆tẼ(tn+1/2, x)
)

= f
(
tn, x− v∆t+ ∆t2

2 Ẽ
(
tn+1/2, x− v∆t

2

)
, v − ∆tẼ

(
tn+1/2, x− v∆t

2

))
= f(tn, X̃(tn; tn+1, x, v), Ṽ (tn; tn+1, x, v))

= f(tn, X̃(tn), Ṽ (tn)),

where

X̃(tn) = x− v∆t+
∆t2

2
Ẽ

(
tn+1/2, x− v

∆t

2

)
and

Ṽ (tn) = v − ∆tẼ

(
tn+1/2, x− v

∆t

2

)
.

In order to justify the following Taylor expansion, we remember that assumption
(2.12) gives E ∈ C 2

b (0, T ; C 2
b,perx

(R)). We notice that Ẽ has the same regularity in
space as E, as the source terms in Poisson equations (3.2) and (2.2) also have the
same regularity.

Hence a Taylor expansion gives

X(tn+1/2) − (
x− v∆t

2

)
= X(tn+1/2) − (

X(tn+1) − V (tn+1)∆t
2

)
= X(tn+1/2) − (

X(tn+1) − ∆t
2 Ẋ(tn+1)

)
= O(∆t2).

(5.1)

As f ∈ C 2
b (0, T ; C 2

c,perx(Rx × Rv)), we have

f(tn+1/2, x, v) − f
(
tn, x− v∆t

2 , v
)

∆t
2

= ∂tf(tn+1/2, x, v) + v∂xf(tn+1/2, x, v) +O(∆t)

= −E(tn+1/2, x)∂vf(tn+1/2, x, v) +O(∆t).(5.2)

Then, using (2.7) and (5.2), we get

E(tn+1/2, x) − Ẽ(tn+1/2, x)

=

∫ L

0

K(x, y)

(∫ +∞

−∞

[
f(tn+1/2, y, v) − f

(
tn, y − v∆t

2 , v
)]
dv

)
dy

≤ C
(‖f‖C2(0,T ;W 2,∞(Q))

)
∆t2.(5.3)
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Using (5.1) and (5.3), we obtain

V (tn) − Ṽ (tn) = V (tn) −
(
V (tn+1) − ∆tẼ

(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

))
= V (tn) −

(
V (tn+1) − ∆tẼ

(
tn+1/2, X(tn+1/2) +O(∆t2)

))
= V (tn) − (

V (tn+1) − ∆tE
(
tn+1/2, X(tn+1/2) +O(∆t2)

))
+ ∆t

(
Ẽ

(
tn+1/2, X(tn+1/2) +O(∆t2)

)
− E

(
tn+1/2, X(tn+1/2) +O(∆t2)

))
= V (tn) − (

V (tn+1) − ∆tE(tn+1/2, X(tn+1/2))
)

+O(∆t3)

= V (tn) − V (tn+1) + ∆tV̇ (tn+1/2) +O(∆t3)

≤ C
(‖f‖C2(0,T ;W 2,∞(Q))

)
∆t3

and

X(tn) − X̃(tn) = X(tn) −
(
X(tn+1) − ∆tV (tn+1)

+ ∆t2

2 Ẽ
(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

))
= X(tn) −

(
X(tn+1) − ∆tV (tn+1)

+ ∆t2

2 Ẽ
(
tn+1/2, X(tn+1/2) +O(∆t2)

))
= X(tn) −

(
X(tn+1) − ∆tV (tn+1)

+ ∆t2

2 E
(
tn+1/2, X(tn+1/2) +O(∆t2)

))
− ∆t2

2

(
Ẽ(tn+1/2, X(tn+1/2) +O(∆t2))

− E(tn+1/2, X(tn+1/2) +O(∆t2))
)

= X(tn) −
(
X(tn+1) − ∆tV (tn+1)

+ ∆t2

2 E(tn+1/2, X(tn+1/2))
)

+O(∆t4)

= X(tn) −
(
X(tn+1) − ∆tẊ(tn+1) + ∆t2

2 Ẍ(tn+1/2)
)

+O(∆t4)

= X(tn) −
(
X(tn+1) − ∆tẊ(tn+1) + ∆t2

2 Ẍ(tn+1)
)

+O(∆t3)

≤ C
(‖f‖C2(0,T ;W 2,∞(Q))

)
∆t3.

Finally, we deduce that

T1 ◦ T2 ◦ T1f(tn) = f(tn, X(tn) +O(∆t3), V (tn) +O(∆t3))

= f(tn, X(tn), V (tn)) + ∇f(tn, X(tn), V (tn)) ·O(∆t3)

= f(tn+1, X(tn+1), V (tn+1)) + ∇f(tn, X(tn), V (tn)) ·O(∆t3)

= f(tn+1, x, v) + ∇f(tn, X(tn), V (tn)) ·O(∆t3)
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and

||f(tn+1) − T1 ◦ T2 ◦ T1f(tn)||Lp(Q) ≤ C
(‖f‖C2(0,T ;W 2,∞(Q))

) ||∇f ||L∞([0,T ]×Q)∆t
3.

We continue with the following result.
Proposition 5.4. Assume that f ∈ L∞(0, T ; Cm+1

c,perx(Rx × Rv)), m ≥ 0, and πh
is a continuous linear interpolation operator from Wm+1,∞(Q) onto Xh; then there
exists a constant C such that for i = 1, 2, 1 ≤ p ≤ ∞,

||Tif ||L∞(0,T ;Wm+1,p(Q)) ≤ C||f ||L∞(0,T ;Wm+1,p(Q)),(5.4)

||T̃if ||L∞(0,T ;Lp(Q)) ≤ C||f ||L∞(0,T ;Wm+1,p(Q)),(5.5)

and

‖(Ti − T̃i)f‖L∞(0,T ;Lp(Q)) ≤ Chm+1||f ||L∞(0,T ;Wm+1,p(Q)).(5.6)

Proof. It is obvious that∥∥∥f(t, x− v∆t
2 , v

)∥∥∥
L∞(0,T ;Lp(Q))

= ‖f‖L∞(0,T ;Lp(Q))(5.7)

and

‖f(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;Lp(Q)) = ‖f‖L∞(0,T ;Lp(Q)) .(5.8)

On one side the gradient of f(t, x− v∆t/2, v) gives∥∥∥∂x(f(t, x− v∆t
2 , v

))∥∥∥
L∞(0,T ;Lp(Q))

= ‖∂xf‖L∞(0,T ;Lp(Q))

and∥∥∥∂v(f(t, x− v∆t
2 , v)

)∥∥∥
L∞(0,T ;Lp(Q))

≤ ∆t
2 ‖∂xf‖L∞(0,T ;Lp(Q)) + ‖∂vf‖L∞(0,T ;Lp(Q)) .

Hence ∥∥∥f(t, x− v∆t
2 , v

)∥∥∥
L∞(0,T ;W 1,p(Q))

≤ C ‖f‖L∞(0,T ;W 1,p(Q)) .

In the same way we get∥∥∥f(t, x− v∆t
2 , v

)∥∥∥
L∞(0,T ;Wm+1,p(Q))

≤ C ‖f‖L∞(0,T ;Wm+1,p(Q)) .

On the other side the gradient of f(t, x, v − Ẽ(t, x)∆t) gives

‖∂x(f(t, x, v − Ẽ(t, x)∆t))‖L∞(0,T ;Lp(Q))

≤ ‖∂xf‖L∞(0,T ;Lp(Q)) + ∆t||∂xẼ||L∞([0,T ]×[0,L]) ‖∂vf‖L∞(0,T ;Lp(Q))

and

‖∂v(f(t, x, v − Ẽ(t, x)∆t))‖L∞(0,T ;Lp(Q)) ≤ ‖∂vf‖L∞(0,T ;Lp(Q)) .
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Hence

‖f(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;W 1,p(Q)) ≤ (1 + C∆t) ‖f‖L∞(0,T ;W 1,p(Q))

≤ C ‖f‖L∞(0,T ;W 1,p(Q)) .

In the same way, as Ẽ ∈ L∞(0, T ; Cm+1
b,perx

(R)), we get

‖f(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;Wm+1,p(Q)) ≤ C ‖f‖L∞(0,T ;Wm+1,p(Q)) ,

which completes the proof of (5.4).
πh is an interpolation operator which is characterized by the basis functions {ψk}.

Then πhf can be written as follows:

πhf(t, x, v) =
∑
k

f(t, xk, vk)ψk(x, v) =
∑
k

fk(t)ψk(x, v).

As any ψk ∈ L∞(Q) and has compact support, there exists a constant M such
that ∣∣∣∣∣

∣∣∣∣∣∑
k

|ψk(x, v)|
∣∣∣∣∣
∣∣∣∣∣
L∞(Q)

≤ sup
T∈Th

∣∣∣∣∣
∣∣∣∣∣∑
k

|ψk(x, v)|
∣∣∣∣∣
∣∣∣∣∣
L∞(T )

≤ card(ΣT ) sup
T∈Th

max
(x,v)∈T

|ψk(x, v)|

≤ M,

where ΣT is the set of degrees of freedom on the triangle T .
• L∞ case:

‖πhf‖L∞(Q) ≤ ‖f‖L∞(Q)

∑
k

|ψk(x, v)| ≤M ‖f‖L∞(Q) .

• L1 case:∫
Q

|πhf(t)|dvdx ≤
∑
k

|fk(t)|
∫
Q

|ψk|dxdv ≤M
∑
k

|fk(t)|meas (Sk) ,

where Sk is the support of ψk. Let Ak be the geometrical area associated
with the node Nk = (xk,vk), obtained by joining the barycenter of the tri-
angles that have the vertex Nk in common to the middle of the edges of the
triangles; then there exists a constant K > 0 independent of h such that
(1/K)meas(Sk) ≤ meas(Ak) < meas(Sk). Then we obtain

‖πhf(t)‖L1(Q) ≤ CMK
∑
k

|fk(t)|meas (Ak) ≤ C ‖f(t)‖L1(Q)

and

‖πhf‖L∞([0,T ],L1(Q)) ≤ C ‖f‖L∞([0,T ],L1(Q)) .

• Lp case: ∫
Q

|πhf(t)|pdvdx ≤
∫
Q

(∑
k

|fk(t)| |ψk|
)p

dvdx.
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Thanks to the Hölder inequality, we get

∫
Q

|πhf(t)|p ≤
∫
Q

(∑
k

|fk(t)|p|ψk|
)(∑

k

|ψk|
)p/p∗

dvdx,

with p∗ = p/(p− 1). Then we get

‖πhf(t)‖pLp(Q) ≤ Mp/p∗
∑
k

|fk(t)|p
∫
Q

|ψk|dxdv

≤ KMp/p∗+1
∑
k

|fk(t)|pmeas (Ak)

≤ C ‖f‖pLp(Q)

and finally

‖πhf‖L∞(0,T ;Lp(Q)) ≤ C ‖f‖L∞(0,T ;Lp(Q)).

Hence, as f ∈ L∞(0, T ; Cm+1
c,perx(Rx × Rv)), then∥∥∥πhf(t, x− v∆t

2 , v
)∥∥∥

L∞(0,T ;Lp(Q))
≤ C

∥∥∥f(t, x− v∆t
2 , v

)∥∥∥
L∞(0,T ;Lp(Q))

≤ C||f ||L∞(0,T ;Lp(Q))

≤ C||f ||L∞(0,T ;Wm+1,p(Q))

and

‖πhf(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;Lp(Q)) ≤ C‖f(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;Lp(Q))

≤ C||f ||L∞(0,T ;Lp(Q))

≤ C||f ||L∞(0,T ;Wm+1,p(Q)),

which completes the proof of (5.5). Finally, thanks to inequality (3.1), we obtain∥∥∥f(t, x− v∆t
2 , v

)
− πhf

(
t, x− v∆t

2 , v
)∥∥∥

L∞(0,T ;Lp(Q))

≤ Chm+1
∥∥∥f(t, x− v∆t

2 , v
)∥∥∥

L∞(0,T ;Wm+1,p(Q))

≤ Chm+1||f ||L∞(0,T ;Wm+1,p(Q))

and

‖f(t, x, v − Ẽ(t, x)∆t) − πhf(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;Lp(Q))

≤ Chm+1||f(t, x, v − Ẽ(t, x)∆t)||L∞(0,T ;Wm+1,p(Q))

≤ Chm+1||f ||L∞(0,T ;Wm+1,p(Q)),

which completes the proof of the proposition.
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The next lemma gives an estimate of the space discretization error.
Lemma 5.5. Assume that f ∈ L∞(0, T ; Cm+1

c,perx(Rx × Rv)) and that πh is a
continuous linear interpolation operator from Wm+1,∞(Q) onto Xh; then there exists
a constant C such that

‖T1 ◦ T2 ◦ T1f(tn) − T̃1 ◦ T̃2 ◦ T̃1f(tn)‖L∞(Q) ≤ Chm+1||f ||L∞(0,T ;Wm+1,∞(Q)).

Proof. We begin with the following decomposition:

T1 ◦ T2 ◦ T1f(tn) − T̃1 ◦ T̃2 ◦ T̃1f(tn) = (T1 − T̃1) ◦ T2 ◦ T1f(tn)

+ T̃1 ◦ (T2 − T̃2) ◦ T1f(tn)

+ T̃1 ◦ T̃2 ◦ (T1 − T̃1)f(tn).

(5.9)

Using (5.4), (5.5), and (5.6), the decomposition (5.9) gives for the first term

||(T1 − T̃1) ◦ T2 ◦ T1f(tn)||L∞(Ω) ≤ Chm+1|T2 ◦ T1f(tn)|Wm+1,∞(Q)

≤ Chm+1|T1f(tn)|Wm+1,∞(Q)

≤ Chm+1|f(tn)|Wm+1,∞(Q)

≤ Chm+1||f ||L∞(0,T ;Wm+1,∞(Q)),

for the second term of (5.9)

||T̃1 ◦ (T2 − T̃2) ◦ T1f(tn)||L∞(Q) ≤ C||(T2 − T̃2) ◦ T1f(tn)||L∞(Q)

≤ Chm+1|T1f(tn)|Wm+1,∞(Q)

≤ Chm+1||f ||L∞(0,T ;Wm+1,∞(Q)),

and for the third term of (5.9)

||T̃1 ◦ T̃2 ◦ (T1 − T̃1)f(tn)||L∞(Q) ≤ C||(T1 − T̃1)f(tn)||L∞(Q)

≤ Chm+1||f ||L∞(0,T ;Wm+1,∞(Q)),

which proves the lemma.
We continue with the proof of another lemma that gives an estimate of a coupling

error between the resolution of the Vlasov and the Poisson equations.
Lemma 5.6. Assume that f ∈ L∞(0, T ; Cm+1

c,perx(Rx × Rv)) and that πh is a
continuous linear interpolation operator from Wm+1,∞(Q) onto Xh; then there exists
a constant C such that

‖T̃1 ◦ T̃2 ◦ T̃1f(tn) − T̃1 ◦ T̃ �
2 ◦ T̃1f(tn)‖L∞(Q) ≤ C∆t

(
en + hm+1

) ||f ||L∞(0,T ;Wm+1,∞(Q)),

where

en = ‖f(tn) − fh(t
n)‖L∞(Q) .

Proof. On the one hand, we have

(T̃2 − T̃ �
2 )g(tn) = πh

(
g(tn, x, v − ∆tẼn+1/2(x)) − g(tn, x, v − ∆tE

n+1/2
h (x))

)
.

On the other hand, we have

|g(tn, x, v− ∆tẼn+1/2(x)) − g(tn, x, v − ∆tE
n+1/2
h (x))|

≤ ∆t|Ẽn+1/2(x) − E
n+1/2
h (x)| ‖∇g(tn)‖L∞(Q) ,
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where Ẽn+1/2(x) and E
n+1/2
h (x) can be written as follows:

Ẽn+1/2(x) =

∫ L

0

K(x, y)

(∫
R

T1f(tn, y, v)dv − 1

)
dy,

E
n+1/2
h (x) =

∫ L

0

K(x, y)

(∫
R

T̃1fh(t
n, y, v)dv − 1

)
dy.

Then we can write

E
n+1/2
h (x) − Ẽn+1/2(x) =

∫ L

0

K(x, y)

(∫
R

[
T̃1fh(t

n, y, v) − T1f(tn, y, v)
]
dv

)
dy,

=

∫ L

0

K(x, y)

(∫
|v|≤Q(T )

πh

[
fh

(
tn, y − v∆t

2 , v
)
− f

(
tn, y − v∆t

2 , v
)]
dv

)
dy

+

∫ L

0

∫
|v|≤Q(T )

K(x, y)
(
πhf

(
tn, y − v∆t

2 , v
)
− f

(
tn, y − v∆t

2 , v
))
dvdy,

so that we get

‖En+1/2
h − Ẽn+1/2‖L∞([0,L])

≤ LQ(T )||K||L∞

∥∥∥πh[fh(tn, y − v∆t
2 , v

)
− f

(
tn, y − v∆t

2 , v
)]∥∥∥

L∞(Q)

+ LQ(T )||K||L∞

∥∥∥πhf(tn, y − v∆t
2 , v

)
− f

(
tn, y − v∆t

2 , v
)∥∥∥

L∞(Q)
,(5.10)

and using (5.4), (5.5), and (5.6),

‖En+1/2
h − Ẽn+1/2‖L∞([0,L]) ≤ LQ(T )||K||L∞ ||πh||L∞ ‖fh(tn) − f(tn)‖L∞(Q)

+ CLQ(T )||K||L∞hm+1||f(tn)||Wm+1,∞(Q).

(5.11)

Finally, we obtain

‖En+1/2
h − Ẽn+1/2‖L∞([0,L]) ≤ C

(
en + hm+1

)
and, as a consequence,

‖(T̃2 − T̃ �
2 )g(tn)‖L∞(Q) ≤ C∆t

(
en + hm+1

) ‖∇g(tn)‖L∞(Q) .(5.12)

Then, using (5.4) and (5.12),

‖T̃1 ◦ (T̃2 − T̃ �
2 ) ◦ T̃1f(tn)‖L∞(Q) ≤ C‖(T̃2 − T̃2) ◦ T̃1f(tn)‖L∞(Q)

≤ C∆t
(
en + hm+1

) ‖∇(T̃1f(tn))‖L∞(Q).
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Now we estimate the term ‖∇(T̃1f(tn))‖L∞(Q). We can do this in the following way.
Using (3.1), we get

‖∇(T̃1f(tn))‖L∞(Q) ≤
∥∥∥∇(

πhf
(
tn, x− v∆t

2 , v
))∥∥∥

L∞(Q)

≤
∥∥∥∇[

(πhf − f)
(
tn, x− v∆t

2 , v
)]∥∥∥

L∞(Q)

+
∥∥∥∇(

f
(
tn, x− v∆t

2 , v
))∥∥∥

L∞(Q)

≤ Chm||f ||L∞(0,T ;Wm+1,∞(Q)) + ||f ||L∞(0,T ;Wm+1,∞(Q))

≤ C||f ||L∞(0,T ;Wm+1,∞(Q)).

In fact, this estimation is due to the continuity of πh from Wm+1,∞(Q) onto Xh.
Then we finally obtain

‖T̃1 ◦ (T̃2 − T̃ �
2 ) ◦ T̃1f(tn)‖L∞(Q) ≤ C∆t

(
en + hm+1

) ||f ||L∞(0,T ;Wm+1,∞(Q)),

which completes the proof.
We now state the last lemma, which gives information about the stability of the

numerical scheme.
Lemma 5.7. Let πh be the interpolation operator from W 2,∞(Q) onto Xh with

Pm = P1; then we have

‖T̃1 ◦ T̃ �
2 ◦ T̃1(f(tn) − fh(t

n))‖L∞(Q) ≤ en.(5.13)

Proof. As πh is a linear interpolation operator, the basis functions satisfy

0 ≤ ψk ≤ 1

and ∑
k

ψk = 1,

and therefore we have

‖πh‖L∞ = sup
f∈L∞
f �=0

‖πhf‖L∞(Q)

‖f‖L∞(Q)

≤ 1.

Indeed we have

|πhg| =

∣∣∣∣∣∑
k

g(xk, vk)ψk(x, v)

∣∣∣∣∣
≤
∑
k

|gk|ψk(x, v)

≤ ‖g‖L∞
∑
k

ψk = ‖g‖L∞ .

As a consequence we obviously obtain

‖T̃1 ◦ T̃ �
2 ◦ T̃1(f(tn) − fh(t

n))‖L∞(Q) ≤ ‖T̃ �
2 ◦ T̃1(f(tn) − fh(t

n))‖L∞(Q)

≤ ‖T̃1(f(tn) − fh(t
n))‖L∞(Q)

≤ ‖f(tn) − fh(t
n)‖L∞(Q) ,

which completes the proof.
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Now we can return to the proof of the main theorem.
Proof of the main theorem. We want to evaluate the global error at time tn+1:

en+1 = ||f(tn+1, x, v) − fh(t
n+1, x, v)||L∞(Q).

We decompose f(tn+1, x, v) − fh(t
n+1, x, v) as

f(tn+1, x, v) − fh(t
n+1, x, v) = f(tn+1, x, v) − T1 ◦ T2 ◦ T1f(tn, x, v)

+ T1 ◦ T2 ◦ T1f(tn, x, v) − T̃1 ◦ T̃2 ◦ T̃1f(tn, x, v)

+ T̃1 ◦ T̃2 ◦ T̃1f(tn, x, v) − T̃1 ◦ T̃ �
2 ◦ T̃1f(tn, x, v)

+ T̃1 ◦ T̃ �
2 ◦ T̃1(f(tn, x, v) − fh(t

n, x, v)).(5.14)

Finally if we put together Lemmas 5.3, 5.5, 5.6, 5.7, we obtain the following estimation:

en+1 ≤ (1 + C∆t)en + C
(||f ||C2(0,T ;W 2,∞(Q))

) (
∆t3 + h2 + h2∆t

)
.

A discrete Gronwall inequality enables us to get

en+1 ≤ exp(CT )e0 + C
(||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 +

h2

∆t
+ h2

)
.

As e0 is only a fixed interpolation error, we obtain

en ≤ C
(||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 +

h2

∆t
+ h2

)
.

In order to prove the convergence of the electric field, we estimate

||E(tn+1/2) − E
n+1/2
h ||L∞([0,L]).

To estimate this term we proceed as in the proof of Lemmas 5.6 and 5.3. Then we
obtain

||Ẽ(tn+1/2) − E
n+1/2
h ||L∞([0,L]) ≤ C

(||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 + h2 +

h2

∆t

)
and

||E(tn+1/2) − Ẽ(tn+1/2)||L∞([0,L]) ≤ C
(||f ||C2(0,T ;W 2,∞(Q))

)
∆t2

so that

||E(tn+1/2) − E
n+1/2
h ||L∞([0,L]) ≤ C

(||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 + h2 +

h2

∆t

)
.

5.4. Other results. We can prove the convergence of our numerical scheme un-
der weaker regularity assumptions. Following the proof of existence and uniqueness of
the solutions of the Cauchy problem for the Vlasov–Maxwell system in one dimension
made by Cooper and Klimas [15], if we take f0 such that

f0 ∈ Cb,perx ∩W 1,∞
c (Rx × Rv),
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the Vlasov–Poisson periodic system given by (2.7), (2.8), (2.9), and (2.10) has a unique
solution (f,E) such that

f ∈ Cb
(
0, T ; Cb,perx ∩W 1,∞

c (Rx × Rv)
)
,

∂tf ∈ L∞ (0, T ;L∞
c (Rx × Rv)) ,

where the derivative is taken in the sense of distribution, and

E ∈ C 1
(
0, T ; C 1

b,perx(Rx)
)
.

Now we state the theorem.
Theorem 5.8. Assume that f0 ∈ Cb,perx ∩ W 1,∞

c (Rx × Rv). Let α > 0,
h ∼ ∆t1/ε, with 0 < ε < 1; then (fh, Eh), the numerical solution of the peri-
odic Vlasov–Poisson system, converges towards (f,E), and there exists a constant
C = C(‖f‖Cb(0,T ;W 1,∞(Q)) , ‖∂tf‖L∞(0,T ;L∞(Q))) independent of ∆t and h such that

||f − fh||�∞(0,T ;L∞(Q)) ≤ C
(
∆t+ h+ h1−ε)

and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C
(
∆t+ h+ h1−ε) .

Proof. In order to prove Theorem 5.8 we have to examine how Lemmas 5.3, 5.5,
5.6, 5.7 and Proposition 5.4 can be adapted to the new regularity assumptions.

We begin with Lemma 5.3. Now we cannot apply Taylor expansion, since the
solution is not regular enough. Thus we have to rewrite all the estimates. First we
have

X(tn+1/2) − (x− v∆t/2) = X(tn+1/2) −
(
X(tn+1) − V (tn+1)∆t

2

)
=

∫ tn+1/2

tn+1

(
V (t) − V (tn+1)

)
dt

=

∫ tn+1/2

tn+1

∫ t

tn+1

E (τ,X(τ)) dτdt

≤ C∆t2 ‖E‖L∞(0,T ;L∞([0,L]))

≤ C∆t2.

(5.15)

Next we note that we have the following decomposition:

f(tn+1/2, y, v) − f
(
tn, y − v∆t

2 , v
)

=

∫ tn+1/2

tn
∂tf(t, y, v)dt+

∫ y

y−v∆t/2
∂xf(tn, x, v)dx.

As f ∈ Cb(0, T ;Wc
1,∞ (Q)) and ∂tf ∈ L∞ (0, T ;L∞

c (Q)), integrating the previous
decomposition, we obtain∫ L

0

∫
Rv

∣∣∣f(tn+1/2, y, v) − f
(
tn, y − v∆t

2 , v
)∣∣∣dydv

≤
∫ L

0

∫
Rv

∫ tn+1/2

tn
|∂tf (t, y, v)| dtdvdy +

∫ L

0

∫
Rv

∫ y

y−v∆t/2
|∂xf (tn, x, v)| dxdvdy,
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and then ∫ L

0

∫
Rv

∣∣∣f(tn+1/2, y, v) − f
(
tn, y − v∆t

2 , v
)∣∣∣dydv

≤ CLQ2(T )∆t
(
‖∂tf‖L∞(0,T,L∞(Q)) + ‖∂xf‖L∞(0,T ;L∞(Q))

)
≤ C∆t,(5.16)

so that, using (2.7),

|E(tn+1/2, x) − Ẽ(tn+1/2, x)| ≤ C∆t.(5.17)

Then we have

V (tn) − Ṽ (tn) =

∫ tn

tn+1

E (t,X(t)) dt+ ∆tẼ
(
tn+1/2, x− v∆t

2

)

=

∫ tn

tn+1

(E (t,X(t)) − E(tn+1/2, X(t)))dt

+

∫ tn

tn+1

(E(tn+1/2, X(t)) − E(tn+1/2, X(tn+1/2)))dt

+ ∆t
{
E
(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

)
− E(tn+1/2, X(tn+1/2))

}
+ ∆t

{
Ẽ
(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

)
− E

(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

)}
.

As E ∈ C 1(0, T ; C 1
b,perx

(Rx)), we obtain

sup
{∣∣∣V (tn; tn+1, x, v) − Ṽ (tn; tn+1, x, v)

∣∣∣ | ∀(x, v) ∈ [0, L] × R

}
≤ C∆t2Lip (E(., x)) + CQ(T )∆t2Lip (E(t, .)) + C∆t3Lip (E(t, .)) + C∆t2

≤ C∆t2.

(5.18)

We go on with the estimate of X(tn) − X̃(tn). We have

X(tn) − X̃(tn) =

∫ tn

tn+1

∫ t

tn+1

E (τ,X(τ)) dτdt− ∆t2

2 Ẽ
(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

)
so that

sup
{∣∣∣X(tn) − X̃(tn)

∣∣∣ | ∀(x, v) ∈ [0, L] × R

}
≤ C∆t2

(
‖E‖L∞ + ‖Ẽ‖L∞

)
≤ C∆t2.

(5.19)
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Now we use the estimates (5.18) and (5.19) in order to bound the quantity

T1 ◦ T2 ◦ T1f(tn) − f
(
tn+1, x, v

)
= f(tn, X̃(tn), Ṽ (tn)) − f (tn, X(tn), V (tn))

in the L∞ norm. As we have the continuous embedding W 1,∞ ↪→ C 0,1, then∥∥T1 ◦ T2 ◦ T1f(tn) − f
(
tn+1

)∥∥
L∞(Q)

≤ CLip (f(tn, ., .)) ∆t2,

≤ C sup
t∈[0,T ]

Lip (f(t, ., .)) ∆t2,

≤ C∆t2.(5.20)

Following the proof of Proposition 5.4, if we take f ∈ Cb(0, T ;W 1,∞
c (Q)), E ∈

C 1(0, T ; C 1
b,perx

(R)), and if we take the derivative in the sense of distribution, then,
using (3.1), we still have (with m ∈ {0, 1})

||Tif ||L∞(0,T ;Wm,∞(Q)) ≤ C||f ||L∞(0,T ;Wm,∞(Q)),(5.21)

||T̃if ||L∞(0,T ;L∞(Q)) ≤ C||f ||L∞(0,T ;Wm,∞(Q)),(5.22)

and

‖(Ti − T̃i)f‖L∞(0,T ;L∞(Q)) ≤ Ch||f ||L∞(0,T ;W 1,∞(Q)).(5.23)

As a consequence, Lemma 5.5 supplies the estimate

‖T1 ◦ T2 ◦ T1f(tn) − T̃1 ◦ T̃2 ◦ T̃1f(tn)‖L∞(Q) ≤ Ch.

The estimate of Lemma 5.6 has to be replaced by

‖T̃1 ◦ T̃2 ◦ T̃1f(tn) − T̃1 ◦ T̃ �
2 ◦ T̃1f(tn)‖L∞(Q) ≤ C∆t (en + h) .

In order to justify this inequality we just have to show that Lip(T̃1f(tn)) is bounded.
Indeed we have

Lip(T̃1f(tn)) = Lip
(
πhf

(
tn, x− v∆t

2 , v
))

≤ ‖πh‖L∞Lip (f(tn, ., .)) < +∞.

Finally, we get all the desired a priori estimates by seeing that the stability result
(5.13) still holds. Then the proof of the theorem is the same as that for Theorem 5.1,
and we get

||f − fh||�∞(0,T ;L∞(Q)) ≤ C

(
∆t+ h+

h

∆t

)
and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C

(
∆t+ h+

h

∆t

)
.

Now if we take ∆t ∼ hε with 0 < ε < 1, we get the desired result. In fact the best ε
to choose is 1/2 so that convergence holds with order 1/2.
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Remark 5.9. Under the regularity assumptions f0 ∈ Cm+1
c,perx(Rx × Rv), if there

exists an interpolation operator πh that satisfies both a consistency condition such as

‖f − πhf‖L∞(0,T ;Lp(Q)) ≤ Chm+1||f ||L∞(0,T ;Wm+1,p(Q))(5.24)

and a stability condition such as

‖πhf‖L∞(0,T ;Lp(Q)) ≤ (1 + Ch)||f ||L∞(0,T ;Lp(Q)),(5.25)

then our method can easily be applied to prove the convergence of high order schemes
in the Lp norm and to find error estimates such as

||f − fh||�∞(0,T ;Lp(Q)) ≤ C
(||f ||C2(0,T ;Wm+1,p(Q))

)(
∆t2 + hm+1 +

hm+1

∆t

)
and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C
(||f ||C2(0,T ;Wm+1,p(Q))

)(
∆t2 + hm+1 +

hm+1

∆t

)
.

Unfortunately Lagrange interpolations of high order do not satisfy the stability con-
dition (5.25). Besides, it seems difficult but not impossible to build interpolation
operators πh which satisfy both conditions (5.24) and (5.25).

If we use a Lagrange interpolation operator of high order, the discrete solution
fh(t

n) belongs to W 1,p(Q). The numerical scheme consists of a succession of transport
and projection on the finite element space generated by the Lagrange finite element
of high order. The transport operation leaves the norm of the solution unchanged.
Then the scheme is stable if the interpolation operator πh is stable, i.e., ‖πh‖Lp ≤ 1+
ε(h) with limh→0 ε(h) = 0. Unfortunately Lagrange interpolation does not have nice
properties of stability. Let τh,ξ be a translation operator such that τz,ξfh(t

n, x, v) =
fh(t

n, x− z, v − ξ) = gh(t
n, x, v). Therefore gh(t

n) ∈W 1,p(Q), and we have

‖πh ◦ τz,ξfh(tn)‖Lp(Q) = ‖πhgh(tn)‖Lp(Q)

≤ ‖gh(tn)‖Lp(Q) + ‖πhgh(tn) − gh(t
n)‖Lp(Q)

≤ ‖gh(tn)‖Lp(Q) + Ch |gh(tn)|W 1,p(Q)

≤ ‖gh(tn)‖Lp(Q) + C,

since |gh(tn)|W 1,p(Q) ∼ O(h−1) and with C independent of h and such that C > 1.
We can also prove the convergence of our numerical scheme with noncompactly

supported initial data. If we take f0 such that

f0 ∈ Cb,perx ∩W 1,∞ ∩W 1,1(Rx × Rv),

0 < f0 ≤ (1 + |v|)−λ, v∇f0 ∈ L∞
x

(
L1
v

)
,

and if we suppose that there exists a constant R > 0 such that

L(f0, R)(ξ) = sup

{ |f0(x, v) − f0(y, w)|
‖(x, v) − (y, w)‖2

∣∣∣∣ x, y ∈ [0, L], v, w ∈ R,

(x, v) �= (y, w), |v − ξ| ≤ R, |w − ξ| ≤ R

}
(1 + |ξ|) ∈ L∞ ∩ L1(Rξ),(5.26)
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where (x, v) ∈ [0, L] × R and ‖(x, v)‖2 =
√
x2 + v2, the periodic Vlasov–Poisson

system given by (2.7), (2.8), (2.9), and (2.10) has a unique solution (f,E) such that

0 < f(t, x, v) ≤ (1 + |v|)−λ,(5.27)

f ∈ Cb
(
0, T ; Cb,perx ∩W 1,∞ ∩W 1,1(Rx × Rv)

)
,

v∇f, ∂tf ∈ L∞ (
0, T ;L∞

x

(
L1
v

))
,

where the derivative is taken in the sense of distribution and

E ∈ C 1
(
0, T ; C 1

b,perx(Rx)
)
.

In addition, there exists a constant C(T ) > 0 such that ∀t ∈ [0, T ],

L(f(t), R+ C(T ))(ξ)

= sup

{ |f(t, x, v) − f(t, y, w)|
‖(x, v) − (y, w)‖2

∣∣∣∣ x, y ∈ [0, L], v, w ∈ ×R,

(x, v) �= (y, w), |v − ξ| ≤ R+ C(T ), |w − ξ| ≤ R+ C(T )

}
(1 + |ξ|)

∈ L∞ ∩ L1(Rξ).

Now we state the theorem.
Theorem 5.10. Assume that f0 ∈ Cb,perx ∩W 1,∞ ∩W 1,1(Rx × Rv), 0 ≤ f0 ≤

(1 + |v|)−λ, ∀λ > 1 and that f0 satisfies (5.26). Let α be such that 0 < α < λ, and
suppose that the bound of velocity support R evolves as h−1/α. Then (fh, Eh), the
numerical solution of the periodic Vlasov–Poisson system, converges towards (f,E),
and there exists a positive function µ such that limh→0 µ(h) = 0, and a constant C =
C(‖f‖L∞(0,T ;W 1,∞(Q)), ‖f‖L∞(0,T ;W 1,1(Q)), ‖∂tf‖L∞(0,T ;L∞

x (L1
v)), ‖v∇f‖L∞(0,T ;L∞

x (L1
v)))

independent of ∆t, h such that

||f − fh||�∞(0,T ;L1,∞(Q)) ≤ C
(
∆t+ h+ (h+ µ(h))

1−1/σ
+ hλ/α

)
and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C
(
∆t+ h+ (h+ µ(h))1−1/σ + hλ/α

)
,

where ∆t ∼ (h+ µ(h))1/σ, with σ > 1.
Before giving the proof of Theorem 5.10, we need to establish the L1 stability of

πh by proving the following two lemmas.
Lemma 5.11. Assume that 0 ≤ f0(x, v) ≤ ζ(x, v) ∼ (1 + |v|)−λ, for λ > 1. Then

there exists a constant C, depending only on T , L, and f0, such that

0 ≤ fh(t, x, v) ≤ Cζh(x, v), t ∈ [0, T ], (x, v) ∈ Q,(5.28)

where

ζh(x, v) =
∑
k

1

(1 + |vk|)λψk(x, v).

There also exists a constant C > 0 such that

||fh(t)||L1(Q) ≤ C, t ∈ [0, T ].(5.29)
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Proof. We begin with the transport in x. Let us notice that there exists a
constant R independent of h such that for every triangle Tm of the triangulation
Th there exists a ball B(am, Rh) of center am and radius Rh which contains Tm.
Let Nk be a vertex of triangle Tm. If we consider transport in x, the origin of the
characteristic, x�k = xk − vk∆t/2, which ends at Nk, belongs to a triangle T �m. Let
µ(h) be a positive function such that limh→0 µ(h) = 0. If No, Np, and Nq are the
vertices of the triangle T �m, we have

|vk − vo| ≤ 2Rh ≤ 2R(h+ µ(h)) ≤ 2Rε(h),

|vk − vp| ≤ 2Rh ≤ 2R(h+ µ(h)) ≤ 2Rε(h),

and

|vk − vq| ≤ 2Rh ≤ 2R(h+ µ(h)) ≤ 2Rε(h),

where ε(h) = h+ µ(h). On the other hand, we note that

ζh(xj , vj)

ζh(xk, vk)
=

(1 + |vk|)λ
(1 + |vj |)λ ≤ 1 + C1(λ,R)ε(h), j = {o, p, q}.(5.30)

Now, if we consider the transport in v, the origin of the characteristic v∗k = vk −
Eh(t

n+1/2)∆t which ends at Nk belongs to a triangle T ∗
m. If Ni, Ns, and Nl are the

vertices of a triangle T ∗
m, as ‖Eh‖�∞(0,T ;L∞([0,L])) is bounded we have

|vk − vi| ≤ C∆t, |vk − vs| ≤ C∆t, and |vk − vl| ≤ C∆t,

and then we have

ζh(xj , vj)

ζh(xk, vk)
=

(1 + |vk|)λ
(1 + |vj |)λ ≤ 1 + C2(λ,R)∆t, j = {i, s, l}.(5.31)

If we set b1 = 1 + C1(λ,R)ε(h), b2 = 1 + C2(λ,R)∆t, and b = b1b2b1, then we have

fh(0, xk, vk) ≤ 1

(1 + |vk|)λ ≤ b0

(1 + |vk|)λ

and consequently

fh(0, x, v) ≤ b0ζh(x, v).

If we assume that

fh(t
n, xk, vk) ≤ bnζh(xk, vk)

and consequently

fh(t
n, x, v) ≤ bnζh(x, v),
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the numerical scheme gives for the first half advection with the respect to the variable x

fh(t
n+1/2, xk, vk) =

∑
l

fh(t
n, xl, vl)ψl

(
xk − vk

∆t

2
, vk

)
.

Let T �m be the triangle which contains the origin of the characteristic coming from
the node Nk. Let No, Np, and Nq be the three vertices of T �m. Then we can write

fh(t
n+1/2, xk, vk)

ζh(xk, vk)
= λo

fnh,o
ζh(xk, vk)

+ λp
fnh,p

ζh(xk, vk)
+ λq

fnh,q
ζh(xk, vk)

,

where

λl = ψl

(
xk − vk

∆t

2
, vk

)
and

fnh,l = fh(t
n, xl, vl).

Using the property (5.30) of ζh and the property

λo + λp + λq = 1,

we obtain

fh(t
n+1/2, xk, vk)

ζh(xk, vk)
≤ bnλo

ζh(xo, vo)

ζh(xk, vk)
+ bnλp

ζh(xp, vp)

ζh(xk, vk)
+ bnλq

ζh(xq, vq)

ζh(xk, vk)
≤ b1b

n.

In the same way for the two other advections we finally obtain

fh(t
n+1, xk, vk)

ζh(xk, vk)
≤ b(n+1) ∀ Nk ∈ Th.

For a finite time T and ∀n ∈ {0, . . . , T/∆t}, if we consider ε(h) ≤ ∆t, we have
b ≤ 1 + C(C1, C2)∆t, b

(n+1) ≤ exp(C(C1, C2)T ), and as in the continuous case there
exists a majorizing function of the discrete distribution

fh(t, x, v) ≤ Cζh(x, v) ∀t ∈ [0, T ], ∀(x, v) ∈ Q.

In order to prove (5.29), we note that∫
Rζh(x,v)dxdv

=
∑
k

1

(1 + |vk|)λ
∫

R

ψk(x, v)dxdv

=
∑
k

meas(Ak)

(1 + |vk|)λ

≤ C

∫
R

1

(1 + |v|)λ < +∞.

Let Ak be the area associated with the node Nk and ψk ∈ P1; then we have

meas(Ak) =

∫
R

ψk(x, v)dxdv =
|suppψk|

3
.
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We introduce χk, the characteristic function defined as follows:

χk(x, v) =

{
1 if (x, v) ∈ Ak,
0 otherwise.

Then we introduce the function gnh(x, v) defined by

gnh(x, v) =
∑
k

gnh(xk, vk)χk(x, v),

with

gnh(xk, vk) = fh(t
n, xk, vk).

We note that

||fh(tn)||L1(Q) = ||gnh ||L1(Q).

Moreover, as for the proof of the Lemma 5.11, we can prove that

0 ≤ gnh(x, v) ≤ Cγh(x, v) ∀n ∈ [0, N ], N =

[
T

∆t

]
, (x, v) ∈ Q,

where

γh(x, v) =
∑
k

1

(1 + |vk|)λχk(x, v).

We notice that there exists another constant C independent of h such that

0 < γh ≤ C(1 + |v|)−λ.

Now we state the lemma which shows the L1 stability of the interpolation operator
πh.

Lemma 5.12. Let g ∈ Cb ∩ L1(Q) and 0 < g ≤ C(1 + |v|)−λ; then there exists a
positive function µ, where limh→0 µ(h) = 0, such that

||πhg||L1(Q) ≤ ||g||L1(Q) + µ(h).

Proof. We have

||πhg||L1(Q) =
∑
k

gk

∫
R

∫ L

0

ψk(x, v)dxdv =
∑
k

gkmeas(Ak)

=
∑
k

gk

∫
Q

χk(x, v)dxdv =

∫
Q

∑
k

gkχk(x, v)dxdv

= ||gh||L1(Q).

As

gh(x, v) ≤ C(1 + |v|)−λ
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and

lim
h→0

gh = g a.e.,

the dominated convergence theorem asserts that

lim
h→0

∫
Q

|gh − g| dxdv = 0,

and as a consequence there exists a positive function µ with limh→0 µ(h) = 0 such
that ∫

Q

|gh − g| dxdv ≤ µ(h).

Then we deduce that∣∣‖πhg‖L1(Q) − ‖g‖L1(Q)

∣∣ =
∣∣‖gh‖L1(Q) − ‖g‖L1(Q)

∣∣ ≤ ∫
Q

|gh − g| dxdv ≤ µ(h).

Finally we deduce that

||πhg||L1(Q) ≤ ||g||L1(Q) + µ(h).

Now we can return to the proof of Theorem 5.10.
Proof of Theorem 5.10. In order to prove the theorem we have to see how the a

priori estimates (5.16), (5.17), (5.18), (5.19), and (5.20) are modified and obtain the
same kind of a priori estimates in the L1 norm.

As v∇f, ∂tf ∈ L∞(0, T ;L∞
x (L1

v)) the estimate (5.16) becomes∫ L

0

∫
Rv

|f(tn+1/2, y, v) − f (tn, y − v∆t/2, v) |dydv

≤ CL∆t
(
‖∂tf‖L∞(0,T,L∞

x (L1
v)) + ‖v∂xf‖L∞(0,T ;L∞

x (L1
v))

)
≤ C∆t,

so that we still have

|E(tn+1/2, x) − Ẽ(tn+1/2, x)| ≤ C∆t.

The estimate (5.19) still holds, but the estimate (5.18) changes into

|V (tn) − Ṽ (tn)| ≤ C(1 + |v|)∆t2.

Then the estimate (5.20) becomes∥∥T1 ◦ T2 ◦ T1f(tn) − f
(
tn+1

)∥∥
L∞(Q)

≤ sup
v∈R

{L(f(tn), C(T ))(v)}∆t2

≤ C∆t2,
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and in the L1 norm we have∥∥T1 ◦ T2 ◦ T1f(tn) − f
(
tn+1

)∥∥
L1(Q)

≤
∫ L

0

∫
R

∣∣∣f (tn, X̃(tn; tn+1, x, v), Ṽ (tn; tn+1, x, v)
)

−f (tn, X(tn; tn+1, x, v), V (tn; tn+1, x, v)
)∣∣∣dvdx

≤
∫ L

0

∫
sup

{
‖(χ, ξ) − (y, w)‖−1

2 · |f(tn, χ, ξ) − f(tn, y, w)|
∣∣∣

(χ, ξ), (y, w) ∈ [0, L] × R, (χ, ξ) �= (y, w), |ξ − v|, |w − v| ≤ C(T )
}

× ∥∥(X̃(tn; tn+1, x, v), Ṽ (tn; tn+1, x, v)
)

− (
X(tn; tn+1, x, v), V (tn; tn+1, x, v)

)∥∥
2
dvdx

≤ ∆t2
∫ L

0

∫
R

L(f(tn), C(T ))(v)dvdx

≤ C∆t2,

where

sup
{∣∣V (tn; tn+1, x, v) − v

∣∣ | x ∈ [0, L], v ∈ R
} ≤

∫ tn+1

tn
‖E(τ, .)‖L∞ dt

≤ T ‖E‖L∞(0,T ;L∞) ≤ C(T ) < +∞.

Then we conclude that the estimate of Lemma 5.3 has to be replaced by∥∥T1 ◦ T2 ◦ T1f(tn) − f
(
tn+1

)∥∥
L1,∞(Q)

≤ C∆t2.

Following the proof of Proposition 5.4, if we take f ∈ Cb(0, T ;W 1,∞ ∩W 1,1(Q)) and
E ∈ C 1(0, T ; C 1

b,perx
(R)), then using (3.1) and taking the derivative in the sense of

distribution, we still have (with m ∈ {0, 1}, p ∈ {1,∞})

||Tif ||L∞(0,T ;Wm,p(Q)) ≤ C||f ||L∞(0,T ;Wm,p(Q)),

||T̃if ||L∞(0,T ;Lp(Q)) ≤ C||f ||L∞(0,T ;Wm,p(Q)),

and

‖(Ti − T̃i)f‖L∞(0,T ;Lp(Q)) ≤ Ch||f ||L∞(0,T ;W 1,p(Q)).

As a consequence, Lemma 5.5 supplies the estimate

‖T1 ◦ T2 ◦ T1f(tn) − T̃1 ◦ T̃2 ◦ T̃1f(tn)‖L1,∞(Q) ≤ Ch.
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The estimate of Lemma 5.6 has to be replaced by

(5.32)

‖T̃1 ◦ T̃2 ◦ T̃1f(tn) − T̃1 ◦ T̃ �
2 ◦ T̃1f(tn)‖L1,∞(Q) ≤ C∆t

(
en +

1

(1 +R)λ
+ h

)
,

where

en = ‖f(tn) − fh(t
n)‖L1,∞(Q) .

The proof of Lemma 5.6 holds, except for the estimate of E
n+1/2
h (x)− Ẽn+1/2(x) that

we slightly modify as follows. We rewrite

E
n+1/2
h (x) − Ẽn+1/2(x)

=

∫ L

0

K(x, y)

(∫
R

[
T̃1fh(t

n, y, v) − T1f(tn, y, v)
]
dv

)
dy

=

∫ L

0

K(x, y)

(∫
|v|≤R

πh

[
fh

(
tn, y − v∆t

2 , v
)
− f

(
tn, y − v∆t

2 , v
)]
dv

)
dy

+

∫ L

0

∫
|v|>R

K(x, y)f
(
tn, y − v∆t

2 , v
)
dvdy

+

∫ L

0

∫
|v|≤R

K(x, y)
(
πhf

(
tn, y − v∆t

2 , v
)
− f

(
tn, y − v∆t

2 , v
))
dvdy,

so that we get

‖En+1/2
h − Ẽn+1/2‖L∞([0,L]) ≤ ||K||L∞ ||πh||L∞ ‖fh(tn) − f(tn)‖L1,∞(Q)

+ ||K||L∞ ||f(tn)||L1(Q\Ω)

+ C||K||L∞h||f(tn)||W 1,1(Q).(5.33)

Thanks to assumption (5.27), for the second term of (5.33) we obtain∥∥∥En+1/2
h − Ẽn+1/2

∥∥∥
L∞([0,L])

≤ C

(
en +

1

(1 +R)λ
+ h

)
.

In order to finish justifying the inequality (5.32), we now just have to show that

L(T̃1f(tn, C(T )))(ξ) belongs to L∞ ∩ L1. Indeed we have

L(T̃1f(tn, C(T )))(ξ) = L
(
πhf

(
tn, x− v∆t

2 , v
)
, C(T )

)
(ξ)

≤ ‖πh‖L∞L (f(tn), C(T )) (ξ) ∈ L∞ ∩ L1.

Finally, thanks to Lemma 5.12, we get the L1,∞ stability of the interpolation operator
πh; that is to say, there exists a constant C such that

||πhf ||L1,∞ ≤ ||f ||L1,∞ + µ(h) ∀f ∈ Cb
(
0, T ; Cb,perx ∩ L1(Rx × Rv)

)
.

Then it is obvious that the estimate of Lemma 5.7 becomes

‖T̃1 ◦ T̃ �
2 ◦ T̃1(f(tn) − fh(t

n))‖L1,∞(Q) ≤ en + 3µ(h).
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As in the proof of the main theorem, a discrete Gronwall inequality enables us to get

en+1 ≤ exp(CT )e0 + C

(
∆t+ h+

h+ µ(h)

∆t
+

1

(1 +R)λ

)
.

If we suppose that R = 1
h1/α , α > 0, and since e0 is only a fixed interpolation error,

we obtain

en+1 ≤ C

(
∆t+ h+

h+ µ(h)

∆t
+ hλ/α

)
.

Then the end of the proof is the same as the proof of the main Theorem 5.1, and we
get

||f − fh||�∞(0,T ;L1,∞(Q)) ≤ C

(
∆t+ h+

h+ µ(h)

∆t
+ hλ/α

)
and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C

(
∆t+ h+

h+ µ(h)

∆t
+ hλ/α

)
.

If we choose ∆t ∼ (h+ µ(h))1/σ, σ > 1, we get the estimates of Theorem 5.1.
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Louis Pasteur, Strasbourg, France.

[8] N. Besse, Convergence of a High Order Semi-Lagrangian Scheme with Propagation of Gra-
dients for the Vlasov-Poisson System, manuscript, Institut de Recherche Mathématique
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1. Introduction. Branch and bound methods for finding all zeros of a nonlinear
system of equations in a box [10, 23] frequently have the difficulty that subboxes
containing no solution cannot be easily eliminated if there is a nearby zero outside
the box. This has the effect that near each zero many small boxes are created by
repeated splitting, whose processing may dominate the total work spent on the global
search.

This paper discusses in section 3 the reasons for the occurrence of this so-called
cluster effect and how to reduce the cluster effect by defining exclusion regions around
each zero found that are guaranteed to contain no other zero and hence can safely be
discarded. Such exclusion boxes (possibly first used by Jansson [4]) are the basis for
the backboxing strategy by van Iwaarden [24] (see also Kearfott [8, 9]) that eliminates
the cluster effect near well-conditioned zeros.

Exclusion regions are traditionally constructed using uniqueness tests based on the
Krawczyk operator (see, e.g., Neumaier [16, Chapter 5]) or the Kantorovich theorem
(see, e.g., Ortega and Rheinboldt [19, Theorem 12.6.1]); both provide existence and
uniqueness regions for zeros of systems of equations. Shen and Neumaier [22] proved
that the Krawczyk operator with slopes always provides an existence region which is
at least as large as that computed by Kantorovich’s theorem. Deuflhard and Heindl
[2] proved an affine invariant version of the Kantorovich theorem.

In section 2, these results are reviewed, together with recent works on improved
preconditioning by Hansen [3] and on Taylor models by Berz and Hoefkens [1] that
are related to our present work. In sections 4–7, we discuss componentwise and affine
invariant existence, uniqueness, and nonexistence regions given a zero or any other
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point of the search region. They arise from a more detailed analysis of the properties
of the Krawczyk operator with slopes used in [22].

Numerical examples given in section 8 show that the refinements introduced in
this paper significantly enlarge the sizes of the exclusion regions.

In the following, the notation is as in the book [17]. In particular, inequalities
are interpreted componentwise, I denotes the identity matrix, intervals and boxes (=
interval vectors) are in boldface, and radx = 1

2
(x − x) denotes the radius of a box

x = [x, x] ∈ IR
n. The interior of a set S ⊆ R

n is denoted by int(S) and the interval
hull by ��S.

We consider the nonlinear system of equations

F (x) = 0,(1)

where F : D ⊆ R
n → R

n is twice continuously differentiable in a convex domain D.
(For some results, weaker conditions suffice; it will be clear from the arguments used
that continuity and the existence of the quantities in the hypothesis of the theorems
are sufficient.)

Since F is twice continuously differentiable, we can always (e.g., using the mean
value theorem) write

F (x) − F (z) = F [z, x](x− z)(2)

for any two points x and z with a suitable matrix F [z, x] ∈ R
n×n, continuously

differentiable in x and z; any such F [z, x] is called a slope matrix for F . While (in
dimension n > 1) F [z, x] is not uniquely determined, we always have (by continuity)

F [z, z] = F ′(z).(3)

Thus F [z, x] is a slope version of the Jacobian. There are recursive procedures to
calculate a slope F [z, x], given x and z; see Krawczyk and Neumaier [14], Rump [20],
and Kolev [13]; a Matlab implementation is in Intlab [21].

Since the slope matrix F [z, x] is continuously differentiable, we can write similarly

F [z, x] = F [z, z′] +
∑

(xk − z′k)Fk[z, z
′, x](4)

with second order slope matrices Fk[z, z
′, x], continuous in z, z′, x. Here, as throughout

this paper, the summation extends over k = 1, . . . , n. Second order slope matrices
can also be computed recursively; see Kolev [13]. Moreover, if F is quadratic, the
slope is linear in x and z, and the coefficients of x determine constant second order
slope matrices without any work.

If z = z′ the formula above somewhat simplifies, because of (3), to

F [z, x] = F ′(z) +
∑

(xk − zk)Fk[z, z, x].(5)

Throughout the paper we shall make the following assumption, without mentioning
it explicitly.

Assumption A. The point z and the convex subsetX lie in the domain of definition
of F . The center, z ∈ X, and the second order slope (5) are fixed. Moreover, for a
fixed preconditioning matrix C ∈ R

m×n, the componentwise bounds

b ≥ |CF (z)| ≥ b,

B0 ≥ |CF ′(z) − I|,
B′

0 ≥ |CF ′(z)|,
Bk(x) ≥ |CFk[z, z, x]| (k = 1, . . . , n)

(6)
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are valid for all x ∈ X.
Example 1.1. We consider the system of equations

x2
1 + x2

2 = 25,

x1x2 = 12.
(7)

The system has the form (1) with

F (x) =

(
x2

1 + x2
2 − 25

x1x2 − 12

)
.(8)

With respect to the center z = ( 3
4 ), we have

F (x) − F (z) =

(
x2

1 − 32 + x2
2 − 42

x1x2 − 3 · 4

)
=

(
(x1 + 3)(x1 − 3) + (x2 + 4)(x2 − 4)

x2(x1 − 3) + 3(x2 − 4)

)
so that we can take

F [z, x] =

(
x1 + 3 x2 + 4

x2 3

)
as a slope. (Note that other choices would be possible.) The interval slope F [z,x] in
the box x = [2, 4] × [3, 5] is then

F [z, x] =

(
[5, 7] [7, 9]

[3, 5] 3

)
.

The slope can be put in form (5) with

F ′(z) =

(
6 8

4 3

)
, F1 =

(
1 0

0 0

)
, F2 =

(
0 1

1 0

)
,

and we obtain

B1 =
1

14

(
3 0

4 0

)
, B2 =

1

14

(
8 3

6 4

)
.

Since we calculated without rounding errors and z happens to be a zero of F , both
B0 and b vanish.

2. Known results. The oldest semilocal existence theorem for zeros of systems
of equations is due to Kantorovich [7], who obtained as a by-product of a convergence
guarantee for Newton’s method (which is not of interest in our context) the following
result.

Theorem 2.1 (Kantorovich). Let z be a vector such that F ′(z) is invertible, and
let α and β be constants with

‖F ′(z)−1‖∞ ≤ α, ‖F ′(z)−1F (z)‖∞ ≤ β.(9)

Suppose further that z ∈ x and that there exists a constant γ > 0 such that for all
x ∈ x,

max
i

∑
j,k

∣∣∣∣∂2Fi(x)

∂xj∂xk

∣∣∣∣ ≤ γ.(10)

If 2αβγ < 1, then ∆ :=
√

1 − 2αβγ is real and we have the following:
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1. There is no zero x ∈ x with

r < ‖x− z‖∞ < r,

where

r =
2β

1 + ∆
, r =

1 + ∆

αγ
.

2. At most one zero x is contained in x with

‖x− z‖∞ <
2

αγ
.

3. If

max
x∈x

‖x− z‖∞ < r,

then there is a unique zero x ∈ x, and this zero satisfies

‖x− z‖∞ ≤ r.

The affine invariant version of the Kantorovich theorem given in Deuflhard and
Heindl [2] essentially amounts to applying the theorem to F ′(z)−1F (x) in place of
F (x). In practice, rounding errors in computing F ′(z)−1 are made, which requires
the use of a preconditioning matrix C ≈ F ′(z)−1 and CF (x) in place of F (x) to get
the benefits of affine invariance in floating point computations.

Kahan [5] used the Krawczyk operator, which needs only first order slopes, to
make existence statements. Together with later improvements using slopes, his result
is contained in the following statement.

Theorem 2.2 (Kahan). Let z ∈ z ⊆ x. If there is a matrix C ∈ R
n×n such that

the Krawczyk operator

K(z,x) := z − CF (z) − (CF [z,x] − I)(x − z)(11)

satisfies K(z,x) ⊆ x, then x contains a zero of (1). Moreover, if K(x,x) ⊆ int(x),
then x contains a unique zero of (1).

Shen and Neumaier [22] proved that the Krawczyk operator with slopes always
provides existence regions which are at least as large as those computed by Kan-
torovich’s theorem, and, since the Krawczyk operator is affine invariant, this also
covers the affine invariant Kantorovich theorem.

Recent work by Hansen [3] shows that there is scope for gain in Krawczyk’s
method by improved preconditioning; but he gives only heuristic recipes for how to
proceed. For quadratic problems, where the slope is linear in x, his recipe suggests
evaluating CF [z, x] term by term before substituting intervals. Indeed, by subdis-
tributivity, we always have

CA0 +
∑

CAk(xk − zk) ⊆ C
(
A0 +

∑
Ak(xk − zk)

)
so that, for quadratic functions, Hansen’s recipe is never worse than the traditional
recipe. We adapt it as follows to general functions, using second order slopes; in the
general case, the preconditioned slope takes the form

CF [z, x] = CF [z, z′] +
∑

(xk − z′k)CFk[z, z
′, x](12)
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or, with z = z′, as we use it most of the time,

CF [z, x] = CF ′(z) +
∑

(xk − zk)CFk[z, z, x].(13)

In the following, the consequences of this formulation, combined with ideas from Shen
and Neumaier [22], are investigated in detail.

Recent work on Taylor models by Berz and Hoefkens [1] (see also Neumaier [18])
uses expansions to even higher than second order, although at a significantly higher
cost. This may be of interest for systems suffering a lot from cancellation, where using
low order methods may incur much overestimation, leading to tiny inclusion regions.
Another recent paper on exclusion boxes is Kalovics [6].

3. The cluster effect. As explained by Kearfott and Du [11], many branch and
bound methods used for global optimization suffer from the so-called cluster effect.
As is apparent from the discussion below, this effect is also present for branch and
bound methods using constraint propagation methods to find and verify all solutions
of nonlinear systems of equations. (See, e.g., Van Hentenryck, Michel, and Deville
[23] for constraint propagation methods.)

The cluster effect consists of excessive splitting of boxes close to a solution and
failure to remove many boxes not containing the solution. As a consequence, these
methods slow down considerably once they reach regions close to the solutions. The
mathematical reason for the cluster effect and how to avoid it will be investigated in
this section.

Let us assume that for arbitrary boxes x of maximal width ε the computed ex-
pression F (x) overestimates the range of F over x by O(εk):

F (x) ∈ (1 + Cεk)��{F (x) | x ∈ x}(14)

for k ≤ 2 and ε sufficiently small. The exponent k depends on the method used for
the computation of F (x).

Let x∗ be a regular solution of (1) (so that F ′(x∗) is nonsingular), and assume
(14). Then any box of diameter ε that contains a point x with

‖F ′(x∗)(x− x∗)‖∞ ≤ ∆ = Cεk(15)

might contain a solution. Therefore, independent of the pruning scheme used in a
branch and bound method, no box of diameter ε can be eliminated. The inequality
(15) describes a parallelepiped of volume

V =
∆n

detF ′(x∗)
.

Thus, any covering of this region by boxes of diameter ε contains at least V/εn boxes.
The number of boxes of diameter ε which cannot be eliminated is therefore pro-

portional to at least

Cn

detF ′(x∗)
if k = 1,

(Cε)n

detF ′(x∗)
if k = 2.
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For k = 1 this number grows exponentially with the dimension, with a growth
rate determined by the relative overestimation C and a proportionality factor related
to the condition of the Jacobian.

In contrast, for k = 2 the number is guaranteed to be small for sufficiently small
ε. The size of ε, the diameter of the boxes most efficient for covering the solution,
is essentially determined by the nth root of the determinant, which, for a well-scaled
problem, reflects the condition of the zero. However, for ill-conditioned zeros (with
a tiny determinant in naturally scaled coordinates), one already needs quite narrow
boxes before the cluster effect subsides.

So, to avoid the cluster effect, we need at least the quadratic approximation
property k = 2. Hence, Jacobian information is essential, as well as techniques to
discover the shape of the uncertainty region.

A comparison of the typical techniques used for box elimination shows that con-
straint propagation techniques lead to overestimation of order k = 1; hence they suffer
from the cluster effect. Centered forms using first order information (Jacobians) as
in Krawczyk’s method provide estimates with k = 2 and are therefore sufficient to
avoid the cluster effect, except near ill-conditioned or singular zeros. Second order
information as used, e.g., in the theorem of Kantorovich still provides only k = 2 in
estimate (15); the cluster effect is avoided under the same conditions.

For singular (and hence for sufficiently ill-conditioned) zeros, the argument does
not apply, and no technique is known to remove the cluster effect in this case. A
heuristic that limits the work in this case by retaining a single but larger box around
an ill-conditioned approximate zero is described in Algorithm 7 (Step 4(c)) of Kearfott
[10].

4. Componentwise exclusion regions close to a zero. Suppose that x∗ is a
solution of the nonlinear system of equations (1). We want to find an exclusion region
around x∗ with the property that in the interior of this region x∗ is the only solution
of (1). Such an exclusion region need not be further explored in a branch and bound
method for finding all solutions of (1); hence we get the name.

In this section we take an approximate zero z of F , and we choose C to be
an approximation of F ′(z)−1. Suitable candidates for z can easily be found within
a branch and bound algorithm by trying Newton steps from the midpoint of each
box, iterating while x� remains in a somewhat enlarged box and either ‖x�+1 − x�‖
or ‖F (x�)‖ decreases by a factor of, say, 1.5 below the best previous value in the
iteration. This works locally well even at nearly singular zeros and gives a convenient
stop in case no nearby solution exists.

Proposition 4.1. For every solution x ∈ X of (1), the deviation

s := |x− z|

satisfies

0 ≤ s ≤
(
B0 +

∑
skBk(x)

)
s+ b.(16)

Proof. By (2) we have F [z, x](x−z) = F (x)−F (z) = −F (z), because x is a zero.
Hence, using (5), we compute

−(x− z) = −(x− z) + C(F [z, x](x− z) + F (z) + F ′(z)(x− z) − F ′(z)(x− z))
= C(F [z, x] − F ′(z))(x− z) + (CF ′(z) − I)(x− z) + CF (z)

=
(
CF ′(z) − I +

∑
(xk − zk)CFk[z, z, x]

)
(x− z) + CF (z).
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Now we take absolute values, use (6), and get

s = |x− z| ≤
(
|CF ′(z) − I| +

∑
|xk − zk| |CFk[z, z, x]|

)
|x− z| + |CF (z)|

≤
(
B0 +

∑
skBk(x)

)
s+ b.

Using this result we can give a first criterion for existence regions.
Theorem 4.2. Let 0 < u ∈ R

n be such that(
B0 +

∑
ukBk

)
u+ b ≤ u(17)

with Bk(x) ≤ Bk for all x ∈Mu, where

Mu := {x | |x− z| ≤ u} ⊆ X.(18)

Then (1) has a solution x ∈Mu.
Proof. For arbitrary x in the domain of definition of F we define

K(x) := x− CF (x).

Now take any x ∈Mu. We get

K(x) = x− CF (x) = z − CF (z) − (CF [z, x] − I)(x− z)

= z − CF (z) −
(
C
(
F ′(z) +

∑
Fk[z, z, x](xk − zk)

)
− I
)

(x− z);

hence

K(x) = z − CF (z) −
(
CF ′(z) − I +

∑
CFk[z, z, x](xk − zk)

)
(x− z).(19)

Taking absolute values we find

|K(x) − z| =
∣∣∣−CF (z) −

(
CF ′(z) − I +

∑
CFk[z, z, x](xk − zk)

)
(x− z)

∣∣∣
≤ |CF (z)| +

(
|CF ′(z) − I| +

∑
|CFk[z, z, x]| |xk − zk|

)
|x− z|

≤ b+
(
B0 +

∑
ukBk

)
u.

(20)

Now assume (17). Then (20) gives

|K(x) − z| ≤ u,

which implies by Theorem 2.2 that there exists a solution of (1) which lies in
Mu.

Note that (17) implies B0u ≤ u; thus the spectral radius ρ(B0) ≤ 1. In the
applications, we can make both B0 and b very small by choosing z as an approximate
zero and C as an approximate inverse of F ′(z).

Now the only thing that remains is the construction of a suitable vector u for
Theorem 4.2.

Theorem 4.3. Let S ⊆ X be any set containing z, and take

Bk ≥ Bk(x) for all x ∈ S.(21)
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For 0 < v ∈ R
n, set

w := (I −B0)v, a :=
∑

vkBkv.(22)

We suppose that

Dj = w2
j − 4ajbj > 0(23)

for all j = 1, . . . , n, and we define

λej :=
wj +

√
Dj

2aj
, λij :=

bj
ajλej

,(24)

λe := min
j=1,...,n

λej , λi := max
j=1,...,n

λij .(25)

If λe > λi, then there is at least one zero x∗ of (1) in the (inclusion) region

Ri := [z − λiv, z + λiv] ∩ S.(26)

The zeros in this region are the only zeros of F in the interior of the (exclusion) region

Re := [z − λev, z + λev] ∩ S.(27)

Proof. Let 0 < v ∈ R
n be arbitrary, and set u = λv. We check for which λ the

vector u satisfies property (17) of Theorem 4.2. The requirement

λv ≥
(
B0 +

∑
ukBk

)
u+ b =

(
B0 +

∑
λvkBk

)
λv + b

= b+ λB0v + λ2
∑

vkBkv = b+ λ(v − w) + λ2a

leads to the sufficient condition λ2a−λw+b ≤ 0. The jth component of this inequality
requires that λ lies between the solutions of the quadratic equation λ2aj−λwj+bj = 0,
which are λij and λej . Hence, for every λ ∈ [λi, λe] (this interval is nonempty by
assumption), the vector u satisfies (17).

Now assume that x is a solution of (1) in int(Re) \ Ri. Let λ be minimal with
|x − z| ≤ λv. By construction, λi < λ < λe. By the properties of the Krawczyk
operator, we know that x = K(z, x); hence

|x− z| ≤ |CF (z)| +
(
|CF ′(z) − I| +

∑
|CFk[z, z, x]| |xk − zk|

)
|x− z|

≤ b+ λB0v + λ2
∑

vkBkv < λv,
(28)

since λ > λi. But this contradicts the minimality of λ. So there are indeed no
solutions of (1) in int(Re) \Ri.

This is a componentwise analogue of the Kantorovich theorem. We show in Ex-
ample 8.1 that it is best possible in some cases.

We observe that the inclusion region from Theorem 4.3 can usually be further
improved by noting that x∗ = K(z, x∗) and (19) imply

x∗ ∈ K(z,xi)

= z − CF (z) −
(
CF ′(z) − I +

∑
CFk[z, z,x

i](xik − zk)
)

(xi − z)

⊂ int(xi).
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An important special case is when F (x) is quadratic in x. For such a function F [z, x]
is linear in x, and therefore all Fk[z, z, x] are constant in x. This, in turn, means
that Bk(x) = Bk is constant as well. So we can set Bk = Bk, and the estimate (21)
becomes valid everywhere.

Corollary 4.4. Let F be a quadratic function. For arbitrary 0 < v ∈ R
n define

w := (I −B0)v, a :=
∑

vkBkv.(29)

We suppose that

Dj = w2
j − 4ajbj > 0(30)

for all j = 1, . . . , n, and we set

λej :=
wj +

√
Dj

2aj
, λij :=

bj
ajλej

,(31)

λe := min
j=1,...,n

λej , λi := max
j=1,...,n

λij .(32)

If λe > λi, then there is at least one zero x∗ of (1) in the (inclusion) box

xi := [z − λiv, z + λiv].(33)

The zeros in this region are the only zeros of F in the interior of the (exclusion) box

xe := [z − λev, z + λev].(34)

The examples later will show that the choice of v greatly influences the quality of
the inclusion and exclusion regions. The main difficulty for choosing v is the positivity
requirement for every Dj . In principle, a vector v, if it exists, could be found by local
optimization. A method worth trying could be to choose v as a local optimizer of the
problem

max n log λe +

n∑
j=1

log vj

s.t. Dj ≥ η (j = 1, . . . , n),

where η is the smallest positive machine number. This maximizes locally the volume
of the excluded box. However, since λe is nonsmooth, solving this needs a nonsmooth
optimizer (such as SolvOpt [15]).

The Bk can be constructed using interval arithmetic for a given reference box x
around z. Alternatively, they could be calculated once in a bigger reference box xref

and later reused on all subboxes of xref. Saving the Bk (which needs the storage of n3

numbers per zero) provides a simple exclusion test for other boxes. This takes O(n3)
operations, while recomputing the Bk costs O(n4) operations.

5. Exclusion polytopes. Instead of boxes, we can use more general polytopes
to describe exclusion and inclusion regions. With the notation as in the introduction,
we assume the upper bounds

Bk ≥ |Bk(x)| for all x ∈ X.(35)
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Theorem 5.1. For 0 ≤ v ≤ w ∈ R
n, define

P (w) = (B1
Tw, . . . , Bn

Tw) ∈ R
n×n,(36)

Πi = {x ∈ R
n | (w − v)T |x− z| ≤ b Tw}.(37)

Then any zero x ∈ X of (1) contained in the polytope

Πe = {x ∈ R
n | P (w)|x− z| +BT0 w ≤ v}(38)

lies already in Πi.
Proof. Suppose x ∈ Πe satisfies F (x) = 0. By Proposition 4.1, s = |x−z| satisfies

sTw ≤ sT
(
BT0 w +

∑
skBk

Tw
)

+ b Tw

= sT (BT0 w + P (w)s) + b Tw

≤ sT v + b Tw.

Hence sT (w − v) ≤ b Tw, giving

(w − v)T |x− z| ≤ b Tw;(39)

hence x ∈ Πi.
Corollary 5.2. Let x ⊆ X be a box and z ∈ x be an approximate zero. If there

is a vector 0 ≤ w ∈ R
n with

v := P (w)u+BT0 w ≤ w,(40)

where u := |x − z|, then all solutions x ∈ x of (1) satisfy (39), and, in particular,

|x− z|i ≤ b Tw (wi − vi)
−1 for all i with wi > vi.(41)

Proof. Let x ∈ x be a solution of (1). Then x ∈ Πe by (40), and, due to
Theorem 5.1, x ∈ Πi. Therefore (39) holds. In particular, (w − v)i|x − z|i ≤ b Tw.
This implies the result.

In contrast to (32), the test (40) needs only O(n2) operations (once P (w) is
computed) and the storage of n2 +n numbers per zero. Since P (w) can be calculated
columnwise, it is not even necessary to keep all Bk in store.

Since B0 and b usually are very tiny (they contain only roundoff errors), this is a
powerful box reduction technique if we can find a suitable vector w.

The result is most useful, of course, if w > v, but in some cases this is not possible.
In these cases boxes are at least reduced in some components.

A suitable choice for w may be an approximation w > 0 to a Perron eigenvector
[16, section 3.2] of the nonnegative matrix

M =
∑
k

ukBk
T ,

where u > 0 is proportional to the width of the box of interest. Then

λw = Mw =
∑

ukBk
Tw = P (w)u.
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If

max(BT0 w)i
wi

< α < 1, µ := (1 − α)λ−1,

we can conclude from Corollary 5.2 (with µu in place of u) that the box [z−µu, z+µu]
can be reduced to [z − û, z + û], where (with c/0 = ∞)

ûi := min

(
µui,

b
T
w

max(0, αwi − (BT0 w))i

)
.

6. Uniqueness regions. Regions in which there is a unique zero can be found
most efficiently as follows. First, one verifies as in the previous sections an exclusion
box xe which contains no zero except in a much smaller inclusion box xi. The inclusion
box can usually be refined further by some iterations with Krawczyk’s method, which
generally converges quickly if the initial inclusion box is already verified. Thus we
may assume that xi is really tiny, with width determined by rounding errors only.

Clearly, int(xe) contains a unique zero iff xi contains at most one zero. Thus it
suffices to have a condition under which a tiny box contains at most one zero. This
can be done even in fairly ill-conditioned cases by the following test.

Theorem 6.1. Take an approximate solution z ∈ X of (1), and let B be a matrix
such that

|CF [z,x] − I| +
∑

|xk − zk| |CFk[x, z,x]| ≤ B.(42)

If ‖B‖ < 1 for some monotone norm, then x contains at most one solution x of (1).
Proof. Assume that x and x′ are two solutions. Then we have

0 = F (x′) − F (x) = F [x, x′](x′ − x) =
(
F [x, z] +

∑
(x′k − zk)Fk[x, z, x

′]
)
(x′ − x).

(43)

Using an approximate inverse C of F ′(z) we further get

x− x′ =
(
(CF [z, x] − I) +

∑
(x′k − zk)CFk[x, z, x

′]
)
(x′ − x).(44)

Applying absolute values, and using (42), we find

|x′ − x| ≤
(
|CF [z, x] − I| +

∑
|CFk[x, z, x′]| |x′k − zk|

)
|x′ − x| ≤ B|x′ − x|.(45)

This, in turn, implies ‖x′ − x‖ ≤ ‖B‖ ‖x′ − x‖. If ‖B‖ < 1 we immediately conclude
‖x′ − x‖ ≤ 0; hence x = x′.

Since B is nonnegative, ‖B‖ < 1 holds for some norm iff the spectral radius of B
is less than one (see, e.g., Neumaier [16, Corollary 3.2.3]); a necessary condition for
this is that maxBkk < 1, and a sufficient condition is that |B|u < u for some vector
u > 0.

So one first checks whether maxBkk < 1. If this holds, one checks whether
‖B‖∞ < 1; if this fails, one computes an approximate solution u of (I − B)u = e,
where e is the all-one vector, and checks whether u > 0 and |B|u < u. If this fails, the
spectral radius of B is very close to 1 or larger. (Essentially, this amounts to testing
I −B for being an H-matrix; cf. [16, Proposition 3.2.3].)
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We can find a matrix B satisfying (42) by computing B̂k ≥ |CFk[x, z,x]|, for
example by interval evaluation, using (5), and observing

|CF [z,x] − I| ≤ |CF ′(z) − I| +
∑

|xk − zk| |CFk[z, z,x]|
≤ |CF ′(z) − I| +

∑
|xk − zk| |CFk[x, z,x]|.

Then, using (6), we get

|CF [z,x] − I| +
∑

|xk − zk| |CFk[x, z,x]| ≤ B0 + 2
∑

|xk − zk| B̂k =: B,(46)

where B can be computed using rounding towards +∞.
If F is quadratic, the results simplify again. In this case all Fk[x

′, z, x] =: Fk are
constant, and we can replace B̂k by Bk := |CFk|. Hence (46) becomes

B = B0 + 2
∑

|xk − zk|Bk.
7. Componentwise exclusion regions around arbitrary points. In a

branch–and–bound-based method for finding all solutions to (1), we not only need
to exclude regions close to zeros but also boxes far away from all solutions. This is
usually done by interval analysis on the range of F , by constraint propagation meth-
ods (see, e.g., Van Hentenryck, Michel, and Deville [23]), or by Krawczyk’s method
or preconditioned Gauss–Seidel iteration (see, e.g., [16]). An affine invariant, compo-
nentwise version of the latter is presented in this section.

Let z be an arbitrary point in the region of definition of F . Throughout this
section, C ∈ R

m×n denotes an arbitrary rectangular matrix. Mu is as in (18).
Theorem 7.1. Let 0 < u ∈ R

n, and take Bk ≥ Bk(x) for all x ∈Mu. If there is
an index i ∈ {1, . . . , n} such that the inequality

bi − (B′
0u)i −

∑
uk(Bku)i > 0(47)

is valid, then (1) has no solution x ∈Mu.
Proof. We set x = [z− u, z+ u]. For a zero x ∈Mu of F , we calculate, using (5),

similar to the proof of Theorem 4.2,

0 = |K(x) − x| =
∣∣∣− CF (z) −

(
CF ′(z) −

∑
CFk[z, z, x](xk − zk)

)
(x− z)

∣∣∣
≥ |CF (z)| −

∣∣∣(CF ′(z) − I)(x− z) +
∑

(xk − zk)CFk[z, z, x](x− z)
∣∣∣.

(48)

Now we use (6) and (47) to compute

|CF (z)|i ≥ bi > (B′
0u)i +

∑
(ukBku)i

≥
(
|CF ′(z)|u

)
i
+
∑(

uk|CFk[z, z, x] |u
)
i

≥
∣∣∣CF ′(z)(x− z)

∣∣∣
i
+
∑∣∣∣(xk − zk)CFk[z, z, x](x− z)

∣∣∣
i

≥
∣∣∣(CF ′(z) − I)(x− z) +

∑
(xk − zk)CFk[z, z, x](x− z)

∣∣∣
i
.

This calculation and (47) imply

|CF (z)|i −
∣∣∣CF ′(z)(x− z) +

∑
(xk − zk)CFk[z, z, x](x− z)

∣∣∣
i

≥ bi − (B′
0u)i −

∑
(ukBku)i > 0,
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contradicting (48).
Again, we need a method to find good vectors u satisfying (47). The following

theorem provides that.
Theorem 7.2. Let S ⊆ X be a set containing z, and take Bk ≥ Bk(x) for all

x ∈ S. If for any 0 < v ∈ R
n we define

w× := B′
0v,

a× :=
∑

vkBkv,

D×
i := w×

i

2
+ 4bia

×
i ,

λ×i :=
bi

w×
i +

√
D×
i

,

λ× := max
i=1,...,n

λ×i ,

(49)

then F has no zero in the interior of the exclusion region

R× := [z − λ×v, z + λ×v] ∩ S.(50)

Proof. We set u = λv and check the result (47) of Theorem 7.1:

0 < bi − (B′
0u)i −

∑
(ukBku)i = bi − λ(B′

0v)i − λ2
∑

(vkBkv)i.

This quadratic inequality has to be satisfied for some i ∈ {1, . . . , n}. The ith inequality
is true for all λ ∈ [0, λ×i [, so we can take the maximum of all these numbers and still
have the inequality satisfied for at least one i. Bearing in mind that the estimates are
only true in the set S, the result follows from Theorem 7.1.

As in the last section, a vector v could be calculated by local optimization, e.g.,
as a local optimizer of the problem

max n log λ× +

n∑
j=1

log vj .

This maximizes locally the volume of the excluded box. Solving this also needs a
nonsmooth optimizer since λ× is nonsmooth like λe. However, in contrast to the v
needed in Theorem 4.3, there is no positivity requirement which has to be satisfied.
In principle, every choice of v leads to some exclusion region.

Finding a good choice for C is a subtle problem and could be attacked by methods
similar to Kearfott, Hu, and Novoa [12]. Example 8.3 below shows that a pseudoin-
verse of F ′(z) usually yields reasonable results. However, improving the choice of C
sometimes widens the exclusion box by a considerable amount.

Again, for quadratic F the result can be made global, due to the fact that the
Fk[z, z, x] are independent of x.

Corollary 7.3. Let F be quadratic, and 0 < v ∈ R
n. Choose Bk ≥ |CFk|, w×

i ,
a×i , D×

i , λ×i , and λ× as in Theorem 7.2. Then F has no zero in the interior of the
exclusion box

x× := [z − λ×v, z + λ×].(51)

Proof. This is a direct consequence of Theorem 7.2 and the fact that all Fk[z, z, x]
are constant in x.
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Results analogous to Theorems 4.3, 5.1, 6.1, and 7.2 can be obtained for exclusion
regions in global optimization problems by applying the above techniques to the first
order optimality conditions. Since nothing new happens mathematically, we refrain
from giving details.

8. Examples. We illustrate the theory with a few examples.
Example 8.1. We continue Example 1.1, doing all calculations symbolically, hence

free of rounding errors, assuming a known zero. (This idealizes the practically relevant
case where a good approximation of a zero is available from a standard zero-finder.)

Fig. 1. Maximal exclusion boxes around ( 1
2
) and the total excluded region for Example 8.1.

We consider the system of equations (7), which has the four solutions ±( 3
4 ) and

±( 4
3 ); cf. Figure 1. The system has the form (1) with F given by (8). If we take the

solution x∗ = ( 3
4 ) as center z, we can use the slope calculations from the introduction.

From (29) we get

wj = vj , Dj = v2
j (j = 1, 2),

a1 = 1
14 (3v2

1 + 8v1v2 + 3v2
2), a2 = 1

14 (4v2
1 + 6v1v2 + 4v2

2),

and, for the particular choice v = ( 1
1 ), we get from (31)

λi = 0, λe = 1.(52)
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Thus, Corollary 4.4 implies that the interior of the box

[x∗ − v, x∗ + v] =

(
[2, 4]

[3, 5]

)

contains no solution apart from (3
4 ). This is best possible, since there is another

solution (4
3 ) at a vertex of this box. The choice v = ( 1

2 ), ω(v) = 8
7 , gives another

exclusion box, neither contained in nor containing the other box.
If we consider the point z = ( 1

2 ), we find

F (z) =

(
−20

−10

)
, F ′(z) =

(
2 4

2 1

)
, C =

1

6

(
−1 4

2 −2

)
,

b =
10

3

(
1

1

)
, B0 = 0, B1 =

1

6

(
1 0

2 0

)
, B2 =

1

6

(
4 1

2 2

)
,

w× = v, a× =
1

6

(
v2
1 + 4v1v2 + v2

2

2v2
1 + 2v1v2 + 2v2

2

)
,

D×
1 =

1

9
(29v2

1 + 80v1v2 + 20v2
2), D×

2 =
1

9
(40v2

1 + 40v1v2 + 49v2
2).

Since everything is affine invariant and v > 0, we can set v = (1, v2), and we
compute

λ× =

⎧⎨⎩
20

3v2+
√

40+40v2+49v22
if v2 ≤ 1,

30

3+
√

29+80v2+20v22
if v2 > 1.

Depending on the choice of v2, the volume of the exclusion box varies. There are
three locally best choices v2 ≈ 1.97228, v2 ≈ 0.661045, and v2 = 1, the first providing
the globally maximal exclusion box.

For any two different choices of v2 the resulting boxes are never contained in one
another. Selected maximal boxes are depicted in Figure 1 (left) in solid lines; the
total region which can be excluded by Corollary 7.3 is shown in solid lines in the right
part of the figure.

The optimal preconditioner for exclusion boxes, however, does not need to be an
approximate inverse to F ′(z). In this case, it turns out that C = (0 1) is optimal for
every choice of v. Two clearly optimal boxes and the total excluded region for every
possible choice of v with C = (0 1) can be found in Figure 1 in dashed lines.

Example 8.2. The system of equations (1) with

F (x) =

(
x2

1 + x1x2 + 2x2
2 − x1 − x2 − 2

2x2
1 + x1x2 + 3x2

2 − x1 − x2 − 4

)
(53)

has the solutions (1
1 ), ( 1

−1 ), (−1
1 ); cf. Figure 2. It is easily checked that

F [z, x] =

(
x1 + x2 + z1 − 1 2x2 + z1 + 2z2 − 1

2x1 + x2 + 2z1 − 1 3x2 + z1 + 3z2 − 1

)



398 HERMANN SCHICHL AND ARNOLD NEUMAIER

Fig. 2. Two quadratic equations in two variables; Example 8.2.

satisfies (2). Thus (5) holds with

F ′(z) =

(
2z1 + z2 − 1 z1 + 4z2 − 1

4z1 + z2 − 1 z1 + 6z2 − 1

)
, F1 =

(
1 0

2 0

)
, F2 =

(
1 2

1 3

)
.

We consider boxes centered at the solution z = x∗ = ( 1
1 ). For

x = [x∗ − εu, x∗ + εu] =

(
[1 − ε, 1 + ε]

[1 − ε, 1 + ε]

)
,

we find

F ′[x∗,x] =

(
[2 − 2ε, 2 + 2ε] [4 − 2ε, 4 + 2ε]

[4 − 3ε, 4 + 3ε] [6 − 3ε, 6 + 3ε]

)
,

F ′(x) =

(
[2 − 3ε, 2 + 3ε] [4 − 5ε, 4 + 5ε]

[4 − 5ε, 4 + 5ε] [6 − 7ε, 6 + 7ε]

)
.

The midpoint of F ′(x) is here F ′(z), and the optimal preconditioner is

C := F ′(x∗)−1 =

(
−1.5 1

1 −0.5

)
;

from this, we obtain

B1 =

(
0.5 0

0 0

)
, B2 =

(
0.5 0

0.5 0.5

)
.

The standard uniqueness test checks for a given box x whether the matrix F ′(x)
is strongly regular (Neumaier [16]). But given the zero x∗ (or, in finite precision
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calculations, a tiny enclosure for it), it suffices to show strong regularity of F [x∗,x].
We find

|I − CF ′(x)| =
ε

2

(
19 29

11 17

)
,

with spectral radius ε(9 + 4
√

5) ≈ 17.944ε. Thus F ′(x) is strongly regular for ε <
1/17.944 = 0.0557. The exclusion box constructed from slopes is better, since

|I − CF [x∗,x]| = ε

(
6 6

3.5 3.5

)

has spectral radius 9.5ε. Thus F [x∗,x] is strongly regular for ε < 1/9.5, and we get
an exclusion box of radius 1/9.5.

The Kantorovich theorem, Theorem 2.1, yields the following results:

F ′′ =

((
2 1

4 1

) (
4 1

1 6

))
,

α = 2.5, β = 0, γ = 12, ∆ = 1,

r = 0, r =
2

2.5 · 12
=

1

15
;

hence it provides an even smaller (i.e., inferior) exclusion box of radius 1
15 .

If we apply Kahan’s theorem, Theorem 2.2, with F ′(x), we have to check that
K(x,x) ⊆ int(x). Now

K(x,x) =

(
1

1

)
− ε

2

(
19 29

11 17

)(
[−ε, ε]
[−ε, ε]

)
is in int(x) if (

[1 − 24ε2, 1 + 24ε2]

[1 − 14ε2, 1 + 14ε2]

)
⊆
(

[1 − ε, 1 + ε]

[1 − ε, 1 + ε]

)
,

which holds for ε < 1/24. This result can be improved if we use slopes instead of
interval derivatives. Indeed,

K(z,x) =

(
1

1

)
− ε

(
6 6

3.5 3.5

)(
[−ε, ε]
[−ε, ε]

)
is in int(x) if (

[1 − 12ε2, 1 + 12ε2]

[1 − 7ε2, 1 + 7ε2]

)
⊆
(

[1 − ε, 1 + ε]

[1 − ε, 1 + ε]

)
,

i.e., for ε < 1/12.
Now we consider the new results. From (31) we get

λe =
2

v1 + v2
.(54)
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Fig. 3. xe and xi calculated for Example 8.2 with three significant digits for v = (1, 1) and
v = (1, 7) at z = (0.99, 1.05).

In exact arithmetic, we find λe = 1 so that Corollary 4.4 implies that the interior
of the box

[x∗ − v, x∗ + v] =

(
[0, 2]

[0, 2]

)
(55)

contains no solution apart from z. In this example, the box is not as large as desirable,
since in fact the larger box

[x∗ − 2v, x∗ + 2v] =

(
[−1, 3]

[−1, 3]

)
contains no other solution. However, the box (55) is still one order of magnitude larger
than that obtained from the standard uniqueness tests or the Kantorovich theorem.

If we use inexact arithmetic (we used Mathematica with three significant digits,
using this artificially low precision to make the inclusion regions visible in the pictures)
and only approximative zeros, the results do not change too much, which can be seen
in the pictures of Figure 3.

Corollary 7.3 also gives very promising results. The size of the exclusion boxes
again depends on the center z and the vector v. The results for various choices can
be found in Figure 4.

To utilize Corollary 5.2 at the exact zero z = ( 1
1 ) we first choose for u = ( 1

1 ) the

Perron eigenvector wp = ( 1
0 ). Its eigenvalue is λ = 1, and, since B0 = 0 and b = 0,

we conclude that Corollary 5.2 reduces the first component of every box x in the
parallelogram P ,

|x1 − 1| + |x2 − 1| < 2,(56)

to the thin value [1, 1]. That the second component is not reduced is caused by the
degeneracy of u. If we choose instead a positive approximation w = ( 1

ε ) to wp and
consider any box x ⊆ P , there is α < 1 with

|x1 − 1| + |x2 − 1| < 2α < 2,
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Fig. 4. x× for Example 8.2 and various choices of z and v = (1, 1).

because x is compact. For ε ≤ 1/α− 1, we therefore get

v =
1

2

(|x1 − 1| + (1 + ε)|x2 − 1|
ε|x2 − 1|

)
≤ 1

2

(
(1 + ε)(|x1 − 1| + |x2 − 1|)

ε|x2 − 1|
)
< w.

Then Corollary 5.2 implies that |xi − 1| ≤ 0 for i = 1, 2.

The parallelogram P is best possible in the sense that it contains the other two
solutions on its boundary. (But, for general systems, the corresponding maximal
exclusion set need not reach another zero and has no simple geometric shape.)

For a nonquadratic polynomial function, all calculations become more complex,
and the exclusion sets found are usually far from optimal, though still much better
than those from the traditional methods. The Fk[z, z, x] are no longer independent
of x, so Theorems 4.3 and 7.2 have to be applied. This involves the computation of a
suitable upper bound Bk of Fk[z, z, x] by interval arithmetic.

Example 8.3. Figure 5 displays the following system of equations F (x) = 0 in
two variables, with two polynomial equations of degree 2 and 8:

F1(x) = x2
1 + 2x1x2 − 2x2

2 − 2x1 − 2x2 + 3,

F2(x) = x4
1x

4
2 + x3

1x
4
2 + x4

1x
3
2 + 15x2

1x
4
2 − 8x3

1x
3
2 + 10x4

1x
2
2 + 3x1x

4
2 + 5x2

1x
3
2

+ 7x3
1x

2
2 + x4

1x2 − 39x4
2 + 32x1x

3
2 − 57x2

1x
2
2 + 21x3

1x2 − 17x4
1 − 27x3

2 − 17x1x
2
2

− 8x2
1x2 − 18x3

1 − 478x2
2 + 149x1x2 − 320x2

1 − 158x2 − 158x1 + 1062.

(57)
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Fig. 5. Two polynomial equations in two variables; Example 8.3.

The system (57) has 8 solutions, at approximately(
1.0023149901708083

1.0011595047756938

)
,

(
0.4378266929701329

−1.3933047617799774

)
,

(
0.9772028387127761

−1.0115934531170049

)
,

(
−0.9818234823156266

0.9954714636375825

)
,

(
−3.7502535429488344

1.8585101451403585

)
,

(
2.4390986061035260

2.3174396617957018

)
,

(
5.3305903297000243

−1.7161362016394848

)
,

(
−2.0307311621763933

−4.3241016906293375

)
.

We consider the approximate solution z = ( 0.99
1.01 ). For the set S we choose the box

[z − u, z + u] with u = (1
1 ). In this case we have

F (z) ≈
(
−0.0603

−1.170

)
, F ′(z) ≈

(
2 −4.06

−717.55 −1147.7

)
,

F1[z, z, x] =

(
1 0

f1 0

)
, F2[z, z, x] =

(
2 −2

f2 f3

)
,

where

f1 ≈− 405.63 − 51.66x1 − 17x2
1 + 36.52x2 + 23x1x2 + x2

1x2

− 13.737x2
2 + 26.8x1x

2
2 + 10x2

1x
2
2 − 7.9x3

2 − 6.02x1x
3
2 + x2

1x
3
2

+ 19.92x4
2 + 2.98x1x

4
2 + x2

1x
4
2,

f2 ≈ 191.04 − 7.6687x2 + 62.176x2
2 + 39.521x3

2,

f3 ≈− 588.05 − 36.404x2 − 19.398x2
2.
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We further compute

C =

(
0.22035 −0.00077947

−0.13776 −0.00038397

)
,

B0 = 10−5

(
0 1

1 1

)
, B1 =

(
1.0636 0

0.5027 0

)
, B2 =

(
0.3038 0.1358

0.5686 0.5596

)
, b =

(
0.0124

0.0088

)
.

If we use Theorem 4.3 for v = ( 1
1 ), we get

w =

(
0.99999

0.99998

)
, a =

(
1.5032

1.6309

)
, D =

(
0.925421

0.942575

)
,

λi = 0.0126403, λe = 0.604222,

so we may conclude that there is exactly one zero in the box

xi =

(
[0.97736, 1.00264]

[0.99736, 1.02264]

)
,

and this zero is the only zero in the interior of the exclusion box

xe =

(
[0.385778, 1.59422]

[0.405778, 1.61422]

)
.

In Figure 6 the two boxes are displayed.

Fig. 6. Exclusion and inclusion boxes for Example 8.3 at z = (0.99, 1.01).

Next we consider the point z = ( 1.5
−1.5 ) to test Theorem 7.2. We compute

F (z) ≈
(

−3.75

−1477.23

)
, F1[z, z, x] ≈

(
1 0

g1 0

)
,
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Fig. 7. Exclusion boxes for Example 8.3 at z = (1.5,−1.5).

F ′(z) ≈
(

−2 7

−1578.73 1761.77

)
, F2[z, z, x] =

(
2 −2

g2 g3

)
,

with

g1 ≈− 488.75 − 69x1 − 17x2
1 + 61.75x2 + 24x1x2 + x2

1x2

+ 31.5x2
2 + 37x1x

2
2 + 10x2

1x
2
2 − 12.25x3

2 − 5x1x
3
2 + x2

1x
3
2

+ 24.75x4
2 + 4x1x

4
2 + x2

1x
4
2,

g2 ≈ 73.1563 + 138.063x2 − 95.875x2
2 + 68.25x3

2,

g3 ≈− 536.547 − 12.75x2 + 7.6875x2
2.

Performing the necessary computations, we find for x = [z − u, z + u] with u = 1
2 ( 1

1 )

F ′(z)−1 ≈
(

0.234 −0.00093

0.21 −0.000266

)
, b =

(
0.496

0.3939

)
,

B1 =

(
1.2895 0

0.5113 0

)
, B′

0 =

(
1 10−5

10−5 1.00001

)
, B2 =

(
1.5212 0.0215

0.7204 0.2919

)
.

Now we use Theorem 7.2 for v = ( 1
1 ) and C = F ′(z)−1 and get

w× =

(
1.00001

1.00002

)
, a× =

(
2.8322

1.5236

)
, D× =

(
6.6191

3.4006

)
, λ× = 0.277656;

so we conclude that there are no zeros of F in the interior of the exclusion box
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Fig. 8. Exclusion boxes for Example 8.3 in various regions of R
2.

x× =

(
[1.22234, 1.77766]

[−1.77766,−1.22234]

)
.

However, the choice C = F ′(z)−1 is not best possible in this situation. If we take

C =
(
1 0.002937

)
,

we compute λ× = 0.367223 and find the considerably larger exclusion box

x× =

(
[1.13278, 1.86722]

[−1.86722,−1.13278]

)
.

Figure 7 shows both boxes, the bigger one in dashed lines.
Finally, Figure 8 shows various exclusion boxes for nonzeros, and Figure 9 contains

exclusion boxes and some inclusion boxes for all of the zeros of F .
While the previous examples were low dimensional, our final example shows that

the improvements over traditional results may even be more pronounced for higher
dimensional problems with poorly conditioned zeros.
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Fig. 9. Exclusion boxes for all zeros of F in Example 8.3.

Example 8.4. We consider the set of equations

n∑
k=1

xik = H(n,−i) for i = 1, . . . , n,

where the harmonic numbers H(n,m) are defined as

H(n,m) :=

n∑
k=1

k−m.

Clearly, x∗k = k is a solution, and the complete set of solutions is given by all permu-
tations of this vector.

We compare the results provided by Theorem 4.3 with the exclusion box obtained
by strong regularity of the slope F [z,x] (which in the previous examples was the best
among the traditional choices). The vector v needed in Theorem 4.3 was chosen as
the all-one vector e. All numerical calculations were performed in double precision
arithmetic.

The results are collected in Table 1; R denotes the radius of the exclusion box
computed by Theorem 4.3, r the radius of the exclusion box implied by strong regu-
larity of F [z,x], and κ the condition number of F ′(x∗). All numbers are approximate.

From the logarithmic plot in Figure 10, we see that the radii of the exclusion boxes
decrease in both cases exponentially with n. However, the quotient of the two radii
increases exponentially with n. This shows that our new method suffers much less
from the double deterioration due to the increase of both dimension and the Jacobian
condition number at the zero.
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Table 1

n R r R/r κ

2 1 1 1.000 10.91

3 0.41316 0.127017 3.253 153.155

4 0.197355 0.0206925 9.538 3021.56

5 0.082 0.00359092 22.835 76819.8

6 0.034 0.00063524 53.523 2.38489 · 106

7 0.013 0.00011303 115.007 8.7331 · 107

8 0.005 0.000020137 248.296 3.68207 · 109

9 0.00185847 3.58494 · 10−6 518.408 1.75585 · 1011

10 0.00068 6.3732199 · 10−7 1066.960 9.34062 · 1012

11 0.00025 1.1311565 · 10−7 2210.130 5.48274 · 1014

12 0.000092 2.00428 · 10−8 4590.190 3.52073 · 1016

13 0.000034 3.5455649 · 10−9 9589.450 2.46174 · 1018

14 0.0000125 6.26252 · 10−10 19960.000 5.6081 · 1019

15 4.5043 · 10−6 1.1045 · 10−10 40781.400 2.64518 · 1020

16 1.6527 · 10−6 1.94493 · 10−11 84975.400 9.40669 · 1021

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. · 10-9

1. · 10-7

0.00001

0.001

0.1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

10

100

1000

10000

100000.

Fig. 10. Radii of the exclusion boxes and quotient of the radii for Example 8.4.
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PERFECTLY MATCHED LAYERS FOR THE CONVECTED
HELMHOLTZ EQUATION∗
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Abstract. In this paper, we propose and analyze perfectly matched absorbing layers for a
problem of time-harmonic acoustic waves propagating in a duct in the presence of a uniform flow.
The absorbing layers are designed for the pressure field, satisfying the convected scalar Helmholtz
equation. A difficulty, compared to the Helmholtz equation, comes from the presence of so-called
inverse upstream modes which become unstable, instead of evanescent, with the classical Bérenger’s
perfectly matched layers (PMLs). We investigate here a PML model, recently introduced for time-
dependent problems, which makes all outgoing waves evanescent. We then analyze the error due
to the truncation of the domain and prove that the convergence is exponential with respect to the
size of the layers for both the classical and the new PML models. Numerical validations are finally
presented.

Key words. acoustic waves, convected Helmholtz equation, duct modes, absorbing layers,
perfectly matched layer, instabilities

AMS subject classifications. 35J05, 65N12, 76Q05

DOI. 10.1137/S0036142903420984

1. Introduction. Perfectly matched layers (PMLs) were introduced by Bérenger
[3] in order to design efficient numerical absorbing boundary conditions (more pre-
cisely, absorbing layers) for the computation of time-dependent solutions of Maxwell’s
equations in unbounded domains. They have since been used for numerous applica-
tions, mostly in the time domain [4, 28, 5, 23] but also for time-harmonic wave-like
equations [27, 15].

In particular, PMLs have been used for the solution in the time domain of the
linearized Euler equations [19, 13, 16, 26], which model acoustic propagation in the
presence of a flow. In this case, it has been observed that PMLs can lead to instabili-
ties, due to the presence of waves whose phase and group velocities have opposite signs
[26] (see [2] for a general analysis of this phenomenon). Some techniques have been
developed to overcome this difficulty, making the layers stable but, unfortunately, no
longer perfectly matched [16, 1]. More recently, ideas for designing stable PMLs for
this problem have emerged from several teams independently. These new approaches,
which seem to be very closely related, have been developed for time-dependent appli-
cations in [20, 11, 14] and for time-harmonic applications in the present paper. These
different works all deal with the case of a parallel flow, which is orthogonal to the
layers.
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We are concerned with the propagation of acoustic waves in a duct in the presence
of a uniform flow. For such a mean flow, thetime-harmonic linearized Euler equations
reduce into a scalar convected Helmholtz equation for the pressure. In this particular
case, one could, of course, use a Dirichlet-to-Neumann (DtN) operator to obtain an
equivalent problem in a bounded domain. However, the PMLs, being local, are easier
to implement, and we intend to extend this method to vectorial cases, involving more
general flows in a forthcoming paper.

When applying the classical (i.e., Bérenger’s) PMLs to the convected Helmholtz
equation in a duct, a simple modal analysis shows that the presence of the so-called
inverse upstream modes produces an exponential blow-up of the solution in the space
variable. This is easy to see, remembering the interpretation of the PMLs as a complex
change of variable [8, 24, 10, 9]. This change of variable corresponds to a similarity
applied on the axial wave numbers of the modes. For the classical Helmholtz equation,
this similarity makes all outgoing modes become evanescent. But in the presence of
a flow, the transformation sends the inverse upstream modes into the “bad” part of
the complex plane, leading to the instabilities observed in the time domain.

The idea proposed here, which is similar to those developed independently in
[20, 14] for time domain applications, consists of applying a translation before the
similarity to the axial wave numbers. This removes the unstable modes. We will call
the PMLs thus obtained new PMLs.

The object of this paper is the analysis of the convergence of both PML models as
the thickness of the sponge layer tends to infinity. Similar convergence analyses have
already been carried out for the Helmholtz equation, via boundary integral equation
techniques in [21] or using the pole condition in [18]. Surprisingly, we prove that, for
the convected Helmholtz equation, the two models always converge. In other words,
contrary to time domain applications, the presence of unstable modes does not affect
the efficiency of the classical PMLs.

Finally, let us emphasize that in most papers concerning PMLs for time-harmonic
applications, coefficients are designed in order to satisfy requirements established for
time domain applications. We show that this choice is too restrictive: for instance,
the particular dependence of these coefficients regarding the frequency has no more
justification for the present case.

The outline of this paper is as follows: the equations of the scattering problem are
presented in section 2. A formulation in a bounded domain is given, involving DtN
conditions on the fictitious boundaries, which are known explicitly through modal
expansions. Finally, the well posedness is proven using Fredholm theory.

Classical and new PML techniques, with constant coefficients, are described in
section 3. A modal analysis indicates that these layers are “perfectly matched.”
Besides, they are absorbing, except the classical PMLs in the presence of the so-called
inverse upstream modes.

Section 4 is devoted to the analysis of the error due to the truncation of the
layers. An equivalent formulation of the problem with PMLs is written in the physical
domain, the thickness of the layers appearing in the expression of the DtN maps. In
this way, we prove that both PML models converge to the physical solution, as the
length of the layers tends to infinity. More precisely, the error in the physical domain
does not depend on the PML model under consideration and decreases exponentially
fast for both models. Note, however, that classical PMLs lead to an exponentially large
solution in the layers, whereas the solution computed with new PMLs is evanescent
in the layers.
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Fig. 1. The infinite duct.

Extension to the case of layers with spatially varying coefficients is discussed in
section 5, and numerical illustrations are given in the last section.

2. The physical and the mathematical models.

2.1. The problem in the infinite duct. We consider an infinite rigid duct
carrying a mean fluid flow; see Figure 1. The problem is two-dimensional, set in the
xy-plane, where the x- (resp., y-) axis is parallel (resp., normal) to the walls of the
duct. Mathematically, the duct is defined by the unbounded domain Ω = R × [0, h],
where h denotes the distance between the rigid walls.

To describe the propagation of acoustic waves in the duct, we assume the following
approximations to be valid:

• The fluid is homogeneous, nonviscous, and nonheat conductive.
• The thermodynamic processes are adiabatic.
• The mean velocity v0 is subsonic and uniform.
• The perturbations are small, and equations are linear in the acoustic quanti-

ties.
• A harmonic time dependence exp(−iωt), ω > 0 being the pulsation, is as-

sumed (although this factor is suppressed throughout).
The acoustic pressure field p(x, y) then satisfies the convected Helmholtz equation in
the infinite duct:

(1 −M2)
∂2p

∂x2
+
∂2p

∂y2
+ 2ikM

∂p

∂x
+ k2 p = f in Ω,(2.1)

where f ∈ L2(Ω) is a compactly supported function and M = v0/c0 and k = ω/c0
are, respectively, the Mach number (−1 < M < 1) and the wave number, c0 being the
sound velocity in the fluid. In addition to (2.1), the pressure satisfies the Neumann
homogeneous boundary condition on the two rigid walls of the duct:

∂p

∂y
= 0 on Γ = ∂Ω.(2.2)

To obtain a well-posed problem, a “radiation condition,” which selects the “outgoing”
waves, needs to be defined at infinity. This condition is nonlocal and is given in terms
of the DtN operator. This requires the introduction of the so-called modes of the
duct, which are the solutions of (2.1)–(2.2) in the absence of a source (f = 0) and
with separated variables. These are given by

p±n (x, y) = eiβ
±
n x ϕn(y),
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where

ϕ0(y) =

√
1

h
, ϕn(y) =

√
2

h
cos

(nπy
h

)
, n ∈ N

∗,(2.3)

and where the axial wave numbers β±
n are the solutions of

−(1 −M2)β2 − 2kM β + k2 =
n2π2

h2
, n ∈ N.

Let us introduce

K0 =
kh

π
√

1 −M2
,(2.4)

and let N0 = [K0] denote the integer part of K0. If n ≤ N0, β
±
n is real and equal to

β±
n =

−kM ±
√
k2 − n2π2

h2 (1 −M2)

1 −M2
.(2.5)

In this case, p±n is called a propagative mode. The number of propagative modes is an
increasing function of the Mach number M , which is assumed to be positive. Simple
calculations show that the group velocity ∂ω

∂β is positive for the p+
n modes and negative

for the p−n modes. A well-known effect of the presence of flow is the existence, when√
1 −M2

nπ

h
< k <

nπ

h
,

of modes p+
n which have a negative phase velocity ω

β and a positive group velocity.
These are called inverse upstream modes.

The axial wave number β±
n is complex if n > N0:

β±
n =

−kM ± i
√

n2π2

h2 (1 −M2) − k2

1 −M2
.(2.6)

In this case, p±n is exponentially decreasing when x→ ±∞ and is called an evanescent
mode.

2.2. Reduction to a bounded domain. We now want to select the outgoing
solution (2.1)–(2.2), which corresponds to a superposition of p+

n (resp., p−n ) modes
when x→ +∞ (resp., x→ −∞), i.e., either to the propagative modes with a positive
(resp., negative) group velocity or to the evanescent modes.

To derive the appropriate DtN boundary condition, we introduce the bounded
domain Ωb, located in between two boundaries Σ±, respectively, located at x = x−
and x = x+ (see Figure 2), such that the support of the source f is included in Ωb:

Ωb = {(x, y) ∈ Ω, x− ≤ x ≤ x+} .
We set Ω± the complementary domains

Ω− = {(x, y) ∈ Ω, x < x−} and Ω+ = {(x, y) ∈ Ω, x > x+} .
The solution p of (2.1) then satisfies the homogeneous equation

(1 −M2)
∂2p

∂x2
+ 2ikM

∂p

∂x
+
∂2p

∂y2
+ k2 p = 0 in Ω±(2.7)
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Fig. 2. The bounded domain.

and therefore can be decomposed on the modes. Consequently, in Ω−, i.e., for x < x−,
we have

p(x, y) =

+∞∑
n=0

(p(x−, .), ϕn)L2(Σ−) ϕne
iβ−

n (x−x−),

and in Ω+, i.e., for x > x+,

p(x, y) =

+∞∑
n=0

(p(x+, .), ϕn)L2(Σ+) ϕne
iβ+

n (x−x+),

where (·, ·)L2(Σ+) (resp., (·, ·)L2(Σ−)) denotes the L2(Σ+) (resp., L2(Σ−)) inner prod-
uct for scalar functions:

(u, v)L2(Σ±) ≡
∫

Σ±
u(y)v(y) dy.

The DtN operators T± can then be defined as

T± : H1/2 (Σ±) → H−1/2 (Σ±) ,

φ �→ ∓
+∞∑
n=0

iβ±
n (φ, ϕn)L2(Σ±) ϕn(y),

(2.8)

and we have the following boundary conditions on Σ± for the solution of (2.1):

∂p

∂n
= −T±p on Σ±,(2.9)

where the vector n denotes the unit outward normal to Σ±.
Having established exact boundary conditions satisfied by p, we can now define a

problem in the bounded domain Ωb: find p ∈ H1(Ωb) such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 −M2)
∂2p

∂x2
+ 2ikM

∂p

∂x
+
∂2p

∂y2
+ k2 p = f in Ωb,

∂p

∂y
= 0 on Γ ∩ ∂Ωb,

∂p

∂n
= −T±p on Σ±.

(2.10)

The fact that f is compactly supported in Ωb shows clearly that problems (2.10) and
(2.1)–(2.2) are equivalent in the sense of the following proposition.

Proposition 2.1. If p is a solution of system (2.1)–(2.2), then p|Ωb
is a solution

of (2.10). Conversely, if p̃ is a solution of (2.10), then p̃ can be extended in a unique
way to a solution of (2.1)–(2.2).
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2.3. Well posedness. Formulation (2.10) has two main advantages. First, from
a theoretical point of view, it provides a result of existence and uniqueness of the
solution. Second, it can be used to obtain numerical solutions, since it is posed in a
bounded domain.

An equivalent weak form of system (2.10) can then be written as follows: find
p ∈ H1(Ωb) such that

aΩb
(p, q) = −

∫
Ωb

fq dxdy ∀q ∈ H1(Ωb),(2.11)

where the sesquilinear form aΩb
(· , ·) is defined by

aΩb
(p, q) = b(p, q) + c(p, q),(2.12)

with

b(p, q) =

∫
Ωb

(
(1 −M2)

∂p

∂x

∂q

∂x
+
∂p

∂y

∂q

∂y
+ pq

)
dxdy + 〈T+p, q〉Σ+

+ 〈T−p, q〉Σ− ,

(2.13)

where the brackets 〈·, ·〉Σ+
(resp., 〈·, ·〉Σ−) denote the natural duality pairing between

H−1/2(Σ+) and H1/2(Σ+) (resp., H−1/2(Σ−) and H1/2(Σ−)), and

c(p, q) =

∫
Ωb

(
−2ikM

∂p

∂x
q − (1 + k2) pq

)
dxdy.(2.14)

It was shown in [6] that this problem is of Fredholm type. By the Fredholm alternative,
problem (2.11) is well posed if and only if the homogeneous problem has no solution
except the trivial one, p = 0.

Theorem 2.2. The problem is well posed if and only if

k =
√

1 −M2
nπ

h
∀n ∈ N.(2.15)

Proof. Suppose that p is a solution of (2.1)–(2.2) with f = 0. Then there are
complex constants A+

n and A−
n such that

p(x, y) =

+∞∑
n=0

(
A+
n e

iβ+
n x +A−

n e
iβ−

n x
)
ϕn(y),

with definitions (2.3) through (2.6). Boundary condition (2.9) then gives

A−
n (β−

n − β+
n ) = A+

n (β−
n − β+

n ) = 0

so that p vanishes identically if β+
n = β−

n or, likewise, if k2 = (1 −M2) n
2π2

h2 .

Suppose conversely that k =
√

1 −M2 nπ
h ; then

β+
n = β−

n = − kM

1 −M2
,

and ϕn(y) e
iβ+

n x is a nontrivial solution of the homogeneous problem.
In what follows, we assume the problem is well posed, which means that (2.15) is

satisfied.
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3. The PML model. The PML model introduced by Bérenger for the time-
dependent Maxwell equations can be constructed using a complex change of variable
in the frequency domain, as shown in [8, 10, 9]. We use this same approach in the
present paper. This is closely related to the technique known as dilation analyticity
for the study of resonances [17].

In this section, we briefly recall some properties of the classical PML formulation
for the Helmholtz equation. Note that in the context of propagation in a waveguide
the interpretation of the method relies on the modal approach instead of the usual
plane wave approach. This modal analysis allows us to point out the origin of the
instabilities in the presence of flow and leads naturally to the introduction of a new
model of PMLs as a remedy.

3.1. Modal analysis of Bérenger’s model in a waveguide. The purpose of
the method is to provide a fictitious, absorbing medium such that its interface with
the “physical” bounded domain does not reflect any outgoing mode. Transposing
Bérenger’s formulation in the frequency domain from its original setting in the time
domain consists of making the following substitution:

∂

∂x
−→ α

∂

∂x
,(3.1)

where α is a complex function taken to be

α(x) =
−iω

−iω + σ(x)
(3.2)

with σ(x) a real, positive function such as σ(x) = 0 (and therefore α(x) = 1) in Ωb,
the derivative with respect to y being left unchanged.

In the case of the Helmholtz equation, we obtain

α(x)
∂

∂x

(
α(x)

∂p

∂x

)
+
∂2p

∂y2
+ k2 p = f in Ω.(3.3)

Note that the writing of this equation in the weak sense implies the following jump
conditions at the interfaces between Ωb and the PMLs:

[p(x, y)] = 0 and

[
α(x)

∂p

∂x
(x, y)

]
= 0.(3.4)

For the modal analysis in the waveguide, we now assume that α(x) is a constant in
Ω \ Ωb, which we still denote by α for the sake of simplicity. In other words,

α(x) =

{
1 if x− ≤ x ≤ x+,
α otherwise.

(3.5)

For any α, the interface between the PML and the physical domain is perfectly trans-
parent, and we will see that if α is well chosen, the transmitted waves decrease expo-
nentially in the layer.

Classically, the modes in a waveguide are given by

p±n (x, y) = e±iβnxϕn(y), n ∈ N,(3.6)

where functions ϕn, for all n ∈ N, are defined by (2.3) and axial wave numbers βn are
solutions of the dispersion equation

βn
2 = k2 − n2π2

h2
, n ∈ N,
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such that βn > 0 for the propagative modes and Im(βn) > 0 for the evanescent modes.
Referring to subsection 2.1, note that

βn = β+
n = −β−

n ,

with the Mach number M taken equal to zero in the definitions (2.5) and (2.6) of β±
n .

In the same manner, one can define the modes in the PML as

p±n,α(x, y) = e±iβn,αxϕn(y), n ∈ N,(3.7)

with

βn,α =
βn
α
.

If α satisfies the hypotheses

Re(α) > 0, Im(α) < 0,(3.8)

then p±n,α is exponentially decreasing as x→ ±∞ for any n corresponding either to a
propagative or to an evanescent mode. It is now straightforward to show that an inci-
dent mode p+

n generates an evanescent transmitted mode p+
n,α in Ω+ and no reflection

at the interface Σ+. Let us stress that assumption (3.8) is the only requirement on α
to obtain a PML. Surprisingly, the fairly restrictive choice (3.2) seems to be used in
most time-harmonic applications.

3.2. The new PML formulation for the convected Helmholtz equation.
A natural idea for designing a PML for the convected Helmholtz equation, already
used in the literature for applications in the time domain, is to apply the technique
described in the previous subsection. It has been observed by several authors that
this approach leads to instabilities in the time domain [19, 13, 16, 26]. The presence
of instabilities have been explained in [2], thanks to an analysis via group velocities.
In the context of a duct, this phenomenon can be easily understood using the modal
approach.

As in the no-flow case, the axial wave numbers β±
n,α of the modes p±n,α in the PML

are given by

β±
n,α =

β±
n

α
, n ∈ N.

This can be illustrated by representing the β±
n and β±

n,α in the complex plane. We
clearly notice in Figures 3 and 4 that the transformation

Sα : C → C,

z �→ z

α
,

due to the change of variable used in the PML, is a similarity of ratio 1
|α| and angle

arg
(

1
α

)
= − arg(α) around the origin in the complex plane. The main difference

between the equation considered here and the Helmholtz equation is the possible
existence of inverse upstream modes. Indeed, if p+

n is an inverse upstream mode (as

defined in subsection 2.1), the corresponding β+
n is negative so that Im(

β+
n

α ) becomes
negative for any α satisfying assumption (3.8). This is illustrated in Figure 5, the
third propagative downstream mode of the case presented being an inverse upstream
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Fig. 3. First axial wave numbers of the modes for the convected Helmholtz equation (k = 5,
M = 0.3, and h = 1). Circles and squares are respectively associated with propagative and evanescent
modes, while filled and empty symbols, respectively, refer to downstream and upstream modes.
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Fig. 4. Effect of the similarity Sα (α = 0.1(1− i)) on the first axial wave numbers of the modes
for the convected Helmholtz equation (k = 5, M = 0.3, and h = 1).

mode. This leads us to the conclusion that the PML model does not produce any
unstable (i.e., exponentially growing in the layer) modes if all the axial wave numbers
βn,α for the propagative downstream (resp., upstream) modes are strictly located in
the upper (resp., lower) half of the complex plane.

Guided by the previous geometrical interpretation, we apply a translation in the
complex plane prior to the similarity which moves all the β+

n,α’s corresponding to the
inverse upstream modes in the right half-plane and keeps the β−

n,α’s associated with
propagative modes in the left one. Such a transformation is equivalent to the following
substitution in (2.1):

∂

∂x
−→ α

∂

∂x
+ iλ
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Fig. 5. Effect of the similarity Sα (α = 0.2(1− i)) on the first axial wave numbers of the modes
for the convected Helmholtz equation in presence of an inverse upstream mode (k = 6, M = 0.4,
and h = 1).

with λ ∈ R. The resulting axial wave numbers are now given by

β±
n,α,λ =

β±
n − λ

α
, n ∈ N.(3.9)

Although λ could be chosen from among several values, the most appropriate choice
is the following:

λ∗ = − kM

1 −M2
.(3.10)

This value corresponds to the real part of the wave number of each evanescent mode,
and, for any α satisfying assumption (3.8), the β±

n,α,λ∗ ’s are well located. Other
choices for λ would require further restrictions on α in order to ensure that the βn’s
associated with evanescent modes also stay in the “good side” of the complex plane
(see Figure 6).

We denote in the following by λ(x) the function defined by

λ(x) =

{
0 if x− ≤ x ≤ x+,
λ otherwise.

(3.11)

Finally, the equation in the new PML medium can be written as

(
1 −M2

)(
α(x)

∂

∂x
+ iλ(x)

)2

p +
∂2p

∂y2
+ 2ikM

(
α(x)

∂

∂x
+ iλ(x)

)
p + k2p= f in Ω,

(3.12)

where the function α(x) (resp., λ(x)) is defined in (3.5) (resp., in (3.11)) with λ ∈ R

and α ∈ C satisfying assumption (3.8). Writing this equation in a weak sense implies
jump conditions at the interfaces between Ωb and the layers:

[p(x, y)] = 0 and

[
α(x)

∂p

∂x
(x, y) + iλ(x) p(x, y)

]
= 0.(3.13)

Remark. This new change of variable can also be used to derive stable PMLs in
the time domain, as is done in [20, 14].
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Fig. 6. Effect of the new transformation (translation prior to similarity Sα) on the first axial
wave numbers of the modes for the convected Helmholtz equation in the presence of an inverse
upstream mode (k = 6, M = 0.4, and h = 1), α = 0.2(1 − i), and λ = − kM

1−M2 .

4. PML truncation. Error estimates.

4.1. Truncation of the absorbing layer and well posedness. Until now,
we have considered an absorbing layer of infinite length. In practice, one has to bound
the computational domain and layers are of finite length L in this section.

We denote by ΩL the truncated domain and by ΣL± the external boundaries, pre-
sented in Figure 7. For simplicity, we choose to use homogeneous Dirichlet boundary
conditions on these boundaries, but the analysis done in the following would still be
valid for the natural boundary conditions α ∂p

∂x + iλ p = 0. Let pL denote the solution
in the truncated domain, satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −M2

)(
α(x)

∂

∂x
+ iλ(x)

)2

p+
∂2p

∂y2

+ 2ikM

(
α(x)

∂

∂x
+ iλ(x)

)
p+ k2 p = f in ΩL,

∂pL

∂y
= 0 on Γ ∩ ∂ΩL,

pL = 0 on ΣL±.

(4.1)

Denoting VL =
{
q ∈ H1(ΩL) | q = 0 on ΣL±

}
, a variational formulation of (4.1) can

be written as follows: find pL ∈ VL such that

aΩL(pL, q) = −
∫

ΩL

1

α
fq dxdy ∀q ∈ VL,(4.2)

where the sesquilinear form aΩL(· , ·) is defined by

aΩL(p, q) = bL(p, q) + cL(p, q),

with

bL(p, q) =

∫
ΩL

(
(1 −M2)α

∂p

∂x

∂q

∂x
+

1

α

∂p

∂y

∂q

∂y
+ pq

)
dxdy
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+Ωb
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Σ− Σ+ ΣL
+ΣL

− ΩL
−

Fig. 7. The truncated domain ΩL.

and

cL(p, q) =

∫
ΩL

i

((
(M2 − 1)λ− 2kM

) ∂p
∂x
q + (1 −M2)λ p

∂q

∂x

)
dxdy

+

∫
ΩL

(
(1 −M2)

λ2

α
+ 2kM

λ

α
− k2

α
− 1

)
pq dxdy.

Theorem 4.1. If α satisfies (3.8), then problem (4.2) is of Fredholm type.
Proof. The bounded operator CL on H1(ΩL), defined by the Riesz representation

theorem as

(CLp, q)H1(ΩL) = cL(p, q) ∀(p, q) ∈ H1(ΩL)2,

is clearly compact (from the compactness of the embedding of H1(ΩL) into L2(ΩL)).
On the other hand, the sesquilinear form bL(· , ·) is coercive on VL. To check this, it
suffices to take the real part of bL(q, q):

Re (bL(q, q)) =

∫
ΩL

(
Re(α)(1 −M2)

∣∣∣∣ ∂q∂x
∣∣∣∣2 + Re

(
1

α

) ∣∣∣∣∂q∂y
∣∣∣∣2 + |q|2

)
dxdy

≥ C ‖q‖2
H1(ΩL) ,

where, because of assumption (3.8), C is a strictly positive constant depending on the
complex constant α and the Mach number M :

C = inf

(
(1 −M2)Re(α),Re

(
1

α

)
, 1

)
.

4.2. Reduction to a problem posed in Ωb. Remember that our original
problem (2.1)–(2.2) has been proved in section 2.2 to be equivalent to the problem
(2.10) posed in Ωb. Having in mind the comparison between the solution pL of problem
(4.1), posed in the truncated domain, and the solution p of the original problem, we
first reformulate (4.1) as a problem posed only in Ωb. Consider the following problem:
find pLb ∈ H1(Ωb) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 −M2)
∂2pLb
∂x2

+ 2ikM
∂pLb
∂x

+
∂2pLb
∂y2

+ k2 pLb = f in Ωb,

∂pLb
∂y

= 0 on Γ ∩ ∂Ωb,

∂pLb
∂n

= −TL±pLb on Σ±,

(4.3)
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where TL± are operators defined as follows:

TL± : H1/2 (Σ±) → H−1/2 (Σ±) ,

φ �→ ∓
+∞∑
n=0

iν±n (L) (φ, ϕn)L2(Σ±) ϕn(y),
(4.4)

with

ν±n (L) = β±
n +

β∓
n − β±

n

1 − ei(β
−
n −β+

n )L/α
.(4.5)

Note that values ν±n (L) are well defined, because of assumption (2.15).
Proposition 4.2. If pL is a solution of (4.1), then pL|Ωb

is a solution of (4.3).

Conversely, if pLb is a solution of (4.3), then it can be extended in a unique way to a
solution of (4.1).

Proof. The key idea for reformulating the problem as a problem posed in Ωb is
to write an exact boundary condition satisfied by the solution on the boundaries Σ±.
We define the complementary domains ΩL± by

ΩL−=
{
(x, y)∈ΩL, x− − L < x < x−

}
and ΩL+ =

{
(x, y)∈ΩL, x+ < x < x+ + L

}
.

Since pL± = pL|
ΩL
±

satisfies a homogeneous equation in these domains, it can be given as

a modal expansion. Consider, for instance, the solution in the right domain ΩL+. Using
the Dirichlet boundary condition on the external layer boundary ΣL+, the solution can
be written as

pL+(x, y) =

+∞∑
n=0

(
pL+(x+, .), ϕn

)
L2(Σ+)

(
A+
n e

iγ+
n (x−x+) +A−

n e
iγ−

n (x−x+)
)
ϕn(y),

where we have denoted γ±n = β±
n,α,λ, for the sake of clarity, and

A±
n = ∓ eiγ

∓
n L

eiγ
+
n L − eiγ

−
n L

.

We check easily that these quantities are always defined. Actually, the denominator
would vanish if there existed an integer n for which (γ+

n − γ−n )L ∈ 2πZ, which means

that (β+
n −β−

n )L/α ∈ 2πZ. If k2 = (1−M2) n
2π2

h2 , the quantity β+
n −β−

n is never zero.
Furthermore, with α satisfying assumption (3.8), (β+

n −β−
n )L/α always has a nonzero

imaginary part and thus cannot belong to 2πZ. We then write an exact boundary
condition satisfied by pL+ on Σ+:(

∂pL+
∂x

)
|Σ+

=

+∞∑
n=0

(
pL+(x+, .), ϕn

)
L2(Σ+)

(
A+
n iγ

+
n +A−

n iγ
−
n

)
ϕn(y).

Using the jump conditions (3.13) and relation (3.9), this yields an exact boundary
condition satisfied in the interior by pLb :(

∂pLb
∂x

)
|Σ+

= α

(
∂pL+
∂x

)
|Σ+

+ iλ pL+|Σ+

= i

+∞∑
n=0

(
pLb (x+, .), ϕn

)
L2(Σ+)

(
A+
nβ

+
n +A−

n β
−
n

)
ϕn(y).
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Setting ν+
n (L) = A+

nβ
+
n +A−

n β
−
n , this can also be written as(
∂pLb
∂x

)
|Σ+

= −TL+ (pLb )|Σ+
,

where TL+ denotes the operator defined in (4.4).
Remark. It clearly appears in the expression (4.5) that operators TL± , and thus

problem (4.3), do not depend on λ. In fact, the computed solution pL depends on λ
only in the layers.

4.3. Convergence and error estimates. We have shown that the original
system (2.1)–(2.2) and system (4.1) with absorbing layers of finite length are both
equivalent to problems posed only in Ωb (respectively, (2.10) and (4.3)). We are
now able to compare the solutions of these two problems, which are solutions of the
following variational formulations:

For the original problem (2.10): find pb ∈ H1(Ωb) such that

aΩb
(pb, q) = −

∫
Ωb

fq dxdy ∀q ∈ H1(Ωb),(4.6)

where the sesquilinear form aΩb
(· , ·) is given by (2.12) and can be written as

aΩb
(p, q) = (Ap, q)H1(Ωb) + 〈T+p, q〉Σ+

+ 〈T−p, q〉Σ− ,(4.7)

with A the bounded linear operator on H1(Ωb) defined by

(Ap, q)H1(Ωb) =

∫
Ωb

((
1 −M2

) ∂p
∂x

∂q

∂x
+
∂p

∂y

∂q

∂y
− 2ikM

∂p

∂x
q − k2 pq

)
dxdy.(4.8)

For the problem with absorbing layers of finite length (4.3): find pLb ∈ H1(Ωb)
such that

aLΩb
(pLb , q) = −

∫
Ωb

fq dxdy ∀q ∈ H1(Ωb),(4.9)

where the sesquilinear form aLΩb
(· , ·) can be written as

aLΩb
(p, q) = (Ap, q)H1(Ωb) +

〈
TL+p, q

〉
Σ+

+
〈
TL−p, q

〉
Σ−

,(4.10)

the operator A being defined in (4.8).
To prove convergence and get error estimates, we follow an idea developed in [25],

which has also been used in [12].
Lemma 4.3. Suppose that assumptions (2.15) and (3.8) hold. Then there exist

strictly positive constants C = C(k,M) and η = η(θ, k, h,M) (where θ denotes the

argument of α) such that, for all (p, q) ∈ (
H1(Ωb)

)2
, we have∣∣aΩb

(p, q) − aLΩb
(p, q)

∣∣ ≤ Ce−ηL/|α| ‖p‖H1(Ωb)
‖q‖H1(Ωb)

.(4.11)

More precisely, the constant η is determined by

η =
2k

1 −M2
min

⎛⎝− sin(θ)

√
1 − N0

2

K0
2 , cos(θ)

√
(N0 + 1)2

K0
2 − 1

⎞⎠ ,(4.12)

where K0 is defined in (2.4).
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Proof. From expressions (4.7) and (4.10), we have

aΩb
(p, q) − aLΩb

(p, q) =
(
〈T+p, q〉Σ+

− 〈
TL+p, q

〉
Σ+

)
+
(
〈T−p, q〉Σ− − 〈

TL−p, q
〉
Σ−

)
.

Let us focus on the first term in the right-hand side, the estimation of the second one
being analogous. From the definitions (2.8) and (4.4) of operators T+ and TL+ , we

have, for any φ ∈ H1/2(Σ+),

(
T+ − TL+

)
φ = −

+∞∑
n=0

i
(
β+
n − ν+

n (L)
)
φn ϕn(y) with φn = (φ, ϕn)L2(Σ+) .

Therefore, for any (φ, ψ) ∈ (H1/2(Σ+))2,

〈
(T+ − TL+ )φ, ψ

〉
Σ+

= −
+∞∑
n=0

i(β+
n − ν+

n (L))φn ψn,

with φn = (φ, ϕn)L2(Σ+) and ψn = (ψ,ϕn)L2(Σ+). This implies the following estimate:

∣∣∣〈(T+ − TL+
)
φ, ψ

〉
Σ+

∣∣∣ ≤ +∞∑
n=0

∣∣β+
n − ν+

n (L)
∣∣ ∣∣φnψn∣∣ .(4.13)

From (4.5), we have ∣∣β+
n − ν+

n (L)
∣∣ =

|β+
n − β−

n |∣∣∣1 − ei(β
−
n −β+

n )L/α
∣∣∣ .

Noticing that, for any z ∈ C, ∣∣1 − eiz
∣∣ ≥ ∣∣∣e−Im(z) − 1

∣∣∣
so that, if Im(z) < 0 and |Im(z)| is large enough, we conclude that this quantity is
larger than ∣∣1 − eiz

∣∣ ≥ ∣∣∣e−Im(z) − 1
∣∣∣ ≥ 1

2
e−Im(z).

We can easily check, using assumption (3.8), that we have Im ((β−
n − β+

n )L/α) < 0
for all n ∈ N so that, for L large enough, the previous estimate gives us∣∣β+

n − ν+
n (L)

∣∣ ≤ 2
∣∣β+
n − β−

n

∣∣ eIm((β−
n −β+

n )L/α).(4.14)

Let us now distinguish the two cases.
The propagative modes n ≤ N0. From (2.5), we have

β+
n − β−

n =
2k

1 −M2

√
1 − n2

K0
2 = δn > 0.

Noting that

δN0
≤ δn ≤ 2k

1 −M2
,

we derive from estimate (4.14)∣∣β+
n − ν+

n (L)
∣∣ ≤ 2δn e

−δN0
L Im(1/α) ≤ 4k

1 −M2
e−δN0

L Im(1/α).(4.15)
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The evanescent modes n ≥ N0 + 1. From (2.6), we have

β+
n − β−

n =
2ik

1 −M2

√
n2

K0
2 − 1 = iδn, δn > 0.

This time, δn is increasing and
√

n2

K0
2 − 1 ≤ n

K0
. Estimate (4.14) thus yields

∣∣β+
n − ν+

n (L)
∣∣ ≤ 4k

1 −M2

n

K0
e−δN0+1LRe(1/α).(4.16)

By substituting these estimates into (4.13), we see that

∣∣∣〈(T+ − TL+
)
φ, ψ

〉
Σ+

∣∣∣ ≤ 4k

1 −M2

(
N0∑
n=0

e−δN0
L Im(1/α)

∣∣φn ψn∣∣
+

+∞∑
n=N0+1

n

K0
e−δN0+1LRe(1/α)

∣∣φnψn∣∣
)
.

Setting η = |α|min(δN0
Im(1/α), δN0+1 Re(1/α)), we then have

∣∣∣〈(T+ − TL+
)
φ, ψ

〉
Σ+

∣∣∣ ≤ 4k

1 −M2
e−ηL/|α|

+∞∑
n=0

(
1 +

n2

K0
2

)1/2 ∣∣φn ψn∣∣
≤ C e−ηL/|α| |φ|H1/2(Σ+) |ψ|H1/2(Σ+) .

The trace theorem now yields, for any (p, q) ∈ (
H1(Ωb)

)2
,∣∣∣〈(T+ − TL+ )p, q

〉
Σ+

∣∣∣ ≤ C e−ηL/|α| ‖p‖H1(Ωb)
‖q‖H1(Ωb)

.

One can obviously obtain the same estimate on Σ− and thus conclude the proof of
claim (4.11).

Setting V = H1(Ωb), we introduce linear operators A and AL in L(V, V
′
), respec-

tively, associated with the sesquilinear forms aΩb
(· , ·) and aLΩb

(· , ·): for all (p, q) ∈ V 2,

〈Ap, q〉V ′ ,V = aΩb
(p, q) and

〈ALp, q
〉
V ′ ,V = aLΩb

(p, q).

Obviously estimate (4.11) implies∥∥A−AL
∥∥
L(V,V ′ ) ≤ C e−ηL/|α|.(4.17)

Problems (4.6) and (4.9) can both be written in terms of these operators:

Apb = −f,(4.18)

ALpLb = −f.(4.19)

It follows from taking the difference between (4.18) and (4.19) that the error pb − pLb
satisfies the following equation:

AL
(
pb − pLb

)
=
(AL −A) pb.(4.20)

Using estimate (4.17), we are now able to show the following result.
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Theorem 4.4. Suppose that assumptions (3.8) and (2.15) hold. There exists
L1 > 0 such that for all L ≥ L1, AL is an isomorphism on H1(Ωb) and the solution
pLb of problem (4.3) converges to the solution pb of problem (2.10). Furthermore, there
exists a constant C depending on M and k such that∥∥pb − pLb

∥∥
V
≤ C e−ηL/|α| ‖pb‖V ,(4.21)

with η being defined in (4.12).
Proof. For g ∈ V

′
, we consider the following problem: find u ∈ V such that

ALu = g.(4.22)

We can rewrite the operator AL as AL = A +
(AL −A) and, using that A is an

isomorphism on V ,

AL = A (
I + A−1

(AL −A)) .
Problem (4.22) thus becomes(

I + A−1
(AL −A))u = A−1g.

Applying the Banach fixed point theorem, this problem admits a unique solution if∥∥A−1
(AL −A)∥∥L(V,V ′ ) < 1,

which is satisfied as soon as∥∥AL −A∥∥L(V,V ′ ) <
∥∥A−1

∥∥−1

L(V,V ′ ) .

This can be achieved for L large enough, that is, L ≥ L1, since
∥∥AL −A∥∥L(V,V ′ )

tends to zero as L tends to infinity, because of (4.17). Moreover, we have∥∥∥(I + A−1
(AL −A))−1

∥∥∥
L(V,V ′ )

<
1

1 − ∥∥A−1
(AL −A)∥∥L(V,V ′ )

,

which implies the following estimate:

‖u‖V <

∥∥A−1g
∥∥
V

1 − ∥∥A−1(AL −A)
∥∥
L(V,V ′ )

.

Applying this result to the error, the solution of problem (4.20) yields

∥∥pb − pLb
∥∥
V

<

∥∥A−1
(AL −A) pb∥∥V

1 − ∥∥A−1
(AL −A)∥∥L(V,V ′ )

≤
∥∥A−1

∥∥
L(V,V ′ )

∥∥AL −A∥∥L(V,V ′ ) ‖pb‖V
1 − ∥∥A−1

∥∥
L(V,V ′ )

∥∥AL −A∥∥L(V,V ′ )

.

When
∥∥AL −A∥∥L(V,V ′ ) is small enough, the quantity in the right-hand side can be

bounded by∥∥pb − pLb
∥∥
V
≤ 2

∥∥A−1
∥∥
L(V,V ′ )

∥∥AL −A∥∥L(V,V ′ ) ‖pb‖V ≤ 2C e−η ‖pb‖V ,

the last inequality coming from (4.17).
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Fig. 8. Coefficient η plotted as a function of wave number k for M = 0.3, h = 1, and θ = −π
4
.

Remarks. 1. We emphasize that error estimate (4.21) of Theorem 4.4 does not
depend on the parameter λ. As a consequence, exponential convergence is obtained
for both the classical and the new PML models. This is the main difference between
the behavior of the new PMLs and that of the classical PMLs in the time domain, as
in that case the layers lead to instabilities in the presence of inverse upstream modes
[19, 26, 1, 2].

2. Note that estimate (4.21) also proves that convergence holds when the length
of the layers L is fixed and |α| tends to 0. This is useful in practice for numerical
computations. Indeed, L has to be small in order to reduce the number of degrees of
freedom. Moreover, it is more convenient to change the value of parameter α than
the length of the layers, which requires a new mesh of the computational domain.

3. The value of η is strongly related to the position of wave number k with
respect to the cut-off frequencies. More precisely, for a given value of the argument
θ of coefficient α, the accuracy deteriorates when k is close to a cut-off wave number
(see Figure 8).

5. Varying coefficients. In practical computations, it is very common to use
a spatially varying coefficient α(x) in the layers. Actually, it has been proven for
finite difference schemes that discontinuities in α through the boundaries Σ± generate
spurious reflections after discretization [10]. In this section, we show that the analysis
done previously for constant coefficients α and λ can be easily extended to varying
coefficients. Let us point out, however, that the numerical results presented in the
next section are obtained with constant coefficients and that no significant effects due
to the discontinuities have been observed.

Let α and λ be two functions of the coordinate x, defined from R to C, such that

α(x) = 1 and λ(x) = 0 for x ∈ [x−, x+].

We assume, moreover, that α(x) satisfies (3.8) for all x > x+ or x < x−. Let us
consider once more problem (4.1). Since the proof of Theorem 4.1 does not use the
fact that α and λ are constant in the layers, the theorem still holds, and the problem
is of Fredholm type.
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To establish a convergence result with respect to the size of the layers, we follow
the steps of sections 4.2 and 4.3. The main point is that the modal solutions in the
right-hand side layer, for instance, are now

p±n (x, y) = ψ±
n (x)ϕn(y), n ∈ N,

where ϕn is given by (2.3) and ψ±
n is defined by⎧⎪⎨⎪⎩

(
α(x)

d

dx
+ iλ(x)

)
ψ±
n = iβ±

n ψ
±
n ,

ψ±
n (x+) = 1.

It then follows from straightforward calculations that problem (4.1) is equivalent to
problem (4.3) set in domain Ωb, with the following new definition for the coefficient
ν+
n (L):

ν+
n (L) = β+

n +
β−
n − β+

n

1 − ψ−
n (x+ + L)

ψ+
n (x+ + L)

.(5.1)

and a similar definition for ν−n (l). Note, moreover, that

ψ−
n (x+ + L)

ψ+
n (x+ + L)

= ei(β
−
n −β+

n )
∫ x++L

x+

1

α(x)
dx

so that again the coefficients ν±n (L) do not depend on λ.
The final result then reads as follows.
Theorem 5.1. Problem (4.1) is well posed, and the solution pLb of problem

(4.3), with ν±n (L) defined above, exists and converges to the solution pb of problem
(2.10) as L → +∞. Furthermore, there exist three constants C = C(k,M) and
τ± = τ±(k,M,α, L) such that∥∥pb − pLb

∥∥
V
≤ C (

e−τ+ + e−τ−
) ‖pb‖V ,

with

τ± =
2k

1 −M2
min

⎛⎝Im(I±)

√
1 − N0

2

K0
2 , Re(I±)

√
(N0 + 1)2

K0
2 − 1

⎞⎠ ,

where I± = ± ∫ x±±L
x±

1
α(x) dx, K0 is defined in (2.4), and N0 denotes the integer part

of K0.

6. Numerical results. In order to illustrate the conclusions previously drawn
concerning the PML models, numerical examples are presented. The following config-
uration is considered: the computational domain is the same as the one presented in
Figure 7, extending from x = −0.2 to x = 2.2 and y = 0 to y = 1. The layers occupy
the region from x = −0.2 to x = 0 in the downstream direction and from x = 2 to
x = 2.2 in the upstream direction, the thickness L of the layers then being fixed and
equal to 10% of the length of domain Ωb. A compactly supported source f is given
by

f =

{
1 if (x− 1)2 + (y − 0.7)2 ≤ 0.04,
0 elsewhere.
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Fig. 9. Relative error
‖p−pref‖H1(Ωb)

‖pref‖H1(Ωb)
as a function of |α|, k = 10, and M = 0.3. The solid

line is the result for the new PML model, while the dotted line refers to the classical PML model.

The numerical solution of problem (4.2) posed in the domain bounded with PMLs is
compared to the computed solution (which is called the reference solution) of problem
(2.11) posed in the domain bounded with DtN operators. Both approximations are
done with a finite element method. The DtN map, usually expressed through an
infinite series expansion, is here approximated by truncating the series.

All the simulations have been conducted with the same unstructured mesh, whose
mesh size is linked to the problem via a resolution of approximately 20 nodal points
per wavelength when using second-order triangular (P2) Lagrange finite elements. For
the computation of the reference solution, the number of terms in the truncated DtN
map is 8, which is sufficient for accuracy in each of the cases tested. The coefficient α
is chosen to be a complex constant in the layers, whose argument is taken to be equal
to −π

4 , and coefficient λ of the new PML model takes the value λ∗ defined in (3.10).
Homogeneous Dirichlet boundary conditions are imposed on the outer boundaries of
the layers. The computations are done with the finite element library mélina [22].

6.1. The no inverse upstream mode case. In this first simulation, we choose
k = 10 and M = 0.3. For such values of the wave number and the Mach number,
four modes are propagative, and there is no inverse upstream mode. The solution in
the layers is then exponentially decaying for both the classical (i.e., λ = 0) and new
PML models.

In Figure 9, the relative error to the reference solution in the H1(Ωb) norm is
plotted as a function of the modulus of α for the two models. We observe no noticeable
discrepancy between the classical and new PML models, which behave similarly in
this case. Both curves present a minimum plateau, and we can roughly distinguish
three zones, as indicated in Figure 9:

•|α| ∈ [r1, r2]. A very good agreement between the DtN and the PML solutions,
for the classical and new PML models, is obtained for a large range of values of |α|
corresponding to the plateau seen in Figure 9. The real part of the corresponding
solution is shown in Figure 10. We also observe in this figure the effect of the flow
on the propagation of sound, as the wavelength of the solution is longer downstream
from the source than upstream.

•|α| > r2. For larger values of |α|, the layer is insufficiently absorbing, and a
reflection occurs at the end of the layers, as shown in Figure 11.
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Fig. 10. Real part of the pressure field; k = 10 and M = 0.3, α = .19(1 − i), and λ = − kM
1−M2 .

Fig. 11. Real part of the pressure field; k = 10 and M = 0.3, α = 1 − i, and λ = − kM
1−M2 .

•|α| < r1. For small values of |α|, the absorption in the layers is high, but the
mesh resolution becomes too coarse to correctly represent modes in the PML medium,
thus producing spurious numerical errors, as seen in Figure 12.

We want to confirm the convergence estimate of Theorem 4.4, which implies that

− ln

(∥∥pb − pLb
∥∥
V

‖pb‖V

)
≥ ηL

|α| − ln (C) .

To this end, the opposite of the logarithm of the relative error in H1(Ωb) norm is
plotted as a function of the inverse of |α| for both PML models. The exponential con-
vergence of the method, which can be deduced from the slope of curves in Figure 13,
agrees satisfactorily with the estimation given by the theory for both PML models,
as the two curves coincide for this case.

6.2. The inverse upstream mode case. For the choice of k = 9 and M =
0.4, the last of the four propagative downstream modes (i.e., n = 3) has a negative
phase velocity and is therefore called an inverse upstream mode. The solution in the
downstream layer is then exponentially decreasing or increasing with the distance,
depending on the applied PML model. Results for this case are shown in Figures 14
and 15, where the relative error in the H1(Ωb) norm and the opposite of its logarithm,
respectively, are shown.

As one can observe in the zoom in Figure 14, the curves of the relative error have
again a minimum plateau for both PML models. This time, the size of the plateau is
smaller for the classical PML and the error for this model has a rather erratic behavior
for small values of |α|. The convergence of the method is nonetheless achieved for
both models, with the predicted exponential rate (see Figure 15). However, the new
PML model seems better suited to practical computations, as one can choose an
appropriate and optimal value of α for convergence more conveniently.
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Fig. 12. Real part of the pressure field; k = 10 and M = 0.3, α = .02(1 − i), and λ = − kM
1−M2 .
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Fig. 13. − ln(
‖p−pref‖H1(Ωb)

‖pref‖H1(Ωb)
) as a function of 1

|α| , k = 10, and M = 0.3. The solid and dotted

lines, respectively, refer to results for the new and classical PML models.

To conclude, Figures 16 and 17, respectively, show the solutions for the new and
classical models, the value of |α| for this case corresponding to the minimum of the
curves in Figure 14. Note that whatever the behavior of the solution in the layers,
the solution in the “physical” domain remains almost the same.

6.3. Some practical remarks on the use of PMLs for time-harmonic
problems. We would like to point out that the numerical analysis which has been
carried out in this section was based on the knowledge of a reference solution. In
practice, it would be useful to have a posteriori criteria which indicate whether the
numerical solution is satisfactory or not. In transient applications, the quality of the
PML model is ensured as soon as the reflections produced at the interface between
the physical and the absorbing layer can be neglected. In particular, if the excita-
tion is a pulse localized in time, the exact solution should vanish after a large time,
which gives a criterion for evaluating the efficiency of the absorbing layer. The situa-
tion is completely different in time-harmonic applications. For instance, we have the
following:

• The notion of reflection is more difficult to exploit: as illustrated in the
previous numerical results, it is not clear how to distinguish a “reflected”
wave from an “incident” wave.

• The experiment of a pulse localized in time has no counterpart in time-
harmonic applications.

• A good choice of the absorbing layer parameters allows one to select the
outgoing solution of the problem. A bad choice (Im(α) > 0) would select
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Fig. 14. Left: relative error
‖p−pref‖H1(Ωb)

‖pref‖H1(Ωb)
as a function of |α|, k = 9, and M = 0.4; right:

zoom on the zone of interest. The solid line is the result for the new PML model, while the dotted
line refers to the classical PML model.
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Fig. 15. − ln(
‖p−pref‖H1(Ωb)

‖pref‖H1(Ωb)
) as a function of 1

|α| , k = 9, and M = 0.4. The solid and dotted

lines, respectively, refer to results for the new and classical PML models.

the ingoing solution, which is difficult to detect when one does not know the
exact solution.

• However, one can note that when |α| is too small, spurious numerical errors
are observed. They can be removed by refining the mesh in the layer.

7. Conclusion. In this paper, we have studied PMLs for the convected Helm-
holtz equation. In the presence of inverse upstream modes, the solution can have
arbitrarily large values in the classical PMLs, thus causing the instabilities observed
in time domain applications. We have investigated a new PML model which always
leads to an exponentially decreasing solution in the layer, even in the presence of
inverse upstream modes. The error analysis surprisingly showed the convergence for
both the classical and new models. Nevertheless, numerical results seem to indicate
that the error is best controlled with the new model when inverse upstream modes are
present. In order to understand the different numerical behaviors of the two models,
there remains to analyze the convergence of the solution of the discretized PML models
with respect to both the finite element mesh size and the layer parameters α and L.

This is a preliminary step in dealing with more complex time-harmonic problems.
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Fig. 16. Real part of the pressure field; k = 9 and M = 0.4, α = .14(1 − i), and λ = − kM
1−M2 .

Fig. 17. Real part of the pressure field; k = 9 and M = 0.4, α = .14(1 − i), and λ = 0.

In particular, it would be interesting to extend the present method to nonuniform
flows. This gives rise to several difficulties. First, even for a parallel flow, the problem
can no longer be reduced to a simple scalar equation and has to be modeled with
a vectorial model, for instance linearized Euler equations or Galbrun’s equation [7].
Furthermore, a modal analysis cannot be done so easily, since the orthogonality of
the modes is lost and their completeness is an open question. Finally, for some flows,
there exist physical outgoing unstable modes which have to be adequately treated by
the absorbing model.
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Abstract. We introduce and analyze a discontinuous Galerkin discretization of the Maxwell
operator in mixed form. Here, all the unknowns of the underlying system of partial differential
equations are approximated by discontinuous finite element spaces of the same order. For piecewise
constant coefficients, the method is shown to be stable and optimally convergent with respect to the
mesh size. Numerical experiments highlighting the performance of the proposed method for problems
with both smooth and singular analytical solutions are presented.
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1. Introduction. The origins of discontinuous Galerkin (DG) methods can be
traced back to the 1970s, where they were proposed for the numerical solution of
the neutron transport equation, as well as for the weak enforcement of continuity in
Galerkin methods for elliptic and parabolic problems; see [11] for a historical review.
In the meantime, these methods have undergone quite a remarkable development and
are used in a wide range of applications; see the recent survey articles [10, 12, 13]
and the references cited therein. The main advantages of DG methods lie in their
robustness, conservation properties, and great flexibility in the mesh design. Indeed,
being based on completely discontinuous finite element spaces, these methods can
easily handle elements of various types and shapes, nonmatching grids, and local
spaces of different polynomial orders; thus, they are ideal for hp-adaptivity.

In recent years, DG methods have begun to find their way into computational
electromagnetics. Here, we mention the work in [17], where the full Maxwell system
is discretized using unstructured spectral elements in space together with a suitable
low-storage Runge–Kutta time stepping scheme; similar spectral DG methods were
proposed in [22]. The study of DG methods applied to the time-harmonic Maxwell
equations in electric field-based formulation was initiated in [24]; here, a local dis-
continuous Galerkin (LDG) method was proposed for the low-frequency problem,
covering the cases of heterogeneous media and topologically nontrivial domains. The
numerical experiments in [19] have confirmed the hp-convergence rates proved in [24]
for smooth solutions and indicate that DG methods can be effective in a wide range
of low-frequency applications where the bilinear forms are coercive.

On the other hand, one of the main difficulties in the numerical solution of
Maxwell’s equations consists of dealing with divergence-free constraints that need
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to be imposed on the fields, especially in cases where the analytical solutions exhibit
strong singularities. Several approaches have been proposed in the literature: we
mention here the (weighted) regularization methods studied in [1, 14], the singular
field approach of [6], and the Lagrange multiplier techniques used in [9, 15, 26], for
example. The methods studied in [24, 19] are DG versions of the regularization ap-
proach of [1] and, for singular solutions, were shown to suffer from similar drawbacks
as their conforming counterparts. A mixed discontinuous Galerkin approach was
recently adopted in [25], where a stabilized interior penalty discretization was pro-
posed for the high-frequency time-harmonic Maxwell equations. For smooth material
coefficients, optimal convergence of the method was proved by employing a duality
approach, provided that appropriate stabilization terms were included in the method.

In this paper, we introduce and analyze a new mixed DG formulation for the
Maxwell operator (consisting of the curl-curl operator subject to a divergence-free
constraint). Although this formulation is based on the same mixed approach as the
one proposed in [25], here the amount of numerical stabilization is drastically reduced.
In particular, we abandon all the volume stabilization terms from [25] and achieve well-
posedness of the formulation through a suitable definition of the numerical fluxes. We
present a numerical analysis of this method for piecewise constant material coefficients
and obtain a priori error bounds in the associated energy norm that are optimal in
the mesh size if both the field and the Lagrange multiplier related to the divergence
constraint are approximated with piecewise polynomials of the same degree. Here,
we consider both the case where the underlying analytical solution is smooth and
where only minimal regularity assumptions are assumed. The method proposed in
this paper is tested on a set of numerical examples that confirm the convergence
rates predicted in the theoretical analysis for both smooth and singular solutions on
regular and irregular meshes. The method is also tested within an adaptive procedure
on affine quadrilateral meshes where hanging nodes are introduced during the course
of the refinement. The numerical results indicate that singularities present in the
analytical solution are correctly captured by the proposed scheme.

The stability analysis of the mixed DG formulation is carried out along the fol-
lowing lines. First, we rewrite the mixed system in an augmented form by introducing
auxiliary variables, giving rise to a standard mixed saddle point problem with non-
consistent forms. Then we establish coercivity of the curl-curl operator on a suitable
kernel. Finally, we prove the inf-sup stability condition for the form related to the
divergence constraint. The proof of this result makes use of ideas developed in [8] for
the analysis of stabilized mixed methods and relies on a decomposition of the discon-
tinuous Galerkin finite element space for the Lagrange multiplier into the direct sum
of its largest conforming (stable) subspace and a corresponding complement. The con-
trol over functions in the complement is then ensured by a crucial norm equivalence
property that we establish by using an approximation result from [21, section 2.1].

The outline of the paper is as follows. In section 2 we introduce our mixed
DG method for the Maxwell operator. Our main theoretical results are the a priori
error bounds presented in section 3. Their proofs are carried out in the following
sections, where we introduce an auxiliary mixed formulation (section 4), establish the
continuity and stability properties of the forms involved (section 5), and, finally, derive
the actual error estimates (section 6). The numerical performance of the method is
tested in section 7. Concluding remarks are presented in section 8.

2. Model problem and discretization. In this section, we introduce a mixed
DG discretization of the curl-curl operator subject to a divergence-free constraint.
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2.1. Notation. We start by introducing the notation and function spaces that
will be used throughout this paper. Given a bounded domain D in R

2 or R
3, we

denote byHs(D) the standard Sobolev space of functions with the integer or fractional
regularity exponent s ≥ 0 and by ‖ · ‖s,D its norm. We also write ‖ · ‖s,D to denote
the norms in the spaces Hs(D)d, d = 2, 3. We set L2(D) = H0(D). Furthermore,
L∞(D) is the space of bounded functions on D. Given D ⊂ R

3 and a positive weight
function w ∈ L∞(D), H(curlw;D) and H(divw;D) are the spaces of vector fields
u ∈ L2(D)3 with ∇ × (wu) ∈ L2(D)3 and ∇ · (wu) ∈ L2(D), respectively, endowed
with their corresponding graph norms. H(curl0w;D) andH(div0

w;D) are the subspaces
of H(curlw;D) and H(divw;D), respectively, of functions with zero (weighted) curl
and divergence, respectively. For w ≡ 1, we omit the subscript and write H(curl;D)
and H(div;D), respectively. We denote by H1

0 (D), H0(curl;D), and H0(div;D) the
subspaces of H1(D), H(curl;D), and H(div;D), respectively, of functions with zero
trace, tangential trace, and normal trace, respectively.

2.2. Model problem. Let Ω be a bounded Lipschitz polyhedron in R
3, with n

denoting the outward normal unit vector to its boundary Γ = ∂Ω. We assume that
the domain Ω is simply connected and that Γ is connected. We consider the following
mixed model problem: find the vector field u and the scalar field p such that

∇× (µ−1∇× u) − ε∇p = j in Ω,

∇ · (εu) = 0 in Ω,(2.1)

n× u = g on Γ,

p = 0 on Γ.

Here, the right-hand side j ∈ L2(Ω)3 is an external source field, and the Dirichlet
datum g is a prescribed tangential trace which we assume belongs to L2(Γ)3. The
coefficients µ = µ(x) and ε = ε(x) are real functions in L∞(Ω) that satisfy

0 < µ∗ ≤ µ(x) ≤ µ∗ < ∞, 0 < ε∗ ≤ ε(x) ≤ ε∗ < ∞, a.e. x ∈ Ω.(2.2)

For simplicity, we assume that µ and ε are piecewise constant with respect to a
partition of the domain Ω into Lipschitz polyhedra.

Remark 2.1. Problem (2.1) describes the principal operator of the time-harmonic
Maxwell equations in a heterogeneous insulating medium (i.e., with electric conduc-
tivity σ = 0). The coefficients µ and ε are the magnetic permeability and the electric
permittivity of the medium, respectively. The divergence constraint is incorporated by
means of the Lagrange multiplier p; see, e.g., [15, 25, 26] and the references cited
therein. Problem (2.1) is also a formulation of the magnetostatic problem in terms of
the vector potential u and with Coulomb’s gauge ∇ · u = 0 (ε ≡ 1 in this case).

Remark 2.2. In the discontinuous Galerkin context, the Dirichlet boundary
condition n×u = g on Γ is enforced weakly by so-called interior penalty stabilization
terms. In order to make these terms well defined for each boundary face of a grid
on Ω, we use the regularity assumption g ∈ L2(Γ)3, which is slightly stronger than the
natural assumption for g. For less regular boundary data, the interior penalty terms
need to be defined as suitable duality pairings over the whole boundary Γ.

Setting V = {v ∈ H(curl; Ω) : (n × v)|Γ ∈ L2(Γ)3} and Q = H1
0 (Ω), the varia-

tional form of (2.1) is as follows: find u ∈ V , with n × u = g on Γ, and p ∈ Q such
that
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a(u,v) + b(v, p) =

∫
Ω

j · v dx,(2.3)

b(u, q) = 0(2.4)

for all (v, q) ∈ H0(curl; Ω) ×Q, where the forms a and b are given, respectively, by

a(u,v) =

∫
Ω

µ−1∇× u · ∇ × v dx, b(v, p) = −
∫

Ω

εv · ∇p dx.

Well-posedness of the formulation (2.3)–(2.4) follows from the standard theory of
mixed problems [7], since a is bilinear, continuous, and coercive on the kernel of b,
and b is linear and continuous, and satisfies the inf-sup condition; see, e.g., [26] for
details.

2.3. Meshes, finite element spaces, and traces. Throughout, we consider
shape regular and affine meshes Th that partition the domain Ω into tetrahedra and/or
parallelepipeds, with possible hanging nodes; we always assume that the meshes are
aligned with any discontinuities in the coefficients µ and ε. We denote by hK the
diameter of the element K ∈ Th and set h = maxK hK . An interior face of Th is
defined as the (nonempty) two-dimensional interior of ∂K+ ∩ ∂K−, where K+ and
K− are two adjacent elements of Th, not necessarily matching. A boundary face of
Th is defined as the (nonempty) two-dimensional interior of ∂K ∩ Γ, where K is a
boundary element of Th. We denote by FI

h the union of all interior faces of Th, FD
h

the union of all boundary faces of Th, and set Fh = FI
h ∪ FD

h .
Given a nonnegative integer � and an element K ∈ Th, we define S�(K) as the

space P�(K) of polynomials of degree at most � in K, if K is a tetrahedron, or the
space Q�(K) of polynomials of degree at most � in each variable in K, if K is a
parallelepiped. Similarly, for a face f ⊂ Fh, we write S�(f) for the space P�(f)
of polynomials of degree at most � in f , if f is a triangle, and the space Q�(f) of
polynomials of degree at most � in each variable in f , if f is a parallelogram. Then
the generic finite element space of discontinuous piecewise polynomials is given by

S�(Th) = {u ∈ L2(Ω) : u|K ∈ S�(K) ∀K ∈ Th}.

For piecewise smooth vector- and scalar-valued functions v and q, respectively, we
introduce the following trace operators. Let f ⊂ FI

h be an interior face shared by two
neighboring elements K+ and K−; we write n± to denote the outward normal unit
vectors to the boundaries ∂K±, respectively. Denoting by v± and q± the traces of v
and q on ∂K± taken from within K±, respectively, we define the jumps across f by
[[v]]T = n+ × v+ + n− × v−, [[v]]N = v+ · n+ + v− · n−, and [[q]]N = q+n+ + q−n−

and the averages by {{v}} = (v+ + v−)/2 and {{q}} = (q+ + q−)/2. On a boundary
face f ⊂ FD

h , we set [[v]]T = n× v, [[q]]N = qn, {{v}} = v, and {{q}} = q.

2.4. DG discretization. We wish to approximate problem (2.1) by discrete
functions uh and ph in the finite element spaces V h = S�(Th)3 and Qh = S�(Th),
respectively, for a given partition Th of Ω and an approximation order � ≥ 1.

To this end, we consider the following DG method: find (uh, ph) ∈ V h×Qh such
that

ah(uh,v) + bh(v, ph) = fh(v),(2.5)

bh(uh, q) − ch(ph, q) = 0(2.6)
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for all (v, q) ∈ V h × Qh, where the discrete forms ah, bh, and ch and the linear
functional fh are given, respectively, by

ah(u,v) =

∫
Ω

µ−1∇h × u · ∇h × v dx−
∫
Fh

[[u]]T · {{µ−1∇h × v}} ds

−
∫
Fh

[[v]]T · {{µ−1∇h × u}} ds+

∫
Fh

a [[u]]T · [[v]]T ds+

∫
FI

h

b [[εu]]N [[εv]]N ds,

bh(v, p) = −
∫

Ω

εv · ∇hp dx+

∫
Fh

{{εv}} · [[p]]N ds, ch(p, q) =

∫
Fh

c[[p]]N · [[q]]N ds,

fh(v) =

∫
Ω

j · v dx−
∫
FD

h

g · µ−1∇h × v ds+

∫
FD

h

a g · (n× v) ds.

Here, ∇h denotes the elementwise ∇ operator. The form ah corresponds to the interior
penalty discretization of the curl-curl operator [19, 25], with the addition of a normal
jump term; the form bh discretizes the divergence operator in a DG fashion; and the
form ch is a stabilization form that penalizes the jumps of ph. The parameters a, b,
and c are positive stabilization parameters that will be chosen later on, depending
on the mesh size and the coefficients µ and ε. Note that a similar discretization
has been investigated in [25] for a time-harmonic high-frequency model of Maxwell’s
equations; we point out that the additional stabilization forms that have been added
there become obsolete with the analysis presented in this paper.

As in [24, Remark 3.2] or [25, Proposition 4], it can be readily seen that the
analytical solution (u, p) ∈ V ×Q satisfies (2.5)–(2.6) for all (v, q) ∈ V h ×Qh.

Remark 2.3. All the interface contributions arising in the forms in (2.5)–(2.6)
can easily be obtained by rewriting the problem (2.1) as a first-order system and intro-
ducing so-called numerical fluxes in the sense of [5]. Thus, all the stabilization terms
in (2.5)–(2.6) are local, consistent, and conservative. To see this, we rewrite (2.1) as

s− µ−1∇× u = 0, ∇× s− ε∇p = j, ∇ · (εu) = 0 in Ω,

subject to the boundary conditions n× u = g and p = 0 on Γ. Then we consider the
following discretization: find (sh,uh, ph) ∈ V h × V h ×Qh such that∫

K

sh · t dx−
∫
K

µ−1∇× t · uh dx+

∫
∂K

µ−1t · ûh × n ds = 0,∫
K

sh · ∇ × v dx−
∫
∂K

v · ŝh × n ds+

∫
K

ph∇ · (εv) dx(2.7)

−
∫
∂K

p̂h εv · n ds =

∫
K

j · v dx,∫
K

εuh · ∇q dx−
∫
∂K

q ε̂uh · n ds = 0

for all (t,v, q) ∈ V h×V h×Qh and for all elements K in the partition Th. In (2.7),
the traces of uh, sh, ph, and εuh on ∂K are approximated by the numerical fluxes

ûh = {{uh}}, ŝh = {{µ−1∇h × uh}} − a[[uh]]T ,

p̂h = {{ph}} − b[[εuh]]N , ε̂uh = {{εuh}} − c[[ph]]N ,

respectively (these definitions are for interior faces; they must be suitably adapted for
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boundary faces). By integration by parts, the first equation of (2.7) reads as∫
K

sh · t dx =

∫
K

µ−1∇× uh · t dx+

∫
∂K

µ−1t · (uh − ûh) × n ds.(2.8)

As the numerical flux ûh is independent of sh, the auxiliary variable sh can be locally
expressed in terms of uh by inverting the local mass matrix

∫
K
sh · t dx in (2.8).

By substituting the resulting expression for sh into the second equation of (2.7), one
obtains an elemental formulation for the unknowns uh and ph only. Finally, summing
over all elements K ∈ Th gives the formulation (2.5)–(2.6). We refer the reader to
[5] and [24] for further details on the formalization of this elimination process.

3. Main results. In this section, we state our main results for the mixed DG
method in (2.5)–(2.6); the proofs of these a priori error bounds will be given in sections
4, 5, and 6.

3.1. Stabilization parameters and DG-norms. We start by defining the
stabilization parameters a, b, and c appearing in (2.5)–(2.6) and introduce the norms
employed in the proceeding error analysis. To this end, we first define the function h

in L∞(Fh), representing the local mesh size, as h(x) = min{hK , hK′}, if x is in the
interior of ∂K∩∂K ′ for two neighboring elements in the mesh Th, and h(x) = hK if x
is in the interior of ∂K ∩ Γ. Similarly, we define the functions m and e in L∞(Fh) by
m(x) = min{µK , µK′} and e(x) = max{εK , εK′}, if x is in the interior of ∂K ∩ ∂K ′,
and m(x) = µK and e(x) = εK , if x is in the interior of ∂K ∩ Γ, with µK and εK
denoting the restrictions of µ and ε to the elementK, respectively. With this notation,
we choose the stabilization parameters as follows:

a = α m−1h−1, b = β e−1h, c = γ eh−1,(3.1)

where α, β, and γ are positive parameters, independent of the mesh size and the
coefficients µ and ε.

Further, we set V (h) = (V ∩H(divε; Ω)) + V h and Q(h) = Q+Qh and define

|v|2V (h) = ‖µ− 1
2∇h × v‖2

0,Ω + ‖m− 1
2 h−

1
2 [[v]]T ‖2

0,Fh
+ ‖e− 1

2 h
1
2 [[εv]]N‖2

0,FI
h
,

‖v‖2
V (h) = ‖ε 1

2v‖2
0,Ω + |v|2V (h),

‖q‖2
Q(h) = ‖ε 1

2∇hq‖2
0,Ω + ‖e 1

2 h−
1
2 [[q]]N‖2

0,Fh
.

We also introduce the space Hs(Th) = {v ∈ L2(Ω) : v|K ∈ Hs(K), K ∈ Th}, endowed
with the norm ‖v‖2

s,Th
=
∑
K∈Th

‖v‖2
s,K . On the boundary, we define Hs(FD

h ) = {v ∈
L2(FD

h ) : v|f ∈ Hs(f), f ⊂ FD
h }, equipped with the norm ‖v‖2

s,FD
h

=
∑
f⊂FD

h
‖v‖2

s,f .

3.2. Existence and uniqueness. Next, we show that the discrete problem in
(2.5)–(2.6) is uniquely solvable, provided that α is sufficiently large. To this end, we
first recall the following well-known coercivity result, valid in view of the choice of a
and the assumptions on the meshes; see [5, 19, 25] for details.

Lemma 3.1. There exists a parameter αmin > 0, independent of the mesh size
and the coefficients µ and ε, such that for α ≥ αmin and β > 0 we have

ah(v,v) ≥ C|v|2V (h) ∀v ∈ V h,

with a constant C > 0 independent of the mesh size and the coefficients µ and ε.
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The condition α ≥ αmin > 0 is a restriction that is typically encountered with
symmetric interior penalty methods and may be omitted by using other DG discretiza-
tions of the curl-curl operator, such as the nonsymmetric interior penalty or the LDG
method; see, e.g., [5, 24] for details.

Proposition 3.2. For α ≥ αmin, β > 0, and γ > 0, the mixed DG method
(2.5)–(2.6) possesses a unique solution.

Proof. It is enough to show that j = 0 and g = 0 imply uh = 0 and ph = 0. To
this end, take v = uh in (2.5) and q = ph in (2.6); then subtract (2.6) from (2.5).
With the coercivity of ah in Lemma 3.1, it follows that ∇h×uh = 0, [[uh]]T = 0 on Fh,
[[εuh]]N = 0 on FI

h , and [[ph]]N = 0 on Fh; i.e., uh ∈ H(curl0; Ω) ∩H0(curl; Ω), uh ∈
H(divε; Ω), and ph ∈ H1

0 (Ω). Integrating by parts, (2.6) becomes
∫
Ω
q∇·(εuh) dx = 0,

for any q ∈ Qh, and then, since ε is piecewise constant, ∇ · (εuh) = 0. Therefore,
uh also belongs to H(div0

ε; Ω), which, owing to our assumptions on Ω, implies that
uh = 0; cf. [16, section 4]. Equation (2.5) becomes

∫
Ω
εv ·∇ph dx = 0, for any v ∈ Vh,

and then ∇ph = 0. Since ph = 0 on Γ, we conclude that ph = 0.
For the rest of this article, we shall assume that the hypotheses on the stabilization

parameters in the statement of Proposition 3.2 hold.

3.3. A priori error estimates. First, we establish optimal error estimates for
smooth solutions on possibly nonconforming meshes subject to the following restric-
tions: (i) any interior face f ⊂ FI

h has to be an entire elemental face of at least one
of the two adjacent elements sharing f ; (ii) the number of interior faces contained in
an elemental face is uniformly bounded with respect to the mesh size h. This implies
bounded variation of the local mesh size; i.e., whenever K and K ′ share a common
face and hK ≥ hK′ , we have hK ≤ ChK′ ≤ ChK , for a constant C > 0, independent
of the mesh size. The reason for this restriction is related to the validity of the norm
equivalence result of Theorem 5.3.

Theorem 3.3. Let (u, p) be the analytical solution of (2.1) satisfying u ∈
Hs+1(Th)3 and p ∈ Hs+1(Th) for a regularity exponent s > 1

2 . Let (uh, ph) be the
mixed DG approximation obtained by (2.5)–(2.6) on possibly nonconforming meshes
that satisfy restrictions (i) and (ii) above. Then we have the a priori error bound

‖u− uh‖V (h) + ‖p− ph‖Q(h) ≤ C hmin{s,�}
[
‖u‖s+1,Th

+ ‖p‖s+1,Th

]
,

with C > 0 depending on the bounds (2.2) on the coefficients µ and ε, the shape-
regularity and bounded variation properties of the mesh, the stabilization parameters
α, β, and γ, and the polynomial degree � but independent of the mesh size h.

While the bound in Theorem 3.3 guarantees optimal convergence in the mesh
size h with respect to the polynomial degree used in the approximation, the smooth-
ness assumptions on the analytical solution are not minimal. In fact, for ε = µ = 1
and a homogeneous Dirichlet datum g ≡ 0, from the regularity results in [3], it fol-
lows that one has only u ∈ Hs(Ω)3 and ∇ × u ∈ Hs(Ω)3 for a regularity exponent
s = s(Ω) > 1

2 (the same actually holds for smooth coefficients ε and µ; see [25,
section 2.2]). As far as the assumption p ∈ Hs+1(Ω) is concerned, although it does
not seem to hold for general source terms j in L2(Ω)3, it is trivially satisfied in the
physically most relevant case of divergence-free source terms j, where p ≡ 0.

For these reasons, we state a second result under weaker smoothness assumptions
for the component u of the analytical solution. In order to do this, we restrict ourselves
to the case of conforming meshes (i.e., meshes with no hanging nodes); this restriction
is necessary, since the proof requires the use of H(curl; Ω)-conforming projections.
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Note that, since the boundary datum g is the tangential trace on Γ of a function in
H(curl; Ω), its restriction to each f ⊂ FD

h is a two-dimensional vector field which lies
on the same plane as f . Hence, we can understand g as a function in L2(Γ)2.

Theorem 3.4. Let (u, p) be the analytical solution of (2.1) satisfying εu ∈
Hs(Th)3, µ−1∇× u ∈ Hs(Th)3, p ∈ Hs+1(Th), and g ∈ Hs+ 1

2 (FD
h )2 for a regularity

exponent s > 1
2 . Let (uh, ph) be the mixed DG approximation obtained by (2.5)–(2.6)

on conforming meshes. Then we have the a priori error bound

‖u− uh‖V (h) + ‖p− ph‖Q(h)

≤ C hmin{s,�}
[
‖εu‖s,Th

+ ‖µ−1∇× u‖s,Th
+ ‖p‖s+1,Th

+ ‖g‖s+ 1
2 ,FD

h

]
,

with C > 0 depending on the bounds (2.2) on the coefficients µ and ε, the shape-
regularity of the mesh, the stabilization parameters α, β, and γ, and the polynomial
degree � but independent of the mesh size h.

Remark 3.5. The numerical results reported in section 7 show that, on a two-
dimensional L-shaped domain, the above convergence rates are obtained also on non-
conforming affine meshes for the strongest corner singularities.

The mixed method in (2.5)–(2.6) enforces the divergence constraint in a weak
sense only; nevertheless, the convergence rate of the error in the (elementwise) di-
vergence might be of interest. Our last result addresses this issue and proves a rate
that is of one order lower than the error measured in the DG-norm. This result is
numerically observed to be sharp on conforming finite element meshes; cf. section 7.

Theorem 3.6. Let (u, p) be the analytical solution of (2.1) and (uh, ph) be the
mixed DG approximation obtained by (2.5)–(2.6) on a possibly nonconforming mesh
satisfying restrictions (i) and (ii) above. Then we have

∑
K∈Th

h2
K‖∇ · (ε(u− uh))‖2

0,K ≤ C
[
‖h 1

2 [[εu− εuh]]N‖2
FI

h
+ ‖e 1

2 h−
1
2 [[q − qh]]N‖2

0,Fh

]
,

with C > 0 depending on the shape-regularity and bounded variation properties of the
mesh, the stabilization parameter γ, and the polynomial degree � but independent of
the mesh size h.

Remark 3.7. Under the assumptions of both Theorem 3.3 and Theorem 3.4, the
estimate in Theorem 3.6 implies that [

∑
K∈Th

h2
K‖∇·(ε(u−uh))‖2

0,K ]
1
2 ≤ C hmin{s,�},

with C > 0 independent of the mesh size.

The proofs of Theorems 3.3, 3.4, and 3.6 are carried out in the next sections and
concluded in sections 6.2 and 6.3.

4. Auxiliary mixed formulation. In order to facilitate the error analysis, we
rewrite the discrete formulation (2.5)–(2.6) in a different (and perturbed) form by
introducing the jumps of ph as auxiliary unknowns and by employing lifting operators
as in [5, 24]. In this way, the resulting bilinear forms have suitable continuity and
coercivity properties so that the method can be analyzed using the classical theory of
mixed finite methods. We begin by introducing the lifting operators L and M. For
v belonging to V (h) and q ∈ Q(h), we define L(v) ∈ V h and M(q) ∈ Qh by∫

Ω

L(v) ·w dx =

∫
Fh

[[v]]T · {{w}} ds,
∫

Ω

M(q) ·w dx =

∫
Fh

{{w}} · [[q]]N ds
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for all w ∈ V h. We then define the perturbed forms

ãh(u,v) =

∫
Ω

µ−1∇h × u · ∇h × v dx−
∫

Ω

L(u) · (µ−1∇h × v) dx

−
∫

Ω

L(v) · (µ−1∇h × u) dx+

∫
Fh

a [[u]]T · [[v]]T ds+

∫
FI

h

b [[εu]]N [[εv]]N ds,

b̃h(v, p) = −
∫

Ω

εv ·
[
∇hp−M(p)

]
dx.

Note that ah = ãh in V h × V h and bh = b̃h in V h × Qh, although this is no longer
true in V (h) × V (h) and V (h) ×Q(h), respectively.

Next, we define the discrete space

Mh = {λ ∈ L2(Fh)3 : λ|f ∈ S�(f)3 ∀f ⊂ Fh},

endowed with the norm ‖η‖Mh
= ‖e 1

2 h−
1
2 η‖0,Fh

, and consider the following auxiliary
mixed formulation: find (uh, λh, ph) ∈ V h ×Mh ×Qh such that

Ah(uh, λh;v, η)+Bh(v, η; ph) = fh(v) ∀(v, η) ∈ V h ×Mh,(4.1)

Bh(uh, λh; q) = 0 ∀q ∈ Qh,(4.2)

with forms Ah and Bh given, respectively, by

Ah(u, λ;v, η) = ãh(u,v) +

∫
Fh

cλ · η ds, Bh(v, η; p) = b̃h(v, p) −
∫
Fh

c[[p]]N · η ds.

Proposition 4.1. Problem (4.1)–(4.2) admits a unique solution (uh, λh, ph) ∈
V h ×Mh ×Qh, with (uh, ph) the solution to (2.5)–(2.6), and λh = [[ph]]N .

Proof. By choosing test functions (0, η) in (4.1), we have∫
Fh

cλh · η ds =

∫
Fh

c[[ph]]N · η ds ∀η ∈Mh.

Since c is constant on each f ∈ Fh, we have that λh = [[ph]]N . Then (4.1) and
(4.2) coincide with (2.5) and (2.6), respectively. Therefore, if (uh, λh, ph) ∈ V h ×
Mh × Qh is a solution to (4.1)–(4.2), then λh = [[ph]]N and (uh, ph) is (the unique)
solution to (2.5)–(2.6), which proves uniqueness of the solution. Existence follows
from uniqueness.

Finally, we introduce the space W (h) = V (h) ×Mh and set

|(v, η)|2W (h) = |v|2V (h) + ‖η‖2
Mh
, ‖(v, η)‖2

W (h) = ‖v‖2
V (h) + ‖η‖2

Mh
.

The proofs of Theorems 3.3, 3.4, and 3.6 are now carried out by analyzing the
auxiliary mixed formulation (4.1)–(4.2). In section 5 we prove the continuity of Ah
and Bh, the ellipticity of Ah on the kernel of Bh, as well as the inf-sup condition for
Bh. In the proof of the inf-sup condition, we employ a norm equivalence property.
Then the error estimates of Theorems 3.3, 3.4, and 3.6 are obtained in section 6.

5. Continuity and stability. In this section, we prove continuity properties of
the forms Ah and Bh, the ellipticity of Ah on the kernel of Bh, as well as the inf-sup
condition for Bh.
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5.1. Continuity properties. The following continuity properties hold.
Proposition 5.1. There exist constants a1 > 0 and a2 > 0, independent of the

mesh size and the coefficients µ and ε, such that

|Ah(u, λ;v, η)| ≤ a1 ‖(u, λ)‖W (h)‖(v, η)‖W (h), (u, λ), (v, η) ∈W (h),

|Bh(v, η; q)| ≤ a2 ‖(v, η)‖W (h)‖q‖Q(h), (v, η) ∈W (h), q ∈ Q(h).

The linear functional fh : V h → R on the right-hand side of (4.1) satisfies

|fh(v)| ≤ C
[
ε
− 1

2∗ ‖j‖0,Ω + ‖m− 1
2 h−

1
2 g‖0,Γ

]
‖v‖V (h), v ∈ V h,

with a constant C > 0, independent of the mesh size and the coefficients µ and ε.
Proof. Proceeding as in [24, Proposition 4.2] or [25, Proposition 12], we have the

following stability estimates for L and M:

‖µ− 1
2L(v)‖0,Ω ≤ C‖m− 1

2 h−
1
2 [[v]]T ‖0,Fh

, ‖ε 1
2M(q)‖0,Ω ≤ C‖e 1

2 h−
1
2 [[q]]N‖0,Fh

,

for any v ∈ V (h), q ∈ Q(h), with a constant C > 0 that is independent of the mesh
size and the coefficients µ and ε. With these stability estimates, the continuity of Ah
and Bh follows from the Cauchy–Schwarz inequality and the choice of the stabilization
parameters in (3.1). The continuity of fh is obtained by using similar arguments; see
[24, Corollary 4.15] for details.

5.2. Ellipticity on the kernel. Define the discrete kernel

Ker(Bh) = {(u, λ) ∈W h : Bh(u, λ; p) = 0 ∀p ∈ Qh}.

Proposition 5.2. For α ≥ αmin, β > 0, γ > 0, there is a constant b > 0,
independent of the mesh size, such that

Ah(u, λ;u, λ) ≥ b ‖(u, λ)‖2
W (h) ∀(u, λ) ∈ Ker(Bh).

Proof. Throughout the proof, we denote by C any constant independent of the
mesh size and the coefficients µ and ε and by Cm any constant that depends on the
bounds (2.2) on the coefficients µ and ε but is independent of the mesh size.

From Lemma 3.1, we immediately have

Ah(u, λ;u, λ) ≥ C |(u, λ)|2W (h), (u, λ) ∈W h.(5.1)

Now fix (u, λ) ∈ Ker(Bh), and let (z, ψ) be the solution of the auxiliary problem

∇× (µ−1∇× z) − ε∇ψ = εu, ∇ · (εz) = 0 in Ω,

subject to the boundary conditions n× z = 0 and ψ = 0 on Γ. Thereby,

‖µ− 1
2∇× z‖0,Ω + ‖ε 1

2 z‖0,Ω + ‖∇ × (µ−1∇× z)‖0,Ω

+ ‖ε 1
2∇ψ‖0,Ω + ‖ε 1

2ψ‖0,Ω ≤ Cm‖ε 1
2u‖0,Ω.

(5.2)

Set w = µ−1∇×z; clearly, w ∈ H(curl; Ω). Therefore, from [16, Corollary 7.2], there
exists w0 ∈ H1(Ω)3 such that

∇×w0 = ∇×w, ‖w0‖1,Ω ≤ C‖w‖H(curl;Ω) ≤ Cm‖ε 1
2u‖0,Ω.(5.3)
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Multiplying the first equation of the auxiliary problem by u and integrating by
parts over each element, we get

‖ε 1
2u‖2

0,Ω =

∫
Ω

w0 · ∇h × u dx−
∫
Fh

w0 · [[u]]T ds+

∫
Ω

ψ∇h · (εu) dx

−
∫
FI

h

{{ψ}}[[εu]]N ds.

Since (u, λ) ∈ Ker(Bh), we have Bh(u, λ;ψh) = 0 for any ψh ∈ Qh and obtain, from
integration by parts and the fact that [[ψ]]N = 0 on Fh,

‖ε 1
2u‖2

0,Ω =

∫
Ω

w0 · ∇h × u dx−
∫
Fh

w0 · [[u]]T ds+

∫
Ω

(ψ − ψh)∇h · (εu) dx

−
∫
FI

h

{{ψ − ψh}}[[εu]]N ds−
∫
Fh

eh−1λ · [[ψ − ψh]]N ds.

Using (2.2) and (5.3), we have∣∣∣∣∫
Ω

w0 · ∇h × u dx
∣∣∣∣ ≤ Cm‖w0‖1,Ω‖µ− 1

2∇h × u‖0,Ω ≤ Cm‖ε 1
2u‖0,Ω|u|V (h).

Furthermore, using trace inequalities, (2.2) and (5.3), we obtain

∣∣∣∣∫Fh

w0 · [[u]]T ds

∣∣∣∣ ≤ C

( ∑
K∈Th

hKµK‖w0‖2
0,∂K

) 1
2

‖m− 1
2 h−

1
2 [[u]]T ‖0,Fh

≤ Cm‖w0‖1,Ω‖m−
1
2 h−

1
2 [[u]]T ‖0,Fh

≤ Cm‖ε 1
2u‖0,Ω|u|V (h).

For the other terms, we choose ψh as the L2-projection of ψ on Qh. Since ε is
piecewise constant, we have

∫
Ω

(ψ − ψh)∇h · (εu) dx = 0. Then, using the Cauchy–
Schwarz inequality, the definition of e, and standard approximation properties of the
L2-projection, we obtain∣∣∣∣∣

∫
FI

h

{{ψ − ψh}}[[εu]]N ds

∣∣∣∣∣ ≤ C

( ∑
K∈Th

εKh
−1
K ‖ψ − ψh‖2

0,∂K

) 1
2

|u|V (h)

≤ C

( ∑
K∈Th

εK‖∇ψ‖2
0,K + εK‖ψ‖2

0,K

) 1
2

|u|V (h) ≤ Cm‖ε 1
2u‖0,Ω|u|V (h).

Similarly,

∣∣∣∣∫Fh

eh−1λ · [[ψ − ψh]]N ds

∣∣∣∣ ≤ C

( ∑
K∈Th

εKh
−1
K ‖ψ − ψh‖2

0,∂K

) 1
2 (∫

Fh

eh−1λ2 ds

) 1
2

≤ Cm‖ε 1
2u‖0,Ω‖λ‖Mh

.

The above computations show that ‖ε 1
2u‖0,Ω ≤ Cm |(u, λ)|W (h). Combining this with

(5.1) and the definition of ‖(u, λ)‖W (h) completes the proof.
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5.3. Inf-sup condition. In this section, we prove the inf-sup condition for the
form Bh. Our proof is inspired by recent ideas from [8] used in the analysis of stabilized
mixed methods. We will make use of the following crucial norm equivalence result.
To this end, let Qch be the subspace Qh ∩H1

0 (Ω) of Qh, and let Q⊥
h be the orthogonal

complement in Qh of Qch, with respect to the norm ‖·‖Q(h). We observe that ‖q‖Q⊥
h

=

‖e 1
2 h−

1
2 [[q]]N‖0,Fh

is a norm on Q⊥
h . Indeed, if q ∈ Q⊥

h and ‖q‖Q⊥
h

= 0, then q ∈
Q⊥
h ∩Qch = {0}. The norms ‖ · ‖Q⊥

h
and ‖ · ‖Q(h) are equivalent in Q⊥

h .

Theorem 5.3. There are positive constants C1 and C2, independent of the mesh
size and the coefficients µ and ε, such that C1 ‖q‖Q(h) ≤ ‖q‖Q⊥

h
≤ C2 ‖q‖Q(h) for any

q ∈ Q⊥
h .

Proof. Step 1. The following approximation result holds: for any q ∈ Qh,

inf
qc∈Qc

h

‖ε 1
2∇h(q − qc)‖0,Ω ≤ C‖e 1

2 h−
1
2 [[q]]N‖0,Fh

,(5.4)

with a constant C > 0 independent of the mesh size and the coefficients µ and ε. This
result has been proved in [21, Theorems 2.2 and 2.3] for simplicial meshes. The proof
there can be easily generalized to the meshes considered in this paper and readily
gives the independence of the constant on the coefficients µ and ε; we refer the reader
to [18, Appendix A] for these technical details.

Step 2. The inequality on the right-hand side of the norm equivalence is trivially
satisfied with C2 = 1. To show the bound on the left-hand side, let Ph : Qh → Q⊥

h

denote the Q(h)-orthogonal projection. For q ∈ Qh, we then have ‖Phq‖Q(h) =
infq∈Qc

h
‖q−q‖Q(h) ≤ C‖Phq‖Q⊥

h
. Here, we have used properties of orthogonal projec-

tions, the approximation result (5.4), the fact that [[q]]N = [[Phq]]N , and the definition
of ‖ · ‖Q⊥

h
. Since Ph is surjective, the equivalence follows.

Our main result of this section is the following inf-sup condition.
Proposition 5.4. We have

inf
0 �=q∈Qh

sup
0 �=(v,ν)∈W h

Bh(v, ν; q)

‖q‖Q(h)‖(v, ν)‖W (h)
≥ κ > 0,

for a constant κ, independent of the mesh size and the coefficients µ and ε.
Proof. Fix 0 = q ∈ Qh arbitrary and consider its Q(h)-orthogonal decomposition

as q = q0 ⊕ q1, with q0 ∈ Qch and q1 ∈ Q⊥
h . By choosing v0 = −∇q0 ∈ V h ∩

H(curl0; Ω) ∩H0(curl; Ω), we have

Bh(v0, 0; q0) = ‖ε 1
2∇q0‖2

0,Ω = ‖q0‖2
Q(h).(5.5)

Furthermore, by the definition of e,

‖(v0, 0)‖2
W (h) = ‖e− 1

2 h
1
2 [[εv0]]N‖2

0,FI
h

+ ‖ε 1
2v0‖2

0,Ω

≤ C
∑
K∈Th

εKhK‖∇q0‖2
0,∂K + ‖ε 1

2∇q0‖2
0,Ω ≤ C‖ε 1

2∇q0‖2
0,Ω = C‖q0‖2

Q(h).
(5.6)

Here, we have used the discrete trace inequality ‖∇ϕ‖0,∂K ≤ Ch
− 1

2

K ‖∇ϕ‖0,K , valid
for polynomials ϕ ∈ S�(K), with a constant C > 0 that is independent of the local
mesh size hK . Next, setting ν1 = −[[q1]]N gives

Bh(0, ν1; q1) = γ

∫
Fh

eh−1[[q1]]
2
N ds ≥ γC2

1‖q1‖2
Q(h), ‖(0, ν1)‖W (h) ≤ C2‖q1‖Q(h),

(5.7)
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where C1 and C2 are the constants in the norm equivalence of Theorem 5.3.
Then we set (v, ν) = (v0, 0)+δ(0, ν1), with a parameter δ > 0 still at our disposal.

Since Bh(0, ν1; q0) = 0, we obtain from (5.5) and (5.7)

Bh(v, ν; q) = Bh(v0, 0; q0) +Bh(v0, 0; q1) + δBh(0, ν1; q1)

≥ ‖q0‖2
Q(h) + δγC2

1‖q1‖2
Q(h) − |Bh(v0, 0; q1)|.

Combining the continuity ofBh (see Proposition 5.1) with a weighted Cauchy–Schwarz
inequality and (5.6), we obtain, for any ζ > 0,

|Bh(v0, 0; q1)| ≤ Cζ‖v0‖2
V (h) +

C

ζ
‖q1‖2

Q(h) ≤ Cζ‖q0‖2
Q(h) +

C

ζ
‖q1‖2

Q(h).

Hence, by suitably choosing δ and ζ, we have

Bh(v, ν; q) ≥ κ1

[
‖q0‖2

Q(h) + ‖q1‖2
Q(h)

]
= κ1‖q‖2

Q(h),(5.8)

where we used the orthogonality of the decomposition of q. From (5.6) and (5.7),

‖(v, ν)‖W (h) ≤ κ2‖q‖Q(h).(5.9)

The constants κ1 and κ2 in (5.8) and (5.9) are independent of the mesh size and the co-
efficients µ and ε. The proposition follows from (5.8) and (5.9), with κ = κ1/κ2.

6. Error estimates. In this section, we prove the error estimates stated in
Theorems 3.3, 3.4, and 3.6.

6.1. Abstract error estimates. We start by deriving abstract error bounds.
To this end, for the analytical solution (u, p) to (2.3)–(2.4), we define the residuals

R1
h(u, p;v, ν) = Ah(u, 0;v, ν) +Bh(v, ν; p) − fh(v) and R2

h(u; q) = Bh(u, 0; q)

for all (v, ν) ∈W h and q ∈ Qh and set

R1
h(u, p) = sup

0 �=(v,ν)∈W h

|R1
h(u, p;v, ν)|

‖(v, ν)‖W (h)
, R2

h(u) = sup
0 �=q∈Qh

|R2
h(u; q)|

‖q‖Q(h)
.

In the following theorem we present abstract error estimates for our DG method.
These error bounds are obtained by extending the standard conforming mixed finite
element theory [7] to the setting considered here and taking into account the residual
terms arising from the nonconsistency of the perturbed formulation.

Theorem 6.1. There exist positive constants C such that

‖(u− uh, λh)‖W (h) ≤ Cmax{1, b−1}
[

inf
v∈V h

‖u− v‖V (h)

+ inf
q∈Qh

‖p− q‖Q(h) + R1
h(u, p) + R2

h(u)
]
,

‖p− ph‖Q(h) ≤ C
[

inf
q∈Qh

‖p− q‖Q(h) + ‖(u− uh, λh)‖W (h) + R1
h(u, p)

]
.

Here, b, the ellipticity constant from Proposition 5.2, depends on the bounds in (2.2)
but is independent of the mesh size. The constants C depend on the continuity con-
stants a1 and a2 in Proposition 5.1 and the inf-sup constant κ from Proposition 5.4
but are independent of the mesh size and the coefficients µ and ε.
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Proof. By the triangle inequality and the definition of ‖(·, ·)‖W (h), we have

‖(u− uh, λh)‖W (h) ≤ ‖(u− v, η)‖W (h) + ‖(v − uh, η − λh)‖W (h)(6.1)

for any (v, η) ∈W h. First, we take (v, η) ∈ Ker(Bh). Since (v−uh, η−λh) ∈ Ker(Bh),
employing the ellipticity property of Proposition 5.2 and the definition of R1

h, we have

b‖(v − uh, η − λh)‖2
W (h) ≤ Ah(v − uh, η − λh;v − uh, η − λh)

= Ah(v − u, η;v − uh, η − λh)

−Bh(v − uh, η − λh; p− q) +R1
h(u, p;v − uh, η − λh)

for any q ∈ Qh. From the continuity properties of Proposition 5.1, the definition of
the norm ‖(·, ·)‖W (h), and (6.1), we have

‖(u− uh, λh)‖W (h) ≤
(
1 +

a1

b

)
inf

(v,η)∈Ker(Bh)
‖(u− v, η)‖W (h)

+
a2

b
inf
q∈Qh

‖p− q‖Q(h) +
1

b
R1
h(u, p).

(6.2)

Next, we prove that

inf
(v,η)∈Ker(Bh)

‖(u− v, η)‖W (h) ≤
(
1 +

a2

κ

)
inf

(v,η)∈W h

‖(u− v, η)‖W (h) +
1

κ
R2
h(u).

(6.3)

To this end, let (v, η) be any element of W h, and consider the following problem:
find (w, ν) ∈W h such that

Bh(w, ν; q) = Bh(u− v,−η; q) −R2
h(u, q) ∀q ∈ Qh.(6.4)

Problem (6.4) admits solutions in W h that are unique up to elements in the kernel
of Bh. The discrete inf-sup condition of Proposition 5.4 guarantees the existence of a
solution (w, ν) satisfying

‖(w, ν)‖W (h) ≤
1

κ

[
sup
q∈Qh

|Bh(u− v,−η; q)|
‖q‖Q(h)

+ sup
q∈Qh

|R2
h(u, q)|

‖q‖Q(h)

]
≤ a2

κ
‖(u− v, η)‖W (h) +

1

κ
R2
h(u),

(6.5)

where we have used the continuity of Bh, the definition of the norm ‖(·, ·)‖W (h), and
the definition of R2

h. From (6.4), Bh(w + v, ν + η; q) = 0, for any q ∈ Qh, so that
(w + v, ν + η) ∈ Ker(Bh). Therefore, since

‖(u− (v +w), η + ν)‖W (h) ≤ ‖(u− v, η)‖W (h) + ‖(w, ν)‖W (h),

for any (v, η) ∈W h, taking into account (6.5), we obtain (6.3). This, together with
(6.2), yields

‖(u− uh, λh)‖W (h) ≤ Cmax{1, b−1}
[

inf
(v,η)∈W h

‖(u− v, η)‖W (h)

+ inf
q∈Qh

‖p− q‖Q(h) + R1
h(u, p) + R2

h(u)
]
,
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where the constant C depends on a1, a2, and κ. Choosing η = 0 gives the error bound
for (u− uh, λh).

We now turn to the bound for p− ph. Again by the triangle inequality, we have

‖p− ph‖Q(h) ≤ ‖p− q‖Q(h) + ‖q − ph‖Q(h)(6.6)

for any qh ∈ Qh. Since

Ah(u− uh,−λh;v, η) +Bh(v, η; p− q) +Bh(v, η; q − ph) = R1
h(u, p;v, η),

for any (v, η) ∈W h, the discrete inf-sup condition of Proposition 5.4 gives

‖q − ph‖Q(h) ≤
1

κ
sup

(0,0) �=(v,η)∈W h

Bh(v, η; q − ph)

‖(v, η)‖W (h)

=
1

κ
sup

(0,0) �=(v,η)∈W h

−Ah(u− uh,−λh;v, η) −Bh(v, η; p− q) +R1
h(u, p;v, η)

‖(v, η)‖W (h)

≤ a1

κ
‖(u− uh, λh)‖W (h) +

a2

κ
‖p− q‖Q(h) +

1

κ
R1
h(u, p).

This, together with (6.6), gives the bound for p− ph.

6.2. Proof of Theorems 3.3 and 3.4. We are now ready to prove our main re-
sults by making explicit the abstract error estimates of Theorem 6.1. First, we derive
bounds on the residuals; we note that the residuals are optimally convergent on possi-
bly nonconforming meshes under minimal smoothness assumptions as in Theorem 3.4,
thereby covering both the cases of Theorems 3.3 and 3.4.

Proposition 6.2. Let Th be a possibly nonconforming mesh satisfying restric-
tions (i) and (ii) in section 3.3. Assume the analytical solution (u, p) of (2.1) satisfies
εu ∈ Hs(Th)3 and µ−1∇× u ∈ Hs(Th)3 for s > 1

2 . Then we have

R1
h(u, p) + R2

h(u) ≤ Chmin{s,�+1}[‖εu‖s,Th
+ ‖µ−1∇× u‖s,Th

]
,

with a constant C > 0, independent of the mesh size.
Proof. First, for v ∈ V h, η ∈Mh, we have

|R1
h(u, p;v, η)| =

∣∣∣∣∫Fh

{{µ−1∇× u− ΠV h
(µ−1∇× u)}} · [[v]]T ds

∣∣∣∣ ,
with ΠV h

denoting the L2-projection onto V h. This can be easily proved by employ-
ing integration by parts, the properties of the L2-projection, and taking into account
the first equation in (2.1). From the Cauchy–Schwarz inequality and standard ap-
proximation properties, we obtain

|R1
h(u, λ, p;v, η)| ≤ C

( ∑
K∈Th

hK‖µ−1∇× u− ΠV h
(µ−1∇× u)‖2

0,∂K

) 1
2

‖(v, η)‖W (h)

≤ Chmin{s,�+1}‖µ−1∇× u‖s,Th
‖(v, η)‖W (h).

Furthermore, for q ∈ Qh,

|R2
h(u; q)| =

∣∣∣∣∫Fh

{{εu− ΠV h
(εu)}} · [[q]]N ds

∣∣∣∣ .
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Hence,

|R2
h(u; q)|≤C

( ∑
K∈Th

hK‖εu− ΠV h
(εu)‖2

0,∂K

) 1
2

‖q‖Q(h)≤Chmin{s,�+1}‖εu‖s,Th
‖q‖Q(h).

This completes the proof (the constant C in these estimates actually depends on the
bound (2.2) on the coefficients µ and ε).

Next, we prove the result of Theorems 3.3 and 3.4.
Proof of Theorem 3.3. Let (uh, ph, λh) be the solution of the auxiliary mixed

system in (4.1)–(4.2). We apply Theorem 6.1 and bound all the terms in the ab-
stract error bounds there. To this end, we set v = ΠV h

u and q = ΠQh
p, with ΠV h

and ΠQh
denoting the L2-projections onto V h and Qh, respectively. Standard ap-

proximation properties, together with the bounded variation of the mesh size, give
‖u−ΠV h

u‖V (h) ≤ C hmin{s,�}‖u‖s+1,Th
. The additional smoothness assumption on

u made in this case is required for the estimate of the term containing the tangential
jumps. Similarly, we have ‖p − ΠQh

p‖Q(h) ≤ C hmin{s,�}‖p‖s+1,Th
. The constants C

in the previous estimates depend on the bounds (2.2) on the coefficients µ and ε.
Inserting these estimates, together with the residual estimates of Proposition 6.2, in
Theorem 6.1 gives the result.

Proof of Theorem 3.4. Let (uh, ph, λh) be the solution of the auxiliary mixed
system in (4.1)–(4.2). As in the proof of Theorem 3.3, we apply Theorem 6.1. On
conforming meshes, we can choose v = Πcurlu ∈ H(curl; Ω) as the standard conform-
ing Nédélec interpolant of u of the second type; see [23]. Thereby, we have [[v]]T = 0
on FI

h , and from the approximation results proved in [2] for tetrahedra, but also valid
for parallelepipeds, we get

‖u− Πcurlu‖0,K + ‖∇ × (u− Πcurlu)‖0,K ≤ C h
min{s,�}
K

[
‖u‖s,K + ‖∇ × u‖s,K

]
.

Hence,

‖ε 1
2 (u− Πcurlu)‖0,Ω + ‖µ− 1

2∇× (u− Πcurlu)‖0,Ω

≤ C hmin{s,�} [‖εu‖s,Th
+ ‖µ−1∇× u‖s,Th

]
,

(6.7)

with C also depending on the bounds (2.2) on the coefficients µ and ε. On a boundary
face f ⊂ FD

h , the tangential field n×Πcurlu coincides with Πdiv(n×u), where Πdiv is
the two-dimensional H(div)-conforming Nédélec interpolation operator of the second
type. In particular, Πdiv reproduces polynomial tangential fields of degree � on f ;
see [23] for details. From a standard scaling argument, we obtain

‖n× (u− Πcurlu)‖0,f ≤ C h
min{s,�}+ 1

2

|f ‖g‖s+ 1
2 ,f
.

Therefore, summing over all faces yields

‖m− 1
2 h−

1
2 (n× u− Πcurl(n× u))‖0,FD

h
≤ C hmin{s,�}‖g‖s+ 1

2 ,FD
h
.(6.8)

Moreover, since u ∈ H(div0
ε; Ω), we have for an interior face f , shared by Kf and K ′

f ,

‖e− 1
2 h

1
2 [[ε(u− Πcurlu)]]N‖0,f ≤ C hmin{s,�} [‖u‖s,Kf∪K′

f
+ ‖∇ × u‖s,Kf∪K′

f

]
.

This bound follows from [25, Lemma 23]. Hence,

‖e− 1
2 h

1
2 [[ε(u− Πcurlu)]]N‖0,FI

h
≤ C

[
‖εu‖s,Th

+ ‖µ−1∇× u‖s,Th

]
.(6.9)
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Moreover, choosing q = ΠH1p in Theorem 6.1, where ΠH1 is a standard H1-projector,
we have [[q]]N = 0 on Fh and

‖p− ΠH1p‖Q(h) ≤ C hmin{s,�}‖p‖s+1,Th
.(6.10)

Combining (6.7)–(6.10) with the residual estimates in Proposition 6.2 yields

inf
v∈V h

‖u− v‖V (h) + inf
q∈Qh

‖p− q‖Q(h) + R1
h(u, p) + R2

h(u)

≤ C hmin{s,�} [‖εu‖s,Th
+ ‖µ−1∇× u‖s,Th

+ ‖p‖s+1,Th
+ ‖g‖s+ 1

2 ,FD
h

]
,

with C also depending on the bounds (2.2) on the coefficients µ and ε. Combining
these estimates with the residual estimates of Proposition 6.2 gives the result.

6.3. Proof of Theorem 3.6. To prove Theorem 3.6, we first recall that

Bh(uh, λh; q) = 0 ∀q ∈ Qh.

Note that λh = [[p]]N (cf. Proposition 4.1); thereby, for an element K ∈ Th, we have

−
∫
K

εuh · ∇q dx+

∫
∂K

{{εuh}} · (qnK) ds− γ
e

h

∫
∂K

[[ph]] · (qnK) ds = 0(6.11)

for all q ∈ S�(K). Employing integration by parts and the identity (6.11), we get,
after some elementary manipulations, the following:

hK

∫
K

∇ · (εuh)q dx = −hK
∫
K

εuh · ∇q dx+ hK

∫
∂K

εuh · (qnK) ds

=
1

2
hK

∫
∂K0

[[εuh]]Nq ds+ hKγ
e

h

∫
∂K

[[ph]] · (qnK) ds,

for q ∈ S�(K), where ∂K0 = ∂K ∩ FI
h . The Cauchy–Schwarz inequality gives

∣∣∣∣hK ∫
K

∇ · (εuh)q dx
∣∣∣∣ ≤ Ch

1
2

K‖q‖0,∂K

(∫
∂K0

h[[εuh]]
2
N ds+

∫
∂K

e

h
[[ph]]

2
N ds

) 1
2

,

with a constant C > 0, independent of the mesh size. Here, we used shape-regularity
and bounded variation properties of the mesh. Employing the discrete trace inequality

‖q‖0,∂K ≤ Ch
− 1

2

K ‖q‖0,K for all q ∈ S�(K) and the characterization

hK‖∇ · (εuh)‖0,K = sup
q∈S�(K)

hK
∫
K

∇ · (εuh)q dx
‖q‖0,K

,

we obtain

h2
K‖∇ · (εuh)‖2

0,K ≤ C

(∫
∂K0

h[[εuh]]
2
N ds+

∫
∂K

e

h
[[ph]]

2
N ds

)
.

Summing over all elements and taking into account that the analytical solution satis-
fies [[εu]]N = 0 on FI

h and [[p]]N = 0 on Fh completes the proof.
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7. Numerical experiments. In this section, we present a series of numerical
experiments to illustrate the a priori error estimates derived for the mixed DG method
introduced in section 2. Here, we restrict ourselves to two-dimensional model problems
with constant coefficients µ ≡ ε ≡ 1. In this case, by identifying two-dimensional vec-
tor fields u(x, y) = (u1(x, y), u2(x, y)) in R

2 with their three-dimensional extensions
u(x, y, z) = (u1(x, y, 0), u2(x, y, 0), 0) in R

3, we deduce that

∇× (∇× u) =

(
∂

∂y

(
∂u2

∂x
− ∂u1

∂y

)
,− ∂

∂x

(
∂u2

∂x
− ∂u1

∂y

))
.

On the boundary, we have n × u = u · t, where t is the counterclockwise oriented
tangential unit vector; i.e., if n = (n1, n2), then (t1, t2) = (−n2, n1). Hence, the
Dirichlet boundary datum given in (2.1) is a scalar function g. Similarly, the tangential
jumps are scalar quantities defined as [[u]]T = u+ · t+ + u− · t−.

We shall restrict our attention to meshes consisting of quadrilateral elements only.
In this case the finite element space S�(Th) is constructed by mapping the reference
element K̂ = (−1, 1)2 onto each element K in the computational mesh Th via the
standard bilinear mapping FK : K̂ �→ K. Thereby, discrete functions, restricted to
a given element K, are defined as u ◦ FK = û, where û ∈ Q�(K̂). We point out
that meshes obtained with nonaffine mappings FK are not rigorously covered by our
analysis, and the underlying stability and approximation properties need to be further
investigated; see [4] for related work on the approximation properties of bilinearly
mapped quadrilateral elements. Finally, we note that throughout this section we select
the constants appearing in the stabilization parameters defined in (3.1) as follows:
α = 10 �2, β = 1, and γ = 1. We remark that the dependence of α on the polynomial
degree � has been formally chosen in order to guarantee the coercivity property in
Lemma 3.1 of the underlying DG form ah independently of �; cf. [19], for example.

7.1. Example 1. Here, we let Ω be the L-shaped domain (−1, 1)2\[0, 1)×(−1, 0];
further, we choose j and g so that the analytical solution to the two-dimensional
analogue of (2.1) with µ ≡ ε ≡ 1 is given by⎛⎝ u1

u2

p

⎞⎠ =

⎛⎝ − exp(x)(y cos(y) + sin(y))
exp(x)y sin(y)

sin(π(x− 1)/2) sin(π(y − 1)/2)

⎞⎠ ;(7.1)

this is a variant of the model problem considered in [19]. We investigate the asymp-
totic behavior of the errors of the mixed DG method (2.5)–(2.6) on a sequence of
successively finer square and quadrilateral meshes for different values of the polyno-
mial degree �. In each case we consider two types of quadrilateral meshes which are
constructed from a uniform square mesh by (i) randomly perturbing each of the in-
terior nodes by up to 10% of the local mesh size (cf. Figure 1(a)) and (ii) randomly
splitting each of the interior nodes by a displacement of up to 10% of the local mesh
size (cf. Figure 1(b)). The latter meshes are constructed so that all the nodes in the
interior of Ω are irregular (i.e., hanging); cf. [20].

In Figure 2 we first present a comparison of the DG-norm ‖ · ‖V (h) of the error
in the approximation to u with the mesh function h for 1 ≤ � ≤ 4. For consistency,
‖u − uh‖V (h) is plotted against hu for each mesh type, where hu denotes the mesh
size of the uniform square mesh; this ensures that a fair comparison between the
error per degree of freedom for each mesh type can be made. Here, we observe that
‖u − uh‖V (h) converges to zero, for each fixed �, at the rate O(h�) as the mesh is
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(a) (b)

Fig. 1. Example 1. (a) quadrilateral mesh (i); (b) quadrilateral mesh (ii).
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Fig. 2. Example 1. Convergence of ‖u− uh‖V (h) with h-refinement.

refined, thereby confirming Theorem 3.3. In particular, we observe that while the error
on the square mesh is smaller than on the randomly generated quadrilateral mesh (i),
as we would expect, the error is consistently smaller when the irregular quadrilateral
mesh is employed. As in [20], we attribute this improvement in ‖u− uh‖V (h) to the
increase in interelement communication on the meshes (ii); when no hanging nodes
are present in the mesh, elements may communicate only with their four immediate
neighbors. On the other hand, on irregular meshes elements may now communicate
with all of their neighbors which share a common node; cf. [20].

Second, in Figure 3 we plot the DG-norm ‖ ·‖Q(h) of the error in approximating p
by ph as the mesh size tends to zero. As for the approximation to u, we again observe
that ‖p − ph‖Q(h) converges to zero, for each fixed �, at the rate O(h�) as the mesh
is refined; cf. Theorem 3.3. However, in contrast to the approximation to u, both the
conforming and nonconforming quadrilateral meshes lead to a slight degradation in the
size of the error in the approximation to p for each mesh and each polynomial degree
employed, though in almost all cases the error in the numerical solution computed on
the meshes (ii) was observed to be slightly smaller than the corresponding quantity
computed on the meshes (i). Thereby, the increase in interelement communication
arising when the meshes (ii) are employed no longer leads to the improvement in the
size of the approximation error observed above for u as well as in [20].

The increase in the quality of the numerical approximation uh to u when the
nonconforming meshes (ii) are employed becomes even more apparent when the error
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Fig. 3. Example 1. Convergence of ‖p− ph‖Q(h) with h-refinement.
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Fig. 4. Example 1. Convergence of ‖u− uh‖0,Ω with h-refinement.

u−uh is measured in terms of the L2(Ω)-norm. To this end, in Figure 4, we first plot
‖u−uh‖0,Ω against h for 1 ≤ � ≤ 4 using the uniform square and randomly generated
quadrilateral meshes (i). As predicted by Theorem 3.3, we observe that ‖u− uh‖0,Ω

converges to zero, for each fixed �, at the rate O(h�) as the mesh is refined. While
this rate of convergence is one order less than we would expect when using discon-
tinuous piecewise polynomials of degree at most � in each coordinate direction, the
numerical results clearly verify the sharpness of the a priori error analysis. However,
in contrast, when the nonconforming quadrilateral meshes (ii) are employed, the order
of convergence increases by a full power of h; thereby, in this case ‖u − uh‖0,Ω now
converges to zero, for each fixed �, at the rate O(h�+1) as h tends to zero; cf. Fig-
ure 5. Analogous behavior is also observed when the L2(Ω)-norm of the error in the
approximation to the divergence of u is computed. Indeed, from Figure 6, we observe
that ‖h∇h · eh‖0,Ω converges to zero at the rate O(h�) as h tends to zero when the
uniform and randomly generated quadrilateral meshes (i) are employed, thereby con-
firming Theorem 3.6 and Remark 3.7. On the other hand, when the nonconforming
quadrilateral meshes (ii) are employed, this rate of convergence increases to O(h�+1)
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Fig. 5. Example 1. Convergence of ‖u− uh‖0,Ω with h-refinement.
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Fig. 6. Example 1. Convergence of ‖h∇h · eh‖0,Ω with h-refinement.

as h tends to zero; cf. Figure 7.
As a final remark, we note that on all the meshes employed, the L2(Ω)-norm

of the error in the approximation to p converges to zero, for each fixed �, at the
(optimal) rate O(h�+1) as the mesh is refined. As for the DG-norm of p − ph, both
the conforming and nonconforming quadrilateral meshes lead to a slight degradation
in the size of ‖p−ph‖0,Ω for each mesh and each polynomial degree employed, though
the error in the numerical solution computed on the meshes (ii) was observed to be
slightly smaller than the corresponding quantity computed on the meshes (i); for
brevity, these results have been omitted.

7.2. Example 2. In this second example, we investigate the performance of the
mixed DG method (2.5)–(2.6) for a problem with a corner singularity in u. To this
end, we again let Ω be the same L-shaped domain as in the first example; here, we
set j = 0, and g is chosen so that the analytical solution u to the two-dimensional
analogue of (2.1) with µ ≡ ε ≡ 1 is given, in terms of the polar coordinates (r, ϑ),
by u(x, y) = ∇S(r, ϑ), where S(r, ϑ) = r2/3 sin(2ϑ/3); thereby, p ≡ 0. The analytical
solution u contains a singularity at the corner located at the origin of Ω; here, we
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Fig. 7. Example 1. Convergence of ‖h∇h · eh‖0,Ω with h-refinement.

Table 1

Example 2. Convergence of ‖u− uh‖V (h) on uniform square meshes with h-refinement.

� = 1 � = 2 � = 3
Elements ‖u− uh‖V (h) k ‖u− uh‖V (h) k ‖u− uh‖V (h) k

12 5.987e-1 - 5.350e-1 - 4.853e-1 -
48 4.300e-1 0.48 3.427e-1 0.64 3.076e-1 0.66
192 2.815e-1 0.61 2.144e-1 0.68 1.929e-1 0.67
768 1.816e-1 0.63 1.344e-1 0.67 1.211e-1 0.67
3072 1.170e-1 0.63 8.452e-2 0.67 7.622e-2 0.67

Table 2

Example 2. Convergence of ‖p− ph‖Q(h) on uniform square meshes with h-refinement.

� = 1 � = 2 � = 3
Elements ‖p− ph‖Q(h) k ‖p− ph‖Q(h) k ‖p− ph‖Q(h) k

12 8.742e-1 - 1.341 - 1.598 -
48 8.147e-1 0.10 1.039 0.37 1.178 0.44
192 6.235e-1 0.39 7.159e-1 0.54 7.948e-1 0.57
768 4.253e-1 0.55 4.678e-1 0.61 5.154e-1 0.63
3072 2.763e-1 0.62 2.990e-1 0.65 3.285e-1 0.65

have only u ∈ H2/3−ε(Ω)2, ε > 0.

In this example, let us first confine ourselves to uniform square meshes; we shall
return to the more general meshes considered in the previous example later. To this
end, in Tables 1 and 2 we present a comparison of the DG-norms of the error in the
approximation to both u and p, respectively, with the mesh function h on a sequence of
uniform square meshes for 1 ≤ � ≤ 3. In each case we show the number of elements in
the computational mesh, the corresponding DG-norm of the error, and the computed
rate of convergence k. Here, we observe that (asymptotically) both ‖u−uh‖V (h) and

‖p− ph‖Q(h) converge to zero at the optimal rate O(hmin(2/3−ε,�)) as h tends to zero,
predicted by Theorem 3.4.

Next, in Table 3 we present a comparison of the L2(Ω)-norm of the error in
the numerical approximation to u with h. On the basis of Theorem 3.4, we expect
that ‖u− uh‖0,Ω should tend to zero at the rate O(hmin(2/3−ε,�)) as h tends to zero.
However, from Table 3, we observe that for � = 1, 2, 3, the rate of convergence of the
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Table 3

Example 2. Convergence of ‖u− uh‖0,Ω on uniform square meshes with h-refinement.

� = 1 � = 2 � = 3
Elements ‖u− uh‖0,Ω k ‖u− uh‖0,Ω k ‖u− uh‖0,Ω k

12 2.788e-1 - 2.420e-1 - 2.004e-1 -
48 1.817e-1 0.62 1.252e-1 0.95 9.703e-2 1.05
192 1.057e-1 0.78 6.160e-2 1.02 4.513e-2 1.10
768 6.078e-2 0.80 3.151e-2 0.97 2.187e-2 1.05
3072 3.620e-2 0.75 1.740e-2 0.86 1.154e-2 0.92

Table 4

Example 2. Convergence of ‖h∇h · eh‖0,Ω on uniform square meshes with h-refinement.

� = 1 � = 2 � = 3
Elements ‖h∇h · eh‖0,Ω k ‖h∇h · eh‖0,Ω k ‖h∇h · eh‖0,Ω k

12 1.348e-1 - 2.086e-1 - 3.022e-1 -
48 6.438e-2 1.07 1.752e-1 0.25 2.380e-1 0.34
192 3.668e-2 0.81 1.296e-1 0.43 1.678e-1 0.50
768 2.274e-2 0.69 8.844e-2 0.55 1.115e-1 0.59
3072 1.324e-2 0.78 5.800e-2 0.61 7.206e-2 0.63

Table 5

Example 2. Convergence of ‖p− ph‖0,Ω on uniform square meshes with h-refinement.

� = 1 � = 2 � = 3
Elements ‖p− ph‖0,Ω k ‖p− ph‖0,Ω k ‖p− ph‖0,Ω k

12 1.906e-1 - 1.627e-1 - 1.361e-1 -
48 1.135e-1 0.75 7.926e-2 1.04 6.327e-2 1.11
192 5.602e-2 1.02 3.452e-2 1.20 2.696e-2 1.23
768 2.487e-2 1.17 1.426e-2 1.28 1.103e-2 1.29
3072 1.049e-2 1.24 5.759e-3 1.31 4.435e-3 1.31

L2(Ω)-norm of the error in the approximation to u is slightly higher than predicted,
although, asymptotically, we expect these convergence rates to slowly tend to the
optimal one. Additionally, in Table 4 we show the convergence of ‖h∇h · eh‖0,Ω with
respect to h; here, we again observe that, asymptotically, the rate of convergence
tends to the one predicted in Theorem 3.6; cf. Remark 3.7. Finally, in Table 5 we
show ‖p − ph‖0,Ω for � = 1, 2, 3, based on employing uniform square meshes. In
comparison with Table 3, Table 5 indicates that the rate of convergence of ‖p−ph‖0,Ω

is almost twice the optimal rate of ‖u − uh‖0,Ω; indeed, asymptotically, we observe
that k is tending towards 4/3 as the mesh is uniformly refined.

We remark that analogous convergence rates to those reported in Tables 1–5
are also observed when the numerical approximation is computed on the conforming
quadrilateral meshes (i); for brevity, these results are omitted. However, convergence
of the mixed DG method was not observed on the quadrilateral meshes (ii). We recall
that the convergence proof presented in the case of weak smoothness assumptions for
the component u of the analytical solution (cf. Theorem 3.4) precludes the presence
of hanging nodes in the mesh Th and, as in the case of smooth analytical solutions,
assumes that the elements in Th are affine. As noted above, optimal rates of con-
vergence are still observed computationally when the quadrilateral meshes (i), which
are conforming, but nonaffine, are employed. In order to test the method in the case
when Th contains hanging nodes, but the elements are affine, we consider the perfor-
mance of the mixed DG method (2.5)–(2.6) on a sequence of adaptively refined square
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Fig. 8. Example 2. Computational mesh after 9 adaptive refinement steps, with 721 nodes and
618 elements and � = 1.
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Fig. 9. Example 2. Comparison of adaptive and uniform h-refinement.

meshes. Here, the adaptive meshes are constructed by employing the fixed fraction
strategy (with refinement and derefinement fractions set to 25% and 0%, respectively)
with a simple error indicator ηK based on the gradient of the numerical approxima-
tion. More precisely, given K in Th, we set ηK = (‖hK∇uh‖2

0,K + ‖hK∇ph‖2
0,K)1/2.

More sophisticated error indicators may be appropriate for this problem; here, we are
simply interested in generating a sequence of adaptive meshes (containing hanging
nodes) in which to test the hypotheses of our a priori error analysis. A typical mesh
generated with this adaptive algorithm is shown in Figure 8.

In Figure 9, we present a comparison of ‖u − uh‖V (h) and ‖p − ph‖Q(h) with
the (square root of the) number of degrees of freedom in V h × Qh for � = 1 on the
sequence of adaptively refined meshes generated as above, as well as on a sequence
of uniform square meshes; cf. Tables 1 and 2 above, respectively. Here, we clearly
observe that the error in the mixed DG discretization of (2.1) converges to zero as the
finite element space V h×Qh is enriched, even when the mesh contains hanging nodes;
indeed, we see that the adaptively refined meshes lead to a general improvement in the
error when compared to the uniform square meshes. In summary, in the case of weak
Sobolev regularity assumptions on u, the mixed DG method (2.5)–(2.6) is observed
(numerically) to be optimally convergent on both conforming and nonconforming
affine square meshes as well as on conforming nonaffine meshes; however, convergence
is not observed when the mesh contains hanging nodes and the elements are not affine.
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8. Conclusions. In this paper, we have presented a new mixed discontinuous
Galerkin method for the discretization of the time-harmonic Maxwell operator. This
method is based on equal-order finite element spaces, where all the unknowns are
approximated with piecewise discontinuous polynomials of the same degree. When
compared to the numerical scheme proposed in [25], the amount of numerical stabi-
lization here is drastically reduced. Our error analysis and numerical results show
that the method is optimally convergent in the energy norms for smooth as well as for
singular solutions. In the latter case, the theoretical analysis is restricted to regular
meshes without hanging nodes. However, numerical experiments for a problem with
a strongly singular solution have demonstrated that the application of the method
within an adaptive procedure on affine quadrilateral meshes, where hanging nodes
are introduced during the course of the refinement, still leads to a convergent numeri-
cal approximation as the finite element space is enriched. A more delicate issue seems
to be the one related to nonaffine meshes. Indeed, our tests seem to indicate that the
assumption of affineness on the meshes cannot be eliminated when meshes containing
hanging nodes are employed. Future work will be devoted to the study of variants
of the proposed method which deliver optimal rates of convergence when the error in
the approximation to the vector field u is measured in the L2(Ω)-norm.
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Abstract. Electrical impedance tomography (EIT) belongs to a family of imaging methods
that employ boundary measurements to distinguish interior spatial variation of an electromagnetic
parameter. The associated inverse problem is notoriously ill-posed, due to diffusive effects in the
quasi-static regime, when electrical impedance reduces to its real part, resistivity. The standard
approach to EIT is output least squares (OLS). For a set of applied normal boundary currents, one
minimizes the defect between the measured and computed boundary voltages associated, respec-
tively, with the exact impedance and its approximation. In minimizing a boundary functional, OLS
implicitly imposes the governing Poisson equation as an optimization constraint. To reconstruct re-
sistivity or, equivalently, conductivity, we introduce a new first-order system least-squares (FOSLS)
formulation that incorporates the elliptic PDE as an interior functional in a global unconstrained
minimization scheme. We then establish equivalence of our functional to OLS and to an existing
interior least-squares functional due to Kohn and Vogelius [Comm. Pure Appl. Math, 37 (1984),
pp. 289–298]. That the latter may be viewed as a special dual approach (FOSLL∗) is an interest-
ing attribute of this equivalence. Because the FOSLS functional implicitly reflects the inherent loss
of resolution away from the boundary, relative to the set of applied boundary tests, the need for
artificial regularization may be avoided.

Key words. first-order system least squares, electrical impedance tomography
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1. Introduction. Electrical impedance tomography (EIT) belongs to a family
of imaging methods based on distinguishing interior spatial variation of an electromag-
netic parameter. The basic principle is to approximate this parameter in a manner
consistent with given pairings of boundary current and boundary voltage data. In
mathematical parlance, given boundary data represents discrete knowledge of the
Dirichlet-to-Neumann map associated with the unknown parameter’s effect on diffu-
sion. The broad scope of EIT’s application, ranging from biomedical imaging [8, 10, 4]
to geophysical prospecting [34, 28, 37, 12] to industrial process tomography [31, 14, 15],
implies the importance of different parameter regimes and boundary data protocols.
Thus, it is reasonable to expect efficient and effective algorithms to be highly problem
specific, according to prior information and measurement techniques. In this paper,
we discuss the governing equations, the standard least-squares approach, and estab-
lished theoretical insights, but we do not conduct a comprehensive study of a myriad of
practical concerns. Our focus is, instead, on proving equivalence of three least-squares
formulations: output least squares [8], a formulation due to Kohn and Vogelius [23],
and a new first-order system least-squares (FOSLS) formulation. That the Kohn and
Vogelius functional may be viewed as a first-order system LL∗ (FOSLL∗ [6]) formula-
tion, combined with the equivalence results, suggests a unifying framework for future
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studies of EIT. It is our conviction that the ultimate goal of such studies is to quantify
the sense in which the notoriously ill-posed problem can be posed well. This is in line
with not only classical Backus and Gilbert theory on geophysical inverse problems [1]
but also with recent analysis of probabilistic approaches [26]. The equivalence results
of this paper, by establishing common ground, set the stage for investigations of the
uncertainty inherent in posing least-squares formulations of EIT.

1.1. Mathematical setting. The development of a mathematical model for
the EIT inverse problem begins with Maxwell’s equations in a source-free, closed,
and simply connected domain, which we denote Ω with boundary Γ. A series of
assumptions (see [8, 30] and the references therein), including negligible magnetic
permeability and quasi-static periodic time variation, leads to a Poisson equation for
complex-valued voltage p:

∇ · γ∇p = 0,(1.1)

where γ = σ + iωε is the admittance. EIT refers to the reconstruction of this pa-
rameter, since electrical impedance is defined as 1/γ. Here we make the electrostatic
assumption, ω = 0. Thus, the quantities in (1.1) are real-valued, and the aim is
reconstruction of the conductivity, σ, based on its associated Dirichlet and Neumann
boundary data. This is equivalent to reconstructing resistivity, 1/σ. The electrostatic
assumption is an important first principle since the lack of resolution with quasi-static
fields, and thus EIT, is attributed to the conductivity term. Extension to electromag-
netic fields varying slowly in time remains a future work.

Remark 1. We refer to the process of reconstructing conductivity given Dirichlet
and Neumann data as electrical conductivity tomography (ECT) and remark that in
the literature it is also known as the DC resistivity problem, applied potential tomog-
raphy, electric current computed tomography, and electrical resistance tomography.

In what follows, we adopt the usual Sobolev spaces, L2(Ω) and H1(Ω), including
the dual boundary spaces, H1/2(Γ) and H−1/2(Γ) [11]. We assume that the boundary,
Γ, is Lipschitz and note that the normal current flux is the scaled Neumann data,
n · σ∇p, where n denotes the outward unit normal. Also, the boundary voltage
distribution is the Dirichlet data, p|Γ . It is practical to impose the normal current and
measure the resulting voltage data, and we choose this perspective in the presentation
of our theory. Hence, considering the Neumann problem

∇ · σ∇p = 0 in Ω,

n · σ∇p = h on Γ,(1.2)

where the normal current h ∈ H−1/2(Γ) satisfies
∫

Γ
h ds = 0, one may view coefficient σ

as determining a Neumann-to-Dirichlet map, i.e., as determining the trace of voltage
p|Γ ∈ H1/2(Γ) on the boundary (up to a constant). An alternative and likely more
realistic mathematical model uses Robin boundary conditions in place of the Dirichlet
conditions as the measured data [8, 40]. However, since the Neumann data is in each
case given, such measurements are equivalent to discrete knowledge of the Neumann-
to-Dirichlet map. At this stage we assume the most general Sobolev setting and defer
addressing practical issues regarding boundary data to a future work [25].

Several definitions associated with system (1.2) now follow to facilitate formally
stating the inverse problem of ECT.
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Definition 1.1. Denote L∞
+ (Ω) := {σ ∈ L∞(Ω) : σ > 0}. Also, let

H1/2

0 (Γ) :=

{
g ∈ H1/2(Γ) :

∫
Γ

g dτ = 0

}
,

H−1/2

0 (Γ) :=

{
h ∈ H−1/2(Γ) :

∫
Γ

h dτ = 0

}
.

A given conductivity, σ ∈ L∞
+ (Ω), induces a bounded linear map,

Rσ : H−1/2

0 (Γ) −→ H1/2

0 (Γ),

from the imposed normal current to the resulting boundary voltage. This map is
defined by

Rσ(h) := p|Γ ,

where p solves (1.2), and we call Rσ the Neumann-to-Dirichlet map (NtD map) as-
sociated with σ.

Remark 2. Function space L∞
+ (Ω) is used for admissible conductivity since it

is the least restrictive for which the NtD map associated with (1.2) can be defined.
However, uniquely defining the NtD map requires further restriction [17]. Regarding
the boundary spaces, a compatibility condition on (1.2) implies that we must have∫
Γ
h dτ = 0. Similarly, p is determined by (1.2) only up to a constant, so we are

permitted to impose the condition
∫
Γ
g dτ = 0.

Definition 1.2. We say that {p,Rσ(h), h} ∈ H1(Ω) × H1/2
0 (Γ) × H−1/2

0 (Γ) is
a Dirichlet–Neumann triple (DN triple) for σ if (1.2) holds. Also, we shall refer to
{Rσ(h), h} as a DN pair.

Remark 3. The NtD map, Rσ, is self-adjoint in the L2-inner-product. This is
apparent since for DN triples {p1,Rσ(h1), h1} and {p2,Rσ(h2), h2}, integration by
parts leads to

〈h1,Rσ(h2)〉0,Γ =

∫
Ω

σ∇p1 · ∇p2 dx = 〈Rσ(h1), h2〉0,Γ.

Finally, we have the notation to define the inverse problem of ECT.
Definition 1.3. The inverse problem of ECT is to approximate the exact con-

ductivity, σ∗, according to a given graph of measured DN data {gi, hi}L
i=1, where

gi ≈ Rσ∗(hi).
Stated otherwise, the inverse problem of ECT is to approximately invert the

nonlinear mapping σ −→ Rσ. The approximate nature of this inversion is due to
the preimposed discreteness of having finite data, the inexactness of this data, and
the need to choose a discrete approximation space for conductivity. Next, we give
background on these issues as they affect our ability to solve the inverse problem.

1.2. Theoretical background. Classical discussion of existence and unique-
ness of the inverse problem is hindered by several concerns. First, assuming exact
boundary data is the same as assuming the existence of a conductivity consistent
with the boundary data. However, given the intrinsic error in the measurements of
the data, it is likely that there is no such consistent conductivity. As for unique-
ness, progressively refined results have been established, with a focus on achieving a
uniqueness result for piecewise continuous conductivity [21, 22, 35, 27, 17]. The tech-
niques used in theoretical uniqueness results, however, rely on complete and precise
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boundary information and cannot accommodate the reality of only a finite number
of approximate DN pairs. As such, they do not provide insight into how inexact and
incomplete boundary data unleash error in σ that cannot be confidently eliminated.
Toward such an understanding, it is instructive to consider Calderon’s initial analy-
sis [7]. Let δ ∈ L1(Ω) be a perturbation of a background conductivity, σ. For DN
triples {pi,Rσ(hi), hi} and {pj ,Rσ(hj), hj}, he observes that

〈hi,Rσ+δ(hj) −Rσ(hj)〉0,Γ =

∫
Ω

δ∇pi · ∇pj dx + O(δ2).(1.3)

This classical expansion displays how perturbations in the interior can be practically
undetectable at the boundary. For example, observe that, with σ constant, the dis-
tribution of voltage, p, is increasingly smooth away from the boundary. Thus, the
product of the gradients of solutions to the Laplace equation places decreasing weight
on perturbations of conductivity according to distance into the interior. Notably, this
weighting appears within the FOSLS formulation when updating the approximate
conductivity.

In a now classical work, Backus and Gilbert [1] introduce the notion of “inference”
for studying a wide class of geophysical inverse problems, not just ECT. Parker [29]
has applied this theory to ECT, considering the linearized one-dimensional problem
of determining the conductive layers of stratified earth. Independently, Seagar, Yeo,
and Bates [32, 33] assess the “visibility” of circular disks of constant conductivity as
perturbations of a background constant conductivity in a two-dimensional circular
domain by using conformal mapping techniques. Finally, to determine whether the
effect of a certain error can be detected on the boundary, Isaacson [16] introduces
“distinguishability.” As is observed in each analysis of resolution, the best test to
apply in order to detect a specific error, σ − σ∗, is that which attains the operator
norm of the defect in the NtD maps, i.e., that which attains the sup in

‖Rσ −Rσ∗‖L(H
−1/2
0 (Γ),H

1/2
0 (Γ))

:= sup
h∈H

−1/2
0 (Γ)

‖(Rσ −Rσ∗)h‖1/2,Γ

‖h‖−1/2,Γ

.(1.4)

Thus, given complete and exact boundary data, the natural functional to minimize
is the operator norm in (1.4). Of course, with finite data, the sup can be taken only
over a finite-dimensional subspace, span{hi}L

i=1 ⊂ H−1/2
0 (Γ), where L is the number of

available DN data. Despite the preimposed discreteness of this data and its inevitable
error, we hope to still recover meaningful components of σ∗.

1.3. Output least squares. In analogy to the Frobenius norm of matrix alge-
bra, a natural alternative to minimizing the sup over the span of the boundary data
is to minimize the output least-squares (OLS) functional,

F(σ; {gi, hi}L

i=1) :=

L∑
i=1

‖Rσ(hi) − gi‖2
1/2,Γ.(1.5)

This formulation is an example of unconstrained least-squares optimization and is the
standard approach throughout the wide range of EIT applications [3, 8, 12, 40]. It
should be noted that the L2-norm, rather than H1/2-norm, is typically enforced. How-
ever, in this work we preserve the most general Sobolev space setting. This top-down
approach should prove more beneficial, as future work in computational electromag-
netics leads to a better understanding of the fields impinging a given domain, thereby
leading to a more accurate representation of the boundary data.
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To minimize F in (1.5), the first variation of the NtD map with respect to σ
enables a standard Newton quadraticization. The first-order term in (1.3) is used
to represent this variation, determining the effect on the boundary of changing a
given degree of freedom for σ. Once the linear system, involving the “sensitivity
matrix,” is solved to obtain a new approximation, the L forward problems are solved,
and the process is repeated (see [8] and the references therein). The physics at the
source of EIT’s difficulty is manifested by the extremely high condition number of the
sensitivity matrix when a uniform grid for σ is chosen. This is consistent with what
the physics suggests: an increasingly coarse representation of conductivity should be
used to extend the grid into the interior. Typically, some form of regularization is
instead performed to ensure that the Hessian is sufficiently positive definite.

Regularization is, in essence, the process of posing an inverse problem well [36],
and it has taken several forms in application to EIT. A regularization operator, B,
can be incorporated into the OLS functional as an additional least-squares term so
that (1.5) is replaced by

F(σ; {gi, hi}L

i=1) :=

(
L∑
i=1

‖Rσ(hi) − gi‖2
0,Γ

)
+ α‖Bσ‖2

0,Ω,(1.6)

where α is a regularization parameter that is usually chosen empirically to balance
resolution and computability in some sense. The most common regularization is a
penalty on the H1-seminorm of σ [8], wherein B = ∇. When piecewise constant basis
functions are used in the discrete representation of σ, one can impose a penalty on the
jumps between each element [9]. Of course, the resulting reconstruction is artificially
smoothed, especially near the boundary where one ought to be able to recover high
frequency components. However, the technique has been actively researched for many
years, and ways of reducing the artificial smoothness have been developed, including
the recent multilevel approach of Borcea [3]. The theory we develop suggests that
the FOSLS formulation inherently imposes a smoothing of the conductivity estimate
that is relative to both the distance from the boundary and prior information about
σ. Indeed, the FOSLS formulation may likewise benefit from an empirical process of
determining ideal weightings on each term in the functional, analogous to determining
α in (1.6). These present potential directions for future research.

An alternative regularization scheme, referred to as a statistical or Bayesian ap-
proach, is implemented by Vauhkonen et al. [39] and Kaipio et al. [18, 19] to penalize
the orthogonal complement of an operator which represents prior information. The
penalty thus serves to steer the approximation toward an expected solution. A related
method, that of basis constraints [38], builds the subspace of admissible conductivity,
which may in practice be of very low dimension, by using basis functions selected
according to prior information. Though we encourage the use of basis constraints to
incorporate what is already known into the solution process, the prevailing conviction
is that such information should not serve to “regularize” the inverse problem. Rather,
one must accept and account for the inherent lack of resolution [1, 26, 13]. We feel
that FOSLS offers a natural foundation for projecting this conviction.

2. FOSLS framework. We now prove equivalence of the OLS formulation to
two interior least-squares functionals. To represent Dirichlet data, we write Rσ∗(h)
instead of g to stress the present assumption on zero error in the data, as well as
the dependence on σ∗. Finally, we develop the framework explicitly for two dimen-
sions and anticipate that the setting generalizes to three dimensions, although we
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draw attention to those points in the development for which the three-dimensional
generalization is not obvious.

2.1. Kohn and Vogelius. The first interior least-squares formulation we ad-
dress was introduced by Kohn and Vogelius [23] and Kohn and McKenney [20] and
is closely related to the original interior functional proposed for ECT by Wexler, Fry,
and Neumann [41]. We now review their formulation in two dimensions before proving
its equivalence to OLS.

2.1.1. Formulation. To begin, we recall the interior partial differential equation
(PDE) and boundary conditions associated with the exact, albeit unknown, conduc-
tivity, σ∗:

∇ · σ∗∇p = 0 in Ω,

n · σ∗∇p = h on Γ,

p = Rσ∗(h) on Γ.

Letting ∇⊥ = (−∂y, ∂x)t, and recalling that Ω is simply connected, then the divergence-
free condition on σ∗∇p asserted in this PDE implies the existence of s ∈ H1(Ω),
depending on σ∗, h, and Ω, such that

σ∗∇p = ∇⊥s.

On Γ, we have

n · σ∗∇p = n · ∇⊥s = τ · ∇s = h,

where τ denotes the clockwise unit tangent vector. Note that s satisfies

∇ · 1

σ∗∇s = ∇× 1

σ∗∇⊥s = 0 in Ω,

s =

∫
Γ

h dγ on Γ.

To assess the validity of an approximate conductivity, the Kohn and Vogelius
(KV) functional is based on defining two separate sets of Dirichlet problems: given
{Rσ∗(hi), hi}L

i=1, find pi ∈ H1(Ω) such that

∇ · σ∇pi = 0 in Ω,

pi = Rσ∗(hi) on Γ,(2.1)

and find si ∈ H1(Ω) such that

∇× 1

σ
∇⊥si = 0 in Ω,

si =

∫
Γ

hi dγ on Γ.(2.2)

Now, if σ = σ∗, then

‖σ∇pi −∇⊥si‖0,Ω = 0 ∀ i ∈ {1, 2, . . . , L}.(2.3)

With a complete set of boundary data associated with σ∗, the converse statement,
which confirms uniqueness, is also true: if (2.1)–(2.3) are satisfied for every DN pair
{Rσ∗(h), h}, then σ = σ∗.
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The statement in (2.3) suggests minimizing the functional

FKV (σ; {Rσ∗(hi), hi}L

i=1) :=

L∑
i=1

(
min

pi,si ∈H1(Ω)
‖σ1/2∇pi − σ−1/2∇⊥si‖2

0,Ω

)
,(2.4)

where, for each i = 1, 2, . . . , L, we define

pi|Γ := Rσ∗(hi),

si|Γ :=

∫
Γ

hi dγ .(2.5)

The rescaling of conductivity used in (2.4) is chosen so that, for a fixed approximation,
σ, the minimizations in (2.4) can be conducted separately. This fact is shown explicitly
in Lemma 2.2 below.

The scaling of conductivity used in (2.4) also benefits the updating process for
conductivity. For a fixed set of approximations, {pi, si}L

i=1, it is shown in [20] that the
best conductivity is determined pointwise to be

σ =

(
L∑
i=1

| ∇⊥si |2
)1/2( L∑

i=1

| ∇pi |2
)−1/2

.

This sets up a natural minimization process of alternating between the subspace
for σ and those for {pi, si}L

i=1. Indeed, this alternating process is the design of the
proof of the equivalence result. In numerical studies of the KV functional in [20],
minimization in σ is incorporated explicitly, and, instead of the natural alternating
scheme, a Newton quadraticization is used.

2.1.2. Equivalence to OLS. Here we establish equivalence of the KV func-
tional to that of OLS. Because the line of proof follows for each DN pair, it is conve-
nient to denote

F(σ, p, s) := ‖σ1/2∇p− σ−1/2∇⊥s‖0,Ω.

Also, we observe that, for any DN pair {Rσ∗(h), h}, the exact conductivity generates
solutions p∗ and s∗ to (2.1) and (2.2), respectively, such that F(σ∗, p∗, s∗) = 0. For
any arbitrary p , s ∈ H1(Ω) satisfying (2.5), we can interpret F(σ, p, s) as an expression
of error in each variable. Thus, letting H1

0(Ω) := {q ∈ H1(Ω) : q = 0 on Γ}, it is
useful to define

δp := p− p∗ ∈ H1

0(Ω),

δs := s− s∗ ∈ H1

0(Ω).

Note that since δp and δs are zero on the boundary, we preserve the boundary values
of p∗ and s∗, as required by the functional, and we can rewrite (2.4) subject to (2.5)
as

FKV (σ; {Rσ∗(hi), hi}L

i=1) =

L∑
i=1

(
min

δpi,δsi ∈H1
0(Ω)

F(σ, p∗i + δpi, s
∗
i + δsi)

)
.(2.6)

The equivalence relation we seek, Corollary 2.3 below, follows from a generalized
ellipticity property for functional term F(σ, p∗+δp, s∗+δs). As already mentioned, this
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property of the functional is established in Lemma 2.2. Essentially, in the following
theorem we establish that F(σ, p∗+δp, s∗+δs) is equivalent to an expression of specific
quantities Rσ(h) −Rσ∗(h), δp− δpD, and δs− δsD, where

δpD := arg min
δp ∈ H1

0(Ω)
‖σ1/2∇(p∗ + δp)‖0,Ω,

δsD := arg min
δs ∈ H1

0(Ω)
‖σ−1/2∇⊥(s∗ + δs)‖0,Ω(2.7)

come from the minimizations in (2.6). Hence by design, proceeding to conduct the
minimizations in (2.6) leads to lower and upper bounds for FKV (σ; {Rσ∗(hi), hi}L

i=1)
in terms of the defect in the NtD map.

Theorem 2.1. Suppose that σ ∈ L∞
+ (Ω) satisfies σ = σ∗ on Γ. Suppose also

that s∗ ∈ H1(Ω) is such that F(σ∗, p∗, s∗) = 0 for DN triple {p∗,Rσ∗(h), h} associated
with σ∗, where h ∈ H−1/2

0 (Γ). Finally, let δpD and δsD be as defined in (2.7). Then
there exist positive constants c0 and c1 such that

c0‖(Rσ − Rσ∗)h‖2
1/2,Γ + ‖σ1/2∇(δp− δpD)‖2

0,Ω + ‖σ−1/2∇⊥(δs− δsD)‖2
0,Ω

≤ F (σ, p∗ + δp, s∗ + δs)

≤ c1‖(Rσ −Rσ∗)h‖2
1/2,Γ + ‖σ1/2∇(δp− δpD)‖2

0,Ω + ‖σ−1/2∇⊥(δs− δsD)‖2
0,Ω,(2.8)

where c0 depends on Ω and minΩ |σ|, c1 = ‖R−1
σ ‖L(H

1/2
0 (Γ),H

−1/2
0 (Γ))

, and each multiply

only the first terms.
Proof. The optimality of δpD and δsD, characterized in (2.7), leads to the orthog-

onality conditions

〈σ∇(p∗ + δpD),∇δp〉0,Ω = 0 ∀ δp ∈ H1

0(Ω),

〈σ−1∇⊥(s∗ + δsD),∇⊥δs〉0,Ω = 0 ∀ δs ∈ H1

0(Ω).

(2.9)

Note that the Neumann data for δpD and δsD are generally not zero and that, in
preserving the Dirichlet data, the strong form of the first equation in (2.9) means
that {p∗ + δpD,Rσ(h), h} is a DN triple. Now we expand the terms of the functional,
use (2.9), and note that all but one cross term vanishes upon integrating by parts:

F (σ, p∗ + δp, s∗ + δs)

= ‖σ1/2∇(p∗ + δpD + δp− δpD) − σ−1/2∇⊥(s∗ + δsD + δs− δsD)‖2
0,Ω

= ‖σ1/2(∇p∗ + δpD)‖2
0,Ω + ‖σ1/2∇(δp− δpD)‖2

0,Ω − 2〈∇p∗,∇⊥s∗〉0,Ω
+ ‖σ−1/2∇⊥(s∗ + δsD)‖2

0,Ω + ‖σ−1/2∇⊥(δs− δsD)‖2
0,Ω.(2.10)

By assumption, σ∗∇p∗ = ∇⊥s∗, so we may split the lone cross term in (2.10) to write

F (σ, p∗ + δp, s∗ + δs) = ‖σ1/2∇(p∗ + δpD)‖2
0,Ω − ‖σ∗1/2∇p∗‖2

0,Ω

+ ‖σ−1/2∇⊥(s∗ + δsD)‖2
0,Ω − ‖σ∗−1/2∇⊥s∗‖2

0,Ω

+ ‖σ1/2∇(δp− δpD)‖2
0,Ω + ‖σ−1/2∇⊥(δs− δsD)‖2

0,Ω.(2.11)

With the last two terms as desired, consider the other four. The second equation in
(2.9) implies that σ−1∇⊥(s∗+δsD) is equal to a grad. Thus, there exists a δpN ∈ H1(Ω)
such that

σ∇(p∗ + δpN) = ∇⊥(s∗ + δsD).
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Together with the Dirichlet data for s = s∗ + δsD in (2.5), we have

n · σ∇(p∗ + δpN) = n · ∇⊥(s∗ + δsD) = h.(2.12)

In other words, we may think of {p∗+δpN ,Rσ(h), h} as a DN triple for σ. This allows
us to write (2.11) as

F (σ, p∗ + δp, s∗ + δs) = ‖σ1/2∇(p∗ + δpD)‖2
0,Ω − ‖σ∗1/2∇p∗‖2

0,Ω

+ ‖σ1/2∇(p∗ + δpN)‖2
0,Ω − ‖σ∗1/2∇p∗‖2

0,Ω

+ ‖σ1/2∇(δp− δpD)‖2
0,Ω + ‖σ−1/2∇⊥(δs− δsD)‖2

0,Ω.(2.13)

Next, integration by parts yields the following relations:

〈Rσ∗(h), h〉
0,Γ

= ‖σ∗1/2∇p∗‖2
0,Ω,

〈Rσ(h), h〉0,Γ = ‖σ1/2∇(p∗ + δpN)‖2
0,Ω,〈R−1

σ∗ (Rσ∗(h)),Rσ∗(h)
〉

0,Γ
= ‖σ∗1/2∇p∗‖2

0,Ω,〈R−1
σ (Rσ∗(h)),Rσ∗(h)

〉
0,Γ

= ‖σ1/2∇(p∗ + δpD)‖2
0,Ω.(2.14)

Thus, (2.13) becomes

F (σ, p∗ + δp, s∗ + δs) =
〈
(R−1

σ −R−1
σ∗ )Rσ∗(h),Rσ∗(h)

〉
0,Γ

+ 〈(Rσ −Rσ∗)(h), h〉
0,Γ

+‖σ1/2∇(δp− δpD)‖2
0,Ω + ‖σ−1/2∇⊥(δs− δsD)‖2

0,Ω.(2.15)

Since Rσ and Rσ∗ are self-adjoint, we may combine the first two terms:〈
(R−1

σ −R−1
σ∗ )Rσ∗(h),Rσ∗(h)

〉
0,Γ

+ 〈(Rσ −Rσ∗)(h), h〉0,Γ
=
〈
(Rσ −Rσ∗ + Rσ∗R−1

σ Rσ∗ −Rσ∗)(h), h
〉

0,Γ

=
〈
(Rσ −Rσ∗)R−1

σ (Rσ −Rσ∗)(h), h
〉

0,Γ

=
〈R−1

σ (Rσ −Rσ∗)(h), (Rσ −Rσ∗)(h)
〉

0,Γ
.(2.16)

Also, since

〈R−1
σ (Rσ −Rσ∗)(h), (Rσ −Rσ∗)h〉0,Γ

≤ ‖R−1
σ ‖L(H

1/2
0 (Γ),H

−1/2
0 (Γ))

‖(Rσ −Rσ∗)(h)‖2
1/2,Γ,

we may combine (2.15) and (2.16) to arrive at the desired upper bound:

F(σ, p∗ + δp, s∗ + δs) ≤ ‖R−1
σ ‖L(H

1/2
0 (Γ),H

−1/2
0 (Γ))

‖Rσ(h) −Rσ∗(h)‖2
1/2,Γ

+‖σ1/2∇(δp− δpD)‖2
0,Ω + ‖σ−1/2∇⊥(δs− δsD)‖2

0,Ω.

To achieve the lower bound, we recall (2.7) and observe that

(Rσ −Rσ∗)(h) = δpN |Γ ∈ H−1/2

0 (Γ)

by definition of δpN . Hence, we may now consider the p̃ ∈ H1(Ω) that solves

∇ · σ∇p̃ = 0 in Ω,

p̃ = δpN on Γ.
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Appealing to (2.14) and the trace theorem [11], we have

〈R−1
σ (Rσ −Rσ∗)(h), (Rσ −Rσ∗)(h)〉0,Γ = ‖σ1/2∇p̃‖2

0,Ω

≥ c ‖∇p̃‖2
0,Ω

≥ c0 ‖δpN‖2
1/2,Γ

= c0‖(Rσ −Rσ∗)(h)‖2
1/2,Γ,(2.17)

where c0 depends on the smoothness of the boundary and minΩ |σ|. Finally, incorpo-
rating (2.17) with (2.16) into (2.6) establishes the lower bound:

F(σ, p∗ + δp, s∗ + δs) ≥ c0‖(Rσ −Rσ∗)(h)‖2
1/2,Γ

+‖σ1/2∇(δp− δpD)‖2
0,Ω + ‖σ−1/2∇⊥(δs− δsD)‖2

0,Ω.

To make use of the above equivalence, we establish the following lemma using the
constructs of the theorem to reassert the ability to minimize the functional in (2.4)
for si and pi separately.

Lemma 2.2. Suppose that σ = σ∗ on Γ. Also, for each h ∈ H−1/2
0 (Γ), let {p∗,

Rσ∗(h), h} be a DN triple for σ∗ and define

δpD := arg min
δp ∈ H1

0(Ω)
‖σ1/2∇(p∗ + δp)‖0,Ω,

δsD := arg min
δs ∈ H1

0(Ω)
‖σ−1/2∇⊥(s∗ + δs)‖0,Ω.(2.18)

Then

F(σ, p∗ + δpD, s
∗ + δsD) = min

δp,δs∈H1
0(Ω)

F(σ, p∗ + δp, s∗ + δs).(2.19)

Proof. From (2.10) and the boundary data for p∗ and s∗, we have

F (σ, p∗ + δp, s∗ + δs)

= ‖σ1/2(∇p∗ + δpD)‖2
0,Ω + ‖σ1/2∇(δp− δpD)‖2

0,Ω − 2〈∇p∗,∇⊥s∗〉0,Ω
+ ‖σ−1/2∇⊥(s∗ + δsD)‖2

0,Ω + ‖σ−1/2∇⊥(δs− δsD)‖2
0,Ω

= ‖σ1/2(∇p∗ + δpD)‖2
0,Ω + ‖σ1/2∇(δp− δpD)‖2

0,Ω − 2〈Rσ∗(h), h〉0,Γ
+ ‖σ−1/2∇⊥(s∗ + δsD)‖2

0,Ω + ‖σ−1/2∇⊥(δs− δsD)‖2
0,Ω.

The conclusion is apparent since the boundary term is a known fixed quantity.
A direct result of this lemma and Theorem 2.1 is the following corollary.
Corollary 2.3. For any h ∈ H−1/2

0 (Γ), there exist positive constants c0 and c1
such that

c0‖Rσ(h) −Rσ∗(h)‖2
1/2,Γ

≤ min
p,s∈H1(Ω)

‖σ1/2∇p− σ−1/2∇⊥s‖2
0,Ω

≤ c1‖Rσ(h) −Rσ∗(h)‖2
1/2,Γ,(2.20)

where c0 depends on Ω and minΩ |σ|, c1 = ‖R−1
σ ‖L(H

1/2
0 (Γ),H

−1/2
0 (Γ))

, and where p and

s are subject to the boundary data in (2.5).
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It is also clear from Lemma 2.2, as a generalization of the above corollary, that
the KV formulation is equivalent to the OLS formulation. We state this formally in
the following corollary.

Corollary 2.4. With FKV defined in (2.4) subject to (2.5), there exist positive
constants c0 and c1 such that

c0

L∑
i=1

‖Rσ(hi) −Rσ∗(hi)‖2
1/2,Γ

≤ FKV (σ; {Rσ∗(hi), hi}Li=1)

≤ c1

L∑
i=1

‖Rσ(hi) −Rσ∗(hi)‖2
1/2,Γ,(2.21)

where c1 = ‖R−1
σ ‖L(H

1/2
0 (Γ),H

−1/2
0 (Γ))

and c0 depends on Ω and minΩ |σ|.
Remark 4. As a final remark, consider (2.20) under the assumption of complete

knowledge of the NtD map. Taking the sup over all h ∈ H−1/2
0 (Γ) of each quantity

and scaling appropriately then leads to the idealized equivalence result:

c0‖Rσ −Rσ∗‖2

L(H
−1/2
0 (Γ),H

1/2
0 (Γ))

≤ sup
h∈H

−1/2
0 (Γ)

(
minp,s∈ H1(Ω) ‖σ1/2∇p− σ−1/2∇⊥s‖2

0,Ω

)
‖h‖−1/2,Γ

≤ c1‖Rσ −Rσ∗‖2

L(H
−1/2
0 (Γ),H

1/2
0 (Γ))

,

where, again, p and s are subject to the boundary data in (2.5) for a given h. This
suggests a sup version, rather than least-squares version, of the KV functional that is
equivalent to the operator norm of the defect in the NtD maps.

2.2. FOSLS. We now present a FOSLS formulation for ECT. The first-order
system we use may be viewed as a rescaled version of the Maxwell equations. We
will show that the FOSLS formulation not only provides the ability to solve forward
problems efficiently but also yields an insightful process for updating the approximate
conductivity. Again, the result is a natural alternating minimization scheme. We
present the FOSLS formulation and provide an equivalence result akin to that of the
previous section.

2.2.1. Formulation. To derive the FOSLS formulation for ECT, define q :=
1
2 log(σ) so that e2q := σ. This is natural thing to do for deeper reasons than the
positivity of conductivity, since the reciprocal of conductivity, resistivity, is also of
interest. It is therefore seemingly arbitrary whether one considers an error in conduc-
tivity, σ− σ∗, or the associated error in resistivity, 1/σ− 1/σ∗. However, by defining
error in terms of q, such an inconsistency is avoided since

|q − q∗| =
1

2

∣∣∣log
( σ
σ∗
)∣∣∣ = 1

2

∣∣∣∣log

(
1/σ

1/σ∗

)∣∣∣∣ .(2.22)

Proceeding with the formulation, we now let u := eq∇p. Then, with {p,Rσ(h), h}
a DN triple for σ, u solves the first-order system

e−q∇ · equ = 0 in Ω,

eq∇× e−qu = 0 in Ω,

n · equ = h on Γ.(2.23)
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We may think of (2.23) as determining the tangential current

n × e−qu = (n ×∇)Rσ(h) ∈ (H−1/2

0 (Γ))n−1.

When n = 2, we write (τ ·) in lieu of (n×). Practically speaking, deriving tangential
current data from voltage data is problematic at best, since simply differentiating
noisy data is an unstable process. Though there may be future innovations that
enable direct assessment of tangential current, we defer discussion of this important
matter to future research.

We now make our first definition regarding the FOSLS formulation.
Definition 2.5. First-order system (2.23) defines the normal-to-tangential cur-

rent map (NtT map), Pq : H−1/2
0 (Γ) −→ (H−1/2

0 (Γ))n−1, where

Pq(h) = n × e−qu = (n ×∇)Rσ(h).

We also define the following variations on H(div,Ω) and H(curl,Ω).
Definition 2.6. For q ∈ L∞(Ω), let Wq = H(div eq,Ω) ∩ H(curl e−q,Ω), where

H(div eq,Ω) = {u ∈ (L2(Ω))n : ∇ · equ ∈ L2(Ω)} ,
H(curl e−q,Ω) =

{
u ∈ (L2(Ω))n : ∇× e−qu ∈ (L2(Ω))2n−3

}
,

for n = 2, 3.
Finally, it is convenient to introduce an analogy to the DN-triple notation.
Definition 2.7. In the FOSLS setting, if u solves (2.23) with boundary data h,

then we refer to {u, h,Pq∗(h)} as a normal-tangential triple (NT triple) for q and to
{h,Pq∗(h)} as an NT pair.

Given the boundary data, {hi,Pq∗(hi)}L
i=1, associated with an unknown q∗, we

approximate q∗ by minimizing the FOSLS functional

FOSLS(q; {hi,Pq∗(hi)}L

i=1) =

L∑
i=1

(
min

ui εWq

F(q,ui;hi,Pq∗(hi))
)
,(2.24)

where

F(q,ui;hi,Pq∗(hi)) := ‖e−q∇ · equi‖2
0,Ω + ‖eq∇× e−qui‖2

0,Ω

+ ‖n · equi − hi‖2
−1/2,Γ + ‖n × e−qui − Pq∗(hi)‖2

−1/2,Γ.(2.25)

To minimize FOSLS, first note that, for a fixed approximation, q, each ui can be
numerically approximated with optimal efficiency [5]. Furthermore, if we assume
q ∈ H1(Ω) and u ∈ W0 = H(div,Ω) ∩ H(curl,Ω), then for fixed ui ∈ (H1(Ω))n, with
i = 1, . . . , L, we also have an elliptic problem to improve approximation q ∈ H1(Ω).
Taking the first variation in q of FOSLS for a fixed set, {ui ∈ (H1(Ω))2}L

i=1, reveals
that the best q ∈ H1(Ω) satisfies the weak form

〈A∇q,∇r〉0,Ω = f(r) ∀ r ∈ H1(Ω),(2.26)

where

A = 2

L∑
i=1

|ui|2(2.27)
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and f ∈ H−1(Ω), for n = 2 for example, is given by

〈f, r〉0,Ω =

L∑
i=1

(〈∇ · ui,∇r · ui〉0,Ω + 〈∇ × ui,∇⊥r · ui〉0,Ω
)
,

using (τ ·) in lieu of (n×) and (∇⊥·) in lieu of (∇×).
These properties suggest that we can employ an alternating subspace minimiza-

tion scheme. Furthermore, it is remarkable that the minimization associated with the
weak form in (2.26) incorporates inner products of interior current as a weighting on
the components of q, just as it appears in Calderdon’s linearization. Thus, the FOSLS
functional appears to reduce error in q according to naturally weighted H1-seminorms.
Note that prior information about σ∗, manifested as an improved approximation σ,
is reflected in this weighting. Because requiring q ∈ H1(Ω) is quite restrictive, the
OLS or KV approach may be better suited for many applications. However, given the
above insights, the role of FOSLS as a framework for EIT is compelling.

2.2.2. Equivalence to OLS. As with the KV functional, we demonstrate equiv-
alence for n = 2. To show that the FOSLS functional in (2.24) is equivalent to OLS, we
first establish several lemmas and some useful notation. In the first lemma, we relate
Pq to Rσ in two dimensions. Generalization of this lemma to the three-dimensional
problem is not obvious, and not addressed in this study. In three dimesions, compli-
cations arise since Pq is then a 2-vector, whereas Rσ(h) remains a scalar quantity.
However, the increased dimensionality of the data in three dimensions can be expected
to improve the quality of the reconstruction.

Lemma 2.8. Let σ = σ∗ on Γ and n = 2. Then

‖Pq − Pq∗‖L(H
−1/2
0 (Γ),H

−1/2
0 (Γ))

= ‖Rσ −Rσ∗‖L(H
−1/2
0 (Γ),H

1/2
0 (Γ))

.(2.28)

Proof. We wish to show that

sup
h∈H

−1/2
0 (Γ)

‖(Pq − Pq∗)(h)‖−1/2,Γ

‖h‖−1/2,Γ

= sup
h∈H

−1/2
0 (Γ)

‖(Rσ −Rσ∗)(h)‖1/2,Γ

‖h‖−1/2,Γ

.

Since (Pq − Pq∗)(h) = (τ · ∇)(Rσ −Rσ∗)(h), it suffices to show that

‖(Rσ −Rσ∗)(h)‖1/2,Γ = ‖(τ · ∇)(Rσ −Rσ∗)(h)‖−1/2,Γ.

Noting that there is a g ∈ H1/2(Γ) such that g = (Rσ −Rσ∗)h, then this reduces to

‖g‖1/2,Γ =

∥∥∥∥dgdτ
∥∥∥∥

−1/2,Γ

.(2.29)

We now show that this holds for any g ∈ H1/2
0 (Γ) by appealing to the representation of

the H1/2- and H−1/2-norms using the Fourier transform. Defining ĝ(ω) as the transform
of g, we have [24]

‖g‖1/2,Γ = ‖ω1/2ĝ‖0,Γ ,

‖h‖−1/2,Γ = ‖ω−1/2ĥ‖0,Γ.

Hence, (2.29) follows from

‖g‖1/2,Γ = ‖ω1/2ĝ‖0,Γ = ‖ω−1/2ωĝ‖0,Γ = ‖ω−1/2ĝ′‖0,Γ =

∥∥∥∥dgdτ
∥∥∥∥

−1/2,Γ

.
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Remark 5. An alternative proof may be preferable in which (2.29) is derived by
interpolating from an analogous statement of integer index.

It is convenient to isolate the interior and boundary functional terms of the FOSLS
functional in (2.24) and write

F(q,ui;h,Pq∗(hi)) := FI(q,ui) + FB(q,ui;hi,Pq∗(hi)),
FI(q,ui) := ‖e−q∇ · equi‖2

0,Ω + ‖eq∇× e−qui‖2
0,Ω,

FB(q,ui;hi,Pq∗(hi)) := ‖n · equi − hi‖2
−1/2,Γ + ‖τ · e−qui − Pq∗(hi)‖2

−1/2,Γ.(2.30)

The following lemmas set the stage for stating and proving the equivalence results.
The first establishes a useful equivalence relation between F and the norm defined on
Wq(Ω) by

‖w‖2
Wq

:= ‖w‖2
0,Ω + ‖e−q∇ · eqw‖2

0,Ω + ‖eq∇× e−qw‖2
0,Ω.

Lemma 2.9. Let w ∈ Wq(Ω). Then there exists a constant, c, depending on q
and Ω, such that

1

c
‖w‖2

Wq
≤ F(q,w; 0, 0) ≤ c‖w‖2

Wq
.(2.31)

Proof. The upper bound in (2.31) follows directly from the trace theorem [11].
For the lower bound, it suffices to show there is a c such that

‖w‖2
0,Ω

≤ c
(‖e−q∇ · eqw‖2

0,Ω + ‖eq∇× e−qw‖2
0,Ω + ‖n · eqw‖2

−1/2,Γ + ‖τ · e−qw‖2
−1/2,Γ

)
.

To this end, we use a scaled Helmholtz decomposition [11]: ∀ v ∈ (L2(Ω))2, there
exist φ ∈ H1

0(Ω) and ψ ∈ H1(Ω)/R such that

v = eq∇φ+ e−q∇⊥ψ.

The logic leading to this representation is to choose φ so that ∇·e2q∇φ = ∇·eqv and
to similarly choose ψ to satisfy ∇× e−2q∇⊥ψ = ∇× e−qv. The choice of boundary
conditions on φ and ψ enables us to eliminate the cross term that would otherwise
appear below and to use a Poincaré–Friedrichs inequality. With this decomposition,
we write

‖w‖0,Ω = sup
v ∈ (L2(Ω))2

〈w,v〉0,Ω
‖v‖0,Ω

= sup
φ,ψ ∈ H1(Ω)

〈w, eq∇φ+ e−q∇⊥ψ〉0,Ω
‖eq∇φ+ e−q∇⊥ψ‖0,Ω

≤ sup
φ ∈ H1(Ω)

〈w, eq∇φ〉0,Ω
‖eq∇φ‖0,Ω

+ sup
ψ ∈ H1(Ω)

〈w, e−q∇⊥ψ〉0,Ω
‖e−q∇⊥ψ‖0,Ω

=
〈w, eq∇φ∗〉0,Ω
‖eq∇φ∗‖0,Ω

+
〈w, e−q∇⊥ψ∗〉0,Ω
‖e−q∇⊥ψ∗‖0,Ω

.(2.32)
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Applying Green’s theorem to the first term, we have

〈w, eq∇φ∗〉0,Ω
‖eq∇φ∗‖0,Ω

≤ |〈e−q∇ · eqw, eqφ∗〉0,Ω| + |〈n · eqw, φ∗〉0,Γ|
‖eq∇φ∗‖0,Ω

≤ ‖e−q∇ · eqw‖0,Ω‖eqφ∗‖0,Ω + ‖n · eqw‖−1/2,Γ‖φ∗‖1/2,Γ

‖eq∇φ∗‖0,Ω

≤ (‖e−q∇ · eqw‖2
0,Ω + ‖n · eqw‖2

−1/2,Γ

)1/2(‖eqφ∗‖2
0,Ω + ‖φ∗‖2

1/2,Γ

‖eq∇φ∗‖2
0,Ω

)1/2

.(2.33)

The term in (2.33) that does not involve w may be bounded by a constant depending
on q and Ω. To see this, note that we can use the Poincaré–Friedrichs inequality [11]
to write

‖eqφ∗‖2
0,Ω + ‖φ∗‖2

1/2,Γ

‖eq∇φ∗‖2
0,Ω

≤ maxΩ{e2q, 1}
minΩ e2q

(‖φ∗‖2
0,Ω + ‖φ∗‖2

1/2,Γ)

‖∇φ∗‖2
0,Ω

≤ c(q),

where

c(q) = c
maxΩ{e2q, 1}

minΩ e2q
.(2.34)

Thus, (2.33) becomes

〈w, eq∇φ∗〉0,Ω
‖eq∇φ∗‖0,Ω

≤ c1(q)
(‖e−q∇ · eqw‖2

0,Ω + ‖n · eqw‖2
−1/2,Γ

)1/2
.(2.35)

Similarly, there is a c2(q) such that

| 〈w, e−q∇⊥ψ∗〉0,Ω |
‖e−q∇⊥ψ∗‖0,Ω

≤ c2(q)
(‖eq∇× e−qw‖2

0,Ω + ‖τ · e−qw‖2
−1/2,Γ

)1/2
.(2.36)

Therefore, combining inequalities (2.35) and (2.36) and choosing c appropriately
proves the lemma.

We also make use of the next lemma to relate the FOSLS functional directly to
the NtT map.

Lemma 2.10. Let w ∈ Wq(Ω), and suppose n · eqw = h on Γ. If wh satisfies

e−q∇ · eqwh = 0 in Ω,

eq∇× e−qwh = 0 on Γ,

n · eqwh = h on Γ,(2.37)

then there exists a constant, c, depending only on Ω and maxΩ e
q, such that τ ·e−q(w−

wh) satisfies

‖τ · e−q(w − wh)‖2
−1/2,Γ ≤ cFI(q,w).(2.38)

Proof. We have from the trace theorem [11] that

‖τ · e−q(w − wh)‖2
−1/2,Γ ≤ c

(‖∇ × e−q(w − wh)‖2
0,Ω + ‖e−q(w − wh)‖2

0,Ω

)
≤ c

(‖∇ × e−q(w − wh)‖2
0,Ω + ‖eq(w − wh)‖2

0,Ω

)
,
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where c depends on Ω and maxΩ e
q. Since, by assumption, n · eq(w − wh) = 0

on the boundary, we may bound the L2-term above using a Poincaré–Friedrichs-like
inequality of the form [2]

‖eq(w − wh)‖2
0,Ω ≤ c

(‖∇ × e−q(w − wh)‖2
0,Ω + ‖∇ · eq(w − wh)‖2

0,Ω

)
,(2.39)

where c depends on Ω and maxΩ e
q. We therefore have

‖τ · e−q(w − wh)‖2
−1/2,Γ ≤ c

(‖∇ × e−q(w − wh)‖2
0,Ω + ‖∇ · eq(w − wh)‖2

0,Ω

)
≤ cFI(q,w),

where, again, c depends on Ω and maxΩ e
q.

The above lemmas now allow us to establish a lower bound for the FOSLS func-
tional in terms of the defect in the ND map. In analogy to the equivalence es-
tablished for the KV formulation, the line of proof follows for each NT pair. To
begin, let {u∗, h,Pq∗(h)} be an NT triple for unknown σ∗ = e2q∗ . This implies that
F(q∗,u∗;h,Pq∗(h)) = 0. For arbitrary q ∈ H1(Ω), provided q|Γ = q∗|Γ, and arbitrary

u ∈ Wq(Ω), we wish to interpret how F(q,u;h,Pq∗(h)) expresses errors q − q∗ and
u − u∗. To facilitate this analysis, we write the perturbed functional as

F(q,u∗ + δu;h,Pq∗(h)),

where δu ∈ Wq(Ω). It is convenient to make the following definition.
Definition 2.11. Denote

Sq := {u ∈ Wq(Ω) : FI(q,u) = 0} ,

the space of FI-harmonic functions relative to q.
Before addressing arbitrary u ∈ Wq(Ω), and thus arbitrary δu ∈ Wq(Ω), we

first consider perturbations δu such that u ∈ Sq.
Lemma 2.12. Let u ∈ Sq. Then

1

c
‖Pq(h) − Pq∗(h)‖2

−1/2,Γ ≤ F(q,u;h,Pq∗(h)) ∀ h ∈ H−1/2

0 (Γ),

where c = 1 + ‖Pq‖2

L(H
−1/2
0 (Γ),H

−1/2
0 (Γ))

.

Proof. Since u ∈ Sq, we immediately have that FI(q,u) = 0. Also, writing
n · equ = f , we have that τ · e−qu = Pq(f), and the remaining part of the functional
is the boundary term:

FB(q,u;h,Pq∗(h)) = ‖f − h‖2
−1/2,Γ + ‖Pq(f) − Pq∗(h)‖2

−1/2,Γ

= ‖f − h‖2
−1/2,Γ + ‖Pq(f) − Pq(h) + Pq(h) − Pq∗(h)‖2

−1/2,Γ

= ‖f − h‖2
−1/2,Γ + ‖Pq(f) − Pq(h)‖2

−1/2,Γ + ‖Pq(h) − Pq∗(h)‖2
−1/2,Γ

+ 2〈Pq(f) − Pq(h),Pq(h) − Pq∗(h)〉−1/2,Γ.(2.40)

Now, since Pq is linear, we have

‖Pq‖L(H
−1/2
0 (Γ),H

−1/2
0 (Γ))

≥ ‖Pq(f) − Pq(h)‖−1/2,Γ

‖f − h‖−1/2,Γ

.
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Denoting ζ = ‖Pq‖L(H
−1/2
0 (Γ),H

−1/2
0 (Γ))

, we may write

‖f − h‖−1/2,Γ ≥ 1

ζ
‖Pq(f) − Pq(h)‖−1/2,Γ

so that (2.40) becomes

FB(q,u;h,Pq∗(h)) ≥
(

1 +
1

ζ2

)
‖Pq(f) − Pq(h)‖2

−1/2,Γ + ‖Pq(h) − Pq∗(h)‖2
−1/2,Γ

−2‖Pq(f) − Pq(h)‖−1/2,Γ‖Pq(h) − Pq∗(h)‖−1/2,Γ.

Using an ε-inequality, ∀ ε > 0 we have

FB(q,u;h,Pq∗(h))
≥
(

1 +
1

ζ2
− ε

)
‖Pq(f) − Pq(h)‖2

−1/2,Γ +

(
1 − 1

ε

)
‖Pq(h) − Pq∗(h)‖2

−1/2,Γ.

Choosing ε = 1 + 1
ζ2 leads to

F(q,u;h,Pq∗(h)) ≥
(

1

1 + ζ2

)
‖Pq(h) − Pq∗(h)‖2

−1/2,Γ.

We now have all the necessary tools and notation to establish the main theorem,
associated with the lower bound in the equivalence we seek. We write an arbitrary
u ∈ (H1(Ω))2 as u∗ + δu and consider its projection onto space Sq.

Theorem 2.13. Assume that q∗ and u∗ are such that F(q∗,u∗;h,Pq∗(h)) = 0,
and consider F(q,u;h,Pq∗(h)), where q and u are arbitrary insofar as q−q∗ ∈ H1

0(Ω)
and u ∈ Wq(Ω). Also, let δus satisfy

u∗ + δus = arg min
u∗+δu′ ∈ Sq

F(q,u∗ + δu′;h,Pq∗(h)),(2.41)

and define δu = u−u∗. Then there exists a positive constant, c, depending on Ω and
‖Pq‖L(H

−1/2
0 (Γ),H

−1/2
0 (Γ))

, such that

F(q,u;h,Pq∗(h)) ≥ c
(
‖δu − δus‖2

Wq(Ω) + ‖Pq(h) − Pq∗(h)‖2
−1/2,Γ

)
.

Proof. First, u∗ + δus ∈ Sq implies that

F(q,u∗ + δu;h,Pq∗(h)) = F(q,u∗ + δus + δu − δus;h,Pq∗(h))
= FI(q, δu − δus) + FB(q,u∗ + δus + δu − δus;h,Pq∗(h)).(2.42)

On the boundary, we denote

n · (eq(u∗ + δus)) = hs,

τ · (e−q(u∗ + δus)) = Pq(hs)

and

n · (eq(δu − δus)) = δh,

τ · (e−q(δu − δus)) = δf.(2.43)
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Then (2.42) becomes

F(q,u∗ + δu;h,Pq∗(h)) = FI(q, δu − δus) + 〈hs − h+ δh, hs − h+ δh〉−1/2,Γ

+ 〈Pq(hs) − Pq∗(h) + δf,Pq(hs) − Pq∗(h) + δf〉−1/2,Γ
.

(2.44)

Next, expanding the terms in (2.44) leads to

F(q,u∗ + δu;h,Pq∗(h))
= FI(q, δu − δus) + ‖hs − h‖2

−1/2,Γ + ‖Pq(hs) − Pq∗(h)‖2
−1/2,Γ

+ ‖δh‖2
−1/2,Γ + ‖δf‖2

−1/2,Γ + 2 〈hs − h, δh〉−1/2,Γ
+ 2 〈Pq(hs) − Pq∗(h), δf〉−1/2,Γ

.

(2.45)

To address the cross terms, we must use the orthogonality statement associated with

(2.41). First, note that there exists a δ̂u such that {u∗ + δ̂u, h + δh,Pq(h + δh)} is
an NT triple. We may therefore speak of Pq(h + δh) = Pq(h) + Pq(δh) and of an
orthogonality condition for u∗ + δus:

〈hs − h, δh〉−1/2,Γ + 〈Pq(hs) − Pq∗(h),Pq(δh)〉−1/2,Γ = 0 ∀ δh ∈ H−1/2

0 (Γ).
(2.46)

We can now use (2.46) to add and subtract some helpful terms so that, for any
ε ∈ (0, 1), equation (2.45) becomes

F(q, u ;h,Pq∗(h))
= FI(q, δu − δus) + ‖hs − h‖2

−1/2,Γ + ‖Pq(hs) − Pq∗(h)‖2
−1/2,Γ + ‖δh‖2

−1/2,Γ

+ ‖δf‖2
−1/2,Γ + 2ε 〈Pq(hs) − Pq∗(h), δf − Pq(δh)〉−1/2,Γ

+ 2(1 − ε) 〈hs − h, δh〉−1/2,Γ
+ 2(1 − ε) 〈Pq(hs) − Pq∗(h), δf〉−1/2,Γ

≥ FI(q, δu − δus) + ‖hs − h‖2
−1/2,Γ + ‖Pq(hs) − Pq∗(h)‖2

−1/2,Γ + ‖δh‖2
−1/2,Γ

+ ‖δf‖2
−1/2,Γ − 2ε‖Pq(hs) − Pq∗(h)‖−1/2,Γ‖δf − Pq(δh)‖−1/2,Γ

− 2(1 − ε)
∣∣∣〈hs − h, δh〉−1/2,Γ

∣∣∣− 2(1 − ε)
∣∣∣〈Pq(hs) − Pq∗(h), δf〉−1/2,Γ

∣∣∣ .(2.47)

Focusing on the (1 − ε) terms, by Cauchy–Schwarz we have

2
∣∣∣〈hs − h, δh〉−1/2,Γ

∣∣∣ ≤ ‖hs − h‖2
−1/2,Γ + ‖δh‖2

−1/2,Γ,

2
∣∣∣〈Pq(hs) − Pq∗(h), δf〉−1/2,Γ

∣∣∣ ≤ ‖Pq(hs) − Pq∗(h)‖2
−1/2,Γ + ‖δf‖2

−1/2,Γ.

Applying these bounds to (2.47), we have

F(q,u; h,Pq∗(h))
≥ FI(q, δu − δus) − 2ε‖Pq(hs) − Pq∗(h)‖−1/2,Γ‖δf − Pq(δh)‖−1/2,Γ

+ ε
(‖hs − h‖2

−1/2,Γ + ‖Pq(hs) − Pq∗(h)‖2
−1/2,Γ + ‖δh‖2

−1/2,Γ + ‖δf‖2
−1/2,Γ

)
.(2.48)

Now, as a direct application of Lemma 2.10, there exists a constant c1 such that

‖δf − Pq(δh)‖2
−1/2,Γ ≤ c1 FI(q, δu − δus).(2.49)
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To see this, first note that ∃ ũ ∈ Wq(Ω) such that {ũ, hs + δh,Pq(hs) + Pq(δh)} is
an NT triple for q. Then observe that if we let wh = ũ and w = u∗ + δus+ δu− δus,
we may write

τ · (e−q(w − wh)) = δf − Pq(δh).(2.50)

Therefore, applying Lemma 2.10, we have

‖δf − Pq(δh)‖2
−1/2,Γ ≤ cFI(q,w − wh)

≤ cFI(q,w)

≤ c1 FI(q, δu − δus).(2.51)

As a direct result of (2.51), we may write (2.48) as

F(q,u;h,Pq∗(h)) ≥ FI(q, δu − δus) + ε‖Pq(hs) − Pq∗(h)‖2
−1/2,Γ

− 2εc1‖Pq(hs) − Pq∗(h)‖−1/2,Γ (FI(q, δu − δus))
1/2

+ ε
(‖hs − h‖2

−1/2,Γ + ‖δh‖2
−1/2,Γ + ‖δf‖2

−1/2,Γ

)
.(2.52)

Next, we use an ε-inequality, with η in place of ε, to rewrite the first three terms: For
any η > 0,

−2εc1‖Pq(hs) − Pq∗(h)‖−1/2,Γ(FI(q, δu − δus))
1/2

≥ −εc21ηFI(q, δu − δus) − ε

η
‖Pq(hs) − Pq∗(h)‖2

−1/2,Γ,(2.53)

and (2.52) becomes

F(q,u;h,Pq∗(h)) ≥ (1 − εc21η)FI(q, δu − δus) + ε

(
1 − 1

η

)
‖Pq(hs) − Pq∗(h)‖2

−1/2,Γ

+ ε
(‖hs − h‖2

−1/2,Γ + ‖δh‖2
−1/2,Γ + ‖δf‖2

−1/2,Γ

)
.

Choosing 0 < ε < 1 and η > 1 so that (1 − εc21η) = ε(1 − 1/η) and ε is as large as
possible, we have

F(q,u;h,Pq∗(h)) ≥ ε

(
1 − 1

η

)(
FI(q, δu − δus) + ‖Pq(hs) − Pq∗(h)‖2

−1/2,Γ

)
+ ε
(‖δh‖2

−1/2,Γ + ‖δf‖2
−1/2,Γ + ‖hs − h‖2

−1/2,Γ

)
.

(2.54)

Note that this is always possible since ε =
(
c21η + (1 − 1/η)

)−1
. Now we use

F(q, δu − δus; 0, 0) = FI(q, δu − δus) + ‖δh‖2
−1/2,Γ + ‖δf‖2

−1/2,Γ

so that we may write

F(q,u;h,Pq∗(h))
≥ c2

(
F(q, δu − δus; 0, 0) + ‖hs − h‖2

−1/2,Γ + ‖Pq(hs) − Pq∗(h)‖2
−1/2,Γ

)
,

where c2 := ε(1 − 1/η). Next, we recall that

F(q,u∗ + δus;h,Pq∗(h)) = FB(q,u∗ + δus;h,Pq∗(h))
= ‖hs − h‖2

−1/2,Γ + ‖Pq(hs) − Pq∗(h)‖2
−1/2,Γ,
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since u∗ + δus ∈ Sq. Therefore, we may apply Lemma 2.12 to arrive at

F(q,u;h,Pq∗(h)) ≥ c
(
F(q, δu − δus; 0, 0) + ‖Pq(h) − Pq∗(h)‖2

−1/2,Γ

)
.

Finally, by Lemma 2.9, we have the desired coercive bound.
We now state an equivalence result for a fixed NT pair, {h,Pq∗(h)}, which im-

mediately follows from Theorem 2.13 and a simple derivation of the upper bound.
Corollary 2.14. Let h ∈ H−1/2

0 (Γ), and recall that σ = e2q and σ∗ = e2q
∗
. Then

there exists a positive constant, c, depending only on Ω and ‖Pq‖L(H
−1/2
0 (Γ),H

−1/2
0 (Γ))

,

such that

c‖Rσ(h) −Rσ∗(h)‖2
1/2,Γ

≤ min
u εWq(Ω)

F(q,u;h,Pq∗(h))

≤ ‖Rσ(h) −Rσ∗(h)‖2
1/2,Γ.(2.55)

Proof. The lower bound follows immediately from applying Lemma 2.8 to the
statement in Theorem 2.13 and performing the minimization in (2.24). To show
continuity, we simply restrict the space over which the minimization is conducted and
use the definition of Sq to see that

min
u εWq(Ω)

F(q,u;h,Pq∗(h)) ≤ min
u∈Sq

F(q,u;h,Pq∗(h))

≤ min
{u∈Sq :n·u=h}

FB(q,u;h,Pq∗(h))

= ‖Pq(h) − Pq∗(h)‖2
−1/2,Γ(2.56)

for any h ∈ H−1/2
0 (Γ). Hence, again appealing to Lemma 2.8 to relate P to R proves

the upper bound in (2.55).
The above corollary immediately leads to the equivalence of the OLS and FOSLS

functionals, which we now state formally.
Corollary 2.15. With FOSLS defined in (2.24), there exists a positive constant,

c, depending only on Ω and ‖Pq‖L(H
−1/2
0 (Γ),H

−1/2
0 (Γ))

, such that

c

L∑
i=1

‖Rσ(hi)−Rσ∗(hi)‖2
1/2,Γ

≤ FOSLS(q; {hi,Pq∗(hi)}L

i=1)

≤
L∑

i=1

‖Rσ(hi) −Rσ∗(hi)‖2
1/2,Γ.(2.57)

As in the previous section, we can also state the equivalence of a sup version of
the FOSLS functional and the operator norm of the defect in the NtD maps. For
c > 0 depending only on Ω and ‖Pq‖L(H

−1/2
0 (Γ),H

−1/2
0 (Γ))

, we may write

c‖Rσ −Rσ∗‖2

L(H
−1/2
0 (Γ),H

1/2
0 (Γ))

≤ sup
h∈H

−1/2
0 (Γ)

(
minu ε Wq(Ω) F(q,u;h,Pq∗(h))

)
‖h‖−1/2,Γ

≤ ‖Rσ −Rσ∗‖2

L(H
−1/2
0 (Γ),H

1/2
0 (Γ))

.
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3. Unifying FOSLS framework. Beyond their equivalence, another connec-
tion between the KV and FOSLS functionals can be made. Considering a single DN
pair, the FOSLS interior functional may be written as∥∥∥∥( e−q∇ · eq

eq∇× e−q

)
u

∥∥∥∥2

0,Ω

:= ‖Lu‖2
0,Ω.

Alternatively, one can arrive at the KV functional using a generalized Helmholtz
decomposition for u, leading to

u = eq∇e−qr − e−q∇⊥eqt

= L∗
(
r
t

)
,

for some r, t ∈ H1(Ω). The KV functional in this context, for a single DN pair, may
be written as

‖eq∇p− e−q∇⊥s‖2
0,Ω =

∥∥∥∥L∗
(
eqp
e−qs

)∥∥∥∥2

0,Ω

and may thus be viewed as a first-order system LL∗ (FOSLL∗) formulation [6]. Indeed,
in being adjoint formulations, the L in FOSLS has overspecified boundary conditions,
while the corresponding L∗ has no boundary conditions. FOSLL∗ is in its formative
stages as a viable methodology for the solution of PDEs, yet it may prove partic-
ularly effective in the forward solution of Maxwell’s equations, for which regularity
requirements of standard FOSLS are often too stringent. As such, the KV formulation
represents an interesting connection between FOSLL∗ and the inverse problem.

4. Conclusion. We have presented a new FOSLS formulation for the recon-
struction of conductivity or, equivalently, resistivity, given knowledge of the corre-
sponding NtD map. Moreover, we have established its equivalence to two existing
approaches, including the standard constrained minimization, OLS. Further analysis
of many practical concerns is needed before this novel approach moves beyond theory
to actually impact imaging technology. Here we have established the common ground
from which to conduct such analysis and only begun to explore the role FOSLS can
play in determining the sense in which the inverse problem of EIT can be posed well.

REFERENCES

[1] G. Backus and F. Gilbert, The resolving power of gross earth data, Geophysical Journal of
the Royal Astronomical Society, 266 (1968), pp. 169–205.

[2] M. Berndt, T. Manteuffel, S. McCormick, and G. Starke, Analysis of first-order system
least squares (FOSLS) for elliptic problems with discontinuous coefficients: Part I, SIAM
J. Numer. Anal., submitted.

[3] L. Borcea, A nonlinear multigrid for imaging conductivity and permittivity at low frequency,
Inverse Problems, 17 (2001), pp. 329–360.

[4] B. Brown, Medical impedance tomography and process impedance tomography: A brief review,
Measurement Science and Technology, 12 (2001), pp. 991–996.

[5] Z. Cai, T. A. Manteuffel, and S. McCormick, First-order system least squares for second-
order partial differential equations: Part II, SIAM J. Numer. Anal., 34 (1997), pp. 425–454.

[6] Z. Cai, T. A. Manteuffel, S. McCormick, and J. Ruge, First-order system LL∗ (FOSLL∗):
Scalar elliptic partial differential equations, SIAM J. Numer. Anal., 39 (2001), pp. 1418–
1445.



482 H. R. MACMILLAN, T. A. MANTEUFFEL, AND S. F. MCCORMICK

[7] A. Calderon, On an inverse boundary problem, in Seminar on Numerical Analysis and Its
Applications to Continuum Physics, W. Meyer and M. Raupp, eds., 1980, Brazilian Math.
Society, Rio de Janeiro, 1980, pp. 65–73.

[8] M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev.,
41 (1999), pp. 85–101.

[9] D. Dobson and F. Santosa, An image-enhancement technique for electrical impedance to-
mography, Inverse Problems, 10 (1993), pp. 317–334.

[10] EIT.org, Academic Organization for Biomedical Applications, http://www.eit.org.uk.
[11] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations,

Springer-Verlag, New York, 1986.
[12] E. Haber and D. Oldenburg, A gcv based method for nonlinear ill-posed problems, Comput.

Geosci., 4 (2000), pp. 41–63.
[13] E. Haber and L. Tenorio, Learning regularization functionals: A supervised training ap-

proach, Inverse Problems, 19 (2003), pp. 611–626.
[14] P. Holden, M. Wang, R. Mann, F. Dickin, and R. Edwards, On detecting mixing patholo-

gies inside a stirred vessel using electrical impedance tomography, Chemical Engineering
Research and Design, 77 (1999), pp. 709–712.

[15] Industrial Tomography Systems, Inc., http://www.itoms.com.
[16] D. Isaacson, Distinguishability of conductivities by electric current computed tomography,

IEEE Transactions on Medical Imaging, 5 (1986), pp. 91–95.
[17] V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York,

1997.
[18] J. Kaipio, V. Kolehmainen, M. Vauhkonen, and E. Somersalo, Inverse problems with

structural prior information, Inverse Problems, 15 (1999), pp. 713–729.
[19] J. P. Kaipio, V. Kolehmainen, E. Somersalo, and M. Vauhkonen, Statistical inversion

methods in electrical impedance tomography, Inverse Problems, 16 (2000), pp. 1487–1522.
[20] R. Kohn and A. McKenney, Numerical implementation of a variational method for electrical

impedance tomography, Inverse Problems, 6 (1990), pp. 389–414.
[21] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm.

Pure Appl. Math., 37 (1984), pp. 289–298.
[22] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements II. Interior

results, Comm. Pure Appl. Math., 38 (1985), pp. 643–667.
[23] R. Kohn and M. Vogelius, Relaxation of a variational method for impedance computed to-

mograhy, Comm. Pure Appl. Math., 40 (1987), pp. 745–777.
[24] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,

Springer-Verlag, Berlin, 1972.
[25] H. MacMillan, S. McCormick, and T. Manteuffel, First-Order System Least Squares and

Electrical Impedance Tomography: Numerical Results, manuscript.
[26] K. Mosegaard and A. Tarantola, Probabilistic Approach to Inverse Problems, Academic

Press, San Diego, 2002, pp. 100–180.
[27] A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann.

of Math. (2), 143 (1996), pp. 71–96.
[28] G. A. Newman and G. M. Hoversten, Solution strategies for two- and three-dimensional

electromagnetic inverse problems, Inverse Problems, 16 (2000), pp. 1357–1375.
[29] R. L. Parker, The inverse problem of electrical conductivity in the mantle, Geophysical Journal

of the Royal Astronomical Society, 22 (1970), pp. 121–138.
[30] R. L. Parker, Geophysical Inverse Theory, Princeton Universty Press, Princeton, NJ, 1996.
[31] P. Pinheiro, W. W. Loh, M. Wang, R. Mann, and R. C. Waterfall, Three-dimensional

electrical resistance tomography in a stirred mixing vessel, Chemical Engineering Commu-
nications, 175 (1999), pp. 25–38.

[32] A. Seagar, T. Yeo, and R. Bates, Full-wave computed tomography: Resolution limits, IEE
Proceedings, Pt. A, Physical Science and Measurement, 131 (1984), pp. 616–622.

[33] A. D. Seagar, T. S. Yeo, and R. H. Bates, Full-wave computed tomography: Low frequency
electric current, IEE Proceedings, Pt. A, Physical Science and Measurement, 132 (1985),
pp. 455–466.

[34] H. Storz, W. Storz, and F. Jacobs, Electrical resistivity tomography to investigate geological
structures of the earth’s upper crust, Geophysical Prospecting, 48 (2000), pp. 455–471.

[35] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value
problem, Ann. of Math. (2), 125 (1987), pp. 153–169.

[36] A. Tikhonov and V. Ya, Methods for Solving Ill-Posed Problems, John Wiley and Sons, Des
Moines, IA, 1977.

[37] A. Tripp, E. Cherkaeva, and J. Hulen, Bounds on the complex conductivity of geophysical



FOSLS AND EIT 483

mixtures, Geophysical Prospecting, 46 (1998), pp. 589–601.
[38] M. Vauhkonen, J. P. Kaipio, E. Somersalo, and P. A. Karjalainen, Electrical impedance

tomography with basis constraints, Inverse Problems, 13 (1997), pp. 523–530.
[39] M. Vauhkonen, D. Vadasz, P. Karjalainen, E. Somersalo, and J. Kaipio, Tikhonov reg-

ularization and prior information in electrical impedance tomography, IEEE Transactions
on Medical Imaging, 17 (1998), pp. 197–219.

[40] P. Vauhkonen, M. Vauhkonen, T. Savolainen, and J. Kaipio, Three-dimensional electrical
impedance tomography on the complete electrode model, IEEE Transactions on Biomedical
Engineering, 46 (1999), pp. 1150–1160.

[41] A. Wexler, B. Fry, and M. Neumann, Impedance-computed tomography algorithm and sys-
tem, Applied Optics, 24 (1985), pp. 3985–3992.



AN EXPLICIT A PRIORI ESTIMATE FOR A
FINITE VOLUME APPROXIMATION OF LINEAR ADVECTION

ON NON-CARTESIAN GRIDS∗

BRUNO DESPRÉS†
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Abstract. We propose an elementary proof of strong convergence for a finite volume approx-
imation of nonstationary linear advection on arbitrary grids in two space dimensions. This proof
is elementary in the sense that the basic a priori estimate uses only some discrete integrations by
parts and the Cauchy–Schwarz inequality. Numerical results show that the estimate is probably
nonoptimal.
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1. Introduction. Let us consider the following nonstationary linear advection
model problem: {

∂tu+ �a.�∇u = 0, (t, �x) ∈ [0, T ] × Ω,
u(t = 0, �x) = u0(�x), �x ∈ ∂Ω.

(1.1)

For the sake of simplicity we consider the two-dimensional case:

�x = (x1, x2) ∈ Ω = [0, 1] × [0, 1] ⊂ R
2;(1.2)

assume that �a �= 0 is constant in space and time, and supplement (1.1) with periodic
boundary conditions{

u(t, 0, x2) = u(t, 1, x2), (t, x2) ∈ [0, T ] × [0, 1],
u(t, x1, 0) = u(t, x1, 1), (t, x1) ∈ [0, T ] × [0, 1].

(1.3)

Taking in account the periodicity of boundary conditions the exact solution is

u(t, �x) = u0(�x− �at).(1.4)

In this work we address the standard finite volume numerical approximation of (1.1).
Even if finite volume methods in conjunction with high order methods are widely
used in practice for industrial problems (see [20, 12, 11, 4, 3, 21, 30] and the refer-
ences therein), mathematical open problems still exist around these techniques. This
has been reported, for instance, in [15] and [16]: in particular, explicit and simple
estimates of the error between the exact solution of (1.1) and various lowest order
finite volume approximations are not so simple to obtain. What we really intend to
show in this work is that a complete understanding of the accuracy of nonstationary
linear advection on non-Cartesian grids is still an open problem.
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In their seminal work [24], Lesaint and Raviart address L2-based approaches for
transport with absorption such as

∂tu+ �a.�∇u+ cu− d∆u = 0, with c > 0 and d = 0.(1.5)

Other L2-based approaches with either diffusion or absorption (i.e., c > 0 or d > 0)
may be found in [7, 8, 17, 18, 28] in the context of discontinuous Galerkin methods
and also in [23] in the context of the Friedrichs systems.

Proof of convergence and estimate of convergence for finite volume methods ap-
plied to nonlinear problems is a subject that has already been considered by many
authors. A nonexhaustive list of references is as follows: [31], based on [14], for a
use of the measure value solution technique to give the first proof of convergence for
transport on general meshes; [2], which uses the kinetic approach [22, 14]; [6, 15] about
the Kuznetsov error approach [19]. Other references may be found in [15] and [16].
See also [13] for an approach with nonlinear schemes. Most proofs of convergence on
arbitrary grids (at least all proofs we are aware of) are based on some mathematical
notions which were designed mainly to tackle nonlinear problems or to tackle coercive-
diffusive transport. The one proposed here, L2-based, gives an explicit bound of the
error in function of the solution for the case c = d = 0. To our knowledge, all L2-based
estimates given in [24, 7, 8] and [28] blow up when c→ 0+ or d→ 0+.

The central part of this paper addresses a new L2-based a priori estimate for the
numerical error concerning the problem (1.1) (i.e., (1.5) with c = d = 0): see inequality
(4.21) of Theorem 2. The interest of this estimate is that it gives an explicit bound
of the numerical error in terms of the solution only:

‖un − un‖2 ≤ F (u(n∆t), u((n− 1)∆t), . . . , u(0)),(1.6)

where u(., j∆t) is the solution at T = j∆t, and F is some functional. A consequence
is a proof of convergence for a standard upwind finite volume approximation of (1.1)
on a regular (we will make this clearer in the following) arbitrary grid, due to

F (u(n∆t), u((n− 1)∆t), . . . , u(0)) ≤ C(T, ||∇u0||L2 , ||∇2u0||L2)∆x
1
2 ,(1.7)

where we assume that u0 ∈ H2(Ω) and that the mesh is a general triangular or
quadrangular mesh: un is the numerical solution and un = 1

sj

∫
Ωj
u(n∆t, �x)dx is the

cell-averaged exact solution in cell Ωj . A corollary is convergence of the upwind finite
volume scheme for linear advection on regular grids in L1 and L2.

Estimate (1.7) displays a fractional order of convergence C∆x
1
2 , even for a H2

solution. It has to be compared with the standard estimate [29] of convergence C∆x,
true for the numerical approximation on a Cartesian grid of the smooth solution of
(1.1) (actually numerical results clearly indicate that the numerical rate of convergence
is C∆x, even for non-Cartesian grids). It is still an open question to decide whether

the fractional order of convergence C∆x
1
2 is optimal on arbitrary non-Cartesian grids

or not. The reason why we obtain only a fractional order of convergence in our proof is
that finite volume methods on general meshes are nonconsistent in the finite difference
sense. To deal with the formal nonconsistency of finite volume techniques, which is
here the real difficulty, we introduce an approximate and global cell-averaged solution
vn ≈ un and prove various but basic a priori estimates about this approximate
solution. The interest of this approximate solution is that it is consistent, while
the projection of the exact solution is nonconsistent. These a priori estimates give the
C∆x

1
2 order of convergence. An important difference with previous works about the
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finite difference
finite volume:
triangular mesh

finite volume:
quadrangular mesh

Fig. 1. Some meshes.

L2 analysis (see, for example, [24, 26], in connection with analysis of discontinuous
Galerkin methods) is that the keystone of our analysis is the construction of this
approximate solution, which helps to give a direct analysis of the scheme in terms of
the truncation error: actually we prove that the approximate solution is close to the
exact solution and is consistent; the analysis of [26] is for the stationary equation,
never explains anything about the consistency discrepancy of the scheme, is in some
sense global, and does not help to get the error at time T , which is what one is really
interested in for nonstationary problems.

The paper is organized as follows. In section 2, we introduce some notation and
define the standard finite volume approximation of (1.1). Then, in section 3, we recall
the basic definition of the stability of the finite volume discretization. In section 4, we
introduce new material, define what we call the approximate solution v, and prove
various a priori estimates for this v. Then, in section 5, we prove the convergence in
L2 of the finite volume scheme on arbitrary grids with a rate C∆x

1
2 . In section 6, we

give a counterexample of why C∆x
1
2 proofs of convergence via total variation bounded

estimates are not possible. Finally, we give some numerical results in section 7.

2. Notation. From now on, we consider only the discretization of (1.1). Let
(Ωj)j∈[1,.,J] be a finite mesh of Ω:{

Ωj ∩ Ωk = ∅ ∀j, k, j �= k,⋃
j∈[1,.,J]

Ω̄j = Ω̄ = Ω.(2.1)

J is the number of cells. The shape of any cell is arbitrary. Most usual cases are
square cells (finite difference) and triangle or distorted quadrangular cells (finite vol-
ume); see Figure 1. Other meshes can be constructed; see Figure 5. Two cells are
neighboring cells if and only if they have an edge in common (taking into account
periodic boundary conditions). Each cell has a finite number of neighbors: I(j) is the
set of the neighbors of cell j. The outgoing normal from Ωj on the edge ∂Ωj ∩ ∂Ωk
is denoted as �njk. Of course, the outgoing normal from Ωj is the opposite of the
outgoing normal from Ωk for k ∈ I(j):

�njk + �nkj = 0.(2.2)

We introduce some very natural notation:{
ljk = lkj = R-Lebesgue measure of ∂Ωj ∩ ∂Ωk, a length,
sj = R

2-Lebesgue measure of Ωj , a surface.
(2.3)



FINITE VOLUME FOR LINEAR ADVECTION 487

k
1

k
2

k3
j

a

Fig. 2. I+(j) = {k2, k3}, I−(j) = {k1}.

We also define ⎧⎨⎩
I+(j) = {k ∈ I(j); (�a, �njk) > 0},
I0(j) = {k ∈ I(j); (�a, �njk) = 0},
I−(j) = {k ∈ I(j); (�a, �njk) < 0}

(2.4)

and

mjk = mkj = ljk|(�a, �njk)|.(2.5)

(., .) denotes the standard scalar product. I+(j) (resp., I−(j)) is the set of outgoing
(resp., incoming) cells from Ωj . An example with a triangular mesh is given in Fig-
ure 2. With all this notation the standard upwind finite volume-like method together
with a constant mass initial condition is (2.6)–(2.7):

sj
un+1
j − unj

∆t
+

∑
k∈I+(j)

mjku
n
j −

∑
k∈I−(j)

mjku
n
k = 0 ∀j ∈ [1, ., J ], ∀n ≥ 0,(2.6)

u0
j =

1

sj

∫
Ωj

u0(x) ∀j ∈ [1, ., J ].(2.7)

The following formula will play an important role in the analysis.
Lemma 1. One has the equality∑

k∈I+(j)

mjk =
∑

k∈I−(j)

mjk ∀j.(2.8)

It is a well-known consequence of the divergence theorem:

0 =

∫
Ωj

div �a =

∫
∂Ωj

(�a, �njk) =
∑

k∈I+(j)

mjk −
∑

k∈I−(j)

mjk.

Taking into account periodic boundary conditions, the scheme is conservative since

∑
j

sju
n+1
j =

∑
j

⎛⎝sjunj − ∆t
∑

k∈I+(j)

mjku
n
j −

∑
k∈I−(j)

mjku
n
k

⎞⎠
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=
∑
j

sju
n
j +

⎛⎝−∆t
∑
j

∑
k∈I+(j)

mjku
n
j + ∆t

∑
j

∑
k∈I−(j)

mjku
n
k

⎞⎠
=
∑
j

sju
n
j .

Since (2.8) proves that
∑
j

∑
k∈I−(j)mjku

n
k =

∑
k[
∑
j∈I+(k)mjk]u

n
k , then the term

between parentheses in the right-hand side of the above expression is zero. It shows
the conservativity of the scheme.

3. Stability. In order to investigate the convergence of the scheme we equip the
space R

J with either the standard L2, L1, or L∞ norm.
Definition 1. The standard L2, L1, and L∞ discrete norms are

‖w‖2 =

⎛⎝∑
j

sj(wj)
2

⎞⎠
1
2

, ‖w‖1 =
∑
j

sj |wj |, ‖w‖∞ = max
j

(|wj |).(3.1)

Now we consider w = (wj)j∈[1,.,J] an arbitrary vector w ∈ R
J and define the iteration

operator.
Definition 2. The linear iteration operator A : R

J → R
J extracted from (2.6)

is defined by

(Aw)j = wj − ∆t

sj

⎛⎝ ∑
k∈I+(j)

mjkwj −
∑

k∈I−(j)

mjkwk

⎞⎠ ∀j ∈ [1, ., J ].(3.2)

This iteration operator is stable in the following sense.
Lemma 2. Let us assume the CFL condition∑

k∈I+(j)mjk

sj
∆t ≤ 1 ∀j ∈ [1, ., J ].(3.3)

Then

‖Aw‖2 ≤ ‖w‖2, ‖Aw‖1 ≤ ‖w‖1, ‖Aw‖∞ ≤ ‖w‖∞.(3.4)

The proof is completely standard.
A problem is that the scheme (2.6) is not consistent, at least in the finite difference

sense and for general grids in several space dimensions: this has been reported, for
instance, in [16, 2, 15, 6] and the references therein. To understand more precisely
this property of nonconsistency, we consider the exact solution of (1.1), u(t, �x), and
define unj to be the mean value of the exact solution:

unj =
1

sj

∫
Ωj

u(n∆t, �x)dx ∀j, n.(3.5)

Definition 3. The truncation error Rn = (Rn
j ) ∈ R

J is

Rn
j =

un+1
j − unj

∆t
+

1

sj

⎛⎝ ∑
k∈I+(j)

mjku
n
j −

∑
k∈I−(j)

mjku
n
k

⎞⎠ .(3.6)
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The following result is referred to as the Lax theorem in the literature. We state
it using the L2 norm, but it is possible to use other norms as the L1 or L∞ norm.

Theorem 1 (Lax theorem). Assuming the CFL condition (3.3), the numerical
error ‖un − un‖2 is bounded:

‖un − un‖2 ≤ ∆t

n−1∑
p=0

‖Rp‖2.(3.7)

The numerical error is en = un − un: using the definition of the scheme, the
definition of the iteration operator A and the definition of the truncation error R, one
has

en+1 = Aen − ∆tRn.

Due to the CFL condition we have ‖en+1‖2 ≤ ‖en‖2 + ∆t‖Rn‖2, which implies

‖en‖2 ≤ ‖e0‖2 + ∆t

n−1∑
p=0

‖Rp‖2.

Since e0 = u0 − u0 = 0 by definition of u0 (2.7), it gives (3.7). Assuming enough
regularity of the initial data, and assuming that the mesh is Cartesian, simple Taylor
expansions prove that

‖Rn‖2 = O(∆x,∆t).(3.8)

Due to the CFL inequality (3.3), equation (3.8) implies ‖Rn‖2 = O(∆x).
However, the mesh might not have such a structure (a general triangular mesh

with no particular symmetry is an example; see Figure 1). Then (3.9) is replaced by

‖Rn‖2 = O(1).(3.9)

Using such a general mesh there is no way for Rn
j to be bounded like (3.8). The

reason why we have only (3.9) is that

1

sj

⎛⎝ ∑
k∈I+(j)

mjku
n
j −

∑
k∈I−(j)

mjku
n
k

⎞⎠ =
1

sj

∫
Ωj

�a.∇u(n∆t, �x)dx+O(1)(3.10)

on arbitrary grids for the exact solution. As a consequence of this lack of consistency
(3.9), it is not possible to rely on the Lax theorem (3.7) to prove the convergence of
the scheme.

4. The approximate solution. In order to circumvent this problem we con-
sider that the difficulty comes from the numerical approximation of the gradient of
the solution, which is expressed in (3.10). First we remark that the left-hand side of
(3.10) may be rewritten as (4.1):

1

sj

⎛⎝ ∑
k∈I+(j)

mjku
n
j −

∑
k∈I−(j)

mjku
n
k

⎞⎠(4.1)

=
1

sj

⎛⎝ ∑
k∈I+(j)

mjku
n
jk −

∑
k∈I−(j)

mjku
n
jk

⎞⎠+O(1),
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where unjk is the mean value of the exact solution on the edges:

unjk = unkj =
1

ljk

∫
∂Ωj∩∂Ωk

u(n∆t, �x)dσ ∀j, k, n.(4.2)

Second, it suggests that we may define a new approximate solution, denoted as vnj ,
in order to get rid of this consistency problem.

Definition 4. Let σ > 0. Assuming that u is C0 (so that (4.2) makes sense),
the approximate solution vn ∈ R

J is defined as the solution of the following linear
system:

σsj(v
n
j − unj ) +

∑
k∈I+(j)

mjkv
n
j −

∑
k∈I−(j)

mjkv
n
k(4.3)

=
∑

k∈I+(j)

mjku
n
jk −

∑
k∈I−(j)

mjku
n
jk ∀j ∈ [1, ., J ], n ≥ 0.

Here σ is a kind of penalization parameter. If we take σ = 0, then the numerical
flux of the approximate solution satisfies

1

sj

⎛⎝ ∑
k∈I+(j)

mjkv
n
j −

∑
k∈I−(j)

mjkv
n
k

⎞⎠ =
1

sj

⎛⎝ ∑
k∈I+(j)

mjku
n
jk −

∑
k∈I−(j)

mjku
n
jk

⎞⎠ ,

which is a better approximation of �a.∇u(n∆t, �x) than (4.1). For technical reasons
which will appear clearly in (4.5), it is better to consider σ > 0. This parameter will
be set to the optimal value σ ≈ 1 at the end of the proof. In complete rigor, we should
write this approximate solution as v = v(u, σ). However, we prefer to save notation,
still working with the simplified notation v. Let us point to an originality of the
approximate solution: v is defined globally; that is, vnj is a function of uni and unik ∀
i ∈ [1, ., J ]. To our knowledge, such a global definition has rarely been considered
before. It is a simple exercise to check that∑

j

sjv
n
j =

∑
j

sju
n
j .(4.4)

The terminology approximate solution is justified, at least by the fact that σ = +∞
implies v = u. The interest of definition (4.3) relies principally on the following a
priori estimate.

Lemma 3. Let vn ∈ R
J be a solution of (4.3). Then

(a) one has the a priori estimate

σ‖vn − un‖2
2 ≤ 1

2

∑
j

∑
k∈I+(j)

mjk(u
n
jk − unj )

2;(4.5)

(b) ∀σ > 0 the linear system (4.3) is invertible; that is, the approximate solution
vn ∈ R

J is well defined and unique;
(c) the discrete derivative in time is bounded:

σ

∥∥∥∥vn+1 − vn

∆t
− un+1 − un

∆t

∥∥∥∥2

2

(4.6)

≤ 1

2

∑
j

∑
k∈I+(j)

mjk

(
un+1
jk − unjk

∆t
− un+1

j − unj
∆t

)2

.
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In the next section, we prove that the right-hand sides of (4.5) and (4.6) are
bounded by C∆x for a smooth solution u. So (4.5) and (4.6) prove that vn is indeed
an approximate numerical solution of (1.1) at time step n. We split the proof of this
lemma in three steps.

(a) The a priori estimate (4.5) is actually the key to the approach developed in
this paper. The proof is simple and uses basic discrete integrations by parts and the
Cauchy–Schwarz inequality. We define wn

j = vnj − unj and rewrite (4.3) as

σsjw
n
j +

∑
k∈I+(j)

mjkw
n
j −

∑
k∈I−(j)

mjkw
n
k(4.7)

=
∑

k∈I+(j)

mjk(u
n
jk − unj ) −

∑
k∈I−(j)

mjk(u
n
jk − unk ) ∀j ∈ [1, ., J ].

So wn is a solution of the nonhomogeneous system.

We multiply by wn
j and sum with respect to j. Thus

σ‖wn‖2
2 +

∑
j

⎛⎝ ∑
k∈I+(j)

mjkw
n
j −

∑
k∈I−(j)

mjkw
n
k

⎞⎠wn
j(4.8)

=
∑
j

⎛⎝ ∑
k∈I+(j)

mjk(u
n
jk − unj ) −

∑
k∈I−(j)

mjk(u
n
jk − unk )

⎞⎠wn
j .

We use Lemma 1 to get⎛⎝ ∑
k∈I+(j)

mjkw
n
j −

∑
k∈I−(j)

mjkw
n
k

⎞⎠wn
j(4.9)

=
∑

k∈I−(j)

mjk

(
1

2
(wn

j )2 − 1

2
(wn

k )2 +
1

2
(wn

j − wn
k )2
)
.

So we deduce from (4.9) that

σ‖wn‖2
2 +

1

2

∑
j

⎛⎝ ∑
k∈I−(j)

mjk(w
n
j − wn

k )2

⎞⎠(4.10)

+
1

2

∑
j

⎛⎝ ∑
k∈I−(j)

mjk

⎞⎠ (wn
j )2 − 1

2

∑
j

⎛⎝ ∑
k∈I−(j)

mjk(w
n
k )2

⎞⎠
=
∑
j

⎛⎝ ∑
k∈I+(j)

mjk(u
n
jk − unj ) −

∑
k∈I−(j)

mjk(u
n
jk − unk )

⎞⎠wn
j .

We reorganize the last term in the left-hand side and get

∑
j

∑
k∈I−(j)

mjkw
2
k =

∑
j

⎛⎝ ∑
k∈I+(j)

mjk

⎞⎠w2
j .(4.11)
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Thus one has

∑
j∈[1,.,J]

⎛⎝ ∑
k∈I−(j)

mjk(w
n
k )2

⎞⎠ =
∑

k∈[1,.,J]

⎛⎝ ∑
j;k∈I−(j)

mjk

⎞⎠ (wn
k )2(4.12)

=
∑

k∈[1,.,J]

⎛⎝ ∑
j;j∈I+(k)

mkj

⎞⎠ (wn
k )2 =

∑
j∈[1,.,J]

⎛⎝ ∑
k;k∈I−(j)

mjk

⎞⎠ (wn
j )2.

So we rewrite (4.8) as

σ‖wn‖2
2 +

1

2

∑
j

⎛⎝ ∑
k∈I−(j)

mjk(w
n
j − wn

k )2

⎞⎠
=
∑
j

⎛⎝ ∑
k∈I+(j)

mjk(u
n
jk − unj ) −

∑
k∈I−(j)

mjk(u
n
jk − unk )

⎞⎠wn
j .

Using a discrete integration by part we transform the right-hand side:

σ‖wn‖2
2 +

1

2

∑
j

⎛⎝ ∑
k∈I−(j)

mjk(w
n
j − wn

k )2

⎞⎠(4.13)

=
∑
j

⎛⎝ ∑
k∈I+(j)

mjk(u
n
jk − unj )(w

n
j − wn

k )

⎞⎠ .

The Cauchy–Schwarz inequality applied to this right-hand side gives∣∣∣∣∣∣
∑
j

⎛⎝ ∑
k∈I+(j)

mjk(u
n
jk − unj )(w

n
j − wn

k )

⎞⎠∣∣∣∣∣∣
≤
⎛⎝∑

j

∑
k∈I+(j)

mjk(u
n
jk − unj )

2

⎞⎠
1
2

×
⎛⎝∑

j

∑
k∈I+(j)

mjk(w
n
j − wn

k )2

⎞⎠
1
2

≤ 1

2

∑
j

∑
k∈I+(j)

mjk(u
n
jk − unj )

2 +
1

2

∑
j

⎛⎝ ∑
k∈I+(j)

mjk(w
n
j − wn

k )2

⎞⎠
≤ 1

2

∑
j

∑
k∈I+(j)

mjk(u
n
jk − unj )

2 +
1

2

∑
j

⎛⎝ ∑
k∈I−(j)

mjk(w
n
j − wn

k )2

⎞⎠ .

Together with (4.13) it turns into σ‖wn‖2
2 ≤ 1

2

∑
j

∑
k∈I+(j)mjk(u

n
jk − unj )

2, which

gives point (a) of the lemma.
(b) To prove the well posedness of the linear system (4.3) we consider the homo-

geneous linear system:

σsjvj +
∑

k∈I+(j)

mjkvj −
∑

k∈I−(j)

mjkvk = 0 ∀j ∈ [1, ., J ].
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Inequality (4.5) applied to this homogeneous linear system gives

σ‖v‖2
2 +

1

2

∑
j

⎛⎝ ∑
k∈I−(j)

mjk(vj − vk)
2

⎞⎠ = 0.(4.14)

Using now σ > 0 we obtain v = 0. It proves the well posedness of the definition of v.
(c) Finally, we turn to (4.6). Let us define

zn =
wn+1 − wn

∆t
.

This definition is equivalent to

znj =
wn+1
j − wn

j

∆t
=

vn+1
j − vnj

∆t
− un+1

j − unj
∆t

∀j ∈ [1, ., J ].

Combining (4.7) with the same definition at time step n+1, we obtain

σsjz
n
j +

∑
k∈I+(j)

mjkz
n
j −

∑
k∈I−(j)

mjkz
n
k(4.15)

=
∑

k∈I+(j)

mjk

(
un+1
jk − unjk

∆t
− un+1

j − unj
∆t

)

−
∑

k∈I−(j)

mjk

(
un+1
jk − unjk

∆t
− un+1

k − unk
∆t

)
∀j ∈ [1, ., J ].

This equality has exactly the same structure as (4.8). Thus we obtain a very similar
inequality:

σ‖zn‖2
2 ≤ 1

2

∑
j

⎛⎝ ∑
k∈I+(j)

mjk

(
un+1
jk − unjk

∆t
− un+1

j − unj
∆t

)2
⎞⎠ ,

which is exactly (4.6).
Definition 5. We define the truncation error Sn = (Snj ) ∈ R

J ,

Snj =
vn+1
j − vnj

∆t
+

1

sj

⎛⎝ ∑
k∈I+(j)

mjkv
n
j −

∑
k∈I−(j)

mjkv
n
k

⎞⎠ , n ≥ 0,(4.16)

and the truncation error Tn = (Tn
j ) ∈ R

J ,

Tn
j =

un+1
j − unj

∆t
+

1

sj

⎛⎝ ∑
k∈I+(j)

mjku
n
jk −

∑
k∈I−(j)

mjku
n
jk

⎞⎠ , n ≥ 0.(4.17)

Lemma 4. The truncation error Sn is bounded by

‖Sn‖2 ≤ σ‖vn − un‖2 +

∥∥∥∥vn+1 − vn

∆t
− un+1 − un

∆t

∥∥∥∥
2

+ ‖Tn‖2 ∀n ≥ 0.(4.18)
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The truncation error is Sn = an + bn + cn, where

anj =
vn+1
j − vnj

∆t
− un+1

j − unj
∆t

, bnj = −σ(vnj − unj ),

and due to the definition of v in (4.3),

cnj =
un+1
j − unj

∆t
+

1

sj

⎛⎝ ∑
k∈I+(j)

mjku
n
jk −

∑
k∈I−(j)

mjku
n
jk

⎞⎠ = Tn
j .

Thus ‖Sn‖2 ≤ ‖an‖2 + ‖bn‖2 + ‖cn‖2, which is exactly (4.18).
It remains to express some bounds between the numerical solution and the ap-

proximate or exact solution. Inequality (4.20) has to be compared with (3.7): the
interest is that even if the right-hand side of (3.7) is O(1) on arbitrary grids, the

right-hand side of (4.20) will be proved to be O(∆x
1
2 ) on arbitrary grids at least

when the exact solution is H2.
Theorem 2. Assuming the CFL condition (3.3), one has some a priori estimates:

‖un − vn‖2 ≤ ‖u0 − v0‖2 + ∆t

n−1∑
p=0

‖Sp‖2 ∀n ≥ 0(4.19)

and

‖un − un‖2 ≤ ‖vn − un‖2 + ‖u0 − v0‖2 + σ∆t

n−1∑
p=0

‖vp − up‖2(4.20)

+ ∆t

n−1∑
p=0

∥∥∥∥vp+1 − vp

∆t
− up+1 − up

∆t

∥∥∥∥
2

+ ∆t

n−1∑
p=0

‖Tp‖2 ∀n ≥ 0,

which implies

‖un − un‖2 ≤
⎛⎝ 1

2σ

∑
j

∑
k∈I+(j)

mjk(u
n
jk − unj )

2

⎞⎠
1
2

(4.21)

+

⎛⎝ 1

2σ

∑
j

∑
k∈I+(j)

mjk(u
0
jk − u0

j )
2

⎞⎠
1
2

+ σ∆t

n−1∑
p=0

⎛⎝ 1

2σ

∑
j

∑
k∈I+(j)

mjk(u
p
jk − upj )

2

⎞⎠
1
2

+ ∆t

n−1∑
p=0

⎛⎝ 1

2σ

∑
j

∑
k∈I+(j)

mjk

(
up+1
jk − upjk

∆t
− up+1

j − upj
∆t

)2
⎞⎠

1
2

+ ∆t

n−1∑
p=0

‖Tp‖2 ∀n ≥ 0,

where T p is explicitly given in (4.17) in terms of the solution u. The interest of
inequality (4.21) is that the numerical error is explicitly bounded by a discrete quantity
which is a function of the solution u only.
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To prove (4.19) we consider the numerical error between the numerical solution un

and the approximate solution vn: fn = un − vn. Using the definition of the scheme,
the definition of the iteration operator A and the definition of the truncation error S,
one has fn+1 = Afn−∆tSn. One uses the CFL condition ‖fn+1‖2 ≤ ‖fn‖2+∆t‖Sn‖2

which proves (4.19). Next, the triangular inequality gives

‖un−un‖2 ≤ ‖un−vn‖2 + ‖vn−un‖2 ≤ ‖u0 −v0‖2 +∆t

p=n−1∑
p=0

‖Sp‖2 + ‖vn−un‖2.

Using (4.18), (4.5), and (4.6) we obtain (4.20) and (4.21).

5. Convergence. We need some regularity assumptions on the mesh. In the
following we assume that the mesh is triangular, but this is only for the sake of
simplicity; many other meshes can be considered as in Figures 1 and 5. We also
assume that there exists two constants c1 > 0 and c2 > 0 such that

c1∆x
2 ≤ sj ≤ c2∆x

2,(5.1)

where ∆x is a characteristic length of the mesh. A well-known consequence of (5.1)
is

∃c3 = c3(c2) > 0, ljk ≤ c3∆x ∀j, k ∈ [1, ., J ].(5.2)

Definition 6. A sequence of triangular meshes such that ∆x→ 0 and such that
(5.1) is true with uniform c1 and c2 is called a uniformly regular sequence of triangular
meshes. Since c3 = c3(c2), a consequence of this property of uniform regularity is that
c3 is also uniform. We refer the reader to [5] for more definitions and properties about
such uniformly regular meshes.

Using the above material, it is easy to get an explicit bound of the numerical
error. This bound is a theorem of convergence.

Theorem 3. We assume that the initial condition u0 of (1.1) is H2(Ω), so the
solution u is H2([0, T ]×Ω). Consider the numerical solution given by (2.6)–(2.7) on
a sequence of triangular uniformly regular meshes. Then ∃C > 0 such that ∀T > 0,
∀n ≤ T

∆t , and ∀∆x ≤ 1,

‖un − un‖2 ≤ (C(T + 2) max(||∇u0||L2 , ||∇2u0||L2)
)
∆x

1
2 ,(5.3)

where C = C(c1, c2) is a constant which depends only on the parameters of the mesh.
The proof is, of course, based on inequalities (4.20), (4.5), and (4.6). First, we

need to estimate ‖vn − un‖2. Due to (4.5), one has

‖vn − un‖2
2 ≤ 1

2σ

∑
j

∑
k∈I+(j)

mjk(u
n
jk − unj )

2.(5.4)

We split the rest of the proof in five steps. The first step is very classical in the
framework of finite elements and is given here for the sake of the completeness of this
work.

Step 1: Study of |unjk − unj |. In the next we will drop the superscript n and use
|ujk − uj | instead of |unjk − unj |.

We define the affine mapping of the plane Fj : R
2 → R

2 such that a given triangle
(denoted as Ωj) is transformed into the reference triangle (denoted as T ); see Figure
3. This mapping is well known in the theory of finite elements [5].
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Tj

F

B

C

b

c

a

A

Ω

j

Fig. 3. The mapping Fj .

The coordinates of all these points are aj = (xja, y
j
a), b

j = (xjb, y
j
b), and cj =

(xjc, y
j
c), together with A = (0, 0), B = (1, 0), and C = (0, 1). The mapping is

(x̄, ȳ) = Fj(x, y): {
x̄ = αj(x− xja) + βj(y − yja),
ȳ = γj(x− xja) + δj(y − yja),

(5.5)

with Dj = (xjb − xja)(y
j
c − yja) − (xjc − xja)(y

j
b − yja), α

j =
yjc−yja
Dj , βj = −xj

c−xj
a

Dj ,

γj = −yj
b
−yja
Dj , and δj =

xj
b
−xj

a

Dj . The inverse mapping is defined by{
x = ᾱj x̄+ β̄j ȳ,
y = γ̄j x̄+ δ̄j ȳ,

(5.6)

where ᾱj = xjb − xja, β̄
j = xjc − xja, γ̄

j = yjb − yja, and δ̄j = yjc − yja. Note that
|Dj | = meas(Ωj) = sj . Due to (5.1)

|Dj | ≥ c1∆x
2.(5.7)

Next, we define uj(x̄, ȳ) = u(F−1
j (x, y)). Assuming now that ujk (resp., uj) is the

edge- (resp., cell-) averaged value of u on (aj , bj) (resp., Ωj), we get that

ujk − uj =

∫
(A,B)

uj(x̄, ȳ)dx̄−
∫
T

uj(x̄, ȳ)dx̄ dȳ.(5.8)

It is useful to introduce the reference square and to extend the function uj by sym-
metry with respect to the (B,C) edge of the reference triangle T ; see Figure 4. So
(5.8) turns into

ujk − uj =

∫
(A,B)

uj(x̄, ȳ)dx̄−
∫
S

uj(x̄, ȳ)dx̄ dȳ.(5.9)

It is then an easy matter to get an upper estimate of the right-hand side. It proves

∃C > 0, |ujk − uj |2 ≤ C||∇u||2L2(Ωj)
∀j, k.(5.10)

This inequality is uniform with respect to the index of the triangle j and uniform
with respect to the mesh size ∆x.
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S
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C D
symmetry

Fig. 4. Symmetry.

Step 2: Bounds for ‖vn − un‖2. Since mjk = ljk|(�a, �njk)| ≤ c3|�a|∆x, we get

∑
j

∑
k∈I+(j)

mjk(u
n
jk − unj )

2 ≤ (c3|�a|∆x)
∑
j

(
3C

∫
Ωj

|∇u|2
)

≤ (c3|�a|3C∆x)||∇u||2L2(Ω).

Here 3 is the maximal number of edges per triangle. So

‖vn − un‖2 ≤ C1||∇u||L2(Ω)

(
∆x

σ

) 1
2

,(5.11)

where the constant C1 is a function only of (c1, c2, c3).

Step 3: Bounds for ‖vn+1−vn

∆t − un+1−un

∆t ‖2. Of course, we use (4.6). With respect
to what has already been done for (5.11), the extra work concerns only the evaluation
of

un+1
jk − unjk

∆t
− un+1

j − unj
∆t

.(5.12)

Defining w(n∆t) = u((n+1)∆)−u(n∆t)
∆t , we remark that all terms in (5.12) may be

reinterpreted as averages of w:

un+1
jk − unjk

∆t
− un+1

j − unj
∆t

= wn
jk − wn

j ,(5.13)

where wn
jk (resp., wn

j ) is the edge (resp., cell) average of w(n∆t). So if we prove

that ∇w(n∆t) is bounded in L2(Ω), then it is sufficient to use Step 2, applied to

this w(n∆t) function. Since w(n∆t) =
∫ (n+1)∆t

n∆t
∂u
∂t dt = −�a(∫ (n+1)∆t

n∆t
∇udt), then

∇w(n∆t) = −(
∫ (n+1)∆t

n∆t
∇2udt)�a, so ∃c̃ > 0 such that

||∇w(n∆t)||L2(Ω) ≤ c̃||∇2u(n∆t)||L2(Ω) = c̃||∇2u0||L2(Ω).

So we have ∥∥∥∥vn+1 − vn

∆t
− un+1 − un

∆t

∥∥∥∥
2

≤ C2||∇2u0||L2(Ω)

(
∆x

σ

) 1
2

,(5.14)

where the constant C2 > 0 is a function only of (c1, c2, c3).
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Step 4: Estimate of Tn. Concerning Tn, we have

Tn
j =

un+1
j − unj

∆t
+

1

sj

⎛⎝ ∑
k∈I+(j)

mjku
n
jk −

∑
k∈I−(j)

mjku
n
jk

⎞⎠ .

By definition of unjk in (4.2)

Tn
j =

1

sj

∫
Ωj

u((n+ 1)∆t, �x) − u(n∆t, �x)

∆t
+

1

sj

∫
Ωj

�a∇u(n∆t, �x)

=
1

sj

∫
Ωj

∫ (n+1)∆t

n∆t

(∂tu(s, �x) − ∂tu(n∆t, �x))ds dx

=
1

∆t

1

sj

∫
Ωj

∫ (n+1)∆t

n∆t

∫ s

n∆t

∂2
t u(τ, �x)dτ ds dx.

Using the Cauchy–Schwarz inequality we get that

|Tn
j | ≤

1

∆t

1

sj

(∫ (n+1)∆t

n∆t

∫ s

n∆t

∫
Ωj

∂2
t u(τ, �x)

2dx dτ ds

) 1
2

×
(∫ (n+1)∆t

n∆t

∫ s

n∆t

∫
Ωj

dx dτ ds

) 1
2

≤ 1

s
1
2
j

(∫ (n+1)∆t

n∆t

∫ s

n∆t

∫
Ωj

(∂2
t u(τ, �x))

2dx dτ ds

) 1
2

.

So finally we obtain the estimate

‖Tn‖2
2 =

∑
j

sj |Tn
j |2 ≤

∫ (n+1)∆t

n∆t

∫ s

n∆t

(∫
Ω

(∂2
t u(τ, �x))

2dx

)
dτ ds.

As a consequence ∃C̃3 > 0 and ∃C3 > 0 such that

‖Tn‖2
2 ≤ C̃3∆t

2||∂2
t u||2L2(Ω) ≤ C2

3∆x2||∇2u0||2L2(Ω),

that is,

‖Tn‖2 ≤ C3∆x||∇2u0||L2(Ω).(5.15)

Step 5: End of the proof. Finally, we use (5.11)–(5.15) in (4.20) and get

‖un − un‖2 ≤ (2 + σn∆t)C1||∇u0||
(

∆x

σ

) 1
2

+ (n∆t)C2||∇2u0||
(

∆x

σ

) 1
2

+ (n∆t)C3||∇2u0||∆x.

The coefficient 2 + σn∆t ≤ 2 + σT is simply the multiplicative factor, equal to the
number of terms like ‖vp−up‖ in the sum. Finally, we optimize the parameter σ and
choose σ = 1. Be careful that we really need to optimize σ since it appears both in
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the numerator σ 1

σ
1
2
× . . . and in the denominator 1

σ
1
2
× . . . . Since ∆x ≤ 1 we bound

∆x ≤ ∆x
1
2 . It gives (5.3) and finishes the proof.

Corollary 1. We assume that the initial condition u0 of (1.1) is in L1(Ω)
(resp., L2(Ω)), so the solution u is L1([0, T ]×Ω) (resp., L2([0, T ]×Ω)). Consider the
numerical solution given by (2.6)–(2.7) on a sequence of triangular uniformly regular
meshes, and assume a CFL inequality (3.3). Then ∀T > 0 and ∀n ≤ T

∆t ,

un → un as ∆x→ 0 in L1(Ω) (resp., L2(Ω)).(5.16)

This is straightforward and is a mere consequence of the stability of the iteration
operator for the L1 and L2 norms.

6. A remark about convergence via bounded variation estimates. Non-
linear techniques applied to the study of the convergence of the scheme have been
used in various works. Let us mention [4, 3, 15, 6], where a ∆x

1
4 rate of convergence

in L1 for a initial data in L1 ∩BV is proved; see also [25]. In [9, 10] it is proved that

the scheme converges with a ∆x
1
2 rate in L1 for a initial data in L1 ∩ BV , provided

the numerical solution is bounded in L∞([0, T ] ×BV ). Many numerical experiments
show that this hypothesis—the numerical solution is bounded in L∞([0, T ]×BV )—is
very reasonable. Unfortunately, it is false without additional hypotheses, as is shown
in the proof of the next lemma.

Lemma 5. There exist meshes such that the numerical solution is not bounded in
L∞([0, T ] ×BV ) (with a initial data in L1 ∩BV , of course).

Actually the total variation of these numerical solutions blows up like ∆x−
1
2 . The

construction is very simple. Let us consider the almost Cartesian mesh represented
in Figure 5. The mesh is made of squares, but the size of each square is either ∆x
or ∆x

2 . On each “line” all squares have the same size. So we distinguish all cells on
“large” lines, referred to as (2p, j) cells, and all cells on “small” line, referred to as
(2p+1, j) cells. Thus 2p (resp., 2p+1) is the index of the line, while j is the index of
the cell inside its line. Just be careful that there are twice as many cells on a 2p+ 1
line than on a 2p line. The index of the column is j = 0 for the first square on the
positive half-plane x > 0. Here P is the number of “large” lines: provided there are
exactly the same number of large and small lines, one has

P =
1

3∆x
2

=
2

3∆x
.(6.1)

Let us solve the problem with periodic boundary conditions:{
∂tu+ ∂xu = 0, −1 ≤ x, y ≤ 1,
u0(x, y) = 0 for x < 1

2 , u0(x, y) = 1 for x > 1
2 .

(6.2)

This is a one-dimensional problem on each line. But since the size of each square is
not the same, the CFL number is not the same on lines made with ∆x “large” squares
and lines made with ∆x

2 “small” squares. Let us consider for the sake of simplicity

that the CFL number is exactly one for the “small” squares ∆t = ∆x
2 . It means that

the scheme is the one-dimensional exact linear scheme on “small” lines,

un+1
2p+1,j = un2p+1,j−1, u0

2p,j = 1 for j ≥ 0, u0
2p,j = 0 for j < 0,(6.3)

and is the one-dimensional nonexact linear scheme on “large” lines,

un+1
2p,j =

1

2
(un2p,j + un2p,j−1), u0

2p,j = 1 for j ≥ 0, u0
2p,j = 0 for j < 0.(6.4)
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Fig. 5. An almost Cartesian mesh.

The solution of (6.3) is, of course, the exact solution un2p+1,j = u0
2p+1,j−n. It is a

classroom exercise to check that the solution of (6.4) is un2p,j = 1
2n

∑
q≤j

(
q
n

)
, where(

q
n

)
= n!

q!(n−q)! is the binomial coefficient:
(
q
n

)
= 0 for q < 0 and q > n. The L1

difference between the exact the the numerical solution on “large” lines is∑
j

|u2k
2p,j − uexact(2k∆t)| =

∑
0≤j≤k−1

|u2k
2p,j | +

∑
k≤j≤2k−1

|u2k
2p,j − 1|.

Let us get a lower bound for
∑

0≤j≤k−1 |u2k
2p,j |. One has

∑
0≤j≤k−1

|u2k
2p,j | =

1

22k

∑
0≤j≤k−1

∑
q≤j

(
q

2k

)
(6.5)

=
1

22k

∑
0≤q≤k−1

(k − q)

(
q

2k

)
= A−B.

The right-hand side is the difference between

A =
1

22k

k

2

⎛⎝2
∑

0≤q≤k−1

(
q

2k

)⎞⎠ =
1

22k

k

2

(
22k −

(
k

2k

))
=
k

2

(
1 −

(
k
2k

)
22k

)

and

B =
1

22k

∑
0≤q≤k−1

q

(
q

2k

)
=

k

22k

⎛⎝2
∑
q≤k−1

(
q − 1

2k − 1

)⎞⎠
=

k

22k

(
22k−1 − 2

(
k − 1

2k − 1

))
=
k

2

(
1 − 4

(
k−1
2k−1

)
22k

)

=
k

2

(
1 − 2

(
k
2k

)
22k

)
.
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Thus

A−B =
k

2

(
k
2k

)
22k

=

√
k

2
√

2π
+ o(

√
k)(6.6)

from the standard Stirling approximation of the factorial q! ≈ √
2πq

(
q
e

)q
; see [1].

Now going back to (6.5) we get that

∆x
∑
j

|u2k
2p,j − uexact(2k∆t)| ≥ ∆x

( √
k

2
√

2π
+ o(

√
k)

)
.

But 2k is the iteration number and corresponds to the time T = 2k∆t = k∆x. Then
∆x

√
k =

√
∆x

√
∆xk =

√
∆x

√
T . Then we get that ∆x

∑
j |u2k

2p,j − uexact(2k∆t)| ≥
C∆x

1
2 + o(∆x

1
2 ), C =

√
T

2
√

2π
. Let us now get a lower bound of the total variation in

two dimensions of the numerical solution. Since the two-dimensional total variation
is by definition the sum on all edges of the absolute value of the difference of the
numerical solution on both sides, multiplied by the length of the edge, then we get
that

|u2k|BV ≥ 2∆x

P∑
p=1

⎛⎝∑
j

|u2k
2p,j − uexact(2k∆t)|

⎞⎠(6.7)

= P

√
T√
2π

(∆x
1
2 + o(∆x

1
2 )).

Then we get from (6.1) that

|u2k|BV ≥ 2
√
T

3
√

2π
∆x−

1
2 + o(∆x−

1
2 ).(6.8)

Here T = 2k∆t. It ends the proof of the lemma.

7. Numerical order of convergence. However, very simple numerical exper-
iments show that the ∆x

1
2 order of convergence proved in this work for twice differ-

entiable initial data is probably not optimal. The initial data is

u0(x, y) = sin(2π(x+ y)) ∈ H2
per([0, 1]2).

Indeed, the experimental order of convergence is clearly ≈ 1 ∀Lp norms, p = 1, 2, ∞.
In Figure 6 is plotted the type of mesh one usually gets with a standard mesh

generator. Here we have used the Freefem++ mesh generator [27], but it is very
reasonable to think that similar conclusions can be drawn with other mesh generators.
In Table 1 we give the experimental relative error which is defined by

ep =
||u(n∆t) − un∆t||p

||u(n∆t)||p ,(7.1)

where u(n∆t) (resp., un∆t) is the exact (resp., numerical) solution at time n∆t. Here
we took n∆t = 1. The equation is (1.1) with �a = (1, 1). There are many possibilities
to define the characteristic length of the mesh. We use

h = max(edge’s length).(7.2)
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Fig. 6. From Freefem++.

Table 1

Errors with respect to the size of the mesh.

Triangular mesh Points Cells h L1 L2 L∞

2034 3902 0.0408 0.3967 0.3967 0.4102

4488 8730 0.0276 0.2828 0.2828 0.2933

7873 15420 0.0216 0.2173 0.2179 0.2308

17756 35026 0.0147 0.1554 0.1553 0.1675

31232 61818 0.0114 0.1207 0.1206 0.1290

Order 0.9939 0.9946 1.027

Cartesian mesh Points Cells h L1 L2 L∞

402 402 0.025 0.3964 0.3973 0.3961

602 602 0.01666 0.2849 0.2852 0.2848

802 802 0.0125 0.2187 0.2187 0.2187

1202 1202 0.00833 0.1538 0.1539 0.1538

1602 1602 0.00625 0.1160 0.1160 0.1160

Order 0.9818 0.9840 0.981

By inspection of the table one finds that the rate of convergence is very close to one.
We use the approximate formula for the order of convergence:

ordertriangle =
log

ep(0.0147)
ep(0.00114)

log 0.0147
0.00114

and ordersquare =
log

ep(0.025)
ep(0.00625)

log 0.025
0.00625

.(7.3)

In each case, the formula is a function of the error for the two finest meshes.

8. Conclusion. In this paper we give an elementary proof of convergence for lin-
ear advection on arbitrary grids in several space dimensions, based on an explicit and
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new a priori estimate. It is possible to take into account other boundary conditions.
To our knowledge it is still an open problem to explain the one order of convergence for
the linear advection discretized with finite volume methods on non-Cartesian meshes.

Acknowledgment. The author thanks both referees for their help in the im-
provement of the quality of this paper.
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[17] P. Houston, C. Schwab, and E. Süli, Discontinuous hp-finite element methods for advection-
diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), pp. 2133–2163.
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Abstract. This paper addresses the numerical approximation of Young measures appearing as
generalized solutions to scalar nonconvex variational problems. We prove a priori and a posteriori
error estimates for a macroscopic quantity, the stress. For a scalar three-well problem we show
convergence of other quantities such as Young measure support and microstructure region. Numerical
experiments indicate that the computational effort in the solution of the large optimization problem
is significantly reduced by using an adaptive mesh refinement strategy based on a posteriori error
estimates in combination with an active set strategy due to Carstensen and Roub́ıček [Numer. Math.,
84 (2000), pp. 395–414].

Key words. nonconvex variational problems, microstructure, finite elements, error estimation,
adaptivity, multiple scales

AMS subject classifications. 65K10, 65N15, 49M40

DOI. 10.1137/S0036142902404091

1. Introduction. A scalar model example in the context of phase transitions in
crystalline solids reads

(P)

{
Seek u ∈ A := {v ∈W 1,2(Ω) : v|ΓD

= uD}
such that I(u) = inf

v∈A
I(v).

Here, Ω ⊆ R
n is a bounded Lipschitz domain, ΓD ⊆ ∂Ω a closed subset of ∂Ω

with positive surface measure, and uD ∈ W 1/2,2(ΓD) is the trace of some function
ũD ∈W 1,2(Ω). The energy functional I : A → R is for v ∈ A defined by

I(v) :=

∫
Ω

W (∇v(x))dx+ α

∫
Ω

|u0(x) − v(x)|2dx

−
∫

Ω

f(x)v(x)dx−
∫

ΓN

g(x)v(x)dsx,

where u0, f ∈ L2(Ω), g ∈ L2(ΓN ) for ΓN := ∂Ω\ΓD, and α ≥ 0. An energy density W
that can be derived from a three-dimensional model with one-dimensional symmetry
[2] is given by N + 1 wells s0, . . . , sN ∈ R

n and numbers s00, . . . , s
0
N ∈ R and reads

W (s) = min
j=0,... ,N

(|s− sj |2 + s0j
) ∀s ∈ R

n.(1.1)

This function W serves as a model energy density, but more generally we will consider
mappings W : R

n → R which are continuous and satisfy quadratic growth conditions.
The contributions in I which involve f and g represent outer body forces, while

the integral of W (∇v) measures the stored energy in Ω. A mechanical interpretation
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of the term α‖u0 − v‖2
L2(Ω) may be obtained from a model of a thin crystal plate

glued to a rigid substrate [12]. Similar scalar minimization problems arise in optimal
control theory [27]. For ease of presentation, we restrict the analysis to quadratic
growth conditions (p = 2) but stress that the estimates can easily be generalized to
other growth conditions (2 ≤ p <∞).

It is well known that existence of solutions for (P) depends on convexity prop-
erties of W : If W is convex, then there exists a solution which is unique, provided
W is strictly convex or α > 0. In case that W fails to be convex, then I is not
weakly lower semicontinuous and solutions may not exist. In the latter case, infimiz-
ing sequences are generically enforced to develop oscillations and therefore do not
converge to a global minimizer of I. To be able to deal with this phenomenon, we
will consider appropriate (weak∗) limits of infimizing sequences for (P) which contain
the most important information and which show where infimizing sequences develop
oscillations. Those limits are measure-valued functions called Young measures and
arise as solutions for an extended problem (EP). We refer the reader to [23, 26, 27] for
details on the mathematical analysis of (P). The numerical approximation of the ex-
tended problem has been proposed in [24, 27, 17, 8, 25, 28] and in [18] for a nonconvex
variational problem in the theory of micromagnetics. It is our aim to establish error
estimates for the numerical treatment of the extended problem. We note, however,
that our analysis is restricted to scalar problems. The practically more relevant case
of nonconvex vectorial variational problems requires an efficient characterization of
gradient Young measures and is excluded from our considerations. The alternative
approach of directly minimizing I is discussed in [7, 9, 21].

The idea for the derivation of a priori and a posteriori error estimates is that the
discretized extended problem may be regarded as a perturbation of a discretization
of a relaxed (convexified) problem which has been analyzed in [7]. This perturbation
consists of the difference between the convex hull of the energy density itself and the
convex hull of a discrete approximation of the energy density. Employing the concept
of subdifferentials in the theory of nonsmooth optimization we show that a dual
variable, occurring in the discretized extended problem, converges to a macroscopic
quantity of the relaxed problem and prove related error estimates. Moreover, we
prove computable error estimates that allow for adaptive mesh refinement and which
characterize a reliable relation between the two scales involved.

The “active set strategy” of [8] to solve a discretization of (EP) efficiently for
a fixed triangulation of Ω is a multilevel scheme and depends on a good guess of a
solution. Based on our error estimates we propose the embedding of that scheme
into an adaptive mesh refining algorithm. We report the performance of the resulting
algorithm for two examples. Our overall observation is that the algorithm performs
very efficiently but depends on a good solver for large optimization problems. For a
two-dimensional problem a numerical experiment indicates linear complexity of our
solving strategy.

The outline of the rest of this paper is as follows. We state the extended problem
in section 2 and proceed in section 3 with some notation, a construction of discrete
Young measures, and the formulation of the discrete problem. Section 4 gives the
announced error analysis as the main contribution of this work. Section 5 is devoted
to the analysis of convergence of various quantities in a scalar three-well problem.
The “active set strategy” of [8] and its embedding into an adaptive mesh refinement
algorithm are given in section 6. Finally, in section 7, we report on numerical results
for two specifications of (P) which illustrate the theoretical results of this article.
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2. Young measures and the extended problem. In this section we recall
the notion of Young measures which are mappings from Ω into the space of probability
measures on R

n and allow for the computation of certain limits of weakly∗ convergent
sequences in Lebesgue spaces.

Definition 2.1. Let M(Rn) be the set of all signed Radon measures on R
n, and

let PM(Rn) be the subset of probability measures on R
n, i.e., the set of all nonnegative

Radon measures µ ∈ M(Rn) satisfying
∫

R
n µ(ds) = 1. The set of L2-Young measures

Y2(Ω; Rn) is defined as

Y2(Ω; Rn) :=

{
ν ∈ L∞

w (Ω;M(Rn)) : νx ∈ PM(Rn) for a.a. x ∈ Ω,∫
Ω

∫
R

n

|s|2νx(ds)dx <∞
}
.

Here νx := ν(x) for x ∈ Ω, and L∞
w (Ω;M(Rn)) consists of those mappings ν ∈

L∞(Ω;M(Rn)) for which the mapping x 
→ ∫
R

n v(s) νx(ds) is measurable whenever
v ∈ C(Rn) satisfies lim|s|→∞ v(s) = 0.

Infimizing sequences for (P) generate Young measures in the sense of the following
statement, which is a consequence of the fundamental theorem on Young measures
[30, 1, 16, 27]. Throughout this paper we assume that there exist constants c1, c2 > 0
such that

c1|s|2 − c2 ≤W (s) ≤ c2(1 + |s|2) ∀s ∈ R
n.(2.1)

Lemma 2.2 (see [26, Lemma 4.3]). Let (uj) ⊆ A be an infimizing sequence for
(P), i.e., I(uj) → infv∈A I(v). Then there exist u ∈ A, ν ∈ Y2(Ω; Rn), and a subse-
quence (uk) such that uk ⇀ u (weakly) in W 1,2(Ω),∫

Ω

W (∇uk(x))dx→
∫

Ω

∫
R

n

W (s) νx(ds)dx,

and, for almost all x ∈ Ω, there holds ∇u(x) =
∫

R
n s νx(ds).

The Young measure ν generated by the gradients of an infimizing sequence (uj)
for (P) describes oscillations in that sequence in a statistical way [1]. Together with
the weak limit u, we obtain the most relevant information about (P). If we express
the limit of I(uj) in terms of u and ν we obtain the extended problem (EP).

(EP)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Seek (u, ν) ∈ B :=

{
(v, µ) ∈W 1,2(Ω) × Y2(Ω; Rn) :

v|ΓD
= uD,∇v(x) =

∫
R

n

s µx(ds) for a.a. x ∈ Ω

}
such that I(u, ν) = inf

(v,µ)∈B
I(v, µ).

The extended energy functional I is for (v, µ) ∈ B defined by

I(v, µ) :=

∫
Ω

∫
R

n

W (s)µx(ds)dx+ α

∫
Ω

|u0 − v|2dx−
∫

Ω

fvdx−
∫

ΓN

gvdsx.

The following theorem shows that (EP) is a correct extension of (P). Limits in
B refer to the (weak, weak∗)-topology in W 1,2(Ω) × Y2(Ω; Rn) (cf. [27] for details).
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Via the mapping ι : A → B, u 
→ (u, δ∇u), where for almost all x ∈ Ω and all
v ∈ C(Rn) with lim|s|→∞ v(s) = 0 the Dirac measure δ∇u(x) ∈ PM(Rn) is defined by∫

R
n v(s) δ∇u(x)(ds) = v(∇u(x)), A can be embedded continuously into B.

Theorem 2.3 (see [27, Proposition 5.2.1]). (i) (EP) admits a solution.
(ii) infv∈A I(v) = min(w,µ)∈B I(w, µ).
(iii) The embedding ι : A → B of each infimizing sequence for (P) has a convergent

subsequence whose limit is a solution to (EP).
(iv) Each solution to (EP) is the limit of the embedding ι : A → B of an infimizing

sequence for (P).
Carathéodory’s theorem implies that there exist solutions (u, ν) ∈ B to (EP)

such that for almost all x ∈ Ω the probability measure νx is a convex combination
of at most n + 1 Dirac measures (cf. [27, Corollary 5.3.3]). This fact motivates the
discretization of (EP) introduced in section 3 and the algorithm of [8] to efficiently
approximate (EP).

3. Discretization of (EP). This section is devoted to the construction of a
discrete subspace of B.

3.1. Finite element spaces and notation. Let T be a regular triangulation
of Ω into triangles (n = 2) or tetrahedra (n = 3) in the sense of [10], i.e., there are no
hanging nodes; the domain is matched exactly, i.e., Ω = ∪T∈T T ; and T satisfies the
maximum angle condition. Therefore, ∂Ω is assumed to be polygonal. The extremal
points of T ∈ T are called nodes, and N denotes the set of all such nodes. Let
K := N \ ΓD be the subset of free nodes. The set of edges (respectively, faces if
n = 3) E = conv{z1, . . . , zn} ⊆ ∂T for pairwise distinct z1, . . . , zn ∈ N and T ∈ T is
denoted as E . A partition E = EΩ ∪ ED ∪ EN is given by EN := {E ∈ E : E ⊆ ΓN},
ED := {E ∈ E : E ⊆ ΓD}, and EΩ := E \ (ED ∪ EN ). The set

Lk(T ) := {vh ∈ L∞(Ω) : ∀T ∈ T , vh|T ∈ Pk(T )}
consists of all (possibly discontinuous) T -elementwise polynomials of degree at most
k. Define

S1(T ) := L1(T ) ∩ C(Ω) and S1
D(T ) := {uh ∈ S1(T ) : uh|ΓD

= 0} ⊆W 1,2
D (Ω),

where W 1,2
D (Ω) := {v ∈ W 1,2(Ω) : v|ΓD

= 0}. Let (ϕz : z ∈ N ) be the nodal basis
of S1(T ); i.e., ϕz ∈ S1(T ) satisfies ϕz(x) = 0 if x ∈ N \ {z} and ϕz(z) = 1. A
function hT ∈ L0(T ) is defined by hT |T = hT := diam(T ) for all T ∈ T . Moreover,
let hE ∈ L∞(∪E) be defined by hE |E = hE := diam(E) for all E ∈ E .

The nodal interpolation operator associated with a triangulation T is denoted by
PT . If τ is a triangulation of a convex domain ω ⊆ R

n and v ∈ C(ω) we extend Pτv
to R

n by setting Pτv(s) = Pτv(Pω(s)), where Pω denotes the orthogonal projection
onto ω.

Suppose g ∈ L2(ΓN ) is such that g|E ∈W 1,2(E) for all E ∈ EN and, for each node
z ∈ N ∩ ΓN where the outer unit normal nΓN

on ΓN is continuous, g is continuous.
We set

S1
N (T , g) := {τh ∈ S1(T )n : ∀E ∈ EN ∀z ∈ E ∩N , τh(z) · nΓN

|E = g(z)}(3.1)

and note that S1
N (T , g) = ∅ if n = 2. We will assume that S1

N (T , g) = ∅ if n = 3.
Throughout this article c, C > 0 denote mesh-size independent, generic constants.

For 1 ≤ p ≤ ∞ and an integer 
 > 0, ‖ · ‖Lp(Ω) stands for ‖ · ‖Lp(Ω;R�), and ‖ · ‖
abbreviates ‖ · ‖L2(Ω). The operator ∂E · /∂s denotes the edgewise derivative along
(subsets of) ∂Ω.
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3.2. Discrete Young measures. We define a convex, discrete (i.e., finite-
dimensional) subset of the set of L2-Young measures Y2(Ω; Rn) following ideas of
[27, 8, 22].

Definition 3.1 (see [27, Example 3.5.4]). Given a convex polygonal set ω ⊆ R
n

and regular triangulations τ of ω with nodes Nτ and T of Ω we set

YMd,h(Ω; Rn) :=

{
νd,h ∈ Y2(Ω; Rn) : ∀z ∈ Nτ ∃az ∈ L0(T ), az ≥ 0 and

∑
z∈Nτ

az(x) = 1 a.e. in Ω, νd,h,x =
∑
z∈Nτ

az(x)δz for a.e. x ∈ Ω

}
,

where δz denotes the Dirac measure supported in the atom z ∈ R
n ∩ Nτ . By d and

h we denote the maximal mesh-size in τ and T , respectively, and refer to τ and T
through these quantities.

3.3. Discretized extended problem. For regular triangulations T of Ω and
τ of a convex Lipschitz domain ω ⊆ R

n and an approximation uD,h ∈ S1(T )|ΓD
of

uD we consider the following discrete problem (EPd,h):

(EPd,h)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Seek (ud,h, νd,h) ∈ Bd,h :=

{
(vh, µd,h) ∈ S1(T ) × YMd,h(Ω; Rn) :

vh|ΓD
= uD,h,∇vh(x) =

∫
R

n

s µd,h,x(ds) for a.e. x ∈ Ω

}
,

such that I(ud,h, νd,h) = inf
(vh,µd,h)∈Bd,h

I(vh, µd,h).

An existence result for (EPd,h) follows as for (EP).
Proposition 3.2 (see [27, Proposition 5.5.1]). If Bd,h = ∅, then (EPd,h) admits

a solution.
Remarks. (i) There holds Bd,h = ∅ if the diameter of ω is large enough.
(ii) For efficient approximations one has to assume a uniform bound on the gradi-

ent of a solution for (EP). Based on the optimality conditions stated below one may,
however, enlarge ω successively to obtain a correct discrete solution. Therefore, no a
priori bound on the gradient of an exact solution for (EP) will be assumed.

(iii) For a triangulation T of Ω with Nn free nodes and a triangulation τ of ω
with Nn atoms the number of degrees of freedom in (EPd,h) is N2n if h ≈ d ≈ 1/N .

3.4. Optimality conditions. The following lemma describes optimality condi-
tions for (EPd,h) which are key ingredients for the subsequent analysis.

Lemma 3.3 (see [8, Proposition 4.3]). Assume ω = R
n. The pair (ud,h, νd,h) ∈

Bd,h is a solution for (EPd,h) if and only if there exists λd,h ∈ L0(T )n such that, for
almost all x ∈ Ω, we have

max
s∈ω Hλd,h

(x, s) =

∫
R

n

Hλd,h
(x, s) νd,h,x(ds),

where Hλd,h
(x, s) := λd,h(x) · s− PτW (s), and, for all vh ∈ S1

D(T ), there holds∫
Ω

λd,h · ∇vhdx = 2α

∫
Ω

(u0 − ud,h)vhdx+

∫
Ω

fvhdx+

∫
ΓN

gvhdsx.
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Remark. The elementwise constant function λd,h is the Lagrange multiplier for
the constraint ∇ud,h|T =

∫
R

n s νd,h|T (ds), T ∈ T , in (EPd,h).
For the practical implementation a bounded domain ω and a finite discretization

of ω has to be chosen. We formulate appropriate computable conditions that imply
Lemma 3.3.

Lemma 3.4. Assume that ω is bounded and Br0(0) := {s ∈ R
n : |s| < r0} ⊆ ω

for some r0 > 0. Let (ud,h, νd,h) ∈ Bd,h, λd,h ∈ L0(T )n, and assume∫
Ω

λd,h · ∇vhdx = 2α

∫
Ω

(u0 − ud,h)vhdx+

∫
Ω

fvhdx+

∫
ΓN

gvhdsx.

If for almost all x ∈ Ω the mapping s 
→ λd,h(x) · s − PτW (s), s ∈ ω, attains its

maximum in some s∗x ∈ Br0(0), if 2r0c1 ≥ ‖λ‖L∞(Ω), and if for almost all x ∈ Ω

r0‖λ‖L∞(Ω) − c1r
2
0 + c2 ≤ λd,h(x) · s∗x −W (s∗x),(3.2)

then the conditions of Lemma 3.3 are satisfied; i.e., (ud,h, νd,h) is a solution for
(EPd,h).

Proof. It suffices to show that for almost all x ∈ Ω, any extension τ̃ of τ to R
n,

and all s ∈ Nτ̃ \ Br0(0) there holds λd,h(x) · s − Pτ̃W (s) ≤ Hλd,h
(x, s∗x) since then

the optimality conditions of Lemma 3.3 are satisfied (with ω̃ = R
n and τ̃). In view of

(2.1) there holds

λd,h(x) · s− Pτ̃W (s) ≤ ‖λd,h‖L∞(Ω)|s| − c1|s|2 + c2.

Since 2r0c1 ≥ ‖λ‖L∞(Ω) the mapping t 
→ ‖λd,h‖L∞(Ω)t − c1t
2 + c2, t ≥ r0, is mono-

tonically decreasing and since ‖λd,h‖L∞(Ω)r0 − c1r
2
0 + c2 ≤ Hλd,h

(x, s∗x) we have

λd,h(x) · s − Pτ̃W (s) ≤ Hλd,h
(x, s∗x) for all s ∈ Nτ̃ \ Br0(0), which implies the same

estimate for all s ∈ R
n \Br0(0).

4. Error estimates for (EPd,h). We now turn to the formulation of error esti-
mates for solutions for (EPd,h). We prove that the Lagrange multiplier λd,h converges
to a macroscopic quantity, the stress, that appears naturally in (P) and also in the
convexified problem (P∗∗). To estimate the distance between λd,h and the exact stress
we will regard (EPd,h) as a perturbation of a discretization of (P∗∗).

(P∗∗) Seek u ∈ A such that I∗∗(u) = inf
v∈A

I∗∗(v).

Here, the energy functional I∗∗ is defined for v ∈ A and the convex envelope W ∗∗ of
W by

I∗∗(v) :=

∫
Ω

W ∗∗(∇v(x))dx+ α

∫
Ω

|u0 − v|2dx−
∫

Ω

fvdx−
∫

ΓN

gvdsx.

Definition 4.1. For a solution u ∈ A for (P∗∗) we define the stress σ :=
DW ∗∗(∇u) ∈ L2(Ω)n.

Theorem 4.2 (see [7, Theorem 2]). (P∗∗) admits a solution u ∈ A such that∫
Ω

DW ∗∗(∇u) · ∇vdx− 2α

∫
Ω

(u0 − u)vdx−
∫

Ω

fvdx−
∫

ΓN

gvdsx = 0(4.1)
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for all v ∈W 1,2
D (Ω). If DW ∗∗ satisfies, for all F,G ∈ R

n,

|DW ∗∗(F ) −DW ∗∗(G)|2 ≤ C (DW ∗∗(F ) −DW ∗∗(G)) · (F −G),(4.2)

then for two solutions u,w ∈ A for (P∗∗) there holds DW ∗∗(∇u) = DW ∗∗(∇w); i.e.,
σ is unique. If in addition to (4.2) α > 0 or W ∗∗ is strictly convex, then u = w.

Remarks. (i) If W is as in (1.1), then DW ∗∗ satisfies (4.2).
(ii) For a solution (u, ν) ∈ B for (EP) and a solution w for (P∗∗) we have, provided

W,W ∗∗ ∈ C1(Rn), for almost all x ∈ Ω [14, 16],∫
R

n

DW (s) νx(ds) = DW ∗∗(∇w(x)).

(iii) A result in [6] shows σ ∈W 1,2
loc (Ω).

In order to obtain a version of (4.1) in the discrete setting (EPd,h) we need to
differentiate the nonsmooth convexification of PτW . To do this we apply the concept
of subdifferentials.

Definition 4.3. For a convex function V : R
n → R and ς ∈ R

n the subdifferen-
tial of V at ς is defined by

∂V (ς) := {ξ ∈ R
n : V (ς + ζ) − V (ς) ≥ ζ · ξ ∀ζ ∈ R

n}.
Remarks (see [11]). (i) V has a minimum in ς ∈ R

n if and only if 0 ∈ ∂V (ς).
(ii) If V is Gâteaux differentiable in ς ∈ R

n, then ∂V (ς) = {∇V (ς)}.
The following lemma shows that the finite-dimensional minimization problem

(EPd,h) may be seen as a perturbation of a discretization of (P∗∗).
Lemma 4.4. Let W cx

d := ((PτW )|ω)∗∗ denote the convexification of the restriction
of PτW to ω. Assume that (ud,h, νd,h) ∈ Bd,h and λd,h ∈ L0(T )n satisfy the conditions
of Lemma 3.4. Then (ud,h, νd,h) minimizes the modified energy functional

I
′
(vh, µd,h) :=

∫
Ω

∫
R

n

W cx
d (s)µd,h,x(ds)dx

+ α

∫
Ω

|u0 − vh|2dx−
∫

Ω

fvhdx−
∫

ΓN

gvhdsx,

among all (vh, µd,h) ∈ Bd,h. Moreover, λd,h(x) ∈ ∂W cx
d (∇ud,h(x)) for a.e. x ∈ Ω.

Proof. For s ∈ ω we have by Carathéodory’s theorem [27],

W cx
d (s) = ((PτW )|ω)∗∗(s) = inf

s1,... ,sn+1∈ω,
θ1,... ,θn+1∈[0,1],∑n+1

i=1
θi=1,

∑n+1

i=1
θisi=s

n+1∑
i=1

θiPτW (si).

Since PτW |ω is τ -elementwise affine, it suffices to use the nodal values of PτW in the
calculation of W cx

d , i.e.,

W cx
d (s) = ((PτW )|ω)∗∗(s) = inf

θz∈[0,1],∑
z∈Nτ

θz=1,∑
z∈Nτ

θzz=s

∑
z∈Nτ

θzPτW (z).(4.3)

Assume that there exists s ∈ conv{z1, . . . , zn+1} = t ∈ τ , z1, . . . , zn+1 ∈ Nτ , such

that s =
∑n+1
i=1 αizi but W cx

d (s) = ∑n+1
i=1 αiW

cx
d (zi) with αi ∈ [0, 1],

∑n+1
i=1 αi = 1.
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If W cx
d (s) >

∑n+1
i=1 αiW

cx
d (zi), then W cx

d (s) was not convex. In case that W cx
d (s) <∑n+1

i=1 αiW
cx
d (zi), then W cx

d was not the largest convex function satisfying W cx
d ≤

PτW |ω. Therefore, W cx
d (s) =

∑n+1
i=1 αiW

cx
d (zi) so that W cx

d is τ -elementwise affine

and PτW
cx
d |ω = W cx

d . To prove that (ud,h, νd,h) minimizes the functional I
′
it suffices

to verify the optimality conditions from Lemma 3.4 with PτW replaced by PτW
cx
d .

For this it is sufficient to show that, for almost all x ∈ Ω, there holds

max
s∈ω (λd,h(x) · s− PτW (s)) = max

s∈ω (λd,h(x) · s−W cx
d (s))(4.4)

and ∫
R

n

(λd,h(x) · s−W cx
d (s)) νd,h,x(ds) =

∫
R

n

(λd,h(x) · s− PτW (s)) νd,h,x(ds).(4.5)

Since W cx
d ≤ PτW (s)|ω, we have to show only that

max
s∈ω (λd,h(x) · s− PτW (s)) ≥ max

s∈ω (λd,h(x) · s−W cx
d (s))

and ∫
R

n

W cx
d (s) νd,h,x(ds) ≥

∫
R

n

Pτ (s) νd,h,x(ds).

Let s ∈ ω be maximizing in the right-hand side of (4.4), i.e.,

λd,h(x) · s−W cx
d (s) = max

s∈ω (λd,h(x) · s−W cx
d (s)).

By definition of W cx
d there exist θ1, . . . , θn+1 ∈ [0, 1],

∑n+1
i=1 θi = 1, and z1, . . . , zn+1 ∈

Nτ such that
∑n+1
i=1 θizi = s and W cx

d (s) =
∑n+1
i=1 θiPτW (zi). By linearity of s 
→

λd,h(x) · s we have

λd,h(x) · s−W cx
d (s) =

n+1∑
i=1

θi(λd,h(x) · zi − PτW (zi))

≤
n+1∑
i=1

θi max
s∈ω (λd,h(x) · s− PτW (s))

= max
s∈ω (λd,h(x) · s− PτW (s)),

which proves (4.4). If
∫

R
n W

cx
d (s) νd,h,x(ds) <

∫
R

n PτW (s) νd,h,x(ds), the explicit

representation of W cx
d contradicts the fact that (ud,h, νd,h) is minimal for I. We have

thus shown (4.5), which yields the optimality conditions. The maximum principle of
Lemma 3.3, the convexity of the mapping s 
→ W cx

d (s) − λd,h(x) · s together with
Jensen’s inequality, and the identity ∇ud,h(x) =

∫
R

n sdνd,h,x(s) yield, for almost all
x ∈ Ω,

max
s∈ω (λd,h(x) · s−W cx

d (s)) =

∫
R

n

(λd,h(x) · s−W cx
d (s)) νd,h,x(ds)

≤ λd,h(x) · ∇ud,h(x) −W cx
d (∇ud,h(x)).

Therefore, for almost all x ∈ Ω, we have 0 ∈ −λd,h(x) + ∂W cx
d (∇ud,h(x)).
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Another definition is needed for the a priori and a posteriori error estimates. It
concerns the approximation of DW ∗∗ by the multivalued mapping ∂W cx

d .

Definition 4.5. For A ⊆ R
n and a multivalued mapping S : A → 2R

n

, where
2R

n

denotes the power set of R
n, let

‖S‖L∞(A;2Rn ) := sup
t∈A

sup
s∈S(t)

|s|.

4.1. A priori error estimates. The following theorem shows that the mul-
tiplier λd,h for a solution (ud,h, νd,h) ∈ Bd,h for (EPd,h) approximates the unique
quantity σ = DW ∗∗(∇u) for a solution u ∈ A for (P∗∗).

Theorem 4.6. Assume that DW ∗∗ satisfies (4.2) and u ∈ A solves (P∗∗). As-
sume that (ud,h, νd,h) ∈ Bd,h and λd,h ∈ L0(T )n satisfy the conditions of Lemma 3.3.
There holds

‖σ − λd,h‖ + α‖u− ud,h‖ ≤ C inf
(vh,µd,h)∈Bd,h

(‖∇(u− vh)‖ + α‖u− vh‖
)

+C‖∂W cx
d −DW ∗∗‖L∞(ω;2Rn )

+ |Ω|
√
C ′‖∂W cx

d −DW ∗∗‖1/2

L∞(ω;2Rn )
.

Proof. The triangle inequality and estimate (4.2) show

1

2
‖σ − λd,h‖2 ≤ ‖σ −DW ∗∗(∇ud,h)‖2 + ‖DW ∗∗(∇ud,h) − λd,h‖2

≤ C

∫
Ω

(DW ∗∗(∇u) −DW ∗∗(∇ud,h)) · ∇(u− ud,h)dx

+ ‖DW ∗∗(∇ud,h) − λd,h‖2.

Hölder’s inequality yields

1

2
‖σ − λd,h‖2 ≤ C

∫
Ω

(DW ∗∗(∇u) − λd,h) · ∇(u− ud,h)dx

+C

∫
Ω

(λd,h −DW ∗∗(∇ud,h)) · ∇(u− ud,h)dx

+ ‖λd,h −DW ∗∗(∇ud,h)‖2

≤ C

∫
Ω

(DW ∗∗(∇u) − λd,h) · ∇(u− ud,h)dx

+C‖λd,h −DW ∗∗(∇ud,h)‖‖∇(u− ud,h)‖
+ ‖λd,h −DW ∗∗(∇ud,h)‖2.

The Euler–Lagrange equations (4.1) for u and Lemma 3.3 yield, for all wh ∈ S1
D(T ),∫

Ω

(σ − λd,h) · ∇whdx+ 2α

∫
Ω

(u− ud,h)whdx = 0.

We thus have
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Ω

(σ − λd,h) · ∇(u− ud,h)dx+ 2α

∫
Ω

(u− ud,h)
2dx

=

∫
Ω

(σ − λd,h) · ∇(u− ud,h − wh)dx+ 2α

∫
Ω

(u− ud,h)(u− ud,h − wh)dx

≤ ‖σ − λd,h‖‖∇(u− ud,h − wh)‖ + 2α‖u− ud,h‖‖u− ud,h − wh‖.

The combination of the last two estimates shows, after absorption of ‖σ − λd,h‖ and
‖u− ud,h‖,

‖σ − λd,h‖2 + α‖u− ud,h‖2 ≤ C
(‖∇(u− ud,h − wh)‖2 + α‖u− ud,h − wh‖2

+ ‖λd,h −DW ∗∗(∇ud,h)‖‖∇(u− ud,h)‖
+ ‖λd,h −DW ∗∗(∇ud,h)‖2

)
.

Lemma 4.4 ensures λd,h(x) ∈ ∂W cx
d (∇ud,h(x)), and, by construction of Bd,h we have

∇ud,h(x) ∈ ω for almost all x ∈ Ω. This implies

‖λd,h −DW ∗∗(∇ud,h)‖2 ≤
∫

Ω

sup
s∈∂W cx

d
(∇ud,h(x))−DW∗∗(∇ud,h)

|s|2dx

≤ |Ω| sup
t∈ω

sup
s∈∂W cx

d
(t)−DW∗∗(t)

|s|2

= |Ω|‖∂W cx
d −DW ∗∗‖2

L∞(ω;2Rn ).

Letting wh = vh−ud,h for arbitrary (vh, µd,h) ∈ Bd,h and estimating ‖∇(u−ud,h)‖ ≤ C
(which follows from growth conditions (2.1)) we verify the assertion of the
theorem.

For a given energy density W and an appropriate triangulation τ of ω the term
‖∂W cx

d −DW ∗∗‖L∞(ω;2Rn ) can be estimated by the mesh-size of the discretization τ
of ω. We refer the reader to Theorem 5.1 below for an estimate for a three-well energy
density.

Remarks. (i) Theorem 4.6, Theorem 5.1 below, and density of finite element
spaces in A prove λd,h → σ in L2(Ω) for (d, hT ) → 0, and, if α > 0, we also have
ud,h → u in L2(Ω). If u ∈ C(Ω) we may choose vh in Theorem 4.6 as the nodal
interpolant of u, and then we can estimate the error in powers of the mesh-size de-
pending on smoothness properties of u. Since, in general, u has no higher regularity
properties, computable error bounds are needed.

(ii) Owing to the nonuniqueness of u and degeneracy of (EP) we cannot expect
strong convergence ud,h → u in W 1,2.

4.2. A posteriori error estimates. In this section two a posteriori error es-
timates, which are computable bounds for the error ‖σ − λd,h‖, are given. The first
error estimate is similar to classical residual based a posteriori error estimates for
elliptic partial differential equations [29] and employs jumps of normal components
of λd,h across edges. Recall from the definition of (EPd,h) that ω is a fixed convex
subset of R

n.

Definition 4.7. For E ∈ EΩ and T1, T2 ∈ T with E = T1 ∩T2 let nE be the unit
vector normal to E, pointing from T1 into T2. For λd,h ∈ L0(T )n define
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[λd,h · nE ] :=

{
(λd,h|T2 − λd,h|T1) · nE for E ∈ EΩ, T1, T2 ∈ T , E = T1 ∩ T2,

g − λd,h|T · nΓN
|E for E ∈ EN , T ∈ T , E ⊆ ∂T.

Theorem 4.8. Assume that DW ∗∗ satisfies (4.2) and u ∈ A solves (P∗∗). Let
(ud,h, νd,h) ∈ Bd,h and λd,h ∈ L0(T )n satisfy the conditions of Lemma 3.3. Then

‖σ − λd,h‖2 + α‖u− ud,h‖2

≤ C

{(∑
T∈T

h2
T ‖(f + div λd,h + 2α(u0 − ud,h))‖2

L2(T )

)1/2

+

( ∑
E∈EΩ∪EN

hE‖[λd,h · nE ]‖2
L2(E)

)1/2

+ ‖∂W cx
d −DW ∗∗‖L∞(ω;2Rn )

+
∥∥h3/2

E ∂2
EuD/∂s

2
∥∥
L2(ΓD)

}
+ |Ω|‖∂W cx

d −DW ∗∗‖2
L∞(ω;2Rn ).

Proof. Recall from the proof of Theorem 4.6 that, for w ∈ W 1,2(Ω) satisfying
w|ΓD

= uD − uD,h and vh ∈ S1
D(T ), there holds

C‖σ − λd,h‖2 + 2α‖u− ud,h‖2 ≤
∫

Ω

(DW ∗∗(∇u) − λd,h) · ∇(u− ud,h − w − vh)dx

+ 2α

∫
Ω

(u− ud,h)(u− ud,h − w − vh)dx

+ |Ω|‖∂W cx
d −DW ∗∗‖2

L∞(ω;2Rn )

+C|Ω|‖∂W cx
d −DW ∗∗‖L∞(ω;2Rn )

+ ‖σ − λd,h‖‖∇w‖ + 2α‖u− ud,h‖‖w‖.

We employ the weak approximation operator J : W 1,2
D (Ω) → S1

D(T ) of [4, 5] and set
vh := J v. We then have (cf. [5, Theorem 2.1])

‖∇ vh‖ + ‖h−1
T (v − vh)‖ + ‖h−1/2

E (v − vh)‖L2(∪E) ≤ C‖∇v‖(4.6)

The Euler–Lagrange equations (4.1) for u, an elementwise integration by parts, and
(4.6) show for v := u− ud,h − w ∈W 1,2

D (Ω)∫
Ω

(DW ∗∗(∇u) − λd,h) · ∇(v − J v)dx+ 2α

∫
Ω

(u− ud,h)(v − J v)dx

=
∑
T∈T

∫
T

(f + div λd,h)(v − J v)dx+ 2α

∫
Ω

(u0 − ud,h)(v − J v)dx

+
∑

E∈EΩ∪EN

∫
E

[λd,h · nE ](v − J v)dsx

≤ C

((∑
T∈T

h2
T ‖(f + div λd,h + 2α(u0 − ud,h))‖2

L2(T )

)1/2

+

( ∑
E∈EΩ∪EN

hE‖[λd,h · nE ]‖2
L2(E)

)1/2)
‖∇v‖.
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The combination of the last two estimates, together with the estimates ‖∇v‖ ≤ ‖∇(u−
ud,h)‖+ ‖∇w‖ ≤ C, minw|ΓD

=uD−uD,h
‖w‖W 1,2(Ω) ≤ C‖h3/2

E ∂2
EuD/∂s

2‖2
L2(ΓD) (cf. [3,

Lemma 3.1]), shows the assertion after absorption of ‖σ−λd,h‖ and ‖u−ud,h‖.
Remarks. (i) The term ‖h3/2

E ∂2
EuD/∂s

2‖L2(ΓD) is of higher order.

(ii) The terms ‖∂W cx
d − DW ∗∗‖2

L∞(ω;2Rn )
and ‖∂W cx

d − DW ∗∗‖L∞(ω;2Rn ) are of

higher order, provided d� hT (cf. Theorem 5.1). It will be shown later in section 6
that the assumption d� hT does not lead to inefficiency of our numerical schemes.

(iii) The a priori error estimate of Theorem 4.6 and the a posteriori error estimate
of Theorem 4.8 yield a gap between reliability and efficiency of the error estimates
with respect to the discretization parameter h. While the a priori estimate gives

optimal convergence results (for smooth solutions) we face a loss of a factor h
1/2
T in

the a posteriori estimate due to degeneracy of the problem.

Our second error estimate is related to Zienkiewicz–Zhu error estimators (see,
e.g., [5]) for elliptic partial differential equations.

Theorem 4.9. Assume that DW ∗∗ satisfies (4.2) and u ∈ A solves (P∗∗). Let
(ud,h, νd,h) ∈ Bd,h and λd,h ∈ L0(T )n satisfy the conditions of Lemma 3.3. If α = 0
and f ∈W 1,2(Ω), then

‖σ − λd,h‖2 ≤ C

{
min

τh∈S1
N

(T ,g)
‖λd,h − τh‖ + ‖h2

T ∇f‖ + ‖h3/2
E ∂2

EuD/∂s
2‖L2(ΓD)

+
∥∥h3/2

E ∂Eg/∂s
∥∥
L2(ΓN )

+ ‖∂W cx
d −DW ∗∗‖L∞(ω;2Rn )

}
+ |Ω|‖∂W cx

d −DW ∗∗‖2
L∞(ω;2Rn ).

Proof. As in the proof of Theorem 4.6 we have, for w ∈ W 1,2(Ω) with w|ΓD
=

uD − uD,h and vh ∈ S1
D(T ),

C‖σ − λd,h‖2 ≤
∫

Ω

(DW ∗∗(∇u) − λd,h) · ∇(u− ud,h − w − vh)dx

+ |Ω|‖∂W cx
d −DW ∗∗‖2

L∞(ω;2Rn )

+C|Ω|‖∂W cx
d −DW ∗∗‖L∞(ω;2Rn ) + ‖σ − λd,h‖‖∇w‖.

Letting τh ∈ S1
N (T , g) and writing v := u−ud,h−w ∈W 1,2

D (Ω) and vh := J v ∈ S1
D(T )

we verify, using div λd,h|T = 0, the Euler–Lagrange equation (4.1), an integration by
parts, and Hölder’s inequality,

∫
Ω

(DW ∗∗(∇u) − λd,h) · ∇(v − J v)dx

≤
∫

Ω

f(v − J v)dx+
∑
T∈T

∫
T

div(τh − λd,h)(v − J v)dx

+

∫
ΓN

(g − τh · nΓN
)(v − J v)dsx + ‖τh − λd,h‖‖∇(v − J v)‖.
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The estimate (cf. [5, Theorem 2.1])
∫
Ω
f(v−J v)dx ≤ C‖∇v‖ ‖h2

T ∇f‖ and (4.6) yield∫
Ω

(DW ∗∗(∇u) − λd,h) · ∇(v − J v)dx

≤ C

{
‖h2

T ∇f‖ +

(∑
T∈T

h2
T ‖div(τh − λd,h)‖2

L2(T )

)1/2

+
∥∥h3/2

E ∂Eg/∂s
∥∥
L2(ΓN )

+ ‖τh − λd,h‖
}
‖∇v‖.

Choosing w as in [3] and employing elementary results about nodal interpolation on
ΓN we infer

‖w‖W 1,2(Ω)+‖g−τh·nΓN
‖L2(ΓN ) ≤ C

(∥∥h3/2
E ∂2

EuD/∂s
2
∥∥
L2(ΓD)

+
∥∥h3/2

E ∂Eg/∂s
∥∥
L2(ΓN )

)
,

and using an elementwise inverse estimate of the form

hT ‖div(τh − λd,h)‖L2(T ) ≤ C‖τh − λd,h‖L2(T ) ∀T ∈ T

we verify the assertion as in the proof of the preceding theorem.

Remarks. (i) Terms including derivatives of uD, g, or f are of higher order.
Moreover, remarks (ii) and (iii) below Theorem 4.8 are valid here as well.

(ii) Theorem 4.9 shows, up to higher order terms, reliability of the error estimate
‖λd,h − λ∗d,h‖ for any choice of a smooth approximation λ∗d,h ∈ S1

N (T , g) to λd,h.

(iii) A triangle inequality proves an inverse, efficiency estimate of Theorem 4.9
which holds up to higher order terms, provided σ is smooth but with different expo-
nents,

min
τh∈S1

N
(T ,g)

‖λd,h − τh‖ ≤ ‖σ − λd,h‖ + min
τh∈S1

N
(T ,g)

‖σ − τh‖.

This efficiency estimate can be made rigorous but then without explicit constants.

5. Convergence of other quantities. In this section we present an estimate
for DW ∗∗−∂W cx

d and results concerning the convergence behavior of other quantities
such as Young measure support and microstructure region in a three-well problem.
Ideas behind the proofs are adapted from [7, 14].

5.1. Approximation of DW ∗∗. We first state an approximation result for
W ∗∗.

Theorem 5.1. For W : R
2 → R, s 
→ minj=0,1,2 |s − sj |2 with s0 = (0, 0),

s1 = (1, 0), and s2 = (0, 1) and ω = (−m,m)2, m ≥ 1, there exists a triangulation τ
of ω with maximal mesh-size d = 1/k, k a positive integer, of ω such that

‖∂W cx
d −DW ∗∗‖L∞(ω;2Rn ) ≤ Cd ‖D2W ∗∗‖L∞(ω).

Moreover, the mapping DW ∗∗ satisfies (4.2).

Proof. A careful analysis shows that W ∗∗ ∈ C1(Rn) satisfies (4.2) and is for
F = (f1, f2) ∈ R

2 given by
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W ∗∗(F ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, F ∈ XI ,
W (F ), F ∈ XII

∪XIII ∪XIV ,
f2
2 , F ∈ XV ,
f2
1 , F ∈ XV I ,

1
2 (f1 + f2 − 1)2, F ∈ XV II .

X

X X

X

X

X

X

1

f 1

2f

1

I

VII

II

IV

d=1/kVI

V
III

0

Fig. 1. W ∗∗ and the triangulation of ω ⊆ R
2 to resolve the discontinuities of D2W ∗∗.

For d = 1/k, k a positive integer, choose τ as in Figure 1. Since W cx
d is affine on

each t ∈ τ we have ∂W cx
d (s) = conv{DW cx

d |t : t ∈ τ, s ∈ t}. Since DW ∗∗ is continuous
and τ -elementwise differentiable it therefore suffices to show for each t ∈ τ

‖DW cx
d −DW ∗∗‖L∞(t) ≤ d‖D2W ∗∗‖L∞(t).

Letting W ∗∗
d = PτW

∗∗ denote the nodal interpolant of W ∗∗ we have by standard
interpolation results

‖DW cx
d −DW ∗∗‖L∞(t) ≤ ‖DW cx

d −DW ∗∗
d ‖L∞(t) + ‖DW ∗∗

d −DW ∗∗‖L∞(t)(5.1)

≤ ‖DW cx
d −DW ∗∗

d ‖L∞(t) + Cd ‖D2W ∗∗‖L∞(t).

For each k ∈ τ we define an affine function ak : R
2 → R such that, for all x ∈ R

2,
there holds

W cx
d (x) = sup

k∈τ
ak(x)(5.2)

and W cx
d |k = ak. If k ⊆ XI ∪XII ∪XIII ∪XIV ∪XV ∪XV I we define ak such that

ak(z) = W ∗∗(z) for all z ∈ k∩Nτ . If k ⊆ XV II and there exists y = (y1, y2) ∈ k with
y1 + y2 ∈ 1 + 2d[j, j + 1), j ≥ 0, then we define

ak(x) = W (1 + jd, jd) + (x1 − 1 − jd, x2 − jd) · (1, 1)

×W (1 + (j + 1)d, (j + 1)d) −W (1 + jd, jd)

2d
.

Then supk∈τ ak is convex, as it is the supreme of countably many affine functions. A
proof for (5.2) then follows as above for the convexification of W . Note that W cx

d is
mesh dependent. We now prove the remaining estimates. For k ⊂ XI∪XII∪· · ·∪XV I

we have DW cx
d |k = DW ∗∗

d |k so that the asserted estimate follows from (5.1). For k ⊆
XV II such that k ⊆ Aj = {(x1, x2) ∈ R

2 : x1−x2 ∈ [−1, 1], x1 +x2 ∈ 1+2d[j, j+1)},
j ≥ 0, there holds W cx

d = W ∗∗ on ∂Aj , and W cx
d is affine on Aj . Therefore, W cx

d

interpolates W ∗∗ along each line segment in Aj parallel to (1, 1). The estimate

‖DW cx
d −DW ∗∗

d ‖L∞(t) ≤ ‖DW cx
d −DW ∗∗‖L∞(t) + ‖DW ∗∗ −DW ∗∗

d ‖L∞(t)

≤ Cd ‖D2W ∗∗‖L∞(t)

follows from the fact that the line segments have a length d.
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5.2. Convergence of Young measure support. We employ the following
definition in order to prove convergence for the support of the discrete Young measure
solution to the support of an exact solution.

Definition 5.2. For A,B ⊆ R
n let dist(A,B) := inf(a,b)∈A×B |a− b|. We write

Lim supρ→ρ0 Aρ ⊆ A (i.e., A is the upper Kuratowski limit of Aρ, cf. [19, 20]) if

∀ε > 0∃δ > 0 ∀ρ, |ρ− ρ0| ≤ δ ∀x ∈ Aρ, dist(x,A) ≤ ε.

Theorem 5.3. Let W be as in Theorem 5.1, u ∈ A a solution for (P∗∗), and
(uj)j>0 an infimizing sequence for (P). Let (ud,h, νd,h) ∈ Bd,h and λd,h ∈ L0(T )n

satisfy the conditions of Lemma 3.3. Assume that a subsequence of (uj)j>0 converges
weakly to u and generates the Young measure ν. Then there exists a mapping S :
R

2 → 2R
2

such that

dist(S(λd,h(x)), supp νx) → 0

if x ∈ Ω and λd,h(x) → σ(x). If for all T ∈ R
2 there holds

Lim supd→0{F ∈ R
2 : ∃G, S ∈ R

2, {S, T} ⊆ ∂W cx
d (G), S ∈ ∂W cx

d (F )}(5.3)

⊆ {F ∈ R
2 : T = DW ∗∗(F )},

then we also have, if x ∈ Ω and λd,h(x) → σ(x),

Lim supλd,h(x)→σ(x) conv supp νd,h,x ⊆ convS(σ(x)).

Remark. If W cx
d is continuously differentiable, then

{F ∈ R
2 : ∃G, S ∈ R

2, {S, T} ⊆ ∂W cx
d (G), S ∈ ∂W cx

d (F )}
= {F ∈ R

2 : T = DW cx
d (F )}.

Proof. Define µ : R
2 → PM(R2) by

F 
→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − f1 − f2)δ(0,0) + f1δ(1,0) + f2δ(0,1) for F ∈ XI ,

δF for F ∈ XII ∪XIII ∪XIV ,

(1 − f1)δ(0,f2) + f1δ(1,f2) for F ∈ XV ,

(1 − f2)δ(f1,0) + f2δ(f1,1) for F ∈ XV I ,
1

2
(f1 − f2 + 1)δ 1

2 (f1+f2+1,f1+f2−1)

+
1

2
(1 − f1 + f2)δ 1

2 (f1+f2−1,f1+f2+1) for F ∈ XV II .

Since W ∗∗ is affine on conv supp νx,
∫

R
2 sdνx = ∇u(x), and supp νx ⊆ {E ∈ R

2 :
W (E) = W ∗∗(E)} for almost all x ∈ Ω [7, 14], one can show νx = µ(∇u(x)) for

almost all x ∈ Ω. For S : R
2 → 2R

2

defined by

(t1, t2) 
→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0, 0), (1, 0), (0, 1)} for (t1, t2) = (0, 0),

{(t1 + 2, t2)/2} for t1 > 0 and t2 < t1,

{(t1, t2)/2} for t1 < 0 and t2 < 0,

{(t1, t2 + 2)/2} for t2 > 0 and t1 < t2,

{(0, t2)/2, (2, t2)/2} for t1 = 0,

{(t1, 0)/2, (t1, 2)/2} for t2 = 0,

{(t1, t2 + 2)/2, (t1 + 2, t2)/2} for t1 = t2 and t1 > 0,
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the explicit representation of W ∗∗ shows

suppµ(F ) = S(DW ∗∗(F ))

so that supp νx = S(σ(x)) for a.e. x ∈ Ω. Hence

convS(T ) = {E ∈ R
2 : T = DW ∗∗(E)}.(5.4)

Moreover, for each Σ ∈ R
2 the mapping dist(S(·),Σ) : R

2 → R is continuous, and
therefore

dist(S(λd,h(x)), supp νx) = dist(S(λd,h(x)), S(σ(x))) → 0

if x ∈ Ω and λd,h(x) → σ(x). Because of (5.3), (5.4) and since Lim supρ→ρ0 Bρ ⊆ A if
Lim supρ→ρ0 Aρ ⊆ A and Bρ ⊆ Aρ for all ρ, we have to show only that for T = λd,h(x)

conv supp νd,h,x ⊆ {F ∈ R
2 : ∃G, S ∈ R

2, {S, T} ⊆ ∂W cx
d (G), S ∈ ∂W cx

d (F )}
in order to prove the second assertion. The set

M1 := {G ∈ R
2 : ∃S ∈ ∂W cx

d (∇ud,h), S ∈ ∂W cx
d (G)}

contains each subset A ⊆ R
2 with

W cx
d affine on A and ∇ud,h(x) ∈ A.

Since W cx
d is affine conv supp νd,h,x and ∇ud,h(x) ∈ conv supp νd,h,x we conclude that

conv supp νd,h,x ⊆ M1. The inclusion λd,h(x) ∈ ∂W cx
d (∇ud,h(x)) and the choice

G = ∇ud,h(x) yield

M1 ⊆ {F ∈ R
2 : ∃G, S ∈ R

2, {S, T} ⊆ ∂W cx
d (G), S ∈ ∂W cx

d (F )},
which concludes the proof.

5.3. Convergence of the microstructure region. The microstructure region
is that subset of Ω in which the exact Young measure solution is not a single Dirac
measure. In this part of Ω infimizing sequences for (P) develop oscillations.

Definition 5.4. Let M denote the closure of M := {F ∈ R
n : W (F ) =

W ∗∗(F )}. For a solution u ∈ A for the convexified problem (P∗∗) and a solution
(ud,h, νd,h) ∈ Bd,h for (EPd,h) the microstructure region Ωms ⊆ Ω and the discrete
microstructure region Ωms,h ⊆ Ω are defined by

Ωms := {x ∈ Ω : ∇u(x) ∈M} and Ωms,h := {x ∈ Ω : ∇ud,h(x) ∈M},
respectively.

The following theorem shows that Ωms is uniquely defined and that an appropriate
approximation Ω̃m,h of Ωms,h converges to Ωms.

Theorem 5.5. Let W be as in Theorem 5.1, and let u solve (P∗∗). There exists
a Lipschitz-continuous mapping ξ : R

2 → R such that, for almost all x ∈ Ω, we have

x ∈ Ωms ⇐⇒ ξ(σ(x)) = 0.

If v ∈ A is another solution for (P∗∗), then ξ(DW ∗∗(∇u)) = ξ(DW ∗∗(∇v)) a.e. in
Ω. For a solution (ud,h, νd,h) ∈ Bd,h for (EPd,h) with multiplier λd,h ∈ L0(T )2 let

Ω̃m,h := {x ∈ Ω : ξ(λd,h(x)) = 0}.
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We then have

‖ξ(σ) − ξ(λd,h)‖ ≤ C‖σ − λd,h‖(5.5)

and

x ∈ Ω̃m,h =⇒ dist(∇ud,h(x),M) ≤ C ′‖∂W cx
d −DW ∗∗‖L∞(ω;2R2 ).

Conversely, there holds

x ∈ Ωms,h =⇒ |ξ(λd,h(x))| ≤ ‖∂W cx
d −DW ∗∗‖L∞(ω;2R2 ).

Proof. The explicit representation of W ∗∗ in the proof of Theorem 5.1 shows, for
almost all x ∈ Ω, with (s1, s2) = σ(x) and F = ∇u(x)

x ∈ Ωms ⇐⇒ F ∈ XI ∪XV ∪XV I ∪XV II(5.6)

⇐⇒ (s1 = 0 ∧ s2 ≤ 0) ∨ (s2 = 0 ∧ s1 ≤ 0) ∨ (s1 = s2 ∧ s1 ≥ 0).

The mapping ξ : R
2 → R≥0 defined by

(s1, s2) 
→ min{|s1| − min{−s2, 0}, |s2| − min{−s1, 0}, |s1 − s2| − min{s1, 0}}

is Lipschitz continuous with bounded Lipschitz constant C > 0 and satisfies because
of (5.6) the equivalence

ξ(σ(x)) = 0 ⇐⇒ x ∈ Ωms

for almost all x ∈ Ω. Since the quantity σ := DW ∗∗(∇u) is independent of the choice
of a solution (cf. Theorem 4.2) we have uniqueness of Ωms. The Lipschitz continuity
of ξ implies the estimate (5.5). Let x ∈ Ω be such that ξ(λd,h(x)) = 0. The Lipschitz
continuity of ξ and the inclusion λd,h(x) ∈ ∂W cx

d (∇ud,h(x)) show

ξ(DW ∗∗(∇ud,h(x))) = |ξ(DW ∗∗(∇ud,h(x))) − ξ(λd,h(x))|
≤ C|DW ∗∗(∇ud,h(x)) − λd,h(x)|
≤ C‖DW ∗∗ − ∂W cx

d ‖L∞(ω;2R2 ).

To prove the asserted estimate for dist(∇ud,h(x),M) it now suffices to prove

dist(F,M) ≤ cξ(DW ∗∗(F ))

for a constant c > 0 and all F ∈ R
2. The assertion is obvious if F ∈ XI ∪ XV ∪

XV I ∪XV II . We prove the case F ∈ XII ; the remaining cases F ∈ XIII , XIV follow
analogously. Let F = (f1, f2) ∈ XII . Then f1 − 1 ≥ 0 and f1 − 1 ≥ f2. A short
calculation shows dist(F,M) = min{f1 − 1, (f1 − f2 − 1)/

√
2}. Since DW ∗∗(F ) =

2(f1−1, f2) we have ξ(DW ∗∗(F )) = 2 min{f1−1−min{−f2, 0}, |f2|+f1−1, f1−f2−1}.
If f2 ≤ 0, then this term can be simplified to ξ(DW ∗∗(F )) = min{f1 − 1, f1 − f2 − 1},
and the assertion follows. If f2 ≥ 0 we have

ξ(DW ∗∗(F )) = min{f1 − 1 + f2, f1 − f2 − 1} = f1 − f2 − 1

≥ (f1 − f2 − 1)/
√

2 = min{f1 − 1, (f1 − f2 − 1)/
√

2}
= dist(F,M).
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To prove the inverse implication let x ∈ Ωms,h, i.e., ∇ud,h(x) ∈ XI ∪ XV ∪ XV I ∪
XV II . Since λd,h(x) ∈ ∂W cx

d (∇ud,h(x)) and since ∂W cx
d (∇ud,h) = conv{DW cx

d |t : t ∈
τ,∇ud,h(x) ∈ t}, there exist t1, . . . , tn+1 ∈ τ and �i ∈ [0, 1],

∑n+1
i=1 �i = 1, such that

λd,h(x) =
∑n+1
i=1 �iDW

cx
d |ti . The identities

λd,h(x) =

n+1∑
i=1

�iDW
cx
d |ti =

n+1∑
i=1

�i(DW
cx
d |ti −DW ∗∗(∇ud,h)) +DW ∗∗(∇ud,h)

and ξ(DW ∗∗(∇ud,h)) = 0 combined with the Lipschitz continuity of ξ show

|ξ(λd,h(x))|

=

∣∣∣∣∣ξ
(
n+1∑
i=1

�i(DW
cx
d |ti −DW ∗∗(∇ud,h)) +DW ∗∗(∇ud,h)

)
− ξ(DW ∗∗(∇ud,h))

∣∣∣∣∣
≤ C

∣∣∣∣∣
n+1∑
i=1

�i(DW
cx
d |ti −DW ∗∗(∇ud,h))

∣∣∣∣∣ ≤ C‖W ∗∗ − ∂W cx
d ‖L∞(ω;2R2 ).

6. Combination of a multilevel scheme and adaptive mesh refinement.
In this section we propose an iterative, adaptive strategy to efficiently approximate
the extended problem (EP).

6.1. Active set strategy due to Carstensen and Roub́ıček. The identity

max
s∈ω Hλd,h

(x, s) =

∫
R

n

Hλd,h
(x, s) νd,h,x(ds)

in Lemma 3.3 for a solution (ud,h, νd,h) ∈ Bd,h for (EPd,h) with multiplier λd,h ∈
L0(T )n states that for almost each x ∈ Ω the probability measure νd,h,x is supported
in those atoms z ∈ Nτ for which Hλd,h

(x, ·) attains its maximum. Typically, these
are only a few atoms.

If the support of the Young measure νd,h,

Supp(νd,h) := {(x, z) ∈ Ω ×Nτ : z ∈ supp(νd,h,x)},
where supp(νd,h,x) ⊆ R

n is the support of the Radon measure νd,h,x, was known a
priori, we could set A := Supp(νd,h) and seek (ud,h, νd,h) as a solution of the following
lower-dimensional problem (EPd,h,A):

(EPd,h,A)

{
Seek (ud,h, νd,h) ∈ Bd,h such that Supp(νd,h) ⊆ A
and I(ud,h, νd,h) = inf

(vh,µd,h)∈Bd,h

I(vh, µd,h).

Proposition 5.4 in [8] gives a necessary condition onA which ensures that (EPd,h,A)
is a correct reduction of (EPd,h). Conversely, Lemma 3.4 states a sufficient criterion
for a solution of (EPd,h,A) to solve (EPd,h).

Given an approximation h̃ of Hλd,h
we define a set of active atoms, called the

active set, by

A =
{

(x, z) ∈ Ω ×Nτ : h̃(x, z) ≥ max
s∈ω h̃(x, s) − ε(x)

}
,(6.1)

where ε ∈ L0(T ), ε > 0 a.e. in Ω, is a given tolerance. If ε is large enough, then any
solution for (EPd,h,A) with A as in (6.1) is a solution for (EPd,h).
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Lemma 6.1. Let (ud,h, νd,h) be a solution for (EPd,h) with corresponding multi-

plier λd,h and Hλd,h
(x, s) = λd,h(x) · s− PτW (s). Moreover, let h̃ : Ω × R

n → R and
ε ∈ L0(T ), ε > 0 a.e. in Ω, be such that, for each T ∈ T ,

‖Hλd,h
− h̃‖L∞(T×ST ) ≤ ε|T ,

with ST ⊆ R
n such that, for almost all x ∈ T , we have{

s ∈ ω : Hλd,h
(x, s) = max

s̃∈ω
Hλd,h

(x, s̃)
}
∪
{
s ∈ ω : h̃(x, s) = max

s̃∈ω
h̃(x, s̃)

}
⊆ ST .

If A is defined by (6.1), then any solution for (EPd,h,A) is a solution for (EPd,h).
Proof. The proof follows the arguments of [8].
The idea to guess the support of a Young measure solution in a multilevel scheme,

together with Lemma 6.1, motivates the following algorithm, in which a sequence of
refining triangulations, elementwise constant tolerances, and an initial guess h̃0 for
Hλd,h

, e.g., h̃0 = 0, are given. Figure 2 includes a flow chart of the algorithm.
Algorithm (Aactive set). Let τ1, τ2, . . . , τJ be triangulations of ω, ε1, ε2, . . . , εJ > 0

be elementwise constant, and h̃0 ∈ L1(Ω;C(Rn)).
(1) Set ε := ε1, h̃ := h̃0, τ := τ1, and j := 1.
(2) Compute A from (6.1).
(3) Compute a solution (ud,h, νd,h) ∈ Bd,h,A for (EPd,h,A) and the multiplier

λd,h ∈ L0(T )n.
(4) If the conditions of Lemma 3.4 are satisfied, then go to (6); otherwise, proceed

with (5).
(5) Increase m if necessary. Enlarge ε by ε|T := 2ε|T if for some xT ∈ T

max
z∈Nτ

Hλd,h
(xT , z) >

∫
R

n

Hλd,h
(xT , s) νh,xT

(ds),

and set ε|T := ε|T otherwise. Go to (2).
(6) If j < J proceed with (7); otherwise, terminate.
(7) Set j := j + 1, h̃(x, s) := λd,h(x) · s− PτW (s), ε := εj , and go to (2).

Remarks. (i) The approximation h̃0 may initially be chosen as h̃0 = 0, and then
all atoms are activated in (6.1) or h̃0 is defined through the solution on a coarser
triangulation T ′.

(ii) Since the tolerance ε is increased successively the optimality conditions of
Lemma 6.1 are satisfied after a finite number of iterations.

6.2. Adaptive mesh refinement. Theorems 4.8 and 4.9 allow the introduction
of local refinement indicators which may be used for automatic mesh refinement. Let
(ud,h, νd,h) be a solution for (EPd,h) with corresponding multiplier λd,h.

Theorem 4.8 motivates the elementwise contributions, for T ∈ T ,

ηR(T )2 := h2
T ‖f + div λd,h + 2α(u0 − ud,h)‖2

L2(T ) +
∑

E∈EΩ∪EN
E⊆∂T

hE‖[λd,h · nE ]‖2
L2(E).

In regard to Theorem 4.9 we employ the operator Ā : L2(Ω)n → S1
N (T ; g) of [5],

which is for ΓN = ∅ and p ∈ L2(Ω)n given by

Āp =
∑
z∈N

pzϕz, for pz =

∫
ϕz>0

pdx/

∫
ϕz>0

1dx,
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to define, for T ∈ T ,

ηZ(T ) := ‖λd,h − Āλd,h‖L2(T ).

With these definitions we have

‖σ − λd,h‖2 ≤ C

(∑
T∈T

η(T )2

)1/2

+ h.o.t.,

where η(T ) = ηZ(T ) or η(T ) = ηR(T ) and the higher order terms depend on the
mesh-size of the triangulation τ which are of higher order, provided d � hT , and on
the smoothness of given right-hand sides. We set

ηR :=

(∑
T∈T

ηR(T )2

)1/4

and ηZ,R :=

(∑
T∈T

ηZ(T )2

)1/4

.

Remark (iii) below Theorem 4.9 states

ηZ,E :=

(∑
T∈T

ηZ(T )2

)1/2

≤ ‖σ − λd,h‖ + h.o.t.

The following algorithm generates the triangulations in the numerical examples of
the subsequent section. The parameter Θ allows us to use the algorithm for uniform
mesh refinement, which corresponds to Θ = 0, and adaptive mesh refinement, where
Θ = 1/2. For details on adaptive mesh refinement we refer the reader to [29]. A
schematical flow chart for the combination of the active set strategy with the adaptive
mesh refinement algorithm is shown in Figure 2.

Algorithm (Aadaptive
Θ ). (1) Start with a coarse triangulation T1 of Ω and set ω :=

(−m,m)n, 
 = 1, and λ̃	 = 0.

(2) Compute a discrete solution (u	, ν	, λ	) with Algorithm (Aactive set) and start-
ing values h̃0(x, s) := λ̃	(x)·s−PτW (s), J=2, dj=2j−1/k, k=�4m 2−J card(NT�

)3/2n�
(�s� is the largest integer ≤ s), εj := 2−	−j 10−4 for j = 1, . . . , J (ε1 := ∞ if 
 = 1 to
activate all atoms), and a triangulation τj of ω with maximal mesh-size dj .

(3) For each T ∈ T	 compute refinement indicators ηZ(T ) and ηR(T ).

(4) Mark the element T for red-refinement if

ηR(T ) ≥ Θ max
T ′∈T�

ηR(T ′).

(5) Mark further elements (red-blue-green-refinement) to avoid hanging nodes.
Terminate if the stopping criterion is satisfied, generate a new triangulation T	+1,
define λ̃	+1 := λ	, increment 
, and go to (2) otherwise.

Remarks. (i) We chose k such that d ∝ h3/2 so that ‖DW ∗∗−∂W cx
d ‖L∞(Ω;2Rn ) is of

the same order as the presumed higher order terms involving g and uD in Theorems 4.8
and 4.9.

(ii) Since λ	 → DW ∗∗(∇u) in L2(Ω) for a solution u ∈ A for (P∗∗), λ	 is a Cauchy
sequence, and therefore λ	 is a good approximation for λ	+1 if 
 is large enough.
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Fig. 2. Flow chart for the combination of the active set strategy (as in [8], inside the dashed
box) with adaptive mesh refinement.

7. Numerical experiments. In this section we present numerical results for
two specifications of (P). The first example has been investigated in [8] and is modified
here to obtain quadratic growth conditions. The second example is a two-dimensional
problem that reveals limitations of our approach to solve (P) but thereby underlines
the necessity of the design of efficient algorithms for the solution for (EPd,h).

The implementation of the algorithms was performed in Matlab as described in
[8] for the part concerning the active set strategy. We solved the linear optimization
problems with the interior point linear program solver HOPDM [15].

Example 7.1 (one-dimensional two-well problem). Let n = 1, Ω = (0, 1), ΓD =
{0, 1}, α = 0, ΓN = ∅, and W (s) = min{(s− 1)2, (s+ 1)2}. The right-hand sides are
defined by

f(x) =

{
0 for x ≤ xb,

γ(x− xb)/2 for x ≥ xb

and

uD(0) = 3x5
b/128 + x3

b/3 and uD(1) = γ(1 − xb)
3/24 + 1 − xb,
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Fig. 3. Error and error estimators in Example 7.2 for uniform and adaptive mesh refinement.

where γ = 100 and xb = π/6. A solution for (P∗∗) is then given by

u(x) =

{
−3(x− xb)

5/128 − (x− xb)
3/3 for x ≤ xb,

γ(x− xb)
3/24 + x− xb for x ≥ xb

and allows us to compute the unique quantity σ := DW ∗∗(u′). The microstructure
region is (0, xb) in which σ = 0 and u′ lies between the wells −1 and 1; i.e., u′(x) ∈
(−1, 1) for x ∈ (0, xb). A Young measure corresponding to u is given by

νx =

⎧⎨⎩
1 − u′(x)

2
δ−1 +

1 + u′(x)
2

δ+1 for x ≤ xb,

δu′(x) for x > xb.

For Algorithm (AadaptiveΘ ) we used m = 4 and

T1 = {[0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1]}.
Note that the weighted jumps hE‖[λd,h · nE ]‖2

L2(E) of λd,h across edges E ∈ EΩ

are in the one-dimensional situation given by

max{hT1 , hT2}(λd,h|T1 − λd,h|T2)
2

for z ∈ K, T1, T2 ∈ T such that z = T1 ∩ T2.
We ran Algorithm (Aadaptive0 ) and (Aadaptive1/2 ) in Example 7.2. The obtained error

estimators ηR, ηZ,R, and ηZ,E and the exact error ‖σ − λd,h‖ for each triangulation
are plotted against the degrees of freedom in T in Figure 3 with a logarithmic scaling
used for both axes. Both uniform and adaptive refinement strategies yield the same
experimental convergence rates, but the adaptive scheme yields a comparable error
reduction at similar numbers of degrees of freedom. The error estimators ηR and ηZ,R
converge much slower than the error itself, while the efficient error estimator ηZ,E
approximates the error very well and converges with the same order.
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Table 1

Possible and active atoms per element on uniform meshes.

Triangulation 3 4 5 6 7 8 9

# elements 16 32 64 128 256 512 1,024

# atoms 1,122 3,034 8,385 23,443 65,921 185,908 525,057

# active atoms 7.9 10.7 9.6 17.4 46.3 64.5 127.1

Table 2

Possible and active atoms per element on adapted meshes.

Triangulation 7 8 9 10 11 12 13

# elements 81 120 187 321 492 741 1,280

# atoms 11,881 21,297 41,244 92,450 175,143 323,390 733,574

# active atoms 7.4 11.6 38.9 31.2 29.6 27.4 30.7

In Tables 1 and 2 we displayed for uniform and adapted meshes, respectively, the
number of possible atoms per element and the average number of active atoms per
element selected by (Aactive set). We observe that the numbers of atoms is significantly
reduced by the active set strategy. Moreover, the average number of active atoms
seems to be bounded or maybe grows very slowly on the adapted meshes, while on
the uniform meshes the number of active atoms grows linearly.

Example 7.2 (two-dimensional, scalar three-well problem). Let n = 2, Ω =
(0, 1)2, W as in Theorem 5.1, α = 0, ΓD = ∂Ω, and, for (x, y) ∈ Ω, uD(x, y) =
v(x) + v(y), where, for t ∈ [0, 1],

v(t) =

{
(t− 1/4)3/6 + (t− 1/4)/8 for t ≤ 1/4,

−(t− 1/4)5/40 − (t− 1/4)3/8 for t ≥ 1/4.

Setting f := −divDW ∗∗(∇uD), i.e., for (x, y) ∈ (0, 1)2,

f(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for x ≤ 1/4 and y ≤ 1/4,

−2 v′′(y) for x ≤ 1/4 and 1/4 ≤ y,

−2 v′′(x) for 1/4 ≤ x and y ≤ 1/4,

−2 (v′′(x) + v′′(y)) for 1/4 ≤ x and 1/4 ≤ y,

we have that u = uD is the weak limit of an infimizing sequence for (P). If ux and uy
abbreviate ∂u/∂x and ∂u/∂y, respectively, then for

ν(x,y) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − ux(x, y) − uy(x, y))δ(0,0)

+ ux(x, y)δ(1,0) + uy(x, y)δ(0,1) for x ≤ 1/4, y ≤ 1/4,

(1 − ux(x, y))δ(0,uy(x,y)) + ux(x, y)δ(1,uy(x,y)) for x ≤ 1/4, 1/4 ≤ y,

(1 − uy(x, y))δ(ux(x,y),0) + uy(x, y)δ(ux(x,y),1) for 1/4 ≤ x, y ≤ 1/4,

δ∇u(x,y) for 1/4 ≤ x, 1/4 ≤ y,

the pair (u, ν) is a solution for (EP). The coarsest triangulation T1 consists of 32
triangles, which are halved squares, and we set m = 1.5.

Our numerical results in Example 7.2 are not as satisfying as those for Example
7.1. The Lagrange multiplier provided by the linear program solver did not satisfy the
optimality conditions even whenm was large and all atoms were activated. We suspect
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Fig. 4. Adaptively generated mesh and Young measure restricted to three different elements in
Example 7.1.

Table 3

CPU-times for (EPd,h) on adaptively refined meshes in Example 7.1.

Dof 9 35 70 162 255 492

CPU-time [s] 11.7 269.0 830.7 5,792.7 9,797.4 24,317.5

that this is caused by the huge complexity of the problem. Other solvers for the linear
programming problem did not find a solution when the problem became large. This
indicates that efficient methods for the solution of (EPd,h) are very important. We
found, however, that the quantity DW ∗∗(∇ud,h) satisfied the maximum principle and
the equilibrium equation up to an absolute error of about 0.05 in Example 7.2 so that
we used this quantity to activate atoms in Algorithm (Aactive set) and to calculate
error indicators ηR, ηZ,R, and ηZ,E in order to refine the mesh and to estimate the

error in Algorithm (Aadaptive1/2 ).

Figure 4 shows the adaptively generated mesh T6 and the support of the discrete
Young measure solution and the corresponding volume fractions restricted to three
different elements. The three meshes show every tenth atom in τ , and circles indicate
that an atom is active. Numbers next to circles are volume fractions, provided they
are larger than 0.01. We observe that the discrete Young measure approximates
the Young measure solution ν from Example 7.2 very well. Moreover, the adaptive
algorithm refines the mesh in those regions where the stress is large. Since the error
estimators and the active set strategy show the same behavior as in the previous
example we omit the corresponding plots and tables here.

Table 3 displays the CPU-time needed to solve (EPd,h) in Example 7.2 on a
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sequence of adaptively refined triangulations against the number of degrees of freedom
in Tk, k = 1, . . . , 6. The numerical solutions were obtained on a SUN Enterprise with
14 processors and 14 GB RAM, and the numbers suggest that the CPU-time depends
linearly on the number of degrees of freedom.

Acknowledgment. The author wishes to thank Professor C. Carstensen for
stimulating discussions.
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1. Introduction. Given the ODE

x′ = f(x), x0 = x(t0) ∈ R
D,(1.1)

with f : R
D → R

D and associated vector field (or Lie operator associated with f)

F =

D∑
i=1

fi(x)
∂

∂xi
,(1.2)

a one-step numerical integrator for a time step h, ψh : R
D → R

D, can be seen as
a smooth family of maps with parameter h such that ψ0 is the identity map. The
integrator ψh is said to have order of consistency ≥ q (or, equivalently, to be of order
≥ q) if

ψh = ϕh + O(hq+1),(1.3)

where ϕh is the h-flow of the ODE (1.1). Then an approximation to the exact solution
x(h) is given by

xh = ψh(x0) = ϕh(x0) + δh,q(x0),

where δh,q(x0) = O(hq+1) denotes the local truncation error. The efficiency of the
integrator (when compared with methods of the same order and family) depends both
on its computational cost and the magnitude of the error term.

In this work we discuss the class of methods obtained by enhancing an integrator
ψh with processing. The idea of processing can be traced back to the work of Butcher
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[7] in 1969, where it is considered in the context of Runge–Kutta methods, and is
summarized in [12, 19]. Essentially, it consists of obtaining a new (hopefully better)
integrator of the form

ψ̂h = πh ◦ ψh ◦ π−1
h .(1.4)

The method ψh is referred to as the kernel and the parametric map πh : R
D → R

D

as the postprocessor or corrector. Application of n steps of the integrator ψ̂h leads to

ψ̂nh = πh ◦ ψnh ◦ π−1
h ,

which can be considered as a change of coordinates in phase space. Thus, it is not
required that the kernel ψh used to propagate the numerical solution be a good inte-
grator. It is sufficient, using dynamical system terminology, that ψh be conjugate to
a good integrator.

Usually one is interested in the case where π0 = id, the identity map; i.e., πh is also
a near-identity map, although it is not intended to approximate the h-flow ϕh. The
preprocessor π−1

h is applied only once so that its computational cost may be ignored;
then the kernel ψh acts once per step, and, finally, the action of the postprocessor πh
is evaluated only when output is required. Processing is advantageous if ψ̂h is a more
accurate method than ψh and the cost of πh is negligible: it provides the accuracy of
ψ̂h at the cost of the less accurate method ψh.

Although initially intended for Runge–Kutta methods, the processing technique
did not become significant in practice, probably due to the difficulties of coupling
processing with classical strategies of variable step-sizes. It has been only recently
that this idea has proved its usefulness in the context of geometric integration, where
constant step-sizes are widely employed.

The aim of geometric integration is to construct numerical schemes for discretizing
the differential equation (1.1) while preserving certain geometric properties of the
vector field F . It is generally recognized that this class of numerical algorithms (the
so-called geometric integrators) provide a better description of the system (1.1) than
standard methods, both with respect to the preservation of invariants and also in the
accumulation of numerical errors along the evolution [12, 22].

A typical procedure in geometric integration is to consider one or more low order
methods and compose them with appropriately chosen weights to achieve higher order
schemes. The resulting composition method inherits the relevant properties that the
basic integrator shares with the exact solution, provided these properties are preserved
by composition [16].

It has been precisely in this context where the application of processing has proved
to be a very powerful tool, allowing one to build numerical schemes with both the
kernel and the postprocessor taken as compositions of basic integrators. In particular,
highly efficient processed composition methods have been proposed in the last few
years, both in the separable case [3] (including families of Runge–Kutta–Nyström
class of methods [5, 14, 15]) and also for slightly perturbed systems [4, 17, 24].

The method ψh is of effective order q if a postprocessor πh exists for which ψ̂h is
of (conventional) order q [7], that is,

πh ◦ ψh ◦ π−1
h = ϕh + O(hq+1).(1.5)

When analyzing the order conditions ψ̂h has to verify to be a method of order q, it has
been shown that many of them can be satisfied by using πh [1, 3, 8] so that ψh must
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fulfill a much reduced set of constraints. Furthermore, the error term δh,q(x0) depends
on both ψh and πh, and additional conditions can be imposed on the postprocessor in
order to reduce its magnitude. This allows one, on the one hand, to consider kernels
involving fewer evaluations and, on the other hand, to analyze and obtain new and
efficient composition methods of high order [5].

In this paper we develop a general theory of the processing technique as applied
to the numerical integration of differential equations and derive, under very general
assumptions, the conditions to be satisfied by the kernel and the postprocessor to
attain a given order of consistency. The analysis can be directly applied to different
types of numerical methods, including families of composition integrators and Runge–
Kutta-type methods.

For processed methods whose postprocessor is itself constructed as a composition
of basic integrators, it turns out that the computational cost of evaluating πh is usually
higher than of ψh so that their use is restricted (in sequential computer environments)
to situations where intermediate results are not frequently required. Otherwise the
overall efficiency of the methods is highly deteriorated.

Another goal of this work is precisely to show how to avoid this situation, i.e.,
how to obtain approximations to the postprocessor virtually cost-free and without
loss of accuracy. The key point is a generalization of a procedure outlined in [14]: πh
is replaced by a new integrator π̂h � πh obtained from the intermediate stages in the
computation of ψh.

The plan of the paper is as follows. In section 2 we provide a general analysis
of processed methods, obtaining the order conditions to be verified by the kernel and
the postprocessor. In section 3 we propose a cheap alternative for approximating the
postprocessor, study the corresponding order conditions, and examine the propaga-
tion of the error that results from replacing the optimal postprocessor by the cheap
alternative. Section 4 is concerned with numerical examples, and section 5 contains
some concluding remarks.

2. Analysis of processed methods.

2.1. Order of consistency of numerical integrators. Let ψh be an integra-
tor that approximates the h-flow ϕh of the system (1.1). It is well known that, for
each g ∈ C∞(RD,R) (i.e, each infinitely differentiable map g : R

D → R), g(ϕh(x))
admits an expansion of the form [21]

g(ϕh(x)) = exp(hF )[g](x) = g(x) +
∑
k≥1

hk

k!
F k[g](x), x ∈ R

D,

where F is the vector field (1.2). Let us assume that, for each g ∈ C∞(RD,R),
g(ψh(x)) admits an expansion of the form

g(ψh(x)) = g(x) + hΨ1[g](x) + h2Ψ2[g](x) + · · · ,

where each Ψk is a linear differential operator, and let Ψh denote the series of differ-
ential operators

Ψh = I +
∑
k≥1

hkΨk

so that, formally, g ◦ ψh = Ψh[g]. Clearly, (1.3) is then equivalent to

Ψk =
1

k!
F k, 1 ≤ k ≤ q.(2.1)
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Alternatively, let us consider the series

Fh = log(Ψh) =
∑
m≥1

(−1)m+1

m
(Ψh − I)m

so that, formally, Ψh = exp(Fh) and

Fh =
∑
k≥1

hkFk, with Fk =
∑
m≥1

(−1)m+1

m

∑
j1+···+jm=k

Ψj1 · · ·Ψjm .(2.2)

It can be shown that the algebraic properties of the linear differential operators Ψk

imply that such Fh is a series of vector fields. This means the well-known fact that the
integrator ψh can be formally interpreted as the exact 1-flow of the modified vector
field Fh [12]. Then condition (2.1) is equivalent to

F1 = F, Fk = 0 for 2 ≤ k ≤ q.(2.3)

It is worth noticing that characterizations (2.1) and (2.3) for the order conditions of the
integrator ψh are written, in contrast with (1.3), in a way that it is straightforward to
extend them to integrators on smooth manifolds so that we need not restrict ourselves
to integrators on R

D. In fact, the theory of the present paper remains true in a
coordinate-free setting, where Fk are vector fields (sections of the tangent bundle) on
a finite-dimensional smooth manifold.

2.2. Graded Lie algebra of vector fields. We have observed that numerical
integrators can be expanded as exponentials of series of vector fields, and these can
be used to compare with the exact flow of the system to be integrated numerically. In
section 3 we will consider expansions of linear combinations of vector fields, which lie
in the associative algebra B of linear differential operators generated by concatenation
of smooth vector fields on R

D, with the identity operator I as the unit element. At
this point it seems appropriate to briefly review the main concepts of the theory of Lie
algebras in this setting. They will prove to be very useful in the subsequent analysis.

As any associative algebra, the algebra B has structure of Lie algebra with the
commutator [a, b] = ab− ba as the Lie bracket. In other words, the commutator [a, b]
is a bilinear operator satisfying

• skew-symmetry: [a, b] = −[b, a];
• the Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

The vector fields on R
D form a subspace of B that is closed under commutation; i.e.,

[F,G] is a smooth vector field, provided that both F,G are also smooth vector fields.
From (2.2) one has Fh = hF1 + h2F2 + h3F3 + · · ·, where each Fk is a vector

field and h is a symbol that corresponds to the parameter present in the definition of
the integrator ψh. The set of series of this form inherits a Lie algebra structure from
the Lie algebra structure of the set of vector fields if there is a sequence of vector
subspaces Lk, k ≥ 1, of the Lie algebra of vector fields such that Fk ∈ Lk for each
series

∑
k≥1 h

kFk and

[Ln,Lm] ⊂ Ln+m for each n,m ≥ 1.(2.4)

In this way the concept of graded Lie algebra naturally arises. A graded Lie algebra L
can be defined as a Lie algebra together with a sequence of subspaces {L1,L2,L3, . . .}
of L such that L =

⊕
k≥1 Lk and (2.4) holds. The vector spaces Lk in the graded Lie

algebra L are called homogeneous components of L.
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Also the notion of free Lie algebra is very useful in this setting [23]. Roughly
speaking, a Lie algebra L is free if there exists a set S ⊂ L such that (i) any element
in L can be written as a linear combination of nested brackets of elements in S and
(ii) the only linear dependencies among such nested brackets are due to the skew-
symmetry property and the Jacobi identity of brackets (see [20] for more details on
the theory of free Lie algebras in the context of numerical integration).

Given a Lie algebra L of vector fields one may consider the associative algebra
generated by L (which is a subalgebra of B). There exists an associative algebra
A = U(L), called the universal enveloping algebra [23] of the Lie algebra L and a
unique algebra homomorphism σ of A onto the algebra of linear differential operators
generated by the vector fields in L. That is, any such linear differential operator can
be represented as an element of A.

The Poincaré–Birkhoff–Witt theorem [23] allows one to construct a basis of the
universal enveloping algebra A of L in terms of a basis of L. More specifically, if
{Li} denotes a basis of L, each element of the basis of A is associated with a family
{Li1 , . . . , Lik} of (possibly repeated) elements of the basis of L, and it is the sum of
all possible concatenations of basic vector fields Lj1 · · ·Ljk such that (j1, . . . , jk) is
obtained by reordering (i1, . . . , ik). When L is a graded Lie algebra L =

⊕
k≥1 Lk,

then A also admits a graded associative algebra structure, with A =
⊕

k≥0 Ak, where
A0 = span(I) (that is, AnAm ⊂ An+m). Given a basis {Ek,j}nk

j=1 in Lk for each k ≥ 1
with nk = dimLk, this procedure leads to a basis {Dk,j}mk

j=1 in Ak for k ≥ 1 with
mk = dimAk. In particular, this allows one to obtain mk in terms of the dimensions
n1, . . . , nk.

2.3. Effective order conditions. Let us consider now a mapping πh close to
the identity as a postprocessor for the integrator ψh. Our aim is to obtain character-
izations for the order of consistency of the resulting processed integrator (1.4).

As before, let

Πh = I +
∑
k≥1

hkΠk, Ψ̂h = I +
∑
k≥1

hkΨ̂k

be the series of differential operators such that, formally, g ◦ πh = Πh[g] and g ◦ ψ̂h =
Ψ̂h[g], respectively. Then Ψ̂h = Π−1

h ΨhΠh, where Π−1
h can be expanded using the

same differential operators as in Πh, and the processed integrator ψ̂h has order of
consistency ≥ q if

ΨhΠh = Πh exp(hF ) + O(hq+1).(2.5)

It is important to notice that different postprocessors may result in the same processed
integrator so that it is useful to consider the following definition.

Definition 2.1. Two postprocessors πh and π̄h are said to be equivalent with
respect to the kernel ψh if they give rise to the same processed integrator, i.e., if
πh ◦ ψh ◦ π−1

h = π̄h ◦ ψh ◦ π̄−1
h or, in terms of their respective series of differential

operators, if

Π−1
h ΨhΠh = Π̄−1

h ΨhΠ̄h.(2.6)

Remark. Clearly, Πh and Π̄h are equivalent with respect to the kernel Ψh =
exp(Fh) if and only if the vector field Sh = log(ΠhΠ̄

−1
h ) commutes with Fh, for

(2.6) can be written as exp(Fh) = ΠhΠ̄
−1
h exp(Fh)(ΠhΠ̄

−1
h )−1 or exp(Fh) exp(Sh) =
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exp(Sh) exp(Fh), and this is true if and only if [Fh, Sh] = 0. In particular, given a
postprocessor Πh and a kernel Ψh = exp(Fh), Πh is equivalent to Π̄h = exp(λFh)Πh

for an arbitrary λ ∈ R.
For a given family of integrators G, the effective order conditions are equations on

the parameters of the family that indicate the effective order of a particular integrator
ψh in G. Such effective order conditions can be directly derived from (2.5) for each
family of integrators. For instance, for Runge–Kutta methods, (2.5) is equivalent to
considering composition of B-series, which is the usual procedure to study the effective
order conditions in that setting [8]. However, a general treatment, including the study
of the generic number of order conditions, seems difficult with this approach: it would
require making specific assumptions on the structure and properties of the series of
linear differential operators Ψh and Πh. Instead we propose an alternative based on
the vector fields

Fh =
∑
k≥1

hkFk = log(Ψh), F̂h =
∑
k≥1

hkF̂k = log(Ψ̂h),

Ph =
∑
k≥1

hkPk = log(Πh).

In principle, given a kernel Ψh = exp(
∑
hkFk), one might look for the best possible

postprocessor Πh = exp(Ph) among all possible series of vector fields Ph =
∑
hkPk.

However, if Fk is known to belong (for each k ≥ 1) to a certain Lie algebra L of vector

fields and it is desired that the vector fields F̂k associated with ψ̂h also belong to L,
then it seems natural to restrict oneself to the case Pk ∈ L (this is particularly true if
no additional assumptions are made for Fk). We will say that a processed integrator

ψ̂h has order p ≥ q in L if there exist vector fields Pk ∈ L, k ≥ 1, such that (2.5)
holds with Πh = exp(

∑
hkPk).

Theorem 2.2. An integrator ψh has effective order p ≥ q in L if and only if
there exist vector fields P1, . . . , Pq−1 ∈ L such that

F1 = F,
(2.7)

[Pk−1, F ] = Fk +Rk(P1, . . . , Pk−2, F1, . . . , Fk−1), 1 < k ≤ q,

holds, where

Rk = −
k−2∑
j=1

[Pj , Fk−j ] +
∑
l≥2

(−1)l

l!

∑
j1+···+jl+1=k

[Pj1 , [Pj2 , . . . [Pjl , Fjl+1
] . . .]].(2.8)

Proof. The equality Ψ̂h = Π−1
h ΨhΠh can be written in terms of the respective

vector fields as exp(F̂h) = exp(−Ph) exp(Fh) exp(Ph). Formal application of the log-
arithm in both sides of this expression leads to [23]

F̂h = exp(−Ph)Fh exp(Ph) = exp(ad−Ph
)Fh =

∞∑
k=0

(−1)k

k!
adkPh

Fh,

where adAB = [A,B]. Therefore

F̂h = Fh − [Ph, Fh] +
1

2!
[Ph, [Ph, Fh]] −

1

3!
[Ph, [Ph, [Ph, Fh]]] + · · · ,
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which implies

F̂1 = F1,
(2.9)

F̂k = Fk + [F1, Pk−1] +Rk, k > 1,

where R2 = 0, and for k > 2, Rk is given by (2.8). Condition (2.5) reads F̂1 = F ,
F̂k = 0 for 2 ≤ k ≤ q, which is equivalent to (2.7).

In order to proceed further, we adopt the following assumption.
Assumption 1. The kernels ψh under consideration in this work are such that their

associated vector fields Fk ∈ Lk, k ≥ 1, where {Ln}n≥1 is a sequence of subspaces of
a certain graded Lie algebra L of vector fields satisfying (2.4).

In typical situations in numerical integration L is a graded free Lie algebra, and
nk = dimLk corresponds to the number of order conditions at order k for nonpro-
cessed methods. The values of nk, k ≥ 1, can often be computed by using Witt’s
formula and their generalizations (see [19] and references therein).

Example 2.3. Let us now consider some particular cases which illustrate Assump-
tion 1 and the context where the results of this paper can be applied.

(1.a) First assume that ODE (1.1) can be written as x′ = fa(x) + fb(x) and the
vector field F is split accordingly as F = Fa + Fb. Suppose that the corresponding

h-flows ϕ
[a]
h and ϕ

[b]
h can be exactly computed. Then it is useful to consider numerical

integrators of the form

ψh = ϕ
[b]
α2sh

◦ ϕ[a]
α2s−1h

◦ · · · ◦ ϕ[b]
α2h

◦ ϕ[a]
α1h

,(2.10)

with αi ∈ R; i.e., ψh is taken as a composition of basic flows. Now Assumption 1
holds for ψh with

L1 = span({Fa, Fb}), Lk = span

( ⋃
l+m=k

[Ll,Lm]

)
, k ≥ 2.(2.11)

If one is interested in obtaining results that are valid for all pairs Fa, Fb of arbitrary
vector fields, then one must assume that the only linear dependencies among nested
commutators of Fa and Fb can be derived from the skew-symmetry and the Jacobi
identity of commutators. In other words, L =

⊕
k≥1 Lk is the graded free Lie algebra

generated by the symbolic vector fields Fa, Fb, where both have degree one. In
particular, the dimensions nk of the first homogeneous components Lk are nk =
2, 1, 2, 3, 6, 9, 18, 30, 56, 99.

(1.b) Let us consider the generalized harmonic oscillator with Hamiltonian func-
tion

H(q,p) =
1

2
pTM−1p +

1

2
qTSq.(2.12)

Here q,p ∈ R
d and M , S are constant symmetric matrices, M being invertible.

This Hamiltonian (with S = M−1) appears in the matrix representation of the time-
dependent Schrödinger equation [10], where q and p represent the real and imaginary
parts of the vector describing the state of the system. With x = (q,p), D = 2d, the
corresponding equations of motion can be written as in (1.a) with fa(x) = (M−1p,0),
fb(x) = (0,−Sq). Then the Hamiltonian vector field is decomposed as F = Fa + Fb,
with

Fa =

d∑
i=1

(M−1p)i
∂

∂qi
, Fb =

d∑
i=1

(−Sq)i
∂

∂pi
.
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Now Assumption 1 holds with Lk given by (2.11). In this case, not all the nested
commutators are independent. For instance, [Fa, [Fa, [Fa, Fb]]] = [Fb, [Fb, [Fb, Fa]]] =
0. In fact, all nested commutators with an even number of operators Fa, Fb are
either zero or a vector field FC associated with the Hamiltonian qTCp, where C is a
polynomial matrix function of SM−1. In consequence, [Fa, FC ] is associated with a
Hamiltonian function quadratic in p, [Fa, [Fa, FC ]] = 0, and, similarly, [Fb, [Fb, FC ]] =
0. In addition, [Fa, [Fb, FC ]] = [Fb, [Fa, FC ]] is also associated with a Hamiltonian
function of the form qTC1p. As a result, n2k = 1 and n2k+1 = 2 for all k.

(1.c) Near-integrable system. It corresponds to the problem x′ = fa(x) + εfb(x)
with |ε| � 1, which is a particular case of (1.a). The vector field associated with

composition (2.10) takes the form Fh =
∑
k≥1

∑k−1
i=1 h

kεiFk,i so that we consider a
bigraded Lie algebra with

Fa ∈ L1,0, Fb ∈ L1,1, [Lk,i,Lm,j ] ⊂ Lk+m,i+j ,(2.13)

and Lk =
⊕k−1

i=1 Lk,i for k ≥ 2. We denote nk,i = dimLk,i so that obviously nk =∑k−1
i=1 nk,i. An explicit formula for the nk,i can be found, in particular, in [16]: for

instance, nk,1 = nk,k−1 = 1, k > 1, nk,2 = nk,k−2 = 	 1
2 (k − 1)
, k > 2, and

nk,3 = nk,k−3 = 	 1
6 (k− 1)(k− 2)
, k > 3 [19]. Here 	x
 denotes the integer part of x.

(1.d) If Sh : R
D → R

D is a second order time-symmetric integrator for (1.1),
then we can consider integrators of the form [16]

ψh = Sαsh ◦ · · · ◦ Sα1h, (α1, . . . , αs) ∈ R
s.(2.14)

It can be shown (see Appendix A) that for such integrators Assumption 1 holds for the
graded Lie algebra L =

⊕
k≥1 Lk generated by certain vector fields {Y1, Y3, Y5, . . .}

such that Y2k−1 ∈ L2k−1, k ≥ 1. The dimensions nk of the first homogeneous compo-
nents Lk for k ≥ 1 are nk = 1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 18 (see, for example, [19, 20]).

(1.e) Runge–Kutta-type methods. The set of rooted trees plays a fundamental
role in the standard order theory of Runge–Kutta integrators applied to (1.1) (see,
for instance, [6, 11, 12]). A similar role is played by certain sets of colored rooted
trees in the case of other families of Runge–Kutta-type integrators such as Runge–
Kutta–Nyström, partitioned Runge–Kutta, and additive Runge–Kutta methods. Let
us generically denote as T the set of trees corresponding to a family of Runge–Kutta-
type integrators and as Tk the set of trees in T with k vertices. For each family of
methods, the parameters of any particular qth order integrator must satisfy n1 + · · ·+
nq algebraic equations, where nk is the cardinal of Tk. In the standard theory of
order conditions, each tree u ∈ T is associated with an elementary differential, which
is a map F (u) : R

D → R
D defined in terms of the map f in (1.1) and its partial

derivatives. Now it can be seen that for each family of Runge–Kutta-type integrators
considered above, Assumption 1 holds with

Lk = span

(
D∑
i=1

(F (u))i
∂

∂yi
: u ∈ Tk

)
, k ≥ 1.

The dimensions nk of the first homogeneous components Lk for k ≥ 1 are nk =
1, 1, 2, 4, 9, 20, 48, 115, 286, 719 [11].

As we have mentioned before, given a kernel of effective order q, the vector fields
Pk satisfying (2.7) are not unique. This nonuniqueness is intimately related to the fact
that the Lie subalgebra L0 = {G ∈ L : [F,G] = 0}, i.e., the kernel of adF , is nonempty
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(obviously, F ∈ L0). From this perspective, it is useful to choose a direct complement
L∗ of L0 with respect to L so that L is decomposed as a direct sum of two subspaces
L = L0⊕L∗. For each k, we denote L0

k = L0∩Lk, L∗
k = L∗∩Lk, and n∗k the dimension

of L∗
k or, equivalently, n∗

k = dim[F,Lk], where [F,Lk] = [F,L∗
k] is a subspace of Lk+1.

In general, if L is a graded free Lie algebra, then dim[F,Lk] = dimLk, k > 1, i.e.,
n∗k = nk, k > 1, and n∗

1 = n1 − 1.
Lemma 2.4. Let Fk, Pk ∈ Lk for each k ≥ 1, with F1 = F . There exist unique

P ∗
k ∈ L∗

k, k ≥ 1, such that the postprocessors exp(
∑
k≥1 h

kP ∗
k ) and exp(

∑
k≥1 h

kPk)

are equivalent with respect to the kernel Ψh = exp(
∑
k≥1 h

kFk).
Proof. By induction on n, it is sufficient to prove that if, in addition to the

assumptions of Lemma 2.4, P1, . . . , Pn−1 ∈ L∗ and Pn ∈ L∗
n, then there exists a unique

P ∗
n ∈ L∗

n such that exp(hP1 + · · ·+hn−1Pn−1 +hnP ∗
n +hn+1Qn+1 +hn+2Qn+2 + · · ·)

is equivalent to exp(
∑
hkPk) with certain Qk ∈ Lk, k > n.

One first proves that, for arbitrary P 0
n ∈ L0

n, there exists a unique sequence
S∗
k ∈ L∗

k, k ≥ n+ 1 such that Sh = −hnP 0
n +

∑
k≥n+1 h

kS∗
k commutes with Fh. One

considers P 0
n ∈ L0

n, P
∗
n ∈ L∗

n such that Pn = P 0
n + P ∗

n , and observe that, by choosing
Sh as above, exp(

∑
hkPk) is equivalent to

exp

(
− hnP 0

n +
∑

k≥n+1

hkS∗
k

)
exp

(∑
k≥1

hkPk

)
= exp

(
n−1∑
k=1

hkPk + hnP ∗
n + · · ·

)
.

The uniqueness of P ∗
n directly follows from (2.9).

In other words, Lemma 2.4 shows that we can take into account only postpro-
cessors such that Pk ∈ L∗

k without restricting the choice of the processed integrator.
In addition, ψh has effective order p ≥ q in L if and only if there exist vector fields
Pk ∈ L∗

k, k ≤ q − 1, such that (2.7) hold. Moreover, such vector fields are unique in
L∗.

On the other hand, equations (2.9) lead directly to the following result.
Lemma 2.5. If the vector fields Fk, F̂k ∈ Lk, Pk ∈ L∗

k, k ≥ 1, are associated

with the kernel ψh, the processed method ψ̂h, and the postprocessor πh, respectively,
it follows that

(a) if ψh is a method of order d, then πh = id + O(hd) or, equivalently,

Fk = F̂k = 0, 2 ≤ k ≤ d =⇒ Pk = 0, 1 ≤ k ≤ d− 1;

(b) provided the kernel is such that ψ−h = ψ−1
h + O(h2d+2), then it holds that

ψ̂−h = ψ̂−1
h +O(h2d+2) if and only if π−h = πh +O(h2d+1). In terms of vector fields,

F2k = F̂2k = 0, 1 ≤ k ≤ d ⇐⇒ F2k = P2k−1 = 0, 1 ≤ k ≤ d.

Next we rewrite the order conditions (2.7) for the processed integrator as a system
of (polynomial) equations in the coefficients of the vector fields Fk in a basis {Ek,i}nk

i=1

of Lk, k ≥ 1. Such conditions take a very simple form if the basis of Lk+1 (k ≥ 1)
includes a basis of [F,Lk] = [F,L∗

k]. This can be done, for instance, as follows. First,

choose a basis {E∗
k,i}

n∗
k
i=1 of L∗

k (of course, such a basis of L∗
k can always be chosen as

a subset of the basis {Ek,i}nk
i=1 of Lk). Then take

Ek+1,nk+1−n∗
k
+i = [F,E∗

k,i], for i = 1, . . . , n∗k,(2.15)

and complete the basis of Lk+1 by choosing nk+1 − n∗k elements of Lk+1, say Ek+1,i,
i = 1, . . . , nk+1 − n∗

k, such that {Ek+1,i}nk+1

i=1 spans Lk+1.
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From now on, we assume that the bases of Lk and L∗
k have been constructed in

such a way that (2.15) holds. Let us write

Fk =

nk∑
i=1

fk,iEk,i, Rk =

nk∑
i=1

rk,iEk,i, Pk−1 =

n∗
k−1∑
i=1

pk−1,iE
∗
k−1,i.(2.16)

The effective order conditions (2.7) are then expressed in terms of the coefficients fk,i,
rk,i, and pk−1,i as follows.

Theorem 2.6. The scheme ψh, satisfying Assumption 1, has effective order
p ≥ q if and only if

fk,i = −rk,i, 1 ≤ i ≤ lk := nk − n∗
k−1,(2.17)

pk−1,i = −fk,lk+i − rk,lk+i, 1 ≤ i ≤ n∗k−1,(2.18)

for 1 < k ≤ q. If, in addition, ψh is time-symmetric (i.e., if ψ−h ◦ ψh = id), then,
for even values of k, conditions (2.17) are automatically satisfied and equations (2.18)
reduce to pk−1,i = 0.

Proof. Assumption 1 implies that each Rk in (2.9) belongs to Lk and thus ex-
pressions (2.16) hold, where each rk,i is a polynomial in the coefficients fl,j , pl−1,j ,
l = 2, . . . , k− 1 (as Rk in (2.9) is a Lie polynomial in Fl, Pl−1, l ≤ k− 1). Conditions
(2.7) together with (2.15) then lead to (2.17) and (2.18).

In the particular case of a time-symmetric kernel, F2i = 0. The conclusion readily
follows from Lemma 2.5.

Corollary 2.7. A total number of

s(q) ≡
q∑

k=1

nk −
q−1∑
k=1

n∗k = nq +

q−1∑
k=1

(nk − n∗k)

conditions have to be satisfied by a given kernel ψh of effective order p ≥ q > 1. If L
is a graded free Lie algebra, this number is s(q) = nq + 1. If ψh is time-symmetric,
then the total number of effective order conditions reduces to s̄(2) = n1 and s̄(2n) =
n1 +

∑n
k=2(n2k−1 − n∗

2k−2).
Proof. Equations (2.18) hold for any kernel, provided the postprocessor is ap-

propriately chosen, and equations (2.17) give lk = nk − n∗
k−1 conditions for each

k = 2, . . . , q. This, together with the n1 consistency conditions corresponding to
F1 = F , leads to s(q) equations on the coefficients fk,i. On the other hand, if the
graded Lie algebra is free, then n∗k = nk, k > 1, and n∗

1 = n1 − 1. Finally, if ψh
is time-symmetric, one has to count only the number of conditions for odd values of
k.

Remark. For any kernel, each rk,i is a polynomial in fl,j , pl−1,j , l = 2, . . . , k − 1.
Recursive substitution of (2.17)–(2.18) in such polynomials rk,i leads to an equivalent
system of equations of the form (2.17)–(2.18), where now each rk,i is a polynomial in
the coefficients fl,j , l = 2, . . . , k − 1, j = nl − n∗

l−1 + 1, . . . , nl.
Example 2.8. Next we provide the total number of order conditions for the

particular cases collected in Example 2.3.
(2.a) For the composition methods of example (1.a), L0 = span({F}). Therefore

n∗1 = n1 − 1 = 1, and, among the different choices for L∗
1, one can take, for instance,

L∗
1 = span({Fa}), L∗

1 = span({Fb}), or L∗
1 = span({Fa − Fb}). For each k ≥ 2,

Lk ∩L0 = {∅} so that L∗
k = Lk, n∗

k = nk, and one can choose E∗
k,i = Ek,i. According

to Corollary 2.7, the total number of effective order conditions is then s(q) = nq + 1,
a result already obtained in [3].
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(2.b) For the harmonic oscillator (2.12) considered in example (1.b), the num-
ber of effective order conditions s(q) is substantially reduced. As we have seen,
n2k−1 = 2 and n2k = 1 for each k ≥ 1. The basis elements can recursively be
built, for example, as follows: E1,1 = F = Fa + Fb, E1,2 = Fa − Fb, and for
k ≥ 1, E2k,1 = [F,E2k−1,2], E2k+1,1 = [Fa − Fb, E2k,1], E2k+1,2 = [F,E2k,1], with
L2k = span({E2k,1}) and L2k+1 = span({E2k+1,1, E2k+1,2}). From example (1.b), we
have that [Fa, [Fa, E2k,1]] = [Fb, [Fb, E2k,1]] = 0 and [F,E2k+1,1] = −[F,E2k+1,2] so
that

n∗2k = dim[F,L2k] = dim span({[F,E2k,1]}) = 1,

n∗2k+1 = dim[F,L2k+1] = dim span({[F,E2k+1,1], [F,E2k+1,2]}) = 1,

i.e., n∗k = 1 for all k, and thus s(q) = 	(q + 1)/2
 + 1 (or s(2n− 1) = s(2n) = n+ 1).
Counting the number of effective order conditions and the number of variables from
the composition (2.10) we observe that if the equations have real solutions, in principle
methods of effective order 4s−2 can be obtained. Furthermore, an interesting feature
of schemes (2.10) applied to the generalized harmonic oscillator (2.12) is that for any
kernel of the form (2.10), a postprocessor exists such that the processed integrator
is time-symmetric. This is a consequence of the fact that l2k := n2k − n∗

2k−1 = 0

for all k, and therefore F̂2k = 0 if the postprocessor is appropriately chosen (i.e., if
p2k−1,1 = −f2k,2 − r2k,2).

(2.c) Since the near-integrable problem is a particular case of (1.a), we can build

a basis of Lk and then, by taking into account that Lk =
⊕k−1

i=1 Lk,i, obtain a basis
of each Lk,i. According to (2.a), Lk = L∗

k and Lk,i = L∗
k,i for k > 1, i = 1, . . . , k − 1.

If we take L0
1 = span({Fa}), then n1,0 = n1,1 = 1 and n∗1,0 = 0, n∗1,1 = 1.

Usually, one is interested in designing methods such that [4]

Fh − F = O(εhs1+1 + ε2hs2+1 + ε3hs3+1 + · · ·).(2.19)

A method which satisfies this condition is said to be of order (s1, s2, s3, . . . , sq = q).
We are interested in the case where si ≥ si+1 and the list terminates with εqhq+1, q
being the standard order of consistency of the method. Observe that s1 is the order
of consistency the method would have in the limit ε→ 0.

To count the number of order conditions one has to consider each power of ε
separately. In a nonprocessed method this number is n1,0 +n1,1 +

∑q−1
i=1

∑si
k=i+1 nk,i,

whereas in the processed case this number reduces to (applying Corollary 2.7 to each
power of ε separately)

s(s1, . . . , q) = 1 +

q−1∑
i=1

nsi,i.

Since ns1,1 = 1, the number of order conditions is independent of s1, and (s1, 2)
methods can be obtained just with a consistent kernel (a first order method) [24]. If
s1 = · · · = sq = q, the result of Corollary 2.7 is recovered.

(2.d) For kernels constructed as compositions of a basic second order symmetric
integrator (2.14), L0 = L1 = span({F}). Whence n∗1 = n1 − 1 = 0, and for each
k ≥ 2, Lk ∩ L0 = {∅} so that L∗

k = Lk, n∗k = nk. The total number of effective order
conditions is then s(q) = nq + 1.

(2.e) For the family of Runge–Kutta methods, the situation is very similar to
(2.d). Now n1 = 1, n∗

1 = 0, and n∗
k = nk for k ≥ 2, and thus the number of conditions
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to have effective order conditions q is s(q) = nq + 1, that is, the number of rooted
trees with q vertices plus one. This result was obtained by Butcher and Sanz-Serna
in [8]. As for Runge–Kutta–Nyström methods, the situation is similar to (2.a), with
n1 = 1, n∗1 = 0, and n∗

k = nk for k ≥ 2, and Corollary 2.7 again leads to s(q) = nq+1.
For a kernel of effective order q (i.e., satisfying equations (2.17) for k ≤ q but not

for k = q+1), one could in principle determine a postprocessor such that (2.18) holds
also for all k > q. From now on we shall refer to that postprocessor as optimal, as it
causes many terms of each F̂k =

∑nk

i=1 f̂k,iEk,i of the processed method ψ̂h to cancel

(f̂k,i = 0 for i = nk − n∗k−1 + 1, . . . , nk).
Remark. This optimal postprocessor is not uniquely defined, and it depends on

the way a basis of [F,Lk−1] (k ≥ 2) is completed to get a basis of Lk (i.e., on the

choice of the direct complement L̄k := span({Ek,i}
nk−n∗

k−1

i=1 ) of [F,Lk−1] with respect
to Lk). In fact, we are determining the optimal Ph by requiring that the vector field
F̂h belongs to L̄ :=

⊕
k≥1 L̄k (i.e., that the projection onto [F,L] parallel to L̄ is

canceled). This obviously depends on the choice of L̄. We will, nevertheless, still
use the term “optimal postprocessor” by implicitly assuming that this refers to a
prescribed decomposition L = L̄ ⊕ [F,L].

Definition 2.9. We denote by Pk the set of maps πh : R
D → R

D whose Taylor
expansion is identical to the optimal postprocessor up to order k (i.e., their difference
is O(hk+1)).

Thus, we have a qth order processed integrator ψ̂h if the kernel ψh has effective
order q and the postprocessor πh is in Pq−1. If, in addition, πh ∈ Pq, then the leading

term of the resulting vector field F̂h − hF coincides with the leading term of the
optimal postprocessor.

3. Cheap postprocessing. In most cases the optimal postprocessor can be ac-
curately approximated, but it usually turns into a scheme which is (at least) as expen-
sive to evaluate as the kernel. Since the preprocessor is evaluated only once, it makes
sense to use this (typically) expensive approximation. On the contrary, using the
more accurate approximation to the postprocessor for obtaining intermediate results
along the numerical integration process may deteriorate the efficiency of the method,
especially if output is frequently required as occurs, for instance, in the calculation
of Lyapunov exponents and the computation of Poincaré maps in dynamical systems.
It is then reasonable to look for an approximation π̂h to the optimal postprocessor as
cheap to compute as possible. Usually, such a cheap postprocessor π̂h will be a less
accurate approximation to the optimal postprocessor, but the error π̂h(yn) − πh(yn)
thus introduced will not be propagated: as we shall see in section 3.2, such an error
eventually is overtaken by the global error of the underlying processed integrator in
typical situations (where the global error grows at least linearly in time).

Computationally cheap approximations to the optimal postprocessor can be ob-
tained by applying different techniques. Here we present an approach which can be
considered cost-free. In essence, πh is approximated by reusing intermediate calcula-
tions obtained in the evaluation of the kernel ψh.

More precisely, let x(t0) = x0 be the initial value of the problem, and yn =
ψnh(π−1

h (x0)). Then we approximate xn = πh(yn) as the linear combination

xn ≈
s∑

i=−s
wiYi(3.1)

of intermediate values Yi ∈ R
D computed when evaluating yn = ψh(yn−1) and yn+1 =
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ψh(yn). Here we consider only intermediate values from two steps, although more
could also be used. There is no loss of generality though, since using 2m steps is
equivalent to using two steps of the kernel ψmh .

To proceed further, the existence of such intermediate values has to be guaranteed.
Assumption 2. After evaluating yn+1 = ψh(yn) with a kernel ψh satisfying As-

sumption 1, the intermediate values Yi, i = 1, . . . , s, are available. These can be

interpreted as Yi = φ
(i)
h (yn) for suitable integrators φ

(i)
h satisfying Assumption 1.

3.1. Conditions on the cheap postprocessor. Under Assumption 2, we con-

sider (3.1) with Y0 = yn, and Y−i = φ
(s−i)
h (yn−1), i = 1, . . . , s, that is, Y−i =

φ
(−i)
h (yn), where φ

(−i)
h = φ

(s−i)
h ◦ ψ−1

h . Thus, (3.1) can be rewritten as

xn ≈ π̂h(yn), where π̂h(y) =

s∑
i=−s

wiφ
(i)
h (y)(3.2)

and each φ
(i)
h (y), −s ≤ i ≤ s, is an integrator satisfying Assumption 1.

Example 3.1. We illustrate Assumption 2 in some particular cases.
(3.a) For kernels of the form (2.10), Assumption 2 holds for the intermediate

values Yj = φ
(j)
h (yn) (−2s ≤ j ≤ 2s, because we have 2s intermediate stages per

step), where

Y2i−1 = ϕ
[a]
α2i−1h

◦ · · · ◦ ϕ[a]
α1h

(yn), Y2i = ϕ
[b]
α2ih

◦ · · · ◦ ϕ[a]
α1h

(yn),

Y−2i+1 = ϕ
[a]
α2s−2i+1h

◦ · · · ◦ ϕ[a]
α1h

(yn−1), Y−2i = ϕ
[b]
α2s−2ih

◦ · · · ◦ ϕ[a]
α1h

(yn−1),

and −s ≤ i ≤ s.
(3.b) For kernels of the form (2.14), Assumption 2 holds for the intermediate

values Yi = φ
(i)
h (yn) (−s ≤ i ≤ s), where

Yi = Sαih ◦ · · · ◦ Sα1h(yn), Y−i = Sαs−ih ◦ · · · ◦ Sα1h(yn−1).(3.3)

(3.c) Recall that a Runge–Kutta integrator ψh for the system (1.1) reads as

ψh(y) = y + h

s∑
i=1

bif(Yi), Yi = y + h

s∑
j=1

aijf(Yj), i = 1, . . . s,(3.4)

where bi, aij are parameters of the method. Clearly, Assumption 2 holds for the
intermediate stages Yi (1 ≤ i ≤ s), since each Yi defines a Runge–Kutta scheme. The
internal stages of other Runge–Kutta-type families of integrators can be similarly seen
to satisfy Assumption 2.

Next we study the conditions the coefficients wi must satisfy so that π̂h ∈ Pl with
l as high as possible. In fact, this is guaranteed for a given l ≥ 1 if

Π̂h :=

s∑
i=−s

wiΦ
(i)
h = Πh + O(hl+1),(3.5)

where Φ
(i)
h (−s < i ≤ s) is the series of differential operators Φ

(i)
h = I +

∑
j≥1

hjΦ
(i)
j such that, formally, g ◦ φ(i)

h = Φ
(i)
h [g]. From Assumption 2 we have that

Φ
(i)
h = exp(F

(i)
h ), where F

(i)
h =

∑
k≥1 h

kF
(i)
k and F

(i)
k ∈ Lk, k ≥ 1.
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Observe that π̂h cannot be interpreted as the exact 1-flow of a formal vector field
in the Lie algebra L, that is, log(Π̂h) ∈ L. However, since Π̂h is defined as a linear
combination of exponentials of (formal) vector fields in L, it is clear that Π̂h is a formal
series of elements in the associative algebra of linear differential operators generated
by the vector fields in L, and therefore, as noted in subsection 2.2, the series Π̂h can
be appropriately represented by using the universal enveloping algebra A of L.

According to that discussion, Πh and each Φih (hence Π̂h) can be expressed as

Πk =

mk∑
j=1

πk,jDk,j , Φ
(i)
k =

mk∑
j=1

φ
(i)
k,jDk,j , −s ≤ i ≤ s,(3.6)

where πk,j , φ
(i)
k,j ∈ R, and {Dk,j}mk

j=1 is a basis of the kth homogeneous component
Ak of A, constructed, for instance, at the end of subsection 2.2. In particular, since

Φ
(i)
h = exp(F

(i)
h ) with F

(i)
h =

∑
k≥1 h

kF
(i)
k , F

(i)
k =

∑nk

j=1 f
(i)
k,jEk,j , we have that each

φ
(i)
k,j in (3.6) is a polynomial function of f

(i)
l,r , l ≤ k, r ≤ nl. The same is true for

the coefficients πk,j and the coefficients pk,j in Pk =
∑nk

j=1 pk,jEk,j . Hence, (3.5) is
equivalent to a system of linear equations on the unknowns wi, i.e.,

s∑
i=−s

wiφ
(i)
k,j = πk,j , 1 ≤ j ≤ mk, 0 ≤ k ≤ l.(3.7)

In particular, π̂h ∈ P0 is equivalent to
∑s
i=−s wi = 1, and the number of equations

(3.7) required for π̂h ∈ Pl is then 1 +m1 + · · · +ml.
When the number of unknowns wi in (3.1) is larger than the number of equations

(3.7) required so that π̂h ∈ Pl for a given l, then one can use this freedom to minimize
the difference with the optimal postprocessor at higher orders.

3.1.1. Cheap postprocessing for time-symmetric kernels. In the impor-
tant case of time-symmetric kernels, Πk = 0 for odd indices k. In addition, it is

typically the case that Φ
(−i)
h = Φ

(i)
−h for −s ≤ i ≤ s. The choice w−i = wi for all i in

(3.1) then makes sense, that is,

π̂h = w0 id +

s∑
i=1

wi(φ
(i)
h + φ

(−i)
h ),(3.8)

so that (w0 = 1 − 2
∑s
i=1 wi)

Π̂h = w0I +

s∑
i=1

wi(Φ
(i)
h + Φ

(i)
−h) = I + 2

∑
r≥1

h2r

(
s∑
i=1

wiΦ
(i)
2r

)
.

This guarantees that equations (3.7) are automatically satisfied for odd values of k,
and the equations for even values of k are of the form

2
s∑
i=1

wiφ
(i)
k,j = πk,j , 1 ≤ j ≤ mk.(3.9)

Hence, the number of equations that remain to be satisfied by the unknowns w1, . . . ,ws
so that π̂h ∈ P2r−1 is m2 + · · · +m2r−2.
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Example 3.2. A kernel of the form (2.14) is time-symmetric if αs−i+1 = αi for
each i. We already know that in that case, f2i,j = 0, p2i−1,j = 0. In addition, one has

φ
(−i)
h = φ

(i)
−h for the intermediate values (3.3) to be used for the cheap postprocessor.

Hence, we take w−i = wi (1 ≤ i ≤ s) in (3.2). Thus, in particular, a total number of
m2 +m4 = 1+3 = 4 linear equations (3.9) have to be satisfied in order that π̂h ∈ P5.
In Appendix A these equations are written explicitly in terms of the coefficients αi of
the kernel.

3.1.2. Improved specialized cheap postprocessors. As we have seen, con-
dition (3.5) is sufficient for a cheap postprocessor (3.2) to belong to Pl. However, this
is not necessary in general. In fact, (3.5) means that

s∑
i=−s

wig(φ
(i)(y)) = g(πh(y)) + O(hl+1)(3.10)

for any g ∈ C∞(RD,R), y ∈ R
D, but in order that π̂h ∈ Pl, (3.10) has to be imposed

only for g = gj , j = 1, . . . , D, where gj is the projection onto the jth coordinate. As
we will see, this observation leads in certain cases to a reduction in the number of
conditions required.

Example 3.3. Consider again the family of Runge–Kutta schemes (3.4). Recall
that in that case, nk is the number of rooted trees with k vertices, and it is not
difficult to show that mk = nk+1 for each k ≥ 1. Now the integrator π̂h in (3.2) is
itself a Runge–Kutta method (provided that

∑
wi = 1), and standard Runge–Kutta

theory can be used to show that 1+n1 + · · ·+nl conditions on the parameters wi are
sufficient for π̂h ∈ Pl, instead of the 1+m1 + · · ·+ml = 1+n1 + · · ·+nl+1 conditions
obtained from (3.5).

One could also consider the use of cheap postprocessors with different sets of
values of the parameters wi for different components of y. In that case, one needs
only to impose (3.10) for the projection onto the corresponding component. Under
certain assumptions, this also leads to a reduction in the number of conditions to
be satisfied by the coefficients wi. To be more specific, let us consider the following
assumptions.

Assumption 3. For a certain j, there exists rj ∈ C∞(RD,R) such that for any
k ≥ 1 and Φk ∈ Ak, Φk[gj ] can be written as a linear combination of elements in
Ak−1 acting on rj.

One can show that, under Assumption 3, 2+ (m1 + · · ·+ml−1) conditions on the
parameters wi guarantee that (3.10) holds for g = gj (such conditions are independent
of the actual function rj).

Assumption 3 holds, in particular, for every component for Runge–Kutta meth-
ods, that is, for the graded free Lie algebra associated with the set of rooted trees
considered in example (1.e). It also holds for the case of integrators in example (1.d),
provided the basic second order symmetric method Sh is the implicit trapezoidal rule.

Assumption 4. For a certain j, there exists rj ∈ C∞(RD,R) such that for any
k ≥ 2 and Φk ∈ Ak, Φk[gj ] can be written as a linear combination of elements in
Ak−2 acting on rj.

In a similar way, it can be shown that, under Assumption 4, 1 +m1 + (1 +m1 +
· · · + ml−2) conditions on the parameters wi are sufficient for (3.10) to hold with
g = gj .

It can be seen that when L is the Lie algebra corresponding to Runge–Kutta–
Nyström methods (example (1.e)), Assumption 4 holds for the components corre-
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sponding to positions, while Assumption 3 holds for the velocity components.
For the case of integrators in example (1.d), if the basic second order symmetric

method Sh is the Störmer–Verlet method, then again Assumption 3 holds for veloci-
ties, while Assumption 4 holds for positions.

3.2. Error propagation. Our purpose now is to analyze the propagation of
the global error when the postprocessor is approximated by the linear combination
π̂h of intermediate values obtained in the computation of the kernel. As a general
rule, the precision of the final results is not conditioned by the use of a very accurate
postprocessor, whereas the error introduced by replacing the preprocessor π−1

h by π̂−1
h

can grow significantly along the integration.
To justify this assertion, let us consider a postprocessor πh in Pl, with l ≥ q, and

q is the order of the processed integrator ψ̂h. After n steps we have

xn = ψ̂nh(x0) = πh ◦ ψnh ◦ π−1
h (x0) = x(tn) + eh,q(n, x0),

where tn = nh and eh,q(n, x0) is the global error of the method. If π̂h ∈ Pk, with
k < q, is used as the postprocessor, then

x̃n ≡ π̂h ◦ ψnh ◦ π−1
h (x0) = π̂h ◦ π−1

h ◦ ψ̂nh(x0) = x(tn) + eh,q(n, x0) + δ̂h,k(xn).

Here δ̂h,k ≡ π̂h ◦ π−1
h − id = O(hk+1) is an error of local nature which in general can

be bounded independently of n, while the global error typically grows as n increases.
On the other hand, if π̂−1

h is used as the preprocessor, then

x̂n ≡ πh ◦ ψnh ◦ π̂−1
h (x0) = ψ̂nh ◦ πh ◦ π̂−1

h (x0) = ψ̂nh(x0 + δ̃h,k(x0))

= x(tn) + eh,q(n, x0) + ẽh,k(n, x0),

where ẽh,k corresponds to the propagation of the initial error δ̃h,k ≡ πh ◦ π̂−1
h − id =

O(hk+1). Now the error term ẽh,k is not of local character and can grow significantly
as n increases.

It is important to notice that when the kernel approximately preserves an integral
of motion I and π̂h is used as the postprocessor, the accuracy in the value of I can
be reduced. Nevertheless, one must keep in mind that this corresponds to a local
error which is not propagated and that, if required, one can always use a more precise
approximation to the postprocessor at selected times.

4. Numerical experiments. In this section we examine how the processing
technique with a cheap postprocessor behaves in practice. Our purpose, rather than
providing a complete analysis of different processed methods, is just to illustrate
the previous theoretical analysis on some specific examples. We consider a kernel
with effective order six of the form (2.14) with s = 11 constructed and studied in
[18, 19]. Its coefficients αi = α12−i are collected in Table 4.1. Next we construct an

approximation π
(c)
h ∈ P6 to the postprocessor πh also as a composition of the second

order integrator Sh at different stages. In particular, we take

π
(c)
h = ωh ◦ ω−h � πh, with ωh = Sγ6h ◦ · · · ◦ Sγ1h(4.1)

and coefficients γi, i = 1, . . . , 6, given in Table 4.1. Finally, we consider the interme-
diate values (3.3) and solve equations (A.2) for the cheap postprocessor π̂h ∈ P5. The
corresponding solution obtained by taking w1, w5, w6, w7 (in addition to w0) as the
nonzero coefficients is also collected in Table 4.1.
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Table 4.1

Coefficients for the sixth order processed method with kernel ψh of the form (2.14) (s = 11)
and postprocessors πh and π̂h given by (4.1) and (3.8), respectively.

P116

α1 = 0.1705768865009222157 γ6 = −0.1 w0 = 1 − 2(w1 + w5 + w6 + w7)

α2 = α1 γ5 = 0.24687306977659 w1 = 0.35601475536028

α3 = α1 γ4 = 0.09086982276241 w5 = 0.12246549694690

α4 = α1 γ3 = 0.23651387483203 w6 = 0.00415291514453

α5 = −0.423366140892658048 γ2 = −0.20621953139126 w7 = −0.20658995116781

α6 = 1 − 2(α1 + · · · + α5) γ1 = −(γ2 + · · · + γ6)

We recall that both π
(c)
h and π̂h are approximations to the postprocessor πh. The

map π
(c)
h is built as a composition of the basic integrator Sh so that log(π

(c)
h ) ∈ L,

and π̂h is taken as a linear combination of intermediate values used in the calculation
of the kernel. From (4.1) we observe that the computational cost of π

(c)
h is similar to

that of the kernel, whereas π̂ can be considered cost-free.
We compare this sixth order test integrator with other standard nonprocessed

composition methods of the same family. In particular, we consider the well-known
sixth order seven stages method “A” (Y76) built by Yoshida [25] and the optimized
sixth order nine stages method (SS,m = 9) of McLachlan [16] (M96) (similar results
are obtained with the sixth order nine stages method proposed by Kahan and Li [13]).

Numerical example 1. To illustrate how the error is propagated along the evolu-
tion when different approximations to the postprocessor are considered, we take the
simple Lotka–Volterra problem

u′ = u(v − 2), v′ = v(1 − u),(4.2)

which admits as first integral I(u, v) = ln(uv2) − (u + v). Using logarithmic scale
(q = ln v, p = lnu) the system becomes Hamiltonian with H = p − ep + 2q − eq =
T (p) + V (q). Equations (4.2) can be written as x′ = fa(x) + fb(x) with x = (u, v),

fa = (u(v − 2), 0), fb = (0, v(1 − u)) so that the corresponding h-flows ϕ
[a]
h and ϕ

[b]
h

can be exactly computed. We choose as second order time-symmetric integrator the

composition Sh = ϕ
[a]
h/2 ◦ ϕ

[b]
h ◦ ϕ[a]

h/2.

In the region 0 < u, v the system has periodic trajectories around (u, v) = (1, 2).
We take (u0, v0) = (1, 1), integrate up to t = 100 × 2π, and get outputs at t =
i × 2π, i = 1, . . . , 100. In Figure 4.1(a) we present the global error for the processed

schemes both using the accurate postprocessor π
(c)
h of (4.1) (method P116) and the

cheap approximation π̂h (P116C) only for output. The results obtained are compared
with Y76 and M96. The time steps selected are h = 1

14 ,
1
11 ,

1
9 , for Y76, M96, and

P116, respectively, so that all methods require approximately the same number of
evaluations. Figure 4.1(b) shows the error in the first integral I(u, v) for P116 and
P116C. In this case, for 1.9 < log(t) ≤ 2 the cheap postprocessor π̂h is replaced by

π
(c)
h just to clearly show that this higher accuracy can always be recovered. If P116C

is started with (π̂h)
−1 instead of (π

(c)
h )−1, this accuracy would not have been restored.

From the figures we observe the following: (a) the processed integrator is clearly
more accurate; (b) the results for the global error obtained using π̂h approach asymp-

totically those given by π
(c)
h ; (c) the error in I(u, v) is higher when π̂h is used, but it

does not grow with time, and the more accurate results can always be retrieved using

π
(c)
h when desired.
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Fig. 4.1. (a) Error in position and (b) error in the first integral I(u, v) as functions of time for
the Lotka–Volterra problem. The time step is chosen such that all methods require the same number
of evaluations (this number corresponds to the kernel for the processed integrators).
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Fig. 4.2. Average error in position versus number of evaluations for the first example (a) when
the output is not frequent and (b) when the output is required at each step.

Next we measure the average relative error in position versus the number of
evaluations for different time steps and methods. Figure 4.2 shows the results (a)
when the output is required only occasionally and (b) when it is required at each step.
From this figure the importance of using a cheap postprocessor when the output is
desired frequently is clear.

Numerical example 2. Let us consider now the ABC-flow [12], whose equations
are given by

x′ = B cos y + C sin z,
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Fig. 4.3. Error growth in position for the ABC-flow problem using a kernel (2.14) with coef-
ficients in Table 4.1 and different pre- and postprocessors. The results obtained with the nonpro-
cessed integrator M96 are also shown. The picture to the right is an enlargement of the rectangle
[1.9, 2] × [−9,−5] in the left-hand picture.

y′ = C cos z +A sinx,(4.3)

z′ = A cosx+B sin y,

and the vector field is separable in three solvable parts, i.e.,

f = fa + fb + fc = A(0, sinx, cosx) +B(cos y, 0, sin y) + C(sin z, cos z, 0).

We take as initial condition (x0, y0, z0) = (3.14, 2.77, 0), take as parameters A = B =
C = 1, and integrate the system until t = 100. We choose as the basic symmetric

second order integrator Sh = χh/2 ◦ χ∗
h/2, where χh = ϕ

[a]
h ◦ ϕ[b]

h ◦ ϕ[c]
h and χ∗

h =

ϕ
[c]
h ◦ ϕ[b]

h ◦ ϕ[a]
h . In Figure 4.3 we show the error growth in the Euclidean norm when

the following integrators based on P116 are considered:
• ψh: only the kernel without the pre- and postprocessor (dash-dotted line,

K114);
• π̂h ◦ ψh ◦ π̂−1

h : the cheap pre- and postprocessors are employed (dotted line,
P116CC);

• π̂h ◦ ψh ◦ (π
(c)
h )−1: we use the accurate preprocessor and the cheap postpro-

cessor (circles joined by dotted lines, P116C);

• π
(c)
h ◦ψh ◦ (π

(c)
h )−1: the accurate pre- and postprocessors are used (solid line,

P116).
We also include the results obtained using M96 (dashed line), choosing the time step
such that the number of evaluations is the same as for the kernel. From the figure, it
is clear that the kernel by itself is not good enough for giving accurate results (it is
only a fourth order integrator). In addition we see that, at least for this problem, it is
important to start the computation using a good preprocessor (some accuracy is lost
when using π̂−1

h ). Finally, we observe that after some time the results obtained using
the cheap and the composition postprocessors agree up to drawing accuracy, but the
former is faster to compute.
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5. Concluding remarks. We have presented a general study of the processing
technique which can be readily applied in several contexts. We obtain the number of
order conditions and indicate how to find them explicitly in a systematic way. We
have also presented a technique to find postprocessors virtually cost-free, just using
intermediate results from the kernel. From the error propagation analysis we conclude
that it is important to start the computation with an accurate preprocessor (even if
it is expensive) and that, in general, a computationally cheap postprocessor can be
safely used for ordinary intermediate output, although a more expensive postprocessor
may be used, if required, to compute more accurate results at selected times.

An important application of the results contained in this paper is the construction
of processed methods whose kernel is a composition of low order basic integrators.
In that case, by analyzing the structure of the corresponding Lie algebra L, it is
possible to obtain approximations to the postprocessor either as a composition of
basic methods or as a linear combination of intermediate stages of the kernel. In [2]
this analysis is pursued in more detail for different families of composition methods,
and new high order schemes are constructed which prove to be more efficient than
other composition integrators available in the literature.

In practice, the efficient integration of systems of ODEs often requires the use of
some step-size changing strategy. In principle, two possibilities can be contemplated.
(i) Reparameterize the time variable in such a way that, with the new independent
variable, a constant step-size can be used [12]. This is a familiar approach in geometric
integration, and the theory developed here applies directly. (ii) Consider the problem
of adapting the step-size in general terms, i.e., to construct processed methods whose
step-size h changes to ρh, with ρ ∈ [ρmin, ρmax] chosen according to some sort of local
error estimation technique. This is the usual approach for general purpose integrators
such as those based on explicit Runge–Kutta methods, and it is not suitable for
geometric integration, as such standard variable step-size implementation destroys
the geometric nature of the integration [22]. Although recently an adaptation of
processing techniques to standard variable step-size strategies has been proposed in
the Runge–Kutta context [9], this is largely an open problem which deserves further
research.

Appendix A. Here we derive explicitly the effective order conditions up to order
6 for methods with kernel (2.14) and obtain the corresponding linear equations (3.9)
for the cheap postprocessor (3.2). The series Sh = I +

∑
k≥1 h

kSk of differential

operators associated with the second order time-symmetric integrator Sh : R
D −→ R

D

for (1.1) can be written as Sh = exp(Yh), where Yh = hY1 + h3Y3 + h5Y5 + · · ·, and
Y1 = F . Then

Ψh = exp(Yhα1
) · · · exp(Yhαs

).(A.1)

By repeated application of the Baker–Campbell–Hausdorff formula one arrives at an
expansion of Fh = log(Ψh) = hF1 +h3F3 +h4F4 + · · ·, with hkFk ∈ Lk for the graded
Lie algebra L =

⊕
k≥1 Lk generated by the vector fields {Y1, Y3, Y5, . . .}. Here n1 = 1,

n2 = 0, n∗k = nk for k ≥ 2, whence, according to Lemma 2.5, F2 = 0, P1 = P2 = 0. A
basis of L is given in Table A.1 up to k = 6.

The order conditions for the kernel and postprocessor up to order six in this basis
read as

f1,1 = 1, f3,1 = 0, f5,1 = 0,

p4,1 = −f5,2, p1,1 = p3,1 = p5,1 = p5,2 = 0.
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Table A.1

Basis of L =
⊕

k≥1
Lk, the free Lie algebra generated by {hY1, h3Y3, h5Y5, . . .}.

Basis of L
L1 E1,1 = Y1 = F

L3 E3,1 = Y3

L4 E4,1 = [F,E3,1]

L5 E5,1 = Y5 E5,2 = [F,E4,1]

L6 E6,1 = [F,E5,1] E6,2 = [F,E5,2]

The basis for Lk presented in Table A.1 leads to the following basis in the universal
enveloping algebra:

A1 : D1,1 = E1,1, A2 : D2,1 =
1

2
E2

1,1,

A3 : D3,1 = E3,1, D3,2 =
1

3!
E3

1,1,

A4 : D4,1 = E4,1, D4,2 =
1

4!
E4

1,1, D4,3 =
1

2
(E1,1E3,1 + E3,1E1,1).

The series of vector fields Πh corresponding to the optimal processor is

Πh = exp(Ph) = exp(h4p4,1E4,1 + O(h6)) = I + h4p4,1D4,1 + O(h6).

For the intermediate stages of the cheap approximation we take (3.3), or, equivalently,

Φ
(i)
h = exp(Yhα1

) · · · exp(Yhαi
) = exp(hf

(i)
1,1E1,1 + h3f

(i)
3,1E3,1 + h4f

(i)
4,1E4,1 + O(h5)).

Then Φ
(i)
h + Φ

(−i)
h = 2(I + Φ

(i)
2 h2 + Φ

(i)
4 h4 + O(h6)), with

Φ
(i)
2 = φ

(i)
2,1D2,1, Φ

(i)
4 = (φ

(i)
4,1D4,1 + φ

(i)
4,2D4,2 + φ

(i)
4,3D4,3).

Here

φ
(i)
2,1 = (f

(i)
1,1)

2, φ
(i)
4,1 = f

(i)
4,1, φ

(i)
4,2 = (f

(i)
1,1)

4, φ
(i)
4,3 = f

(i)
1,1f

(i)
3,1,

and

f
(i)
1,1 =

i∑
j=1

αj ; f
(i)
3,1 =

i∑
j=1

α3
j ; f

(i)
4,1 =

1

2

⎛⎝i−1∑
j=1

αj

j∑
k=1

α3
k −

i−1∑
j=1

α3
j

j∑
k=1

αk

⎞⎠
with f

(1)
4,1 = 0. Finally, (3.9) for k = 2, 4 leads to the following linear system of

equations:

s∑
i=1

φ
(i)
2,1wi = 0;

s∑
i=1

φ
(i)
4,1wi =

1

2
p4,1;

s∑
i=1

φ
(i)
4,2wi = 0;

s∑
i=1

φ
(i)
4,3wi = 0(A.2)

so that π̂h ∈ P5.



552 S. BLANES, F. CASAS, AND A. MURUA

REFERENCES

[1] S. Blanes, High order numerical integrators for differential equations using composition and
processing of low order methods, Appl. Numer. Math., 37 (2001), pp. 289–306.

[2] S. Blanes, F. Casas, and A. Murua, Composition Methods for Differential Equations with
Processing, Preprint GIPS 2003-010, http://www.focm.net/gi/gips.

[3] S. Blanes, F. Casas, and J. Ros, Symplectic integrators with processing: A general study,
SIAM J. Sci. Comput., 21 (1999), pp. 711–727.

[4] S. Blanes, F. Casas, and J. Ros, Processing symplectic methods for near-integrable Hamil-
tonian systems, Celestial Mech. Dynam. Astronom., 77 (2000), pp. 17–35.

[5] S. Blanes, F. Casas, and J. Ros, High-order Runge-Kutta-Nyström geometric integrators
with processing, Appl. Numer. Math., 39 (2001), pp. 245–259.

[6] J. Butcher, The Numerical Analysis of Ordinary Differential Equations, John Wiley and
Sons, Chichester, 1987.

[7] J. Butcher, The effective order of Runge-Kutta methods, in Conference on the Numerical
Solution of Differential Equations, Lecture Notes in Math. 109, J.L. Morris, ed., Springer,
Berlin, 1969, pp. 133–139.

[8] J. Butcher and J.M. Sanz-Serna, The number of conditions for a Runge-Kutta method to
have effective order p, Appl. Numer. Math., 22 (1996), pp. 103–111.

[9] J.C. Butcher and T.M.H. Chan, Variable stepsize schemes for effective order methods and
enhanced order composition methods, Numer. Algorithms, 26 (2001), pp. 131–150.

[10] S.K. Gray and D.E. Manolopoulos, Symplectic integrators tailored to the time-dependent
Schrödinger equation, J. Chem. Phys., 104 (1996), pp. 7099–7112.

[11] E. Hairer, S.P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I, 2nd
ed., Springer, Berlin, 1993.

[12] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-
Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin, 2002.

[13] W. Kahan and R.C. Li, Composition constants for raising the order of unconventional
schemes for ordinary differential equations, Math. Comp., 66 (1997), pp. 1089–1099.
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Abstract. The dispersive properties of high order finite element schemes are analyzed in the
setting of the Helmholtz equation, and an explicit form of the discrete dispersion relation is obtained
for elements of arbitrary order. It is shown that the numerical dispersion displays three different
types of behavior, depending on the size of the order of the method relative to the mesh-size and
the wave number. Quantitative estimates are obtained for the behavior and rates of decay of the
dispersion error in the differing regimes. All estimates are fully explicit and are shown to be sharp.
Limits are obtained, where transitions between the different regimes occur, and used to provide
guidelines for the selection of the mesh-size and the polynomial order in terms of the wave number
so that the dispersion error is controlled.
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1. Introduction. Wave propagation phenomena arising in practical applica-
tions typically require large wave number (or frequency) ω. Accurate numerical simu-
lation of such applications is thwarted by a number of issues, perhaps the most acute
of which is numerical dispersion. This refers to the effect whereby the numerical
scheme fails to propagate waves at the correct speed, resulting in a phase lead or lag
in the numerical approximation. Numerical dispersion is often responsible not only
for poor resolution but also for approximations that are even qualitatively incorrect.

Finite elements are often the method of choice for engineers interested in prob-
lems of continuum mechanics posed over complicated domains. It is therefore not
surprising that finite elements are frequently used in numerical wave propagation [3].
The importance of numerical dispersion is widely recognized and is often used in as-
sessing the quality of a numerical scheme and as a basis for ranking different finite
element methods. For instance, Harari [16, 17], Harari and Avraham [18], and Harari
and Hughes [19] consider the use of stabilized and Galerkin least squares finite ele-
ment formulations for combatting the problem of dispersion in the solution of acoustic
scattering problems, typically in the context of low order finite elements. Abboud and
Pinsky [1] and Oberai and Pinsky [25] also study the discrete dispersive properties
of various lower order finite element methods (such as the 8-node trilinear element,
20-node serendipity, 27-node triquadratic element) for the approximation of the scalar
wave equation in three dimensions. More recently, Christon [6] considered the disper-
sive behavior of a variety of finite element schemes for the second order wave equation
and performed a computational study of the discrete phase and group velocities.
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The advantages of using higher order elements have also been widely recognized.
For example, Harari and Avraham [18] compare the efficiency of first and second order
elements for the solution of acoustic scattering problems and view their work as justi-
fying the extension of the ideas to higher order (p-version) finite elements. Thompson
and Pinsky [29] study the dispersive and attenuation properties of finite elements up
to fifth order for the one-dimensional scalar Helmholtz equation and, on the basis of
numerical evidence, conjecture that elements of degree p provide a 2pth order accurate
approximation of the dispersion relation in the limit where ωh tends to zero.

Applications are not confined to applications in acoustic scattering; for instance,
Dyson [12] proposes the use of high (up to fifteenth) order schemes for propaga-
tion of waves for Euler equations. Cohen and Monk [7], Cohen [9], and Monk and
Parrott [24] have considered the dispersive behavior of lower order finite element
methods for Maxwell’s equations. The use of high order finite element and spectral
element schemes for the approximation of Maxwell’s equations has attracted much
interest [10, 20].

The first systematic study of the properties of finite element methods for high wave
number applications was carried out in a series of papers by Babuška and Ihlenburg.
In [4, 21], the convergence properties in the H1-norm of first order finite elements for
the one-dimensional model Helmholtz problem are studied working under the assump-
tion that ωh < 1. These ideas are extended to higher dimensions by Deraemaeker,
Babuška, and Bouillard [11], who undertake a numerical study of the dispersive be-
havior for various finite element formulations in higher dimensions that allow one
to include topological effects of the meshes, while Gerdes and Ihlenburg [14] study
convergence of an h-version Galerkin finite element method for a three-dimensional
problem of rigid scattering with mesh refinement in the radial direction and show
that the error bound contains pollution effects similar to those observed in the one-
dimensional analysis. A detailed study of the dispersion and approximation behavior
of hp-finite elements for the Helmholtz equation in one dimension is undertaken by
Ihlenburg and Babuška [22].

Despite extensive investigations, several important issues concerning the disper-
sive properties of standard finite element schemes remain unresolved, particularly in
the context of high order elements. The aim of the present work is to give a sharp
analysis of the dispersive properties of high order finite element schemes in the setting
of the Helmholtz equation, to identify thresholds (relating the order p of the method
and the mesh-size h to the wave number ω) where the dispersion error begins to decay,
and to obtain sharp quantitative estimates on the rates of decay of the error in the
differing regimes. A clear understanding of the dispersive properties of a scheme is not
only of academic interest. Accurate quantitative information on the dispersion effects
can serve as a practical guideline for the construction of a mesh and a polynomial
order that will lead to a reasonable first approximation.

The analysis hinges on knowledge of an explicit form for the discrete dispersion
relation valid for elements of arbitrary order. This is obviously a valuable tool for
the study of numerical dispersion and, to the best of our knowledge, has not been
obtained before. We derive a neat closed form expression for the discrete dispersion
relation for elements of arbitrary order in terms of Padé approximants.

We study the behavior of the error in the discrete dispersion relation in two
important limits: (i) in the small wave number limit, where ωh � 1, where we
provide a confirmation of the conjecture of Thompson and Pinsky [29]; and (ii) in the
important practical case of high wave number, where ωh� 1. The analysis provides
a concrete guideline for choosing the order p of the elements and the mesh-size h in
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order that the dispersion error is virtually eliminated:

p+
1

2
>
ωh

2
+ C(ωh)1/3,(1.1)

where C is a constant which may in practice be chosen to be unity. In fact, when p is
increased in this regime, the error decays at a superexponential rate, and an explicit
expression for the error is given. In the limit where p is much larger than ωh/2, the
expression decays as (ωhe/2(2p+1))2p+1, which is compatible with the upper bounds
derived by Ihlenburg and Babuška [22]. More importantly, criterion (1.1) is shown to
be sharp in the sense that if p does not satisfy (1.1), i.e., if

p+
1

2
<
ωh

2
− o(ωh)1/3,

then the dispersion error will not decay and may even increase significantly as the
order p is increased. These results show that there is essentially no preasymptotic
error reduction, which one might have expected based on the analysis for the positive
definite case [28]. Strictly speaking, the error does begin to decay when p enters the
transition zone:

p+
1

2
∈
(
ωh

2
− o(ωh)1/3,

ωh

2
+ o(ωh)1/3

)
.

However, it is shown that the decay in this phase is only algebraic: O(p−1/3), and
the comparatively narrow transition zone means that the preasymptotic decay is too
short-lived to be of any real practical significance.

The results obtained here improve on the upper bounds given in [22]. In par-
ticular, all estimates are given explicitly and do not involve generic constants. This
enables us to show that these estimates are the best ones possible. Our analysis is
restricted to schemes of uniform order on tensor product meshes. Nevertheless, this
type of scheme is used locally in regions remote from the scatterer, where the main
issue is to control numerical dispersion. Equally well, our analysis deals only with
the issue of numerical dispersion. The actual accuracy of the approximation is a
separate issue which is considered by Ihlenburg and Babuška [22], where it is shown
that the accuracy of the finite element approximation error in the H1-norm will be
quasi-optimal only if ω2p+1h2p is sufficiently small.

The remainder of this article is organized as follows. First, we review the stan-
dard framework leading to the derivation of the discrete dispersion relation in the
setting of the wave equation in one dimension and describe the relevance of this to
the multidimensional case, where tensor product meshes are used. The main results
are outlined in the following section. The remaining sections deal with the technical
details and proofs of the results.

2. The discrete dispersion relation.

2.1. The setting. It is well known that the general solution of the homogeneous
wave equation in one space dimension,

∂2u

∂t2
− ∂2u

∂x2
= 0,

can be expressed as a superposition of plane waves in the form

u(x, t) =

∫
R

[
a(k)ei(kx+ωt) + b(k)ei(kx−ωt)

]
dk
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for suitable functions a and b, where ω and k are related by the dispersion relation

ω2 = k2.

Suppose that a uniform grid of size h > 0 is placed on the real line with nodes located
at hZ, and let Vh denote the set of continuous piecewise linear functions relative to
the grid. By analogy with the continuous problem, we may seek solutions of the form

uh(x, t) = eiωtUh(x)(2.1)

so that Uh ∈ Vh must satisfy

Bω(Uh, vh) = 0 ∀vh ∈ Vh,(2.2)

where

Bω(Uh, vh) = (U ′
h, v

′
h) − ω2(Uh, vh)

and (·, ·) denotes the L2-inner product on R.
The invariance of the grid under translation by h prompts us to seek Bloch

wave [26] solutions of the homogeneous (2.2) in the form

Uh(x) = α
∑
m∈Z

eimkhθm(x),(2.3)

where α and k are constants to be determined. Here, θm are the usual piecewise linear
hat functions defined by

θm(nh) = δmn, m, n ∈ Z.(2.4)

The translation invariance of the grid means that

θm(x+ nh) = θm−n(x), x ∈ R, n ∈ Z,

which in turn implies that Uh has the characteristic property of a Bloch wave: for
each n ∈ Z,

Uh(x+ nh) = eiknhUh(x), x ∈ R.(2.5)

This means that (2.2) is equivalent to the condition

Bω(Uh, θ0) = 0,

or, inserting the expression (2.3) for Uh,

α
∑
m∈Z

eimkhBω(θm, θ0) = 0.

Hence, a nontrivial Bloch wave exists, provided that∑
m∈Z

eimkhBω(θm, θ0) = 0.

This expression may be simplified further using properties of the hat functions giving

e−ikhBω(θ−1, θ0) +Bω(θ0, θ0) + eikhBω(θ1, θ0) = 0,
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and, again by exploiting translation invariance of the grid, we obtain the discrete
dispersion relation

2 cos(kh)Bω(θ1, θ0) +Bω(θ0, θ0) = 0.(2.6)

We refer to (2.6) as the dispersion relation for the following reason. For the first
order standard Galerkin scheme considered above, we find that

Bω(θ0, θ0) =
2

h

(
1 − 1

3
ω2h2

)
, Bω(θ1, θ0) = − 1

h

(
1 +

1

6
ω2h2

)
,

and the discrete dispersion relation simplifies to give the well-known result,

kh = cos−1

(
6 − 2ω2h2

6 + ω2h2

)
= ωh− 1

24
(ωh)3 + · · · .

Here, we have adopted the common practice whereby kh is compared directly with ωh.
However, examining (2.5) reveals that the value of exp(ikh) compared with exp(iωh)
is actually of more physical relevance in the study of phase lag or lead. Of course, if
both kh and ωh are small, then exp(ikh)−exp(iωh) is closely related to kh−ωh, and
it makes sense to compare k and ω directly. However, we shall later be concerned with
the regime ωh � 1, and we shall therefore seek to compare exp(ikh) with exp(iωh).
More precisely, we shall derive estimates for the difference cos(kh) − cos(ωh).

2.2. Extension to high order schemes. The discrete dispersion relation for
higher order schemes may be obtained by modifying the previous arguments. Let Vhp
denote the set of continuous piecewise polynomials of degree p on the grid hZ, and
let V �hp denote the subspace

V �hp = {vhp ∈ Vhp : vhp(mh) = 0, m ∈ Z}.

As before, we seek a Bloch wave solution Uhp ∈ Vhp satisfying

Bω(Uhp, vhp) = 0 ∀vhp ∈ Vhp.

Accordingly, we write Uhp in the form

Uhp(x) =
∑
m∈Z

eikmh[αθ(p)m (x) + βψ(p)(x−mh)],(2.7)

where α and β are constants, and ψ(p) ∈ V �hp is supported on (0, h). By analogy

with (2.4), the function θ
(p)
m ∈ Vhp has nodal values given by

θ(p)m (nh) = δmn, m, n ∈ Z,(2.8)

but is instead extended to the element interiors as a polynomial of degree p by requir-
ing that

Bω(θ(p)m , vhp) = 0 ∀vhp ∈ V �hp.(2.9)

This amounts to a decoupling of the nodal and interior degrees of freedom through
Gaussian elimination or static condensation.
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If ω does not correspond to a discrete eigenvalue, then θ
(p)
m is uniquely defined

by this condition. It is not difficult to show that the function Uhp satisfies the Bloch
wave condition: for all n ∈ Z,

Uhp(x+ nh) = eiknhUhp(x), x ∈ R.

Consequently, exploiting translation invariance of the grid, it suffices to require

Bω(Uhp, θ
(p)
0 ) = 0

Bω(Uhp, ψ
(p)) = 0

⎫⎬⎭ .

By inserting the expression (2.7) for Uhp into the latter equation, using (2.9) and the
fact that ω does not correspond to a discrete eigenvalue, we conclude that ψ(p) must
vanish identically. Consequently, the expression (2.7) collapses to the form considered
in the case of first order schemes,

Uhp(x) = α
∑
m∈Z

eikmhθ(p)m (x),(2.10)

and, by analogy with (2.6), the higher order discrete dispersion relation assumes the
form

2 cos(kh)Bω(θ
(p)
1 , θ

(p)
0 ) +Bω(θ

(p)
0 , θ

(p)
0 ) = 0.(2.11)

The same expression was obtained by Babuška and Ihlenburg [4] and Ihlenburg and
Babuška [22]. A detailed study of the discrete dispersion relation for higher order
elements is postponed until the next section.

2.3. Relevance to multidimensional problems. Information on the discrete
dispersion relation for the scalar Helmholtz equation in one dimension may be used to
derive explicit forms for the discrete dispersion relation for finite element approxima-
tion of problems in higher dimensions on tensor product meshes. Here, we describe
the case of the wave equation in detail. An extension of the argument to the approx-
imation of Maxwell equations using Nédélec elements may be found in [2].

Consider the wave equation in d-dimensions,

1

c2
∂2u

∂t2
− ∆u = 0,

and assume that a tensor product grid hZ
d is introduced on R

d. Let Vhp denote
the space of piecewise polynomials of total degree p in each variable on the grid;
then seeking a discrete solution of the form (2.1) leads to the problem of determining

Uhp ∈ V
(d)
hp such that

d∑
r=1

(
∂Uhp
∂xr

,
∂vhp
∂xr

)
− κ2(Uhp, vhp) = 0 ∀vhp ∈ V

(d)
hp .

The tensor product structure prompts us to seek a solution of the form

Uhp(x1, . . . , xd) = α

d∏
r=1

Xp(kr;xr),
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where α is a constant, and

Xp(k; s) =
∑
m∈Z

eimkhφ(p)
m (s),(2.12)

with φ
(p)
m defined as above. In particular, we recall that Xp(kr) ∈ Vhp satisfies

(X ′
p(kr), v

′) − κ2
r(Xp(kr), v) = 0 ∀v ∈ Vhp,(2.13)

where κr is related to kr by the discrete dispersion relation (2.11).
Choosing the test function vhp to be a product of one-dimensional functions

∏
vr

leads to the following necessary condition for the existence of nontrivial solutions:

d∑
q=1

(Φ′
p(kq), v

′
q)
∏
r �=q

(Xp(kr), vr) − κ2
d∏
r=1

(Xp(kr), vr) = 0.

Therefore, in view of (2.13), we obtain(
d∑
r=1

κ2
r − κ2

)
d∏
q=1

(Xp(kq), vq) = 0,

and it follows that the discrete dispersion relation for the multidimensional scheme is
given by

d∑
r=1

κ2
r = κ2,(2.14)

where κr is related to kr by the discrete dispersion relation (2.11). An alternative
proof of this result for Gauss point mass lumped finite element schemes may be found
in [9, p. 228]. The above argument extends immediately to these schemes.

3. Higher order discrete dispersion relation. An explicit expression for the
higher order dispersion relation could, at least in principle, be derived by proceeding
directly as in the first order case. Unfortunately, such a direct computation rapidly
becomes intractable with increasing order, as pointed out in [9], and the general result
might seem to be unattainable. In section 4, we prove that the discrete dispersion
relation is given explicitly in terms of Padé approximants [5].

Theorem 3.1. Suppose p ∈ N, and define set Ne = �p/2� and No = �(p+ 1)/2�.
Let [2Ne + 2/2Ne]κ tanκ and [2No/2No − 2]κ cotκ denote the Padé approximants to
κ tanκ and κ cotκ, respectively. Then the discrete dispersion relation is given by

cos(kh) = Rp(hω),(3.1)

where Rp is the rational function

Rp(2κ) =
[2No/2No − 2]κ cotκ − [2Ne + 2/2Ne]κ tanκ

[2No/2No − 2]κ cotκ + [2Ne + 2/2Ne]κ tanκ

.(3.2)

Despite the apparent simplicity, this result has been hitherto unknown in the litera-
ture, although special cases for lower order elements can be found in many sources.
Table 3.1 shows the discrete dispersion relation and the leading term in the error in
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Table 3.1

Discrete dispersion relation cos(kh) = Rp(ωh) for order p approximation given in Theorem 3.1.
The leading term in the series expansion for the error when Ω � 1 (see Theorem 3.2) is also
indicated.

Order p Rp(Ω) cos−1Rp(Ω) − Ω

1
−2Ω2 + 6

Ω2 + 6
−Ω3

24

2
3Ω4 − 104Ω2 + 240

Ω4 + 16Ω2 + 240
− Ω5

1440

3
−4Ω6 + 540Ω4 − 11520Ω2 + 25200

Ω6 + 30Ω4 + 1080Ω2 + 25200
− Ω6

201600

4
5Ω8 − 1800Ω6 + 134064Ω4 − 2378880Ω2 + 5080320

Ω8 + 48Ω6 + 3024Ω4 + 161280Ω2 + 5080320
− Ω7

50803200

the dispersion relation for methods of order p = 1 to p = 4. For example, in the case
of first order approximation p = 1,

cos(kh) = R1(ωh) =
6 − 2ω2h2

6 + ω2h2
,

which agrees with the result obtained for first order approximation in the previous
section.

3.1. Accuracy at small wave numbers. The following general result for the
leading term for the error in the dispersion relation, valid for wave numbers satisfying
ωh� 1, is proved in section 4.

Theorem 3.2. Let p ∈ N. Then the error in the discrete dispersion relation is
given by

cos kh− cosωh =
1

2

[
p!

(2p)!

]2
(ωh)2p+2

2p+ 1
+ O(ωh)2p+4(3.3)

or, if kh is sufficiently small,

kh− ωh = −1

2

[
p!

(2p)!

]2
(ωh)2p+1

2p+ 1
+ O(ωh)2p+3.(3.4)

The result implies that

k

ω
− 1 = O (ωh)

2p
,(3.5)

meaning that the dispersion relation for a pth order scheme is accurate to order 2p.
This is consistent with the conjecture made by Thompson and Pinsky [29, eq. (41)]
on the basis of numerical evidence in the particular cases of elements of order p = 1
to p = 5.

3.2. Accuracy at large wave numbers. While error estimates for small values
of ωh are not without interest, the most interesting case in practice is the high wave
number limit, where the practical limitations on the size of mesh means that product
ωh is large even though h is small. The next result describes the behavior of the error
as the order of approximation p is increased so that both p and ωh are large.
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Fig. 3.1. Behavior of error in the discrete dispersion relation for high wave numbers ωh� 1 as
the order p is increased. The transition region between the oscillatory phase and the superexponential
decay of the error is indicated in each case (cf. Theorem 3.3).

Theorem 3.3. Suppose that ωh� 1. Then the error Ep = cos kh− cosωh in the
discrete dispersion relation passes through three distinct phases as the order p ∈ N is
increased:

1. Oscillatory phase: For 2p + 1 < ωh − o(ωh)1/3, Ep oscillates, but does not
decay, as p is increased.

2. Transition zone: For ωh− o(ωh)1/3 < 2p+ 1 < ωh+ o(ωh)1/3, the error Ep
decays algebraically at a rate O(p−1/3).

3. Superexponential decay: For 2p + 1 > ωh + o(ωh)1/3, Ep decreases at a
superexponential rate:

Ep ≈ sin(ωh)

2
f(
√

1 − (ωh/(2p+ 1))2)p+1/2,(3.6)

where f : w → (1 − w)/(1 + w) exp(2w), so that in the case where 2p + 1 > ωhe/2
with e = exp(1),

Ep ≈ sin(ωh)

2

[
ωhe

2(2p+ 1)

]2p+1

.(3.7)

Observe that the term appearing in parentheses in (3.6) has a magnitude less than
unity, which follows from the fact that the function f : w → (1−w)/(1 +w) exp(2w)
is nonnegative and monotonic decreasing on [0, 1] and the observation that f(0) = 1.

Figure 3.1 shows the behavior of the actual error as the order p is increased for a
range of values of ωh. The oscillatory region and the transition to the superexponential
decay in the error described in Theorem 3.3 can be clearly discerned.
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Theorem 3.3 provides clear guidelines for the construction of meshes and the
choice of order for the numerical resolution of waves using finite elements. In order
to ensure that the dispersion error is for all practical purposes virtually eliminated,
it is desirable that we work in the superexponential regime. For this reason, it is
recommended to choose the order p and the mesh-size h so that

2p+ 1 > ωh+ C(ωh)1/3,(3.8)

where C is some fixed constant, which may be chosen to be unity in practice. The
numerical results shown in Figure 3.1 support this criterion. It is interesting that
the same type of criterion is arrived at for the choice of the number of terms to be
used in the implementation of the fast multipole method for scattering problems [23,
eq. (3.38)].

4. Proofs of the results.

4.1. Basic polynomials. Let B̂ denote the bilinear form

B̂(u, v) =

∫ 1

−1

(
u′v′ − κ2uv

)
ds,

where κ > 0 is a constant. We introduce the basic polynomials, Φpo and Φpe, of degree
at most p ∈ N satisfying

Φpe(±1) = 1 : B̂(Φpe, v) = 0 ∀v ∈ Pp ∩H1
0 (−1, 1)(4.1)

and

Φpo(±1) = ±1 : B̂(Φpo, v) = 0 ∀v ∈ Pp ∩H1
0 (−1, 1).(4.2)

Throughout, it will be assumed that κ does not coincide with an eigenvalue for this
problem so that the polynomials are defined uniquely by these conditions.

It is easy to see that Φpo and Φpe are odd and even functions, respectively. The

first result gives explicit closed forms for the expressions B̂(Φpo,Φ
p
o) and B̂(Φpe,Φ

p
e),

which will be needed later.

Theorem 4.1. Let p ∈ N satisfy p ≥ 2. Then

1. if κ �= (m+ 1/2)π for all m ∈ Z,

B̂(Φpe,Φ
p
e) = 2κ

J2N+3/2(κ) cosκ+ Y2N+3/2(κ) sinκ

J2N+3/2(κ) sinκ− Y2N+3/2(κ) cosκ
,(4.3)

where J and Y are cylindrical Bessel functions of the first and second kind, N = �p/2�,
and �·� denotes the integer part;

2. if κ �= mπ for all m ∈ Z,

B̂(Φpo,Φ
p
o) = −2κ

J2N+1/2(κ) sinκ− Y2N+1/2(κ) cosκ

J2N+1/2(κ) cosκ+ Y2N+1/2(κ) sinκ
,(4.4)

where N = �(p+ 1)/2�.
Proof. Symmetry arguments reveal that the function Φpe is an even order polyno-

mial of degree 2N , where N = �p/2�. For the remainder of the proof superscripts will
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be omitted since no confusion is likely to arise. Using definition (4.1) and integrating
by parts shows that∫ 1

−1

(
Φ′′
e + κ2Φe

)
v dx = 0 ∀v ∈ P2N ∩H1

0 (−1, 1).

The term in parentheses is a polynomial of degree 2N , which may be written in the
form

Φ′′
e + κ2Φe =

2N+1∑
k=1

µkL
′
k(x)

for suitable scalars µk, where Lk is the Legendre polynomial [15] of degree k. In-
serting v = (1 − x2)L′

k(x), with j = 1, 2, . . . , 2N − 1, and recalling the orthogonality
property [15] ∫ 1

−1

(1 − x2)L′
j(x)L

′
k(x) dx = 0 for j �= k,

leads to the conclusion µj = 0 for j = 1, 2, . . . , 2N − 1. Furthermore, the fact that
L′

2N is an odd function and a parity argument shows that µ2N = 0. Hence,

Φ′′
e + κ2Φe = µ2N+1L

′
2N+1.(4.5)

It is not difficult to verify that the function w2N defined by

w2N (x) =

N∑
j=0

(
− 1

κ2

)j+1

L
(2j+1)
2N+1 (x)(4.6)

is a polynomial of degree 2N satisfying

w′′
2N + κ2w2N = −L′

2N+1.

Consequently, Φe may be written in the form

Φe(x) =
w2N (x)

w2N (1)
,

provided that w2N (1) is nonzero, and, moreover, inserting this form into (4.5) reveals
that

µ2N+1 = −1/w2N (1).

With the aid of these results, we obtain

B̂(Φe,Φe) = [Φ′
eΦe]

1
−1 −

∫ 1

−1

Φe
(
Φ′′
e + κ2Φe

)
dx

= 2Φ′
e(1) − µ2N+1

∫ 1

−1

ΦeL
′
2N+1 dx

= 2Φ′
e(1) − µ2N+1 [ΦeL2N+1]

1
−1

= 2 (Φ′
e(1) − µ2N+1)

=
2

w2N (1)
(1 + w′

2N (1)) ,
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where standard properties of Legendre polynomials have been used, such as the fact
that L2N+1 is orthogonal to any polynomial of lower degree with respect to the
L2(−1, 1) inner product and that L2N+1(±1) = ±1. The values of w and its derivative
at x = 1 are given by the following formula, which is obtained using (8.910)2 in [15]:

L(d)
n (±1) =

⎧⎪⎨⎪⎩
(n+ d)!

d!(n− d)!

(±1)d+n

2d
for d = 0, . . . , n,

0 otherwise,

(4.7)

giving, after some manipulation,

1 + w′
2N (1) = a2N+1(4.8)

and

w2N (1) = −b2N+1/κ.(4.9)

Here, an and bn are the expressions defined, for nonnegative integers n, by

an =

�n/2�∑
k=0

(−1)k

(2k)!

(n+ 2k)!

(n− 2k)!

1

(2κ)2k
(4.10)

and

bn =

�(n−1)/2�∑
k=0

(−1)k

(2k + 1)!

(n+ 2k + 1)!

(n− 2k − 1)!

1

(2κ)2k+1
.(4.11)

These series appear in formulas (8.461) and (8.465) of [15] and satisfy the identity[
sin(κ− πn/2) cos(κ− πn/2)
cos(κ− πn/2) − sin(κ− πn/2)

] [
an
bn

]
=

√
πκ

2

[
Jn+1/2(κ)

(−1)n−1Yn+1/2(κ)

]
,(4.12)

where Jn+1/2 and Yn+1/2 again denote cylindrical Bessel functions of the first and
second kind, respectively. Equation (4.12) may be rearranged to obtain expressions
for the series an and bn, leading to the conclusion,

B̂(Φe,Φe) = −2κ
a2N+1

b2N+1
= 2κ

J2N+3/2(κ) cosκ+ Y2N+3/2(κ) sinκ

J2N+3/2(κ) sinκ− Y2N+3/2(κ) cosκ
,(4.13)

which completes the proof in the even case.
The proof of the odd order case follows similar lines, leading to the following

analogue of (4.13):

B̂(Φo,Φo) = −2κ
a2N

b2N
,(4.14)

where N = �(p+ 1)/2�. Inserting expressions for the series a2N and b2N and simpli-
fying leads to the result claimed.

Equations (4.3) and (4.4) provide compact representations for the terms B̂(Φpe,Φ
p
e)

and B̂(Φpo,Φ
p
o) but hide the fact that they are actually rational functions of κ. Inter-

estingly enough, the expressions are actually certain types of Padé approximants [5].
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Theorem 4.2. Let p ∈ N satisfy p ≥ 2. Then we have the following:
1. B̂(Φpe,Φ

p
e) is the [2N + 2/2N ]-Padé approximant of −2κ tanκ, where N =

�p/2�. Furthermore, if κ �= (m+ 1/2)π, m ∈ Z, then

Epe (κ) = B̂(Φpe,Φ
p
e) + 2κ tanκ

=
1

2

[
(2N + 1)!

(4N + 2)!

]2
(2κ)4N+4

4N + 3
+ O(κ4N+6).(4.15)

2. B̂(Φpo,Φ
p
o) is the [2N/2N − 2]-Padé approximant of 2κ cotκ, where N =

�(p+ 1)/2�. If κ �= mπ, m ∈ Z, then

Epo (κ) = B̂(Φpo,Φ
p
o) − 2κ cotκ

= 2

[
(2N)!

(4N)!

]2
(2κ)4N

4N + 1
+ O(κ4N+2).(4.16)

Proof. First, (4.13) shows that B̂(Φpe,Φ
p
e) is given by −2κa2N+1/b2N+1, where

a2N+1 and b2N+1 are defined in (4.10)–(4.11). It is not difficult to see that κ2N+1a2N+1

and κ2N+1b2N+1 are polynomials in κ of degree 2N + 1 and 2N , respectively. Hence,

B̂(Φpe,Φ
p
e) is a rational function of degree [2N+2/2N ]. Straightforward manipulation

beginning with the expression (4.3) gives

B̂(Φpe,Φ
p
e) + 2κ tanκ = − 2κ

cos2 κ
Q2N+3/2(κ)

(
1 −Q2N+3/2(κ) tanκ

)−1
,(4.17)

where

Q2N+3/2(κ) =
J2N+3/2(κ)

Y2N+3/2(κ)
.

The behavior of Q2N+3/2(κ) is studied in the appendix, where the following estimate
is proved in Lemma A.1:

Q2N+3/2(κ) = −1

2

[
(2N + 1)!

(4N + 2)!

]2
(2κ)4N+3

4N + 3
+ · · · .

With the aid of this estimate, we obtain that

B̂(Φpe,Φ
p
e) + 2κ tanκ =

1

2

[
(2N + 1)!

(4N + 2)!

]2
(2κ)4N+4

4N + 3
+ · · ·

as claimed. Summarizing, we have shown that B̂(Φpe,Φ
p
e) is the rational function of

degree [2N + 2/2N ] which approximates −2κ tanκ to order 4N + 4. Consequently,

B̂(Φpe,Φ
p
e) is the [2N + 2/2N ]-Padé approximant of −2κ tanκ.

The assertions concerning B̂(Φpo,Φ
p
o) are proved in a similar fashion. In particular,

using (4.14) it is easy to see that B̂(Φpo,Φ
p
o) is a rational function of type [2N/2N−2].

With the aid of (4.4), we derive

B̂(Φpo,Φ
p
o) − 2κ cotκ = − 2κ

sin2 κ
Q2N+1/2(κ)

(
1 +Q2N+1/2(κ) cotκ

)−1
,(4.18)

where

Q2N+1/2(κ) =
J2N+1/2(κ)

Y2N+1/2(κ)
,
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and then, applying Lemma A.1, we deduce that

B̂(Φpo,Φ
p
o) − 2κ cotκ = 2

[
(2N)!

(4N)!

]2
(2κ)4N

4N + 1
+ · · ·

as claimed. It follows that B̂(Φpo,Φ
p
o) is the [2N/2N − 2]-Padé approximant of

2κ cotκ.

4.2. Proof of Theorem 3.1. We are now in a position to present the proof of
Theorem 3.1.

Proof. Fix κ = ωh/2. First, we claim that for x ∈ (0, h), the function θ
(p)
m defined

in (2.8)–(2.9) may be expressed in terms of the basic polynomials as follows:

θ
(p)
0 (x) =

1

2
[Φpe(s) − Φpo(s)]

and

θ
(p)
1 (x) =

1

2
[Φpe(s) + Φpo(s)],

where s = 2x/h−1 ∈ (−1, 1). It is easy to verify that the expression for θ
(p)
0 takes the

correct values at the endpoints x = 0 and x = h. Moreover, since Φpe is a polynomial
of degree p (in both x and s), it suffices to show that the orthogonality condition (2.9)
is satisfied. Let vhp ∈ V �hp be supported on (0, h), and define V ∈ P ∩H1

0 (−1, 1) by
V (s) = vhp(x), x ∈ (0, h). A simple change of variable reveals that

Bω(θ
(p)
0 , vhp) = h−1B̂(Φpe − Φpo, V ),

and conditions (4.1)–(4.2) show that this vanishes. Similar arguments may be applied

in the case of θ
(p)
1 .

It is clear from symmetry considerations that θ
(p)
0 is an even function. This fact,

combined with a simple change of variable, shows that, since ωh = 2κ,

Bω(θ
(p)
0 , θ

(p)
0 ) = h−1B̂(Φpe − Φpo,Φ

p
e − Φpo);

then, exploiting the parities of Φpe and Φpo, we obtain

Bω(θ
(p)
0 , θ

(p)
0 ) = h−1[B̂(Φpe,Φ

p
e) + B̂(Φpo,Φ

p
o)].

Similar arguments reveal that

Bω(θ
(p)
0 , θ

(p)
1 ) = (2h)−1[B̂(Φpe,Φ

p
e) − B̂(Φpo,Φ

p
o)].

Substituting these results into (2.11) gives

cos(kh) =
B̂(Φpo,Φ

p
o) + B̂(Φpe,Φ

p
e)

B̂(Φpo,Φ
p
o) − B̂(Φpe,Φ

p
e)
.(4.19)

Theorem 4.2 identifies the terms appearing in this quotient as Padé approximants, and
substituting for these expressions leads to the result claimed in Theorem 3.1.
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4.3. Error for small ωh. The general result for the leading term given in
Theorem 3.2 for the error in the dispersion relation for the small wave number is
proved using Theorem 4.2 as follows.

Proof. Fix κ = ωh/2 � 1, and let Epe (κ) and Epo (κ) be defined as in Theorem 4.2.

By writing B̂(Φpe,Φ
p
e) and B̂(Φpo,Φ

p
o) in terms of Epe and Epo , respectively, substituting

into (4.19), followed by a lengthy but otherwise straightforward computation, one
arrives at the following expression for the error in the discrete dispersion relation:

cos kh− cosωh
(4.20)

=
sinωh

ωh

{
Epo sin2

(
ωh

2

)
+ Epe cos2

(
ωh

2

)}{
1 +

sinωh

2ωh
(Epo − Epe )

}−1

.

(Here, the argument κ of Epe and Epo has been suppressed.) In particular, for small
argument, Theorem 4.2 implies that

Epo = 2

[
(2No)!

(4No)!

]2
(ωh)4No

4No + 1
+ · · · ,

where No = �(p+ 1)/2�, and

Epe =
1

2

[
(2Ne + 1)!

(4Ne + 2)!

]2
(ωh)4Ne+4

4Ne + 3
+ · · · ,

where Ne = �p/2�. It then follows that

cos kh− cosωh =

(
ωh

2

)2

Epo + Epe + · · · ,

where (
ωh

2

)2

Epo =
1

2

[
(2No)!

(4No)!

]2
(ωh)4No+2

4No + 1
+ · · · ,

and Epe is given above. There are two cases, depending on the parity of the polynomial
order p:

• If p is even, then 2Ne = 2No = p, and the term involving Epo dominates the
error, giving

cos kh− cosωh =
1

2

[
p!

(2p)!

]2
(ωh)2p+2

2p+ 1
+ · · · .

• If p is odd, then 2Ne = p − 1 and 2No = p + 1, and the term involving Epe
now dominates the error, giving

cos kh− cosωh =
1

2

[
p!

(2p)!

]2
(ωh)2p+2

2p+ 1
+ · · · .

This concludes the proof of (3.3). Estimate (3.4) then follows immediately from (3.3)
using the approximation

cos kh− cosωh = −(kh− ωh) sinωh+ · · · ,
valid for small kh− ωh.

In examining this proof, we observe that the leading term in the remainder is the
same, regardless of the parity of the polynomial order p. This effect occurs despite
terms of different parities alternately dominating the error.
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4.4. Error for large ωh. Now fix κ = ωh/2 � 1. Equation (4.17) implies that,
with κ = ωh/2,

Epe (κ)
cos2(ωh/2)

ωh
= −Q2Ne+3/2(κ)

{
1 −Q2Ne+3/2(κ) tanκ

}−1
,(4.21)

while (4.18) implies that

Epo (κ)
sin2(ωh/2)

ωh
= −Q2No+1/2(κ){1 +Q2No+1/2(κ) cotκ}−1.(4.22)

Theorem 3.3 is proved using the foregoing results along with estimates for the behavior
of the quotient Qm studied in Theorem A.2 of the appendix.

Proof. First, consider the preasymptotic regime where 2p + 1 < ωh − o(ωh)1/3.
For p in this range, neither 2Ne nor 2No exceeds κ − o(κ1/3), where κ = ωh/2.
Therefore, we are in the situation covered by the first part of Theorem A.2, where
both Q2No+1/2(κ) and Q2Ne+3/2(κ) oscillate but do not decay. Consequently, with
the aid of the identities (4.21)–(4.22) and the expression for the error given in (4.20),
we are led to the conclusion that Ep oscillates, but does not decay, as p is increased
in this range.

For p in the transition region where ωh− o(ωh)1/3 < 2p+ 1 < ωh+ o(ωh)1/3, it
follows that both 2Ne and 2No lie in the transition region [κ−o(κ1/3), κ+o(κ1/3)] dealt
with in the second part of Theorem A.2. Here, the term appearing in the denominator
of (4.20) is O(1) for ωh � 1. The identities (4.21)–(4.22) show that the error in
the dispersion relation is dictated by the behavior of the sum of Q2Ne+3/2(κ) and
Q2No+1/2(κ). Applying Theorem A.2, we conclude that the error decays algebraically

at a rate O(p−1/3).
The proof in the case where 2p + 1 > ωh + o(ωh)1/3 follows along the same

lines as the argument used in the transition region and will not be elaborated upon
further.

Appendix A. Behavior of Qm(κ). The quotient Qm defined by

Qm(κ) =
Jm(κ)

Ym(κ)
, m = integer +

1

2
,(A.1)

appears in the expression for the error in the Padé approximants considered in sec-
tion 4. The following estimate, valid for small values of κ, was used in the proof of
Theorem 4.2.

Lemma A.1. Let m = integer + 1/2, and let Qm be defined as above. Then, for
κ� 1,

Qm(κ) = −1

2

[
(m− 1

2 )!

(2m− 1)!

]2
(2κ)2m

2m
+ · · · .(A.2)

Proof. Write m = n+1/2, where n ∈ Z. For small κ, identity (8.440) of [15] gives

Jn+1/2(κ) =
1

Γ(3/2 + n)

(κ
2

)n+1/2

+ · · · ,

while combining identities (8.465)1 and (8.440) of [15] gives

Yn+1/2(κ) = (−1)n−1J−n−1/2(κ) =
(−1)n−1

Γ(1/2 − n)

(κ
2

)−n−1/2

+ · · · ,
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Fig. A.1. Graph showing the three phases in the behavior of |Qm(κ)| for κ = 20 as the order
m is increased.

where Γ denotes the gamma function. Therefore, using formulas (8.339) of [15] gives,
after some simplification,

Qm(κ) = −1

2

[
n!

(2n)!

]2
(2κ)2n+1

2n+ 1
+ · · · ,

and rewriting in terms of m gives the result claimed.
Lemma A.1 shows that Qm(κ) decays algebraically as κ becomes small. However,

it will be useful to consider the ratio in the regime κ � 1, with particular attention
to the behavior as the order m of the Bessel functions becomes large. Figure A.1
shows the behavior of Qm(κ) when κ = 20 as the order m is increased. It is found
that there are three distinct phases, depending on the size of the order m. Initially,
Qm(κ) oscillates around unity. As the order m passes through κ, there is a relatively
short-lived transition zone where Qm(κ) begins to decay at an algebraic rate as m is
increased. Finally, as m is increased further, Qm(κ) decays at an exponential rate.

Our objective in the remainder of this section will be to show that the behavior
observed in this particular case is typical. The following result provides sharp esti-
mates for the values at which the different phases occur and quantifies the rates of
decay.

Theorem A.2. Let Qm be defined as above, and m = integer + 1/2. Then, as m
is increased, Qm(κ) passes through three phases:

1. For m < κ− o(κ1/3), Qm(κ) oscillates around unity but does not decay as m
is increased.

2. For κ − o(κ1/3) < m < κ + o(κ1/3), Qm(κ) decays algebraically at a rate
O(m−1/3). More precisely,

Qm(κ) ≈ − 1√
3
− 1

π
Γ

(
2

3

)2

(κ−m)

(
6

m

)1/3

+ · · · .(A.3)
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3. For m > κ+ o(κ1/3), Qm(κ) decays at a superexponential rate:

Qm(κ) ≈ −1

2

[
1 −√

1 − κ2/m2

1 +
√

1 − κ2/m2
e2
√

1−κ2/m2

]m
(A.4)

so that, for m� κ,

Qm(κ) ≈ −1

2

[ κe
2m

]2m
.(A.5)

The proof of this result is divided into four distinct cases covered in the following
sections.

A.1. Preasymptotic regime: m < κ. We start by discussing the behavior of
Qm(κ) in the preasymptotic regime, where the value of the argument κ exceeds the
order m of the Bessel functions. Langer’s formulas [13, sect. 7.13.4] provide uniform
asymptotic expansions for Bessel functions of large order and large argument, and
they give

Qm(κ) =
J1/3(z) cos(π/6) − Y1/3(z) sin(π/6) + O(m−4/3)

J1/3(z) sin(π/6) + Y1/3(z) cos(π/6) + O(m−4/3)
,(A.6)

where

z = m(w − tan−1 w) and w =
√
κ2/m2 − 1.

Bounds on the accuracy of the approximation obtained when the higher order terms
are dropped in (A.6) could be obtained using the uniform asymptotic expansions with
the remainder given in Olver [27]. However, we shall content ourselves with making
the approximation

Qm(κ) ≈ J1/3(z) cos(π/6) − Y1/3(z) sin(π/6)

J1/3(z) sin(π/6) + Y1/3(z) cos(π/6)
.(A.7)

A.1.1. Oscillatory phase: m < κ − o(κ1/3). In the preasymptotic range
where m is small relative to κ, the ratio Qm(κ) tends to oscillate and has magnitude
of order unity. While it is difficult to make quantitative statements concerning the
erratic behavior observed in Figure A.1, it is possible to give a qualitative explanation.
When m is small relative to κ, the argument z of the Bessel functions appearing in
(A.7) will be large and positive. Asymptotic expansions for Bessel functions of large
argument are given in (8.440)1 of [15]:

Jν(z) ∼
(πz

2

)−1/2

cos

(
z − 1

2
νπ − π

4

)
and in (8.440)2 of [15]:

Yν(z) ∼
(πz

2

)−1/2

sin

(
z − 1

2
νπ − π

4

)
.

Together with (A.7), these expressions show that Qm(κ) will tend to oscillate without
a decay in the magnitude as m is increased. Indeed, inserting these expressions into
the right-hand side of (A.7) and simplifying gives

cot
(
z − π

4

)
.(A.8)
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Fig. A.2. Graphs of |Qm(κ)| in (A.1) for m = 1, . . . , 2κ, | cot(z − π/4)| in (A.8) for m =
1, . . . , κ and |Ai(ξ)/Bi(ξ)| in (A.11) for m = κ + 1, . . . , 2κ. Values of κ = 5, 10, 20, and 40 are
shown. Observe the oscillatory behavior of |Qm| and the good qualitative agreement provided by
the cotangent in the preasymptotic regime m < κ. Furthermore, note the quantitative agreement
between |Qm| and |Ai(ξ)/Bi(ξ)| in the asymptotic regime m > κ.

Of course, we would not expect this expression to necessarily agree closely withQm(κ).
Nevertheless, this expression actually provides a surprisingly good representation of
the qualitative behavior in the preasymptotic regime even in the case of relatively
modest values of κ, as shown in Figure A.2.

A.1.2. Transition zone: κ − o(κ1/3) < m < κ. We consider the behavior
in the zone where m approaches κ from below. For m in this range,

1 <
κ

m
< 1 + o(m−2/3)

so that

w ≈
[
κ−m

(m/2)

]1/2

= o(1),

and therefore

z ≈ 1

3
mw3 ≈ 2

3

[
κ−m

(m/2)1/3

]3/2

= o(1).
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Using the series representations for Bessel functions [15, eq. (8.440)], we obtain

Qm(κ) ≈ − 1√
3
− 3

π
Γ

(
2

3

)2 (z
2

)2/3

+ · · · ,

and, by substituting for z and simplifying, we arrive at the conclusion:

Qm(κ) ≈ − 1√
3
− 1

π
Γ

(
2

3

)2

(κ−m)

(
6

m

)1/3

+ · · · ,(A.9)

valid for κ − o(κ1/3) < m < κ. As a matter of fact, this result could also have been
obtained formally using Nicholson’s formulas [13, sect. 7.13.3].

A.2. Asymptotic regime: m > κ. We now study the behavior in the regime
where the order of the Bessel functions exceeds the argument. Langer’s formulas [13,
sect. 7.13.4] imply that

Qm(κ) = − π−1K1/3(z) + O(m−4/3)

I1/3(z) + I1/3(z) + O(m−4/3)
,(A.10)

where, in this case,

z = m
(
tanh−1 w − w

)
and w =

√
1 − κ2/m2.

As before, it is possible to use the results of Olver [27] to obtain bounds on the
accuracy of the approximation obtained when the higher order terms are dropped in
(A.10), although we will not pursue this further here. Writing z = 2

3ξ
3/2 and using

formulas (11.1.04) and (11.1.12) from [27] gives

Qm(κ) ≈ − π−1K1/3(z)

I1/3(z) + I1/3(z)
= −Ai(ξ)

Bi(ξ)
,(A.11)

where Ai and Bi denote Airy functions of the first and second kinds, respectively [15].
The accuracy of this approximation is indicated in Figure A.2.

The behavior of the ratio of Airy functions for positive ξ may be deduced from
the results quoted in Olver [27, pp. 392–393]. However, the following simple approxi-
mations will suffice for present purposes. For small argument ξ ≤ 2,

Ai(ξ)

Bi(ξ)
≈ 1√

3

1 − 35/6Γ
(

2
3

)2 ξ
2π + ξ3

12

1 + 35/6Γ
(

2
3

)2 ξ
2π + ξ3

12

,(A.12)

while for larger arguments where ξ > 2,

Ai(ξ)

Bi(ξ)
≈ e−2z

2

1 − 15
216z

1 + 15
216z

, z =
2

3
ξ3/2.(A.13)

Here Γ denotes the gamma function [15]. Together, these approximations provide an
accurate picture of the behavior of the ratio throughout the full range of argument,
as indicated in Figure A.3. In particular, it is observed that the ratio initially decays
linearly,

Ai(ξ)

Bi(ξ)
≈ 1√

3
− 31/3

π
Γ

(
2

3

)2

ξ,(A.14)

before undergoing a rapid transition to an exponential rate of decay given by

Ai(ξ)

Bi(ξ)
≈ e−2z

2
.(A.15)
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Fig. A.3. Graph showing the ratio Ai(ξ)/Bi(ξ) compared with the approximations for small
and large arguments given in (A.12) and (A.13), respectively.

A.2.1. Transition zone: κ < m < κ + o(κ1/3). As the order m passes
through κ, we have

1 − o(m−2/3) <
κ

m
< 1,

and, using similar arguments to those used before, we obtain

z � 1

3
mw3 � 2

3

[
m− κ

(m/2)1/3

]3/2

or, equally well,

ξ �
(

2

m

)1/3

(m− κ).

Since m−κ = o(κ1/3) = o(m1/3), it follows that ξ = o(1) and, using (A.14), we obtain

Qm(κ) ≈ −Ai(ξ)

Bi(ξ)
� − 1√

3
+

1

π
Γ

(
2

3

)2

(m− κ)

(
6

m

)1/3

+ · · · ,(A.16)

valid for κ < m < κ+ o(κ1/3). This form agrees with the result (A.9) obtained when
m lies in the transition region to the left of κ.

A.2.2. Exponential decay phase: m > κ+o(κ1/3). Ifm exceeds κ+o(κ1/3),
then w is no longer small, and, in turn, z and ξ will be large. By substituting for
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z in terms of w in the expression (A.15) and applying elementary manipulations, we
arrive at

Ai(ξ)

Bi(ξ)
≈ 1

2

[
1 − w

1 + w
e2w

]m
or, substituting for w,

Ai(ξ)

Bi(ξ)
≈ 1

2

[
1 −√

1 − κ2/m2

1 +
√

1 − κ2/m2
e2
√

1−κ2/m2

]m
.

The function f : w → (1−w)/(1+w) exp(2w) is monotonic decreasing on [0, 1] from 1
to 0. Therefore, the term in parentheses is less than unity, and we have an exponential
rate of decay when m is close to κ. This rate of decay increases as m becomes even
larger relative to κ, and in the limiting case we find that

f
(√

1 − κ2/m2
)
�
[ κe
2m

]2
.

Therefore, when m > κe/2, we obtain a superexponential rate of decay:

Ai(ξ)

Bi(ξ)
≈ 1

2

[ κe
2m

]2m
.
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Abstract. We present a two-scale theoretical framework for approximating the solution of a
second order elliptic problem. The elliptic coefficient is assumed to vary on a scale that can be
resolved on a fine numerical grid, but limits on computational power require that computations
be performed on a coarse grid. We consider the elliptic problem in mixed variational form over
W × V ⊂ L2 × H(div). We base our scale expansion on local mass conservation over the coarse
grid. It is used to define a direct sum decomposition of W ×V into coarse and “subgrid” subspaces
Wc ×Vc and δW × δV such that (1) ∇·Vc = Wc and ∇· δV = δW , and (2) the space δV is locally
supported over the coarse mesh. We then explicitly decompose the variational problem into coarse
and subgrid scale problems. The subgrid problem gives a well-defined operator taking Wc × Vc to
δW × δV, which is localized in space, and it is used to upscale, that is, to remove the subgrid from
the coarse-scale problem. Using standard mixed finite element spaces, two-scale mixed spaces are
defined. A mixed approximation is defined, which can be viewed as a type of variational multiscale
method or a residual-free bubble technique. A numerical Green’s function approach is used to make
the approximation to the subgrid operator efficient to compute. A mixed method π-operator is
defined for the two-scale approximation spaces and used to show optimal order error estimates.

Key words. second order elliptic, two-scale expansion, upscaling, subgrid, mixed method,
variational multiscale method, numerical Green’s function
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1. Introduction. Many mathematical models and numerical schemes have ap-
peared in the literature that can capture fine-scale phenomena on coarse scales or
grids. This is the essence of upscaling. The change-of-scale problem goes back to
the beginning of mathematical modeling; however, research on it has recently seen a
renewed and widespread resurgence.

Among many approaches, numerical techniques have been developed and ex-
ploited. For second order elliptic equations, a certainly not exhaustive list includes
the multiscale finite element method [20], the residual-free bubble techniques [9], cer-
tain domain-decomposition techniques [27, 31], the two-grid techniques [30, 18], and
a posteriori modeling techniques [25, 26]. A scheme related directly to the work here
is the variational multiscale finite element method [21, 22, 23]. Each scheme can be
viewed as a subgrid technique in the sense that each attempts to resolve scales be-
low the coarse grid scale by incorporating local computations into a global problem
defined only on a coarse grid.

A new subgrid technique for upscaling an elliptic partial differential equation
based on a certain combination of low order mixed finite elements was introduced
in [5] and [1]. It involves the decomposition of the solution operator into two parts,
one representing the coarse scale and the other representing the subgrid scale. The
method is described in general terms, and numerical tests are given that demonstrate
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the overall speed and convergence properties of the method in [5, 1]. Applications
to groundwater contaminant transport and petroleum simulation are given in [3, 4],
wherein it is shown that the method has great potential to resolve fine-scale effects
in practical problems. Complete details of implementation are presented in [2], as
well as additional and more stringent numerical tests that apply the technique to
two-phase porous medium problems with significant heterogeneity and wells. An
advantage of this subgrid technique is that it needs no assumptions about the under-
lying physics. The data used in the simulation is to be provided directly on the fine
scale.

The goals of this paper are threefold. First, we present a theoretical framework
within which to understand the upscaling process. We achieve upscaling without the
need for an explicit closure assumption or a restrictive assumption such as periodicity
or the like. In general, it is difficult to analyze the errors introduced by a closure
assumption; however, this problem does not arise here. Rather the ability of the
upscaled model to capture fine-scale features in the solution becomes a question of
approximation theory: how well do we approximate the upscaled model? Second,
we generalize the mixed finite element technique of [5, 1] to essentially arbitrary
choices of mixed spaces. Because of the upscaling framework, these methods can
be implemented very efficiently and require the solution of a global problem defined
only on the coarse grid. Finally, we provide an error analysis showing optimal order
approximation.

Both an outline of the paper and a brief summary of results follow. After pre-
senting in the next section the elliptic problem in mixed variational form posed in
W × V ⊂ L2 ×H(div), we then proceed in section 3 to define our framework within
which we upscale the differential problem. We define the coarse grid we can ultimately
compute over and use it to define a direct sum decomposition of W × V into coarse
and subgrid subspaces Wc×Vc and δW ×δV such that (1) the divergence constraints
∇ · Vc = Wc and ∇ · δV = δW , needed for local mass conservation over the coarse
and subgrid scales, and (2) the space δV is locally supported over the coarse mesh,
which is needed for upscaling the subgrid. This then leads to a decomposition of the
variational problem into coarse and subgrid scale problems, with solutions in Wc×Vc

and δW × δV, although the two problems remain coupled.
We define in section 4 the δ-solution operator as the solution of the subgrid

problem. It is used to relate the subgrid to the coarse solution, and it is a well-defined
operator that takes Wc × Vc to δW × δV. Since this operator is localized in space,
it can be used to control the fine scales. We use it in the coarse problem to remove
direct reference to the subgrid, resulting in the upscaled problem involving only the
coarse-scale solution.

In section 5 we exploit the two-scale structure of the solution to define an efficient
mixed finite element method. We use any of the usual mixed elements to approxi-
mate the δ-solution operator and also any choice of mixed spaces to approximate the
upscaled coarse solution. This defines many families of two-scale, mixed spaces. Our
approximation can be viewed as a type of variational multiscale method [21, 22] or a
residual-free bubble technique [9]. A numerical Green’s function approach makes the
approximation to the subgrid operator efficient to compute.

In section 6 we analyze the approximation error. We show optimal order a priori
error estimates. Care must be taken, as the two-scale decomposition depends on the
coarse grid. We therefore analyze the combined system, showing approximation of the
full solution. The key development here is the definition of a suitable mixed method π-
operator that preserves the L2-projection of the discrete divergence and approximates



578 TODD ARBOGAST

well in the two-scale context. Finally, in section 7 we apply the convergence theory
to the special cases defined in [5] and [1].

2. A second order elliptic equation. Let Ω ⊂ R
n, n = 2 or 3, be a convex

polygonal domain. Throughout the paper, for domain ω, we denote by Lp(ω) the
usual Lebesgue space of index p, 1 ≤ p ≤ ∞, and by W k,p(ω) the usual Sobolev space
of k weak derivatives in Lp(ω). We denote by (·, ·)ω the L2(ω)-inner product (i.e.,
Lebesgue integration over ω). Moreover, ‖ · ‖k,ω is the norm of Hk(ω) ≡W k,2(ω). In
the notation we may suppress ω when it is Ω.

Decompose ∂Ω = Γ̄N ∪ Γ̄R, where ΓN and ΓR are disjoint open sets in ∂Ω, and
let ν be the outer unit normal vector. The problem is to find the unknown functions
p (pressure) and u (velocity) satisfying

ap+ ∇ · u = b in Ω,(2.1)

u = −d(∇p− c) in Ω,(2.2)

u · ν = gN on ΓN ,(2.3)

αu · ν = p− gR on ΓR,(2.4)

wherein a ∈ L∞(Ω) is nonnegative, b ∈ L2(Ω), c ∈ (L2(Ω))n, and d is a second
order uniformly positive definite symmetric tensor in (L∞(Ω))n×n (i.e., d and d−1 are
both uniformly elliptic and uniformly bounded). The boundary conditions represent
Neumann and Robin (and Dirichlet, if α = 0) conditions for suitably nice functions
gN , gR, and α ≥ 0. We assume that a unique and sufficiently regular solution to this
system exists and that the coefficients are sufficiently regular for the error analysis to
follow.

A special case arises if a vanishes identically on all of Ω and ΓN = ∂Ω. Then it
is well known and follows from the divergence theorem that solvability requires the
compatibility condition ∫

Ω

b(x) dx =

∫
∂Ω

gN (x) ds(x).(2.5)

In this case, we obtain p only up to an arbitrary constant.
To enforce conservation of mass (2.1) locally, we base our method on a mixed

variational formulation. Let

H(div; Ω) = {v ∈ (L2(Ω))n : ∇ · v ∈ L2(Ω)}

denote the usual space, with the inner product

(v1,v2)H(div) = (v1,v2) + (∇ · v1,∇ · v2)

and norm ‖v‖H(div) = (v,v)
1/2
H(div), and let

V = {v ∈ H(div; Ω) : v · ν = 0 on ΓN},

which is a closed subspace. To impose the Neumann boundary condition, we need to
extend gN to some fixed vector vgN ∈ H(div; Ω) such that

vgN · ν = gN on ΓN and vgN · ν = 0 on ΓR.

Finally, let W = L2(Ω), or let W = L2(Ω)/R = {w ∈ L2(Ω) :
∫
Ω
w(x) dx = 0} if p

will be defined only up to a constant.
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The mixed variational problem equivalent to (2.1)–(2.4) is to find u ∈ V + vgN
and p ∈W such that

(ap,w) + (∇ · u, w) = (b, w) ∀ w ∈W,(2.6)

(d−1u,v) + (αu · ν,v · ν)ΓR
− (p,∇ · v) = (c,v) − (gR,v · ν)ΓR

∀ v ∈ V.(2.7)

Note that (2.3) is imposed as an essential condition and (2.4) is imposed weakly as a
natural boundary condition.

3. Separation of scales. We recall that a Hilbert space H is the direct sum of
M and N if H = M + N and M and N are closed subspaces that intersect only at
the zero vector. We denote this fact by H = M ⊕N . In this case, given x ∈ H, there
is some unique m ∈M and n ∈ N such that x = m+n. We note the following result,
which is an exercise in the application of the closed graph theorem [29].

Proposition 3.1. If H is a Hilbert space and H = M ⊕ N , then the operator
P̃M : H →M defined for x ∈ H by P̌Mx = m, where x = m+n, m ∈M and n ∈ N ,
is a bounded linear (but possibly nonorthogonal) projection.

We expand functions in W ×V uniquely according to a direct sum decomposition
of the spaces. We base our decomposition on our two primary requirements: that the
finer (i.e., “subgrid”) scales be localized and that mass conservation is maintained. To
do so we choose a coarse mesh partition TH of Ω of a finite number of convex elements
over which we will decompose the solution into coarse and local (i.e., “subgrid”) pieces.
The choice is mostly arbitrary at this point, but later the mesh will be used as the
coarse mesh we compute on. We do, however, need a nondegeneracy condition. We
assume that there is some universal fixed constant γ > 0 such that any choice of TH
satisfies

msr(Ec) ≥ γ(diam(Ec))
n ∀Ec ∈ TH ,(3.1)

where msr(Ec) is the measure of Ec and diam(Ec) is its diameter.

3.1. A two-scale decomposition of W ×V. As is well known, the divergence
operator maps V onto W . The range of the divergence operator must be decomposed
into a direct sum decomposition W = Wc⊕δW of closed subspaces. For our purposes,
the decomposition is arbitrary, except that we must insist on two properties. First,

δW ⊂ (W 1
c )⊥, W 1

c = {wc ∈W : wc is constant ∀ coarse elements Ec ∈ TH},

with respect to the L2(Ω)-inner product.
Second, we insist that there is a uniformity in the separation of Wc and δW . We

define the possibly nonorthogonal projections

P̃Wc
: W →Wc and P̃δW : W → δW(3.2)

with respect to the direct sum decomposition. By Proposition 3.1, these operators
are bounded but not necessarily uniformly so with respect to the coarse mesh TH
selected. Our requirement is that in fact these are bounded uniformly: there is some
universal constant C, independent of the coarse mesh TH , such that

‖wc‖0 + ‖δw‖0 ≤ C‖w‖0,(3.3)

where w = wc + δw ∈Wc ⊕ δW . We can easily achieve this property if, for example,
Wc ⊂ W such that W 1

c ⊂ Wc is given arbitrarily and δW = W⊥
c . However, we

maintain flexibility by not assuming strict orthogonality.
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To obtain a decomposition of V, we first define

V1
c = {v ∈ V : ∇ · v ∈Wc},

δV1 = {δv ∈ V : ∇ · δv ∈ δW and δv · ν = 0 on ∂Ec ∀ Ec ∈ TH}.

Proposition 3.2. It follows that
(a) V1

c and δV1 are closed subspaces of V;
(b) V = V1

c + δV1;
(c) V1

c ∩ δV1 = {v ∈ V : ∇ · v = 0 and v · ν = 0 on ∂Ec ∀ Ec ∈ TH};
(d) ∇ · V1

c = Wc and ∇ · δV1 = δW .
Proof. For (a), first note that each space is a linear subspace. The divergence

operator is continuous on V, so V1
c is closed. Finally, we note that δV1 is the

intersection of a closed subspace of V (the vectors δv with ∇ · δv ∈ δW ) and the
kernel of a finite number of normal trace operators, so δV1 is also closed.

To see (d), we consider an auxiliary elliptic problem. Given δw ∈ δW , on each
Ec ∈ TH let ϕ ∈ H1(Ec) solve the linear problem

∆ϕ = δw in Ec,(3.4)

∇ϕ · ν = 0 on ∂Ec.(3.5)

This problem is solvable because δw ⊥W 1
c , so δw satisfies the compatibility condition.

Set δv = ∇ϕ. It is easy to conclude that δv ∈ V, since the normal traces match (in
fact vanish) on each side of ∂Ec ∩ Ω ∀Ec ∈ TH . Thus we conclude that δv ∈ δV1,
and so δW ⊂ ∇ · δV1. The opposite inclusion holds by definition, so ∇ · δV1 = δW .
Similarly, given wc ∈Wc, let ψ ∈ H1(Ω) solve the linear problem

∆ψ = wc in Ω,(3.6)

∇ψ · ν = 0 on ΓN ,(3.7)

ψ = 0 on ΓR.(3.8)

Then vc = ∇ψ ∈ V1
c allows us to conclude that ∇ · V1

c = Wc.
For (b), we know that V ⊃ V1

c + δV1, so consider any v ∈ V and decompose
∇ ·v = wc + δw for wc ∈Wc and δw ∈ δW . Construct ϕ and δv = ∇ϕ from δw as in
(3.4)–(3.5) above. Then we conclude that vc = v − δv ∈ V1

c , and so V ⊂ V1
c + δV1.

Finally, (c) follows trivially from (d), since Wc ∩ δW = {0}.
The proof above suggests the following Helmholtz decomposition. Let

Vp
c = {vpc ∈ V1

c : vpc = ∇ψ for some wc ∈Wc and ψ satisfying (3.6)–(3.8)},
Vs = {vs ∈ V : ∇ · vs = 0} ⊂ V1

c .

These spaces are clearly closed subspaces, and we claim that Vp
c ∩Vs = {0}. Let v be

a member of both. Then there is some scalar potential function ψ such that v = ∇ψ,
and ∇ · v = ∆ψ = 0. Moreover, the boundary conditions from Vp

c imply that ψ is
constant (zero if ΓR �= ∅), and so v = 0. Thus we conclude that in fact

V1
c = Vp

c ⊕ Vs

is a direct sum of potential and solenoidal vector fields. Similarly, we have the closed
subspace

δVp = {δvp ∈ δV1 : δvp = ∇ϕ for some δw ∈ δW and ϕ satisfying (3.4)–(3.5)}
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and the direct sum

δV1 = δVp ⊕ δVs, where δVs = Vs ∩ δV1.

By similar reasoning, we conclude from Wc ∩ δW = {0} that Vp
c ∩ δVp = {0}, and

thus

V = Vp
c ⊕ δVp ⊕ Vs.(3.9)

Theorem 3.3. There is some constant C, independent of TH , and there exist
closed subspaces Vc and δV of V such that

(a) V = Vc ⊕ δV;
(b) ∇ · Vc = Wc and ∇ · δV = δW ;
(c) δV ⊂ δV1 = {δv ∈ V : ∇ · δv ∈ δW and δv · ν = 0 on ∂Ec ∀ Ec ∈ TH};
(d) for v = vc + δv ∈ Vc ⊕ δV given,

‖vc‖H(div) + ‖δv‖H(div) ≤ C‖v‖H(div).(3.10)

Moreover, a choice exists such that also the potential vector fields
(e) Vp

c ⊂ Vc and δVp ⊂ δV.
That is, (d) says that the projection operators defined by the direct sum,

P̃Vc : V → Vc and P̃δV : V → δV,(3.11)

are bounded independently of TH .
Proof. The troublesome part of (3.9) are the solenoidal fields Vs. With respect

to the H(div)-inner product, let

Vs
c = (δVs)⊥ ∩ Vs = {vsc ∈ Vs : vsc ⊥ δVs}.

Then Vs = Vs
c ⊕ δVs, and we can define

Vc = Vp
c ⊕ Vs

c and δV = δVp ⊕ δVs,

satisfying (a)–(c) and (e).
We need to examine the construction more carefully to conclude (d). Let v ∈ V

be given, and decompose

∇ · v = wc + δw = P̃Wc∇ · v + P̃δW∇ · v ∈Wc ⊕ δW.

We then construct δvp = ∇ϕ ∈ δVp from (3.4)–(3.5) using the given δw and note
that standard elliptic energy estimates show that on each Ec ∈ TH ,

‖δvp‖2
0,Ec

= ‖∇ϕ‖2
0,Ec

= (P̃δW∇ · v, ϕ)Ec

≤ ‖P̃δW∇ · v‖0,Ec‖ϕ‖0,Ec ≤ C‖P̃δW∇ · v‖0,Ec‖∇ϕ‖0,Ec ,

where C is the Poincaré inequality constant [17] for Ec, which is proportional to
diam(Ec)

n

msr(Ec)1−1/n and therefore universally bounded by the nondegeneracy assumption

(3.1). Thus, from (3.3),

‖δvp‖H(div) ≤ C‖P̃δW∇ · v‖0 ≤ C‖v‖H(div).
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Similarly, we construct vpc = ∇ψ ∈ Vp
c from (3.6)–(3.8) using the given wc and

conclude that

‖vpc‖H(div) ≤ C‖v‖H(div).

Now v = vpc +δvp+vs ∈ Vp
c⊕δVp⊕Vs by (3.9), and vs = vsc+δvs ∈ Vs

c⊕δVs,
which is an orthogonal decomposition, so

‖vsc‖2
H(div) + ‖δvs‖2

H(div) = ‖vs‖2
H(div) = ‖v − vpc − δvp‖2

H(div) ≤ C‖v‖2
H(div).

Finally,

‖vc‖H(div) = ‖vpc + vsc‖H(div) ≤ C‖v‖H(div),

‖δv‖H(div) = ‖δvp + δvs‖H(div) ≤ C‖δv‖H(div),

and the proof is complete.
Thus (a) gives us a unique decomposition of vectors in V, (b) allows us to en-

force mass conservation over TH on both the coarse and subgrid scales, (c) gives us
a locality property of the space δV that we can exploit later, and (d) gives us a
uniformity property of the decomposition independent of TH . The specific choice of
decomposition appears to be unimportant for our purposes, although we will revisit
this question later in section 5.1. In what follows, we fix a choice of Vc and δV
satisfying the properties (a)–(d) of the theorem.

3.2. Separation of scales in the equations. Recall that vgN ∈ H(div; Ω)
satisfies the Neumann boundary condition. Decompose the solution

p = pc + δp ∈Wc ⊕ δW,

u = uc + δu + vgN ∈ Vc ⊕ δV + vgN .

Then we decompose (2.6)–(2.7) by choosing test functions restricted to the spaces
Wc × Vc or δW × δV. This results in an equivalent system of the four equations
(3.12)–(3.15) below. For convenience, let

b∗ = b−∇ · vgN ,
c∗ = c− d−1vgN .

Coarse-scale equations. Find uc ∈ Vc and pc ∈Wc such that

(a(pc + δp), wc) + (∇ · (uc + δu), wc) = (b∗, wc) ∀ wc ∈Wc,(3.12)

(d−1(uc + δu),vc) + (αuc · ν,vc · ν)ΓR
− (pc + δp,∇ · vc)

= (c∗,vc) − (gR,vc · ν)ΓR
∀ vc ∈ Vc.(3.13)

Subgrid δ-scale equations. Find δu ∈ δV and δp ∈ δW such that

(a(pc + δp), δw) + (∇ · (uc + δu), δw) = (b∗, δw) ∀ δw ∈ δW,(3.14)

(d−1(uc + δu), δv) − (pc + δp,∇ · δv) = (c∗, δv) ∀ δv ∈ δV.(3.15)

4. The δ-solution operator and upscaling. The systems (3.12)–(3.13) and
(3.14)–(3.15) are coupled together, and as written they do not allow us to exploit the
locality of δV. Our goal now is to rewrite (3.12)–(3.13) independently of δp and δu.
To do so, we need to write these quantities in terms of pc and uc.



ANALYSIS OF SUBGRID UPSCALING 583

4.1. Solvability of the subgrid scale equations.
Lemma 4.1. Given (pc,uc) ∈Wc ×Vc, there exists a unique solution (δp, δu) ∈

δW × δV to (3.14)–(3.15). Moreover, there is some constant C, independent of the
coarse mesh TH and the specific decomposition of W × V selected, such that

‖δp‖0 + ‖δu‖H(div) ≤ C{‖b‖0 + ‖c‖0 + ‖vgN ‖H(div) + ‖pc‖0 + ‖uc‖H(div)}.

We can prove Lemma 4.1 using the theory of saddle point problems [6, 8, 13, 7].
We need a generalization of the theory developed in, e.g., [13]. Consider the following
abstract problem: Find p̌ ∈ W̌ and ǔ ∈ V̌ such that

č(p̌, w̌) + (∇ · ǔ, w̌) = F (w̌) ∀ w̌ ∈ W̌ ,(4.1)

ǎ(ǔ, v̌) − (p̌,∇ · v̌) = G(v̌) ∀ v̌ ∈ V̌,(4.2)

where W̌ ⊂ L2(Ω) and V̌ ⊂ H(div; Ω) are Hilbert spaces. The following result is a
simple corollary of the more general theory [13, pp. 44–47].

Theorem 4.2. Suppose that W̌ ⊂ L2(Ω) and V̌ ⊂ H(div; Ω) are Hilbert spaces
such that ∇ · V̌ = W̌ . Suppose that ǎ and č are continuous, symmetric, positive
semidefinite bilinear forms on V̌× V̌ and W̌ × W̌ , respectively, and that ǎ is coercive
on V̌ ∩ ker(∇·), G ∈ V̌′, F ∈ W̌ ′, and there exists β > 0 such that

inf
w̌∈W̌

sup
v̌∈V̌

(∇ · v̌, w̌)

‖v̌‖H(div) ‖w̌‖0
≥ β > 0.(4.3)

Then there exists a unique solution (p̌, ǔ) ∈ W̌ × V̌ to (4.1)–(4.2), and there is a
constant C such that

‖p̌‖0 + ‖ǔ‖H(div) ≤ C{‖F‖ + ‖G‖},

where C is a nonlinear function of ‖ǎ‖, ‖č‖, the reciprocal of the coercivity bound for
ǎ, and 1/β that is bounded on bounded subsets.

The key result is to prove the celebrated inf-sup condition (4.3). This condition
is known to hold over W ×V, and the following corollary is well known and uses the
fact that for v ∈ V,

(gR,v · ν)ΓR
= (gR,v · ν)∂Ω ≤ C‖gR‖1/2,∂Ω‖v‖H(div),

where gR on ∂Ω is any fixed bounded extension.
Corollary 4.3. There exists a unique solution to (2.6)–(2.7), and there is some

constant C depending on a, d, and the inf-sup bound such that

‖p‖0 + ‖u‖H(div) ≤ C{‖b‖0 + ‖c‖0 + ‖vgN ‖H(div) + ‖gR‖1/2,∂Ω}.

Lemma 4.4. The inf-sup condition holds over both Wc ×Vc and δW × δV, with
constants independent of the coarse mesh TH and the specific decomposition of W ×V
selected.

Proof. For Wc × Vc, we have the following argument. Given wc ∈ Wc, solve for
ψ ∈ H1(Ω) satisfying (3.6)–(3.8), with

∫
Ω
ψ dx = 0 if ΓN = ∂Ω. Set v = ∇ψ. Then

‖v‖2
0 = ‖∇ψ‖2

0 = (wc, ψ) ≤ ‖wc‖0‖ψ‖0 ≤ C‖wc‖0‖∇ψ‖0,
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by Poincaré’s inequality [17], so ‖v‖H(div) ≤ C‖wc‖0. Let v = v̂c+δv, where v̂c ∈ Vc

and δv ∈ δV. We note that wc = ∇ · v = ∇ · v̂c ∈Wc. Moreover,

‖v̂c‖H(div) = ‖P̃Vcv‖H(div) ≤ C‖v‖H(div) ≤ C‖wc‖0.

Thus

inf
wc∈Wc

sup
vc∈Vc

(∇ · vc, wc)
‖vc‖H(div) ‖wc‖0

≥ inf
wc∈Wc

(∇ · v̂c, wc)
‖v̂c‖H(div) ‖wc‖0

= inf
wc∈Wc

‖wc‖0

‖v̂c‖H(div)
≥ 1

C
> 0.

The proof for δW × δV is entirely similar and omitted.
Proof of Lemma 4.1. We can rewrite the subgrid δ-scale equations (3.14)–(3.15)

in the form of the abstract problem (4.1)–(4.2) by taking V̌ = δV and W̌ = δW and
by defining

č(δw1, δw2) = (aδw1, δw2),

ǎ(δv1, δv2) = (d−1δv1, δv2),

F (δw) = (b∗ − apc −∇ · uc, δw),

G(δv) = (c∗ − d−1uc, δv) + (pc,∇ · δv).

Easily, the bilinear forms ǎ and č are continuous, symmetric, and nonnegative on δV,
and ǎ is coercive on δV ∩ ker(∇·), with constants depending on the coefficients a, c,
and d. Moreover, F and G are continuous linear functionals. Lemma 4.4 gives us the
inf-sup condition (4.3), so the hypotheses required by Theorem 4.2 are satisfied by
the system, and so the conclusions follow.

4.2. The δ-solution operator. Lemma 4.1 allows us to define the solution
operator of the subgrid δ-scale equations (3.14)–(3.15) in terms of the coarse-scale
solution. It is in fact an affine operator with constant and linear parts.

Constant part of the δ-solution operator. Find δp̄ ∈ δW and δū ∈ δV such that

(aδp̄, δw) + (∇ · δū, δw) = (b∗, δw) ∀ δw ∈ δW,(4.4)

(d−1δū, δv) − (δp̄,∇ · δv) = (c∗, δv) ∀ δv ∈ δV.(4.5)

Wc-linear part of the δ-solution operator. For wc ∈Wc, find δp̃ ∈ δW and δũ ∈ δV
such that

(a(wc + δp̃), δw) + (∇ · δũ, δw) = 0 ∀ δw ∈ δW,(4.6)

(d−1δũ, δv) − (wc + δp̃,∇ · δv) = 0 ∀ δv ∈ δV.(4.7)

Vc-linear part of the δ-solution operator. For vc ∈ Vc, find δp̂ ∈ δW and δû ∈ δV
such that

(aδp̂, δw) + (∇ · (vc + δû), δw) = 0 ∀ δw ∈ δW,(4.8)

(d−1(vc + δû), δv) − (δp̂,∇ · δv) = 0 ∀ δv ∈ δV.(4.9)

The theory of saddle point problems allows us to conclude the solvability and bound-
edness of each system, so we have the following result.
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Theorem 4.5. There exist bounded linear operators

δp̃ : Wc → δW and δũ : Wc → δV,

δp̂ : Vc → δW and δû : Vc → δV,

bounded independent of the coarse mesh TH and the specific decomposition of W ×V
selected, defined by (4.6)–(4.9), and functions δp̄ ∈ δW and δū ∈ δV defined by
(4.4)–(4.5) such that

δp = δp̃(pc) + δp̂(uc) + δp̄,

δu = δũ(pc) + δû(uc) + δū.

Moreover, there is some constant C such that

‖δp̄‖0 + ‖δū‖H(div) ≤ C{‖b‖0 + ‖c‖0 + ‖vgN ‖H(div)}.

Because δV · ν = 0 on each ∂Ec for Ec ∈ TH , δp̃, δũ, δp̂, and δû are locally
defined operators. That is, the restriction to Ec of the result is given by evaluating
the restricted operators, which are defined by restricting the integrals to Ec in (4.6)–
(4.9). Symbolically, we might write

δp̃(pc)|Ec
= δp̃|Ec

(pc|Ec
) and δũ(pc)|Ec

= δũ|Ec
(pc|Ec

),

δp̂(uc)|Ec = δp̂|Ec(uc|Ec) and δû(uc)|Ec = δû|Ec(uc|Ec).

These operators are well defined, linear, and bounded uniformly with respect to TH
and the decomposition of W × V selected.

In upscaling theory, results like Theorem 4.5 allow one to close the equations.
That is, the fine scale is represented as an operator of the coarse scale. However,
usually such a result is either assumed or additional assumptions are added to restrict
the nature of the problem (such as assuming some kind of periodicity or ergodicity).
Hence such results are often called closure assumptions. We have closed our system
without the need of any additional assumptions.

4.3. The upscaled equation. If we substitute the δ-solution operator into the
coarse-scale equations (3.12)–(3.13), we obtain the following problem.

Asymmetric upscaled equations. Find pc ∈Wc and uc ∈ Vc such that

(a(pc + δp̃(pc) + δp̂(uc)), wc)

+ (∇ · (uc + δũ(pc) + δû(uc)), wc)

= (b∗ − aδp̄−∇ · δū, wc) ∀ wc ∈Wc,(4.10)

(d−1(uc + δũ(pc) + δû(uc)),vc)

+ (αuc · ν,vc · ν)ΓR
− (pc + δp̃(pc) + δp̂(uc),∇ · vc)

= (c∗ − d−1δū,vc) + (δp̄,∇ · vc) − (gR,vc · ν)ΓR
∀ vc ∈ Vc.(4.11)

This system is posed entirely with respect to coarse-scale functions, so we say that
it has been upscaled from the fine scale. However, this system is not symmetric, even
though the original fine-scale system is symmetric. We can remedy this by noting
several equivalences. First, note that from (4.6) and then (4.7),

(a(pc + δp̃(pc)), δp̃(wc)) = −(∇ · δũ(pc), δp̃(wc))

= −(d−1δũ(wc), δũ(pc)) + (wc,∇ · δũ(pc)),
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and similarly from (4.9) and then (4.8),

(d−1(uc + δû(uc)), δû(vc)) = (δp̂(uc),∇ · δû(vc))

= −(aδp̂(vc), δp̂(uc)) − (∇ · vc, δp̂(uc)).
We also apply (4.9), (4.6), (4.7), and then (4.8) to obtain

(d−1δũ(pc),vc) = (δp̂(vc),∇ · δũ(pc)) − (d−1δû(vc), δũ(pc))

= −(a(pc + δp̃(pc)), δp̂(vc)) − (d−1δû(vc), δũ(pc))

= −(a(pc + δp̃(pc)), δp̂(vc)) − (pc + δp̃(pc),∇ · δû(vc))

= −(apc, δp̂(vc)) − (pc,∇ · δû(vc)) + (∇ · vc, δp̃(pc)).
Combining, we obtain a symmetric form for our system.

Symmetric upscaled equations. Find pc ∈Wc and uc ∈ Vc such that

(a(pc + δp̃(pc)), wc + δp̃(wc)) + (d−1δũ(pc), δũ(wc))

+ (∇ · (uc + δû(uc)), wc) + (aδp̂(uc), wc)

= (b∗ − aδp̄−∇ · δū, wc) ∀ wc ∈Wc,(4.12)

(d−1(uc + δû(uc)),vc + δû(vc))

+ (aδp̂(uc), δp̂(vc)) + (αuc · ν,vc · ν)ΓR

− (pc,∇ · (vc + δû(vc))) − (apc, δp̂(vc))

= (c∗ − d−1δū,vc) + (δp̄,∇ · vc) − (gR,vc · ν)ΓR
∀ vc ∈ Vc.(4.13)

The final solution is given then by

p = pc + δp̃(pc) + δp̂(uc) + δp̄,(4.14)

u = uc + δũ(pc) + δû(uc) + δū + vgN .(4.15)

It remains to show that indeed (4.10)–(4.11) or, equivalently, (4.12)–(4.13) has a
unique solution from which to construct the solution p and u.

Theorem 4.6. There exists a unique solution to (4.10)–(4.11) or, equivalently,
to (4.12)–(4.13). Moreover, there is some constant C, independent of the coarse mesh
TH and the specific decomposition of W × V selected, such that

‖pc‖0 + ‖uc‖H(div) ≤ C{‖b‖0 + ‖c‖0 + ‖vgN ‖H(div) + ‖gR‖1/2,∂Ω}.
Proof. Rather than trying to show the inf-sup condition for the system (4.12)–

(4.13) with its bilinear form (∇·(vc+δû(vc)), wc)+(aδp̂(vc), wc), we use a more direct
route. From Corollary 4.3, we have (p,u) ∈W×(V+vgN ) solving the original system.
We uniquely decompose p = pc + δp ∈Wc ⊕ δW and u − vgN = uc + δu ∈ Vc ⊕ δV.
By construction, (pc,uc) ∈Wc × Vc is a solution to (4.12)–(4.13).

To demonstrate the uniqueness of the solution, consider the difference of two
solutions, which is equivalent to setting all constant terms to zero and showing that
there is only the trivial solution. Take the test functions wc = pc and vc = uc and sum
the equations to conclude that uc + δû(uc) = δũ(pc) = 0 and, by the uniqueness of
the decomposition Vc⊕ δV, that uc = 0 and thus also δp̂(uc) = 0. Since ∇ ·V = W ,
equations (4.7) and (4.11) imply that pc+δp̃(pc) = 0, and thus pc = 0 and uniqueness
is established.

We use (3.3) and (3.10) to bound

‖pc‖0 ≤ C‖p‖0 and ‖uc‖H(div) ≤ C‖u‖H(div).

Finally, Corollary 4.3 bounds these terms as required.
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5. Numerical approximation. In the previous section, we demonstrated that
the δ-problems (4.4)–(4.9) and the upscaled problem (4.12)–(4.13) are well-posed,
uniformly with respect to TH . In this section, we construct an efficient computational
algorithm, exploiting the structure exposed in the previous two sections. Namely, we
exploit that the δ-problems are local and thus easily solved computationally and that
the global upscaled problem on TH is relatively small compared to the full fine-scale
problem (2.6)–(2.7) itself.

We present a class of discretizations based on standard mixed spaces. Our class of
discretizations includes the particularly pertinent low order discretization described
in [1, 2] and later in section 7.

We now consider TH as a coarse mesh. For approximation purposes, we assume
that it is chosen of conforming simplexes, rectangular parallelepipeds, or prisms such
that, for simplicity, Γ̄N is the union of coarse edges or faces. Let

H = max
Ec∈TH

diam(Ec).

On each Ec ∈ TH , let Th(Ec) be a fine mesh sufficient to resolve the coefficients of the
problem, and define

h = max
Ec∈TH

max
δE∈Th(Ec)

diam(δE).

Then TH,h = ∪Ec∈TH
Th(Ec) is the full fine mesh. The meshes need not match across

boundaries of coarse elements.

5.1. Two-scale conforming approximation spaces. From among any of the
usual mixed finite element spaces for second order elliptic equations, such as those of
[28, 24, 12, 10, 11, 14, 13], we select the coarse space W ∗

H × V∗
H ⊂ W × V on the

mesh TH , with V∗
H satisfying the homogeneous Neumann boundary condition on ΓN .

In all the usual spaces,

∇ · V∗
H = W ∗

H

and piecewise discontinuous constants W 1
c ⊂W ∗

H .
On each coarse element Ec ∈ TH , we similarly select from among any of the usual

mixed finite element spaces the δ-space δWh(Ec) × δVh(Ec) ⊂ (W × V)|Ec on the
mesh Th(Ec), with δWh(Ec) ⊥ 1 and δVh(Ec) satisfying the homogeneous Neumann
boundary condition on ∂Ec. Merging these spaces results in δWh × δVh over the
entire domain Ω. Then δWh ⊥W 1

c and

∇ · δVh = δWh.

For simplicity, we take the same mixed space for each coarse element, although this
assumption could be relaxed.

The overall two-scale mixed spaces are then defined to be

WH,h = W ∗
H + δWh and VH,h = V∗

H + δVh.

However, it is possible for general combinations of mixed spaces that the coarse and
δ-spaces are not linearly independent. The following construction suffices to rectify
the problem. First, complete a basis for δWh∩W ∗

H to a basis for W ∗
H and then define

WH as the span of the extra vectors. Similarly, we complete a basis for δVh ∩V∗
H to

a basis for V∗
H and use the extra vectors to define VH .
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To summarize our construction, our two-scale finite element spaces are and satisfy

WH,h = W ∗
H + δWh = WH ⊕ δWh ⊂W,

VH,h = V∗
H + δVh = VH ⊕ δVh ⊂ V,

where

∇ · δVh = δWh and ∇ · VH,h = WH,h.

Our spaces are conforming in the sense that both WH and δWh are subspaces of
W , and VH and δVh are subspaces of V and δV1, respectively, and thus have the
required H(div) smoothness and satisfy the requisite boundary conditions.

However, it is not necessarily the case that WH ⊂ Wc and δWh ⊂ δW nor that
VH ⊂ Vc and δVh ⊂ δV. In section 3.1, we made a few arbitrary choices. We
could, for example, have chosen WH = Wc and then defined δW in such a way that
both δWh ⊂ δW and (3.3) hold, perhaps after assuming the restriction on the grid
mentioned in section 6. We might similarly be able to decompose Vs in such a way
that VH ⊂ Vc and δVh ⊂ δV. Then the mixed spaces would be fully conforming in
the two-scale sense. However, there appears to be no advantage to such a construction,
so we will not attempt it here.

5.2. The discrete equations in computable form. The key to efficient im-
plementation is to determine the δ-operators’ actions only on the finite element basis
for VH . We call such solutions numerical Green’s functions, since they give the
response of the system to a “unit” disturbance, which on the numerical level is a
coarse-scale basis function.

Let {wH,i}i and {vH,j}j be finite element bases for WH and VH , respectively.
One property of a finite element basis is that the support of any basis function is
relatively small. Expand

pH =
∑
i

piwH,i and uH =
∑
j

ujvH,j .(5.1)

Then to compute, for example,

δû(uH) =
∑
j

ujδû(vH,j)

requires only the numerical Green’s functions δû(vH,j) for each j.
The numerical scheme has three main steps. The first step is to compute the

solutions to the following problems.
Constant part of the approximate δ-solution operator. Find δp̄h ∈ δWh and δūh ∈

δVh such that

(aδp̄h, δwh) + (∇ · δūh, δwh) = (b∗, δwh) ∀ δwh ∈ δWh,(5.2)

(d−1δūh, δvh) − (δp̄h,∇ · δvh) = (c∗, δvh) ∀ δvh ∈ δVh.(5.3)

WH-linear part of the approximate δ-solution operator. For wH,i in a basis for
WH , find δp̃h,i ∈ δWh and δũh,i ∈ δVh such that

(a(wH,i + δp̃h,i), δwh) + (∇ · δũh,i, δwh) = 0 ∀ δwh ∈ δWh,(5.4)

(d−1δũh,i, δvh) − (wH,i + δp̃h,i,∇ · δvh) = 0 ∀ δvh ∈ δVh.(5.5)
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VH-linear part of the approximate δ-solution operator. For vH,j in a basis for
VH , find δp̂h,j ∈ δWh and δûh,j ∈ δVh such that

(aδp̂h,j , δwh) + (∇ · (vH,j + δûh,j), δwh) = 0 ∀ δwh ∈ δWh,(5.6)

(d−1(vH,j + δûh,j), δvh) − (δp̂h,j ,∇ · δvh) = 0 ∀ δvh ∈ δVh.(5.7)

These problems are quick and efficient to solve, since they are relatively quite
small due to their local nature. That is, we actually solve them on each coarse
element independently. For example, we know that for the standard mixed spaces,
vH,j is supported on at most two coarse elements, E1

c and E2
c . Thus, to evaluate

δû(vH,j), we solve (5.6)–(5.7) twice, with all spaces and integrals restricted to Ekc for
k = 1, 2. Then in fact δû(vH,j) is the combination of the two solutions δû|Ek

c
(vH,j |Ek

c
)

on Ekc , k = 1, 2. On each coarse element, each linear system in (5.2)–(5.7) has the
same matrix, and only the so-called right-hand side vector varies. Thus it is reasonable
to use a direct solver for these problems. Moreover, they parallelize trivially. Since
these are square linear systems, existence and uniqueness of a solution follow from
uniqueness, which follow in the usual way from the fact that ∇ · δVh = δWh.

Then we have the implicit expressions

δph = δp̃h(pH) + δp̂h(uH) + δp̄h =
∑
i

piδp̃h,i +
∑
j

ujδp̂h,j + δp̄h,(5.8)

δuh = δũh(pH) + δûh(uH) + δūh =
∑
i

piδũh,i +
∑
j

ujδûh,j + δūh,(5.9)

since at this stage of the computation pi and uj are not known.
The second main step is to compute the solution to the upscaled equation. We

approximate (4.12)–(4.13) in the symmetric case by restricting to the finite element
basis: Find pH ∈WH and uH ∈ VH such that

(a(pH + δp̃(pH)), wH + δp̃(wH)) + (d−1δũ(pH), δũ(wH))

+ (∇ · (uH + δû(uH)), wH) + (aδp̂(uH), wH)

= (b∗ − aδp̄h −∇ · δūh, wH) ∀ wH ∈WH ,(5.10)

(d−1(uH + δû(uH)),vH + δû(vH))

+ (aδp̂(uH), δp̂(vH)) + (αuH · ν,vH · ν)ΓR

− (pH ,∇ · (vH + δû(vH))) − (apH , δp̂(vH))

= (c∗ − d−1δūh,vH) − (δp̄h,∇ · vH) − (gR,vH · ν)ΓR
∀ vH ∈ VH .(5.11)

By following the computations in section 4.3, we easily see that a similar finite element
approximation of the asymmetric formulation (4.10)–(4.11) is equivalent to (5.10)–
(5.11). Either problem is the same size as a full finite element approximation of
(2.6)–(2.7) over the coarse space WH × VH .

The final main step is to construct the solution using (5.8)–(5.9):

ph = pH + δph ∈WH,h,(5.12)

uh = uH + δuh + vgN ∈ VH,h + vgN .(5.13)

5.3. An equivalent form for the discrete equations. It should be noted
that our procedure is an efficient implementation of the algebraically equivalent mixed
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finite element method corresponding to (2.6)–(2.7), which is to find uh ∈ VH,h+vgN
and ph ∈WH,h such that

(aph, wh) + (∇ · uh, wh) = (b, wh) ∀ wh ∈WH,h,(5.14)

(d−1uh,vh) + (αuh · ν,vh · ν)ΓR
− (ph,∇ · vh)

= (c,vh) − (gR,vh · ν)ΓR
∀ vh ∈ VH,h.(5.15)

Existence and uniqueness of a solution follow from uniqueness, which follows from the
linear independence of WH ×VH and δWh× δVh and the fact that ∇·VH,h = WH,h.

From (5.14)–(5.15), we can conclude existence and uniqueness of (5.10)–(5.11),
since ph = pH + δph and uh = uH + δuh give pH and uH , which satisfy the system.

6. Analysis of the approximation error. We begin this section with some
notation. For M , a subspace of L2, we denote by PM : L2 → M the orthogonal
L2-projection, based on the decomposition L2 = M ⊕M⊥. We contrast this with
P̃M : L2 → M from Proposition 3.1, which was based on a possibly nonorthogonal
decomposition L2 = M ⊕N .

At this point, we require some uniformity of the discrete decomposition. Let
P̃WH

: WH,h → WH and P̃δWh
: WH,h → δWh be the projections associated with the

decomposition WH,h = WH ⊕ δWh. We assume that there is a constant C such that

‖P̃δWh
‖ ≤ C.(6.1)

Note that then also

‖P̃WH
‖ = ‖I − P̃δWh

‖ ≤ 1 + C.(6.2)

It is not difficult to ensure (6.1). The simplest possibility is that WH ⊥ δWh so that
P̃δWh

= PδWh
and we can take C = 1. This holds for certain choices of mixed spaces

but not for others. Another possibility is to enforce uniformity on the two-scale mesh
TH,h. Suppose that as H → 0, we insist that H/h remains fixed. If we also assume
that the coarse and fine element shapes remain fixed, then it is clear by a scaling
argument that (6.1) will hold on each coarse element and thus globally. Moreover, we
can even allow the element shapes to change as long as they do not change too badly,
such as being the images of a reference element under a uniformly bounded family of
affine maps with uniformly bounded inverses.

Let K ≥ 1 and L ≥ 1 denote the approximation orders of the coarse spaces V∗
H

and W ∗
H , respectively. That is, for some constant C and for any v ∈ V and w ∈W ,

inf
vH∈V∗

H

‖v − vH‖0 ≤ C‖v‖mHm, 0 ≤ m ≤ K,(6.3)

inf
wH∈W∗

H

‖w − wH‖0 ≤ C‖w‖iHi, 0 ≤ i ≤ L.(6.4)

For all the usual mixed spaces, L = K or L = K − 1. It is also true that

inf
vH∈V∗

H

‖(v − vH) · ν‖0,ΓR
≤ C‖v · ν‖m,ΓR

Hm, 0 ≤ m ≤ K.(6.5)

Similarly, let k ≥ 1 and � ≥ 1 denote the approximation orders of the δ-spaces δVh

and δWh, respectively.
Lemma 6.1. Given any w ∈W ,

‖w − PWH,h
w‖0 ≤ C‖w‖i+jHihj , 0 ≤ i ≤ max(0, L− j), 0 ≤ j ≤ �.(6.6)
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Proof. For each Ec ∈ TH , we note that in all the usual mixed spaces W ∗
H restricted

to Ec consists of polynomials of full degree at least L−1 that are discontinuous across
∂Ec. Thus from standard polynomial approximation results, we compute

‖w − PWH,h
w‖0,Ec

= inf
wH∈W∗

H

inf
δwh∈δWh

‖w − wH − δwh‖0,Ec

≤ C inf
wH∈W∗

H

‖w − wH‖j,Ech
j

≤ C‖w‖i+j,EcH
ihj ,

wherein 0 ≤ j ≤ � and then 0 ≤ i ≤ max(0, L− j).
Approximation in VH,h is more delicate, as we need to preserve divergence prop-

erties.

6.1. A mixed method π-operator. All the usual mixed spaces W̌η× V̌η have
projection operators π̌ : V ∩H1(Ω) → V̌η such that

∇ · π̌v = PW̌η
∇ · v,

‖v − π̌v‖ ≤ C‖v‖iηi, 1 ≤ i ≤ m,

where C is a constant independent of the mesh spacing η and m is the approximation
order of the space V̌η. Moreover, on ∂Ω,

π̌v · ν = PV̌η·νv · ν.(6.7)

We have the associated operators

πH : V ∩H1(Ω) → V∗
H ,

δπEc,h : δV(Ec) ∩H1(Ec) → δVh(Ec) ∀ Ec ∈ TH ,

and also δπh, defined by combining the δπEc,h. Then for any v ∈ V and δv ∈ δV1,

∇ · πHv = PW∗
H
∇ · v,

∇ · δπhδv = PδWh
∇ · δv.

Our goal now is to define a similar operator for the two-scale space WH,h×VH,h.
Let v ∈ V ∩H1(Ω). On each Ec ∈ TH , let

δw = P̃δWh
PWH,h

∇ · v.

Define δvp = ∇ϕ, where ϕ ∈ H1(Ec) satisfies (3.4)–(3.5) with the given δw. Then,
because of (3.1), the Poincaré inequality constant is independent ofH and h, so elliptic
regularity [19] gives us the bound

‖ϕ‖2,Ec
≤ C‖P̃δWh

PWH,h
∇ · v‖0,Ec

,

where a simple scaling argument shows that C depends on the shape of Ec but not
on its size. Thus also

‖δvp‖1,Ec
≤ C‖P̃δWh

PWH,h
∇ · v‖0,Ec

,(6.8)

and we conclude that we can apply δπh to δvp.
Definition 6.2. Let π : V ∩H1(Ω) → VH,h = V∗

H + δVh be defined by

πv = πH(v − δvp) + δπhδv
p,

where δvp = ∇ϕ and ϕ satisfies (3.4)–(3.5) with δw = P̃δWh
PWH,h

∇ · v.
This operator, while well defined, is not a projection.
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Proposition 6.3. It follows that

∇ · πv = PWH,h
∇ · v on Ω,

πv · ν = πHv · ν on ∂Ω.

Proof. Since PWH,h
= (P̃WH

+ P̃δWh
)PWH,h

and PW∗
H
PWH,h

= PW∗
H

, we compute

∇ · πv = ∇ · πH(v − δvp) + ∇ · δπhδvp

= PW∗
H
∇ · (v − δvp) + PδWh

∇ · δvp

= PW∗
H
∇ · v − PW∗

H
P̃δWh

PWH,h
∇ · v + PδWh

P̃δWh
PWH,h

∇ · v
= PW∗

H
∇ · v − PW∗

H
(I − P̃WH

)PWH,h
∇ · v + P̃δWh

PWH,h
∇ · v

= (P̃WH
+ P̃δWh

)PWH,h
∇ · v

= PWH,h
∇ · v.

By (6.7), we see that

πv · ν = πH(v − δvp) · ν + δπhδv
p · ν = πHv · ν,

since δvp · ν = 0 on ∂Ω.
Lemma 6.4. If (3.1) and (6.1) hold, then for v ∈ V ∩H1(Ω),

‖v − πv‖0 ≤ C‖v‖mHm, 1 ≤ m ≤ K,

‖(v − πv) · ν‖0,ΓR
≤ C‖v · ν‖m,ΓR

Hm, 0 ≤ m ≤ K.

Proof. We construct δvp ∈ δVp as in the definition of π. Then for 1 ≤ m ≤ K,

‖v − πv‖0 = ‖v − πHv + πHδv
p − δπhδv

p‖0

≤ ‖v − πHv‖0 + ‖πHδvp − δvp‖0 + ‖δvp − δπhδv
p‖0

≤ C

{
‖v‖mHm +

∑
Ec∈TH

(‖δvp‖1,EcH + ‖δvp‖1,Ech)

}
≤ C{‖v‖mHm + ‖P̃δWh

PWH,h
∇ · v‖0H},

by (6.8). The Bramble–Hilbert lemma [15, 7] implies that for any 0 ≤ i ≤ L,

‖P̃δWh
PWH,h

∇ · v‖0 = ‖(I − P̃WH
)PWH,h

∇ · v‖0 ≤ C‖∇ · v‖iHi,

since the operator (I − P̃WH
)PWH,h

is uniformly bounded by (6.1), and it preserves
polynomials of the appropriate degree. With i = m − 1, i is in the range 0 ≤ i ≤ L
(L = K or L = K − 1), and we obtain the required first estimate.

The second estimate follows from Proposition 6.3 and its approximation proper-
ties, (6.7) and (6.5).

6.2. Error analysis. The equation for the error is given by (2.6)–(2.7) with test
functions in WH,h × VH,h minus (5.14)–(5.15), which is

(a(p− ph), w) + (∇ · (u − uh), w) = 0 ∀ w ∈WH,h,(6.9)

(d−1(u − uh),v) + (α(u − uh) · ν,v · ν)ΓR
= (p− ph,∇ · v) ∀ v ∈ VH,h.(6.10)
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Theorem 6.5. If (3.1) and (6.1) hold, and a ∈ W 1,∞(Ω), then the two-scale
approximation satisfies the error bounds

‖
√
a(PWH,h

p− ph)‖0 + ‖u − uh‖0 + ‖
√
α(u − uh) · ν‖0,ΓR

≤ C{‖p‖i+jHihj+1 + (‖u − vgN ‖m + ‖(u − vgN ) · ν‖m,ΓR
)Hm},

‖PWH,h
p− ph‖0 ≤ C{‖u − uh‖0 + ‖

√
α(u − uh) · ν‖0,ΓR

},
‖p− ph‖0 ≤ C{‖PWH,h

p− ph‖0 + ‖p‖i+jHihj},
‖∇ · (u − uh)‖0 ≤ C{‖

√
a(PWH,h

p− ph)‖0 + ‖p‖i+jHihj+1 + ‖∇ · u‖i+jHihj},

wherein 0 ≤ i ≤ max(0, L − j), 0 ≤ j ≤ �, and 1 ≤ m ≤ K. Moreover, if α = 0 or
ΓR = ∅, and if h is sufficiently small, then

‖PWH,h
p− ph‖0 ≤ C{‖∇ · (u − uh)‖0h+ ‖p‖i+jHihj+1 + ‖u − uh‖0H}.

Note that these are optimal order estimates, since L = K or L = K−1. Moreover,
‖PWH,h

p− ph‖0 is superconvergent if α = 0 or ΓR = ∅ and h is sufficiently small.
Proof. For notational convenience, let us define

πu ≡ π(u − vgN ) + vgN .

The sum of the equations (6.9)–(6.10) with

w = PWH,h
p− ph ∈WH,h and v = πu − uh ∈ VH,h,

because of Proposition 6.3 and the fact that ∇ · VH,h = WH,h, results in

(a(PWH,h
p− ph),PWH,h

p− ph) + (d−1(u − uh),u − uh)

+ (α(u − uh) · ν, (u − uh) · ν)ΓR

= (a(PWH,h
p− p),PWH,h

p− ph) + (d−1(u − uh),u − πu)

+ (α(u − uh) · ν, (u − πu) · ν)ΓR
.

If ā ∈ WH,h is the piecewise discontinuous constant average of a over the fine mesh
TH,h, then

(a(PWH,h
p− p),PWH,h

p− ph) = ((a− ā)(PWH,h
p− p),PWH,h

p− ph)

≤ C‖a‖W 1,∞(Ω)h ‖PWH,h
p− p‖0‖PWH,h

p− ph‖0.

Thus for any ε > 0,

‖
√
a(PWH,h

p− ph)‖0 + ‖u − uh‖0 + ‖
√
α(u − uh) · ν‖0,ΓR

≤ Cε{‖p− PWH,h
p‖0h+ ‖u − πu‖0 + ‖(u − πu) · ν‖0,ΓR

} + ε‖PWH,h
p− ph‖0.

Standard elliptic lift arguments can be used to estimate PWH,h
p − ph. That is,

we solve (3.6)–(3.8) for ψ with wc replaced by PWH,h
p− ph and take v = π∇ψ. Then

∇ · v = PWH,h
p− ph and

‖v‖0 ≤ ‖∇ψ‖0 + ‖∇ψ − π∇ψ‖0 ≤ C‖ψ‖2 ≤ C‖PWH,h
p− ph‖0,

‖v · ν‖0,ΓR
≤ ‖∇ψ · ν‖0,ΓR

+ ‖(∇ψ − πH∇ψ) · ν‖0,ΓR

≤ C‖ψ‖2 ≤ C‖PWH,h
p− ph‖0,
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using (6.7). Then (6.10) implies that

‖PWH,h
p− ph‖2

0 = (d−1(u − uh),v) + (α(u − uh) · ν,v · ν)ΓR

≤ C{‖u − uh‖0‖v‖0 + ‖
√
α(u − uh) · ν‖0,ΓR

‖v · ν‖0,ΓR

≤ C{‖u − uh‖0 + ‖
√
α(u − uh) · ν‖0,ΓR

}‖PWH,h
p− ph‖0,

and, with Lemmas 6.1 and 6.4, the first three estimates of the theorem follow.
If α = 0 or ΓR = ∅, we replace (3.6)–(3.8) by

aψ −∇ · d∇ψ = PWH,h
p− ph in Ω,(6.11)

− d∇ψ · ν = 0 on ΓN ,(6.12)

ψ = 0 on ΓR,(6.13)

and we modify the argument as follows [16]:

‖PWH,h
p− ph‖2

0 = (PWH,h
p− ph, aψ −∇ · d∇ψ)

= (a(PWH,h
p− ph), ψ) − (PWH,h

p− ph,∇ · πd∇ψ),

and, using (6.10),

(PWH,h
p− ph,∇ · πd∇ψ) = (d−1(u − uh), πd∇ψ)

= (u − uh,∇ψ) − (d−1(u − uh), d∇ψ − πd∇ψ)

= −(∇ · (u − uh), ψ) − (d−1(u − uh), d∇ψ − πd∇ψ),

and, for w ∈WH,h arbitrary, by (6.9),

(∇ · (u − uh), ψ) = (∇ · (u − uh), ψ − w) − (a(PWH,h
p− ph), w)

− (a(p− PWH,h
p), w)

= (∇ · (u − uh), ψ − w) − (a(PWH,h
p− ph), ψ)

− (a(PWH,h
p− ph), w − ψ) − ((a− ā)(p− PWH,h

p), w).

Since a good choice of w implies

‖w − ψ‖0 ≤ C‖ψ‖1h and ‖w‖0 ≤ C‖ψ‖1,

we have that

‖PWH,h
p− ph‖2

0 ≤ C{(‖∇ · (u − uh)‖0 + ‖PWH,h
p− ph‖0 + ‖p− PWH,h

p‖0)‖ψ‖1h

+ ‖u − uh‖0‖ψ‖2H}
≤ C{(‖∇ · (u − uh)‖0 + ‖PWH,h

p− ph‖0 + ‖p− PWH,h
p‖0)h

+ ‖u − uh‖0H}‖PWH,h
p− ph‖0,

and the final result of the theorem follows for h sufficiently small.
Finally, (6.9) with w = ∇ · (πu − uh) ∈WH,h implies that

‖∇ · (πu − uh)‖2
0 = −(a(PWH,h

p− ph),∇ · (πu − uh))

− ((a− ā)(p− PWH,h
p),∇ · (πu − uh)).

Since ∇· (u−πu) = (I−PWH,h
)∇·u, which approximates as in (6.6), the divergence

estimate of the theorem follows.
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In the special case a = α = 0, we obtain optimality of the finite element approxi-
mation uh to u in the energy norm subject to the appropriate divergence constraint.

Theorem 6.6. If a = α = 0 and (3.1) and (6.1) hold, then

‖d−1/2(u − uh)‖0 ≤ inf
vh∈VH,h

∇·vh=PWH,h
∇·(u−vgN

)

‖d−1/2(u − vgN − vh)‖0 ≤ C‖u − vgN ‖mHm,

∇ · uh = PWH,h
∇ · u,

‖PWH,h
p− ph‖0 ≤ C‖u − uh‖0,

‖PWH,h
p− ph‖0 ≤ C{‖∇ · (u − uh)‖0h+ ‖u − uh‖0H},

‖p− ph‖0 ≤ C{‖PWH,h
p− ph‖0 + ‖p‖i+jHihj},

wherein 0 ≤ i ≤ max(0, L− j), 0 ≤ j ≤ �, and 1 ≤ m ≤ K.
Proof. For any vh ∈ VH,h such that ∇ · vh = PWH,h

∇ · (u − vgN ), take

w = PWH,h
p− ph ∈WH,h,

v = (u − uh) − (u − vgN − vh) ∈ VH,h

in (6.9)–(6.10). Then with a = α = 0, the sum of the equations implies that

(d−1(u − uh),u − uh) = (d−1(u − uh),u − vgN − vh)

≤ ‖d−1/2(u − uh)‖0‖d−1/2(u − vgN − vh)‖0

so that

‖d−1/2(u − uh)‖0 ≤ inf
vh

‖d−1/2(u − vgN − vh)‖0 ≤ C‖u − vgN − π(u − vgN )‖0,

since π(u − vgN ) satisfies the divergence constraint by Proposition 6.3. Lemma 6.4
gives the required approximation result for the first estimate of the theorem.

Now a = 0 and (6.9) imply that ∇ · uh = PWH,h
∇ · u, giving the second result of

the theorem. The final estimates follow as in the previous proof.
The underlying assumption in the error analysis, and the tacit assumption in all

similar subgrid methods mentioned in the introduction, is that the finest grid, scale
h, resolves the fine-scale details of the solution. We see this here in the Sobolev norms
appearing in the error estimates. If h does not resolve the subgrid problems, then we
cannot expect a good approximation.

Under this tacit assumption, we proved two main results. First, in Theorem 6.6,
the solution is optimally approximated in the finite element space subject to the fine-
scale divergence constraint. Thus the approximation is no worse than using only a
coarse-scale approximation (up to questions of the scale of the divergence constraint).
It is presumably much better, as numerical results show [1, 2, 4]. Second, the pressure
is approximated on the finest scale, up to a higher order coarse H error term. This
is a strict improvement over merely solving on the coarse scale. Moreover, these
improvements are achieved for negligible additional numerical cost compared to the
coarse-scale solution and much less cost than the fine-scale solution itself [1, 4].
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The error estimates of this subsection appear to explain the numerical results that
have appeared elsewhere: that they are amazingly accurate for reasonable problems
where the fine grid resolves the coefficients of the problem [1, 2, 4]. The error estimates
also explain why numerical results break down in certain difficult cases in which h does
not resolve the problem well. If h and H are relatively large compared to the Sobolev
norms of the solution, the method is not expected to work well. This appears to be
the main factor limiting the utility of the method in practice. As an example, in [2], a
numerical test was presented involving Darcy flow in a porous medium with a long thin
high permeability streak. This is a very difficult problem to resolve numerically on a
coarse grid. The streak introduces channelized flow, which means that the derivatives
of the solution are large, and so by Theorem 6.5 or 6.6, we neither expect nor see good
results. (It should be noted, however, that the upscaling technique of this paper is
not entirely unsuccessful in resolving the solution of even this very difficult problem.)

7. Two special cases. A particularly pertinent choice of spaces was studied nu-
merically in [1, 2]. On the coarse mesh, we approximate (pc,uc) in the two-dimensional
BDM-1 or three-dimensional BDDF-1 mixed finite element spaces [12, 10]. The space
of scalars W ∗

H consists of piecewise discontinuous constants, and the space of vectors
V∗
H is second order accurate and has linear fluxes on the edges or faces of coarse

elements.
On each coarse element Ec ∈ TH , we approximate (δp̄, δū), (δp̃, δũ), and (δp̂, δû)

in the RT-0 spaces [28]. These approximate with piecewise discontinuous constants
for δWh(Ec) and with constant fluxes on each interior edge or face for δVh(Ec).

In this case, V∗
H ∩ δVh = {0}, so VH = V∗

H requires no attention. Also, WH,h =
W ∗
h , the space of piecewise discontinuous constants over the fine mesh TH,h. We note

that W ∗
H ⊥ δWh, so WH = W ∗

H and condition (6.1) holds. However, it is not so
simple to compute with δWh(Ec), since such functions are supported in all of Ec.
Fortunately, a careful implementation of the scheme [2] allows one to avoid working
over δWh(Ec) and instead work over the full space δWh(Ec) + span{1} of piecewise
discontinuous constants over Th(Ec). Now K = 2 and L = k = � = 1, so Theorem 6.5
takes the following simple form.

Theorem 7.1. If a ∈ W 1,∞(Ω) and (3.1) holds, the BDDF-1(BDM-1)/RT-0
two-scale approximation satisfies the error bounds

‖
√
a(PWH,h

p− ph)‖0 + ‖u − uh‖0 + ‖
√
α(u − uh) · ν‖0,ΓR

≤ C{‖p‖1h
2 + (‖u − vgN ‖2 + ‖(u − vgN ) · ν‖2,ΓR

)H2} ≤ CH2,

‖PWH,h
p− ph‖0 ≤ C{‖u − uh‖0 + ‖

√
α(u − uh) · ν‖0,ΓR

} ≤ CH2,

‖p− ph‖0 ≤ C{‖PWH,h
p− ph‖0 + ‖p‖1h} ≤ C(H2 + h),

‖∇ · (u − uh)‖0 ≤ C{‖
√
a(PWH,h

p− ph)‖0 + ‖p‖1h
2 + ‖∇ · u‖1h} ≤ C(H2 + h).

Moreover, if α = 0 or ΓR = ∅, and h is sufficiently small, then

‖PWH,h
p− ph‖0 ≤ C{‖∇ · (u − uh)‖0h+ ‖p‖1h

2 + ‖u − uh‖0H} ≤ C(H3 + h2).

If H2 ∼ h as H → 0, then p and u are resolved on the fine scale to order h. Hence
relatively good numerical approximation results have been obtained [1, 3, 4, 2].

A second special choice is to use RT-0 spaces on both scales. In this case, K =
L = k = � = 1, and Theorem 6.5 would suggest that p and u are approximated only
on the coarse scale to order H. Although we retain the optimality of the solution
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in the energy norm under the appropriate conditions, the numerical approximation
results are not nearly as good as in the previous special case (see [5]).
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Abstract. We develop a simple, efficient numerical method of boundary integral type for solving
an elliptic partial differential equation in a three-dimensional region using the classical formulation
of potential theory. Accurate values can be found near the boundary using special corrections to
a standard quadrature. We treat the Dirichlet problem for a harmonic function with a prescribed
boundary value in a bounded three-dimensional region with a smooth boundary. The solution is a
double layer potential, whose strength is found by solving an integral equation of the second kind.
The boundary surface is represented by rectangular grids in overlapping coordinate systems, with the
boundary value known at the grid points. A discrete form of the integral equation is solved using a
regularized form of the kernel. It is proved that the discrete solution converges to the exact solution
with accuracy O(hp), p < 5, depending on the smoothing parameter. Once the dipole strength is
found, the harmonic function can be computed from the double layer potential. For points close to
the boundary, the integral is nearly singular, and accurate computation is not routine. We calculate
the integral by summing over the boundary grid points and then adding corrections for the smoothing
and discretization errors using formulas derived here; they are similar to those in the two-dimensional
case given by [J. T. Beale and M.-C. Lai, SIAM J. Numer. Anal., 38 (2001), pp. 1902–1925]. The
resulting values of the solution are uniformly of O(hp) accuracy, p < 3. With a total of N points,
the calculation could be done in essentially O(N) operations if a rapid summation method is used.

Key words. boundary integral methods, nearly singular integrals, potential theory, Dirichlet
problem, overlapping grids

AMS subject classifications. 65R20, 65D30, 31B10, 35J25
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1. Introduction. In this paper we develop a simple, direct numerical method
of boundary integral type for the solution of an elliptic boundary value problem in a
three-dimensional (3D) region with a smooth boundary. We emphasize the Dirichlet
problem for an interior harmonic function, although a larger class of problems can be
treated. We assume the boundary surface is represented by several overlapping grids,
each rectangular in some coordinate system. Values of the solution are to be found at
arbitrary points in space (typically, those on a regular 3D grid), some of which will be
close to the surface. We do not assume any relationship between the coordinate grids
on the surface and the interior grid. We use the classical formulation of the Dirichlet
problem in potential theory: The solution can be written as a double layer potential,
or dipole layer, with an unknown strength. This dipole strength is determined by a
Fredholm integral equation of the second kind on the surface. We solve a discretized
form of this integral equation at the coordinate grid points on the surface, replacing
the Green’s function in the layer potential with a regularized version and the integral
with a sum over grid points. We prove that the solution of the numerical integral
equation converges to the exact solution with order hp, for any p < 5, depending
on the choice of the smoothing parameter relative to h, and that it can be found
by a simple iteration. Once the dipole strength is found, the value of the harmonic
function at any point is given by the double layer potential. For points away from
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the boundary, the surface integral can be computed in a standard way, but, at points
near the boundary, the integral is nearly singular, and accurate computation is not
routine. We find the integral in this case by starting with a standard quadrature,
again regularized, and then adding corrections. These corrections account for the
errors introduced by the smoothing, or regularization, and by discretization. They
are derived by local analysis near the singularity, extending the treatment for a two-
dimensional (2D) region given in [3]. With grid spacing h on the boundary, the
resulting values are accurate to O(hp) for p < 3, again depending on smoothing.

Boundary integral formulations of the Laplace or Helmholtz equation in three
dimensions are widely used in engineering, especially electromagnetics. They are most
often solved numerically by the boundary element method; the surface is triangulated,
and the equation holds at collocation points (see, e.g., [2, 15]). The integration of
the kernel times a basis function at a point in its support often uses a change of
variables or a product integration rule. Special care is also needed for points near
the support. High order accuracy can be achieved [2, section 9.2], and the method
can be accurate for piecewise smooth surfaces. More direct quadrature, or Nyström,
methods have not been widely used. Such a method for polyhedral surfaces, summing
over centroids in a triangulation, was shown to converge by Rathsfeld [23]. In [24]
he showed that a simple quadrature over a triangulation of a smooth surface gives
almost O(h2) convergence with singularity subtraction, and this can be improved
to higher order using product integration. Recently, practical methods of this type
have been developed. Canino et al. [8] use a triangulation with quadrature based
on a local correction method of Strain, an alternative to product integration. Bruno
and Kunyansky [7] use overlapping grids and a partition of unity, as in the present
work, but they integrate the singularity by a change of variables. Other current
approaches include use of wavelets (see, e.g., [19]) or spherical polynomials (see, e.g.,
[13]). The difficulty of calculating nearly singular integrals for the field at points near
the boundary is well recognized [2, section 7.2.1], but very few works have treated it;
two recent approaches are given in [17, 25].

While there are many choices of numerical methods for elliptic problems, with
boundary integrals or otherwise, the present approach has several advantages for some
applications. The data structure needed to represent the surface is minimal, and
calculations on the surface are done in the rectangular grids, with the dependence on
the surface reduced to coordinate functions. The integration requires no extra work
at the singularity while solving the integral equation. Finally, values of the field near
the surface can be found by direct integration, adding the corrections presented here.
These attributes may be especially important for a time-dependent calculation with
a moving boundary. For viscous, incompressible fluid flow, pressure terms due to a
boundary could be found as nearly singular integrals [3]. The linear system resulting
from the integral equation is well conditioned. With n boundary points, the direct
solution of the linear system would require about O(n2) operations, but this could be
reduced to about O(n) using a rapid summation method such as the fast multipole
method of Greengard and Rokhlin [14]. Similarly, fast summation could be used to
produce the values of the harmonic function. Another way to produce the interior
solution, as observed by Mayo [21] (see also [1]), is to find values near the boundary,
compute a discrete Laplacian, extend it by zero to a computational box including
the original region, and then invert using a fast Poisson solver to produce values at
grid points. This approach was used in the 2D case in [3, section 4]. Either way,
the operation count with a total of N points could be reduced to about O(N). We
assume here that the surface and functions are smooth, i.e., have several derivatives
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to justify various Taylor expansions; this method would not be valid for a boundary
with corners and edges without further modification.

We now summarize the method and results. We consider the Dirichlet problem
for a bounded domain Ω ⊆ R3 with smooth boundary S. Given a function g on S we
want to find a function u on Ω such that

∆u = 0 on Ω, u = g on S.(1.1)

The solution can be written as a double layer potential

u(y) =

∫
S

∂

∂n(x)
G(x− y)f(x) dS(x)(1.2)

for some dipole strength f , determined by g, where n(x) is the unit outward normal
at x ∈ S, G is the Green’s function for ∆ in R3, G(x) = −1/4π|x|, and

∂

∂n(x)
G(x− y) = n(x) · ∇G(x− y) =

n(x) · (x− y)

4π|x− y|3 .(1.3)

The unknown f is the solution of the integral equation on the surface S:

1

2
f(x) +

∫
S
K(x, x′)f(x′) dS(x′) = g(x), K(x, x′) =

∂

∂n(x)
G(x′ − x),(1.4)

or f + 2Tf = 2g, where T is the integral operator with kernel K. It is known (see,
e.g., [18, section 10.5]) that the iterates fn defined by

fn+1 = (1 − β)fn − 2βTfn + 2βg(1.5)

converge to the solution of (1.4), provided 0 < β < 1.
To describe the numerical formulation of the problem (1.4) for f , we suppose the

surface S is covered by several coordinate patches Xσ : Uσ → S, where Uσ is an
open subset of R2. We assume each Xσ : Uσ → R3 is smooth and nondegenerate;
i.e., ∂Xσ(α)/∂α has rank 2 at each point, with α = (α1, α2). In order to write the
integral as a sum of integrals in coordinates, we introduce a partition of unity, that
is, a collection of smooth functions {ψσ} : S → R such that ψσ is zero outside a
compact subset of Uσ, called the support of ψσ, and

∑
σ ψ

σ(x) = 1 for each x ∈ S.
(See section 5 for typical choices.) We can now write the integral of a function F on
S as ∫

S
F (x′) dS(x′) =

∑
σ

∫
Uσ

F (Xσ(α))ψσ(Xσ(α))Aσ(α)dα,(1.6)

where Aσ(α)dα is the element of surface area in the σth patch. In solving (1.4) it is
helpful to use the familiar identity∫

S
K(x, x′) dS(x′) =

1

2
(1.7)

to reduce the order of the singularity; we rewrite (1.4) as

f(x) +

∫
S
K(x, x′)[f(x′) − f(x)] dS(x′) = g, x ∈ S.(1.8)
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Since K = O(1/r) on S, the resulting integrand is bounded, although not smooth.
We will write the integral in (1.8) as in (1.6), replacing K by a regularized version
Kδ, with a shape factor s and a smoothing parameter δ to be chosen:

Kδ(x, x
′) = n(x′) · ∇Gδ(x′ − x), ∇Gδ(x′ − x) = ∇G(x′ − x)s(|x− x′|/δ).

(1.9)

With the natural choice Gδ(x) = G(x) erf(|x|/δ) = − erf(|x|/δ)/4π|x|, we have

s(r) = erf(r) − (2/
√
π)re−r

2

,(1.10)

where erf is the usual error function

erf(r) =
2√
π

∫ r

0

e−t
2

dt.(1.11)

In section 2 we find that this choice of smoothing leads to an O(δ3) error to the
integral in (1.8). Moreover, this can be improved to O(δ5) with a slight change to

s(r) = erf(r) − (2/
√
π)(r − 2r3/3)e−r

2

.(1.12)

We can now give the discrete form of (1.8). Suppose a grid spacing h is chosen
for the coordinate patches, and the σth patch has grid points xσi = Xσ(ih) for i ∈ Z2

such that xσi ∈ Vσ, where Vσ is the interior of the support of ψσ. We assume the
specified function g is known at these points, say, gσi = g(xσi ). Then

fσi +
∑
j,τ

Kστ
ij ψ

τ
j [f

τ
j − fσi ]Aτj h

2 = gσi(1.13)

is the discrete analogue of (1.8), where

Kστ
ij = Kδ(x

σ
i , x

τ
j ), ψτj = ψτ (xτj ) , Aτj = Aτ (jh).(1.14)

We choose δ in terms of h so that δ → 0 as h→ 0, but, for some constant ρ0,

ρ = δ/h ≥ ρ0 > 0.(1.15)

We can find the solution fσi as the limit of the iteration corresponding to (1.5),

fσ,n+1
i = (1 − 2β)fσ,ni − 2β

∑
j,τ

Kστ
ij ψ

τ
j [f

τ,n
j − fσ,ni ]Aτj h

2 + 2βgσi .(1.16)

The following theorem assures the validity of this procedure.
Theorem 1.1. For the interior Dirichlet problem (1.1), with S and g smooth,

suppose that the grid size h and the smoothing radius δ are chosen sufficiently small
subject to the condition (1.15). Then the discrete integral equation (1.13), using the
regularization (1.9), (1.12), has a unique solution fσi , which converges uniformly to
the exact solution f of (1.4) or (1.8) as h→ 0, δ → 0, with the estimate

|fσi − f(xσi )| ≤ C1δ
5 + C2h

2e−c0(δ/h)2 .(1.17)

Here c0 depends only on the coordinate patches, but C1, C2 depend on bounds for
derivatives of f . For 0 < β < 1, the iterates defined by (1.16) converge uniformly to
the discrete solution fσi , with a rate independent of h and δ.
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The convergence proof must take into account the agreement of function values
where the grids overlap. This is done using a discrete Hölder norm. The error from
the smoothing gives the first term in (1.17); the discretization contributes the second
term, plus a remainder smaller than the first. The second term is dominated by
the first if ρ = δ/h grows slowly as h, δ → 0. For example, if we choose δ = chq,
with q < 1, the error is O(δ5) = O(h5q). Similarly, if we use the simpler choice of
smoothing (1.10) we obtain almost O(h3) convergence. The constant c0 is π2γ2/2,
where γ, given by (3.19), depends on gij ; see (3.25).

After solving the discrete integral equation for the dipole strength f at the coor-
dinate grid points xσi , we now want to find the values of the solution u of (1.1) from
the double layer representation (1.2). For a point y away from the surface we can
discretize the integral routinely, since the integrand is smooth. For y near the surface,
however, the integral is nearly singular, and accurate calculation requires more care.
In contrast to the case y ∈ S, n(x) · ∇G(x − y) = O(|x − y|−2). Given y near S,
there is a point x0 on the surface so that y is on the normal line through x0; i.e.,
y = x0 + bn0, for some b, where n0 is the outward unit normal at x0. We can use
Green’s identity to replace (1.2) with a subtracted form

u(y) =

∫
S

∂

∂n(x)
G(x− y)[f(x) − f(x0)] dS(x) + f(x0), y ∈ Ω.(1.18)

We can approximate the integral above by the sum

S =
∑
σ,j

n(xσj ) · ∇Gδ(xσj − y)[f(xσj ) − f(x0)]ψ
σ
j A

σ
j h

2.(1.19)

We use the simpler regularization (1.10); it seems that higher order smoothing cannot
be incorporated in the modified kernel for the nearly singular case. This sum typically
has a large error for y near S. We can think of the error in two parts: the smoothing
error from replacing ∇G by ∇Gδ and the discretization error from replacing the
integral with ∇Gδ by the sum or, briefly,

∑
δ

−
∫

=

(∫
δ

−
∫ )

+

(∑
δ

−
∫
δ

)
.(1.20)

The analysis of the following sections shows that these errors, uniform with respect
to y near S, are O(δ2) and O(h), respectively. However, the largest errors can be
removed by corrections which we now describe. They are derived in sections 2 and 3
and are analogous to those found in the 2D case in [3].

The corrections involve the geometry of the surface near x0. There is at least one
σ so that x0 is in the σth patch; i.e., x0 = Xσ(α0) for some α0 ∈ Uσ. Let Ti be the
tangent vector (∂Xσ/∂αi)(α0) at x0, i = 1, 2. We use the metric tensor gij = Ti · Tj ;
its determinant g = det(gij); the inverse gij = (gij)

−1; and the surface Laplacian

∆f =

2∑
i,j=1

1√
g

∂

∂αj

(√
g gij

∂(f ◦Xσ)

∂αi

)
.(1.21)

If the grid points {xσj } and values fσj are known, these quantities can be found at α0

by interpolation. The smoothing correction derived in section 2 is, with λ = b/δ,

T1 = δ2(∆f(x0))(λ/4)(|λ| erfc |λ| − e−λ
2

/
√
π).(1.22)
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The discretization correction comes from the Poisson summation formula applied
to the regularized kernel. It uses the function

E(p, q) = e2pq erfc(p+ q) + e−2pq erfc(−p+ q),(1.23)

where erfc = 1 − erf is the complementary error function. The point x0 may be in
more than one coordinate patch, and a correction term is needed for each. In the σth
patch, x0 = Xσ(α0) for some α0 depending on σ. We can write α0 = ih+νh for some
i ∈ Z2 and ν = (ν1, ν2), with 0 ≤ νs ≤ 1, s = 1, 2. The correction for the σth patch is

T σ
2 = −h

2∑
r=1

crψ
σ(α0)

∂(f ◦Xσ)

∂αr
(α0),(1.24)

cr =
ρλ

2

2∑
s=1

∑
n∈Q

a(n, s) sin (2πn · ν) g
rsns
‖n‖ E(λ, πρ‖n‖).(1.25)

Here Q = {n = (n1, n2) ∈ Z2 : n2 ≥ 0, n 
= 0}; ‖n‖ =
√
gijninj ; a(n, s) = 1/2 when

s = 1 and n2 = 0, and a(n, s) = 1 otherwise.
The following theorem summarizes the error estimates for the computed value of

u(y) in (1.2), starting with the sum (1.19) and adding corrections.
Theorem 1.2. For y ∈ Ω, let u(y) be the exact solution of (1.1), given by (1.2),

assuming f and S are smooth. Let ũ(y) be the value computed as the sum

ũ(y) = S + f(x0) + T1 +
∑
σ

T σ
2 ,(1.26)

with S, T1, T σ
2 given by (1.19), (1.10), (1.21)–(1.25), subject to (1.15). Then the error

has the form ũ(y)−u(y) = ε1+ε2, where the smoothing error ε1 and the discretization
error ε2 can be estimated as follows, uniformly for y near S, with c0 as before:

|ε1| ≤ C1δ
3, |ε2| ≤ C2h

2e−c0(δ/h)2 + C3h
3.(1.27)

Again we can choose δ so that ρ = δ/h grows slowly and the error is almost
O(h3). Thus, for δ = chq with q < 1, the error is O(δ3) = O(h3q). The sum in (1.25)
is infinite, but the terms decay at a Gaussian rate, independent of y, and only a few
terms are needed; see Lemma 3.3. It decreases rapidly as ρ is increased, as does the
main term in the estimate for ε2; see (3.20).

Related problems for harmonic functions can be treated; correction formulas for
the single layer potential in the nearly singular case will be given elsewhere. Similar
methods should apply to the Helmholtz equation since the leading singularities are
the same. This approach in two dimensions [3] was applied to the Stokes equations
of viscous fluid flow by Cortez [10], and 3D applications should be possible as well.
Regularized kernels have long been used for fluid flow in vorticity formulation (see,
e.g., [16, 6]), as well as other physical contexts, and discretization corrections of the
present type have also been used in fluid problems [20, 22, 4].

In section 2 we analyze the smoothing error, derive the correction (1.22), and
show that (1.12) has O(δ5) error on the surface. We begin section 3 with a general
lemma about the quadrature of nearly singular integrals with a homogeneous kernel.
This is used to derive the correction (1.24), (1.25) and the estimates for the remaining
discretization error. Sections 2 and 3 together prove Theorem 1.2 and the consistency
part of Theorem 1.1. The rest of the proof of Theorem 1.1 is given in section 4. In
section 5 we present numerical examples, with S a sphere or ellipsoid, illustrating the
general principles.
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2. The smoothing error. In this section we find the first correction to the
error in the double layer potential, evaluated at a point near the surface, resulting
from the smoothing in the simplest regularized Green’s function

Gδ(x) = − 1

4π

erf(r/δ)

r
= G(x) erf(r/δ) , r = |x|.(2.1)

The correction is O(δ2) and leaves an error of O(δ3). We also derive the fifth order
kernel (1.9), (1.12) for points on the surface.

The smoothing error for a point y near the surface is localized, and we can assume
the function f is zero outside one coordinate patch. We can write the error as an
integral in this patch, regarding f as a function of α,

ε =

∫
[∇Gδ(x(α) − y) −∇G(x(α) − y)] · n(α)f(α) dS(α).(2.2)

For simplicity, we will assume that x(0) = 0 and y is along the normal line from x(0)
so that y = bn0 for some b, where n0 is the unit normal at x(0). Since we always
subtract out the principal singularity, we also assume f(0) = 0. Now

∂

∂r
(Gδ −G) =

1

4πr2
φ(r/δ),(2.3)

φ(ρ) = − erfc(ρ) + ρ erfc′(ρ) = − erfc(ρ) − (2/
√
π)ρe−ρ

2

.(2.4)

Thus, with r = |x(α) − y|,

ε =
1

4π

∫
(x(α) − y) · n(α)

r3
φ(r/δ)f(α) dS(α).(2.5)

We will find the largest contribution to ε using Taylor expansions at α = 0. To
simplify the calculations we first assume the α-coordinate system is specially chosen
and then extend the result to a general system. With Tj = ∂x/∂αj the tangent
vectors to surface, j = 1, 2, we assume that the metric tensor gij = Ti · Tj is the
identity at α = 0 and, furthermore, that ∂gij/∂αk = 0 at α = 0, i, j, k = 1, 2. The
latter is equivalent to assuming that the Christoffel symbols vanish at α = 0. We also
assume, rotating if necessary, that T1, T2 have the directions of principal curvature at
α = 0. We then have simple expansions for x(α) and n(α):

x(α) = T1(0)α1 + T2(0)α2 + 1
2κ1n0α

2
1 + 1

2κ2n0α
2
2 +O(|α|3),(2.6)

n(α) = n0 − κ1T1(0)α1 − κ2T2(0)α2 +O(|α|2),(2.7)

where κ1, κ2 are the principal curvatures. Thus

r2 = |x− bn0|2 = |α|2 + b2 − bκ1α
2
1 − bκ2α

2
2 +O(|α|4) +O(|α|3b).

We make a further coordinate change α �→ ξ to simplify the dependence of r in
the integral. We define ξ1, ξ2 by requiring ξj/|ξ| = αj/|α| and |ξ|2 + b2 = r2, or

|ξ|2 = |α|2 − bκ1α
2
1 − bκ2α

2
2 +O(|α|4) +O(|α|3b)(2.8)

so that

|ξ| = |α|
(

1 − 1

2
bκ1

α2
1

|α|2 − 1

2
bκ2

α2
2

|α|2
)

+O(|α|3) +O(b3).(2.9)
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For α near 0, we can solve for |α| to get |α| = |ξ|(1 + bq/2) +O(|ξ|3 + b3) and then

αj = (ξj/|ξ|)|α| = (1 + bq/2)ξj +O(|ξ|3) +O(b3),(2.10)

q = κ1ξ
2
1/|ξ|2 + κ2ξ

2
2/|ξ|2.(2.11)

We can now write the smoothing error in the form

ε =
1

4π

∫
φ(
√|ξ|2 + b2/δ)

(|ξ|2 + b2)3/2
w(ξ, b) dξ(2.12)

with the nonradial factors combined into

w(ξ, b) = [(x− y) · n]f

∣∣∣∣∂α∂ξ
∣∣∣∣ |T1 × T2|.(2.13)

Next we approximate each of these factors. First, using the expressions above for
x(α) and n(α) we find, with y = bn0,

(x(α) − y) · n(α) = −b− 1
2κjα

2
j +O(|α|3) +O(b3),

summed over j, and, since αj = ξj +O(b),

(x− y) · n = −b− 1
2q|ξ|2 +O(|ξ|3) +O(b3).(2.14)

Next, with α-derivatives of f at α = 0 denoted by fi or fij , we have

f = fjαj + 1
2fijαiαj +O(|α|3) ,

since f(0) = 0, with sums over i and j, or

f = fj

(
1 +

bq

2

)
ξj +

1

2
fijξiξj +O(|ξ|3) +O(b3).(2.15)

For the Jacobian, since q depends only on ξ/|ξ|, we find from (2.10) that

det(∂α/∂ξ) = 1 + bq +O(|ξ|2) +O(b2).(2.16)

Finally, from (2.6) we have Tj(α) = Tj(0) + κjαjn0, and, since Tj(0) ⊥ n(0),

|T1 × T2| = 1 +O(|α|2) = 1 +O(|ξ|2).(2.17)

To approximate (2.12), we now substitute (2.14)–(2.17) into (2.13) and obtain

w(ξ, b) = −bξjfj − (3q/2)b2ξjfj − (q/2)|ξ|2ξjfj − (b/2)fijξiξj +R(ξ, b),(2.18)

where R = O(|ξ|4 + b4). The first three terms are odd in ξ and will contribute zero to
the integral (2.12). We check that the remainder R is negligible: With the change of
variables ξ = δζ, b = δλ, we can write R(ξ, b) = δ4R̃(ζ, λ) for some bounded function
R̃. Then the contribution to (2.12) from the remainder R in w is

(4π)−1δ−3+4+2

∫
φ(
√|ζ|2 + λ2)

(|ζ|2 + λ2)3/2
R̃(ζ, λ) dξ = O(δ3).
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We are now left with only the fourth term in (2.18). Because of symmetry, only the
terms with i = j contribute, and the integral with ξ2j reduces to a radial one. Again
with ξ = δζ, b = δλ, and s = |ζ|, (2.12) is now

ε = −δ2λ
8
(f11 + f22)

∫ ∞

0

φ(
√
s2 + λ2)

(s2 + λ2)3/2
s3 ds + O(δ3).

To evaluate the integral, let

I(λ) =

∫ ∞

0

(G1(r) −G(r))s3 ds, r2 = s2 + λ2;

then dI/dλ is similar to the above:

I ′(λ) =
λ

4π

∫ ∞

0

φ(r)

4πr3
s3 ds.

Changing the variable of integration to r, we have

I(λ) =

∫ ∞

|λ|
(G1(r) −G(r))s2r dr = (4π)−1

∫ ∞

|λ|
erfc(r)(r2 − λ2) dr,

I ′(λ) = −(2π)−1λ

∫ ∞

|λ|
erfc(r) dr = (2π)−1λ (|λ| erfc |λ| − e−λ

2

/
√
π),

and, finally,

ε = −δ2(f11 + f22)(λ/4)(|λ| erfc |λ| − e−λ
2

/
√
π) + O(δ3).(2.19)

We have now obtained the smoothing correction with derivatives expressed in the
special coordinates. To restate the answer in a general coordinate system, we have
only to note the invariant form of the Laplacian on the surface, given by (1.21). It
reduces to f11 +f22 at α = 0 in the special case above. Therefore it is also the correct
expression in arbitrary coordinates. Thus ε = −T1 + O(δ3), with T1 given by (1.22),
justifying the stated correction and smoothing error.

The fifth order kernel. In view of the above analysis, we can identify the
source of the O(δ3) error in the special case when the point y is on the surface. We
can then modify the choice of Gδ to remove this error, resulting in smoothing that
is O(δ5) accurate on the surface. With y on the surface, the smoothing error ε is
given by (2.12) with b = 0. From (2.18) we see that the terms in the expansion of
w(ξ, 0) up to order 3 make no contribution. The fourth order terms will give an error
proportional to∫

φ(|ξ|/δ)|ξ|−3|ξ|4 dξ = δ3
∫
φ(|ζ|)|ζ|dζ = 2πδ3

∫ ∞

0

φ(r)r2 dr.

The fifth order terms will lead to odd integrands, and thus the remaining error is
O(δ5). To eliminate the O(δ3) error, we simply have to change the choice of Gδ, and
therefore φ, so that the last integral is zero. Our new choice of Gδ will be so that
φ(r) is replaced by φ5(r) = φ(r)+arφ′(r) with a a constant. It is easy to see from an
integration by parts that the integral above is zero, with φ5 in place of φ, provided we
take a = 1/3. Thus φ5(r) = erf(r)− 1− (2/

√
π)(r− 2r3/3)e−r

2

, and the modification
of ∇G is ∇Gδ(x) = ∇G(x)[1 + φ5(|x|/δ)] as given by (1.9), (1.12).
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3. The discretization error. We begin with a general principle, Lemma 3.1,
for the quadrature of nearly singular integrals. We apply this to a local approximation
of the double layer potential in Lemma 3.3, obtaining the corrections (1.24), (1.25).
We then compare with the exact potential, verifying the discretization estimate of
Theorem 1.2, and find an improved estimate needed for Theorem 1.1.

Our treatment of the discretization error is based on a lemma describing the
quadrature error for the integral of a regularized homogeneous function Kδ, times a
smooth function f , over a plane displaced from the origin. This lemma is similar to
Lemma 3.1 of [3], except that we do not assume here that the smoothing radius δ is
proportional to the grid size h; we allow ρ = δ/h unbounded as h → 0. Let K be a
homogeneous function of (x, y) ∈ Rd × R with degree m, that is,

K(ax, ay) = amK(x, y) , a > 0 , (x, y) 
= 0.(3.1)

We choose a regularization of the form

Kδ(x, y) = K(x, y)s(x/δ, y/δ), (x, y) ∈ Rd × R,(3.2)

where s is a specified shape function such that s → 1 rapidly at infinity. It follows
that Kδ(x, y) = δmK1(x/δ, y/δ). The lemma concerns the integral of Kδf over x with
y fixed. We allow the singularity to be misaligned from the grid points in x-space.

Lemma 3.1. Let Kδ be a smooth function on Rd+1 with the form (3.2) such that
K and s are smooth for (x, y) 
= 0; K is homogeneous of degree m with −d ≤ m ≤ 0;
s(x, y) → 1 as (x, y) → ∞; and |Dβs(x, y)| ≤ Cβ |(x, y)|−|β| for |(x, y)| ≥ 1 and for
each multi-index β. Let f be a smooth function on Rd such that f and its derivatives
are rapidly decreasing. Suppose, for each h > 0, that δ is chosen so that ρ = δ/h ≥ ρ0

for some fixed ρ0 > 0. Assume ν ∈ Rd with 0 ≤ νj ≤ 1 for 1 ≤ j ≤ d. Let η = y/h.
Then the error in replacing the integral I by the sum S,

I =

∫
Rd

Kδ(x, y)f(x) dx =

∫
Rd

K(x, y)s(x/δ, y/δ)f(x) dx,(3.3)

S =
∑
n∈Zd

Kδ(nh− νh, y)f(nh− νh)hd,(3.4)

has the form

S − I = hd+m
(
c0f(0) + C1h+ C2h

2 + · · · + C�h
�
)

+O(δd+m+�+1),(3.5)

c0 = (2π)d/2
∑

0 �=n∈Zd

e−2πinνK̂ρ(2πn, η).(3.6)

Here K̂ρ(·, η) is the Fourier transform of Kρ(·, η), and � depends on the smoothness
of K, s, f . The leading constant c0 is uniformly bounded in η, ρ, ν. The Cj, for j ≥ 1,
and the error term are uniformly bounded in η, ρ, ν, depending on f .

The value of c0 is derived from the Poisson summation formula applied to Kρ.
The sum (3.6) converges rapidly. We write the Fourier transform as

F̂ (k) = (2π)−d/2
∫
F (x)e−ikx dx.

The proof is a modification of that for Lemma 3.1 in [3] and related to ones in [4, 12].
When we apply this lemma to the double layer potential, evaluated at a point

y near the surface, the leading error comes from the part of the surface close to y,
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and we begin with a simplified approximation for the potential. Suppose y = bn0,
where n0 is the unit normal to a point x(α0) on the surface. For convenience, we take
α0 = 0 and x(α0) = 0. With Tj , gij , g

ij as defined earlier, at α = 0, let τ = |T1 × T2|
so that det gij = τ2. Also let J = ∂x(0)/∂α so that Jα = T1α1 + T2α2. For α near
0, we can approximate x(α) by its projection Jα in the tangent plane and the double
layer kernel n(α) · ∇Gδ(x(α), y) by

K
(0)
δ (α, b) = n0 · ∇Gδ(Jα− bn0) = −(∂/∂b)Gδ(Jα− bn0).(3.7)

The surface area dS(α) is τ dα to first approximation. We subtract out the singularity
in the double layer potential, and the leading contribution to f(α) − f(0) will be
(α1∂1f + α2∂2f)ζ(α) with ∂rf = ∂rf(0) for some cut-off function ζ, ζ = 1 near
α = 0. Thus we actually apply the lemma to the kernel

K
(r)
δ (α, b) = K

(0)
δ (α, b)αr, r = 1, 2.(3.8)

We first show that this simplified case gives the O(h) error stated in (1.24), (1.25).
Lemma 3.2. With the notation above, let

I =

∫
R2

n0 · ∇Gδ(Jα− bn0)(α1∂1f + α2∂2f)ζ(α)τ dα(3.9)

and S be the corresponding sum with α = jh− νh. Then S − I = (c1∂1f + c2∂2f)h+
O(hp) for large p, where c1, c2 are given by (1.25).

Proof. Our main task is to find the Fourier transform of K
(r)
ρ (α, b) in α alone.

We begin with the 3D Fourier transform of Gρ(x) = − erf(|x|/ρ)/4π|x|,

Gρ (̂k) = −(2π)−3/2|k|−2e−ρ
2|k|2/4, k = (k1, k2, k3) ∈ R3.(3.10)

We interpret Gρ(Jα− bn0) as a composition: Since Gρ is radial, it depends on α only
through |Jα|2 = |Bα|2, where B = (J∗J)1/2; note |Bα|2 = J∗Jα · α =

∑
ij gijαiαj .

Thus Gρ(Jα− bn0) = (Gρ ◦M)(α, b), where M(α, b) = (Bα, b). The 3D transform of
Gρ ◦M , as a function of (α, b), is then

(Gρ ◦M )̂ (k) = |detM |−1Gρ (̂(M∗)−1k) = τ−1Gρ (̂B−1(k1, k2), k3),(3.11)

and, since Gρˆ is radial and B−2 = (J∗J)−1,

(Gρ ◦M )̂ (k) = τ−1Gρ (̂�, k3), �2 =

2∑
i,j=1

gijkikj .(3.12)

Now

K̂(0)
ρ (k) = (−(∂/∂b)Gρ ◦M )̂ (k) = −ik3 τ

−1Gρ (̂�, k3),(3.13)

and the transform of K
(0)
ρ (α, b) in α alone is

(3.14) K(0)
ρ (·, b)̂ (k1, k2) = (2π)−1/2

∫ ∞

−∞
K̂(0)
ρ (k1, k2, k3)e

ik3b dk3

= (2π)−2τ−1 ∂

∂b

∫ ∞

−∞

1

�2 + k2
3

e−ρ
2(�2+k2

3)/4eik3b dk3.
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This is similar to (3.29) in [3]; we find

K(0)
ρ (·, b)̂ (k1, k2) = (8πτ)−1

[
e�b erfc(b/ρ+ �ρ/2) − e−�b erfc(−b/ρ+ �ρ/2)

]
.(3.15)

Next, since K
(r)
ρ = K

(0)
ρ αr, K̂

(r)
ρ (k1, k2, b) is given by

K̂(r)
ρ = i(∂/∂kr)K̂

(0)
ρ = i(∂�/∂kr)(∂/∂�)K̂

(0)
ρ = i(grsks/�)(∂/∂�)K̂

(0)
ρ ,(3.16)

summed over s. After differentiating and canceling we get

K̂(r)
ρ (k1, k2, b) =

ib

8πτ

2∑
s=1

grsks
�

E

(
b

ρ
,
�ρ

2

)
(3.17)

with E(p, q) given by (1.23). We are now ready to apply Lemma 3.1 to the simplified

integral (3.9). The kernel K
(r)
ρ (α, b) is homogeneous with degree m = −1, and,

according to the lemma, S − I = εh+O(hp), with

ε = 2πτ

2∑
r=1

∑
n �=0

e−2πinν(∂rf)K̂(r)
ρ (2πn, b/h),

and, using (3.17), with λ = b/δ and ‖n‖ =
√
gijninj ,

ε =
iρλ

4

2∑
r,s=1

∑
n �=0

e−2πinν(∂rf)
grsns
‖n‖ E(λ, πρ‖n‖).

Combining terms for n and −n, we find ε = c1∂1f + c2∂2f , with c1, c2 expressed as
in (1.25), and the lemma is proved.

To understand the dependence of the errors on ρ = δ/h, we will use the following
lemma concerning the size of the function E of (1.23).

Lemma 3.3. With E as in (1.23), we have for q ≥ q0 > 0 and any p,

E(p, q) ≤ C0 exp(−q0p− q2),(3.18)

where C0 depends on q0.

Proof. Since E is even in p we assume p ≥ 0. Call the two terms T1 and T2.
Since erfc a ≤ C exp(−a2) for a ≥ 0, T1 ≤ C exp(2pq − (p + q)2) = C exp(−p2 −
q2). If q ≥ p, then T2 ≤ C exp(−p2 − q2) in the same way. If q ≤ p, then T2 ≤
2 exp(−2pq) = 2 exp(−pq) exp(−pq) ≤ 2 exp(−pq) exp(−q2). Thus in any case E ≤[
C exp(−p2) + 2 exp(−q0p)

]
exp(−q2), and the result follows from this.

Suppose now that we assume a lower bound for the matrix gij ,

‖k‖2 ≡
∑
ij

gijkikj ≥ γ2|k|2,(3.19)

for some γ > 0. Then applying (3.18) to ε above, we have ρ|λ|E(λ, πρ‖n‖) ≤
Cρ exp(−π2ρ2γ2|n|2), and, after summing,

|cr| ≤ Cρ exp(−π2ρ2γ2) , r = 1, 2.(3.20)
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We can now complete the discretization error estimate in Theorem 1.2. With
α = 0, x(0) = 0 as before, and assuming f(0) = 0 for simplicity, we compare

I =

∫
n(α) · ∇Gδ(x(α) − y)f(α)dS(α),(3.21)

S =
∑
j

n(αj) · ∇Gδ(x(αj) − y)f(αj)Aj h
2,(3.22)

where αj = jh− νh and Aj dα = dS(αj). We will show that, assuming (3.19),

S − I = (c1∂1f + c2∂2f)h+O(h2ρ3 exp(−π2γ2ρ2)) +O(h3)(3.23)

with errors uniform in b, ρ, ν. The estimate in (1.27) follows, with c0 = π2γ2/2. We
need to show that the error from replacing (3.21) by the simplified version (3.9) is
bounded by the remainder in (3.23). This is the quadrature error for the integral of

n(α)∇Gδ(x(α) − bn0)f(α)A(α) − n0∇Gδ(Jα− bn0)[α1∂1f(0) + α2∂2f(0)]A(0).
(3.24)

We can suppose f is zero outside a neighborhood of α = 0, since the outer part is
smooth and gives a high order error. We can add and subtract to write (3.24) as a
sum of terms, each a regularized homogeneous function in (α, b) of degree 0, times a
smooth function, as in Lemma 3.1, plus a higher degree remainder. For the remainder
we can show the quadrature error is O(h3) as in the end of the proof of Lemma 3.1
in [3]. The degree 0 terms are similar to the main term treated in Lemma 3.2; they
involve ∇Gδ or D2Gδ and up to two more factors of α. By Lemma 3.1, the O(h2)
errors resulting from these terms are given by expressions like those in Lemma 3.2.
The Fourier transform of the kernel is very similar to that case, with a second α-
derivative leading to a factor of k in the transform. An α-factor corresponds to a
k-derivative, leading to an extra factor of ρ in the estimate like (3.20). Otherwise the
O(h2) correction term is bounded as in (3.20), and the estimate (3.23) results.

Finally, we discuss the special case with y on the surface to obtain an improved
estimate needed for the discretization error in (1.17) of Theorem 1.1. In this case b = 0,
λ = 0, and the O(h) correction term in (3.23) is zero. The expansion in the proof
of (3.23) can be continued further, with successive regularized homogeneous terms
of degree ≤ 2 and an O(h5) remainder. In this way we find, for y on the surface,
S − I = O(h2ρk exp(−π2γ2ρ2)) + O(h5) for some integer k. The fifth order kernel
used in solving the integral equation has an added term; it has Gaussian form, and
the last estimate applies as well with this new term. Finally, since ρk exp(−π2γ2ρ2/2)
is bounded we can write

S − I = O(h2 exp(−π2γ2ρ2/2)) +O(h5).(3.25)

This estimate is used in section 4 to prove (1.17) with c0 = π2γ2/2.

4. The integral equation. In this section we prove the assertions about the nu-
merical solution of the integral equation in Theorem 1.1. The exact integral equation,
for unknown f on the surface S, with g prescribed on S, has the form

1
2f + Tf = g, (Tf)(x) =

∫
S
K(x, x′)f(x′) dS(x′),(4.1)
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where T is the double layer potential, with kernel K(x, x′) = n(x′) · ∇G(x′ − x). We
can use the coordinate patches to write the integral operator as

Tf(x) =
∑
σ

∫
K(x,Xσ(α))ψσ(Xσ(α))f(Xσ(α))Aσ(α)dα.(4.2)

Subtracting f(x) inside the integral, we convert (4.1) to the equivalent form (1.8).
We are concerned with the discrete version (1.13), (1.14) of (1.8).

We can regard T as a bounded operator on Lp(S) for any p with 2 ≤ p < ∞.
From potential theory we know that 1

2 +T has kernel {0} in C(S); the same is true in
L2(S) (see, e.g., [11, Prop. 3.13]) and then also in Lp(S), p ≥ 2. Thus, from Fredholm
theory, 1

2 + T has a bounded inverse on Lp(S) for 2 ≤ p <∞, and (4.1) has a unique
solution f ∈ Lp for each g ∈ Lp, with ‖f‖p ≤ C‖g‖p. We will argue that the discrete
problem can be solved by regarding it as a perturbation of the exact problem, making
a sequence of steps from (4.1) to (1.13). This is the stability part of the proof; the
consistency part has been done in sections 2 and 3. We always assume (1.15). When
we say a discrete operator is bounded, we mean bounded uniformly with respect
to h.

4.1. The smoothing. The regularized kernel Kδ has the form Kδ(x, x
′) =

K(x, x′)s(|x − x′|/δ), where s(x) → 1, Ds(x) → 0 rapidly as x → ∞. Using the
smoothness of Kδ and s, we note the pointwise estimates

|Kδ(x, x
′)| ≤ Cr−1, r ≥ δ; |Kδ(x, x

′)| ≤ Cδ−1, r ≤ δ;(4.3)

|DKδ(x, x
′)| ≤ Cr−2, r ≥ δ; |DKδ(x, x

′)| ≤ Cδ−2, r ≤ δ,(4.4)

where r = |x − x′| and D denotes an α-derivative, with either x = Xσ(α) or x′ =
Xσ(α). We assume here that x, x′ are in a bounded set such as S.

To see the effect of the smoothing, we can estimate, as in section 2,∫
S

|Kδ(x, x
′) −K(x, x′)| dS ≤ C1

∫ ∞

0

r−1|s(r/δ) − 1| r dr = C2δ

uniformly for x ∈ S; the same holds with x, x′ reversed. In general, for any integral
operator A on S with kernel K, if we have uniform estimates∫

S
|K(x, x′)| dS(x′) ≤M,

∫
S
|K(x, x′)| dS(x) ≤M,(4.5)

it follows that A is a bounded operator on Lp(S) with ‖A‖ ≤M (see, e.g., [11, Prop.
0.10]). In our case we conclude that the operator on Lp(S) with kernel Kδ −K has
norm O(δ). Thus, since the operator 1

2 + T is invertible, the same is true for 1
2 + Tδ,

for δ small enough, where Tδ is the operator as in (4.1) with Kδ in place of K.

4.2. A discretized kernel. Next we modify the kernel Kδ so that it acts in a
natural way on discrete functions. We work with grid functions fσi , defined at each
grid point xσi = Xσ(ih), ih ∈ Vσ, for each σ. If xσi = xτj for some i, j with σ 
= τ , we
require fσi = fτj ; this property is preserved by the discrete operators. Let Qi be the
grid square in the α-plane Qi = {α = (α1, α2) : −h/2 < αν − iνh ≤ h/2, ν = 1, 2},
and let χσi (x) = 1 for x = Xσ(α), with α ∈ Qi, and χσi (x) = 0 otherwise; i.e., χσi
is the characteristic function of the set Xσ(Qi). Given any grid function fσi , we can
associate a function Bf on S defined by

(Bf)(x) =
∑
σ,i

ψσi χ
σ
i (x)f

σ
i .(4.6)
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The part of Bf from one σ is piecewise constant, but Bf is not, since the parts
overlap. Recalling (1.14), we define a modified kernel K̃ and operator T̃ on Lp(S) as

K̃(x, x′) =
∑
i,σ,j,τ

Kστ
ij ψ

σ
i ψ

τ
j χ

σ
i (x)χ

τ
j (x

′)Aτj = B
(∑
j,τ

Kστ
ij ψ

τ
j χ

τ
j (x

′)Aτj
)
,(4.7)

T̃ f(x) =
∑
τ

∫
K̃(x,Xτ (α))f(Xτ (α)) dα.(4.8)

We write Kδ(x, x
′) as

∑
σ,τ Kδ(x, x

′)ψσ(x)ψτ (x′); for each σ, τ, i, j we have replaced

Kστ ≡ Kδψ
σψτAτ onXσ(Qi)×Xτ (Qj) with the constant K̃στ ≡ Kδ(x

σ
i , x

τ
j )ψ

σ
i ψ

τ
jA

τ
j .

Then for each σ, τ and each x ∈ Xσ(Uσ) we estimate∫
Uτ

|K̃στ (x,Xτ (α)) −Kστ (x,Xτ (α))| dα ≤ Ch
∑
j

Mστ
ij h2,(4.9)

where i is such that x ∈ Xσ(Qi). Here Mστ
ij is a bound for |DKστ | within radius

O(h) of (xσi , x
τ
j ). Using (4.4) we have |Mστ

ij | ≤ C|xσi − xτj |−2 for |xσi − xτj | > C0δ and

|Mστ
ij | ≤ Cδ−2 otherwise. Since c1|α − α′| ≤ |Xτ (α) −Xτ (α′)| ≤ c2|α − α′|, we can

bound (4.9) as follows, replacing the sum for |xσi − xτj | ≥ O(δ) by an α-integral:

C1hδ
−2(δ/h)2h2 + C2h

∫ C4

C3δ

r−2r dr ≤ C5h(1 + | log δ|) ≤ C6h(1 + | log h|)(4.10)

(cf. [5, Lemma 3.2] or [16, Lemma 5] for arguments of this type). This gives the first
of two estimates of form (4.5), with K = K̃ −Kδ, and the second is similar. Thus we
can conclude that the norm of T̃ − T , as an operator on Lp(S), is O(h| log h|). Since
the operator 1

2 + Tδ is invertible, the nearby operator 1
2 + T̃ is also invertible.

4.3. Discrete functions. Next we pass from functions of continuous x ∈ S to
discrete functions. For a grid function fσi we use the Lph norm, defined by

‖f‖p
Lp

h
=
∑
σ,i

|fσi |p h2.(4.11)

The operator B of (4.6) is bounded from Lph to Lp. Now, given a grid function
g ∈ Lph, we have Bg ∈ Lp(S), and from the result above there is a unique F ∈ Lp(S)

depending boundedly on Bg ∈ Lp(S) so that 1
2F + T̃F = Bg, or, in view of (4.7),

F = −2Bw + 2Bg, where

wσi =
∑
j,τ

Kστ
ij ψ

τ
jA

τ
j

∫
Qj

F (Xτ (α)) dα.(4.12)

Now we can define a discrete function f so that F = Bf :

fσi = −2wσi + 2gσi .(4.13)

This can be rewritten as

1
2f

σ
i + (Th(Mf))σi = gσi , (Mf)τj = h−2

∫
Qj

F (Xτ (α)) dα, F = Bf,(4.14)
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where Th is the discrete integral operator from Lph to Lph defined by

(Thf̄)σi =
∑
j,τ

Kστ
ij ψ

τ
j f̄

τ
j A

τ
j h

2.(4.15)

Equation (4.14) resembles the desired discrete integral equation (1.13) but has (Mf)τj
rather than fτj inside the integral operator. It is easy to check that the mapping
F �→ Mf is bounded from Lp to Lph, and thus f �→ Bf = F �→ Mf is bounded
from Lph to Lph. We can see that the discrete operator Th is bounded on Lph using

the pointwise estimate (4.3) and an argument similar to that for K̃ − K in (4.9),
(4.10). We can now check that the discrete solution f of (4.14) depends boundedly
on g: Given g ∈ Lph, F ∈ Lp, as determined by the equation (1

2 + T̃ )F = Bg, depends
boundedly on Bg ∈ Lp and therefore on g ∈ Lph. Then, using the boundedness of Th,
the discrete function f , defined by (4.12), (4.13), depends boundedly in Lph on g. The

solution f of (4.14) is unique since the corresponding solution F of ( 1
2 + T̃ )F = Bg

is unique. We have shown that the operator A has a bounded inverse on Lph, where

Af = 1
2f + ThMf.(4.16)

4.4. Boundedness in the Hölder norm. We will now improve the solvability
estimate for A to a higher norm in order to measure the agreement of values on
overlapping grids. For 0 < λ < 1, we define the discrete Hölder norm as

‖f‖Cλ
h

= sup
σ,i

|fσi | + sup
σ,i,σ′,i′

|fσi − fσ
′

i′ |/|xσi − xσ
′
i′ |λ,(4.17)

excluding pairs with xσi = xσ
′
i′ in the latter sup. Similarly, C0

h will be the space with
the supremum norm. We first consider the operator A on C0

h. From (4.3) we see that,
for q < 2,

∑
j |Kστ

ij |qh2 ≤ C. Then, from Hölder’s inequality, Th is bounded from Lph
to C0

h, provided p > 2. Now if 1
2f + ThMf = g, we have ‖ThMf‖C0

h
≤ C1‖g‖Lp

h
≤

C2‖g‖C0
h
, and so ‖f‖C0

h
≤ C3‖g‖C0

h
. Thus A has a bounded inverse on C0

h.

Next we check that Th is bounded from C0
h to Cλh . For arbitrary grid points xσi

and xσ
′
i′ , let d = |xσi − xσ

′
i′ |. We need to verify that (with τ fixed)

d−λ
∑
j

[
Kστ
ij −Kσ′τ

i′j

]
ψτj f

τ
j A

τ
j h

2(4.18)

is bounded, assuming f bounded in Ch0 . We use the estimates (4.3), (4.4) to bound

Kστ
ij −Kσ′τ

i′j = Kδ(x
σ
i , x

τ
j ) −Kδ(x

σ′
i′ , x

τ
j ).(4.19)

As in classical arguments, we split the sum into two parts. For j in the set J1 such
that |xσi − xτj | ≤ 2d, we apply (4.3) to the two terms separately. If d < δ we have∑

j∈J1

|Kστ
ij |h2 ≤ C1δ

−1(d/h)2h2 ≤ C2d,

and similarly for Kσ′τ
i′j , whereas, for larger d, the sum is bounded by

C3δ
−1(δ/h)2h2 + C4

∫ C6d

C5δ

r−1r dr ≤ C7δ + C8d ≤ C9d.
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For the remaining sum over the set J2 with |xσi − xτj | > 2d, we bound (4.19) by d

times DK(z, xτj ), with z along the line from xσi to xσ
′
i′ . With r = |xτj − xσi |, we have

|xτj−z| ≥ r−d ≥ r/2. Thus (4.19) is bounded by Cdr−2 for r > δ or Cdδ−2 otherwise,
using (4.4). Now if d ≥ δ we get

∑
j∈J2

|Kστ
ij −Kσ′τ

i′j |h2 ≤ C1d

∫ C3

C2d

r−2r dr ≤ C4d(1 + | log d|),

and otherwise we have this plus an additional term C5dδ
−2(δ/h)2h2 ≤ C6d. We

conclude that the Hölder quotient (4.18) is bounded by

C1d
1−λ(| log d| + 1)‖f‖C0

h
≤ C2‖f‖C0

h
,(4.20)

and, consequently, for any f ∈ C0
h, ‖Thf‖Cλ

h
≤ C3‖f‖C0

h
as claimed.

We have already shown that the operator A has a bounded inverse on C0
h; we

can now show the same is true for Cλh . If 1
2f + ThMf = g with g ∈ Cλh , then

‖Mf‖C0
h
≤ C1‖f‖C0

h
≤ C2‖g‖C0

h
, and thus ‖ThMf‖Cλ

h
≤ C3‖g‖C0

h
≤ C3‖g‖Cλ

h
. Since

f = 2g − 2ThMf , it follows that ‖f‖Cλ
h
≤ C‖g‖Cλ

h
.

4.5. Correcting the discrete equation. Next, in order to compare the op-
erator ThM with Th, we show that Mf , as defined in (4.14), is close to f in C0

h,
relative to the Cλh -norm of f , for small h. Given a grid function f and x ∈ S, suppose
x ∈ Xτ (Qj) for some τ, j so that |x−xτj | ≤ Ch. If also x ∈ Xσ(Qi), then |x−xσi | ≤ Ch

so that |xσi −xτj | ≤ 2Ch. Thus |fσi −fτj | ≤ C1h
λ‖f‖Cλ

h
. Similarly, ψσi −ψσ(x) = O(h).

Applying this to the definition of Bf , we find |(Bf)(x)−fτj | ≤ C2h
λ‖f‖Cλ

h
uniformly

for x ∈ Xτ (Qj). Then since (Mf)τj is an average of Bf over this set,

|(Mf)τj − fτj | ≤ C2h
λ‖f‖Cλ

h
.(4.21)

The last result has an important consequence: Since M is close to the identity
as an operator from Cλh to C0

h, and since Th is bounded from C0
h to Cλh , the operators

f �→ 1
2f + ThMf and f �→ 1

2f + Thf , acting on Cλh , are close when h is small. Since
the first has a bounded inverse on Cλh , the second does as well. That is, we have a
bounded solution operator on Cλh for the equation 1

2f + Thf = g. This equation is
the analogue of (1.13) without the subtracted term.

4.6. The subtraction. Now let zσi = Th · 1. The sum zσi approximates an
integral which, according to (1.7), is identically 1

2 . We check that ‖zσi − 1
2‖Cλ

h
→ 0 as

h, δ → 0: The estimates of sections 2 and 3 show that |zσi − 1
2 | ≤ C(h+ δ) uniformly

in i, σ. As for the Hölder quotient, we see from (4.20) that it is small for d small, say,
d ≤ d0, with d0 independent of h. But for d ≥ d0 it is bounded by Chd−λ0 , which
is small when h is small enough. As a consequence, the operators f �→ 1

2f + Thf
and f �→ f + Thf − zf on Cλh are close for h small. As before, we conclude that
the new operator has a bounded inverse. This is exactly the statement that the
discrete integral equation (1.13) is solvable, with solution bounded in Cλh , that is,
‖f‖Cλ

h
≤ C‖g‖Cλ

h
.

We wish to show that the solution of (1.13) is also bounded on C0
h, since this norm

is more convenient for comparing with the exact solution. We can write the equation
as (1 − z)f + Thf = g or f + ζThf = ζg, where ζ = 1/(1 − z). Since z ≈ 1

2 in Cλh ,
ζ ≈ 2 in Cλh . Rearranging the terms, we have (1−z)(f − ζg)+Th(f − ζg) = −Th(ζg).
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Now, using our last result, with f−ζg in place of f , and the bound for Th : C0
h → Cλh ,

we find ‖f − ζg‖Cλ
h
≤ C1‖Th(ζg)‖Cλ

h
≤ C2‖g‖C0

h
from which it follows that

‖f‖C0
h
≤ C‖g‖C0

h
, f = ((1 − z)I + Th)

−1g.(4.22)

4.7. The error estimate. Having established the bounded solvability (4.22)
for the discrete integral equation (1.13), we can easily estimate the error when the
exact solution is smooth. Suppose f, g are smooth functions on S satisfying (4.1). (If
g is smooth, it follows that f is smooth.) Let gσi be the grid function taking values
gσi = g(xσi ), and let fσi be the solution of (1.13). Define eσi = fσi −f(xσi ). Subtracting,
we get the error equation

eσi +
∑
j,τ

Kστ
ij ψ

τ
j [e

τ
j − eσi ]A

τ
j h

2 + rσi ,(4.23)

rσi =

∫
K(xσi , x

′)[f(x′) − f(xσi )] dx
′ −
∑
j,τ

Kστ
ij ψ

τ
j [f(xτj ) − f(xσi )]A

τ
j h

2.(4.24)

The O(δ5) smoothing estimate of section 2 and the discretization estimate (3.25)
apply to rσi , since f is smooth, and we have |rσi | ≤ ε(h, δ), uniformly in i, σ, where
ε(h, δ) is the right side of (1.17). A similar estimate follows for eσi , after applying
(4.22) to the error equation (4.23), and we have |fσi −f(xσi )| ≤ ε(h, δ). Thus we have
proved the error estimate (1.17) of Theorem 1.1.

4.8. The iteration. Finally, we discuss the convergence of the iterates (1.16)
to the solution of the discrete integral equation (1.13). It is a fact of potential theory
that the operator T has spectrum in the interval − 1

2 < λ ≤ 1
2 (see, e.g., [18, section

10.5] or [9, section 5.1]). Then, for 0 < β < 1, the related operator (1 − β)I − 2βT
has spectral radius < 1, and the convergence of (1.5) follows. For the discrete case
we can argue that the approximations to T above perturb this spectral radius only
slightly, and thus the discrete iteration (1.16) also converges. We omit the details.

5. Numerical examples. We present the results of three test problems illus-
trating the solution of the integral equation and the subsequent calculation of the
solution of the Dirichlet problem (1.1) at points near the surface. The results gener-
ally verify the predictions of the theory.

For our first two examples the surface S is the unit sphere x2
1 + x2

2 + x2
3 = 1. We

cover the sphere with two stereographic projections. The projection on the equatorial
plane by rays through the south pole (0, 0,−1) gives the first coordinate system,
X1 : R2 → U1 = S − {(0, 0,−1)}:

x1 =
2α1

1 + |α|2 , x2 =
2α2

1 + |α|2 , x3 =
1 − |α|2
1 + |α|2 .(5.1)

Similarly, projecting from the north pole gives a second system X2 : R2 → U2 = S −
{(0, 0, 1)} as in (5.1) but with x3 → −x3. Each system maps the unit disk in the plane
to a hemisphere; we use disks of radius 1.25 so that the two systems overlap. To define
the partition of unity {ψ1, ψ2}, we first set φσ(Xσ(α)) = exp(−1.252/(1.252 − |α|2))
for |α| ≤ 1.25 and φσ = 0 otherwise; then φσ is a smooth function with support
{Xσ(α) : |α| ≤ 1.25}. We then define ψσ(x) = φσ(x)/(φ1(x) + φ2(x)). Grid points
αi = ih are introduced with Xσ(αi) ∈ V σ, where V σ is the interior of the support of
ψσ. These sets are V 1 = S ∩ {x3 > −9/41}, V 2 = S ∩ {x3 < 9/41}, corresponding
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Table 1

The integral equation with third order kernel.

δ = .5h2/3 δ = .75h2/3 δ = 2h
1/h Grid pts δ/h Rel err Order δ/h Rel err Order Rel err Order

8 610 1.00 1.7E-3 1.50 6.0E-3 1.4E-2
16 2490 1.26 4.8E-4 1.9 1.89 1.6E-3 1.9 1.9E -3 2.9
32 10026 1.59 1.2E-4 2.0 2.38 4.0E-4 2.0 2.4E-4 3.0

Table 2

The integral equation with fifth order kernel.

δ = .5h2/3 δ = .75h2/3 δ = 2h
1/h Grid pts δ/h Rel err Order δ/h Rel err Order Rel err Order

8 610 1.00 6.0E-4 1.50 5.9E-4 4.8E-4
16 2490 1.26 9.5E-5 2.7 1.89 1.5E-5 5.3 2.0E-5 4.6
32 10026 1.59 7.7E-6 3.6 2.38 1.7E-6 3.1 9.0E-7 4.5
64 40138 2.00 1.4E-7 5.7 3.00 1.7E-7 3.3 1.4E-7 2.6

to |α| < 1.25. The metric tensor in each patch is gij = 4(|α|2 + 1)−2δij , and the
area factor A =

√
g is 4(|α|2 + 1)−2. The surface Laplacian is 1

4 (|α|2 + 1)2(∂11 + ∂22).
These quantities could be computed from the points {Xσ(αi)}, but we used analytical
values in our computations.

Our first example is based on a spherical harmonic, so that the solution for the
integral equation is known, as well as for the boundary value problem. We define

f(x) = 1.75(y1 − 2y2)(7.5y
2
3 − 1.5), y = Mx,

with M = (1/
√

6)(
√

2(1, 1, 1)T ,
√

3(0, 1,−1)T , (−2, 1, 1)T ), an orthogonal matrix. We
use M to avoid rectangular symmetry in the test problem. The functions f(x/r)r3

and f(x/r)/r4, r = |x|, are both harmonic. The double layer potential u due to f is
determined by the jump in u and the fact that ∂u/∂n is continuous. It is

u(x) = (4/7)f(x/r)r3, r < 1; u(x) = (−3/7)f(x/r)/r4, r > 1.(5.2)

Thus if we set g(x) = (4/7)f(x) on S, the solution of the Dirichlet problem (1.1) is
u, as defined above for r < 1, and the solution of the integral equation (1.4) is f .

We solved the discrete form (1.13) of the exact integral equation (1.4) using 12
iterations of (1.16) with β = .7. We tested the third order kernel (1.10) as well as the
fifth order one (1.12) to check the order of accuracy. The results are reported in Tables
1 and 2. A grid size h in the coordinate systems and the total number of grid points
are displayed. Each coordinate patch is a disk with 5/2h points along a diameter. We
choose the smoothing radius δ proportional to hq, q = 2/3 or 1. The relative error
displayed is the maximum error divided by maxS f ≈ 8.1. The computed order of
accuracy is found from two successive cases. With the third order kernel, the expected
order of accuracy 3q is clearly visible in Table 1. The errors shown in Table 2 for the
fifth order kernel are much smaller. With q = 2/3 the predicted order 10/3 is less
evident, but it appears to take over in the second case, with the larger δ. With q = 1,
δ = 2h, the order is at first near 5 but deteriorates as h is decreased, as we should
expect from the analysis.

After solving the integral equation with a choice of h and δ, using the fifth order
kernel, we then computed the solution u at points near S with the same h and δ. To
select a set of points, we cover R3 with a 3D mesh of spacing h; it is an arbitrary
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Table 3

Nearby points for the first problem.

Irreg δ = .5h2/3 δ = .75h2/3 δ = 2h
1/h points Rel err Order Rel err Order Rel err Order

8 606 1.2E-2 1.4E-2 2.1E-2
16 2546 6.2E-4 4.3 1.9E-3 2.9 2.3E-3 3.2
32 10470 1.4E-4 2.1 4.7E-4 2.0 2.8E-4 3.0
64 42282 3.5E-5 2.0 1.1E-4 2.1 3.5E-5 3.0

Table 4

Nearby points for the second problem.

Irreg δ = .5h2/3 δ = .75h2/3 δ = 2h
1/h points Rel err Order Rel err Order Rel err Order

8 606 1.6E-2 3.2E-2 4.7E-2
16 2546 4.2E-4 5.3 1.3E-3 4.6 1.6E-3 4.9
32 10470 1.1E-4 1.9 3.6E-4 1.9 2.2E-4 2.9
64 42282 2.7E-5 2.0 8.8E-5 2.0 2.7E-5 3.0

choice to use the same h in R3 as on S. We select the set of “irregular” points
(i1h, i2h, i3h) inside S for which the stencil of the five-point discrete Laplacian crosses
the surface; i.e., the two points obtained by displacement of ±h in some coordinate
are on different sides of S. All such points are within h of S, and, for h small, all
points within ch of S have this property if c < 1/

√
3. Thus they provided a good

sample of 3D grid points near S. These are the interior points needed to form the
discrete Laplacian of u in order to recover the values elsewhere; cf. [21] or [3].

For each selected point y we find the closest point x0 on S. We need f and the
first two derivatives at x0 for the subtraction and corrections. We find these from
the computed values of f at the grid points by Lagrange interpolation. We compute
the sum (1.19) and add the smoothing and discretization corrections (1.21)–(1.25).
Table 3 gives the number of irregular points; the relative error, found as the maximum
error divided by maxS g ≈ 4.6; and the computed order of accuracy. With δ = chq,
q = 2/3 or 1, we see the expected order 3q = 2 or 3.

Our second test problem, still with the unit sphere, is the harmonic function

u(x) = exp (y1 + 2y2) cos
√

5y3, y = Mx,(5.3)

with M as before. We prescribe g(x) = u(x) on S and solve the integral equation
within an error tolerance, again with β = .7. In this case we do not know the solution
f of the integral equation; however, we use the computed f to find u at the irregular
points, as before, and compare with the exact solution in (5.3). Results are reported
in Table 4. Again the predicted order of accuracy is evident as h decreases. The error
displayed is the maximum error divided by maxS g ≈ 9.4.

For our third problem the surface S is the ellipsoid x2
1 + x2

2 + x2
3/2 = 1. We use

coordinate systems similar to those for the sphere, with x3 in (5.1) multiplied by
√

2.
As the test problem we take the same harmonic function u in (5.3). The coordinate
systems are symmetric, but the functions are not, because of the rotation by M . The
needed geometric quantities can be found analytically in this case. The coordinates
are not orthogonal, as they were for the sphere, so that the formulas are tested in a
more general setting. We solve the integral equation as before. We then select the set
of irregular points by the same criterion and compute the solution u on this set as a
double layer potential, with corrections, using the solution f of the integral equation.
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Table 5

Nearby points for the ellipsoid.

Irreg δ = .5h2/3 δ = .75h2/3 δ = 2h
1/h points Rel err Order Rel err Order Rel err Order

8 798 1.7E-2 3.3E-2 4.7E-2
16 3330 3.2E-4 5.7 1.0E-3 5.0 1.2E-3 5.3
32 13614 8.3E-5 2.0 2.7E-4 1.9 1.6E-4 2.9
64 54914 2.1E-5 2.0 6.6E-5 2.0 2.1E-5 3.0

Table 6

Nearby points with h = 1/32, varying δ.

δ/h .01 .1 .5 1 2 5 10
Rel err 3.7E-4 3.7E-4 2.8E-4 6.8E-5 1.6E-4 2.2E-3 1.5E-2

For each irregular point y we need to find the point x0 on the surface so that y is along
the normal from x0, as well as the distance; we do this using Newton’s method. The
results, displayed in Table 5, are similar to those for the sphere. Again the relative
error is the maximum error divided by maxS g ≈ 9.4.

For the last problem we show in Table 6 the results of computing the solution at
the irregular points using various choices of the smoothing parameter δ. We first solve
the integral equation with h = 1/32 and δ = 2h. We then compute the values at the
irregular points, chosen with h = 1/32, for various values of δ/h, to verify the effects
of the two corrections. For small δ/h, the discretization correction is dominant; when
δ/h is extremely small, more terms are needed in the sum (1.25). For larger δ/h the
smoothing correction is important, and the discretization correction is negligible. As
δ/h increases, the remaining smoothing error becomes significant.
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Abstract. Many boundary integral equation methods used in the simulation of direct electro-
magnetic scattering of a time-harmonic wave at a perfectly conducting obstacle break down when
applied at frequencies close to a resonant frequency of the obstacle. A remedy is offered by special in-
direct boundary element methods based on the so-called combined field integral equation. However,
hitherto no theoretical results about the convergence of discretized combined field integral equations
have been available.

In this paper we propose a new combined field integral equation, convert it into variational form,
establish its coercivity in the natural trace spaces for electromagnetic fields, and conclude existence
and uniqueness of solutions for any frequency. Moreover, a conforming Galerkin discretization of the
variational equations by means of divΓ-conforming boundary elements can be shown to be asymp-
totically quasi-optimal. This permits us to derive quantitative convergence rates on sufficiently fine,
uniformly shape-regular sequences of surface triangulations.
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1. Introduction. The numerical simulation of direct scattering at a perfect con-
ductor, the so-called scatterer, is a central task in computational electromagnetism.
The scatterer occupies a bounded domain Ω ⊂ R

3. In general, Ω will have Lipschitz-
continuous boundary Γ := ∂Ω, which can be equipped with an exterior unit normal
vector field n ∈ L∞(Γ). With boundary element methods in mind, we do not lose
generality by admitting only scatterers Ω that are polyhedra with flat faces and a
Lipschitz-continuous boundary. We emphasize that the extension of the results to
curvilinear faces is straightforward.

Electromagnetic waves propagate outside the scatterer in the “air region” Ω′ :=
R

3 \ Ω. From an electrodynamic point of view, Ω′ is filled with a homogeneous,
isotropic, and linear material. Excitation is provided by the electric field ei of an inci-
dent (plane) wave of angular frequency ω > 0. Hence, we can switch to the frequency
domain and are left with complex amplitudes (phasors) as unknown spatial functions.
After suitable scaling, the complex amplitude e of the scattered field satisfies the
following exterior Dirichlet problem for the electric wave equation [23, Chap. 6]:

curl curl e − κ2e = 0 in Ω′,(1.1)

e × n = g := ei × n on Γ.(1.2)

The constant κ := ω
√
ε0µ0 > 0 is called the wave number, because κ/2π tells us

the number of wavelengths per unit length. Henceforth, κ will stand for a fixed
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positive wave number. These equations have to be supplemented with the Silver–
Müller radiation conditions∫

∂Br

|curl e × n + iκ(n × e) × n|2 dS → 0 for r → ∞,(1.3)

where Br is a ball around 0 with radius r > 0. Existence and uniqueness of solutions
of (1.1) and (1.3) can be inferred from Rellich’s lemma [18, 42].

Integral equation methods are a natural choice for the discretization of the di-
rect electromagnetic scattering problem, which is posed on an unbounded domain.
Prominent examples are the electric field integral equation (EFIE) and magnetic field
integral equation; see [42, sect. 5.6] or [18, Chap. 3]. These indirect methods display a
worrisome instability when κ2 coincides with a Dirichlet or Neumann eigenvalue (reso-
nant frequency) of the curl curl-operator inside Ω; then the integral equation may not
have a solution. After discretization this manifests itself in extreme ill-conditioning
of the resulting linear systems of equations if κ is close to a resonant frequency [20].

Two classes of integral equation methods are known to avoid this difficulty. The
first is the method proposed in [26] and examined for electromagnetism in [30]. How-
ever, it entails constructing an auxiliary surface and can be haunted by stability
problems, too. The second, vastly more popular class of methods are approaches
based on combined field integral equations (CFIEs), as introduced in [3] and [17]. A
particular representative will be the focus of this paper.

CFIEs owe their name to the presence of both single and double layer potentials
in the ansatz for the electric field in Ω′. As a theoretical tool they were pioneered
for acoustic scattering in [3] and for electromagnetics in [43]. These methods are
widely used in computational electromagnetism [47]. For acoustics, existence and
uniqueness of solutions can be shown for smooth scatterers [23]. Yet, in the case of
electromagnetism even this remains elusive. Hence, mainly for the sake of theoretical
treatment, regularized formulations have been introduced by Kress in [36]. However,
the idea is applicable only for scattering at smooth objects, and it is not suitable for
numerical implementation.

In this article we hark back to the idea of regularization in a different way. Based
on recent advances in the understanding of boundary integral operators of electromag-
netic scattering achieved in [15, 32, 33], we apply regularization to the double layer
part of the integral operator. Reformulation as a mixed problem and subsequent
Galerkin discretization pave the way to a practical computational scheme. It is the
first method based on an electromagnetic CFIE that can be proven to converge quasi-
optimally in relevant trace norms. Related techniques for the Helmholtz equation of
acoustic scattering are covered in [14].

The developments in this paper rest on a huge body of previous work. We will
restate the most important results. However, in order to maintain a reasonable length
we cannot elaborate on most of the existing theory of boundary integral equations for
electromagnetic scattering. However, we will try to give comprehensive references for
all results we rely upon.

The plan of the paper is as follows: the next section will give a concise survey
of relevant function spaces and trace theorems and prove some new results which are
needed in the rest of the paper. Then we briefly recall the crucial integral operators of
electromagnetic scattering. In the fourth section we will present and analyze the new
CFIE and the variational problem associated with it. The fifth section will be devoted
to proving the asymptotic quasi optimality of a Galerkin discretization. Based on it,
the final section will give quantitative convergence estimates.



COERCIVE CFIE IN ELECTROMAGNETICS 623

2. Function spaces and traces. Let Ω ⊆ R
3 be any of the sets Ω,Ω′,R3. We

define the Fréchet space L2
loc(Ω) = {u|Ω : u ∈ L2

loc(R
3)}, where L2

loc(R
3) is the space

of complex, vector-valued, locally square-integrable functions on R
3. In a similar way,

we define the Sobolev spaces Hs
loc(Ω), s ≥ 0 (see, e.g., [1] for definitions), with the

convention H0 ≡ L2. The subscript loc will be dropped whenever Ω is bounded: in
this case, Hs(Ω) is a Hilbert space endowed with the natural graph norm ‖u‖Hs(Ω)

and seminorm |u|Hs(Ω), respectively [1]. Parentheses will consistently be used to
express inner products.

With D a first order differential operator, for any s ≥ 0 we define

Hs
loc(D,Ω) := {u ∈Hs

loc(Ω) : Du ∈Hs
loc(Ω)},(2.1)

Hs
loc(D0,Ω) := {u ∈Hs

loc(Ω) : Du = 0}.(2.2)

When s = 0, we simplify the notation by setting H0 = H. If Ω is bounded,
Hs

loc(D,Ω) is endowed with the graph norm ‖·‖2
Hs(D,Ω) := ‖·‖2

Hs(Ω)+‖D ·‖2
Hs(Ω) and

seminorm | · |2Hs(D,Ω) := | · |2Hs(Ω) + |D · |2Hs(Ω). This defines the spaces Hs(curl,Ω),

Hs(div,Ω) and Hs(curl 0,Ω), Hs(div 0,Ω), for which [28, Chap. 1] is the main ref-
erence.

The integration by parts formulae for the operators curl and div suggest that we
define the tangential trace mapping γt : u 
→ u|Γ×n and the normal component trace

γn : u 
→ u|Γ · n. To begin with, they are defined for u ∈ C∞(Ω)3.

The trace theorem for H1(Ω) [29, Thm. 1.5.1.1] shows that the tangential trace
γt : C∞(Ω̄) 
→ L∞(Γ) and the normal trace γn : C∞(Ω̄) 
→ L∞(Γ) are continuous

as mappings H(curl; Ω) 
→ H− 1
2 (Γ) and H(div; Ω) 
→ H− 1

2 (Γ), respectively. Here,

H− 1
2 (Γ) and H− 1

2 (Γ) are the dual spaces of H
1
2 (Γ) and H

1
2 (Γ) := (H

1
2 (Γ))3, respec-

tively, with respect to the pivot spaces L2(Γ) and L2(Γ). Consequently, the traces
can be extended to H(curl; Ω) and H(div; Ω), respectively. Moreover, if we define
the antisymmetric pairing

〈µ,η〉τ ,Γ :=

∫
Γ

(µ× n) · η dS, µ,η ∈ L2
t(Γ) := {u ∈ (L2(Γ))3, u · n = 0},(2.3)

then we can state the integration by parts formula for the curl-operator as [9, sect. 4]∫
Ω

(curl u · v − u · curl v) dx = 〈γtv, γtu〉τ ,Γ .(2.4)

A meaningful strong form of the electric wave equation (1.1) has to rely on yet
another space: from the fact that a field u is a locally square-integrable function
satisfying curl curl u − u = 0 we can conclude that curl curl u is locally square-
integrable, too. Hence, the space

H loc(curl2,Ω) := {u ∈H loc(curl; Ω), curl curl u ∈ L2
loc(Ω)}

will play the role of the natural space for solutions of the electric wave equation with
constant coefficients.

Trace spaces for electromagnetic fields are essential for stating the boundary in-
tegral equations and, in particular, their variational formulations. The corresponding
results on nonsmooth boundaries are fairly recent: we refer the reader to [6, 9, 10]
for the treatment of Lipschitz polyhedra. The issue of traces of H(curl; Ω) for gen-
eral Lipschitz domains was settled in [13]. The results are summarized in the survey
article [7].
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Definition 2.1. We introduce the Hilbert spaces Hs
×(Γ) := γt(H

s+1/2(Ω)),

s ∈ (0, 1), equipped with an inner product that renders γt : Hs+1/2(Ω) 
→ Hs
×(Γ)

continuous and surjective. For s = 0 we set H0
×(Γ) := L2

t (Γ). The dual spaces with

respect to the pairing 〈·, ·〉τ ,Γ are denoted by H−s
× (Γ).

Remark 1. When s = 1, the standard trace operator γ fails to map H3/2(Ω)
to H1(Γ), although H1(Γ) is well defined on the boundary Γ. In this case, we adopt
the definition H1

×(Γ) := γt(γ
−1H1(Γ)3), where γ−1 represents any continuous lifting

from H1(Γ) to H3/2(Ω) (see [35]).
Next, we introduce the surface divergence operator divΓ; cf. [9, sect. 2.1].
Let {Γ1, . . . ,ΓP }, P ∈ N, stand for the set of open flat faces of Γ, and write Σij

for the straight edge ∂Γj∩∂Γi. The vector νij lies in the plane of Γj , is perpendicular
to Σij , and points into the exterior of Γj . Then for u ∈ C∞(Ω) we set

divΓγtu :=

{
divj(γtu|Γj

) on Γj ,(
(γtu|Γj

) · νij + (γtu|Γi
) · νji

)
δij on Γj ∩ Γi,

(2.5)

where δij is the delta distribution (in local coordinates) whose support is the edge

Γj∩Γi and divj denotes the two-dimensional divergence computed on the face Γj . By
density, this differential operator can be extended to less regular distributions and, in

particular, to functionals in H
− 1

2× (Γ). We set

Hs
×(divΓ,Γ) := {µ ∈Hs

×(Γ), divΓµ ∈ Hs(Γ)}, s ∈ [−1/2, 0].

Finally, we denote by curlΓ the operator adjoint to divΓ with respect to the pairing
〈·, ·〉τ ,Γ, i.e.,

〈curlΓq,p〉τ ,Γ = 〈divΓp, q〉 1
2 ,Γ
, p ∈H− 1

2× (divΓ,Γ), q ∈ H
1
2 (Γ).(2.6)

It is known [7, sect. 1.2] that curlΓ : Hs(Γ) → Hs−1
× (Γ) is continuous for every s,

1/2 ≤ s ≤ 1. The spaces just defined turn out to be the desired trace spaces; see [9,
Prop. 1.7], [10, Thm. 5.4], and [13, sect. 2].

Theorem 2.2. The operator γt : H(curl; Ω) 
→ H
− 1

2× (divΓ,Γ) is continuous, is
surjective, and possesses a continuous right inverse.

The following self-duality of the electromagnetic trace space will be the foundation
of weak formulations. The result was first given in [10].

Theorem 2.3. The pairing 〈·, ·〉τ ,Γ can be extended to a continuous bilinear form

on H
− 1

2× (divΓ,Γ). With respect to 〈·, ·〉τ ,Γ the space H
− 1

2× (divΓ,Γ) becomes its own
dual.

Piecewise smooth scatterers offer the possibility that some considerations can be
done locally on the faces and thus become essentially two-dimensional. To provide a
framework for such considerations we introduce the spaces Hs

×(Γj), s ≥ 0, defined

locally on a face Γj in a straightforward fashion, and we denote byH−s
× (Γj), s ∈ (0, 1

2 ),
their duals (note that we adopt the notion introduced in [39] and not the one used
in [29]).

In addition, we define the localized spaces H×0(divΓ,Γj) := {u ∈ L2
t(Γj) : ũ ∈

H×(divΓ,Γ)}, where ˜ denotes the trivial extension by zero to all of Γ. These spaces
will be combined to

HΣ(divΓ,Γ) :=

P∏
j=1

H×0(divΓ,Γj).
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Lemma 2.4. The space HΣ(divΓ,Γ) is dense in H
− 1

2× (divΓ,Γ).
Proof. Let us adopt the notation Σ for the skeleton of the polyhedron, that

is, the union of all edges Σij , 1 ≤ i, j ≤ P . Then we recall that regular functions
compactly supported in Ω̄ \ Σ are dense in H1(Ω) [41]. Of course, also the inclusion
H1(Ω) ⊂ H(curl,Ω) is dense. By continuity of the tangential trace operator γt,

we deduce that tangential vector fields in H
1/2
× (Γ) compactly supported in Γ \ Σ are

dense in H
− 1

2× (divΓ,Γ). Since the set of fields in H
1/2
× (Γ) compactly supported in

Γ \ Σ is a subset of HΣ(divΓ,Γ), the statement is proved.

Lemma 2.5. The embedding HΣ(divΓ,Γ) ↪→H
− 1

2× (divΓ,Γ) is compact.
Proof. To begin with, since HΣ(divΓ,Γ) ⊂ H×(divΓ,Γ), we need to prove only

that the injection H×(divΓ,Γ) ⊂H−1/2
× (divΓ,Γ) is compact.

Let {un}n∈N ⊂ H×(divΓ,Γ) be a sequence such that ‖un‖H×(divΓ,Γ) < 1 for

all n. Then, owing to the compact embedding L2
t(Γ) ↪→ H

−1/2
× (Γ), there exists a

subsequence unk
of un and a u ∈H−1/2

× (Γ) such that unk
→ u strongly inH

−1/2
× (Γ).

The operator divΓ : H
−1/2
× (Γ) 
→ H−3/2(Γ) is continuous (see [9] for a proof and the

definition of H−3/2(Γ)). Hence, divΓunk
→ divΓu strongly in H−3/2(Γ).

On the other hand, we also know that ‖divΓunk
‖L2(Γ) < 1, which implies that

up to extraction of a subsequence divΓunk
is strongly converging to an element in

H−1/2(Γ). By uniqueness of the limit, we deduce that divΓu ∈ H−1/2(Γ), and, up to

selecting a subsequence, unk
→ u ∈H− 1

2× (divΓ,Γ) strongly.
When we want to examine the convergence of boundary element methods quan-

titatively, extra smoothness of the functions to be approximated is indispensable. A
convenient gauge for smoothness is offered by scales of Sobolev spaces. Again, localiza-
tion is a handy tool: for any s > 1

2 , we define Hs
−(Γ) := {u ∈ L2

t(Γ) : u|Γj ∈Hs
t(Γ

j)}.
The corresponding space of scalar functions will be denoted by Hs

−(Γ). Then, for

s ≥ 1, we set Hs
×(Γ) := H

1
2×(Γ) ∩ Hs

−(Γ).
To characterize extra smoothness of traces we resort to the family of Hilbert

spaces

Hs
×(divΓ,Γ) :=

⎧⎪⎨⎪⎩
H

− 1
2× (divΓ,Γ) if s = − 1

2 ,

{µ ∈Hs
×(Γ), divΓµ ∈ Hs(Γ)} if − 1

2 < s < 1
2 ,

{µ ∈Hs
×(Γ), divΓµ ∈ Hs

−(Γ)} if s ≥ 1
2 .

The following trace theorem has been proved in the appendix of [8].
Theorem 2.6. Let σ ∈ R be the maximum real number such that {p ∈ H1(Ω) :

∆p ∈ L2(Ω), (∂np)|Γ = 0} ⊂ H1+σ′
(Ω) for all σ′ < σ. For all 0 ≤ s < min{σ, 1} the

tangential trace mapping γt can be extended to a continuous and surjective mapping

γt : Hs(curl,Ω) 
→H
s− 1

2× (divΓ,Γ), which possesses a continuous right inverse.

3. Potentials and integral operators. Here we define the boundary integral
operators relevant for electromagnetic scattering and recall a few of their properties.
More details can be found in [42, Chap. 5], [23, Chap. 6], [15, sect. 3], and [34].

Definition 3.1. A distribution e ∈H loc(curl2,Ω) is called a Maxwell solution
on some generic domain Ω, if it satisfies (1.1) in Ω, and the Silver–Müller radiation
conditions at ∞ if Ω is not bounded.

As far as the differential operator curl curl−κ2 Id is concerned, the integration by
parts formula (2.4) suggests the distinction between Dirichlet trace γt and Neumann
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trace γN := κ−1γt◦curl. The trace γN can be labelled “magnetic,” because it actually
retrieves the tangential trace of the magnetic field solution. From the trace theorem,
Theorem 2.2, we see that γN is meaningful on H loc(curl2,Ω ∪ Ω′).

Lemma 3.2. The trace γN : H loc(curl2,Ω′ ∪ Ω) →H
− 1

2× (divΓ,Γ) is a continuous
and surjective operator.

The integral representation for Maxwell solutions relies on the famous Stratton–
Chu representation formula for the electric field in Ω∪Ω′ [46]. To state it we rely on
the notion of a jump [·]Γ across Γ defined by [γ]Γ := γ+ −γ− for some trace γ onto Γ.
Here, superscripts − and + tag traces onto Γ from Ω and Ω′ := R

3 \ Ω̄, respectively.
For notational simplicity, it is also useful to resort to the average {γ}Γ = 1

2 (γ+ +γ−).
Both operators can be applied only to functions defined in Ω ∪ Ω′.

As elaborated in [23, sect. 6.2], [42, sect. 5.5], and [18, Chap. 3, sect. 1.3.2], any
Maxwell solution in Ω ∪ Ω′ satisfies

u(x) = −Ψκ
DL([γt]Γ (u))(x) − Ψκ

SL([γN ]Γ (u))(x), x ∈ Ω ∪ Ω′,(3.1)

where we have introduced the (electric) Maxwell single layer potential

Ψκ
SL(µ)(x) := κΨκ

A(µ)(x) +
1

κ
gradx Ψκ

V (divΓµ)(x), x /∈ Γ,(3.2)

and the (electric) Maxwell double layer potential

Ψκ
DL(µ)(x) := curlx Ψκ

A(µ)(x), x /∈ Γ.(3.3)

Here, Ψκ
V and Ψκ

A are the scalar and the vectorial single layer potentials for the
Helmholtz kernel Eκ(x) := exp(iκ|x|)/4π|x|, whose integral representation is given
by (x /∈ Γ)

Ψκ
V (φ)(x) :=

∫
Γ

φ(y)Eκ(x − y) dS(y), Ψκ
A(µ)(x) :=

∫
Γ

µ(y)Eκ(x − y) dS(y).

Both potentials Ψκ
SL and Ψκ

DL are Maxwell solutions; that is, for µ ∈H− 1
2× (divΓ,Γ),

they fulfill

(curl curl−κ2 Id)Ψκ
SL(µ) = 0, (curl curl−κ2 Id)Ψκ

DL(µ) = 0(3.4)

off the boundary Γ in a pointwise sense. In addition, they comply with the Silver–
Müller radiation conditions.

From the well-known mapping properties of Ψκ
V and Ψκ

A it is easy to get those
for Ψκ

SL and Ψκ
DL; see, e.g., [15, sect. 3].

Theorem 3.3. The following mappings are continuous:

Ψκ
SL : H

− 1
2× (divΓ,Γ) 
→H loc(curl2,Ω ∪ Ω′) ∩H loc(div 0; Ω ∪ Ω′),

Ψκ
DL : H

− 1
2× (divΓ,Γ) 
→H loc(curl2,Ω ∪ Ω′) ∩H loc(div 0; Ω ∪ Ω′).

The fact that curl ◦Ψκ
SL = κΨκ

DL and curl ◦Ψκ
DL = κΨκ

SL implies

γ±NΨκ
SL = γ±t Ψκ

DL, γ±NΨκ
DL = γ±t Ψκ

SL.(3.5)

This means that the following two boundary integral operators are sufficient for elec-
tromagnetic scattering:

Sκ := {γt}Γ ◦ Ψκ
SL = {γN}Γ ◦ Ψκ

DL, Cκ := {γt}Γ ◦ Ψκ
DL = {γN}Γ ◦ Ψκ

SL.
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The continuity of Sκ and Cκ is immediate from Theorem 3.3, in conjunction with
Lemma 3.2 and Theorem 2.2.

Corollary 3.4. The operators Sκ,Cκ : H
− 1

2× (divΓ,Γ) 
→ H
− 1

2× (divΓ,Γ) are
continuous.

A fundamental tool for deriving boundary integral equations are jump relations
describing the behavior of the potentials across Γ. For the Maxwell single and double
layer potentials they closely resemble those for conventional single and double layer
potentials for second order elliptic operators [40, Chap. 6]. For smooth domains these
results are contained in [23, Thm. 6.11], [42, Thm. 5.5.1], and [45].

Theorem 3.5. The interior and exterior Dirichlet and Neumann traces of the

potentials Ψκ
SL and Ψκ

DL are well defined and, on H
− 1

2× (divΓ,Γ), satisfy

[γt]Γ ◦ Ψκ
SL = [γN ]Γ ◦ Ψκ

DL = 0, [γN ]Γ ◦ Ψκ
SL = [γt]Γ ◦ Ψκ

DL = − Id .

As auxiliary boundary integral operators, which supply building blocks for Sκ and
Cκ, we introduce the two single layer boundary integral operators

Vκ := {γ}Γ ◦ Ψκ
V , Aκ := {γt}Γ ◦ Ψκ

A.

By inspecting the potential Ψκ
SL and recalling γt ◦ grad = curlΓ ◦ γ, it is clear that

we can write

Sκ = κAκ + κ−1curlΓ ◦ Vκ ◦ divΓ.(3.6)

It is easy to see that the bilinear form associated with Sκ is given by

〈Sκµ, ξ〉τ ,Γ =
1

κ
〈divΓµ,VκdivΓµ〉 1

2 ,Γ
− κ 〈µ,Aκξ〉τ ,Γ .(3.7)

Obviously, it involves two parts of different order, neither of which is a compact
perturbation of the other. In recent years a very successful approach to variational
problems of this kind has emerged; see [31, sect. 5.1], [15], and [8]. The idea is to
consider the above bilinear form separately on the components of a suitable splitting

H
− 1

2× (divΓ,Γ) = X (Γ) ⊕N (Γ),(3.8)

where N (Γ) = H
− 1

2× (divΓ0; Γ), and X (Γ) ⊂ H
− 1

2× (divΓ,Γ) is a closed subspace such
that

1. the splitting (3.8) is direct, that is, X (Γ) ∩N (Γ) = ∅;
2. the embedding X (Γ) ↪→H

− 1
2× (Γ) is compact.

Note that divΓ has closed range in H
− 1

2× (divΓ,Γ), and this implies that

‖µ‖
H

− 1
2

× (divΓ,Γ)
≤ C ‖divΓµ‖

H− 1
2 (Γ)

∀µ ∈ X (Γ).

By RΓ and ZΓ we denote the projectors onto X (Γ) and N (Γ), respectively, that are as-
sociated with the splitting (3.8). Examples of splittings satisfying these requirements
are given by the “L2

t(Γ)-orthogonal” Hodge decomposition [10] and the “projected
regular splitting” [32, sect. 7].

To establish a generalized G̊arding inequality for Sκ we employ the direct splitting
(3.8) and two auxiliary lemmata; see [33, Lem. 3.2] and [12, Prop. 4.1].
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Lemma 3.6. The integral operators δVκ := Vκ − V0 : H− 1
2 (Γ) 
→ H

1
2 (Γ) and

δAκ := Aκ − A0 : H
− 1

2× (Γ) 
→H
1
2×(Γ) are compact.

Lemma 3.7. The operators V0 and A0 are continuous, are self-adjoint with respect
to the bilinear pairings 〈·, ·〉 1

2 ,Γ
and 〈·, ·〉τ ,Γ, respectively, and satisfy

〈µ,V0µ〉 1
2 ,Γ

≥ C ‖µ‖2

H− 1
2 (Γ)

∀µ ∈ H− 1
2 (Γ),

〈µ,A0µ〉τ ,Γ ≥ C ‖µ‖2

H
− 1

2
× (Γ)

∀µ ∈H− 1
2× (divΓ0; Γ),

with constants C > 0 depending only on Γ.
The main result will be a generalized G̊arding inequality for Sκ that involves the

isomorphism

XΓ = RΓ − ZΓ : H
− 1

2× (divΓ,Γ) 
→H
− 1

2× (divΓ,Γ).(3.9)

Lemma 3.8 (cf. [12, 33]). There is a compact bilinear form cΓ : H
− 1

2× (divΓ,Γ) ×
H

− 1
2× (divΓ,Γ) 
→ C and a constant C > 0 such that

| 〈Sκµ,XΓµ〉τ ,Γ + cΓ(µ,µ)| ≥ C ‖µ‖2

H
− 1

2
× (divΓ,Γ)

∀µ ∈H− 1
2× (divΓ,Γ).

Remember that Sκ is the integral operator underlying the EFIE. Lemma 3.8 tells

us that Sκ : H
− 1

2× (divΓ,Γ) 
→ H
− 1

2× (divΓ,Γ) is a Fredholm operator of index 0. This
will ensure surjectivity as soon as injectivity holds. However, the very problem of
instability at resonant frequencies is due to the failure of Sκ to be injective for certain
discrete values of κ; see, e.g., [18], [42], or [15, sect. 5.2].

4. The CFIE. The CFIEs arise from an indirect approach which aims to exploit
that both Ψκ

SL and Ψκ
DL yield Maxwell solutions; see (3.4). The crudest variant starts

from the trial expression

e = −iηΨκ
SL(ζ) − Ψκ

DL(ζ),(4.1)

with some parameter η > 0. By the jump relations, taking the exterior Dirichlet trace
γ+
t results in the boundary integral equation

−iηSκ(ζ) + ( 1
2 Id−Cκ)(ζ) = γ+

t ei,(4.2)

which is generically posed in H
− 1

2× (divΓ,Γ). At least on smooth surfaces the operator

Cκ : H
− 1

2× (divΓ,Γ) 
→ H
− 1

2× (divΓ,Γ) is compact [42, sect. 5.5] and a generalized
G̊arding inequality for the sum −iηSκ + 1

2 Id is available. However, on nonsmooth
surfaces Cκ cannot be dismissed as compact perturbation.

The bottom line is that existence of solutions of (4.2) cannot be established on
nonsmooth surfaces, let alone any theory about discrete approximations. This dire
state led Kress to propose the introduction of a smoothing operator into (4.1) in [36].
His analysis was set in Hölder spaces, and he targeted the single layer potential Ψκ

SL,
because, working on smooth surfaces, he could rely on the compactness of Cκ.

We cannot make this assumption, but we are aware of Lemma 3.8. This means
that the Fredholm operator Sκ is not the problem, but it is the innocent looking
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identity Id in (4.2). Therefore, Kress’s policy should be turned upside down, and
regularization has to be aimed at the double layer potential Ψκ

DL.
The crucial device for regularization is a compact “smoothing operator”

M : H
− 1

2× (divΓ,Γ) 
→H
− 1

2× (divΓ,Γ)

that satisfies

µ ∈H− 1
2× (divΓ,Γ) : 〈Mµ,µ〉τ ,Γ > 0 ⇔ µ �= 0.

According to the strategy outlined above it will enter the contribution of the double
layer potential to the representation formula: we get the trial expression

e = −iηΨκ
SL(ζ) − Ψκ

DL(Mζ),(4.3)

where ζ ∈ H− 1
2× (divΓ,Γ), η > 0. By (3.4), this field is a Maxwell solution in Ω ∪ Ω′.

As above, the exterior Dirichlet trace applied to (4.3) results in the new CFIE

−iηSκ(ζ) + ( 1
2 Id−Cκ)(Mζ) = γ+

t ei.(4.4)

Since it is set in H
− 1

2× (divΓ,Γ), Theorem 2.3 hints at how to cast it into a variational

form: find ζ ∈H− 1
2× (divΓ,Γ) such that for all µ ∈H− 1

2× (divΓ,Γ),

−iη 〈Sκ(ζ),µ〉τ ,Γ +
〈
( 1
2 Id−Cκ)(Mζ),µ

〉
τ ,Γ

=
〈
γ+
t ei,µ

〉
τ ,Γ

.(4.5)

It shares the crucial uniqueness of solutions with other CFIEs.
Theorem 4.1. For all η �= 0 and wave numbers κ > 0, the boundary integral

equation (4.5) has a unique solution ζ ∈H− 1
2× (divΓ,Γ).

Proof. To demonstrate uniqueness, we assume that ζ ∈H− 1
2× (divΓ,Γ) solves

−iηSκ(ζ) + ( 1
2 Id−Cκ)(Mζ) = 0.(4.6)

It is immediate from the jump relations that e given by (4.3) is an exterior Maxwell
solution with γ+

t e = 0. By their uniqueness we infer that e = 0 in Ω′. Appealing to
the jump relations from Theorem 3.5 once more, we find

γ−t e = −Mζ, γ−Ne = −iηζ.

Next, we use (2.4) and see that

iR � iη
〈
ζ,Mζ

〉
τ ,Γ

=
〈
γ−Ne, γ−t e

〉
τ ,Γ

=

∫
Ω

1

κ
| curl e|2 dx − κ|e|2 dx ∈ R.

Necessarily,
〈
ζ,Mζ

〉
τ ,Γ

= 0 so that the requirements on M imply ζ = 0, which settles

the issue of uniqueness.

Next, we know from Corollary 3.4 that Cκ : H
− 1

2× (divΓ,Γ) 
→ H
− 1

2× (divΓ,Γ) is

continuous so that (1
2 Id−Cκ) ◦ M : H

− 1
2× (divΓ,Γ) 
→ H

− 1
2× (divΓ,Γ) turns out to be

compact. Eventually, we conclude from Lemma 3.8 that the bilinear form of (4.5)
satisfies a generalized G̊arding inequality. Thus, a Fredholm alternative argument
gives existence of a solution from its uniqueness.
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A simple eligible operator M can be introduced through a variational definition:

for ζ ∈H− 1
2× (divΓ,Γ) and all q ∈HΣ(divΓ,Γ), Mζ ∈HΣ(divΓ,Γ) is to satisfy

(Mζ,q)0;Γ + (divΓMζ,divΓq)0;Γ = 〈q, ζ〉τ ,Γ ,(4.7)

where (·, ·)0;Γ denotes the standard L2
t(Γ) scalar product. It becomes obvious that

M : H
− 1

2× (divΓ,Γ) 
→HΣ(divΓ,Γ) is a continuous linear operator. To prove injectiv-

ity, let ζ be such that Mζ = 0, and let η ∈H− 1
2× (divΓ,Γ) be the vector verifying

〈η, ζ〉τ ,Γ = ‖ζ‖2

H
− 1

2
× (divΓ,Γ)

.

Due to Lemma 2.4, there exists a sequence {η�}�∈N ⊂ HΣ(divΓ,Γ) converging to η.
Now choosing η� as the test function in (4.7) and passing to the limit for �→ ∞, we
obtain ζ = 0. The injectivity of M immediately implies〈

Mζ, ζ
〉

τ ,Γ
= ‖Mζ‖2

H×(divΓ,Γ) > 0 ⇔ ζ �= 0.

In addition, M inherits compactness from the embeddingHΣ(divΓ,Γ) ↪→H
− 1

2× (divΓ,Γ);
see Lemma 2.5: it meets all requirements listed above.

The composition of the integral operator Cκ and the smoothing operator M in
(4.5) is not problematic. However, it cannot be handled in the context of Galerkin
discretization, which we intend to apply; we have to find an equivalent weak form
that can be discretized easily.

The usual trick to avoid operator products is to switch to a mixed formulation.
Here, this amounts to introducing the new unknown p := Mζ. If we use the par-
ticular smoothing operator from (4.7), we get p ∈ HΣ(divΓ,Γ) and may simply in-

corporate (4.7) into the eventual mixed variational problem: find ζ ∈H− 1
2× (divΓ,Γ),

p ∈HΣ(divΓ,Γ) such that for all µ ∈H− 1
2× (divΓ,Γ), q ∈HΣ(divΓ,Γ),

−iη 〈Sκζ,µ〉τ ,Γ +
〈
( 1
2 Id−Cκ)p,µ

〉
τ ,Γ

=
〈
γ+
t ei,µ

〉
τ ,Γ

,

〈q, ζ〉τ ,Γ − (p,q)0;Γ − (divΓp,divΓq)0;Γ = 0.
(4.8)

The next lemma tells us that we need not worry about Id in (4.8).
Lemma 4.2. The bilinear forms 〈·, ·〉τ ,Γ and / 〈Cκ·, ·〉τ ,Γ are compact as mapping

HΣ(divΓ,Γ) ×H− 1
2× (divΓ,Γ) 
→ C.

Proof. It is enough to note that 〈·, ·〉τ ,Γ / 〈Cκ·, ·〉τ ,Γ : H
− 1

2× (divΓ,Γ)×H− 1
2× (divΓ,Γ)

→ C are continuous and the injection HΣ(divΓ,Γ) ↪→ H
− 1

2× (divΓ,Γ) is compact due
to Lemma 2.5.

As an immediate consequence of this result we note that the off-diagonal terms in
(4.8) represent compact bilinear forms. It remains to investigate the diagonal terms.
First, (p,q)0;Γ + (divΓp,divΓq)0;Γ is clearly elliptic in HΣ(divΓ,Γ), because it gives
rise to its inner product. Second, the other bilinear form 〈Sκζ,µ〉τ ,Γ has been found
to verify a generalized G̊arding inequality; see Lemma 3.8.

Let us summarize what we know about the entire variational problem (4.8). For

the sake of brevity we write V := H
− 1

2× (divΓ,Γ) ×HΣ(divΓ,Γ) and denote by ‖·‖
V

its natural graph norm. We use the symbols u, v,w, . . . for pairs of functions in V.
Let ã : V × V 
→ C be the bilinear form associated with (4.8). As an immediate
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consequence of the preceding considerations, it will also fulfill a generalized G̊arding
inequality. It can be stated using the isomorphism

XΓ : V 
→ V, XΓ

(
µ

q

)
:=

(
XΓµ

q

)
.

Corollary 4.3. There is a compact bilinear form c̃ : V×V 
→ C and a constant
CG > 0 such that

|ã(XΓv, v) + c̃(v, v)| ≥ CG ‖v‖2
V

∀v ∈ V.

Since we have confirmed the uniqueness of solutions of (4.8), a Fredholm alter-
native argument shows that ã induces an isomorphism, in particular that the inf-sup
condition

sup
v∈V

|ã(u, v)|
‖v‖

V

≥ CS ‖u‖V
(4.9)

holds with CS > 0 independent of u ∈ V.
Remark 2. Many choices of smoothing operators M are conceivable. For the

following reasons we opted for the definition (4.7).
First, the operator M is the inverse of −gradΓ divΓ +Id with Dirichlet boundary

conditions on the skeleton Σ. We are anxious to use the inverse of a proper differential
operator, because any nonlocal operator in the definition of M will be awkward to
deal with in an implementation. We also aimed at making M local on each face of
the polyhedron, which is satisfied by the concrete choice, since surface vector fields
HΣ(divΓ,Γ) have no flux across any edge in Σ.

Second, we have to take great pains to ensure sufficient regularity of the solution
for the new unknown p. If, in (4.7), we used H×(divΓ,Γ) trial and test function
spaces instead of HΣ(divΓ,Γ), then the regularity of p would be impaired, because
Laplace–Beltrami singularities [12, sect. 5.2.1] would sneak into p through the as-
sociated smoothing operator. We are going to resume the discussion at the end of
section 6.

5. Galerkin discretization. We equip the piecewise smooth compact two-
dimensional surface Γ with an oriented triangulation Γh. This means that all its
edges are endowed with a direction. We assume a perfect resolution of Γ; that is,
Γ = K̄1 ∪ · · · ∪ K̄N , where Kh := {K1, . . . ,KN} is the set of mutually disjoint open
cells of Γh. Moreover, no cell may straddle boundaries of the smooth faces Γj of Γ.
We will admit triangular and quadrilateral cells only: for each K ∈ Kh there is a
diffeomorphism ΦK : K̂ 
→ K̄, where K̂ is the “unit triangle” or unit square in R

2,
depending on the shape of K [19, sect. 5].

This paves the way for a parametric construction of boundary elements: to begin
with, choose finite-dimensional local spaces W(K̂) ⊂ (C∞(K̂))2 of polynomial vector
fields, together with a dual basis of so-called local degrees of freedom (d.o.f.). Possible

choices for W(K̂) and related d.o.f. abound [5, Chap. III]: we may use the classical
triangular Raviart–Thomas (RTp) elements of polynomial order p ∈ N0 [44] that use

W(K̂) := {x 
→ p1(x) + p2(x) · x, x ∈ K̂, p1 ∈ (Pp(K̂))2, p2 ∈ Pp(K̂)},

where Pp(K̂) is the space of two-variable polynomials of total degree ≤ p. Possible
alternatives are the triangular BDMp elements of degree p [4], p ∈ N0, which rely



632 A. BUFFA AND R. HIPTMAIR

on W(K̂) := (Pp+1(K̂))2. In both cases, the usual d.o.f. involve certain polynomial
moments of normal components on edges, together with interior vectorial moments
for p > 0. For instance, in the case of RT0, edge fluxes are the appropriate d.o.f.:

µh ∈ W(K̂) 
→
∫
ê

µh · n̂dS, ê edge of K̂.

Similar local spaces and d.o.f. are available for the unit square.
Using the pullback of 1-forms the local spaces can be lifted to the cells of Γh. In

terms of vector fields this is equivalent to the Piola transformation

(FKµ)(x) :=
√

det(G) G−1DΦT
K(x̂)µ(x̂),(5.1)

where G := DΦ(x̂)TDΦ(x̂), x = ΦK(x̂), x̂ ∈ K̂. Thus, we can introduce the global
boundary element space

Wh := {µ ∈H×(divΓ,Γ) : µ|K ∈ FK(W(K̂))∀K ∈ Kh}.(5.2)

In practice, Wh ⊂ H×(divΓ,Γ) is ensured by a suitable choice of d.o.f. Remember

that d.o.f. have to be associated with individual edges of K̂ or the interior of K̂. It is
crucial that the normal component of any µ̂h ∈ W(K̂) on any edge ê of K̂ vanishes
if and only if µ̂h belongs to the kernel of all local d.o.f. associated with ê. In light of
(2.5), this ensures W ⊂ H×(divΓ,Γ). In the rest of the paper Wh will designate a
generic H×(divΓ,Γ)-conforming boundary element space. It may arise from the RTp
family of elements, p ∈ N0, the BDMp family, or a combination of both.

Based on the d.o.f. we can introduce local interpolation operators Πh : Dom(Πh) 
→
Wh. They are projectors onto Wh and enjoy the fundamental commuting diagram
property [5, Chap. III, sect. 3]

divΓ ◦ Πh = Qh ◦ divΓ on H×(divΓ,Γ) ∩ Dom(Πh).(5.3)

Here, Qh is the L2(Γ)-orthogonal projection onto a suitable space Qh of Γh-piecewise
polynomial discontinuous functions. It must be emphasized that the interpolation
operators Πh fail to be bounded onH×(divΓ,Γ); slightly more regularity of tangential
vector fields in Dom(Πh) is required [33, Lem. 5.1].

Next, we turn our attention to asymptotic properties of the boundary element
spaces, in particular to estimates of interpolation errors and best approximation errors.
We restrict ourselves to the h-version of boundary elements, which relies on uniformly
shape-regular families {Γh}h∈H of triangulations of Γ [22, Chap. 3, sect. 3.1]. Here,
H stands for a decreasing sequence of meshwidths, and H is assumed to converge to
zero.

By means of transformation to reference elements, the commuting diagram prop-
erty, and Bramble–Hilbert arguments, interpolation error estimates can easily be ob-
tained [5, Chap. III, sect. 3.3].

Lemma 5.1 (interpolation error estimate). For 0 < s ≤ p+ 1 we find constants
C > 0, depending only on the shape regularity of the meshes, s and p, such that for
all µ ∈Hs

×(Γ) ∩H×(divΓ,Γ), h ∈ H,

‖µ− Πhµ‖L2(Γ) ≤ Chs
(
‖µ‖Hs

×(Γ) + ‖divΓµ‖L2(Γ)

)
,

and such that for all µ ∈H×(divΓ,Γ), divΓµ ∈ Hs
−(Γ),

‖divΓ(µ− Πhµ)‖L2(Γ) ≤ Chs‖divΓµ‖Hs
−(Γ).
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Corollary 5.2. The union of all boundary element spaces Wh, h ∈ H, is dense

in H
− 1

2× (divΓ,Γ).
A particular variant of the above interpolation error estimate addresses vector

fields with discrete surface divergence; cf. [33, Lem. 6.2].
Lemma 5.3. If µ ∈Hs

×(Γ), 0 < s ≤ 1, and divΓµ ∈ Qh, then

‖µ− Πhµ‖L2
t(Γ) ≤ Chs‖µ‖Hs

×(Γ),

where the constant C > 0 depends only on the shape regularity of the meshes and the
polynomial degree p.

From the interpolation error estimates we instantly get best approximation es-
timates in terms of the H×(divΓ,Γ)-norm. Yet, what we actually need is a result
about approximation in the “energy norm” (trace norm) of the form

inf
ξh

‖µh − ξh‖
H

− 1
2

× (divΓ,Γ)
≤ Chs+

1
2 ‖µ‖Hs

×(divΓ,Γ) .(5.4)

The estimate in H×(divΓ,Γ) does not directly provide (5.4). The question of ob-
taining (5.4) has been addressed in [8, sect. 4.4.2], and the idea is to use the duality
argument face by face (each one seen as a regular open manifold), relying on the
continuity of the normal components of vector fields in H×(divΓ,Γ). At the end of a
technical procedure we obtain the following result [8, Thm. 4.9].

Theorem 5.4. Let Ph : H
− 1

2× (divΓ,Γ) → Wh be the orthogonal projection with

respect to the H
− 1

2× (divΓ,Γ) inner product. Then for any − 1
2 ≤ s ≤ p+ 1 we have

‖µ− Phµ‖
H

− 1
2

× (divΓ,Γ)
≤ Chs+

1
2 ‖µ‖Hs

×(divΓ,Γ) ∀µ ∈Hs
×(divΓ,Γ).(5.5)

This theorem tells us that we can expect good approximation properties, much
better than the estimates for the local interpolation error.

A finite-dimensional subspace of HΣ(divΓ,Γ) is easily obtained from Wh by
setting all d.o.f. associated with edges on the skeleton Σ to zero. Let us write WΣ,h

for the resulting space. By construction the estimates of Lemma 5.1 will carry over
to Hs

×(Γ) ∩HΣ(divΓ,Γ) and WΣ,h.
Based on the boundary element spaces Wh and WΣ,h, which are contained in

H
− 1

2× (divΓ,Γ) and HΣ(divΓ,Γ), respectively, we pursue a standard Galerkin dis-
cretization of (4.8). Writing Vh = Wh × WΣ,h, we end up with the following
discrete problem:

Find uh ∈ Vh : ã(uh, vh) =

〈(
γ+
t e
0

)
, vh

〉
τ ,Γ

∀ vh ∈ Vh.(5.6)

We aim at establishing a uniform discrete inf-sup condition of the following form:
there exists CD > 0 such that

sup
vh∈Vh

|ã(uh, vh)|
‖vh‖V

≥ CD ‖uh‖V
∀uh ∈ Vh, h ∈ H.(5.7)

According to [48] this guarantees existence of discrete solutions uh := (ζh,ph) ∈ Vh

of (5.6) and translates into their quasi-optimal behavior:

‖u − uh‖V
≤ C−1

D Cã inf
vh∈Vh

‖u − vh‖V
∀h ∈ H,(5.8)
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where Cã > 0 is the operator norm of ã(·, ·). We follow lines of reasoning laid out in
[8, 15, 33]. As a first step towards a discrete inf-sup condition (5.7), we have to find
a suitable candidate for v in (4.9). To that end, introduce the operator T : V 
→ V

through

ã(v,Tw) = c̃(w, v) ∀v ∈ V, w ∈ V,

where c̃ is the compact bilinear form specified in Corollary 4.3. Owing to (4.9) this is
a valid definition of a compact operator T. It is immediate from (4.9) and Lemma 3.8
that

|ã(w, (XΓ + T)w)| = |ã(w,XΓw) + cΓ(w,w)| ≥ CG ‖w‖2
V

(5.9)

for all w ∈ Vh. Consequently, the choice v := (XΓ + T)w will make (4.9) hold with
CS = CG.

Let wh ∈ Vh, and v := (XΓ + T)wh. In general, v /∈ Vh so that we have to
use a projection. Write Ph : HΣ(divΓ,Γ) 
→ WΣ,h for the H×(divΓ,Γ)-orthogonal
projection and introduce

P : V 
→ Vh, P

(
µ

q

)
:=

(
Phµ
Phq

)
.

Then a promising candidate for the discrete inf-sup condition is the vector vh :=
Phv = (PhXΓ + PhT)wh. The triangle inequality

|ã(wh, vh)| ≥ |ã(wh, v)| − Cb‖wh‖V‖v − vh‖V(5.10)

shows that (strong) convergence ‖v−vh‖V → 0 is needed. First, ‖(I−Ph)Twh‖V → 0
uniformly for all wh ∈ Vh, since the composition of pointwise convergent and compact
operators gives uniform convergence in operator norms [37, Cor. 10.4]. Second, it is
important to note that XΓ leaves the divΓ of its argument function invariant, which
means that the first component of XΓwh has a surface divergence in a space of Γh-
piecewise polynomials. This enables us to invoke Lemma 5.3, and we obtain (see [15,
sect. 4.2]) that there exists an s > 0 such that

‖(I − Ph)XΓwh‖V ≤ ‖(Id−Πh)XΓµh‖L2
t(Γ) ≤ Chs ‖divΓXΓµh‖H− 1

2 (Γ)
,

where µh ∈ Wh stands for the first component of wh.
Using these estimates in (5.10) and recalling that, by definition of v, |ã(wh, v)| ≥

CG‖wh‖2
V, we easily deduce the following theorem.

Theorem 5.5. There is an h∗ > 0, depending on the parameters of the continu-
ous problem and the shape regularity of the triangulation, such that a unique solution
uh ∈ Vh of the discretized problem (5.6) exists, provided that h < h∗. It supplies an
asymptotically optimal approximation to the continuous solution u = (ζ,p) of (4.8)
in the sense of (5.8).

After choosing local bases of Wh and WΣ,h, we end up with a linear system of
equations of the form (

iηS 1
2B − C

BT −D

)(
ζ
p

)
=

(
g
0

)
.(5.11)

Here S and C will be dense square matrices arising from the discretized boundary
integral operators Sκ and Cκ. The sparse, skew-symmetric matrix B is related to
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〈·, ·〉τ ,Γ, whereas the s.p.d. matrix D corresponds to the HΣ(divΓ,Γ)-inner product.
The other symbols have obvious meanings.

Note that D is even block-diagonal with one sparse block for each face Γj , j =
1, . . . , P . Using advanced sparse Cholesky factorization techniques, it may be feasible
to compute the application of D−1 to a vector directly. Then we face the linear system
of equations

(iηS + ( 1
2B − C)D−1BT )ζ = g.(5.12)

It can be solved only iteratively, because the actual matrix D−1 is not available.
Besides, iterative solvers allow the use of fast summation techniques (multipole, H2-
matrices) for the approximate application of S and C to a vector.

Remark 3. Of course, ζ and p can be approximated in completely different
boundary element spaces, as long as these are contained in H×(divΓ,Γ). The analysis
can immediately be extended to this case.

Remark 4. The iterative solution of (5.12) (e.g., by means of GMRES) requires
a preconditioner, because the principal part of the related boundary integral operator
is given by Sκ. As pointed out in [21] the condition number of S will deteriorate
on fine meshes. Yet, the fact that S is related to the principal part also means that
preconditioning needs only to target this matrix, which is the same matrix as in the
Galerkin discretization of the EFIE. An elaborate preconditioning strategy has been
devised in [21].

Yet, if κ is close to a resonant frequency, S will become nearly singular, and
preconditioning might suffer. This requires further investigation, which is beyond the
scope of this paper.

Remark 5. The choice of η is another issue which has eluded theory so far.
It is clear that η has a major impact on the spectral properties of the final linear
system (5.12), but it is not clear how to choose η to achieve good properties of the
discrete problem. This situation is commonly faced with CFIE approaches. Some
investigations in the case of two-dimensional acoustic scattering can be found in [38];
see also [27, sect. 2.4.1] and [16].

Remark 6. For reasons explained in Remark 2, we have decided to use a localized
version of M. One could argue that localization could be carried further by considering
split faces. Of course, the theory will cover this, but it is important to keep in mind
that the result of Theorem 5.5 is asymptotic in nature. The choice of M will affect
the threshold h∗, and it may well be that certain choices of M will delay the onset
of asymptotic convergence until unreasonably fine meshes. We acknowledge that this
might also be true for our choice of M.

6. Convergence estimates. In light of the asymptotic quasi optimality of the
conforming Galerkin solutions expressed in Theorem 5.5, we have to investigate how
well the solution (ζ,p) of (4.8) can be approximated in Vh. This entails knowledge
about the regularity of both ζ and p.

Thanks to the localization of M onto the faces of Γ, studying the smoothness of
p can chiefly rely on two-dimensional considerations.

Lemma 6.1. For a Lipschitz domain ω ⊂ R
2 we denote by α the maximum

regularity exponent for the Laplace problem with Dirichlet or Neumann boundary con-
ditions; i.e., if ∆u ∈ Hα−1(ω) and u verifies either the Dirichlet or Neumann homo-
geneous boundary condition, then u ∈ Hα+1(ω).

Let f ∈ (Hσ(ω))2 and curl2D f ∈ Hσ(ω), σ ≥ 0. If p ∈H0(div;ω) satisfies

(div p,div v)0;ω + (p,v)0;ω = (f ,v)0;ω ∀v ∈H0(div;ω),
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then p ∈ Hmin{α,σ+1}(ω) and div p ∈ Hmin{α+1,1+σ}(ω).
Proof. It goes without saying that p is well defined. The main tool for the proof of

the asserted regularity properties will be L2(ω)-orthogonal Helmholtz decompositions
(see [28, Chap. 1])

L2(ω) = curl2DH
1
0 (ω) ⊕ gradH1(ω),

H0(div;ω) = curl2DH
1
0 (ω) ⊕ gradH0(∆, ω),

where

H0(∆, ω) :=

{
ψ ∈ H1(ω) : ∆ψ ∈ L2(ω),

∂ψ

∂n
= 0 on ∂ω

}
.

Accordingly, we decompose

p = curl2D ϕ1 + gradϕ2, f = curl2D φ1 + gradφ2,

with ϕ1, φ1 ∈ H1
0 (ω), ϕ2 ∈ H0(∆, ω), φ2 ∈ H1(ω). A closer scrutiny reveals that

curl2D curl2D φ1 = −∆φ1 = curl2D f ∈ Hσ(ω) ⇒ φ1 ∈ Hmin{1+α,2+σ}(ω),

because of the 1 + α-regularity of the Laplacian. Testing with curl2D ν, ν ∈ H1
0 (ω),

in the definition of p, we immediately see that ϕ1 = φ1.
For ν2 ∈ H0(∆, ω) we deduce from the variational equation that

(div p,div grad ν2)0;ω + (p,grad ν2)0;ω = (f ,grad ν2)0;ω .

After integrating by parts, this means

(div p,∆ν2 − ν2)0;ω = (f ,grad ν2)0;ω .(6.1)

Now consider ζ ∈ H1(ω), solving

(grad ζ,grad ν)0;ω + (ζ, ν)0;ω = (f ,grad ν)0;ω ∀ν ∈ H1(ω).(6.2)

The regularity assumption implies that ζ ∈ Hmin{1+α,1+σ}(ω). We can pick ν ∈
H0(∆, ω) in this equation, carry out integration by parts, and subtract the result
from (6.1). We end up with

(div p − ζ,−∆ν + ν)0;ω = 0.

Since (−∆ + Id)(H0(∆, ω)) = L2(ω), we infer that divp = ζ, i.e., div p ∈
Hmin{1+α,1+σ}(ω).

We point out that for a polygon ω the exponent α is directly related to the angles
θi, i = 1, . . . , nc, at its corners:

α = min{1, π/θi, i = 1, . . . , nc} ≥ 1
2 .

This lemma can instantly be applied to all the smooth faces of Γ and supplies lifting
properties of M, because there is no coupling between the faces.

Corollary 6.2. If µ ∈Hσ
×(divΓ,Γ), σ ≥ 0, then Mµ ∈Hmin{α,σ+1}

× (divΓ,Γ),
where α is the minimum of the ∆Dir/∆Neu-regularity exponents on the flat faces Γj,
j = 1, . . . , P .
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Assume that ζ ∈ H
− 1

2× (divΓ,Γ) is the unique solution of (4.5), and denote by

e ∈H loc(curl2,Ω ∪ Ω′) the Maxwell solution according to (4.3):

e = −iηΨκ
SL(ζ) − Ψκ

DL(Mζ).

To study the regularity it is essential to recall that by the jump relations

γ−t e = −Mζ − g, γ−Ne = iηζ − h,(6.3)

where we wrote h := γ+
Ne ∈ H

− 1
2× (divΓ,Γ) for the exterior Neumann data of the

scattered field. As g := γ+
t ei is the tangential trace of an incident wave, it will belong

to Hs
×(divΓ,Γ) for all s > 0. Additional information can be gleaned only from lifting

properties of the Maxwell operator. Its regularity theory, elaborated in [25], justifies
the following assumption.

Assumption 6.2.1. There are two regularity indices σ−, σ+ > 1
2 such that

1. any field u ∈H(curl2,Ω) solving

curl curl u − graddiv u − κ2u = f in Ω, γ−t u = 0, or γ−Nu = 0

belongs to Hσ(curl,Ω) for all σ ≤ σ− if f ∈ Hσ−1(Ω);
2. any field u ∈H loc(curl2,Ω′) satisfying the radiation condition and

curl curl u − graddiv u − κ2u = f in Ω′, γ+
t u = 0, or γ+

Nu = 0

lies in Hσ
loc(curl,Ω′) for all σ < σ+ if f ∈ Hσ−1(Ω′).

Owing to the trace theorem, Theorem 2.6, this assumption implies that h ∈
H

σ+− 1
2× (divΓ,Γ). Then we can resort to a “bootstrap argument.”

Step 1. We remember a result by Costabel [24] confirming the existence of a
constant c > 0 that depends only on Ω such that for all u ∈H(div; Ω)∩H(curl; Ω),∥∥γ−n u

∥∥
L2(Γ)

≤ c
{∥∥γ−t u

∥∥
L2(Γ)

+ ‖u‖L2(Ω) + ‖curl u‖L2(Ω) + ‖div u‖L2(Ω)

}
,(6.4) ∥∥γ−t u

∥∥
L2(Γ)

≤ c
{∥∥γ−n u

∥∥
L2(Γ)

+ ‖u‖L2(Ω) + ‖curl u‖L2(Ω) + ‖div u‖L2(Ω)

}
.(6.5)

Since e is a Maxwell solution in Ω, these estimates combined with Theorem 3.3 give∥∥γ−Ne
∥∥

L2(Γ)
≤ C

{∥∥γ−n curl e
∥∥
L2(Γ)

+ κ2 ‖e‖L2(Ω) + ‖curl e‖L2(Ω)

}
≤ C

{∥∥divΓγ
−
t e
∥∥
L2(Γ)

+ ‖ζ‖
H

− 1
2

× (divΓ,Γ)
+ ‖Mζ‖

H
− 1

2
× (divΓ,Γ)

}
.

Similarly, we can use (6.4) and get∥∥divΓγ
−
Ne
∥∥
L2(Γ)

= κ2
∥∥γ−n e

∥∥
L2(Γ)

≤ C
{∥∥γ−t e

∥∥
L2(Γ)

+ ‖curl e‖L2(Ω) + ‖e‖L2(Ω)

}
≤ C

{∥∥γ−t e
∥∥

L2(Γ)
+ ‖ζ‖

H
− 1

2
× (divΓ,Γ)

+ ‖Mζ‖
H

− 1
2

× (divΓ,Γ)

}
.

The generic constants C > 0 may depend on Ω, κ, and η. The combined estimate
reads ∥∥γ−Ne

∥∥
H×(divΓ,Γ)

≤ C

{∥∥γ−t e
∥∥

H×(divΓ,Γ)
+ ‖ζ‖

H
− 1

2
× (divΓ,Γ)

}
,
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which means γ−Ne ∈H×(divΓ,Γ).
Step 2. Next, from (6.3) we infer that ζ ∈H×(divΓ,Γ). Now, we can apply Corol-

lary 6.2, we get Mζ ∈Hmin{1,α}
× (divΓ,Γ), and (6.3) gives us γ−t e ∈Hmin{1,α}

× (divΓ,Γ).

Now, since e is a Maxwell solution verifying γ−t e ∈ Hmin{1,α}
× (divΓ,Γ), using The-

orem 2.6 and Assumption 6.2.1, we have that e, curl e ∈ Hmin{σ−,1}(curl,Ω), i.e.,

γ−Ne ∈Hmin{σ−− 1
2 ,

1
2}× (divΓ,Γ).

Step 3. Finally, we can conclude that ζ ∈ Hmin{σ−− 1
2 ,σ

+− 1
2 ,

1
2}× (divΓ,Γ). On a

polyhedron we can take for granted that either σ− < 1 or σ+ < 1. This gives us

ζ ∈Hmin{σ−,σ+}− 1
2× (divΓ,Γ).

Besides, we have already seen that p = Mζ ∈Hmin{α,1}
× (divΓ,Γ).

Now we can employ the best approximation estimates for divΓ-conforming ele-
ments from Lemma 5.1 and Theorem 5.4 and get quantitative asymptotic convergence
estimates.

Theorem 6.3. If we rely on H×(divΓ,Γ)-conforming boundary elements for the
discretization of both ζ and p, we are guaranteed to get

‖ζ − ζh‖
H

− 1
2

× (divΓ,Γ)
+ ‖p − ph‖H×(divΓ,Γ) ≤ C(hmin{σ+,σ−} + hmin{α,1}),

with a constant C > 0 independent of the meshwidth h, but may depend upon the wave
number k.

Remark 7. Since we are solving an indirect boundary integral equation, it is not
surprising that the convergence is limited by singularities of both the interior and the
exterior Maxwell problem. On the other hand, the main observation is that one can
always have α > 1 since it is enough to split nonconvex faces into convex ones. Thus,
the rate of convergence is not affected by the introduction of the auxiliary unknown p;
i.e., p is always much more regular than the primal unknown ζ.

Remark 8. The above estimate relies on global regularity of the exact solutions.
However, we know that ζ is a combination of traces of Maxwell solutions. Besides,
p emerges as patched-together solutions of Dirichlet boundary value problems for ∆Γ

on the flat faces. In both cases, results on singularities of solutions of boundary value
problems on nonsmooth domains reveal much detail about the behavior of ζ and p
close to edges and corners. We can make use of this knowledge in order to obtain
significantly faster convergence on meshes that feature algebraically graded refinement
towards the edges of Γ [2, 11]. In this case, making use again of the regularity of p,
one might need only to “resolve” the singularities of ζ by mesh grading. The use of
different meshes, on which ζ and p are approximated, seems to be advisable in this
case; cf. Remark 3.
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Abstract. In this paper we study the error estimates to sufficiently smooth solutions of scalar
conservation laws for Runge–Kutta discontinuous Galerkin (RKDG) methods, where the time dis-
cretization is the second order explicit total variation diminishing (TVD) Runge–Kutta method.
Error estimates for the P

1 (piecewise linear) elements are obtained under the usual CFL condition
τ ≤ γh for general nonlinear conservation laws in one dimension and for linear conservation laws in
multiple space dimensions, where h and τ are the maximum element lengths and time steps, respec-
tively, and the positive constant γ is independent of h and τ . However, error estimates for higher
order P

k(k ≥ 2) elements need a more restrictive time step τ ≤ γh4/3. We remark that this stronger
condition is indeed necessary, as the method is linearly unstable under the usual CFL condition
τ ≤ γh for the P

k elements of degree k ≥ 2. Error estimates of O(hk+1/2 + τ2) are obtained for
general monotone numerical fluxes, and optimal error estimates of O(hk+1 + τ2) are obtained for
upwind numerical fluxes.
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1. Introduction. In this paper, we present error estimates for the Runge–Kutta
discontinuous Galerkin (RKDG) methods with smooth solutions of scalar conservation
laws:

∂tu+

d∑
i=1

∂xifi(u) = 0, (x, t) ∈ Ω × (0, T �),(1.1a)

u(t = 0) = u0, x ∈ Ω;(1.1b)

here x = (x1, . . . , xd) and f(u) = (f1(u), . . . , fd(u)). We do not pay attention to
boundary conditions in this paper; hence the solution is considered to be either pe-
riodic or compactly supported. For simplicity of presentation, in most cases we will
only give detailed analysis for the one-dimensional case; i.e., Ω = I = (0, 1) is the
unit interval. We will, however, point out any differences, both in the analysis and in
the results, for the multidimensional cases. We assume that the flux f(u) is smooth
in the variable u; for example, f ∈ C 3 is enough. The analysis in this paper is for
smooth solutions of (1.1). Discontinuous solutions with shocks are not considered.

The so-called RKDG method is introduced and developed by Cockburn and Shu
[9, 8, 10], Cockburn, Lin, and Shu [7], and Cockburn, Hou, and Shu [6] for nonlinear
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hyperbolic conservation laws, which uses DG discretization in space and combines
it with an explicit total variation diminishing (TVD) Runge–Kutta time-marching
algorithm [21]. In this paper, we concentrate on a second order TVD Runge–Kutta
time discretization given in [21]. In practice, the third order TVD Runge–Kutta time
discretization given in [21] is more popular, because of its higher order accuracy in
time and better linear stability properties. However, the extension of the results in
this paper to this third order TVD Runge–Kutta time discretization case is highly
nontrivial, and this is still being investigated as an ongoing project.

In this paper, with the second order TVD Runge–Kutta time discretization and
for P

k element space of piecewise kth degree polynomials, the a priori estimate in the
usual L2(I)-norm of the form

||u(tn) − unh||L2(I) ≤ C(hk+σ + τ2), for any tn = nτ ≤ T �,(1.2)

is obtained, with σ = 1/2 for arbitrary monotone numerical fluxes and σ = 1 for
the one-dimensional nonlinear case and for multidimensional tensor product (Pk re-
placed by Q

k, the tensor product of one-dimensional degree k piecewise polynomials,
in rectangular elements) linear cases when upwind numerical fluxes are used in the
scheme. Here unh denotes the numerical solution at the nth time level. The error
estimates (1.2) for the P

1 (piecewise linear) elements are obtained under the usual
CFL condition τ ≤ γh for general nonlinear conservation laws in one dimension and
for linear conservation laws in multiple space dimensions, where h and τ are the max-
imum element lengths and time steps, respectively, and the positive constant γ is
independent of h and τ . For the P

k elements with degree k ≥ 2, a more restrictive
time-step condition τ ≤ γh4/3 is needed for the error estimates. We remark that this
stronger condition is indeed necessary as the method is linearly unstable under the
usual CFL condition τ ≤ γh for the P

k elements of degree k ≥ 2; see [12]. Here the
positive constant C in (1.2) is independent of n, h, τ , and the numerical solution.

We now mention related results on error estimates of the DG methods in the litera-
ture. For smooth solutions of linear conservation laws, optimal a priori error estimates
(O(hk+1) for one-dimensional and some multidimensional cases and O(hk+

1
2 ) for other

cases) have been given for the steady state solution or for a fully DG discretization by
using space-time finite element spaces in, e.g., [17], [20], and [15], with the optimality
in the general cases being proven in [19], and for the semidiscrete (continuous in time)
DG method in [11]. For nonsmooth solutions of nonlinear conservation laws, Jiang
and Shu [14] have proven a cell entropy inequality for the semidiscrete DG method
for the square entropy, which implies that the numerical solutions, if convergent, will
converge to an entropy solution of (1.1). Also, for nonsmooth solutions of nonlinear
conservation laws, Cockburn et al. have proven an error estimate of order O(h1/4) in
the L1(Ω)-norm for the P

0 (piecewise constant) finite element space, which is then a
monotone finite volume scheme, and for higher order P

k elements but with additional
“shock capturing” terms added to the method; see, e.g., [4]. Their result can be
improved to O(h1/2) if a uniform upper bound for the total variation can be found,
which is the case for the explicit Lax–Friedrichs scheme defined on equilateral trian-
gles [5]. Recently, there have also been works on the a posteriori error estimates; for
example, see Adjerid et al. [1]. We have not attempted to address a posteriori error
estimates in this paper.

We note that, unlike the semidiscrete or space-time DG methods, to the best of
our knowledge there have been no high order error estimates for the RKDG methods
in the literature up to now, even for linear problems. The results in this paper are thus
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the first attempt to obtain optimal error estimates for the smooth solutions of RKDG
methods. The main difficulty of the error estimates is the hybriding of a finite element
spatial discretization with an explicit Runge–Kutta time stepping. For finite difference
methods, such error estimates are typically obtained by combining local truncation
error estimates with stability for linear PDEs and by using Strang’s technique [22],
which uses linear stability plus dissipation of the scheme and the smoothness of the
solution to obtain error estimates for nonlinear PDEs. Unfortunately, such techniques
rely heavily on the local truncation error being the same order as the global error, and
hence they cannot be easily applied here to obtain optimal error estimates, because
the DG spatial discretization, when viewed as a finite difference approximation, has
a local truncation error which is lower order than the global error, which is the so-
called supraconvergence phenomenon [16, 24]. The main techniques we use in this
paper are Taylor expansion and energy estimates as in [23], which considers linear
continuous finite elements and obtains error estimates under the rather restrictive
time-step condition τ ≤ γh4/3. We consider DG rather than continuous finite elements
and are able to remove this restriction and replace it by the more natural condition
τ ≤ γh for linear finite elements. We would like to mention that the DG method
is more complicated to analyze than the continuous finite element methods in this
context, due to the extra interelement boundary terms. We would also like to mention
in particular that the a priori assumption about the numerical solution is subtle, which
plays an important role in the proof for the nonlinear cases; see section 5.

An overview of this paper is as follows. In section 2 we present the RKDG method
with the second order TVD Runge–Kutta time discretization for the considered prob-
lem (1.1). In section 3 we introduce an important quantity related to the numerical
flux and present the convergence theorem. In section 4, we derive the error equations
of the RKDG scheme and a key lemma for the error estimates. We then prove the
main result for general monotone numerical fluxes and for upwind numerical fluxes in
section 5. Some of the more technical proofs of several lemmas are collected in the
appendix.

2. RKDG method. We follow [8] and define the RKDG method for the problem
(1.1) in one space dimension. The multidimensional case is similar. For each partition
of the interval I = (0, 1), {xj+ 1

2
}Nj=0, we set Ij = (xj− 1

2
, xj+ 1

2
), and hj = xj+ 1

2
−xj− 1

2

for j = 1, . . . , N ; we denote the quantity max1≤j≤N hj by h. For a given time step
τ (which could actually change from step to step but is taken as a constant with
respect to the time level n for simplicity), the solution of the scheme is denoted by
unh(x) = uh(x, nτ), which belongs to the finite element space

Vh = V kh = { v ∈ L1(0, 1) : v|Ij ∈ P
k(Ij), j = 1, . . . , N },(2.1)

where P
k(Ij) denotes the space of polynomials in Ij of degree at most k. Note that

the functions in Vh are allowed to have discontinuities across element interfaces.
In what follows, we will consider the standard L2-projection of a function p ∈

L2(0, 1) into the finite element space Vh, denoted by Php, which is defined as the
unique function in Vh such that∫ 1

0

(Php(x) − p(x))vh(x) dx = 0 ∀vh ∈ Vh.(2.2)

For notational convenience we would like to introduce the following operator
related to the discontinuous Galerkin spatial discretization. For any functions p, q ∈
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L2(0, 1), denote

Hj(p, q) =

∫
Ij

f(p)∂xq(x) dx− ĥ(p)j+ 1
2
q(x−

j+ 1
2

) + ĥ(p)j− 1
2
q(x+

j− 1
2

),(2.3)

where ĥ(p)j+1/2 ≡ ĥ(p−j+1/2, p
+
j+1/2) is a given monotone numerical flux that depends

on the two values of the function p at the discontinuity point xj+1/2, namely p±j+1/2 =

p(x±j+1/2). The numerical flux ĥ(a, b) satisfies the following conditions:

(a) It is locally Lipschitz continuous, so it is bounded in any bounded interval.

(b) It is consistent with the flux f(p), i.e., ĥ(p, p) = f(p).
(c) It is a nondecreasing function of its first argument and a nonincreasing func-

tion of its second argument.
The best-known examples of monotone numerical fluxes are the Godunov flux, the
Engquist–Osher flux, the Lax–Friedrichs flux, etc. For more details, see, for example,
[18]. We use the usual notation [p] = p+ − p− and p̄ = (p+ + p−)/ 2 to denote the
jump and mean of the function p on each boundary point, respectively.

The approximate solution in Vh from time nτ to (n + 1)τ given by the RKDG
method with the second order TVD Runge–Kutta time discretization is defined as
follows: find wnh ≡ wnh(x) ∈ Vh and un+1

h ≡ un+1
h (x) ∈ Vh such that, for any vh ≡

vh(x) ∈ P
k(Ij) and 1 ≤ j ≤ N ,∫

Ij

wnhvh dx =

∫
Ij

unhvh dx+ τHj(u
n
h, vh),(2.4a) ∫

Ij

un+1
h vh dx =

1

2

∫
Ij

unhvh dx+
1

2

∫
Ij

wnhvh dx+
τ

2
Hj(w

n
h , vh),(2.4b)

with the initial value u0
h = Phu0(x). This is an explicit time-marching method when

a local orthogonal basis is chosen for polynomials on Ij or when a small local mass
matrix on Ij is inverted. More details and numerical results of this scheme can be
found in, e.g., [3] and [12].

3. The main results. We would like to present the main results on the error
estimates in this section. To this end, we will introduce some notation for convenience
and define an important quantity measuring the relationship between the numerical
flux and the physical flux.

3.1. Notation for different constants. We will adopt the following convention
for different constants. These constants may have a different value in each occurrence.

We will denote by C (or accompanied by lower indices) a positive constant inde-
pendent of h and τ , which may depend on the solution of the considered conservation
law (1.1). Especially, to emphasize the nonlinearity of the flux f(u), we will denote
by C� a positive constant depending solely on the maximum of |f ′′| or/and |f ′′′|. We
remark that C� = 0 for a linear flux f = cu, where c is a constant.

We will denote by ε a small positive constant independent of h, τ , and u, the
solution of conservation law (1.1). Meanwhile, by M and M(ε) we will denote those
constants depending only on the small constant ε.

3.2. Modification of the flux. To achieve uniform a priori error estimates for
the RKDG method, we make the following customary modification on the flux f(u).
Suppose the initial solution u0(x) lies in [m0,M0]; then, by the maximum principle,
the exact solution u(x, t) is also in this range. Thus there is no harm in modifying the
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flux function f on the set R\[m0,M0], since the exact solution to (1.1) stays the same.
We would choose the modified flux function f̃ to equal the original flux function f on
[m0,M0], belong to C 3(R), and satisfy f̃ ′(s) = f̃ ′′(s) = 0 for all s �∈ [m0 − 1,M0 + 1].
For notational convenience this modified function is still denoted by f . Therefore, we
can assume in this paper that the flux function f(u) itself and up to the third order
derivatives are all bounded on R.

3.3. A quantity related to the numerical flux. For a general monotone
numerical flux which is consistent with f , we introduce an important quantity α(ĥ; p)
to measure the difference between the numerical flux and the physical flux; cf. Harten
[13]. The definition is given in the following lemma.

Lemma 3.1. For any piecewise smooth function p ∈ L2(0, 1), on each boundary
point we define

α(ĥ; p) ≡ α(ĥ; p−, p+)
∆
=

{
[p]−1(f(p̄) − ĥ(p)) if [p] �= 0,

|f ′(p̄)| if [p] = 0,
(3.1)

where ĥ(p) ≡ ĥ(p−, p+) is a monotone numerical flux consistent with the given flux f .

Then α(ĥ; p) is nonnegative and bounded for any (p−, p+) ∈ R
2. Moreover, we have

1

2
|f ′(p̄)| ≤ α(ĥ; p) + C�|[p]|,(3.2a)

−1

8
f ′′(p̄)[p] ≤ α(ĥ; p) + C�|[p]|2,(3.2b)

where the positive constant C� depends solely on the maximum of |f ′′| and/or |f ′′′|.
Proof. Obviously, the first conclusion α(ĥ; p) ≥ 0 is true, because of the property

of a monotone numerical flux or, more generally, an E-flux as defined by Osher [18]:

(f(q) − ĥ(p−, p+))(p+ − p−) ≥ 0(3.3)

for all q between p− and p+. The Lipschitz continuity of the monotone numerical
flux ĥ, together with the modification of the flux f , implies the bounded property of
α(ĥ; p).

We now prove the inequality (3.2a). If [p] = 0, the conclusion is obvious by the
definition (3.1). Otherwise, we would like to consider the next two cases to get (3.2a):
(i) if f ′(p̄) ≥ 0, then from a simple Taylor expansion up to second order and property
(3.3) we have

α(ĥ; p) =
1

[p]
(f(p̄) − f(p−)) +

1

[p]
(f(p−) − ĥ(p)) ≥ 1

2
f ′(p̄) − C�

8
|[p]|;

otherwise, (ii) if f ′(p̄) < 0, there similarly holds that

α(ĥ; p) =
1

[p]
(f(p̄) − f(p+)) +

1

[p]
(f(p+) − ĥ(p)) ≥ −1

2
f ′(p̄) − C�

8
|[p]|,

where the positive constant C� is the maximum of |f ′′|. This proves (3.2a). We can
also prove the inequality (3.2b) along the same lines, wherein the Taylor expansion
up to third order is used.

Remark 3.1. The nonnegative property of the quantity α(ĥ; p) is crucial for
obtaining the L2-stability of the RKDG scheme, especially for the case with the usual
CFL condition for piecewise linear elements. Details can be seen in subsection 5.2.
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Remark 3.2. Here and in what follows we will refer to the value p̄ = (p+ + p−)/2
as the reference value of the function p on each boundary point. It is used in the error
analysis for general monotone numerical fluxes. Later on we will introduce another
reference value p∗ for upwind numerical fluxes; see subsection 5.3.

We would also like to use the following simplified notation. For any functions p
and q, we denote

αm(ĥ; q)[p]2 =
∑

1≤j≤N

{
α(ĥ; q)j+ 1

2

}m
[p]2j+ 1

2
(m = 1, 2, 3)

if there is no confusion.

3.4. The main results. We are now ready to state the main error estimates
of the RKDG scheme (2.4). Detailed proof will be given in subsequent sections for
different cases.

Theorem 3.1 (the main results). Let u be the exact solution of problem (1.1),
which is sufficiently smooth with bounded derivatives, and assume f ∈ C3. Let uh
be the numerical solution of the RKDG scheme (2.4) with the second order TVD
Runge–Kutta time discretization, and denote the corresponding numerical error by
enu = u(tn) − unh. For regular triangulations of I = (0, 1), if the finite element space
Vh is of piecewise polynomials of degree k ≥ 1, then for small enough h there holds
the following error estimate:

max
0≤n≤Nτ

||enu||2 +
∑

0≤m<Nτ

α(ĥ;umh )[emu ]2τ ≤ C(h2k+1 + τ4).(3.4a)

Moreover, if an upwind numerical flux is used, then for small enough h there holds

max
0≤n≤Nτ

||enu|| ≤ C(hk+1 + τ2).(3.4b)

These estimates hold for k ≥ 2 under the restrictive time-step condition τ ≤ γh4/3

with any given positive constant γ; meanwhile, they hold for k = 1 under the usual
CFL condition τ ≤ γh with a suitable positive CFL number γ which is independent
of τ and h. Here || · || is the norm in L2(0, 1), the positive constant C is independent
of n, h, τ , and the approximate solution uh, and Nτ = [T �/τ ].

For the generalization of these results to multiple space dimensions, see the re-
marks in section 5.

4. Error equations, energy equality, and properties of the finite element
spaces. In this section we derive the error equations of the RKDG scheme (2.4) and
obtain the important energy equality for the error analysis. At the end of this section,
we present some interpolation properties and inverse properties for the finite element
spaces that will be used in the error analysis.

4.1. Error equations and energy equality. In order to obtain the error es-
timate to smooth solutions for the considered RKDG scheme (2.4), we need to first
get the error equations. To do this, we follow the idea of Ying [23] and derive the
truncation error in time.

Lemma 4.1. Assume that the solution u of the conservation law (1.1) is suffi-
ciently smooth with bounded derivatives. Let

w(x, t) = u(x, t) + ∂tu(x, t)τ ;(4.1)
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then, for any 1 ≤ j ≤ N,n < Nτ , and any function v(x) ∈ L2(Ij), the following
equations hold:∫

Ij

w(x, tn)v(x) dx =

∫
Ij

u(x, tn)v(x) dx+ τHj(u(x, t
n), v(x)),(4.2a) ∫

Ij

u(x, tn+1)v(x) dx =
1

2

∫
Ij

u(x, tn)v(x) dx+
1

2

∫
Ij

w(x, tn)v(x) dx

+
τ

2
Hj(w(x, tn), v(x)) +

∫
Ij

E(x;n)v(x) dx,(4.2b)

where E(x;n) = O(τ3).
Proof. By the Taylor expansion in time we have

u(x, t+ τ) − u(x, t) − ∂tu(x, t)
τ

2
− ∂tu(x, t+ τ)

τ

2
= O(τ3).

By the conservation law (1.1) and the Taylor expansion, it follows that

∂tu(x, t+ τ) = −∂xf(u(x, t+ τ)) = −∂xf(u(x, t) + ∂tu(x, t)τ +O(τ2))

= −∂xf(u(x, t) + ∂tu(x, t)τ) +O(τ2) = −∂xf(w(x, t)) +O(τ2).

We then substitute this into the former equation to get

u(x, t+ τ) =
1

2
u(x, t) +

1

2
w(x, t) − ∂xf(w(x, t))

τ

2
+O(τ3).

Therefore

w(x, tn) = u(x, tn) − ∂xf(u(x, tn))τ,

u(x, tn+1) =
1

2
u(x, tn) +

1

2
w(x, tn) − ∂xf(w(x, tn))

τ

2
+O(τ3).

The above analysis is the same as that in [23]. We multiply the above two equations
by an arbitrary function v(x) and integrate over Ij and get, after a simple integration
by parts, their weak formulations, which are the conclusions of this lemma. Note that
the consistency of the numerical flux ĥ(u, u) = f(u) and the continuity of the exact
solution u is used in the derivation. This completes the proof.

We would like to obtain error estimates for each time step, namely enu = u(tn)−unh
and enw = w(tn)−wnh , where for notational convenience the argument x is suppressed.
In what follows we will also denote un = u(tn) and wn = w(tn).

As is customary in error analysis of finite element methods, we denote ηp = Qp−p
and ξp = Qp−ph, where the projection Q is either the L2-projection Ph or the Gauss–
Radau projection Rh to be described in more detail in subsection 4.2. The errors of
the RKDG scheme at each time step can then be written as enp = ξnp − ηnp , where
p = u and w.

It is then easy to get, by Lemma 4.1 and the scheme (2.4), the error equations
for the error variables ξnu and ξnw in the following form:∫

Ij

ξnwvh dx =

∫
Ij

ξnuvh dx+ Knj (vh) ∀vh(x) ∈ P
k(Ij),(4.3a) ∫

Ij

ξn+1
u vh dx =

∫
Ij

(
1

2
ξnu +

1

2
ξnw

)
vh dx+

1

2
Lnj (vh)

=

∫
Ij

ξnuvh dx+
1

2
Knj (vh) +

1

2
Lnj (vh) ∀vh(x) ∈ P

k(Ij),(4.3b)



648 QIANG ZHANG AND CHI-WANG SHU

for any 1 ≤ j ≤ N and n < Nτ , where

(4.3c)

Knj (vh) =

∫
Ij

(ηnw − ηnu)vh dx+ τHj(u
n, vh) − τHj(u

n
h, vh),

(4.3d)

Lnj (vh) =

∫
Ij

(2ηn+1
u − ηnw − ηnu + 2E(x;n))vh dx+ τHj(w

n, vh) − τHj(w
n
h , vh).

For notational convenience, we will denote Kn(vh) =
∑

1≤j≤N Knj (vh) and Ln(vh) =∑
1≤j≤N Lnj (vh).

Based on these error equations, we shall use energy estimates to analyze the error
of the RKDG scheme with second order TVD Runge–Kutta time marching. By taking
the test functions vh = ξnu in (4.3a) and vh = ξnw in (4.3b), after a simple calculation
we obtain the important energy equality

||ξn+1
u ||2 − ||ξnu ||2 = ||ξn+1

u − ξnw||2 + Kn(ξnu ) + Ln(ξnw).(4.4)

In the following sections we shall analyze each term on the right-hand side of this
energy equation (4.4) to obtain the error estimates under different degrees of poly-
nomials and different types of numerical fluxes. The key point in this process is
to obtain a sharp estimate to the first term ||ξn+1

u − ξnw||2, since the estimates to
the other terms, namely Kn(ξnu ) and Ln(ξnw), are a simple extension of that in the
semidiscretized setting (cf. [3]).

4.2. Finite element spaces and projections. In this subsection we would
like to introduce two interpolations Qp(·, tn) which we mentioned before. One is
the standard L2-projection Php(·, tn), which has been defined in section 2 and will be
used for general monotone fluxes. The other is the Gauss–Radau projection Rhp(·, tn),
which is defined below and will be used for upwind numerical fluxes.

The Gauss–Radau projection is defined following a standard trick in DG analysis.
For functions at time level tn, the projection actually depends on the exact solution
un and is defined element by element as follows. If f ′(un) maintains its sign in element
Ij , then the projection in this element is defined by

Rhp(xj,�) − p(xj,�) = 0, 
 = 0, 1, . . . , k,(4.5)

where the points xj,� are the Gauss–Radau quadrature points of the interval Ij ; that
is, one of the boundary points is within the quadrature points:

(i) xj,k = xj+ 1
2

if f ′(un) > 0 on the element Ij ,

(ii) xj,0 = xj− 1
2

if f ′(un) < 0 on the element Ij .
(4.6)

Otherwise, in case (iii) when f ′(un) has at least one zero point in the element Ij , we
define Rhp(·, tn) = Php(·, tn) to be the standard L2-projection.

4.2.1. Interpolation properties. Before we start proving the main results for
error estimates, we present some interpolation inequalities for these projections. The
usual notation of norms and seminorms in Sobolev spaces will be used.

For both projections mentioned above, it is easy to show (cf. [2])

||ηnp || + h||ηnp ||∞ + h
1
2 ||ηnp ||Γh ≤ Chk+1 (p = u,w; 0 ≤ n ≤ Nτ ),(4.7)
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where the positive constant C, solely depending on u, is independent of n, h, and τ ,
and Γh denotes the set of boundary points of all elements Ij . Moreover, for 0 ≤ n < Nτ
we have that ∣∣∣∣∣

∫
Ij

(pn − Qpn)∂xvh dx

∣∣∣∣∣ ≤ Chk+1||vh||Ij ∀vh ∈ P
k(Ij),(4.8)

where p could be u and w, and the positive constant C is independent of h, τ , and
vh. This inequality (4.8) is easy to verify, the constant C depends solely on k and
||p||L∞(Hk+2(Ij)) for the Gauss–Radau projection Rh, and C = 0 for the L2-projection
Ph. For more details, see, for example, [3].

For the Gauss–Radau projection, it is important to mention that it is an exact
collocation at one of the boundary points of each element Ij in cases (i) and (ii). If
f ′(un) > 0 on the element Ij (case (i)), we have ηnp (x−j+1/2) = 0; if f ′(un) < 0 on the

element Ij (case (ii)), we have ηnp (x+
j−1/2) = 0, where p could be u or w.

Noticing the definition (4.1) of w, we can conclude, for both projections, that

||ηn+1
u − ηnu || + ||ηnw − ηnu || ≤ Chk+1τ, n < Nτ ,(4.9)

where the positive constant C solely depends on ∂tu and is independent of n, h,
and τ . It is easy to get (4.9) for the L2-projection Ph since the projection Ph is
linear. For the Gauss–Radau projection Rh the conclusion (4.9) is valid due to the
following observation: Notice that the different interpolation points in the Gauss–
Radau projection Rh depend on the exact solution un, not on the numerical solution
unh. Hence if an element Ij is in case (iii) at the initial time t = 0, namely, there is
a point inside Ij such that f ′(u0) = 0, then the characteristic line at this point is
vertical and the element Ij would be in case (iii) for all future time levels. Since we
assume in this paper that the exact solution is smooth, the characteristics will not
intersect with each other; hence if a cell Ij is in one of the three cases (i), (ii), or (iii)
initially, it will stay in that case for all future time. Therefore, we can easily conclude
that the inequality (4.9) holds for the Gauss–Radau projection Rh as well.

4.2.2. Inverse properties. Finally, we list some inverse properties of the finite
element space Vh that will be used in our error analysis. For any vh ∈ Vh, there exists
a positive constant C, independent of vh and h, such that

(i) ||∂xvh|| ≤ Ch−1||vh||; (ii) ||vh||Γh ≤ Ch−1/2||vh||; (iii) ||vh||∞ ≤ Ch−1/2||vh||.

For more details of these inverse properties, we refer the reader to [2].

5. Proof of the main results. In this section we present the main proof of
Theorem 3.1, leaving some of the more technical details to the appendix. We shall
prove the theorem by analyzing each term on the right-hand side of the energy equa-
tion (4.4) for different degrees of polynomials and different types of numerical fluxes.
As we have mentioned before, the key point of the analysis is to give a sharp estimate
to the first term ||ξn+1

u − ξnw|| on the right-hand side of (4.4).

5.1. Some lemmas. In this subsection we collect some lemmas for the estimate
to the crucial term ||ξn+1

u −ξnw|| for both linear and higher order piecewise polynomials.
This term comes from the time discretization of the second order TVD Runge–Kutta
method and must be analyzed sharply in order to get global optimal error estimates.
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We first consider the difference between the operator Ln and Kn at successive
stages of the Runge–Kutta time marching. The main technique used is Taylor expan-
sion, with special attention paid to the terms associated with the boundaries of each
element. The inequalities (4.7), (4.8), and (4.9) will be used for the projection Q.

By using Taylor expansions on f(u) up to second order, and with some (tedious)
manipulations, we can prove the following lemma.

Lemma 5.1. Let ε be any given small positive constant. Suppose that the in-
terpolation properties (4.7), (4.8), and (4.9) are satisfied; then we have, for n =
0, 1, . . . , Nτ − 1 and any vh ∈ Vh, that

(Ln −Kn)(vh) ≤ ε||vh||2 +
M(ε)τ2

h
α2(ĥ;wnh)[ξnw]2 +

M(ε)τ2

h
α2(ĥ;unh)[ξ

n
u ]2

+
C�τ

2

h2
(||enu||2∞||ξnu ||2 + ||enw||2∞||ξnw||2) + Cτ2(||ξnu ||2 + ||ξnw||2)

+ C(Ξ(n)h2k+2τ + τ6) −
∑

1≤j≤N
τf ′(unj )

∫
Ij

vh∂x(ξ
n
w − ξnu ) dx,(5.1)

where Ξ(n) = 1 + C�h
−1||enu||2∞ + C�h

−1||enw||2∞, the positive constants C and C�
are independent of n, h, τ , and the approximate solution uh, and the positive constant
M(ε) = O(ε−1) depends on ε solely. unj denotes the value of the exact solution at the
cell center, u(xj , t

n).
The rather technical proof of this lemma is left for the appendix. We now use

this lemma to get an estimate to ||ξn+1
u − ξnw||. The next lemma follows from Lemma

5.1 by choosing suitable test functions vh and setting the positive constant ε in (5.1)
small enough.

Lemma 5.2. Suppose that the interpolation properties (4.7), (4.8), and (4.9) are
satisfied; then we have, for any n = 0, 1, . . . , Nτ − 1,

||ξn+1
u − ξnw||2 ≤ C(Ξ(n)h2k+2τ + τ6) +

Mτ2

h
α2(ĥ;wnh)[ξnw]2 +

Mτ2

h
α2(ĥ;unh)[ξ

n
u ]2

+
C�τ

2

h2
(||enu||2∞||ξnu ||2 + ||enw||2∞||ξnw||2) + Cτ2(||ξnu ||2 + ||ξnw||2)

+M
∑

1≤j≤N
τ2|f ′(unj )|2

∫
Ij

{∂x(ξnw − ξnu )}2 dx,(5.2)

where the positive constants C and C� are independent of n, h, τ , and the approximate
solution uh, and the constant M is solely determined by a suitably given positive
constant ε in Lemma 5.1.

Proof. By subtracting the error equation (4.3a) from (4.3b) we have that

∫
Ij

(ξn+1
u − ξnw)vh dx =

1

2
(Lnj −Knj )(vh) ∀vh ∈ P

k(Ij), 1 ≤ j ≤ N,(5.3)

which implies that ||ξn+1
u −ξnw||2 = 1

2 (Ln−Kn)(ξn+1
u −ξnw) if the test function in (5.3)

is taken as vh = ξn+1
u − ξnw. Also taking the test function vh = ξn+1

u − ξnw in (5.1), and
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letting the positive constant ε be small enough, we have that

||ξn+1
u − ξnw||2 ≤ C(Ξ(n)h2k+2τ + τ6) +

Mτ2

h
α2(ĥ;wnh)[ξnw]2 +

Mτ2

h
α2(ĥ;unh)[ξ

n
u ]2

+
C�τ

2

h2
(||enu||2∞||ξnu ||2 + ||enw||2∞||ξnw||2) + Cτ2(||ξnu ||2 + ||ξnw||2)

−M
∑

1≤j≤N
τf ′(unj )

∫
Ij

(ξn+1
u − ξnw)∂x(ξ

n
w − ξnu ) dx,(5.4)

where the positive constant M is determined solely by ε.
We now need only to estimate the last integral term in (5.4). To this end, we take

the test function vh ∈ Vh in (5.3), defined on each element Ij by vh = −τf ′(unj )∂x(ξnw−
ξnu ). Then we have, for 1 ≤ j ≤ N , that

−τf ′(unj )
∫
Ij

(ξn+1
u − ξnw)∂x(ξ

n
w − ξnu ) dx =

1

2
(Lnj −Knj )(−τf ′(unj )∂x(ξnw − ξnu )).

Thus we can use Lemma 5.1 to estimate the integral term in (5.4) by taking this test
function in (5.1) and using the inverse property (i) and the general CFL condition
τ ≤ Ch for a fixed constant C independent of h and τ . The proof of this lemma is
thus completed by substituting this estimate into the inequality (5.4).

The conclusion (5.2) is the key inequality for obtaining error estimates of the DG
scheme with the second order TVD Runge–Kutta time marching, which holds for the
finite element space with piecewise polynomials of any degree k ≥ 1. In the next
two subsections, we will use this key estimate to obtain error estimates for general
numerical fluxes, i.e., to estimate the first term on the right-hand side of (4.4). We
shall pay more attention to estimating sharply the last integral term in (5.2) for either
linear or higher order piecewise polynomial finite element spaces.

We follow the same lines of analysis for the operator (Ln − Kn)(vh) in Lemma
5.1, using Taylor expansions of f(u) up to second order and first order, respectively,
to prove the following lemma.

Lemma 5.3. Let ε be any given small positive constant. Suppose that the in-
terpolation properties (4.7), (4.8), and (4.9) are satisfied; then we have, for n =
0, 1, . . . , Nτ − 1 and any vh ∈ Vh, that

Kn(vh) ≤ ε||vh||2 +
M(ε)τ2

h
α2(ĥ;unh)[ξ

n
u ]2 +

(
C�τ

2

h2
||enu||2∞ + Cτ2

)
||ξnu ||2

+ (Ch−1 + C�h
−1||enu||2∞)h2k+2τ −

∑
1≤j≤N

τf ′(unj )
∫
Ij

vh∂xξ
n
u dx(5.5)

and

Kn(vh) ≤ ε||vh||2 +
Cτ2

h2
||ξnu ||2 + Ch2kτ2,(5.6)

where the positive constants C and C� are independent of n, h, τ , and the approximate
solution uh, and the positive constant M(ε) = O(ε−1) depends solely on ε.

Proof. The proof is technical but follows along the same lines as that for Lemma
5.1 and is thus omitted.

Corollary 5.1. Under the assumptions of Lemma 5.3, if a general CFL condi-
tion τ ≤ Ch is satisfied, then we have

||ξnw|| ≤ C||ξnu || + Chkτ (n = 0, 1, . . . , Nτ − 1),(5.7)
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where the positive constant C is independent of n, h, τ , and the approximate solution
uh.

Proof. Since it follows from the error equations (4.3a) that ||ξnw−ξnu ||2 = Kn(ξnw−
ξnu ), we can complete the proof by taking the test function vh = ξnw − ξnu and setting
ε small enough in (5.6). Here the general CFL condition τ ≤ Ch is used.

The estimates in Lemma 5.3 hold for any test function vh ∈ Vh. However, for a
special test function ξnu ∈ Vh we have another estimate to Kn(ξnu ) given in the lemma
below, which corresponds to the second term on the right-hand side of the energy
equation (4.4). The proof of this lemma will be given in the appendix.

Lemma 5.4. Suppose the interpolation properties (4.7), (4.8), and (4.9) are sat-
isfied; then we have, for n = 0, 1, . . . , Nτ − 1, that

Kn(ξnu ) ≤ Φ(un)||ξnu ||2τ −
τ

4
α(ĥ;unh)

[
ξnu
]2

+ (C + C�h
−1||enu||2∞)h2k+1τ,(5.8)

where Φ(un) = C+C�(||ξnu ||∞ +h−1||enu||2∞), and the positive constants C and C� are
independent of n, h, τ , and the approximate solution uh.

By a similar analysis we have the following lemma to estimate the last term on
the right-hand side of the energy equation (4.4). The proof is omitted.

Lemma 5.5. Under the assumptions in Lemma 5.4, we have, for n = 0, 1, . . . , Nτ−
1,

Ln(ξnw) ≤ Φ(wn)||ξnw||2τ −
τ

4
α(ĥ;wnh)

[
ξnw
]2

+ (C + C�h
−1||enw||2∞)h2k+1τ + Cτ5,

(5.9)

where Φ(wn) = C + C�(||ξnw||∞ + h−1||enw||2∞), and the positive constants C and C�
are independent of n, h, τ , and the approximate solution uh.

5.2. Error estimates for general monotone numerical fluxes. In this sub-
section we will prove Theorem 3.1 for arbitrary monotone numerical fluxes. To em-
phasize the main idea of the analysis we would like to present in detail the proof for
the case of linear polynomials, i.e., the proof for (3.4a) under a suitable CFL condi-
tion for k = 1. We will then briefly indicate the additional difficulties for higher order
piecewise polynomial cases.

To deal with the nonlinearity of the flux f(u) we would like to make an a priori
assumption that, for small enough h, there holds

||un − unh|| ≤ h.(5.10)

This assumption is obviously satisfied for n = 0 by u0
h = Phu0(x) defined in the DG

scheme. We shall later verify the correctness of (5.10) by showing that (5.10) still
holds true for n+1 if it holds true for a given n. For a linear flux f = cu, this a priori
assumption is unnecessary.

Corollary 5.2. Suppose that the interpolation property (4.7) is satisfied; then
the a priori assumption (5.10) implies that

||enp ||∞ ≤ Ch
1
2 and ||ξnp ||∞ ≤ Ch

1
2 (p = u,w).(5.11)

Proof. This follows from the inverse property (iii) and the inequality (5.7).
To obtain the error estimates shown in Theorem 3.1, we shall give separate esti-

mates to each term on the right-hand side of (4.4). The analyses for K(ξnu ) and L(ξnw)
have been given in Lemma 5.4 and Lemma 5.5. Thus in what follows we will pay
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special attention to the estimate of the first term on the right-hand side of (4.4) for
linear and higher order piecewise polynomials, respectively. To this end, we need to
obtain a sharp estimate to max1≤j≤N |f ′(unj )|2 · ||∂x(ξnw − ξnu )||2 by virtue of Lemma

5.2, where ||∂x(ξnw − ξnu )||2 ∆
=
∑

1≤j≤N ||∂x(ξnw − ξnu )||2Ij .
5.2.1. Estimates for the linear polynomials. The inequality (5.5), together

with (5.2), gives more information to estimate ||∂x(ξnw − ξnu )|| sharply for piecewise
linear polynomials than for higher order polynomials. We start by noting that any
function gh can be written as

gh = g̃h + (gh − g̃h),(5.12)

where g̃h is a piecewise constant function, defined by the corresponding average of gh
on each element Ij , i.e., ∫

Ij

(gh − g̃h) dx = 0, 1 ≤ j ≤ N.

In the case when the finite element space Vh is of piecewise linear polynomials, it
follows from ξnu ∈ Vh that its derivative ∂xξ

n
u is a constant on each element Ij . Hence

we also have, for any function gh, that∫
Ij

(gh − g̃h)∂xξ
n
u dx = 0, 1 ≤ j ≤ N.(5.13)

This property plays a key role in obtaining the estimates under the usual CFL con-
dition. Unfortunately, this property holds only for piecewise linear polynomials, not
for piecewise polynomials of higher order.

Let gh = ξnw − ξnu ; clearly both gh and gh − g̃h ∈ Vh. We remark that gh − g̃h ∈
Vh holds only for the DG method, not for the standard conforming finite element
methods. After a simple calculation, it is easy to show by (4.3a) and (5.12) that

||gh − g̃h||2 = (gh, gh − g̃h) = (ξnw − ξnu , gh − g̃h) = Kn(gh − g̃h).(5.14)

By setting the test function vh = gh − g̃h in (5.5) we can see that the last integral
term in (5.5) becomes 0. Choosing ε small enough, then we have, by (5.14), that

||gh − g̃h||2 ≤ Mτ2

h
α2(ĥ;unh)[ξ

n
u ]2 +

(
C +

C�
h2

||enu||2∞
)
||ξnu ||2τ2 + Υ(n)h3τ,(5.15)

where Υ(n) = C +C�||enu||2∞ and the positive constants C and C� are independent of
n, h, τ , and the numerical solution uh.

Noticing that for the DG method ∂xgh = ∂x(gh − g̃h) ∈ Vh, we have, by virtue of
the inverse property (i), a sharp estimate in the form

||∂x(ξnw − ξnu )||2 ≤ Mτ2

h3
α2(ĥ;unh)[ξ

n
u ]2 +

(
C

h2
+
C�
h4

||enu||2∞
)
||ξnu ||2τ2 + Υ(n)hτ.

(5.16)

To estimate the last integral term in (5.2), we multiply max1≤j≤N |f ′(unj )|2 to
both sides of the inequality (5.16) and analyze each term on the right-hand side
separately. The first term can be bounded by using the following inequality:

max
1≤j≤N

|f ′(unj )|2 ≤ 8 max
1≤j≤N

α2(ĥ;unh)j+ 1
2

+ C�||enu||2∞,
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which results from (3.2a) of Lemma 3.1, together with the smoothness of f and u;
however, the other two terms can be bounded easily by using the boundedness of
max1≤j≤N |f ′(unj )|2. Thus, the last integral term in (5.2) for piecewise linear polyno-
mials can be bounded by

Mτ3

h3
max

1≤j≤N
α3(ĥ;unh)j+ 1

2
· α(ĥ;unh)[ξ

n
u ]2τ +

(
Cτ3

h2
+
C�τ

3

h4
||enu||2∞

)
||ξnu ||2τ + Υ(n)hτ3,

where the inverse property (ii) and the boundedness of α(ĥ;unh) (see Lemma 3.1) have
been used.

We substitute this new estimate, together with (5.7), into (5.2). Then we get the
following sharp estimate to the first term on the right-hand side of (4.4) for piecewise
linear polynomials in the form

||ξn+1
u − ξnw||2 ≤ C(Ξ(n)h4τ + h3τ + τ6) + δ1(n)α(ĥ;unh)[ξ

n
u ]2τ + δ2(n)α(ĥ;wnh)[ξnw]2τ

+

{
C�τ

h2
(||enu||2∞ + ||enw||2∞) +

C�τ
3

h4
||enu||2∞ + Cτ

}
||ξnu ||2τ,(5.17)

under the CFL condition τ ≤ γh with a suitable CFL number γ (the exact bound
of γ and the fact that it is bounded from below will be discussed later), where the
positive constants C and C� in (5.17) are independent of n, h, τ , and the approximate
solution uh, and Ξ(n) = 1 + C�h

−1||enu||2∞ + C�h
−1||enw||2∞ has been defined in (5.1).

In the above inequality (5.17),

δ1(n) =
Mτ

h
max

1≤j≤N
α(ĥ;unh)j+ 1

2
+
Mτ3

h3
max

1≤j≤N
α3(ĥ;unh)j+ 1

2
,(5.18a)

δ2(n) =
Mτ

h
max

1≤j≤N
α(ĥ;wnh)j+ 1

2
,(5.18b)

where the positive constant M is solely determined by the fixed constant ε and is
independent of n, h, τ , the exact solution un, and the numerical solution unh.

Therefore, by combining (5.8), (5.9), and (5.17), together with (5.7), and using
the results (5.11) implied by the a priori assumption (5.10), under a suitable CFL
condition τ ≤ γh, finally we obtain, for h small enough, that

||ξn+1
u ||2 − ||ξnu ||2 +

1

4
α(ĥ;unh)[ξ

n
u

]2
τ +

1

4
α(ĥ;wnh)[ξnw

]2
τ

≤ C(||ξnu ||2τ + h3τ + τ5) + δ1(n)α(ĥ;unh)[ξ
n
u

]2
τ + δ2(n)α(ĥ;wnh)[ξnw

]2
τ,(5.19)

where the positive constant C is independent of n, h, τ , and the approximate solution
unh.

Since the positive constantM in (5.18) is independent of n, h, τ , and the numerical
solution unh, there exist two positive constants r1 and r2, independent of n, h, and τ ,
such that

Mr1 +Mr31 ≤ 1

8
and Mr2 ≤ 1

8
.

Here we take r1 and r2 as large as possible under these restrictions. Then the time
step τn for piecewise linear polynomials can be determined by τn ≤ γnh, where the
CFL number γn is given by

γn = min

{
r1

(
max

1≤j≤N
α(ĥ;unh)j+ 1

2

)−1

, r2

(
max

1≤j≤N
α(ĥ;wnh)j+ 1

2

)−1
}
.(5.20)
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Since the time step considered in this paper is assumed to be constant for convenience,
we would like to write the above CFL condition in the uniform formulation τ ≤ γh,
where the CFL number is taken as γ = minn≤Nτ

γn. We comment on the reason that
γ is bounded below from zero in Remark 5.1 below.

Then, under this CFL condition, the inequality (5.19) shows that

||ξn+1
u ||2 − ||ξnu ||2 +

τ

8
α(ĥ;unh)[ξ

n
u

]2
+
τ

8
α(ĥ;wnh)[ξnw

]2 ≤ C(||ξnu ||2τ + h3τ + τ5).

By Gronwall’s inequality, we can get the following error estimate:

||ξn+1
u ||2 +

∑
0≤m≤n

α(ĥ;umh )
[
ξmu
]2
τ ≤ C0h

3, for any n ≤ Nτ ,(5.21)

where the positive constant C0 is independent of n, h, τ, and the approximate solution
unh. Thus the conclusion (3.4a) for linear piecewise polynomials in Theorem 3.1 follows
by triangle inequality and the interpolating property (4.7).

To complete the proof, let us verify the a priori assumption (5.10). If it is satisfied
for a certain n, then it follows from (5.21) and the interpolation property (4.7) that

||un+1 − un+1
h || ≤ C0h

3/2.

It implies that ||un+1 − un+1
h || ≤ h for small enough h and the assumption (5.10) is

also true for n+ 1. Thus the given a priori (5.10) is verified, and all of the estimates
above based on this a priori (5.10) still hold for n ≤ Nτ . This completes the proof
of (3.4a) for the linear piecewise polynomials and for arbitrary monotone numerical
fluxes in Theorem 3.1.

Remark 5.1. We notice that the condition (5.20) is the usual CFL condition
for conservation laws. For example, by Lemma 3.1 and (5.11) we know that for any

numerical flux α(ĥ;unh) is lower bounded by a constant times the maximum of |f ′|
for h small enough. For example, the CFL number γ for the linear flux f = cu,
determined by (5.20), depends solely on |c|. This also explains why the CFL constant
γ is lower bounded away from zero during mesh refinements.

5.2.2. Estimates for the high order polynomials. As we have mentioned
before, the property (5.13) is not true for high order piecewise polynomials. Then we
can only get the following estimate to the first term on the right-hand side of (4.4):

||ξn+1
u − ξnw||2 ≤ C(Ξ(n)h2k+2τ + τ6) +

Mτ2

h
α2(ĥ;wnh)[ξnw]2 +

Mτ2

h
α2(ĥ;unh)[ξ

n
u ]2

+

{
C�τ

2

h2
(||enu||2∞ + ||enw||2∞)||ξnu ||2 + C

(
τ2 +

τ4

h4

)}
||ξnu ||2(5.22)

by combining (5.2) and (5.7) and using the inverse properties (i) and (ii). Here
the constants C and C� are independent of n, h, τ , and the approximate solution
uh, the constant M depends solely on the fixed positive constant ε, and Ξ(n) =
1 + C�h

−1||enu||2∞ + C�h
−1||enw||2∞ has been defined in (5.1).

Comparing this estimate (5.22) with (5.17), we can see that there is an additional
factor τ4/h4 in front of the term ||ξnu ||2 for high order piecewise polynomials. It implies

a need for the stronger time-step restriction τ ≤ γh
4
3 . For high order (k ≥ 2) piecewise

polynomials, it is justified to have such a stronger time-step restriction because the
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scheme (2.4) is linearly unstable under CFL condition τ ≤ γh for any fixed γ > 0; see
[12].

The remaining analysis for high order polynomials is almost identical to that for
the linear piecewise polynomials, so we omit the details. Finally, under the stronger
time-step restriction we also get the conclusion (3.4a).

Remark 5.2. We have only carried out the details of the error estimate for suf-
ficiently smooth solutions of one-dimensional scalar conservation laws. However, for
a linear flux f = cu the results of Theorem 3.1 still hold for multidimensional con-
servation laws, because the a priori assumption (5.10) is unnecessary. Moreover, for
d-dimensional general nonlinear problems the above analysis still works if we assume
the degree of piecewise polynomials satisfies k > 1

2 (d+1) to keep the a priori assump-
tion (5.10) valid.

Remark 5.3. The assumption f ∈ C3 is used in the above estimates. However,
for the piecewise high order (k ≥ 2) polynomials it is enough to assume f ∈ C2 by
using another a priori assumption, ||un − unh|| ≤ h3/2, and using lower order Taylor
expansions. The details of the analysis are omitted since they are very similar to what
we have presented above.

5.3. Optimal error estimates for the upwind numerical fluxes. In this
subsection we shall study the error estimates for RKDG schemes with upwind numer-
ical fluxes. A numerical flux ĥ(p) is called upwind if it satisfies

ĥ(p) =

{
f(p−) if f ′(q) ≥ 0 ∀q ∈ [min(p−, p+),max(p−, p+)],
f(p+) if f ′(q) < 0 ∀q ∈ [min(p−, p+),max(p−, p+)].

The best-known examples of upwind numerical fluxes are the Godunov flux, the
Engquist–Osher flux, and the Roe flux with an entropy fix. In addition, we assume
that, on each boundary point, the quantity α(ĥ; p) for the upwind numerical flux
depends on the value |f ′(p)| in a local interval including p±; i.e., there are positive
constants C and C� independent of f and p such that

α(ĥ; p) ≤ C|f ′(p̄)| + C�|[p]|.(5.23)

This assumption (5.23), together with (3.2a), demonstrates the approximate equiv-

alence between the quantity α(ĥ; p) and |f ′(p̄)|. It is easy to verify that all of the
upwind numerical fluxes mentioned above satisfy this assumption (5.23).

To obtain the optimal error estimates for these upwind numerical fluxes, we will
estimate again each term on the right-hand side of the energy equation (4.4), following
along the lines of the analysis in subsection 5.2. Most of the analysis is similar to that
in subsection 5.2; we thus point out only the main differences. One such difference
is that the Gauss–Radau projection Rh, which interpolates at one of the boundary
points of each cell, is used here; see subsection 4.2. The other is that a new reference
value pn,�h (pnh = unh or wnh) on each boundary point xj+1/2 at time t = tn is introduced,
corresponding to the sign of f ′(un) on the adjacent elements Ij ∪ Ij+1. If f ′(un) < 0
on Ij ∪ Ij+1 (i.e., the wind blows to the left), we take the reference value pn,�h = pn,+h ;
otherwise (i.e., either f ′(un) is always positive or it has zero point(s) in Ij ∪ Ij+1),
we take the reference value pn,�h = pn,−h . This replaces the simple reference value
p̄nh = p̄h, the average of ph, used for the case of general monotone numerical fluxes in
subsection 5.2.

We now state conclusions for each term on the right-hand side of the energy
equation (4.4), in parallel to those in subsection 5.2. We shall only present the results
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for piecewise linear polynomials as an example, with proofs deferred to the appendix.
In what follows we will use the notation |f ′(un)|[ξnu ]2 =

∑
1≤j≤N |f ′(un

j+ 1
2

)|[ξnu ]2
j+ 1

2

,

etc.
Lemma 5.6. If the Gauss–Radau projection Rh is used, then we have, for piece-

wise linear polynomials (k = 1),

||ξn+1
u − ξnw||2 ≤ C (Ξ(n)h4τ + τ6) + δ̃1(n)|f ′(un)|[ξnu ]2τ + δ̃2(n)|f ′(wn)|[ξnw]2τ

+

{
C�τ

2

h2
(||enu||2∞ + ||enw||2∞) +

C�τ
4

h4
||enu||2∞ + Cτ2

}
||ξnu ||2,(5.24)

under the general CFL condition τ ≤ Ch, where the positive constants C and C� are
independent of n, h, τ , and the approximate solution uh, and

δ̃1(n) =
Mτ

h
||f ′(un)||∞ +

Mτ3

h3
||f ′(un)||3∞ and δ̃2(n) =

Mτ

h
||f ′(wn)||∞,(5.25)

with the positive constant M independent of n, h, τ, u, and uh.
Remark 5.4. For higher order piecewise polynomials, the estimate to the first

term on the right-hand side of the energy equation (4.4), namely ||ξn+1
u − ξnw||2, is

almost the same as (5.24), except for an additional factor τ4/h4 in front of the last
term ||ξnu ||2.

Lemma 5.7. If the Gauss–Radau projection Rh is used, then we have, for piece-
wise polynomials with any degree k ≥ 1, that

(5.26a)

Kn(ξnu ) ≤ Ψ(un)||ξnu ||2τ −
1

2
|f ′(un)|[ξnu ]2τ + (C + C�h

−2||enu||2∞)h2k+2τ,

(5.26b)

Ln(ξnw) ≤ Ψ(wn)||ξnw||2τ −
1

2
|f ′(wn)|[ξnw]2τ + (C + C�h

−2||enw||2∞)h2k+2τ + Cτ5,

where Ψ(pn) = C+C�(h
−1||enp ||∞+h−2||enp ||2∞) (p = u,w), and the positive constants

C and C� are independent of n, h, τ , and the approximate solution uh.
To deal with the nonlinearity of the flux f(u), we would also like to use here an

a priori assumption that, for small enough h,

||un − unh|| ≤ h3/2,(5.27)

which implies that ||enu||∞ ≤ Ch and ||enw||∞ ≤ Ch. It is easy to verify that this a
priori assumption is true.

Finally, by combining the above estimates (5.24), (5.26a), and (5.26b), we can
use Gronwall’s inequality to obtain the optimal error estimates for upwind numerical
fluxes under a suitable CFL condition.

For piecewise linear polynomials, the usual CFL condition τ ≤ γh is enough,
where the CFL number γ can be determined by δ̃1(n) ≤ 1/4 and δ̃2(n) ≤ 1/4. The
treatment is similar to that shown in subsection 5.2. However, for piecewise higher
order polynomials, a stronger restriction on the time step is needed, as an additional
factor τ4/h4 appears in front of the term ||ξnu ||2 in (5.24).

This finishes the proof of (3.4b) for upwind numerical fluxes and thus for all
results in Theorem 3.1.
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6. Appendix: Proof of several lemmas. We collect the rather technical
proofs of Lemmas 5.1, 5.4, 5.6, and 5.7 in this appendix. The conclusions of these
lemmas are used in the previous sections to prove Theorem 3.1.

6.1. Proof of Lemma 5.1. Denote Π(n) = f(wn) − f(wnh) − f(un) + f(unh)

for x inside each element and Π̂(n) = f(wn) − ĥ(wnh) − f(un) + ĥ(unh) for x on the
boundary points of each element. Then by subtracting (4.3d) from (4.3e), we have,
for any vh ∈ Vh, the following result:

(Lnj −Knj )(vh) = 2

∫
Ij

(ηn+1
u − ηnw + E(x;n))vh dx+ τ

∫
Ij

Π(n)∂xvh dx

− τ Π̂(n)j+ 1
2
vh(x

−
j+ 1

2

) + τ Π̂(n)j− 1
2
vh(x

+
j− 1

2

)

∆
= θ1,j(vh) + θ2,j(vh) + θ3,j(vh) + θ4,j(vh).(6.1)

We denote the sum of θi,j(vh) over all the elements Ij by Θi(vh) =
∑

1≤j≤N θi,j(vh),
where i = 1, 2, 3, 4.

We shall analyze each term on the right-hand side of (6.1) separately. The main
tool used is Taylor expansion.

First, it is easy to show from Young’s inequality ab ≤ εa2 +b2/(4ε), together with
E(x, n) = O(τ3) (see Lemma 4.1) and the approximation property (4.9), that

|Θ1(vh)| ≤ C(h2k+2τ2 + τ6) + ε||vh||2,
where ε is a small positive constant.

To estimate the second term Θ2(vh), we would like to split the term Π(n) into
five terms by the Taylor expansion and the definition (4.1), i.e.,

Π(n) = τf ′′w,uu
′(t)(ξnw − ηnw) − 1

2
f ′′w(ξnw − ηnw)2 +

1

2
f ′′u (ξnu − ηnu)2

− f ′(un)(ηnw − ηnu) + f ′(un)(ξnw − ξnu )
∆
= R1 +R2 +R3 +R4 +R5;(6.2)

here f ′′u , f
′′
w, and f ′′w,u are the mean values given by f ′′p = f ′′(θppn + (1 − θp)p

n
h) and

f ′′u,w = f ′′(θu,wun+(1−θu,w)wn) with 0 ≤ θp ≤ 1 (p = u,w) and 0 ≤ θu,w ≤ 1. Thus,
we can write, corresponding to each element Ij , the second term Θ2(vh) in the form

θ2,j(vh) =

5∑
i=1

∫
Ij

τRk∂xvh dx =

5∑
i=1

Si,j(vh).

Denote the sum of Si,j(vh) over all elements Ij by Si(vh); then Θ2(vh) =
∑5
i=1 Si(vh).

By Young’s inequality and the inverse property (i), it is easy to get that

|S1(vh)| ≤ C�τ
4

h2
||ξnw − ηnw||2 + ε||vh||2,

|S2(vh)| ≤ C�τ
2

h2
||enw||2∞||ξnw − ηnw||2 + ε||vh||2,

|S3(vh)| ≤ C�τ
2

h2
||enu||2∞||ξnu − ηnu ||2 + ε||vh||2,

|S4(vh)| ≤ Cτ2

h2
||ηnw − ηnu ||2 + ε||vh||2.
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The last term S5(vh), which is the sum of S5,j(vh) = τ
∫
Ij
f ′(un)(ξnw − ξnu )∂xvh dx for

1 ≤ j ≤ N , remains to be estimated later, together with a few other terms.
Now we are going to estimate the last two terms in (6.1), namely θ3,j(vh) and

θ4,j(vh), which are related to the numerical flux on the boundary points of each
element Ij . Since their analysis is almost the same, we will only present the details

of the estimate to the term θ3,j(vh) = −τ Π̂(n)j+ 1
2
vh(x

−
j+ 1

2

). To do this, we write

Π̂(n)j+ 1
2

in the following way:

Π̂(n) = f(wn) − f(w̄nh)︸ ︷︷ ︸
Λ1

−f(un) + f(ūnh)︸ ︷︷ ︸
Λ2

−f(ūnh) + ĥ(unh)︸ ︷︷ ︸
Λ3

+f(w̄nh) − ĥ(wnh)︸ ︷︷ ︸
Λ4

,(6.3)

where the subscript j + 1/2 is omitted for convenience. As we have done for θ2,j(vh),
we expand the first two terms, Λ1 and Λ2, by Taylor expansion in the form

Λ1 + Λ2 = f ′′w,uu
′(t)τ(ξ̄nw − η̄nw) − 1

2
f ′′w(ξ̄nw − η̄nw)2 +

1

2
f ′′u (ξ̄nu − η̄nu)2

− f ′(un)(η̄nw − η̄nu) + f ′(un)(ξ̄nw − ξ̄nu )
∆
= Q1 +Q2 +Q3 +Q4 +Q5,(6.4)

where f ′′u , f
′′
w, and f ′′w,u are again the mean values. We remark that although we use

the same notation here as that in (6.2), this notation may have different mean values.
Therefore, we have the following representation for the terms θ3,j(vh) and θ4,j(vh):

θ3,j = −τ(Q1 + · · · +Q5 + Λ3 + Λ4)j+ 1
2
vh(x

−
j+ 1

2

)
∆
= (T1,j + · · · + T5,j + T6,j + T7,j)(vh),

θ4,j = +τ(Q1 + · · · +Q5 + Λ3 + Λ4)j− 1
2
vh(x

+
j− 1

2

)
∆
= (T̃1,j + · · · + T̃5,j + T̃6,j + T̃7,j)(vh).

Denote the sum of Ti,j(vh) (respectively, T̃i,j(vh)) over all elements Ij by Ti(vh)

(respectively, T̃i(vh)). Next we will estimate one by one the terms listed above.
By Young’s inequality and the inverse property (ii), it is easy to show that

|T1(vh)| ≤ C�τ
4

h2
||ξnw||2 +

C�τ
4

h
||ηnw||2Γh + ε||vh||2,

|T2(vh)| ≤ C�τ
2

h2
||enw||2∞||ξnw||2 +

C�τ
2

h
||enw||2∞||ηnw||2Γh + ε||vh||2,

|T3(vh)| ≤ C�τ
2

h2
||enu||2∞||ξnu ||2 +

C�τ
2

h
||enu||2∞||ηnu ||2Γh + ε||vh||2,

|T4(vh)| ≤ Cτ2

h
||ηnw − ηnu ||2Γh + ε||vh||2.

By virtue of the definition of α(ĥ;unh) in Lemma 3.1, we have that

|Λ3| = α(ĥ;unh)|[unh]| = α(ĥ;unh)|[un − unh]| ≤ α(ĥ;unh)(|[ξnu ]| + |[ηnu ]|),
|Λ4| = α(ĥ;wnh)|[wnh ]| = α(ĥ;wnh)|[wn − wnh ]| ≤ α(ĥ;wnh)(|[ξnw]| + |[ηnw]|).

Then Young’s inequality with the inverse property (ii) implies that the terms T6(vh)
and T7(vh) can be bounded in the form

|T6(vh)| ≤ M(ε)τ2

h
α2(ĥ;unh)[ξ

n
u ]2 +

Cτ2

h
α2(ĥ;unh)[η

n
u ]2 + ε||vh||2,

|T7(vh)| ≤ M(ε)τ2

h
α2(ĥ;wnh)[ξnw]2 +

Cτ2

h
α2(ĥ;wnh)[ηnw]2 + ε||vh||2.
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Thus we have estimated each term included in Θ3(vh), except the term T5(vh), which
is the sum of T5,j(vh) = −τf ′(unj+1/2)(ξ̄

n
w − ξ̄nu )j+1/2vh(xj+1/2) over each element Ij .

This term will be estimated later, together with a few other terms.
Along the same lines we have almost the same estimate to the term Θ4(vh), except

that the term T̃5(vh), which is the sum of T̃5,j(vh) = τf ′(unj−1/2)(ξ̄
n
w−ξ̄nu )j−1/2vh(xj−1/2)

over each element Ij , is also left to be estimated later.
We now have obtained estimates for each term in the difference (Lnj − Knj )(vh),

except for three remaining terms, namely S5(vh), T5(vh), and T̃5(vh). To estimate
them sharply, we would like to consider their sum on each element Ij . After a simple
integration by parts, we have that

S5,j(vh) + T5,j(vh) + T̃5,j(vh)

= −τ
∫
Ij

f ′(unj )vh∂x(ξ
n
w − ξnu ) dx− τ

∫
Ij

{f ′(un) − f ′(unj )}vh∂x(ξnw − ξnu ) dx

− τ

∫
Ij

∂xf
′(un)(ξnw − ξnu )vh dx− τ

2
f ′(unj+ 1

2
)[ξnw − ξnu ]j+ 1

2
vh(x

−
j+ 1

2

)

+
τ

2
f ′(unj− 1

2
)[ξnw − ξnu ]j− 1

2
vh(x

+
j− 1

2

)

∆
= G1,j(vh) +G2,j(vh) +G3,j(vh) +G4,j(vh) +G5,j(vh),(6.5)

where we have introduced the piecewise constant unj = u((xj+1/2 + xj−1/2)/2, t
n) on

each element Ij . Also we denote the sum of Gi,j(vh) over all elements Ij by Gi(vh),
and then

S5(vh) + T5(vh) + T̃5(vh) = G1(vh) +G2(vh) +G3(vh) +G4(vh) +G5(vh).(6.6)

In what follows we will estimate each term on the right-hand side of (6.6) separately.
It follows that |f ′(un)−f ′(unj )| = O(h) on each element Ij from the smoothness of

the solution u and the flux f . Then by the inverse property (i) and Young’s inequality,
it is easy to show that

|G2(vh)| ≤ Cτ2||ξnw − ξnu ||2 + ε||vh||2.

By Young’s inequality we can show that

|G3(vh)| ≤ Cτ2||ξnw − ξnu ||2 + ε||vh||2.

For the last two terms on the right-hand side of (6.6) related to the numerical
flux, namely G4(vh) and G5(vh), we need to estimate them more carefully. Our aim

is to bound them by the product of α(ĥ;unh) or α(ĥ;wnh) and the corresponding jump
of ξnu or ξnw across element interfaces.

Since the estimates are very similar, we will only present the analysis to the
term G4(vh). Dropping the subscript j + 1/2 for convenience, we have the following
representation:

f ′(un)[ξnw − ξnu ] = f ′(wn)[ξnw] − f ′(un)[ξnu ] + (f ′(un) − f ′(wn))[ξnw]

= f ′(w̄nh)[ξnw] − f ′(ūnh)[ξ
n
u ] + (f ′(wn) − f ′(w̄nh))[ξnw]

− (f ′(un) − f ′(ūnh))[ξ
n
u ] + (f ′(un) − f ′(wn))[ξnw]

∆
= γ1,j + γ2,j + · · · + γ5,j .
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Then we have G4(vh) =
∑5
i=1 γi(vh), where γi(vh) = − τ

2

∑
1≤j≤N γi,jvh(xj+1/2). We

would like to estimate each term separately. We use the conclusion (3.2a) in Lemma
3.1 to analyze the terms γ1(vh) and γ2(vh). Finally, by Young’s inequality and the
inverse property (ii), we have that

|γ1(vh)| ≤M(ε)
τ2

h
α2(ĥ;wnh)[ξnw]2 +

C�τ
2

h2
||enw||2∞||ξnw||2 +

ε

5
||vh||2,

|γ2(vh)| ≤M(ε)
τ2

h
α2(ĥ;unh)[ξ

n
u ]2 +

C�τ
2

h2
||enu||2∞||ξnu ||2 +

ε

5
||vh||2,

|γ3(vh)| ≤ C�τ
2

h2
||enw||2∞||ξnw||2 +

ε

5
||vh||2,

|γ4(vh)| ≤ C�τ
2

h2
||enu||2∞||ξnu ||2 +

ε

5
||vh||2,

|γ5(vh)| ≤ C�τ
4

h2
||ξnw||2 +

ε

5
||vh||2.

Therefore, we conclude, by summing up the above estimates, that

|G4(vh)| ≤ ε||vh||2 +
C�τ

2

h2
||enu||2∞||ξnu ||2 +

C�τ
2

h2
||enw||2∞||ξnw||2 +

C�τ
4

h2
||ξnw||2

+M(ε)
τ2

h
α2(ĥ;wnh)[ξnw]2 +M(ε)

τ2

h
α2(ĥ;unh)[ξ

n
u ]2,

where the positive constant M(ε) depends on ε solely, and the other positive constants
C and C� are independent of n, h, τ , and the numerical solution uh.

Similarly, we can obtain the same estimate for the term G5(vh) as that for G4(vh).
Note that until now we have not yet analyzed the first term G1(vh) in (6.6), which

is the sum of G1,j(vh) = −τ ∫
Ij
f ′(unj )vh∂x(ξ

n
w − ξnu ) dx over each element Ij . This

term is left to be estimated differently for piecewise polynomials of different degrees;
see subsection 5.2.

Finally, by collecting all the analysis presented above and using the interpolation
property (4.7) and (4.9) and the general CFL condition τ ≤ Ch, after some simple
calculations we finish the proof of Lemma 5.1.

6.2. Proof of Lemma 5.4. Noticing the periodic or zero (compactly supported)
boundary conditions, after some simple calculation we have the sum of Knj (ξnu ) as
follows:

Kn(ξnu ) = (ηnw − ηnu , ξ
n
u ) + τ

∑
1≤j≤N

∫
Ij

(
f(un) − f(unh)

)
∂xξ

n
u dx

+ τ
∑

1≤j≤N

{
f(un) − f(ūnh)

}
j+ 1

2

[
ξnu
]
j+ 1

2

+ τ
∑

1≤j≤N

{
f(ūnh) − ĥ(unh)

}
j+ 1

2

[
ξnu
]
j+ 1

2

∆
= W1 +W2 +W3 +W4.(6.7)

Note that we refer to ūnh in the terms W3 and W4 above as the reference value on each
boundary point. We would like to analyze each term on the right-hand side of (6.7)
separately.

First, it follows from the interpolation property (4.9) that

W1 ≤ Ch2k+2τ + Cτ ||ξnu ||2.(6.8)
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Since the exact solution un of conservation laws (1.1) is continuous on each bound-
ary point, we have that [unh] = −[enu] = [ηnu − ξnu ]. Noticing the definition and bound-

edness of α(ĥ;unh) (see Lemma 3.1), we can easily show, by Young’s inequality and
the interpolation property (4.7), that

W4 ≤ −3

4
α(ĥ;unh)[ξ

n
u ]2τ + Cα(ĥ;unh)[η

n
u ]2τ ≤ −3

4
α(ĥ;unh)[ξ

n
u ]2τ + Ch2k+1τ.(6.9)

To complete the proof of Lemma 5.4, we should pay more attention to the terms
W2 and W3. Thus we would like to use the following Taylor expansions:

f(un) − f(unh) = f ′(un)ξnu − 1

2
f ′′(un)(ξnu )2 − f ′(un)ηnu + f ′′(un)ξnuη

n
u

− 1

2
f ′′(un)(ηnu)2 − 1

6
f ′′′u (ξnu − ηnu)3

∆
= φ1 + · · · + φ6,(6.10a)

f(un) − f(ūnh) = f ′(un)ξ̄nu − 1

2
f ′′(un)(ξ̄nu )2 − f ′(un)η̄nu + f ′′(un)ξ̄nu η̄

n
u

− 1

2
f ′′(un)(η̄nu)2 − 1

6
f̃ ′′′u (ξ̄nu − η̄nu)3

∆
= ψ1 + · · · + ψ6,(6.10b)

where f ′′′u and f̃ ′′′u are again the mean values. These imply the following representation:

W2 = X1 +X2 + · · · +X6 and W3 = Y1 + Y2 + · · · + · · · + Y6,

where Xi and Yi, given by

Xi = τ
∑

1≤j≤N

∫
Ij

φi∂xξ
n
u dx and Yi = τ

∑
1≤j≤N

(ψi)j+ 1
2
[ξnu ]j+ 1

2
(i = 1, 2, . . . , 6),

will be estimated separately later.
It is easy to get, after a simple integration by parts, that

X1 + Y1 = −τ
2

∑
1≤j≤N

∫
Ij

∂xf
′(un)(ξnu )2 dx ≤ C||ξnu ||2τ(6.11a)

and

X2 + Y2 =
τ

24

∑
1≤j≤N

f ′′(un)j+ 1
2

[
ξnu
]3
j+ 1

2

+
τ

6

∑
1≤j≤N

∫
Ij

∂xf
′′(un)(ξnu )3 dx.

Notice that f ′′(un)[ξnu ] = f ′′(ūnh)[η
n
h ] − f ′′(ūnh)[u

n
h] + f ′′′[ξnu ]enu by a simple Taylor

expansion, where f ′′′ denotes a mean value of the third derivative of the flux f . It
implies, together with (3.2b) of Lemma 3.1 and the interpolation property (4.7), that

on each boundary point xj+1/2 there holds 1
24f

′′(un)[ξnu ] ≤ 1
3α(ĥ;unh)+C�(h+||enu||2∞).

Thus we have, by virtue of the inverse property (ii), that

X2 + Y2 ≤ 1

3
α(ĥ;unh)[ξ

n
u ]2τ + C�(C + ||ξnu ||∞ + h−1||enu||2∞)||ξnu ||2τ.(6.11b)

As we have shown before, |f ′(un) − f ′(unj )| = O(h) on each element Ij . Then by the
inverse property (i), together with the interpolation property (4.7) and (4.8), we have
that

X3 ≤ τ
∑

1≤j≤N

∣∣∣∣∣
∫
Ij

(f ′(un) − f ′(unj ))η
n
u∂xξ

n
u dx

∣∣∣∣∣+ τ
∑

1≤j≤N

∣∣∣∣∣f ′(unj )
∫
Ij

ηnu∂xξ
n
u dx

∣∣∣∣∣
≤ Ch2k+2τ + C||ξnu ||2τ.
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It follows easily that |f ′(unj+1/2)| ≤ 2α(ĥ;unh)j+1/2 + C�||enu||∞ for any 1 ≤ j ≤ N

from the conclusion (3.2a) in Lemma 3.1 and the smoothness of u and f . Hence, by

Young’s inequality and the boundedness of α(ĥ;unh) (see Lemma 3.1), we have that

Y3 ≤ Ch2k+1τ +
1

6
α(ĥ;unh)[ξ

n
u ]2τ +

C�τ

h
||enu||2∞||ξnu ||2.

Thus, we have that

X3 + Y3 ≤ 1

6
α(ĥ;unh)[ξ

n
u ]2τ + (C + C�h

−1||enu||2∞)||ξnu ||2τ + Ch2k+1τ.(6.11c)

It is easy to show by Young’s inequality and the inverse properties (i) and (ii) that

(6.11d)

X4 + Y4 ≤ C�h
−1||ηnu ||∞||ξnu ||2τ ≤ C�||ξnu ||2τ,

(6.11e)

X5 + Y5 ≤ C�h
−1||ηnu ||∞(||ηnu || + h

1
2 ||ηnu ||Γh)||ξnu ||τ ≤ C�||ξnu ||2τ + C�h

2k+2τ,

(6.11f)

X6 + Y6 ≤ C�h
−1||enu||2∞(||ξnu ||2τ + Ch2k+2τ).

Therefore, by summing up the above estimates about W2 and W3, we have that

W2 +W3 ≤ Φ(un)||ξnu ||2τ +
1

2
α(ĥ;unh)

[
ξnu
]2
τ + (C + C�h

−1||enu||2∞)h2k+1τ,(6.12)

where Φ(un) = C + C�(||ξnu ||∞ + h−1||enu||2∞), and the positive constants C and C�
are independent of n, h, τ , and the numerical solution uh.

Finally, we collect the above estimates (6.8), (6.12), and (6.9) to complete the
proof of Lemma 5.4.

6.3. Proof of Lemma 5.6. The proof of Lemma 5.6 follows the general lines
of the proof of Lemmas 5.2 and 5.3, with some modifications. First, we use the
assumption (5.23) and the fact that [unh] = −[enu], since un is a continuous function,
to obtain

α(ĥ;unh)j+ 1
2
≤ C|f ′(unj+ 1

2
)| + C�||enu||∞(6.13)

for some positive constants C and C� on each boundary point xj+1/2. There is a

similar inequality for the quantity α(ĥ;wnh). We would also like, for the current upwind
fluxes, to improve the expression (Ch−1 + C�h

−1||enu||2∞)h4τ on the right-hand side
of the inequality (5.5) in Lemma 5.3 to (C + C�h

−1||enu||2∞)h4τ . This improvement

would need a sharp estimate to the term f(un) − ĥ(unh) on each boundary point, in
parallel to the proof of Lemma 5.3. In what follows we will only present the key
estimates different from the general treatments for monotone numerical fluxes.

On each boundary point xj+1/2, we denote Gn = f(un,�h ) − ĥ(unh). Here and in
what follows, the subscript j + 1/2 is omitted for notational convenience. We then
have

f(un) − ĥ(unh) = [f(un) − f(un,�h )] +Gn.

We would like to estimate the expression above for different cases of the sign variation
of f ′(un) on each Ij ∪ Ij+1.
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The estimate to f(un)−f(un,�h ) is similar as before, except for one term resulting

from the Taylor expansion, namely π
∆
= −f ′(un)ηn,�u , which needs more explanation.

If the sign of f ′(un) is unchanged on Ij ∪ Ij+1, then it is obvious that π = 0 by the
definition of Rh and the setting of the reference value un,�h . Otherwise, if f ′(un) has
at least one zero point on Ij ∪ Ij+1, which implies f ′(unj+1/2) = O(h), then we have

π = O(hk+3/2) by the interpolating approximate property (4.7). Therefore∣∣∣∣∣∣
∑

1≤j≤N
πj+ 1

2
vh(x

−
j+ 1

2

)τ

∣∣∣∣∣∣ ≤ ε||vh||2 + Ch2k+2τ2.(6.14)

Next we would like to estimate the second term Gn for different choices of the
reference value un,�h on each boundary point xj+1/2. Since the analysis for each case
is very similar, we will only present here the estimates for the case that f ′(un) < 0
on Ij ∪ Ij+1; i.e., the reference value is un,�h = un,+h . To estimate Gn for this case,

we consider the detailed setting of the upwind numerical flux ĥ(unh), corresponding to
the sign variation of f ′(·) between un,−h and un,+h . If f ′(·) is negative, then it follows
from the upwind property of the numerical flux that (a) Gn = 0. If f ′(·) is positive,
then Gn = f(un,+h ) − f(un,−h ). In this case, there certainly exists a zero point u�,
such that f ′(u�) = 0, in the interval covering the numerical solution unh(x

±
j+ 1

2

) and

the exact solution un on Ij ∪ Ij+1. Thus a simple manipulation shows (b) |Gn| ≤
C�(h+ ||enu||∞)|[unh]|. Otherwise, if the sign of f ′(·) is changed, we also have the above
inequality (b) by the assumption (5.23) for the upwind numerical fluxes. Thus, by
summing up the above conclusions, we have

|Gn| ≤ C�(h+ ||enu||∞)|[unh]|.(6.15)

Noticing the inverse property (ii) and [unh] = [ηnu ] − [ξnu ], we thus have∣∣∣∣∣∣
∑

1≤j≤N
Gnj+ 1

2
vh(x

−
j+ 1

2

)τ

∣∣∣∣∣∣ ≤ C�τ
2

h2
(h2 + ||enu||2∞)(||ξnu ||2 + ||ηnu ||2Γh) + ε||vh||2.(6.16)

The estimates to the other terms are similar as before; thus we omit them here
and conclude the proof for Lemma 5.6.

6.4. Proof of Lemma 5.7. As indicated before, we will again use the reference
value un,�h on each boundary point instead of the simple reference value ūh used
in the proof of Lemma 5.4, for example in the formulation (6.7), and denote the
corresponding representation by the same notation. We will analyze again each term
on the right-hand side of (6.7) separately.

The estimate to the term W1 is the same as before. By the inequality (6.15) for
upwind numerical fluxes, the term W4 can be bounded by

W4 ≤ C�(1 + h−1||enu||∞)||ξnu ||2τ +
C�τ

h
(h2 + ||enu||2∞)||ηnu ||2Γh .(6.17)

To estimate the terms W2 and W3, we follow the proof of Lemma 5.4 and estimate
each term in (6.10) with only minor modifications, arising from the replacement of
ūnh, ξ̄

n
u , and η̄nu in (6.10b) by un,�h , ξn,�u , and ηn,�u , respectively. We still denote these

terms by Xi and Yi separately and estimate them one by one.
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After a simple integration by parts, it is easy to show that

X1 + Y1 = −τ
2

∑
1≤j≤N

∫
Ij

∂xf
′(un)(ξnu )2 dx−

∑
1≤j≤N

f ′(unj+ 1
2
)(ξ̄nu − ξn,�u )j+ 1

2
[ξnu ]j+ 1

2
τ.

If f ′(un) < 0 on Ij ∪ Ij+1, then the reference values are un,�h = un,+h and ξn,�u =

ξn,+u , respectively; otherwise, un,�h = un,−h and ξn,�u = ξn,−u . If the sign of f ′(un)
is unchanged on Ij ∪ Ij+1, then it is easy to see that f ′(unj+1/2)(ξ̄

n
u − ξn,�u )j+1/2 =

1
2 |f ′(unj+1/2)|[ξnu ]j+1/2; if the sign of f(un) is changed on Ij∪Ij+1, then a simple Taylor

expansion implies that |f ′(unj+1/2)−|f ′(unj+1/2)|| ≤ C�h, even if f ′(unj+1/2) < 0. Thus
we have

X1 + Y1 ≤ C�||ξnu ||2τ − |f ′(un)|[ξnu ]2τ.(6.18a)

The inverse properties (i) and (ii) imply the estimate to X2 + Y2 in the form

X2 + Y2 ≤ Ch−1||ξnu ||∞||ξnu ||2τ.(6.18b)

Noticing the estimate to the term π (see subsection 6.3), we have, by virtue of the
inverse property (ii), that

X3 + Y3 ≤ Ch2k+2τ + C||ξnu ||2τ.(6.18c)

The estimate to the remaining terms are the same as (6.11d), (6.11e), and (6.11f).
Thus, by combining the above inequalities we obtain the estimate (5.26a). Along

the same line we can also get (5.26b). Thus we complete the proof of Lemma
5.7.
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Abstract. We present and study a nonconforming domain decomposition method for the dis-
cretization of the three-dimensional Stokes problem in the velocity-pressure formulation. The ap-
proximation is based on some local mixed finite elements for nonmatching tetrahedral grids. The
aim pursued is a systematic construction of the mortared discrete velocity space, the pressure being
not subjected to any matching constraints across the interfaces. Using the bubble stabilization tech-
niques, applied in Brezzi and Marini’s paper to the three fields method [Math. Comp., 70 (2001),
pp. 911–934], allows us to define an algorithm which is easy to implement. The numerical analysis
relies on the pressure-splitting argument of Boland and Nicolaides and allows us to establish an inf-
sup condition with a constant that does not depend on the mesh size or on the total number of the
subdomains. Then, by the Berger–Scott–Strang lemma written down for our saddle point system we
derive optimal accuracy results.

Key words. mortar method, nonmatching meshes, bubble stabilization, mixed formulation,
inf-sup condition, Boland and Nicolaides argument
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1. Introduction and the functional framework. The approximation of the
Sobolev space H1 in three dimensions by Lagrangian finite elements based on the con-
cept of domain decomposition with nonmatching grids is a source of difficulties, espe-
cially for tetrahedral elements (see [5], [10], [21], [39]). Substantial research originated
from the numerical modeling of the “weak continuity” versus the “strong continuity,”
to prevent numerical locking across the interfaces. Resorting to the nonconforming do-
main decomposition method is an opportunity for enhancing the numerical simulation
of partial differential equations with nonregular coefficients and/or set on nonsmooth
domains. The analysis of complex phenomena is often based on large scale numerical
simulations using different environments and, then, can take advantage of any afford-
able tool to easily and efficiently match different meshes. Moreover, the high degree
of parallelization achieved by the domain decomposition concept together with the
permanent growth of performing iterative substructuring and multigrid procedures to
compute nonconforming multidomain solutions (see [3], [2], [21], [47]) are encouraging
us to study their extension to the higher dimension.

Among the class of existing multidomain techniques with nonmatching grids, the
mortar element method has become very popular (see [8] for a biography of the method
and its applications). Introduced by Bernardi, Maday, and Patera in [15]—we refer
also to the earlier work of [13]—it was improved and widely analyzed for different
variational discretizations such as finite elements, spectral elements, and wavelets for
the Poisson problem in two dimensions. A nonexhaustive bibliography restricted to
the second order elliptic problems is provided by [15], [33], [5], [6], [48], [21], [29],
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[17], [18], [19]. The mortar finite element method is successful in three dimensions for
hexahedral elements. An appropriate matching of hexahedral Lagrangian elements is
described in [5] (see also [11]); the proof of the optimality of this approach and its
implementation issues are detailed in [1], [44]. In contrast, when tetrahedral finite
elements, which are of a high importance in practice, are employed, enforcing the
matching constraints turns out to be more complicated. A suggestion is made in [10]
(see also [22], [39] for further comments), where the construction of the matching
functions—the Lagrange multipliers of the primal hybrid formulation—across the in-
terfaces is not systematic. Even though the numerical analysis results in an optimal
convergence rate for affine tetrahedral finite elements, developing a computing code
taking into account this matching is not automatic. For instance, if a refining of the
mesh or a remeshing is needed, then the practitioner has to update the reconstruction
of the Lagrange multipliers.

An alternative allowing the use of more natural finite element multipliers in such a
context is to combine the mortar geometrical features with the functional stabilization
techniques used by Brezzi’s team. The selected stabilization tool consists of adding
to the local affine finite element discretization some boundary bubble functions as in
[24] (see also [26], [28], [16]). The main difference is that the support of a bubble
function is an entire triangle. This enables us to use piecewise constant Lagrange
multipliers which are really easy to handle. The definition of the approximation spaces
becomes clear and the implementation gains in facility. The modification proposed
here on the bubble stabilization has a major impact as it makes things coherent and
conceptually easier when we are involved with the extension to three dimensions of
the nonconforming multidomain algorithms.

The core of this work is to deal with the stabilized domain decomposition method
applied to the three-dimensional incompressible Stokes system. The local discrete
spaces are obtained from some mixed finite elements satisfying the Babuška–Brezzi
criterion (see [23], [25]). The global velocity finite element space is enriched by some
stabilizing boundary bubble functions in order to enforce the matching conditions
across the interfaces while the pressure space is free of any constraints. The verification
of the inf-sup condition for the global discretization relies on a trick due to Boland
and Nicolaides (see [20]). This contribution is an improvement of the results of [34],
[7], and [9] (dealing with the two-dimensional mortar element method) since we prove
that the constant involved in the inf-sup condition does not depend on the size of the
meshes or on the total number of the subdomains.

A brief outline of the paper is as follows. Section 3 is a description of the stabilized
mortared velocity and pressure finite elements spaces and a presentation of the discrete
problem. In section 4 we use the Boland–Nicolaides argument to show an optimal
Babuška–Brezzi condition. Section 5 is dedicated to the error estimate of the stabilized
approximation and is based on abstract results of the linear saddle point theory.

Notation. We need to set up some notation and to recall some functional tools
necessary to our analysis. Let Ω ⊂ R

3 be a Lipschitz domain of size O(1); a generic
point of Ω is denoted x. The symbol L2(Ω) stands for the Lebesgue space. Throughout
this work we make a constant use of the standard Sobolev space Hm(Ω), m ≥ 1,
provided with the norm

‖ψ‖Hm(Ω) =

⎛
⎝ ∑

0≤|α|≤m
‖∂αψ‖2

L2(Ω)

⎞
⎠

1
2

,
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where α = (α1, α2, α3) is a multi-index in N
3 and ∂α represents the corresponding

partial derivative (H0(Ω) = L2(Ω)). The fractional order Sobolev space Hλ(Ω), λ ∈
R+ \ N, is defined by the norm

‖ψ‖Hλ(Ω) =

⎛
⎝‖ψ‖2

Hm(Ω) +
∑

|α|=m

∫
Ω

∫
Ω

(∂αψ(x) − ∂αψ(y))2

|x− y|3+2θ
dx dy

⎞
⎠

1
2

,

where λ = m+ θ, m is the integer part of λ, and θ ∈ ]0, 1[ is the decimal part (see [4],
[37]).

For any portion γ of the boundary ∂Ω, with size O(1), the Hilbert space H
1
2 (γ)

is associated with the norm

‖ψ‖
H

1
2 (γ)

=

(
‖ψ‖2

L2(γ) +

∫
γ

∫
γ

(ψ(x) − ψ(y))2

|x− y|3 dΓdΓ

) 1
2

.

The symbol dΓ denotes the surface measure on ∂Ω. This space may be obtained
by a Hilbertian interpolation argument between H1(γ) and L2(γ), i.e., H

1
2 (γ) =

[H1(γ), L2(γ)] 1
2

(see [40]). The space H− 1
2 (γ) stands for the dual space of H

1
2 (γ),

and the duality pairing is denoted by 〈·, ·〉 1
2 ,γ

. The special space H
1
2
00(γ) results from

the interpolation between H1
0 (γ) and L2(γ). Finally, denoting by L a portion of

the boundary ∂γ, then H1
0 (γ, L) stands for {ψ ∈ H1(γ), ψ|L = 0} and H

1
2
00(γ, L) =

[H1
0 (γ, L), L2(γ)] 1

2
.

If a domain Ω is of size O(H), then |Ω| = O(H3); a more suitable norm contains
a certain scaling factor. The local H1-norms, which will be of permanent use in this
paper, are defined by

‖ψ‖H1(Ω) = (|ψ|2H1(Ω) +H−2‖ψ‖2
L2(Ω))

1
2 .

Bold Latin letters like u,v,f , . . . , indicate vector valued functions, while the
capital ones (e.g., X,Y ,V , . . . ) are functional sets involving vector fields.

2. The variational Stokes problem. Let f be a given force in (L2(Ω))3. We
are interested in the steady Stokes problem with homogeneous Dirichlet boundary
conditions which may be viewed as the “worst” case with respect to the analysis we
carry out. Indeed, regarding the inf-sup condition, in both continuous and discrete
levels, it is well known that Dirichlet-type conditions raise more technicalities than
any other type of classical boundary conditions (Neumann, Robin, mixed, etc.). Then,
the Stokes–Dirichlet system consists of finding a velocity vector field u and a pressure
scalar field p such that

−∆u+ ∇p = f in Ω,(2.1)

divu = 0 in Ω,(2.2)

u = 0 on Γ.(2.3)

The standard mixed variational formulation is based on a Green integration formula
and is written as follows: find (u, p) ∈ H1

0 (Ω)3 × L2
0(Ω) such that∫

Ω

∇u · ∇v dx+ b(v, p) =

∫
Ω

f · v dx ∀v ∈ H1
0 (Ω)3,(2.4)

b(u, q) = 0 ∀q ∈ L2
0(Ω).(2.5)
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The bilinear form b(·, ·) defined over H1
0 (Ω)3 × L2

0(Ω) is given by

b(v, q) = −
∫

Ω

(div v)q dx.(2.6)

As is well known, b(·, ·) satisfies an inf-sup condition with a positive constant α (see
[25], [36]), ∀q ∈ L2

0(Ω):

inf
q∈L2(Ω)

sup
v∈H1

0 (Ω)3

b(v, q)

‖v‖H1(Ω)3‖q‖L2(Ω)
≥ α.(2.7)

Using the saddle point theory of [23] (see also [36], [25]), problem (2.4)–(2.5) is well
posed.

Proposition 2.1. The variational Stokes problem (2.4)–(2.5) has a unique solu-
tion (u, p) ∈ H1

0 (Ω)3 × L2
0(Ω), and we also have the stability condition

‖u‖H1(Ω)3 + ‖p‖L2(Ω) ≤ C‖f‖L2(Ω)3 .(2.8)

3. A mixed mortar finite element discretization. The framework of the
stabilized domain decomposition algorithm proceeds by breaking up the domain Ω,
where the partial differential equation is to be solved, into k∗ nonoverlapping subdo-
mains that are assumed to be polygonally shaped for simplicity:

Ω =

k∗⋃
k=1

Ωk with Ωk ∩ Ω� = ∅ if k �= �,

where Ωk is a polyhedron with planar polygonal faces. To prevent high technicali-
ties, we shall analyze here only the case of conforming decompositions, meaning that
when the subdomains are considered as macroelements, the intersection of two closed
subdomains Ωk ∩ Ω� so as the intersection ∂Ω ∩ ∂Ωk is either empty, or reduced to
a common vertex, to a common edge, or to a common face. When two subdomains
Ωk and Ω�, k < �, are adjacent, Γk� is the common interface. The unit outward
normal of ∂Ωk is nk. The index k� is meaningless when Ωk and Ω� do not share any
common face. All the subdomains are assumed to be of comparable size O(H); that
is, the length of any edge of any Ωk is of order O(H) and therefore |Ωk| = O(H3) and
|Γk�| = O(H2).

With each subdomain Ωk we then associate a triangulation T Ωk

h which is regular
in the sense of [31] and made of tetrahedral elements with a maximum size hk. We
set h = (hk)k to be the discretization parameter. The trace of T Ωk

h on the boundary

∂Ωk results in a regular (two-dimensional) triangulation T ∂Ωk

h made of triangular

elements (that are all entire faces of an element of the triangulation of Ωk). The T ∂Ωk

h

is supposed compatible with the faces of Ωk in the sense that each face Γk� inherits
from T ∂Ωk

h a triangulation T Γk�

h . Note that, since the triangulations on two adjacent
subdomains are independent, Γk� is provided with two different and independent (two-
dimensional) meshes T Γk�

h (the trace of T ∂Ωk

h ) and T Γ�k

h (the trace of T ∂Ω�

h ). For
some technical reasons that will appear later, we need to introduce some new notation
taken from [14]. For any T ∈ T ∂Ωk

h , the macroelement ∆T is the union of all elements

of T ∂Ωk

h which share at least a corner with T . Due to the regularity of T ∂Ωk

h , the
number of elements T ′ contained in ∆T is bounded by a constant independent of hk.
We assume also that on any face Γk� the meshes T ∂Ωk

h (or T Γk�

h ) and T ∂Ω�

h (or T Γ�k

h )
are locally comparable in the sense that (see Figure 3.1)
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∆’T

T

Fig. 3.1. ∆′
T—dashed lines; for the triangle T—solid lines.

(Hi) for any T ∈ T ∂Ωk

h , if ∆′
T is the “minimal” union of all elements of the

opposite triangulation T ∂Ω�

h such that T ⊂ ∆′
T , then there exists a constant τ that

does not depend on the parameters (hk, h�) such that card ∆′
T ≤ τ , where card is the

cardinality;
(Hii) there exists a constant τ ′ independent of (hk, h�) such that hT ′ ≤ τ ′hT

∀T ′ ∈ ∆′
T .

Remark 3.1. The hypotheses on the meshes (T ∂Ωk

h )k are less stringent than
those used in [26], where the authors assumed that these meshes are quasi-uniform
and globally comparable, i.e., τh� ≤ hk ≤ τ ′h�. Of course these kinds of meshes satisfy
criteria (Hi) and (Hii). Our hypothesis allows the use of some refined meshes—needed
in adaptive methods—provided that the “opposite” new elements (in both sides), so to
speak, generated by the refining process in both sides of each face Γk� are of equivalent
sizes so that criterion (Hii) is observed. As a matter of fact, our feeling is similar to
that expressed in [26, Remark 1], “. . .we believe that the above assumptions are only
technical ones, and that the results (and the applicability of the whole method) are
valid in more general circumstances.”

The present study is restricted to the configurations where the finite elements
approximation of the velocity field within each subdomain is provided by continuous
piecewise affine functions. This is the case for the Bercovier–Pironneau P1isoP2/P1
element or Arnold–Brezzi–Fortin bubble finite element (see [43], [25]). In order to
explain the main ideas of our construction and analysis, we prefer to focus on the
second finite element method even though, seemingly, the first one is currently more
employed. However, the analysis extends in the same way to the Bercovier–Pironneau
elements. For any κ ∈ T Ωk

h and any r ∈ N, let Pr(κ) stand for the set of polynomials
of total degree ≤ r; (xκ,i)1≤i≤4 are the vertices of κ, and λκ,i is the barycentric
coordinate associated with xκ,i. We then define the standard volumic bubble function
as

ϕκ(x) =

4∏
i=1

λκ,i(x) ∀x ∈ κ

and set PB(κ) = P1(κ)⊕Rϕκ. Then we introduce the finite dimension vector valued
spaces

Yh(Ωk) = {vh ∈ C (Ωk)
3, ∀κ ∈ T Ωk

h , vh|κ ∈ PB(κ)3, vh,k|∂Ωk∩∂Ω = 0}.
The notation Yh(∂Ωk) is used for the space of the functions defined on ∂Ωk as the
trace of all those in Yh(Ωk).

The purpose is to choose the global velocity finite element approximation that
consists of functions whose restriction over each Ωk belongs to Yh(Ωk). Since the
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interface is provided with two independent meshes, the constraint of continuity of the
global function over Ω is not compatible with good approximation properties of the
discrete space as it would “block” all degrees of freedom over the interfaces (Γk�)k�
which results in a numerical locking phenomenon. To avoid this, a nonconforming
matching, based on the mortar concept, is proposed in [10] and studied under the as-
sumption that the interfacial meshes (T Γk�

h )k� are structured and quasi-uniform. De-
spite the optimality of the results proven therein (see also [22]), the problem with that
matching comes from the difficulty of constructing the Lagrange multipliers space. In-
deed, for tetrahedral elements this construction is not systematic and may generate
some complication for the programming work. The purpose of what follows is to com-
bine the stabilizing techniques with the mortar concept to build-up a comprehensive
matching while preserving the optimality to make sure that the method can be easily
implemented.

Enforcing the matching conditions for tetrahedral finite elements across a given
interface requires deciding which is the mortar side (master side); the other being
the nonmortar side (slaved side). For clarity, assume that for any Γk�, k < �, the
subdomain Ωk provides the mortar and the subdomain Ω� the nonmortar. Thus, in
Γk�, we have two grids; when associated with T Γk�

h it is a mortar and if associated

with T Γ�k

h it is nonmortar. Henceforth, we call T Γk�

h , k < �, the mortar mesh and

T Γ�k

h , k < �, the nonmortar mesh. The stabilization approach consists of enriching the
discrete space Yh(Ωk) by some boundary bubble functions defined on the nonmortar
side of each interface Γk�, k < �, then endowed with the mesh T Γ�k

h . Let a triangular

element be (T ∈ T Γ�k

h ), and let κ = κT be the unique tetrahedron of T Ω�

h having
T as a face. The vertices of κ that are also vertices of T are {xκ,1,xκ,2,xκ,3}. The
boundary bubble function we need to use is defined by

ϕT (x) =
60

|T |λκ,1(x)λκ,2(x)λκ,3(x) ∀x ∈ κ

and extended by zero elsewhere. |T | is the surface of T , the modulation coefficient
allows

∫
T
ϕT dΓ = 1, and we have

|T ||ϕT |2H1(κT ) + ‖ϕT ‖2
L2(κT ) ≤ c|T |− 1

2 .(3.1)

The local velocities are taken in the stabilized finite dimension vector valued space

Xh(Ωk) = Yh(Ωk) ⊕

⎛
⎜⎜⎜⎝

⊕
T∈T

Γk�
h

k>�

R
3ϕT

⎞
⎟⎟⎟⎠ ,

and the local discrete pressure space is defined as follows:

Qh(Ωk) = {qh ∈ C (Ωk), ∀κ ∈ T Ωk

h , qh|κ ∈ P1(κ)}.

Setting X̃h(Ωk) = Xh(Ωk)∩H1
0 (Ωk)

3 and defining Q̃h(Ωk) as the subspace of Qh(Ωk)
involving the null-averaged pressure, it is standard that the family {X̃h(Ωk), Q̃h(Ωk)}
is div-stable; actually this result is issued from the standard div-stability of (Yh(Ωk)∩
H1

0 (Ωk)
3, Qh(Ωk)∩L2

0(Ω)). This means that the form b(·, ·) satisfies a uniform inf-sup
condition that there exist a constant α̃k > 0 such that for any qh ∈ Q̃h(Ωk) we can
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find ṽh ∈ X̃h(Ωk) that verifies∫
Ωk

(div ṽh)qh dx = ‖qh‖2
L2(Ωk) and α̃k‖ṽh‖H1(Ωk)3 ≤ ‖qh‖L2(Ωk).(3.2)

The constant α̃k is independent of hk and H even though it does depend on the
shape of Ωk—this inf-sup condition is derived from a standard statement, proven
for a domain with size O(1) (see [25]), then extended in our context through an
appropriate scaling.

Given these local tools, velocities are taken locally in Xh(Ωk) and glued together
through the interfaces (Γk�)k� by suitable matching conditions. Expressing these
conditions requires building some “gluing” functional spaces on the nonmortar side
of Γk� (k < �), then endowed with the triangulation T Γ�k

h ,

Mh(Γk�) = {Ψh ∈ L2(Γk�)
3, ∀T ∈ T Γ�k

h , Ψh|T ∈ P0(T )3}.

By a duality argument, the following estimate holds: ∀Ψ ∈ H
1
2 (Γk�),

inf
Ψh∈Mh(Γk�)

‖Ψ − Ψh‖
H− 1

2 (Γk�)3
≤ Ch�|Ψ|

H
1
2 (Γk�)3

.(3.3)

The purpose of what follows is to use the stabilizing techniques applied to the
mortar element method to build-up an easy matching for the velocity. The global
velocity approximation space is then given by

Xh(Ω) =

{
vh = (vh,k)k ∈ L2(Ω)3 ;vh,k ∈Xh(Ωk), ∀(k, �), k < �,

∀Ψh ∈Mh(Γk�),

∫
Γk�

(vh,k − vh,�) · Ψh dΓ = 0

}
.

Since it is not embedded in H1
0 (Ω)3, the space Xh(Ω) is equipped with the Hilbertian

broken seminorm (which is actually a norm)

‖vh‖X =

(
k∗∑
k=1

|vh,k|2H1(Ωk)3

) 1
2

.

We will denote by C and c generic positive constants. These constants take different
values in different occurrences but are always independent of the mesh parameter h
and independent of the subdomain size H.

The discretization is nonconforming; nevertheless under assumptions (Hi) and
(Hii) the space Xh(Ω) has suitable approximation properties, the proof of which is
postponed to the appendix.

Proposition 3.2. For any v ∈ H1
0 (Ω)3 with vk = v|Ωk

∈ H2(Ωk)
3, it holds that

inf
vh∈Xh(Ω)

‖v − vh‖X ≤ C

(
k∗∑
k=1

h2
k|vk|2H2(Ωk)3

) 1
2

.(3.4)

Remark 3.3. Different choices of the bubble function that leads to the same
asymptotic convergence result of Proposition 3.2 are possible. For instance, the func-
tion ϕT ∈ P3(κT ) can be replaced by a continuous piecewise affine function con-
structed as follows: the triangle T is broken-up into three smaller ones (tT,i)1≤i≤3
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sharing the same vertex, the center of T . The tetrahedra determined by the basis tT,i
and the internal vertex of κT are denoted by κT,i; the union of the three resulting
tetrahedra (κT,i)1≤i≤3 coincides with κT . Then, we can choose ϕ̃T to be continuous,
to vanish on ∂κT , so that ϕ̃T |κT,i

∈ P1(κT,i) and
∫
T
ϕ̃T dΓ = 1. More general bubble

functions could be used, provided that their integral on T is one.
Remark 3.4. In the three-dimensional case, a coherent construction of the sta-

bilized finite element space Xh(Ω) is made possible thanks to the mortaring concept
applied to the nonmatching meshes. The original stabilization techniques developed
in [24] (see also [26]) for two-dimensional three-field domain decomposition meth-
ods with nonmatching grids can hardly be extended to three dimensions. The main
reason is that choosing completely independent meshes for Xh(Ω) and (Mh(Γk�))k�,
then merging them for bubble stabilization, would result in a very complicated new
mesh with arbitrarily shaped elements that can hardly be used for finite element
computations.

The discrete pressure is free of any matching constraints at the interfaces, and
the pressure space is defined to be

Qh(Ω) = {qh = (qh,k)k ∈ L2
0(Ω), qh,k ∈ Qh(Ωk)}.

Endowed with the L2(Ω)-norm, Qh(Ω) provides fairly good approximation of regular
pressures; that is, the following optimal result holds (see [31]): ∀q ∈ L2

0(Ω) with
qk = q|Ωk

∈ H1(Ωk),

inf
qh∈Qh(Ω)

‖q − qh‖L2(Ω) ≤ C

(
k∗∑
k=1

h2
k|qk|2H1(Ωk)

) 1
2

.(3.5)

Let us stress the fact that only the velocity space is mortared, while the pressure is
not subjected to any particular constraints across the interfaces.

We are now in position to formulate and investigate the discrete problem, which
consists of finding (uh, ph) ∈Xh(Ω) ×Qh(Ω) satisfying

a(uh,vh) + b(vh, ph) =

∫
Ω

f · vh dx ∀vh ∈Xh(Ω),(3.6)

b(uh, qh) = 0 ∀qh ∈ Qh(Ω),(3.7)

where we have set

a(uh,vh) =

k∗∑
k=1

∫
Ωk

∇uh,k · ∇vh,k dx ∀uh,vh ∈Xh(Ω),

b(vh, qh) = −
k∗∑
k=1

∫
Ωk

(div vh,k)qh,k dx ∀vh ∈Xh(Ω), ∀qh ∈ Qh(Ω).

A notation abuse is made here for a(·, ·) and b(·, ·) because the expression given here is
an extension of (2.6). Deriving existence, uniqueness, and stability results is based on
the saddle point theory. The bilinear form a(·, ·) is uniformly continuous on Xh(Ω)
and is positive-definite. The main remaining point is the verification of an inf-sup
condition for b(·, ·) on the discrete spaces Xh(Ω) ×Qh(Ω) with a constant that does
not depend on h or on the total number k∗ of the subdomains. In what follows, the
notations C and c (indexed or not by k) are constants that do not depend on the size
of the subdomains nor on the mesh size.
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4. Boland–Nicolaides argument and the discrete inf-sup condition.
The core of this work is to state a Babuška–Brezzi inf-sup condition on b(·, ·) restricted
to Xh(Ω) × Qh(Ω). The proof is based on a tricky decomposition of the pressure
space introduced by Boland and Nicolaides (see [20]). This reduces the problem to
two simpler ones: the evaluation of the local inf-sup constants and the evaluation of
a global inf-sup constant on reduced spaces. The same idea was used for the mortar
element approximation of the Stokes equations for two-dimensional finite elements
in [7] and for two- and three-dimensional spectral elements in [9]. The results given
therein may be considered partially sharp; it is only proven that the inf-sup constant
behaves like the local constants, but they do not answer the question of whether this
constant grows with the total number k∗ of the subdomains or not. Here we provide
the answer: it does not. As already underlined in [8] for the Poisson problem, this
point is of major importance for iterative preconditioned substructuring solvers (see
[41], [42], [35]) as the iterations number increases with the inf-sup constant. Let us
begin by proving an optimal result for Xh(Ω) and the space of piecewise constant
pressures:

Q̌(Ω) =

{
q̌ = (q̌k) ∈ R

k∗ , (q̌, 1)L2(Ω) =

k∗∑
k=1

q̌k|Ωk| = 0

}
.

The main difficulty is inherent to the shape of the subdomains (Ωk)1≤k≤k∗ which may
be pretty complicated. For instance, in the case where the domain is decomposed into
tetrahedral or hexahedral subdomains, the proof of the inf-sup condition is directly
issued from standard conforming mixed finite element results (see [43], [25]). To
handle the general case we first need a preliminary result.

Lemma 4.1. For any interface Γk� (k < �) there exists vk�h ∈ Xh(Ω) with a
support contained in Ωk ∪ Ω� and such that

‖vk�h ‖X ≤ γk�H
− 3

2 ,∫
Γk�

vk�h,k · nk dΓ = −
∫

Γk�

vk�h,� · n� dΓ = 1.

The constant γk� is independent of H.
Proof. Let Γk� (k < �) be a fixed interface, and assume for a while that |Ωk| ≈

|Ωk| = O(1). Consider the affine finite element trace space built on the mortar mesh
T Γk�

h ,

Yh(Γk�) = {Φh ∈ C (Γk�)
3, ∀T ∈ T Γk�

h , Φh|T ∈ P1(T )3, Φh|∂Γk�
= 0}.

Notice that
∏
k<�(Yh(Γk�))k� is the so-called mortar space; we refer to [15] for more

details on the mortar terminology. In the same way we construct the space on the
nonmortar mesh T Γ�k

h , which is denoted by Ỹh(Γk�). For conciseness the index k� is
dropped except for Γk� in the remaining part of the proof. If r̃h stands for the regu-
larizing Clément operator (see [32] and [14] for the definition and the approximation

results) mapping L2(Γk�)
3 into Ỹh(Γk�), it holds that ∀Φ ∈ H

1
2
00(Γk�), ∀T ∈ T Γ�k

h ,

‖Φ − r̃hΦ‖2
L2(T ) ≤ c|T | 12 |Φ|2

H
1
2∗ (∆T )

,(4.1)

‖r̃hΦ‖L2(Γk�) ≤ c‖Φ‖L2(Γk�) and |r̃hΦ|
H

1
2
00(Γk�)

≤ c|Φ|
H

1
2
00(Γk�)

.(4.2)
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The space H
1
2∗ (∆T ) coincides with the standard H

1
2 (∆T ) if ∆T ∩ ∂Γk� = ∅ and is

H
1
2
00(∆T ,∆T ∩ ∂Γk�) otherwise. Then, choose Φh ∈ Yh(Γk�) satisfying∫

Γk�

Φh · nk dΓ = 1,

with ‖Φh‖
H

1
2
00(Γk�)

independent of h. Obviously, such a Φk�h exists; moreover, (4.2)

implies that ‖r̃hΦh‖
H

1
2
00(Γk�)

≤ C. We introduce the trivial extensions of Φh to ∂Ωk

and of (r̃hΦh) to ∂Ω� that we still denote Φh ∈ Yh(∂Ωk) and r̃hΦh ∈ Yh(∂Ω�). By
stable extension (see [14]) we obtain wh,k ∈ Yh(Ωk) and wh,� ∈ Yh(Ω�) that are
uniformly bounded:

‖wh,k‖H1(Ωk)3 ≤ c‖Φh‖
H

1
2
00(Γk�)

,(4.3)

‖wh,�‖H1(Ω�)3 ≤ c‖r̃hΦh‖
H

1
2
00(Γk�)

≤ c‖Φh‖
H

1
2
00(Γk�)

.(4.4)

The construction of vh follows from the correction added to wh,�,

vh,� = wh,� +
∑

T∈T
Γk�
h

(∫
T

(wh,k −wh,�) dΓ
)
ϕT

= wh,� +
∑

T∈T
Γk�
h

(∫
T

(Φh − r̃hΦh) dΓ

)
ϕT ,

and we set vh,k = wh,k and vh = 0 outside Ωk ∪ Ω�. It is readily checked that
vh ∈Xh(Ω) and∫

Γk�

vh,k · nk dΓ =

∫
Γk�

Φh · nk dΓ = −
∫

Γk�

vh,� · n� dΓ = 1.

What remains to prove is that the added term, henceforth denoted tk�, is bounded in
H1(Ω�)

3 independently of h�. Indeed, using (3.1) and (4.1), we have

|tk�|2H1(Ω�)3
=

∑
T∈T

Γk�
h

∣∣∣∣
∫
T

(Φh − r̃hΦh) dΓ

∣∣∣∣
2

|ϕT |2H1(Ω�)

≤ c
∑

T∈T
Γk�
h

|T |− 3
2

∣∣∣∣
∫
T

(Φh − r̃hΦh) dΓ

∣∣∣∣
2

≤ c
∑

T∈T
Γk�
h

|T |− 1
2 ‖Φh − r̃hΦh‖2

L2(T )

≤ c
∑

T∈T
Γk�
h

|Φh|2
H

1
2∗ (∆T )

≤ c|Φh|2
H

1
2
00(Γk�)

.

The uniform boundedness of vh is achieved by (4.2) and is due to the uniform bound
if we have a bound for ‖Φh‖

H
1
2
00(Γk�)

. The more general result of the lemma (i.e.,

|Ωk| ≈ |Ω�| = O(H)) is derived by an easy scaling argument.
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Now comes the main result of our study, the div-stability for the reduced family
of spaces (Xh(Ω), Q̌(Ω)).

Proposition 4.2. There exists a constant α̌ depending neither on the discretiza-
tion parameter h nor on the size H of the subdomains so that the following inf-sup
condition holds:

inf
q̌∈Q̌(Ω)

sup
vh∈Xh(Ω)

b(vh, q̌)

‖vh‖X‖q̌‖L2(Ω)
≥ α̌.

Proof. As the inf-sup condition is available in the continuous setting (2.7), an
equivalent statement of the proposition is to show that for any v ∈ H1

0 (Ω)3 there
exists vh ∈Xh(Ω) such that

b(v − vh, q̌h) = 0 ∀q̌h ∈ Q̌(Ω),(4.5)

‖vh‖X ≤ γ‖v‖H1(Ω),(4.6)

where γ > 0 does not depend on h or H. Then, the constant α̌ could be taken equal
to the quotient α

γ . Let us set

vh =
∑

k�, k<�

(∫
Γk�

v · nk dΓ
)
vk�h ,

where vk�h is provided by Lemma 4.1. Noticing that vh,k|Γk�
= vk�h,k|Γk�

and vh,�|Γk�
=

vk�h,�|Γk�
, it becomes straightforward that ∀k� (k < �)

∫
Γk�

vh,k.nk dΓ =

(∫
Γk�

v · nk dΓ
)(∫

Γk�

vk�h,k · nk dΓ
)

=

∫
Γk�

v · nk dΓ,∫
Γk�

vh,� · n� dΓ = −
∫

Γk�

v · nk dΓ =

∫
Γk�

v · n� dΓ.

This allows us to deduce that ∀k (1 ≤ k ≤ k∗)∫
∂Ωk

(v − vh,k) · nk dΓ = 0,

and then statement (4.5) is checked by Green’s formula. In order to bound ‖vh‖X we
make the convention vk�h = v�kh ; then a scaling argument yields ∀k (1 ≤ k ≤ k∗)∫

∂Ωk

|v · nk| dΓ ≤ cH
3
2 ‖vk‖H1(Ωk)3 ,

which, together with Lemma 4.1, allows the following:

‖vh,k‖2
H1(Ωk)3 ≤ ck

∑
�; k� is defined

‖vk�h,k‖2
H1(Ωk)3

∣∣∣∣
∫

Γk�

v · nk dΓ
∣∣∣∣
2

≤ γk‖vk‖2
H1(Ωk)3 .

The constant γk(= cmaxk� γk�) is independent of h and of H. This yields the state-
ment (4.6) and achieves the proof with γ = maxk γk.

Remark 4.3. Actually, the constant α̌ is also independent of k∗, the total number
of the subdomains, but it does depend on the shape of (Ωk)k and their distribution
(i.e., nearest neighbor relations).
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Back to the global pressure space Qh(Ω), we intend to prove by the Boland–
Nicolaides method an optimal inf-sup condition between Xh(Ω) and Qh(Ω).

Theorem 4.4. There exists a constant α′ depending neither on the discretization
parameter h nor on the size H of the subdomains so that the following inf-sup condition
holds:

inf
qh∈Qh(Ω)

sup
vh∈Xh(Ω)

b(vh, qh)

‖vh‖X‖qh‖L2(Ω)
≥ α′.

Proof. Let qh = (qh,k)1≤k≤k∗ be any function in Qh(Ω); it may be decomposed
as ∀k(1 ≤ k ≤ k∗),

qh,k = q̃h,k + q̌h,k, with q̌h,k =
1

|Ωk|

∫
Ωk

qh,k(x) dx.

Since the function q̃h,k ∈ Qh(Ωk) ∩ L2
0(Ωk), there exists a local velocity field ṽh,k ∈

X̃h(Ωk) = (Xh(Ωk) ∩ H1
0 (Ωk)

3) verifying (3.2). Then, we define the function ṽh =
(ṽh,k)1≤k≤k∗ ∈ Xh(Ω). Furthermore, by Proposition 4.2 we construct w̌h ∈ Xh(Ω)
so that

b(w̌h, q̌h) = ‖q̌h‖2
L2(Ω) and α̌‖w̌h‖X ≤ ‖q̌h‖L2(Ω).

Next we choose v̌h = (v̌h,k)1≤k≤k∗ with v̌h,k = w̌h,k + βkṽh,k. The coefficients
(βk)1≤k≤k∗ are computed so that {(div v̌h, q̃h)L2(Ωk), (1 ≤ k ≤ k∗)} vanish; thus

βk = −
(div w̌h,k, q̃h,k)L2(Ωk)

‖q̃h,k‖2
L2(Ωk)

.

Taking vh = v̌h + ṽh, it is readily checked that

b(vh, qh) = ‖q̃h‖2
L2(Ω) + ‖q̌h‖2

L2(Ω) = ‖qh‖2
L2(Ω),

and α′‖vh‖X ≤ ‖qh‖L2(Ω), where α′ may be chosen so that

α′ =
1

2
min(1, α̌) min

1≤k≤k∗
α̃k√

1 + α̃2
k

.

Remark 4.5. Observe that nowhere in the proof of the inf-sup condition were the
assumptions (Hi) or (Hii) employed. Theorem 4.4 is then valid for arbitrary meshes.

The immediate consequence is the well posedness of the discrete problem. Indeed,
by the saddle point theory we have the following result.

Proposition 4.6. The discrete problem (3.6)–(3.7) has only one solution (uh, ph) ∈
Xh(Ω) ×Qh(Ω), and we have

‖uh‖X + ‖ph‖L2(Ω)2 ≤ C‖f‖L2(Ω)3 .(4.7)

5. The final error estimates. In order to perform the numerical analysis and
to derive the convergence rate towards the exact solution, we adapt, as is done in
[34], the approximation theory of the saddle point problems to our nonconforming
discretization. Let us introduce the space

Vh(Ω) = {vh ∈Xh(Ω), b(vh, qh) = 0, ∀qh ∈ Qh(Ω)}.
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Then we have the abstract error estimate which is considered as an extension of the
Berger–Scott–Strang lemma to the Stokes problem (see [12], [34]).

Lemma 5.1. We have the following error estimate:

‖u− uh‖X + ‖p− ph‖L2(Ω)

≤ C

(
inf

vh∈Vh(Ω)
‖u− vh‖X + inf

qh∈Qh(Ω)
‖p− qh‖L2(Ω)(5.1)

+ sup
wh∈Vh(Ω)

1

‖wh‖X

k∗∑
k=1

〈(∂nk
u+ p),wh,k〉 1

2 ,∂Ωk

)
.

The first two error terms in (5.1) are known as the approximation error; the third
term is the consistency error and is a consequence of the discontinuity of the ele-
ments of Vh(Ω) through the interfaces. The main convergence result on u is given in
the following theorem.

Theorem 5.2. Assume that the exact solution (u, p) ∈ H1
0 (Ω)3 ×L2

0(Ω) satisfies
the regularities

uk = u|Ωk
∈ H2(Ωk)

3, pk = p|Ωk
∈ H1(Ωk) ∀k (1 ≤ k ≤ k∗);

then under the hypotheses (Hi) and (Hii) it holds that

‖u− uh‖X + ‖p− ph‖L2(Ω) ≤ C

(
k∗∑
k=1

h2
k(|uk|2H2(Ωk)3 + |pk|2H1(Ωk))

) 1
2

.(5.2)

The inf-sup condition of Theorem 4.4 is independent of h; techniques used for
standard h-finite element approximation work as well. Indeed, the best approxima-
tion rate of the velocity u by vector valued functions of Vh(Ω) is asymptotically
equivalent to that provided by the best fit of u by the functions of Xh(Ω). Under the
hypotheses (Hi) and (Hii) this rate is optimal, as given in Proposition 3.2. Moreover,
the approximation error is optimal for the pressure (3.5). The only remaining point
is to evaluate the consistency error which is handled in a standard way using estimate
(3.3) and turns out to be optimal.

Lemma 5.3. Under the regularity assumptions of Theorem 5.2 it holds that

sup
wh∈Vh(Ω)

1

‖wh‖X

k∗∑
k=1

〈(∂nk
u+ pnk),wh,k〉 1

2 ,∂Ωk

≤ C

(
k∗∑
k=1

h2
k(|uk|2H2(Ωk)3 + |pk|2H1(Ωk))

) 1
2

.

Proof. It is clear that ∀vh ∈ Vh(Ω)

k∗∑
k=0

〈(∂nk
u+ pnk),wh,k〉 1

2 ,∂Ωk
=

∑
k<�

∫
Γk�

(∂nk
u+ pnk)(vh,k − vh,�) dΓ.

On account of the definition of Xh(Ω), which contains Vh(Ω), we say that ∀ψh ∈
Mh(Γk�),∫

Γk�

(∂nk
u+ pnk)(vh,k − vh,�) dΓ =

∫
Γk�

(∂nk
u+ pnk − ψh)(vh,k − vh,�) dΓ.
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The proof is achieved in a standard way after noticing that Aubin–Nitsche duality
yields

inf
ψh∈Mh(Γk�)

‖∂nk
u+ pnk − ψh‖

(H
1
2 (Γk�)2)′

≤ Ch�(|uk|H2(Ω�)3 + |p�|H1(Ω�)).

Proof of Theorem 5.2. It is a direct consequence of Lemma 5.1, Proposition 3.2,
and Lemma 5.3.

Remark 5.4. It may occur that the solution (u, p) of the problem (2.1)–(2.3)
is less regular than assumed in Theorem 5.2. Also, in this case the optimal error
estimate holds. For instance, if (u, p) ∈ H1

0 (Ω)3 ×L2(Ω) such that uk ∈ H1+λk(Ωk)
3

and pk ∈ Hλk(Ωk) with 0 < λk ≤ 1, we have

‖u− uh‖X + ‖p− ph‖L2(Ω)

≤ C

(
k∗∑
k=1

h2λk

k (‖uk‖2
H1+λk (Ωk)3 + ‖pk‖2

Hλk (Ωk) + ‖f‖2
L2(Ωk)3)

) 1
2

.

This convergence rate is proven directly for λk >
1
2 , following the analysis realized

here, and the term ‖f‖L2(Ωk)3 may disappear. It is more technical for λk ≤ 1
2 and is

obtained as in [7] by Hilbertian interpolation of the stability estimates (2.8) and (4.7)
in one side and from estimate (5.2) in the other side.

Remark 5.5. Using the bubble stabilized domain decomposition approach with
higher order mixed P2/P1 Taylor–Hood finite elements also yields the optimal conver-
gence rate (5.2) as long as the local solution (uk, pk) belongs toH1+λk(Ωk)

3×Hλk(Ωk)
with λk ≤ 3

2 .

6. Conclusion. For the numerical simulation by domain decomposition proce-
dures of second order elliptic problems, the attempts already made to propose an ef-
ficient way to match (incompatible) three-dimensional tetrahedral finite element grids
are based on a more or less heavy construction of Lagrange multiplier spaces (see [10],
[48], [39]). Besides, using the current refining/unrefining processes for adaptivity turns
out to be a pain in the neck due to the nonsystematic character of these constructions.
Combining the (architectural) mortar features together with the bubble-stabilization
techniques, as presented in this paper, allow an easy and systematic numerical mod-
eling of the “weak continuity” across the interfaces. The mathematical analysis of the
stabilized mortar finite element method highlights the expected optimality. Moreover,
the implementation of this algorithm does not seem to be a difficult work! Some tips
for the numerical programming are given in Appendix B.

Apart from the extension to three dimensions, this paper allows us to recover
the optimality on the inf-sup constant for the Stokes system. Indeed, that constant
turns out to be independent of h and of k∗, the mesh size and the total number of
the subdomains. Earlier works in two dimensions (see [7], [9]) failed to prove that it
does not grow with k∗.

Appendix A. The proof of Proposition 3.2. For simplicity, the proof is
processed on each component of v, henceforth denoted v. Let us associate with u the
local (to subdomains) Lagrange interpolants vh,k = (Ih,kv) ∈ Yh(Ωk); then we have

(see [31]) that ∀k, ∀κ ∈ T Ωk

h ,

|v − vh,k|H1(κ) + |κ|− 1
3 ‖v − vh,k‖L2(κ) ≤ C|κ| 13 |v|H2(κ);(A.1)
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note that |κ| 13 ≤ chk. The function vh = (vh,k)k does not satisfy the matching
condition across the interfaces. To cope with this, we have to add to vh a correction
term so as to obtain an approximation of v that belongs to Xh(Ω). Let us focus on
a single face Γk�, k < �, which is common to Ωk and Ω� with Ωk the mortar side
and Ω� the nonmortar side. Enforcing the matching across Γk� requires the following
modification of vh,� based on the bubble functions:

ṽh,� = vh,� +
∑

T∈T
Γ�k
h

(∫
T

(vh,k − vh,�) dΓ

)
ϕT .(A.2)

For convenience we also set ṽh,k = vh,k, k �= �. Clearly, ṽh = (ṽh,k)k fulfills the
matching across Γk�. In addition, remark that ṽh,� coincides with the initial vh,� on
the ∂Ω� except, of course, the interior of Γk�. Bearing in mind that this process has
to be iterated, this modification will be realized on all the faces; the aforementioned
remark is very important and says that the correction made on Γk� will not alter the
matching on the other faces. The remaining work consists of bounding the correction
term of (A.2), henceforth denoted tk�. In view of (3.1) we have

|tk�|2H1(Ω�)
=

∑
T∈T

Γ�k
h

(∫
T

(vh,k − vh,�) dΓ

)2

|ϕT |2H1(Ω�)

≤ c
∑

T∈T
Γ�k
h

|T |− 3
2

(∫
T

(vh,k − vh,�) dΓ

)2

≤ c
∑

T∈T
Γ�k
h

|T |− 1
2 ‖vh,k − vh,�‖2

L2(T )

≤ c
∑

T∈T
Γ�k
h

|T |− 1
2 (‖v − vh,�‖2

L2(T ) + ‖v − vh,k‖2
L2(T )).

The first part of the sum is easily handled. Using (A.1) and the regularity of the mesh
T Γ�k

h yields

∑
T∈T

Γ�k
h

|T |− 1
2 ‖v − vh,�‖2

L2(T ) ≤ c
∑

T∈T
Γ�k
h

|T |− 1
2 |T | 32 |v|2

H
3
2 (T )

≤ Ch2
� |v|2

H
3
2 (Γk�)

≤ Ch2
� |v|2H2(Ω�)

.

Bounding the second part is performed using the technical assumptions on the trace
meshes. It holds that

∑
T∈T

Γ�k
h

|T |− 1
2 ‖v − vh,k‖2

L2(T ) ≤
∑

T∈T
Γ�k
h

|T |− 1
2 ‖v − vh,k‖2

L2(∆′
T

)

≤
∑

T∈T
Γ�k
h

∑
T ′⊂∆′

T

|T |− 1
2 |T ′| 32 |v|2

H
3
2 (T ′)

.
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By assumption (Hii)—local comparison between adjacent meshes—we get

∑
T∈T

Γ�k
h

|T |− 1
2 ‖v − vh,k‖2

L2(T ) ≤ c
∑

T∈T
Γ�k
h

∑
T ′⊂∆′

T

|T ′||v|2
H

3
2 (T ′)

≤ ch2
k

∑
T∈T

Γ�k
h

|v|2
H

3
2 (∆′

T
)
.

Using hypothesis (Hi) yields the final result,

∑
T∈T

Γ�k
h

|T |− 1
2 ‖v − vh,k‖2

L2(T ) ≤ ch2
k|v|2

H
3
2 (Γk�)

≤ Ch2
k|v|2H2(Ωk).

Iterating the process on all the remaining faces completes the proof.

Remark A.1. The end of the proof becomes direct when the trace meshes
(T Γk�

h )k� are quasi-uniform and any couple of adjacent meshes are globally com-
parable (see Remark 3.2). Indeed, we may write that

∑
T∈T

Γ�k
h

|T |− 1
2 ‖v − vh,k‖2

L2(T ) ≤ ch−1
�

∑
T∈T

Γ�k
h

‖v − vh,k‖2
L2(T )

≤ ch−1
� ‖v − vh,k‖2

L2(Γk�)
≤ ch−1

� h3
k|v|2

H
3
2 (Γk�)

.

Appendix B. Some remarks on the implementation. We shall give some
hints about the numerical implementation of the stabilized mortar finite element
method. The goal we are assigned is to understand the issue of the matching con-
straints implementation in the algebraic form of the problem. Then we choose, for
briefness, to address the Poisson problem consisting of finding uh ∈ Xh(Ω) such that

k∗∑
k=1

∫
Ωk

∇uh,k · ∇vh,k dx =

∫
Ω

fvh dx ∀vh ∈ Xh(Ω).(B.1)

The presentation adopted here is pretty similar to that detailed in [27], even though
the expository supplied there is based on the primal hybrid framework.

Let vh = (vh,k)k be an arbitrary function of the approximated space Xh(Ω); then
vh,k is split into

vh,k = ṽh,k +
∑

k�, k>�

∑
T∈T Γk�

βT (vh)ϕT ∀k (1 ≤ kk∗),

where ṽh,k ∈ Yh(Ωk) is piecewise linear and βT (vh) is a real number for any T . The
matching condition allows us to obtain the value of βT (vh) so as to eliminate it from
the variational formulation,

βT (vh) =

∫
T

(ṽh,� − ṽh,k) dΓ =

∫
T

[ṽh]k� dΓ, ∀T ∈ T Γk�

h .(B.2)

Plugging it into the Poisson problem (B.1), we obtain a stabilized problem with
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ũh = (ũh,k) ∈ Yh(Ω) =
∏k∗

k=1 Yh(Ωk) as the only unknown:

k∗∑
k=1

∫
Ωk

∇ũh,k · ∇ṽh,k dx+
∑

k�, k>�

∑
T∈T Γk�

|ϕT |2H1(κT )βT (uh)βT (vh)

+
∑

k�, k>�

∑
T∈T Γk�

∫
κT

(βT (uh)∇ϕT · ∇vh,k + βT (vh)∇uh,k · ∇ϕT ) dx

=

∫
Ω

fṽh dx+
∑
k�,k>�

∑
T∈T Γk�

βT (vh)

∫
κT

fϕT dx ∀vh ∈ Yh(Ω).

The norm |ϕT |H1(T ) can be easily computed by hand. Equation (B.2) and an
elementary integration by parts yield the following formulation: find ũh ∈ Yh(Ω) such
that

k∗∑
k=1

∫
Ωk

∇ũh,k · ∇ṽh,k dx+
∑

k�, k>�

∑
T∈T Γk�

|ϕT |2H1(κT )

(∫
T

[ũh]k� dΓ

)(∫
T

[ṽh]k� dΓ

)

−
∑
k�,k>�

∑
T∈T Γk�

∫
T

([ũh]k�∂nṽh,k + ∂nũh,k[ṽh]k�) dΓ

=

∫
Ω

fṽh dx+
∑

k�, k>�

∑
T∈T Γk�

(∫
T

[ṽh]k� dΓ

)(∫
κT

fϕT dx

)
∀ṽh ∈ Yh(Ω).

The bilinear form involved in the left-hand side of this variational equation is symmet-
ric. As already indicated in [26], this formulation of the discrete problem (B.1) looks
like the Nitsche stabilization introduced in [46] to handle in a variational way the
Dirichlet condition. A similar stabilization is also used in [38] in the nonconforming
domain decomposition context for the two-dimensional problems.

The most critical point pertains to the evaluation of
∫
T
[vh]k� dΓ. Indeed, [vh]k� is

piecewise linear on the triangle T . An exact computation of this term would be often
expensive and sometimes inaccessible, in particular when the trace of the mortar
mesh on T results in a complex partition of T . It is then necessary to resort to a
numerical integration. The main effect is that the mortar integral matching is not
exactly satisfied anymore. So far this difficulty, which has to be solved efficiently
in practice, is common to all the domain decomposition methods with nonmatching
grids. In [30] and in [45], a high number of numerical experiences realized in reasonable
circumstances are discussed, and the authors come to the conclusion that a Gauss
integration with a sufficient number of integrating points can be used. However, they
recommend use of a different quadrature formula for the evaluation of

∫
T
[uh]k� dΓ

(the computation should be realized on the mesh T Γk�

h ) and of
∫
T
[vh]k� dΓ (rather

T Γ�k

h has to be used), which results in a Petrov–Galerkin procedure. Although the
symmetry of the system is definitely broken, they claim that this approach does not
introduce any numerical instabilities and gives satisfactory results. Our belief is that
these trends should be confirmed by numerical tests in three dimensions.
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eds., World Scientific, River Edge, NJ, 2000, pp. 424–431.

[18] S. Bertoluzza and V. Perrier, The mortar method in the wavelet context, M2AN Math.
Model. Numer. Anal., 35 (2001), pp. 647–673.

[19] S. Bertoluzza, S. Falletta, and V. Perrier, Wavelet/FEM coupling by the mortar method,
in Recent Developments in Domain Decomposition Methods, Lect. Notes Comput. Sci. Eng.
23, L. F. Pavarino and A. Toselli, eds., Springer-Verlag, Berlin, 2002, pp. 119–132.

[20] J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints, SIAM
J. Numer. Anal., 20 (1983), pp. 722–731.

[21] D. Braess, W. Dahmen, and C. Wieners, A multigrid algorithm for the mortar finite element
method, SIAM J. Numer. Anal., 37 (1999), pp. 48–69.

[22] D. Braess and W. Dahmen, Stability estimates of the mortar finite element method for 3-
dimensional problems, East-West J. Numer. Math., 6 (1998), pp. 249–263.

[23] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising
from Lagrangian multipliers, RAIRO Anal. Numér., 8-R2 (1974), pp. 129–151.

[24] F. Brezzi, L. P. Franca, D. Marini, and A. Russo, Stabilization techniques for domain
decomposition with nonmatching grids, in Domain Decomposition Methods in Sciences and
Engineering, P. Bjrstad, M. Espedal, and D. Keyes, eds., Domain Decomposition Press,
Bergen, Norway, 1998, pp. 1–11.

[25] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput.
Math. 15, Springer-Verlag, New York, 1991.



A STABLE MORTAR METHOD FOR THE 3D STOKES PROBLEM 685

[26] F. Brezzi and D. Marini, Error estimates for the three-field formulation with bubble stabi-
lization, Math. Comp., 70 (2001), pp. 911–934.

[27] F. Brezzi and D. Marini, Implementation of the stabilized three-field formulation, in Recent
Trends in Numerical Analysis, D. Trigiante, ed., Adv. Theory Comput. Math. 3, Nova
Science, Commack, NY, 2000, pp. 59–70.

[28] A. Buffa, Error estimate for a stabilised domain decomposition method with nonmatching
grids, Numer. Math., 90 (2002), pp. 617–640.

[29] A. Buffa, Y. Maday, and F. Rapetti, A sliding mesh-mortar method for a two dimensional
eddy current model of electric engines, M2AN Math. Modél. Numér. Anal., 35 (2001), pp.
191–228.

[30] L. Cazabeau, Y. Maday, and C. Lacour, Numerical quadratures and mortar methods, in
Computational Sciences for the 21st Century, Bristeau et al., eds., Wiley and Sons, New
York, 1997, pp. 119–128.

[31] P.-G. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, Amsterdam,
1978.

[32] Ph. Clément, Approximation by finite element functions using local regularization, RAIRO
Anal. Numér., 9 (1975), pp. 77–84.
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Abstract. Soft wavelet shrinkage, total variation (TV) diffusion, TV regularization, and a
dynamical system called SIDEs are four useful techniques for discontinuity preserving denoising of
signals and images. In this paper we investigate under which circumstances these methods are
equivalent in the one-dimensional case. First, we prove that Haar wavelet shrinkage on a single scale
is equivalent to a single step of space-discrete TV diffusion or regularization of two-pixel pairs. In the
translationally invariant case we show that applying cycle spinning to Haar wavelet shrinkage on a
single scale can be regarded as an absolutely stable explicit discretization of TV diffusion. We prove
that space-discrete TV diffusion and TV regularization are identical and that they are also equivalent
to the SIDEs system when a specific force function is chosen. Afterwards, we show that wavelet
shrinkage on multiple scales can be regarded as a single step diffusion filtering or regularization of the
Laplacian pyramid of the signal. We analyze possibilities to avoid Gibbs-like artifacts for multiscale
Haar wavelet shrinkage by scaling the thresholds. Finally, we present experiments where hybrid
methods are designed that combine the advantages of wavelets and PDE/variational approaches.
These methods are based on iterated shift-invariant wavelet shrinkage at multiple scales with scaled
thresholds.
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stabilized inverse diffusion equation
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1. Introduction. Image denoising is a field where one is typically interested
in removing noise without sacrificing important structures such as edges. This goal
cannot be achieved with linear filters. Consequently, a large variety of nonlinear
strategies has been proposed including, among others, wavelet techniques [22, 23, 31],
PDEs [2, 37, 41, 47], and variational methods [5, 6, 9, 36].

Although these method classes serve the same purpose, relatively few publications
exist where their similarities and differences are juxtaposed and their mutual relations
are analyzed. However, such an analysis is highly desirable, since it can help to transfer
results from one of these classes to the others. Moreover, a deeper understanding of the
differences between these classes might be helpful for designing novel hybrid methods
that combine the advantages of the different classes.

The goal of the present paper is to address this problem by analyzing relations
between four important representatives of discontinuity-preserving denoising methods:

• wavelet soft thresholding [22],
• space-discrete total variation (TV) diffusion [3, 4],
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(a) (b)

(c) (d)

Fig. 1. (a) Top left: original magnetic resonance image. (b) Top right: magnetic resonance
image degraded with Gaussian noise with standard deviation 50. (c) Bottom left: wavelet denoising
of (b) using translation-invariant soft shrinkage with Haar wavelets. (d) Bottom right: TV diffusion
of (b).

• discrete TV regularization [40, 1],
• SIDEs, a dynamical system that has been inspired from space-discrete stabi-

lized inverse diffusion equations [38].
Figure 1 gives an illustration of the denoising properties of soft wavelet shrinkage

and TV regularization methods. The original image is available from [31]. We observe
that the results do not differ very much. Indeed, we shall prove in our paper that all
four aforementioned methods are very closely related.

In order to keep things as simple as possible we base our analysis on the one-
dimensional (1-D) case. Our basic strategy is to start with the simplest cases for
which we can establish equivalence. Afterwards, we extend these results to more
general situations. The higher-dimensional case is beyond the scope of the present
paper, since it cannot be treated as a straightforward generalization of the 1-D ideas.
For some preliminary results in two dimensions, we refer the reader to [34], where
diffusion-inspired wavelet shrinkage with improved rotation invariance is introduced.

Our paper is organized as follows. In section 2 we give a very brief description
of the general ideas behind wavelet shrinkage, nonlinear diffusion filtering, variational
image denoising, and SIDEs. In section 3 we specify these paradigms to the sim-
plest cases where equivalence can be shown. In this section we restrict ourselves to
two-pixel signals, soft Haar wavelet shrinkage, TV diffusivity, and its corresponding
regularizer. Under these circumstances we prove equivalence between wavelet shrink-
age, TV diffusion, and TV regularization. These results are extended in section 4 to
the translationally invariant case with N -pixel signals. In the wavelet setting, we use
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a Haar wavelet-based technique on a single scale with cycle spinning. We show that it
can be regarded as a single iteration of a stabilized explicit scheme for TV diffusion,
and we prove that this TV diffusion is equivalent to both TV regularization and SIDEs
with an appropriate force function. In section 5 we extend our wavelet results from a
single scale to multiple scales. We show that multiple scale Haar wavelet soft shrinkage
can be regarded as TV diffusion, TV regularization, or SIDEs applied to a Laplacian
pyramid decomposition of the signal. Moreover, we propose and analyze a strategy
for avoiding Gibbs-like artifacts by scaling the shrinkage thresholds. In section 6 we
present experiments where we compare iterated single-scale filtering with noniterated
and iterated multiscale filtering. The paper is concluded with a summary in section 7.

Related work. Recently, a number of interesting connections between wavelet
shrinkage of functions, regularization methods, and PDEs has been established. A
book by Meyer [33] presents a unified view on wavelets and nonlinear evolutions,
and Shen and Strang [43] have included wavelets into the solution of the linear heat
equation. Chambolle et al. [13] showed that one may interpret wavelet shrinkage of
functions as regularization processes in suitable Besov spaces. In particular, Haar
thresholding was considered in [18]. Furthermore, Cohen et al. [17] showed that the
space of functions of bounded variation can be “almost” characterized by wavelet
expansions. Chambolle and Lucier [15] considered iterated translationally invariant
wavelet shrinkage and interpreted it as a nonlinear scale-space, which differs from
other scale-spaces by the fact that it is not given in terms of PDEs.

There has also been a rapidly increasing interest in designing hybrid methods
using both wavelet shrinkage and TV denoising methods. Durand and Froment [24]
proposed to address the problem of pseudo-Gibbs artifacts in wavelet denoising by
replacing the thresholded wavelet coefficients by coefficients that minimize the total
variation. Their method is also close in spirit to approaches by Chan and Zhou [16],
who postprocessed images obtained from wavelet shrinkage by a TV-like regulariza-
tion technique. Coifman and Sowa [20] used functional minimization with wavelet
constraints for postprocessing signals that have been degraded by wavelet thresh-
olding or quantization. Candés and Guo [12] also presented related work, in which
they combined ridgelets and curvelets with TV minimization strategies. Recently,
Malgouyres [30] proposed a hybrid method that uses both wavelet packets and TV
approaches. His experiments showed that it may restore textured regions without
introducing ringing artifacts.

Regarding the relations between wavelet shrinkage denoising of discrete signals
and TV reduction, not much research has been done so far. One notable exception is
a recent paper by Coifman and Sowa [21], where they propose TV diminishing flows
that act along the direction of Haar wavelets. Bao and Krim [7] addressed the problem
of texture loss in diffusion scale-spaces by incorporating ideas from wavelet analysis.
An experimental evaluation of the denoising capabilities of three-dimensional wavelet
shrinkage and nonlinear diffusion filters is presented in a paper by Frangakis, Stoschek,
and Hegerl [27].

This discussion shows that our paper differs from preceding work by the fact
that we investigate conditions under which we can prove equivalence between wavelet
shrinkage of discrete signals, space-discrete TV diffusion or regularization, and SIDEs.
Some preliminary results in this paper have been presented at conferences [44, 10].

2. The basic methods. The goal of this section is to give a brief introduction
to the methods that are considered in this paper: soft Haar wavelet shrinkage, TV
diffusion, TV denoising, and SIDEs.
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2.1. Wavelet shrinkage. During recent years wavelet methods have proved
their use in various signal processing tasks. One of them is discontinuity-preserving
denoising. The discrete wavelet transform represents a 1-D signal f(x) in terms of
shifted versions of a dilated lowpass scaling function ϕ(x), as well as shifted and dilated
versions of a bandpass wavelet function ψ(x). In the case of orthogonal wavelets, this
gives

f(x) =
∑
i∈Z

〈f, ϕjei 〉ϕjei (x) +

je∑
j=−∞

∑
i∈Z

〈f, ψji 〉ψji (x),

where ψji (x) := 2−j/2ψ(2−jx− i) and where 〈·, ·〉 denotes the inner product in L2(R).
The wavelet representation employs scaling components only at one level je, and
wavelet components at levels j ≤ je add higher resolution details to the signal.

If the measurements f are corrupted by white Gaussian noise, then this noise is
contained to a small amount in all wavelet coefficients 〈f, ψji 〉, while the original signal
is in general determined by few significant wavelet coefficients. Therefore wavelet
shrinkage attempts to eliminate noise from the wavelet coefficients by the following
three-step procedure:

• Analysis. Transform the noisy data f to the wavelet coefficients dji = 〈f, ψji 〉
and scaling function coefficients cjei = 〈f, ϕjei 〉.

• Shrinkage. Apply a shrinkage function Sτ with a threshold parameter τ
related to the variance of the Gaussian noise to the wavelet coefficients, i.e.,
Sτ (d

j
i ) = Sτ (〈f, ψji 〉).

• Synthesis. Reconstruct the denoised version u of f from the shrunken wavelet
coefficients

u(x) :=
∑
i∈Z

〈f, ϕjei 〉ϕjei (x) +

je∑
j=−∞

∑
i∈Z

Sτ (〈f, ψji 〉)ψji (x).

In the literature a number of different shrinkage functions have been considered. In
this paper we focus on one of the most popular strategies, namely Donoho’s soft
shrinkage [22]. It uses the soft thresholding with threshold parameter τ > 0:

Sτ (x) =

{
x− τ sgn (x) if |x| > τ,

0 if |x| ≤ τ,
(2.1)

which shrinks all coefficients towards zero. Other shrinkage functions will be consid-
ered in a forthcoming paper.

Furthermore, in this paper we restrict our attention to Haar wavelets. They
are well suited for recovering piecewise constant signals with discontinuities. The
Haar wavelet ψ(x) and the corresponding scaling function ϕ(x) are given by ψ(x) :=
1[0, 12 ) − 1[ 12 ,1)

and ϕ(x) := 1[0,1), where 1[a,b) is the characteristic function of [a, b):

1[a,b)(x) :=

{
1 if x ∈ [a, b),
0 else.

Using the so-called two-scale relation of the wavelet and its scaling function, the
coefficients cji and dji at higher level j can be computed from the coefficients cj−1

i at
lower level j − 1 and vice versa. This results in fast algorithms for the analysis step
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and the synthesis step. For the Haar wavelets, we obtain

cji =
cj−1
2i + cj−1

2i+1√
2

, dji =
cj−1
2i − cj−1

2i+1√
2

,(2.2)

cj−1
2i =

cji + dji√
2

, cj−1
2i+1 =

cji − dji√
2

.(2.3)

2.2. Diffusion filtering. Let us now consider a function f(x) on some interval
[a, b]. The basic idea behind nonlinear diffusion filtering is to obtain a family u(x, t)
of filtered versions of the signal f(x) as the solution of a suitable diffusion process
with f(x) as initial condition and homogeneous Neumann boundary conditions [37]:

ut = (g(u2
x)ux)x on (a, b) × (0,∞),(2.4)

u(x, 0) = f(x) for all x ∈ [a, b],

ux(a, t) = ux(b, t) = 0 for all t ∈ (0,∞),

where subscripts denote partial derivatives, and the diffusion time t is a simplification
parameter: larger values correspond to stronger filtering.

The diffusivity g(u2
x) is a nonnegative function that steers the amount of diffusion.

Usually, it is decreasing in u2
x. This ensures that strong edges are less blurred by the

diffusion filter than noise and low-contrast details. In the present paper, we focus on
the TV diffusivity

g(u2
x) :=

1

|ux| .(2.5)

The resulting TV diffusion filter (also called TV flow) has a number of interesting
properties. It requires no additional parameters (besides t), it is well posed [3, 8, 25],
it preserves the shape of some objects [8], and it leads to constant signals in finite
time [4].

2.3. Regularization methods. Regularization methods constitute an alterna-
tive to diffusion filters when one is interested in a discontinuity-preserving denoising
method for a continuous signal f(x) with x ∈ [a, b]. Here the basic idea is to look for
the minimizer u of the energy functional

E(u;α, f) :=

∫ b

a

(
(u− f)2 + αΨ(u2

x)
)
dx.(2.6)

The first term of this functional encourages similarity between the original signal
f(x) and its filtered version u(x), while the second term penalizes deviations from
smoothness. The increasing function Ψ is called the penalizer (regularizer), and the
nonnegative regularization parameter α serves as smoothness weight: larger values
correspond to a more pronounced filtering.

As is explained in detail in [42], there are strong relations between regularization
methods and diffusion filters: A minimizer of (2.6) satisfies necessarily the Euler–
Lagrange equation

u− f

α
= (Ψ′(u2

x)ux)x,

with homogeneous Neumann boundary conditions. This equation may be regarded
as a fully implicit time discretization of the diffusion equation (2.4) with diffusivity
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g(u2
x) = Ψ′(u2

x), initial value f(x), and stopping time α. Thus, one would expect that
the minimizer of (2.6) approximates the diffusion filter (2.4) but is not identical to it.

In the present paper, we are interested in one of the most popular nonlinear
regularization methods, namely TV regularization [40, 1]. It uses the penalizer
Ψ(u2

x) := 2 |ux|, which corresponds to the TV diffusivity (2.5). This regularization
is well known for its good denoising capabilities and its tendency to create blocky,
segmentation-like results. Well-posedness results can be found in [14].

2.4. SIDEs. A SIDE is a dynamical system that has been inspired from a sta-
bilized limiting case of a space-discrete nonlinear diffusion filter [38]. The name SIDE
is an acronym for stabilized inverse diffusion equation.

Let us consider a discrete signal f = (fi)
N−1
i=0 . Then its SIDE evolution produces

a sequence of filtered images u(t) = (ui(t))
N−1
i=0 , with u(0) = f . Increasing the time t

leads to a consecutive merging of regions. The evolution between two merging events
is governed by a dynamical system with a discontinuous right-hand side.

Assume that at some time tj a pixel with index i belongs to a constant region of
size mi,tj ; i.e., there exist l ≥ 1 and r ≥ 0 with mi,tj = l + r,

ui−l+1 = · · · = ui = ui+1 = · · · = ui+r,

ui−l �= ui−l+1 if i− l ≥ 0, ui+r �= ui+r+1 if i+ r ≤ N − 2.

Then the SIDEs algorithm proceeds as follows:
(i) Initialization. Start at time t0 = 0 with the trivial segmentation, where each

pixel i is regarded as a region of size mi,0 = 1:

ui(0) = fi.

(ii) Evolution. Given a segmentation at time tj , the signal evolves according to

u̇i =

⎧⎪⎨⎪⎩
1

mi,tj
F (ui+r+1 − ui+r) if i− l = −1,

−1
mi,tj

F (ui−l+1 − ui−l) if i+ r = N − 1,
1

mi,tj
(F (ui+r+1 − ui+r) − F (ui−l+1 − ui−l)) else,

(2.7)

where u̇i denotes the derivative of ui with respect to t and F is a so-called force
function that satisfies a number of formal requirements [38]. The first case in (2.7)
describes the evolution of the region at the left signal boundary, the second case
applies for the right boundary region, and the third case specifies the evolution of all
inner regions.

In [38], only the third case has been specified. We have supplemented the other
two cases here in order to be able to treat the boundary regions in a proper way as
well. The evolution is stopped when two neighboring regions attain equal grey values.
This determines the new merging time tj+1.

(iii) Merging. Merge the neighboring regions with equal grey values.
(iv) Loop control. Stop if all regions are merged to one; else go back to step (ii).
We see that the stabilization in SIDEs is achieved by an additional definition

that results in merging neighboring regions when they approach each other. This
step is crucial for the performance of SIDEs, as it can be used for reducing the state
variables of the dynamical system. The analytical solutions in the following sections
will provide further theoretical justification for this region-merging step.

In [38] several theoretical results for SIDEs are proved, including a maximum
principle, well-posedness properties, and a finite extinction time.
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The dynamic system suggests that for the specific case mi = 1 one may regard a
1-D SIDE as a space discretization of the PDE

ut = (F (ux))x

with homogeneous Neumann boundary conditions. This is a diffusion equation with
flux function F . Since we are specifically interested in the TV case, we do not consider
the specific choice in [38] but restrict ourselves to the TV force function

F (v) :=

{
1 if v > 0,

−1 if v < 0.

Then it is evident that if mi = 1 for all i, TV diffusion is approximated.

3. Two-pixel signals. In this section, we analyze relations between soft wavelet
shrinkage, TV diffusion, TV regularization, and SIDEs for the simplest signals, namely
discrete signals with only two pixels. We will see that the restriction to two pixels
allows us to find analytical solutions for these degenerated nonlinear processes.

3.1. Soft Haar wavelet shrinkage of two-pixel signals. Let us now con-
sider a discrete two-pixel signal f = (f0, f1) and study its change under soft Haar
wavelet shrinkage. The analysis step produces the coefficients c = (f0 + f1)/

√
2 and

d = (f0 − f1)/
√

2 of the scaling function and the wavelet. For simplicity, we have
dropped the sub- and superscripts for c and d. This step is followed by the shrink-
age operation Sτ (d) with the soft shrinkage function (2.1). Then the synthesis step
u0 = (c+ Sτ (d)) /

√
2, u1 = (c− Sτ (d)) /

√
2 gives the final result:

u0 =

{
f0 + τ√

2
sgn (f1−f0) if τ < |f1−f0|/

√
2,

(f0 + f1)/2 else,
(3.1)

u1 =

{
f1 − τ√

2
sgn (f1−f0) if τ < |f1−f0|/

√
2,

(f0 + f1)/2 else.
(3.2)

This shows that by increasing the shrinkage threshold τ the grey values of both pixels
approach each other. For τ = |f1 − f0|/

√
2 they merge, and for larger τ they remain

merged.

3.2. TV diffusion of two-pixel signals. Next, we are interested in the space-
discrete diffusion of two-pixel signals (f0, f1). The homogeneous Neumann boundary
conditions are discretized by setting flows over the signal boundary to zero. In this
case a space-discrete version of the TV diffusion equation

ut =

(
ux
|ux|

)
x

can be written as

u̇0 =
u1 − u0

|u1 − u0| , u̇1 = − u1 − u0

|u1 − u0| ,(3.3)

with initial conditions u0(0) = f0 and u1(0) = f1. Here the dot denotes again temporal
differentiation, and the pixel size is set to 1. Setting w(t) := u1(t) − u0(t) and
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η := f1 − f0, and subtracting u̇0 from u̇1 in (3.3), we obtain the following initial value
problem:

ẇ = −2
w

|w| , w(0) = η.(3.4)

The right-hand side of this differential equation is discontinuous for w = 0 and thus
requires a generalization of the concept of solution. We say that w is a solution of
(3.4) if it is an absolutely continuous function which fulfills

ẇ = −2 sgn (w), w(0) = η(3.5)

almost everywhere, where
(I) sgn (w) := 1 if w > 0,

sgn (w) := −1 if w < 0
and may take any value in [−1, 1] if w = 0.

Note that this definition is in agreement with the frequently used concept of differential
inclusions for differential equations with discontinuous right-hand sides [26], where
absolutely continuous solutions of

−1

2
ẇ ∈

⎧⎨⎩
{1} if w > 0,

{−1} if w < 0,
[−1, 1] if w = 0

were considered. The solution of (3.5) can be obtained as follows: If η �= 0, then we
have by straightforward computation for t < |η|/2 that w(t) = η − 2 t sgn (η) and in
particular, by continuity of w, that w(|η|/2) = 0. Assume that w(t) �= 0 for some
t > |η|/2. Let without loss of generality w(t) > 0. The opposite assumption w(t) < 0
can be handled in the same way. Then w(t) = −2t+C, where we get by continuity of
w, if t approaches |η|/2, that C = |η| and, consequently, w(t) = 2(|η|/2− t) < 0. This
contradicts our assumption. Thus w(t) = 0 for t ≥ |η|/2. In summary, we obtain the
solution

w(t) =

{
η − 2 t sgn (η) if t < |η|/2,

0 if t ≥ |η|/2.(3.6)

This equation shows that the grey value difference w(t) = u1(t)−u0(t) tends linearly
to 0. Both pixels merge at time t = |f1 − f0|/2 and remain merged afterwards. Thus,
already the simple two-pixel model indicates a finite extinction time for TV diffusion.
Since u̇0 + u̇1 = 0 and u0(0) + u1(0) = f0 + f1, we see further that the average grey
value is preserved:

u0(t) + u1(t) = f0 + f1 ∀ t ≥ 0.(3.7)

Using (3.6) and (3.7), we obtain the analytical solution

u0(t) =

{
f0 + t sgn (f1−f0) if t < |f1−f0|/2,

(f0 + f1)/2 else,
(3.8)

u1(t) =

{
f1 − t sgn (f1−f0) if t < |f1−f0|/2,

(f0 + f1)/2 else.
(3.9)

Interestingly, this result is identical to the results (3.1)–(3.2) for soft Haar wavelet
shrinkage if one identifies the diffusion time t with the threshold parameter τ =

√
2t.
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3.3. TV regularization of two-pixel signals. Let us now turn our attention
to the regularization framework. Again we are interested only in the two-pixel model
(f0, f1). We consider a space-discrete variant of (2.6) with a TV penalizer:

E(u0, u1;α, f) = (f0 − u0)
2 + (f1 − u1)

2 + 2α |u1 − u0|.(3.10)

Straightforward computation results in the following minimizer of (3.10):

u0 =

{
f0 + α sgn (f1−f0) if α < |f1−f0|/2,

(f0 + f1)/2 else,

u1 =

{
f1 − α sgn (f1−f0) if α < |f1−f0|/2,

(f0 + f1)/2 else.

This result coincides with the outcome of a single Haar wavelet shrinkage step with
shrinkage parameter τ =

√
2α. Moreover, it is identical to TV diffusion if one replaces

the diffusion time t by the regularization parameter α. Thus, all three methods are
equivalent by setting τ =

√
2 t =

√
2α. It is remarkable that TV diffusion and TV

regularization give identical evolutions in the two-pixel case. From the considerations
in section 2.3 one would expect only that the processes approximate each other. In
section 4.3 we will investigate if this equivalence also holds in the general space-discrete
case with N pixels.

3.4. SIDEs for two-pixel signals. If we consider the SIDE evolution of a two-
pixel signal (f0, f1), we obtain for the case of a TV force function the dynamical
system

u̇0 =
u1 − u0

|u1 − u0| , u̇1 = − u1 − u0

|u1 − u0| ,

with initial conditions u0(0) = f0 and u1(0) = f1.
This is the same evolution as in the TV diffusion case. Hence, its solution is given

by (3.8)–(3.9), and there is a finite merging time t = |f1 − f0|/2.

4. N-pixel signals. So far we have focused on the two-pixel case. Let us now
investigate which of the equivalences carry over to the general 1-D case with N pixels.
To this end we will consider shift invariant wavelet shrinkage on a single scale, show
that it performs a numerical approximation to TV diffusion, prove the equivalence
of space-discrete TV diffusion and discrete TV regularization by deriving analytical
solutions of both processes, and show that this solution coincides with SIDEs with
TV force functions.

4.1. Shift invariant wavelet shrinkage on a single scale. Let us first re-
consider the soft Haar wavelet shrinkage on a single scale with N pixels, where N is
even. Figure 2 illustrates this computation as the two-channel filter bank. As usual we

apply the z-transform notation f(z) =
∑N−1
i=0 fiz

−i. Then Hi(z) (i = 0, 1) denotes

the convolution of f with the lowpass filter (i = 0) and the highpass filter (i = 1),

i.e., f(z)Hi(z), 2 ↓ and 2 ↑ downsampling and upsampling by 2, respectively, and

the circle soft thresholding by Sτ . Finally, • signifies addition.
The use of Haar wavelets creates a natural decomposition of the signal into two-

pixel pairs of type (f2j , f2j+1) (j = 0, . . . , N/2−1). This two-pixel clustering, however,
also causes a lack of translation invariance which may be responsible for visual arti-
facts. One method to improve the quality of the denoised signal considerably is to
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Fig. 2. Two-channel filter bank with H0(z) = 1+z√
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“average out” the translation dependence. This method was termed cycle spinning
by Coifman and Donoho [19]. For a single wavelet decomposition step, the basic idea
of cycle spinning on a single scale reads as follows:

(a) perform wavelet shrinkage (3.1), (3.2) on successive pairs of the original signal;
(b) shift the signal one pixel to the right;

perform wavelet shrinkage on successive pairs of the shifted signal;
shift the resulting signal one pixel back to the left;

(c) average both results.
The shifting process requires the incorporation of boundary conditions for f . Again
we mirror the signal f at its ends. Steps (a)–(c) are equivalent to denoising the signal
using a nonsubsampled filter bank. More sophisticated material on oversampled filter
banks, corresponding wavelet frames, and undecimated wavelet transforms can be
found in [31].

4.2. Equivalence to a numerical scheme for TV diffusion. We have seen
that, in order to improve the performance of wavelet shrinkage and to make wavelet-
based denoising translationally invariant, cycle spinning can be used. Since there is an
equivalence between Haar wavelet shrinkage and TV diffusion in the two-pixel case, it
would be natural to ask if there is a TV diffusion scheme equivalent to translationally
invariant soft Haar wavelet shrinkage on a single level. This leads us to an interesting
novel scheme for TV diffusion.

Derivation of the scheme. We have been able to derive an analytical solution for
TV diffusion in the two-pixel case. We can use this two-pixel solution to create a
numerical scheme for N pixels. In order to derive such a scheme for some time step
size �t, we proceed in three steps that are inspired by the cycle spinning technique:

(a) perform TV diffusion with step size 2�t on all pixel pairs (u2j , u2j+1);
(b) perform TV diffusion with step size 2�t on all pixel pairs (u2j−1, u2j);
(c) average both results.

Obviously, one step of this iterative scheme is equivalent to a translationally invari-
ant Haar wavelet shrinkage with threshold τ = 2

√
2�t on a single level. So let us

investigate this scheme in more detail.
At iteration level k, we assume that our signal is given by (uki )

N−1
i=0 . We denote

the resulting signal of step (a) by (vk+1
i )N−1

i=0 and the spatial grid size by h. From our
analysis of the two-pixel situation, it follows that vi in some even pixel i = 2j is given
by

vk+1
i =

uki + uki+1

2
−

⎧⎪⎨⎪⎩
max

(
uk
i+1−uk

i

2 − 2�t
h , 0

)
if uki+1 ≥ uki ,

min
(
uk
i+1−uk

i

2 + 2�t
h , 0

)
if uki+1 < uki .

(4.1)

To simplify the notation, we assume only in this subsection instead of the third agree-
ment in (I) that sgn(0) := 0. It is not difficult to see that (4.1) can be rewritten
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as

vk+1
i = uki +

2�t
h

sgn (uki+1 − uki ) min

(
1,

h

4�t |u
k
i+1 − uki |

)
.(4.2)

Step (b) leads to a resulting signal (wk+1
i )N−1

i=0 . For i = 2j it is given by

wk+1
i = uki −

2�t
h

sgn (uki − uki−1) min

(
1,

h

4�t |u
k
i − uki−1|

)
.(4.3)

Thus, the averaging step (c) gives the final scheme for TV diffusion:

uk+1
i = uki +

�t
h

sgn (uki+1 − uki ) min

(
1,

h

4�t |u
k
i+1 − uki |

)
− �t

h
sgn (uki − uki−1) min

(
1,

h

4�t |u
k
i − uki−1|

)
.(4.4)

The same scheme can also be derived if i is odd, since the construction (a)–(c) in
this subsection ensures that the result is translationally invariant. Hence it holds for
every inner pixel i ∈ {1, . . . , N −2}. It is even valid for the boundary pixels i = 0 and
i = N−1 if we realize the homogeneous Neumann boundary conditions by introducing
dummy values uk−1 := uk0 and ukN := ukN−1.

Stability. Let us now investigate the stability properties of the explicit finite
difference scheme (4.2). Since (4.2) satisfies

min(uki , u
k
i+1) ≤ vk+1

i ≤ max(uki , u
k
i+1)

and (4.3) fulfills the estimate

min(uki−1, u
k
i ) ≤ wk+1

i ≤ max(uki−1, u
k
i ),

we can conclude that

min(uki−1, u
k
i , u

k
i+1) ≤ uk+1

i ≤ max(uki−1, u
k
i , u

k
i+1).

With the initial condition u0
j = fj for j = 0, . . . , N − 1, it follows that the two-pixel

scheme (4.2) satisfies the discrete maximum-minimum principle

min
j
fj ≤ uk+1

i ≤ max
j
fj

for all pixels i ∈ {0, . . . , N − 1}, all iteration levels k = 0, 1, 2, . . . , and all time step
sizes �t > 0. In particular, this shows that the scheme is absolutely stable in the
maximum norm.

We may regard (4.4) as a stabilization of the naive explicit scheme

uk+1
i = uki +

�t
h

sgn (uki+1 − uki ) −
�t
h

sgn (uki − uki−1),(4.5)

which becomes unstable for arbitrary small time steps if neighboring values become
arbitrarily close.

Consistency. The absolute stability in scheme (4.4) is at the expense that its
consistency is no longer unconditional. This effect is typical for absolutely stable
explicit schemes; see, for example, the DuFort–Frankel scheme for linear diffusion. In
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our case, (4.4) is an O(�t + h2) approximation to the continuous TV diffusion for
�t ≤ h

4 min
(|uki+1 − uki |, |uki − uki−1|

)
, since it coincides with scheme (4.5) then. For

larger time step sizes, the scheme performs averaging within the neighborhood of each
pixel. By using small time step sizes, these averaging effects appear only in regions
that are already almost flat such that the difference from real TV diffusion becomes
invisible. This two-pixel scheme may be regarded as an alternative to classical finite
difference schemes that are based on the regularized TV flow

ut =

(
ux√
ε2 + u2

x

)
x

.(4.6)

The ε-regularization is necessary for making the diffusivity bounded. It has an effect
similar to the deviation from consistency in the two-pixel scheme (4.4): For small
|ux|, a PDE is approximated that differs from TV diffusion and has better stability
properties. Indeed, in section 6 we shall see that both schemes give very similar
results.

Related schemes. The idea to split up a diffusion process into pairwise interactions
has also proved to be fruitful in other fields. In the context of fluid dynamic problems,
related schemes have been formulated by Richardson, Ferrell, and Long [39]. These
authors, however, use multiplicative splittings; i.e., they first compute the diffusion of
the pairs of type (u2j , u2j+1), which is then used as the initial state for the subsequent
diffusion of the shifted pairs. In a general nonlinear setting, such a scheme is not
translationally invariant. Our approach computes the diffusion of the pairs and the
shifted pairs in parallel and averages afterwards. This additive splitting guarantees
translation invariance. The splitting into two-pixel interactions distinguishes scheme
(4.4) from other additive operator splittings [29, 48]. They use directional splittings
along the coordinate axis.

4.3. Equivalence of space-discrete TV diffusion and discrete TV regu-
larization. The equivalence of TV diffusion and TV regularization in the two-pixel
case gives rise to the question of whether this equivalence also holds in the N -pixel
situation. In order to prove this, we now show that both processes have the same
analytical solutions.

4.3.1. Space-discrete TV diffusion. We consider the following dynamical sys-
tem designed to describe space-discrete TV flow on a 1-D signal with N pixels:

u̇0 = sgn(u1 − u0),

u̇i = sgn(ui+1 − ui) − sgn(ui − ui−1) (i = 1, . . . , N − 2),

u̇N−1 = −sgn(uN−1 − uN−2),

u(0) = f.

(4.7)

In the following, we further set u−1 := u0 and uN := uN−1. Since the right-hand side
of this system is discontinuous, we need again a more detailed specification of when
a system of functions is said to satisfy these differential equations. A vector-valued
function u is said to fulfill the system (4.7) over the time interval [0, T ] if the following
holds true:

(II) u is an absolutely continuous vector-valued function which satisfies (4.7) al-
most everywhere, where sgn is defined by (I) in subsection 3.2.

(III) If u̇i(t) and u̇i+1(t) exist for the same t, and ui+1(t) = ui(t) holds, then the
expression sgn(ui+1(t)−ui(t)) occurring in both the right-hand sides for u̇i(t)
and u̇i+1(t) must take the same value in both equations.
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With this notation we can establish the following results.
Proposition 4.1 (properties of space-discrete TV diffusion). The system (4.7)

has a unique solution u(t) in the sense of (II) and (III). This solution has the
following properties:

(i) Finite extinction time. There exists a finite time T ≥ 0 such that for all t ≥ T
the signal becomes constant:

ui(t) =
1

N

N−1∑
k=0

fk for all i = 0, . . . , N − 1.(4.8)

(ii) Finite number of merging events. There exists a finite sequence 0 = t0 < t1 <
· · · < tn−1 < tn = T such that the interval [0, T ) splits into subintervals [tj , tj+1)
with the property that for all i = 0, . . . , N − 2 either ui(t) = ui+1(t) or ui(t) �=
ui+1(t) throughout [tj , tj+1). The absolute difference between neighboring pixels does
not become larger for increasing t ∈ [tj , tj+1).

(iii) Analytical solution. In each of the subintervals [tj , tj+1) constant regions of
u(t) evolve linearly:

For a fixed index i let us consider a constant region given by

ui−l+1 = · · · = ui = ui+1 = · · · = ui+r (l ≥ 1, r ≥ 0),(4.9)

ui−l �= ui−l+1 if i− l ≥ 0, ui+r �= ui+r+1 if i+ r ≤ N − 1

for all t ∈ [tj , tj+1). We call (4.9) a region of size mi,tj = l + r. For t ∈ [tj , tj+1) let
�t = t− tj. Then ui(t) is given by

ui(t) = ui(tj) + µi,tj
2�t
mi,tj

,

where µi,tj reflects the relation between the region containing ui and its neighboring
regions. It is given as follows:

For inner regions (i.e., i− l ≥ 0 and i+ r ≤ N − 1) we have

µi,tj =

⎧⎨⎩
0 if (ui−l, ui, ui+r+1) is strictly monotonic,
1 if ui is minimal in (ui−l, ui, ui+r+1),

−1 if ui is maximal in (ui−l, ui, ui+r+1),
(4.10)

and in the boundary case (i− l+ 1 = 0 or i+ r = N − 1) the evolution is half as fast:

µi,tj =

⎧⎪⎨⎪⎩
0 if m = N,
1
2 if ui is minimal in (ui−l, ui, ui+r+1),

− 1
2 if ui is maximal in (ui−l, ui, ui+r+1).

(4.11)

Proof. Let u be a solution of (4.7). We show that u is uniquely determined and
satisfies the rules (i)–(iii). Our proof proceeds in four steps.

Step 1. If u̇(t) exists at a fixed time t and ui(t) lies at this time in some region

ui−l+1(t) = · · · = ui(t) = · · · = ui+r(t) (l ≥ 1, r ≥ 0),

ui−l(t) �= ui−l+1(t) if i− l ≥ 0, ui+r(t) �= ui+r+1(t) if i+ r ≤ N − 1

of size mi,t, then it follows by (4.7) and (III) in the nonboundary case i − l ≥ 0 and
i+ r ≤ N − 1 that

ui(t) =
1

mi,t

r∑
k=−l+1

ui+k(t),
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and therefore

u̇i(t) =
1

mi,t

r∑
k=−l+1

u̇i+k(t) =
1

mi,t
(sgn(ui+r+1(t) − ui(t)) − sgn(ui(t) − ui−l(t)))

= µi,t
2

mi,t
,(4.12)

where µi,t describes the relation between the region containing ui and its neighbors
at time t as in (4.10). In the boundary case i− l + 1 = 0 or i+ r = N − 1 we follow
the same lines and obtain (4.12) with µi,t defined by (4.11).

Step 2. Let u̇(t) exist in some small interval (τ0, τ1), and assume that ui(t) �=
ui+1(t) for some i ∈ {0, . . . , N − 2} and all t ∈ (τ0, τ1). By continuity of u we may
assume that ui(t) < ui+1(t) throughout (τ0, τ1). The opposite case ui(t) > ui+1(t)
can be handled in the same way. Then we obtain by (4.12) and the definition of µi,t
for all t ∈ (τ0, τ1) that

u̇i(t) ≥ 0 if i− l ≥ 0,(4.13)

u̇i(t) > 0 if i− l + 1 = 0,(4.14)

u̇i+1(t) ≤ 0 if i+ r ≤ N − 2,(4.15)

u̇i+1(t) < 0 if i+ r = N − 1.(4.16)

Set w(t) := ui+1(t) − ui(t). Then the mean value theorem yields

w(τ1) − w(τ0) = (τ1 − τ0) ẇ(t∗)

for some t∗ ∈ (τ0, τ1), and we get by (4.13)–(4.16) that

w(τ1) − w(τ0) ≤ 0

with strict inequality in the boundary case. Consequently, the difference between
pixels cannot become larger in the considered interval. In particular, by continuity of
u, pixels cannot be split. Once merged they stay merged.

Step 3. Now we start at time t0 = 0. Let t1 be the largest time such that u̇(t)
exists and no merging of regions appears in (0, t1). Then, for all i ∈ {0, . . . , N − 1},
a function ui is in the same region with the same relations to its neighboring regions
throughout [0, t1). Thus, we conclude by (4.12) that

u̇i(t) = µi,0
2

mi,0
(t ∈ (0, t1))

and, consequently,

ui(t) = µi,0
2t

mi,0
+ Ci,0 = fi + µi,0

2t

mi,0
(t ∈ [0, t1]),

where the last equality follows by continuity of ui if t approaches 0.
Step 4. We are now in the position to analyze the entire chain of merging events

successively.
Next, we consider the largest interval (t1, t2) without merging events in the same

way, where we take the initial setting u(t1) into account instead of f . Then we obtain

ui(t) = µi,t1
2t

mi,t1

+ Ci,t1 ,
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where, by continuity of ui, ui(t1) = µi,t1
2t1
mi,t1

+ Ci,t1 and, consequently,

ui(t) = ui(t1) + µi,t1
2(t− t1)

mi,t1

.

Now we can continue in the same way by considering [t2, t3) and so on. Since we
have only a finite number N of pixels and some of these pixels merge at the points
tj , the process stops after a finite number of n steps with output (4.8). Conversely, it
is easy to check that a function u with (i)–(iii) is a solution of the system (4.7). This
completes the proof of the proposition.

4.3.2. Discrete TV regularization. Next, we will prove that discrete TV reg-
ularization satisfies the same rules as space-discrete TV diffusion. For given initial
data f = (f0, . . . , fN−1) discrete TV regularization consists of constructing the mini-
mizer u(α) = minuE(u;α, f) of the functional

E(u;α, f) =
N−1∑
i=0

(
(ui − fi)

2 + 2α|ui+1 − ui|
)
,(4.17)

where we suppose again Neumann boundary conditions u−1 = u0 and uN = uN−1.
For a fixed regularization parameter α ≥ 0, the minimizer of (4.17) is uniquely

determined since E(u;α, f) is strictly convex in u0, . . . , uN−1. Further, E(u, α; f) is
a continuous function in u0, . . . , uN−1, α. Consequently, u(α) is a (componentwise)
continuous function in α.

The following proposition implies, together with Proposition 4.1, the equivalence
of space-discrete TV diffusion and discrete TV regularization.

Proposition 4.2 (properties of discrete TV regularization). The minimizing
function u(α) of (4.17) is uniquely determined by the following rules:

(i) Finite extinction parameter. There exists a finite A ≥ 0 such that for all
α ≥ A the signal becomes constant:

ui(α) =
1

N

N−1∑
k=0

fk for all i = 0, . . . , N − 1.

(ii) Finite number of merging events. There exists a finite sequence 0 = a0 <
a1 < · · · < an−1 < an = A such that the interval [0, A) splits into subintervals
[aj , aj+1) with the property that for all i = 0, . . . , N − 2 either ui(α) = ui+1(α) or
ui(α) �= ui+1(α) throughout [aj , aj+1). The absolute difference between neighboring
pixels does not become larger for increasing α ∈ [aj , aj+1).

(iii) Analytical solution. In each of the subintervals [aj , aj+1) constant regions of
u(α) evolve linearly:

For a fixed index i let us consider a constant region given by

ui−l+1 = · · · = ui = ui+1 = · · · = ui+r (l ≥ 1, r ≥ 0),(4.18)

ui−l �= ui−l+1 if i− l ≥ 0, ui+r �= ui+r+1 if i+ r ≤ N − 2(4.19)

for all α ∈ [aj , aj+1). We call (4.18) a region of size mi,aj = l+ r. For α ∈ [aj , aj+1)
let �α = α− aj. Then ui(α) is given by

ui(α) = ui(aj) + µi,aj
2�α
mi,aj

,
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where µi,aj reflects the relation between the region containing ui and its neighboring
regions. It is given as follows:

For inner regions (i.e., i− l ≥ 0 and i+ r ≤ N − 2) we have

µi,aj =

⎧⎨⎩
0 if (ui−l, ui, ui+r+1) is strictly monotonic,
1 if ui is minimal in (ui−l, ui, ui+r+1),

−1 if ui is maximal in (ui−l, ui, ui+r+1),
(4.20)

and in the boundary case (i− l+ 1 = 0 or i+ r = N − 1) the evolution is half as fast:

µi,aj =

⎧⎪⎨⎪⎩
0 if m = N,
1
2 if ui is minimal in (ui−l, ui, ui+r+1),

− 1
2 if ui is maximal in (ui−l, ui, ui+r+1).

(4.21)

Proof. A proof that is in complete analogy with our proof for the TV diffusion
case is presented in [10, 45].

Similar results have also been established in a different way by Strong [46] for the
case of continuous TV regularization methods with step functions as initializations.
It should be noted that TV regularization by using the taut-string algorithm was also
considered by Mammen and van de Geer [32]; see also [28].

4.4. Equivalence to SIDEs with TV force functions. In section 2.4 we have
seen that 1-D SIDEs with region size 1 and TV force function are identical to space-
discrete TV diffusion. Moreover, in section 4.3 we have derived analytical solutions
of space-discrete TV diffusion and discrete TV regularization that show the same
merging behavior as SIDEs with TV force functions. Consequently, 1-D SIDEs can
be interpreted as an exact solution of space-discrete TV diffusion or regularization in
general.

This also confirms that the merging steps in the SIDE evolution are much more
than a heuristic stabilization that speeds up the evolution: They are a natural conse-
quence of the degenerated diffusivities that are unbounded in 0. Last but not least,
our considerations can be regarded as a theoretical justification of region merging in
terms of variational and PDE-based techniques.

5. Multiple scales. So far we have considered only soft wavelet shrinkage on a
single scale. In almost all practical applications, however, wavelet shrinkage is per-
formed on multiple scales. In this section, we interpret multiscale soft shrinkage with
Haar wavelets as the application of nonlinear TV-based diffusion to two-pixel groups
of hierarchical signals. First, we consider the standard situation without shift invari-
ance; then we discuss the shift-invariant case. Finally, we address a frequent problem
that occurs with wavelet shrinkage on multiple scales: the presence of Gibbs-like ar-
tifacts. We analyze ways to circumvent this phenomenon by using scale-dependent
thresholds.

Throughout this section we deal with signals of length N = 2n (n ∈ N).

5.1. Standard case without shift invariance. Haar wavelet shrinkage on two
scales is described by the filter bank in Figure 3. To obtain more than two scales we
further split up the upper branch of the inner filter bank and so on until we arrive
at scale n = log2N , where the successive downsampling by 2 results in a one-pixel
signal.

Next, we briefly recall the concept of Gaussian and Laplacian pyramids [11] with
respect to the Haar filters. The Gaussian pyramid we are interested in is the sequence
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Fig. 3. Two scales of Haar wavelet shrinkage with H0(z) = 1+z√
2

and H1(z) = 1−z√
2

.

of H0-smoothed and downsampled versions of an initial signal f given by

f = f (0) −→ f (1) = Rf −→ · · · −→ f (n) = Rnf,

where R denotes the operator for H0-smoothing and subsequent downsampling by 2,
i.e.,

f
(j+1)
i =

(
Rf (j)

)
i
=
(
f

(j)
2i + f

(j)
2i+1

)
/
√

2 (j = 0, . . . , n− 1; i = 0, . . . , N/2j+1 − 1).

Let Pf (j) denote the prolongated version of f (j) given by(
Pf (j)

)
2i

=
(
Pf (j)

)
2i+1

= f
(j)
i /

√
2 (j = 1, . . . , n; i = 0, . . . , N/2j − 1).(5.1)

Then the corresponding Laplacian pyramid is the sequence

f − Pf (1) −→ f (1) − Pf (2) −→ · · · −→ f (n−1) − Pf (n) −→ f (n).

By

f (j) = Pf (j+1) +
(
f (j) − Pf (j+1)

)
(j = n− 1, . . . , 0)

we can reconstruct f from its Laplacian pyramid.
Let difft denote the operator of nonlinear diffusion with TV diffusivity and stop-

ping time t applied to the successive two-pixel parts of a signal. By subsection 3.2
we know that difft performs like a single wavelet shrinkage step with soft thresh-
old parameter τ =

√
2t. In other words, the result of the filter bank in Figure 2 is

u = difft(f). Further, we see that the upper branch of this filter bank produces Pf (1)

so that the lower branch must produce difft(f) − Pf (1). By (5.1) and (3.1) it is easy
to check that the nonlinear operator difft fulfills difft(f) − Pf (1) = difft

(
f − Pf (1)

)
.

Thus, one wavelet shrinkage step is given by u = Pf (1) + difft
(
f − Pf (1)

)
. Now

the multiscale Haar wavelet shrinkage up to scale n can be described by successive
application of difft to the Laplacian pyramid:

u(n) = f (n),(5.2)

u(j) = Pu(j+1) + difft
(
f (j) − Pf (j+1)

)
(j = n− 1, . . . , 0).(5.3)

The result of the multiscale wavelet shrinkage is u = u(0).

5.2. Shift-invariant case. Now we consider translation-invariant multiscale
wavelet shrinkage. In the multiscale setting we apply cycle spinning over the range
of all N shifts of f . The filter bank which corresponds to two scales of translation-
invariant Haar wavelet shrinkage is shown in Figure 4. Note that the inner filter bank
uses z2 instead of z in Hi (i = 0, 1). In general we have to replace z by z2j−1

at
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Fig. 4. Two scales of shift-invariant Haar wavelet shrinkage with H0(z) = 1+z√
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and H1(z) = 1−z√
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.

scale j. While ordinary wavelet shrinkage requires O(N) arithmetic operations, its
translation-invariant version needs O(N log2N) arithmetic operations.

In subsection 4.2 we have deduced a numerical scheme for TV diffusion. Each
iteration is given by (4.4). This coincides with a single translation-invariant Haar
wavelet shrinkage step with threshold τ = 2

√
2t. Using our operator diff · and the

operator S, which shifts a signal one pixel to the right, the result u of the single-scale
translation-invariant filter bank is given by

u =
1

2

(
diff2t(f) + S−1diff2t(Sf)

)
.

Now the multiscale translation-invariant Haar wavelet shrinkage can be interpreted as
application of diff · to a multiple Laplacian pyramid. We define a multiple Gaussian
pyramid by

f (0,0) → (
f (1,0), f (1,1)

)→ (
f (2,0), f (2,1), f (2,2), f (2,3)

)→ · · · → (
f (n,0), . . . , f (n,2n−1)

)
,

where f = f (0,0). Here f (j,k) is obtained by successive application of the operators R
and RS on f as follows: Let 0 denote the application of R and 1 the application of
RS; then these operators are applied to f in the order of the binary representation
(kj−1, . . . , k0)2 of k, where we start from the left. For example, we get f (2,1) =
f (2,(0,1)2) = RS Rf and f (2,2) = f (2,(1,0)2) = RRSf . Then the multiple Laplacian
pyramid is given by(
f (0,0) − Pf (1,0), Sf (0,0) − Pf (1,1)

)
−→ (

f (1,0) − Pf (2,0), Sf (1,0) − Pf (2,1), f (1,1) − Pf (2,2), Sf (1,1) − Pf (2,3)
)−→ · · · −→(

f (n,0), . . . , f (n,2n−1)
)
,

and the translation-invariant version of (5.2)–(5.3) can be obtained from this multiple
Laplacian pyramid by

u(n,k) = f (n,k) (k = 0, . . . , 2n − 1),

u(j,k) =
1

2

(
Pu(j+1,2k) + diff2t(f

(j,k) − Pf (j+1,2k))

+ S−1
(
Pu(j+1,2k+1) + diff2t(Sf

(j,k) − Pf (j+1,2k+1))
))

for j = n− 1, . . . , 0; k = 0, . . . , 2j − 1. The result is u = u(0,0).

5.3. Scale-dependent thresholds. Cycle spinning techniques can be used to
make wavelet shrinkage not only translationally invariant, but they can also reduce
artifacts. However, it is still possible that oscillatory (Gibbs-like) artifacts appear if
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multiple scales are used. We want to demonstrate that the use of the scale-dependent
thresholds

τj = τ/
√

2
j−1

(j = 1, . . . , n)(5.4)

suppresses oscillations in the shrinkage process.
In this subsection, we consider signals f = (f0, . . . , fN−1) with periodic boundary

conditions. Note that mirror boundary conditions can easily be transferred into peri-
odic ones by doubling the signal. The decimated Haar wavelet shrinkage with full n-
scale decomposition and thresholds (5.4) consists of three operations. It starts with the
linear transform (2.2) of f yielding the wavelet coefficients (cn, dn, dn−1, . . . , d1), where
dj := (dj0, . . . , d

j
N/2j−1). The wavelet coefficients then undergo the soft wavelet thresh-

olding sji := Sτj (d
j
i ) (j = 1, . . . , n; i = 0, . . . , N/2j − 1) followed by the inverse linear

transform (2.3) of (cn, sn, sn−1, . . . , s1) which gives the denoised signal u(τ). In partic-
ular we have u(0) = f . Note that by the semigroup property Sτ+τ̃ (x) = Sτ̃ (Sτ (x)) of
our shrinkage function (2.1) the signal u(Kτ) obtained by one n-scale wavelet shrink-
age cycle with threshold Kτ coincides with the signal which results from K times
repeating one n-scale wavelet shrinkage cycle with smaller threshold τ . Of course,
this is no longer true for the translation-invariant wavelet transform. In our exam-
ples in the next section we will consider iterated translation-invariant Haar wavelet
shrinkage with small thresholds τ .

Since oscillatory (Gibbs-like) artifacts are characterized by the emergence of new
local extrema, we study the behavior of local extrema of the signal under the shrinkage
process. We call ui an extremal pixel if either ui−1 < ui, ui > ui+1 or ui−1 > ui,
ui < ui+1.

First, we consider the dynamics of “infinitesimal translation-invariant soft Haar
wavelet shrinkage,” i.e., the speed at which pixels of the signal evolve with respect to
the threshold τ ∈ [0, T ] in the limit case T → 0.

Proposition 5.1 (suppression of Gibbs-like artifacts by scaled thresholds). Un-
der infinitesimal translation-invariant soft Haar wavelet shrinkage, an extremal pixel
fi evolves as follows:

(i) The value of the extremal pixel decreases, i.e., u̇i < 0, if it is a maximum and
increases, i.e., u̇i > 0, if it is a minimum. Here the dot denotes differentiation
with respect to τ .

(ii) The absolute value of the difference of the extremal pixel to each of its two
neighbors decreases; i.e., u̇i− u̇i±1 < 0 for a maximum and u̇i− u̇i±1 > 0 for
a minimum.

Statement (i) holds also for the decimated Haar wavelet shrinkage, while statement (ii)
cannot be established in that setting.

Proof. For the decimated Haar wavelet shrinkage with full n-scale decomposition
and thresholds (5.4) it is easy to check that the resulting signal ũi is given by

ũi = µ+

n∑
j=1

2−j/2εj(i)s
j
�i/2j	,

where �x� denotes the largest integer ≤ x. Moreover, µ := 1
N

∑N−1
i=0 fi is the average

value, and

εj(i) :=

{
1 if �i/2j−1� is even,

−1 if �i/2j−1� is odd.
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For the translation-invariant Haar wavelet shrinkage, the sum on the right-hand side
of this equation is replaced by the average of N sums of the same kind containing the
back-shifted shrunken wavelet coefficients of N forward-shifted initial signals, i.e.,

ui = µ+
1

N

N−1∑
ν=0

n∑
j=1

2−j/2εj(i+ ν)sj�(i+ν)/2j	,ν ,(5.5)

where sji,ν denotes the ith coefficient of the jth level of the ν-shifted initial signal,

and the coefficients are treated N/2j-periodic with respect to i. Of course, some
coefficients coincide for different ν; more precisely,

sj�(i+ν)/2j	,ν = sj�(i+ν+r2j)/2j	,ν+r2j (ν = 0, . . . , 2j − 1; r = 0, . . . , N/2j − 1).

This equation allows us to rewrite (5.5) as

ui = µ+
1

2
√

2

(
ε1(i)s

1
�i/2	,0 + ε1(i+ 1)s1�(i+1)/2	,1

)
+

1

N

n∑
j=2

2−j/2
2j−1∑
ν=0

N/2j−1∑
r=0

εj(i+ ν + r2j)sj�(i+ν+r2j)/2j	,ν+r2j

= µ+
si,+ − si,−

2
√

2
+

n∑
j=2

2−3j/2
2j−1∑
ν=0

εj(i+ ν)sj�(i+ν)/2j	,ν ,

where si,+ := Sτ (di,+) = Sτ
(
(fi − fi+1)/

√
2
)

and si,− := Sτ (di,−) = Sτ
(
(fi−1 −

fi)/
√

2
)
. Now the evolution of ui under infinitesimal soft wavelet shrinkage is de-

scribed by

u̇i =
ṡi,+ − ṡi,−

2
√

2
+

n∑
j=2

2−3j/2
2j−1∑
ν=0

εj(i+ ν)ṡj�(i+ν)/2j	,ν ,(5.6)

where

ṡj· =
dSτj (d

j
· )

dτj
· dτj

dτ
=

− sgn(dj· )√
2
j−1

.

Inserting this into (5.6), we obtain

u̇i =
− sgn(di,+) + sgn(di,−)

2
√

2
− Ai,(5.7)

where

Ai :=
√

2

n∑
j=2

4−j
2j−1∑
ν=0

εj(i+ ν) sgn
(
dj�(i+ν))/2j	,ν

)
.

By the triangle inequality we can estimate

|Ai| ≤
√

2

n∑
j=2

2−j <
1√
2
.(5.8)
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If fi is an extremal pixel, then we have that sgn(di,+) = − sgn(di,−) = 1 for a
maximum and −1 for a minimum. This implies by (5.7) and (5.8) that

sgn(u̇i) = − sgn(di,+),(5.9)

proving statement (i) of the proposition.
By subtracting from (5.7) its counterpart for pixel ui+1, we obtain by di,+ =

di+1,− that

u̇i − u̇i+1 =
sgn(di,−) − 2 sgn(di,+) + sgn(di+1,+)

2
√

2
− (Ai −Ai+1).(5.10)

In

Ai −Ai+1

=
√

2

n∑
j=2

4−j
2j−1∑
ν=0

(
εj(i+ ν) sgn

(
dj�(i+ν)/2j	,ν

)
−εj(i+ 1 + ν) sgn

(
dj�(i+1+ν)/2j	,ν

))
the values in the inner brackets cancel except for the two indices ν = νjk ∈ {0, . . . , 2j−
1} (k = 0, 1) with νjk + 1 + i ≡ 0 mod 2j−1. For these indices the signs of εj(i + νk)
and εj(i+1+ νk) are opposite. Consequently, for each j, the inner sum contains only
four summands, and we can estimate

|Ai −Ai+1| ≤
√

2

n∑
j=2

4−j · 4 <
√

2

3
.(5.11)

By inserting this into (5.10), it becomes clear that for an extremal pixel fi we get

sgn(u̇i − u̇i+1) = − sgn(di,+).(5.12)

We have therefore proven that the difference of an extremal pixel to its right neighbor
decreases under infinitesimal soft wavelet shrinkage. Analogous considerations apply
to the left neighbor, which completes the proof of (ii).

It follows particularly from Proposition 5.1 that under iterated infinitesimal soft
wavelet shrinkage no oscillatory (Gibbs-like) artifacts can appear. Any artifact of
this type would include at least one local extremum evolving from a flat region which
would, for continuity, have to grow over a finite time interval in contradiction to
Proposition 5.1.

It should be noted that a single step of infinitesimal shrinkage does not effectively
change the signal any more since T → 0. To investigate true changes of the signal by
the shrinkage procedure, one has to consider iterated shrinkage. Summing up τ over
all iteration steps, a “total evolution time” t is obtained; for fixed t, the number of
iteration steps tends to infinity as τ goes to zero. Infinitesimal translation-invariant
soft Haar wavelet shrinkage thus becomes a dynamic process parametrized by t, and
Proposition 5.1 describes its behavior at a single point of time.

Of course, this analysis can be extended to a time interval. Then one has to take
care of the discontinuity of sgn at 0. Similarly, as in the proof of Proposition 4.1,
this can be done by splitting the time axis into intervals in which no sign changes of
wavelet coefficients occur. However, since once-merged pixels can split again in the
process considered here, sgn(0) will in most cases occur only in discrete time points.
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Now we turn to consider finite-size shrinkage steps τ . The ideas used in the
proof of Proposition 5.1 can also be applied to analyze soft wavelet shrinkage with
finite threshold τ by simply replacing the derivatives u̇i, ṡ

j
i,ν by differences ∆ui :=

ui(τ) − ui(0) and ∆sji,ν := sji,ν − dji,ν , respectively. Then we obtain instead of (5.7)
that

∆ui =
(si,+ − di,+) − (si,− − di,−)

2
√

2
+ Ai,

where

Ai =

n∑
j=2

2−3j/2
2j−1∑
ν=0

εj(i+ ν)∆sj�(i+ν)/2j	,ν .

By (5.4) and (2.1) we obtain instead of (5.8) the estimate

|Ai| ≤ τ
√

2

n∑
j=2

2−j <
τ√
2
.

However, the implication from inequality (5.8) to (5.9) can be transferred only if
|di,+| ≥ τ and |di,−| ≥ τ . Similarly, we conclude instead of (5.10) that

∆ui − ∆ui+1 =
−∆si,− + 2∆si,+ − ∆si+1,+

2
√

2
+ (Ai −Ai+1)(5.13)

and estimate the latter difference by

|Ai −Ai+1| ≤ τ
√

2

n∑
j=2

4−j 4 <
τ
√

2

3
.(5.14)

However, the conclusion from (5.11) to (5.12) can be transferred only if |∆si,− −
2∆si,+ + ∆si+1,+| ≥ 4τ/3. The latter holds true if (but not only if) |di,+| ≥ τ and
|di,−| ≥ τ , i.e., if fi − fi±1 ≥ √

2τ . In this case we obtain by (5.13), (5.14), and their
counterparts for the left neighbors of fi that

−τ
√

2

3
≤ ui(τ) − ui±1(τ) ≤ fi − fi±1 − τ

√
2

6

if fi is a maximum. Analogous inequalities hold true if fi is a minimum. We can
therefore state the following corollary.

Corollary 5.2 (behavior of extrema under Haar wavelet shrinkage). Under
translation-invariant soft Haar wavelet shrinkage with thresholds (5.4) an extremal
pixel fi, which differs at least by

√
2τ from each of its neighbors, evolves as follows:

(i) The value of the extremal pixel decreases, i.e., ∆ui < 0, if it is a maximum
and increases, i.e., ∆ui > 0, if it is a minimum.

(ii) The absolute value of the difference of the extremal pixel to each of its two
neighbors decreases; in particular, one has ∆ui − ∆ui±1 < 0 for a maximum
and ∆ui − ∆ui±1 > 0 for a minimum.

It can be shown by examples that each of the statements (i) and (ii) of the corollary
can be violated if the extremal pixel fi differs from its neighbors by not more than√

2τ . In summary, it follows that Gibbs-like artifacts can in principle still occur under
finite-size steps of soft Haar wavelet shrinkage but are restricted in amplitude.



708 STEIDL, WEICKERT, BROX, MRÁZEK, AND WELK
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Fig. 5. Test signal with N = 8 pixels.
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Fig. 6. K = 1, 20, 1000 iterations (top to bottom) of translation-invariant soft Haar wavelet
shrinkage with thresholds τ/K applied to the signal in Figure 5. Left column: single-scale wavelet
shrinkage with τ = 1. Center column: multiscale wavelet shrinkage (m = 4) with uniform threshold
τ = 0.48 on all scales. Right column: multiscale wavelet shrinkage (m = 4) with τ = 0.585 and
scale-adapted thresholds according to (5.4).

6. Experiments. In this section we illustrate the interplay of iterations and
multiscale soft Haar wavelet shrinkage by two examples. As in the previous section we
consider initial signals f = (f0, . . . , fN−1), whereN = 2n is a power of 2. Furthermore,
we restrict our attention to reflecting (Neumann) boundary conditions. Then we can
perform multiscale wavelet shrinkage up to some assigned scale m ≤ n.

We start with a simple example which demonstrates the influence of the inter-
play between iterations and multiscale wavelet shrinkage on Gibbs-like artifacts and
its relation to TV diffusion. We consider the initial signal in Figure 5 and apply
iterated translation-invariant single-scale and multiscale soft Haar wavelet shrinkage
with various threshold parameters. The resulting signals are presented in Figure 6.

Consider the left column of Figure 6. In subsection 4.2 we have shown that
translation-invariant soft Haar wavelet shrinkage corresponds to a stable numerical
scheme for TV diffusion which represents real TV diffusion if the shrinkage parameter
τ is small enough. The first row demonstrates the local effect of the single-scale wavelet
shrinkage with threshold τ = 1. The K-times iterated processes with thresholds
τ = 1/K in the second and third rows spread the information globally over the signal.
For K = 1000, the scheme is a very good approximation to TV diffusion.

The middle and the right columns of Figure 6 deal with multiscale wavelet shrink-
age which does not fully correspond to TV diffusion. Already a single iteration results
in global effects here. Iterating the multiplescale wavelet shrinkage flattens homoge-
neous regions, as desired also in TV diffusion. In the middle column, we can observe
Gibbs-like phenomena. In the right column, they are avoided by scaling the thresh-
olds.

In our second example we are concerned with the initial signal in Figure 7 ob-
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tained using the WaveLab package [31]. Figure 8 presents the denoised signal, where
the parameter of each method (threshold value or number of iterations) was chosen
to optimize the signal-to-noise ratio on the output. We have applied the following
techniques:

A. 1 level, regularized TV scheme (4.6) with ε = 0.04
2
√

2
, iterated with τ = 0.01

2
√

2
,

K = 53707 iterations.
B. 1 level, two-pixel scheme (4.4), iterated with τ = 0.01, K = 53707 iterations.
C. 13 levels, 1 iteration, uniform threshold τ = 37.4.
D. 13 levels, iterated, τ = 0.01, K = 3244 iterations.
E. 13 levels, 1 iteration, scaled thresholds, τ = 92.6.
F. 13 levels, iterated, τ = 0.01, K = 7800 iterations.
The best restoration results in terms of the signal-to-noise ratio are obtained using

the regularized TV diffusion scheme (A, SNR=24.6dB), iterated single-scale wavelet
shrinkage (B, SNR=24.5dB), or the iterated n-scale wavelet shrinkage with adapted
thresholds (F, SNR=24.3dB). Although these methods are not exactly equivalent,
they reveal a high level of visual similarity and provide a good piecewise constant
approximation to the original signal. The single step multiscale wavelet shrinkage
with scale-adapted threshold (E, SNR=21.9dB) performs slightly worse. The single
step and iterated multiscale wavelet shrinkage techniques with a uniform threshold on
all scales (C, SNR=18.3dB and D, SNR=21.3dB, respectively) are less satisfactory,
also visually.

These experiments show that TV denoising outperforms many soft wavelet shrink-
age strategies. On the other hand, this is at the expense of a relatively high numerical
effort. In order to make wavelets competitive, the shrinkage should be shift invariant,
iterative, and use multiple scales with scaled thresholds. In those cases where it is
possible to reduce the number of iterations without severe quality degradations, one
obtains a hybrid method that combines the speed of multiscale wavelet techniques
with the quality of variational or PDE-based denoising methods. For more experi-
ments on multiscale ideas versus iterations we refer the reader to [35].

7. Summary. The goal of the present paper was to investigate under which
conditions one can prove equivalence between four discontinuity preserving denoising
techniques in the 1-D case: soft wavelet thresholding, TV diffusion, TV regular-
ization, and SIDEs. Starting from a simple two-pixel case we were able to derive
analytical solutions. These two-pixel solutions have been used for the following pur-
poses:

• They establish equivalence between soft Haar wavelet shrinkage with threshold
parameter τ and TV diffusion of two-pixel signal pairs with diffusion time t = τ/

√
2.

• They prove also equivalence to TV regularization of two-pixel pairs with regu-
larization parameter α = τ/

√
2.

• They conjecture equivalence of space-discrete TV diffusion and discrete TV reg-
ularization for general N -pixel signals. This conjecture has been proven in subsection
4.3.

• They prove that space-discrete TV diffusion and discrete TV regularization
are also equivalent to a SIDE evolution with a TV-based force function. This gives
a sound theoretical justification for the heuristically introduced evolution rules for
SIDEs.

• They design a novel numerical scheme for TV diffusion of N -pixel signals. It
is based on an additive operator splitting into two-pixel interactions where analytical
solutions exist for arbitrary large time step sizes. Thus, the numerical scheme is
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Fig. 7. Piecewise polynomial signal. Left: original. Right: with additive Gaussian white noise
(SNR = 8 dB) as input for the filtering procedures.
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Fig. 8. Optimal filtering results of several variants of procedures based on TV or wavelet
filtering when run on the noisy data of Figure 7.
A. Iterated classical scheme for the regularized TV flow (4.6).
B. Iterated single-level shrinkage (equivalent to the scheme (4.4) for TV flow).
C. Multiple levels with a single threshold, single step (i.e., noniterated).
D. Iterated multiple level with a single threshold at each of the levels.
E. Multiple levels with thresholds scaled according to (5.4), single step.
F. Iterated multiple level with scaled thresholds.
See text for the explanation and numerical evaluation of the results.
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explicit and absolutely stable.
We showed that wavelet shrinkage on multiple scales can also be regarded as two-

pixel TV diffusion or regularization on the Laplacian pyramid of the signal. On the
wavelet side, our experiments show that one can improve the denoising performance
by rescaling the thresholds for each wavelet level and by iterating the translation-
invariant wavelet shrinkage. On the PDE side, it is possible to achieve a speed-
up without significant quality deterioration by using iterated multiple scales instead
of iterated single-scale denoising. Thus, the resulting hybrid methods combine the
advantages of wavelet and PDE-based denoising.

In our future work we intend to consider more advanced wavelet methods (other
shrinkage functions, different wavelets) and to analyze the multidimensional case. In
two dimensions, first results on diffusion-inspired wavelet shrinkage with improved
rotation invariance are presented in [34]. We will also consider extensions of the
numerical two-pixel schemes for TV diffusion.

Acknowledgment. Joachim Weickert thanks Stephen Keeling (Graz, Austria)
for interesting discussions on two-pixel signals.

REFERENCES

[1] R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill–posed prob-
lems, Inverse Problems, 10 (1994), pp. 1217–1229.

[2] L. Alvarez, P.-L. Lions, and J.-M. Morel, Image selective smoothing and edge detection by
nonlinear diffusion. II, SIAM J. Numer. Anal., 29 (1992), pp. 845–866.

[3] F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón, Minimizing total variation flow,
Differential Integral Equations, 14 (2001), pp. 321–360.

[4] F. Andreu, V. Caselles, J. I. Diaz, and J. M. Mazón, Qualitative properties of the total
variation flow, J. Funct. Anal., 188 (2002), pp. 516–547.

[5] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Dif-
ferential Equations and the Calculus of Variations, Appl. Math. Sci. 147, Springer, New
York, 2002.

[6] G. Aubert and L. Vese, A variational method in image recovery, SIAM J. Numer. Anal., 34
(1997), pp. 1948–1979.

[7] Y. Bao and H. Krim, Towards bridging scale-space and multiscale frame analyses, in Wavelets
in Signal and Image Analysis, Comput. Imaging Vision 19, A. A. Petrosian and F. G. Meyer,
eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.

[8] G. Bellettini, V. Caselles, and M. Novaga, The total variation flow in RN , J. Differential
Equations, 184 (2002), pp. 475–525.

[9] A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, Cambridge, MA, 1987.
[10] T. Brox, M. Welk, G. Steidl, and J. Weickert, Equivalence results for TV diffusion and

TV regularisation, in Scale-Space Methods in Computer Vision, Lecture Notes in Comput.
Sci. 2695, L. D. Griffin and M. Lillholm, eds., Springer, Berlin, 2003, pp. 86–100.

[11] P. J. Burt and E. H. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans.
Comm., 31 (1983), pp. 532–540.

[12] E. J. Candés and F. Guo, New multiscale transforms, minimum total variation synthesis:
Applications to edge-preserving image reconstruction, Signal Process., 82 (2002), pp. 1519–
1543.

[13] A. Chambolle, R. A. DeVore, N. Lee, and B. L. Lucier, Nonlinear wavelet image pro-
cessing: Variational problems, compression, and noise removal through wavelet shrinkage,
IEEE Trans. Image Process., 7 (1998), pp. 319–335.

[14] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related
problems, Numer. Math., 76 (1997), pp. 167–188.

[15] A. Chambolle and B. L. Lucier, Interpreting translationally-invariant wavelet shrinkage as
a new image smoothing scale space, IEEE Trans. Image Process., 10 (2001), pp. 993–1000.

[16] T. F. Chan and H. M. Zhou, Total variation improved wavelet thresholding in image com-
pression, in Proceedings of the Seventh International Conference on Image Processing,
Vancouver, BC, Canada, 2000.

[17] A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Harmonic analysis in the space BV,



712 STEIDL, WEICKERT, BROX, MRÁZEK, AND WELK
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1. Introduction. Given a linear, first-order PDE in a domain Ω ⊂ R
d,

Lu = f,(1.1)

with suitable boundary conditions, the objective of this paper is to present an ap-
proximation technique that can handle right-hand sides in L1(Ω) and, more generally,
right-hand sides in Lp(Ω), 1 ≤ p < +∞.

1.1. Introductory comments. The number of attempts at approximating
(1.1) directly in L1(Ω) seem to be extremely few (see the series of papers by Lav-
ery [29, 30, 28] and the iteratively reweighted least-squares method of Jiang [23] and
[24, Chap. 9]) or seem to have encountered some theoretical difficulties (see [32]).
This is in sharp contrast with the fact that an enormous amount of work has been
dedicated to the study of first-order PDEs and their various nonlinear generalizations
in L1(Ω). The main difficulty is that when expressed directly in L1(Ω) the discrete
problems consist in minimizing nondifferentiable functionals; see, e.g., [23]. The lack
of theory and of practical popular algorithms for minimizing this type of functional
is responsible for the general preference of authors to seek an approximate solution
in the L2(Ω) framework where differentiability rules, and the force of habit has made
this point of view an undisputed paradigm. The goal of the present work is to show
that, as claimed in Jiang [23], when the right-hand side is really so rough as to not be
in L2(Ω) but in L1(Ω) only or when the coefficients of the differential operator are so
rough that the solution is only meaningful in L1(Ω), then it really pays off to approx-
imate the solution to (1.1) directly in L1(Ω). In this case, the discontinuities of the
solution are captured as sharply as the grid permits without resorting to adaptive re-
finement, and numerical tests reveal that the method is not plagued by spurious over-
or undershootings. Contrary to standard stabilized L2(Ω)-based techniques, the direct
L1(Ω) approximation does not require additional ad hoc tunable coefficients or limit-
ing procedures (see, e.g., Galerkin least-squares techniques [16, 25, 26], discontinuous
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Galerkin methods [31, 17], bubble stabilization [13, 3, 14], or subgrid stabilization
[20, 21, 15]).

The paper is organized as follows. In section 2, we introduce an abstract problem,
together with its discrete counterpart, and we give an abstract convergence result. We
reformulate this result in the Lp(Ω) setting in section 3, and we describe an algorithm
for computing the approximate solution in this setting. We illustrate numerically
the method in section 4, where we solve transport equations and advection-diffusion
equations in mixed form in L1(Ω). We record conclusions in section 5.

1.2. Notation. Let Ω be an open, bounded, connected Lipschitz domain in
R
d. We denote by |Ω| the measure of Ω. For every Lebesgue measurable function

v : Ω −→ R
m, m ≥ 1, we denote by v ·w the Euclidean scalar product in R

m. For 1 ≤
p < +∞, we denote by ‖v‖�p the discrete �p-norm of v, i.e., ‖v‖�p = (

∑
1≤i≤m v

p
i )

1
p .

As usual, we denote by Lp(Ω)
m

the real Banach space of R
m-valued functions whose

pth power is Lebesgue integrable, i.e., ‖v‖Lp(Ω)m = (
∫
Ω
‖v(x)‖p�pdx)

1
p . W 1,p(Ω) is the

space of functions in Lp(Ω) whose partial derivatives in the distributional sense can
be identified with functions in Lp(Ω). L∞(Ω) is the real Banach space of essentially
bounded functions. Hereafter we identify the dual of L1(Ω) with L∞(Ω).

Considering two real numbers A, B, we shall use the expression A � B to say that
there exists a generic positive constant c, independent of the discretization parameters,
such that (s.t.) A ≤ cB.

2. An abstract problem.

2.1. The continuous setting. Let E and F be two Banach spaces with norms
‖ · ‖E and ‖ · ‖F , respectively. Let L : E −→ F be a bounded linear operator, i.e.,
L ∈ L(E;F ). We denote by L∗ : F ′ −→ E′ its adjoint, where E′ and F ′ are the
duals of E and F , respectively. We assume also that L is bijective. Let us recall the
following important consequence of Banach’s closed range theorem and open mapping
theorem (see, e.g., [12, p. 29] or [36, p. 205]).

Lemma 2.1. An operator L ∈ L(E;F ) is bijective if and only if there is a constant
α > 0 s.t.

∀u ∈ E, α‖u‖E ≤ ‖Lu‖F ,(2.1)

∀f ′ ∈ F ′, (L∗f ′ = 0) ⇒ (f ′ = 0).(2.2)

We want to solve the following problem: For f ∈ F ,{
find u ∈ E s.t.
Lu = f in F .

(2.3)

This problem is well-posed, and (2.1) yields the following stability property:

‖u‖E ≤ 1

α
‖f‖F .

Let us now introduce an alternative formulation of problem (2.3). Let us define
the functional J : E −→ R s.t. J(v) = ‖Lv−f‖F , and consider the following problem:{

Find u ∈ E s.t.
J(u) ≤ J(v) ∀v ∈ E.

(2.4)
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It is clear that problems (2.4) and (2.3) are equivalent in the sense that they have the
same unique solution.

To gain more insight on the nature of problem (2.4), let us consider the case where
F is a Hilbert space.

Proposition 2.1. If F is a Hilbert space (equipped with the scalar product
(v, w)F = 1

2 (‖v + w‖2
F − ‖v‖2

F − ‖w‖2
F )), the solution to (2.4) is also the unique

solution to the following problem:{
Find u ∈ E s.t.
(Lu,Lv)F = (f, Lv)F ∀v ∈ E.

(2.5)

Proof. J and J2 have the same minimum, J2 is clearly differentiable, and (2.5) is
the first-order condition for optimality. Owing to (2.1), the bilinear form (Lu,Lv)F is
continuous and coercive, and (f, Lv)F is continuous; hence, existence and uniqueness
of the solution are easy consequences of the Lax–Milgram theorem.

Actually, (2.5) is the so-called least-squares formulation of (2.3), and it can also
be interpreted as the Galerkin formulation of the problem

L∗Lu = L∗f.

Hence, (2.4) is a simple generalization of the least-squares method to non-Hilbertian
settings.

2.2. The discrete setting. We now look for an approximate solution to (2.4).
Let (Eh)h>0 be a sequence of finite-dimensional spaces s.t. Eh ⊂ E. We assume that
the sequence of spaces (Eh)h>0 has some interpolation properties; that is, we assume
that there is a dense normed subspace W ⊂ E and a function ε(h), continuous at zero
with ε(0) = 0, s.t.

∀v ∈W, inf
vh∈Eh

‖v − vh‖E � ε(h)‖v‖W .(2.6)

The discrete counterpart to (2.4) is as follows:{
Find uh ∈ Eh s.t.
J(uh) = min

vh∈Eh

J(vh).(2.7)

The main result of this paper is stated in the following theorem.
Theorem 2.1. (i) Problem (2.7) has at least one global minimizer.
(ii) There are no local minimizers.
(iii) All minimizers satisfy the following stability property:

‖uh‖E � ‖f‖F .(2.8)

(iv) All minimizers satisfy the a priori error bound

‖u− uh‖E � min
vh∈Eh

‖u− vh‖E ,(2.9)

and the following a posteriori error estimate holds:

‖u− uh‖E � ‖f − Luh‖F .(2.10)

Proof. (i) Let Kh ⊂ Eh be the ball of radius 2
α‖f‖F centered at 0. It is clear that

inf
vh∈Eh

J((vh) = min

(
inf

vh∈Eh\Kh

J(vh), inf
vh∈Kh

J(vh)

)
.
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But for all vh ∈ Eh \Kh (i.e., ‖vh‖E > 2
α‖f‖F ) we have

J(vh) ≥ ‖Lvh‖F − ‖f‖F
≥ α‖vh‖E − ‖f‖F
> ‖f‖F
> J(0),

where we have used the stability condition (2.1). Since 0 ∈ Kh, we infer that

inf
vh∈Eh\Kh

J(vh) > J(0) ≥ inf
vh∈Kh

J(vh).

That is to say,

inf
vh∈Eh

J(vh) = inf
vh∈Kh

J(vh).

As a result, the existence of a global minimizer is a simple consequence of the fact
that J is continuous and Kh is compact (since Eh is finite-dimensional).

(ii) The functional J(vh) = ‖Luh − f‖F is obviously convex; hence, local mini-
mizers of (2.7) are necessarily global.

(iii) From (i) we infer that any minimizer uh is in Kh; hence, ‖uh‖E � ‖f‖F .
(iv) The stability condition (2.1) yields

α‖u− uh‖E ≤ ‖Lu− Luh‖F
= ‖f − Luh‖F
= min
vh∈Eh

‖f − Lvh‖F
= min
vh∈Eh

‖Lu− Lvh‖F
≤ ‖L‖L(E;F ) min

vh∈Eh

‖u− vh‖E .

The proof is complete.
Remark 2.1. Note that the question of the uniqueness of uh is open. Actually,

it may happen that uh is not unique. To gain some insight on this problem, let us
consider D = {(x1, x2) ∈ R

2 |x1 + x2 ≥ 1}, x0 = (0, 0), and let us define S to be
the set of points in D that minimize the �1-distance to x0. A simple calculation
shows S = {(x1, x2) ∈ R

2 |x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}; that is, even though the
functional and D are convex, the solution to this minimization problem is not unique.
Of course, uniqueness would have been guaranteed if we had considered the Euclidean
(Hilbertian) distance.

Now, using a standard density argument, we deduce the following corollary.
Corollary 2.1. Under the hypotheses of Theorem 2.1 and (2.6) we have

lim
h→0

‖u− uh‖E = 0,(2.11)

and if u ∈W , the following a priori error estimate holds:

‖u− uh‖E � ε(h)‖u‖W .(2.12)

Remark 2.2.

(i) Note that the a priori error estimate (2.12) is optimal since it is bounded by
the interpolation error up to a constant.
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(ii) Note that the price paid for the approximation optimality when F = L1(Ω)
is the loss of differentiability. More precisely, the functional J(vh) = ‖Luh −
f‖L1(Ω) is not differentiable; hence, no first-order optimality condition can be
written. To better appreciate the difficulty we face here, think of the following
two functionals: φ(x) = x2 and ψ(x) = |x|. It is clear that the minimum of φ
is reached at x0 when φ′(x0) = 2x0 = 0, whereas no nice first-order optimality
condition can be written for ψ except for the awkward statement that 0 is
in the subdifferential of ψ(x0), i.e., 0 ∈ ∂ψ(x0). We describe an algorithm in
section 3.6 to solve this difficulty.

3. The Lp(Ω) setting. We show in this section how the above abstract result
can be reformulated in the Lp(Ω) setting for first-order PDEs.

3.1. Formulation of the problem. In the context of first-order PDEs, F is
usually a space Lp(Ω)m, 1 ≤ p < ∞ (or possibly a closed subspace of Lp(Ω)m), and
E is the domain of an unbounded linear operator

L : D(L) = E ⊂ Lp(Ω)m −→ Lp(Ω)m = F

whose graph is closed in Lp(Ω)m × Lp(Ω)m and whose domain D(L) is dense in
Lp(Ω)m so that when the vector space E = D(L) is equipped with the graph norm

‖v‖E = (‖v‖pLp(Ω)m + ‖Lv‖pLp(Ω)m)
1
p it becomes a Banach space.

In this setting, the abstract problem (2.3) is interpreted as follows: For f ∈
Lp(Ω)m, {

find u ∈ E s.t.
Lu = f in Lp(Ω)m.

(3.1)

Owing to the Riesz representation theorem, which permits us to identify the dual of
Lp(Ω)m with Lp

′
(Ω)m, where 1

p + 1
p′ = 1, this problem can be alternatively put into

the following form: ⎧⎨⎩Find u ∈ E s.t.∫
Ω

φ · Lu =

∫
Ω

f · φ ∀φ ∈ Lp
′
(Ω)m.

(3.2)

3.1.1. Example 1: Advection-reaction. Let us consider an advection-reaction
problem. Let β be a smooth vector field in R

d, say β ∈ L∞(Ω)d and ∇·β ∈ L∞(Ω),
and set

∂Ω− = {x ∈ ∂Ω | β(x) · n(x) < 0},
∂Ω+ = {x ∈ ∂Ω | β(x) · n(x) > 0}.

∂Ω− is the inflow boundary, ∂Ω+ is the outflow boundary, and n(x) is the unit exterior
normal to ∂Ω at x ∈ ∂Ω. It may happen that these two subsets of ∂Ω are empty if β
is s.t. β · n(x) = 0 for all x ∈ ∂Ω. Let µ be a function in L∞(Ω), and assume that
there is a constant µ0 > 0 so that

µ(x) ≥ µ0 > 0 a.e. x in Ω.(3.3)

We introduce the differential operator

L(u) = µu+ ∇·(uβ),
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with domain

E = D(L) = {w ∈ L1(Ω); ∇·(wβ) ∈ L1(Ω); β · n|∂Ω− = 0} ⊂ L1(Ω) = F.

It can be shown that L is an isomorphism from E to F ; i.e., (2.1) and (2.2) hold.
Remark 3.1. If µ = 0, the hypothesis (3.3) is not satisfied. Nevertheless, L is still

an isomorphism if β is a smooth filling field, i.e., if for almost every x in Ω there is a
characteristic of β that starts from x and reaches ∂Ω− in finite time. The reader is
referred to Azerad and Pousin [1] for other details on this problem.

3.1.2. Example 2: The Darcy equation. Let Ω be a porous medium char-
acterized by the permeability tensor K(x). This tensor is assumed to be symmetric
positive definite, and its smallest and largest eigenvalues are assumed to be bounded
from below and from above uniformly in Ω. We consider the following problem:⎧⎨⎩

K−1 · u + ∇p = f ,
∇·u + αp = g,
p|∂Ω = 0.

(3.4)

This problem is known as the Darcy problem. It is also the mixed form of the Poisson
problem. Nonlinear versions of (3.4) play important roles in underground storage
problems, hydrogeology, and the petroleum industry. It is very often coupled with a
transport equation for the concentration of a chemical species or a phase fraction.

To formulate (3.4) in the Lp(Ω) setting, we introduce some definitions:

X = {v ∈ Lp(Ω)
d
; ∇·v ∈ Lp(Ω)},

‖v‖X = (‖v‖p
Lp(Ω)d

+ ‖∇·v‖pLp(Ω))
1
p ,

Y = {q ∈ Lp(Ω); ∇q ∈ Lp(Ω)
d
, q|∂Ω = 0},

‖q‖Y = ‖q‖W 1,p(Ω) = (‖q‖pLp(Ω) + ‖∇q‖p
Lp(Ω)d

)
1
p .

X and Y are Banach spaces. We set E = X × Y and F = Lp(Ω)
d × Lp(Ω), which

we equip with the norms ‖(v,q)‖E = (‖v‖pX +‖q‖pY)
1
p and ‖(v,q)‖F = (‖v‖p

Lp(Ω)d
+

‖q‖pLp(Ω))
1
p , respectively. We now define the operator

L : E −→ F,
(v,q) �−→ (K−1v + ∇q,∇·v + αq).

L is clearly continuous, and it can be shown that it is an isomorphism if α ≥ 0, for
1 < p < +∞, and if α > 0 for p = 1 (see, e.g., [6, 11, 34]).

3.2. Friedrichs’s systems. The above two examples are particular cases of
Friedrichs’s symmetric systems; see [19]. Most of what is said hereafter generalizes to
this broad class of PDEs.

3.3. The discrete setting. Henceforth, we assume that F is a closed sub-
space of Lp(Ω)m. We assume also that we are given a sequence of regular finite
element meshes (Th)h>0 covering the domain Ω. With each mesh we associate a
finite-dimensional space Eh ⊂ E having some interpolation properties; that is, there
is a dense normed subspace of smooth functions W ⊂ E and a continuous function
ε(h) with ε(0) = 0 s.t. (2.6) holds. For Pk or Qk Lagrange finite elements, we have
ε(h) = hk, where h is the meshsize.
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3.4. A brief review of some standard techniques. One of the standard
ways of approximating (3.2) without invoking a minimization principle like (2.7) is
the Galerkin technique. This method consists in replacing the solution space, E, and
the test space, Lp

′
(Ω)m, by the same discrete space Eh as follows:⎧⎨⎩Find uh ∈ Eh s.t.∫

Ω

φh · Luh =

∫
Ω

φh · f ∀φh ∈ Eh.
(3.5)

Note that using the same space for testing the equation and approximating the so-
lution guarantees that the corresponding linear system has as many equations as
unknowns. Even though it often happens that the discrete solution is unique, (3.5)
does not yield stability in the E-norm in general. To better appreciate this point,
let us consider the scalar problem u′ = f with u(0) = 0 in the one-dimensional (1D)
domain Ω = ]0, 1[ , where we assume f ∈ L2(Ω). For N ∈ N

�, let us set h = 1/N and
xi = ih for i ∈ {0, 1, . . . , N}. We define

Eh = {vh ∈ C0(Ω); vh|[xi,xi+1] ∈ P1, 0 ≤ i ≤ N − 1; vh(0) = 0}.(3.6)

It is clear that Eh ⊂ E = {v ∈ H1(Ω); v(0) = 0}. The discrete Galerkin formulation
of the problem is as follows:⎧⎨⎩

Find uh in Eh s.t.∫ 1

0

vhu
′
h =

∫ 1

0

vhf ∀vh ∈ Eh,
(3.7)

and its stability constant (i.e., the counterpart of α in (2.1)) is

αh := inf
uh∈Eh

sup
vh∈Eh

∫ 1

0
u′hvh

‖uh‖H1(Ω)‖vh‖L2(Ω)
.

The following negative result can be proved.
Theorem 3.1. There are two constants c1 > 0 and c2 > 0, independent of h, s.t.

c1h ≤ αh ≤ c2h.

Proof. See, e.g., Ern and Guermond [18, pp. 197–199].
In other words, the stability constant for the approximate problem (3.7) goes

to zero as the mesh is refined. This result is the main reason for the failure of the
Galerkin technique to work properly for first-order PDEs in general.

An interesting alternative to the Galerkin formulation consists in the least-squares
formulation. The origins of the least-squares technique can be traced back to Gauss
(Theoria Motus Corporum Coelestium (1809)). As early papers in the numerical
analysis literature we cite the series of papers by Bramble and Schatz [9, 10] published
in 1970. Since then, it has been applied to a wide variety of problems (see, e.g.,
[2, 33, 24]). This method is clearly optimal in the L2(Ω)-graph norm, but it performs
poorly when the source term is not in L2(Ω) but in L1(Ω) only or the boundary data
are discontinuous (see the numerical tests in section 4).

The list of alternative techniques for solving (3.2) is quite long, and it is out of the
question to make this list exhaustive, but among the most popular ones is the so-called
Galerkin least-squares method [16, 25], which combines the accuracy of the Galerkin
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method and the stability properties of the least-squares method. Other methods of
interest are those based on discontinuous interpolation spaces (e.g., discontinuous
Galerkin methods [31, 17]), on bubble functions (e.g., residual free bubble methods
[13, 3, 14]), or on a hierarchical decomposition of the approximation space (e.g.,
subgrid stabilization [20, 21, 15] or spectral viscosity [35]). Although all these methods
are quite efficient in general, they cannot cope with discontinuities and boundary
layers without resorting to shock-capturing and nonlinear limiting techniques [26, 22]
since they are all L2-based; i.e., they rely on a priori L2 estimates.

3.5. The discrete problem and regularization. Upon setting J(v) = ‖Lv−
f‖Lp(Ω)m , the minimization problem we would like to solve is to find uh in Eh such that
J(uh) = minvh∈Eh

J(vh). Actually, since R
+ � x �−→ xp is an increasing function, an

equivalent reformulation consists of setting

J (v) = ‖Lv − f‖pLp(Ω)m

and considering the following problem:{
Find uh ∈ Eh s.t.
J (uh) = min

vh∈Eh

J (vh).(3.8)

To handle this possibly nondifferentiable minimization problem by means of stan-
dard gradient techniques, we propose to regularize it as follows. Let us define ε > 0
and introduce

ϕε(r) = r2(r + ε)p−2.(3.9)

Then we regularize R
m � x �−→ ‖x‖p�p by replacing this function by

ψε(x) =

m∑
i=1

ϕε(|xi|).(3.10)

Upon denoting by sg(t) the sign function (i.e., sg(t) = t/|t| if t = 0 and sg(0) = 0),
we have

∀v ∈ R
m, Dψε(x) · v =

m∑
i=1

ϕ′
ε(|xi|)sg(xi)vi,(3.11)

∀v, w ∈ R
m, w ·D2ψε(x) · v =

m∑
i=1

ϕ′′
ε (|xi|)viwi.(3.12)

Note that ϕ′′
ε is a decreasing function on R

+ if 1 ≤ p ≤ 2, and it is an increasing
function if p ≥ 2. More precisely, we have the following:

if 1 ≤ p ≤ 2, ∃c > 0 ∀a > 0, ∀r ∈ [0, a], c ap−2 ≤ ϕ′′
ε (r) ≤ 2 εp−2,(3.13)

if 2 ≤ p, ∃c > 0 ∀a > 0, ∀r ∈ [0, a], 2 εp−2 ≤ ϕ′′
ε (r) ≤ c ap−2.(3.14)

This, in turn, implies the following property:

if 1 ≤ p ≤ 2

{∀y ∈ R
m, c ‖y‖p−2

�∞ ‖y‖2
�2 ≤ y ·D2ψε(x) · y,

∀y, z ∈ R
m, |z ·D2ψε(x) · y| ≤ 2 εp−2 ‖z‖�2‖y‖�2 ,(3.15)

and an obvious similar property holds if p ≥ 2.
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Now we introduce the regularized functional

Jε(vh) =

∫
Ω

ψε(Luh − f),(3.16)

and we define uεh to be a solution to the following minimization problem:{
Find uεh ∈ Eh s.t.
Jε(uεh) = min

vh∈Eh

Jε(vh).(3.17)

It is clear that, owing to the regularization, Jε is differentiable (in the Fréchet sense),
and the first-order optimality condition for (3.17) is∫

Ω

Dψε(Lu
ε
h − f) · Lvh = 0 ∀vh ∈ Eh.

The algorithm that we propose in the next section consists in obtaining a solution to
(3.8) as a limit of a sequence (uεh)ε>0 as ε→ 0.

Now we give a series of lemmas clarifying the stability of uεh with respect to the
data, the uniqueness of uεh, the convergence of the sequence (uεh)ε>0 as ε → 0, and,
finally, the convergence of the sequence (uεh)ε>0,h>0 as both ε and h go to zero.

Lemma 3.1. Solutions to (3.17) satisfy the following stability estimate:

α‖uεh‖E ≤ ‖f‖Lp(Ω)m + (mεp|Ω| + 2‖ψε(f)‖L1(Ω))
1
p .

Proof. Owing to the definition of ϕε, it is clear that for all g ∈ Lp(Ω)m,

1 ≤ i ≤ m,
1

2

∫
{|gi|≥ε}

|gi|p ≤
∫

Ω

ϕε(|gi|).

As a result,∫
Ω

|gi|p =

∫
{|gi|<ε}

|gi|p +

∫
{|gi|≥ε}

|gi|p ≤ εp|Ω| + 2

∫
Ω

ϕε(|gi|)

and ∫
Ω

‖g‖p�p ≤ mεp|Ω| + 2

∫
Ω

ψε(g).

Hence, ∫
Ω

‖Luεh − f‖p�p ≤ mεp|Ω| + 2

∫
Ω

ψε(Lu
ε
h − f) ≤ mεp|Ω| + 2

∫
Ω

ψε(f).

The triangle inequality, together with (2.1), yields the result.
Lemma 3.2. If f ∈ L∞(Ω)m, there is a unique function uεh minimizing Jε.
Proof. Let u1

h and u2
h be two functions in Eh. We have

DJε(u1
h)(vh) −DJε(u2

h)(vh) =

∫
Ω

[Dψε(Lu
1
h − f) −Dψε(Lu

2
h − f)] · Lvh

=

∫
Ω

L(u1
h − u2

h) ·
∫ 1

0

D2ψε(R(s))ds · Lvh,
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where R(s) = L(su1
h + (1− s)u2

h)− f . Now using vh = u1
h− u2

h as a test function and
making use of (3.15), we infer that

(DJε(u1
h) −DJε(u2

h))(u
1
h − u2

h) ≥
∫

Ω

αε(u
1
h, u

2
h, f)‖L(u1

h − u2
h)‖2

�2 ,

where αε(u
1
h, u

2
h, f) = c inf0≤s≤1 min(‖R(s)‖p−2

�∞ ) if 1 ≤ p ≤ 2 and αε(u
1
h, u

2
h, f) =

2εp−2 if p ≥ 2.
If u1

h and u2
h both minimize Jε, then, owing to inverse inequalities, both of these

functions are bounded. Since f is also assumed to be bounded, we necessarily have
‖Luih − f‖L∞(Ω)m < +∞, i = 1, 2; that is to say, ess infΩ αε(u

1
h, u

2
h, f) > 0 and

0 ≥ ess inf
Ω

αε(u
1
h, u

2
h, f)

∫
Ω

‖L(u1
h − u2

h)‖2
�2 ,

which yields u1
h = u2

h since L is injective.
Since Eh is finite-dimensional (hence locally compact), a first consequence of

Lemma 3.1 is that, up to a subsequence, (uεh)ε>0 converges to some u0
h in Eh.

Lemma 3.3. Every limit u0
h of (uεh)ε>0, up to a subsequence, is a solution to the

unregularized minimization problem (3.8).
Proof. First, let us observe that

∀p ≥ 1, ∀x ∈ R, |ϕε(|x|) − |x|p| ≤ (2 + p)2p ε (|x|p−1 + εp−1).

As a result, for all x ∈ E, we have

|Jε(x) − J (x)| ≤ (2 + p)2p ε

∫
Ω

(
m∑
i=1

|Lix− fi|p−1 + εp−1

)
≤ (2 + p)2p ε (mεp−1|Ω| +m

1
p |Ω| 1pJ (x)

p−1
p ).

(3.18)

Furthermore, for all x1 and x2 in E, we have

|J (x1)
1
p − J (x2)

1
p | = |‖Lx1 − f‖F − ‖Lx2 − f‖F | ≤ ‖L‖ ‖x1 − x2‖E .

Combining these two results, we infer that if xε → x0 in E, then Jε(xε) → J (x0).
Then we have

J (u0
h) = lim

ε→0
Jε(uεh) = lim

ε→0
min
vh∈Eh

Jε(vh) = min
vh∈Eh

J (vh),

which means that u0
h minimizes J in Eh.

Lemma 3.4. Every solution to problem (3.17) is such that

‖u− uεh‖E �
(
ε c(‖f‖F ) + min

vh∈Eh

‖u− vh‖pE
) 1

p

,

where c(·) is a continuous function.
Proof. Owing to Lemma 3.1 and (3.18), we infer that

0 ≤ J (uεh) − J (uh) ≤ J (uεh) − Jε(uεh) + Jε(uεh) − Jε(uh)
+Jε(uh) − J (uh)
≤ J (uεh) − Jε(uεh) + Jε(uh) − J (uh)

� ε
(
εp−1 + J (uεh)

p−1
p + J (uh)

p−1
p
)

� ε c(‖f‖F ).
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Hence,

‖u− uεh‖pE � ‖f − Luεh‖pF = J (uεh) − J (uh) + J (uh)
� ε c(‖f‖F ) + min

vh∈Eh

‖u− vh‖pE .

The proof is complete.
Remark 3.2. Lemma 3.4 guarantees that if ε1/p is smaller than the interpolation

error, then uεh is as good an approximation of u as uh. Note also that the smaller the
p the smaller the error induced by regularization, and regularization is needed only if
1 ≤ p < 2.

3.6. A simple algorithm for solving (3.8). We now present a simple algo-
rithm for solving (3.8). The main idea is to set a sequence of regularization parameters
(εk)k≥0 tending to zero (or some numerically acceptable threshold) as k grows and
then, for each parameter εk, to find a reasonable approximation of the minimizer of
Jε using Newton’s algorithm and starting from the approximate minimizer evaluated
at step k − 1. More precisely, the algorithm we propose is as follows:
Step 1: Initialize ε0 (say, ε0 ∼ h) and compute some initial guess u0

h (use a crude
L2(Ω)-stabilized technique; for instance, add a Laplace perturbation to the
equation and evaluate the Galerkin solution, or evaluate the least-squares
solution).

Step 2: Iterate on index k, starting from k = 0.
Step 3k: Set uk,0h = ukh.
Step 4k: Iterate on index l, starting from l = 0.

Step 5k,l: Evaluate the gradient and the Hessian of Jεk(uk,lh ) as follows:

DJεk(uk,lh )(vh) =

∫
Ω

Dψεk(Luk,lh − f) · Lvh,(3.19)

D2Jεk(uk,lh )(vh, wh) =

∫
Ω

Lwh ·D2ψεk(Luk,lh − f) · Lvh.(3.20)

Step 6k,l: Deduce a descent direction, dh, by solving the following prob-
lem: {

Find dh ∈ Xh s.t.

D2Jεk(uk,lh )(vh, dh) = DJεk(uk,lh )(vh) ∀vh ∈ Xh.
(3.21)

Note that D2ψεk > 0; hence, in addition to being symmetric, the
bilinear form D2Jεk(uk,lh )(vh, wh) is always positive definite; that is,
(3.21) has always a unique solution.

Step 7k,l: Make a line search of the minimum of J along the direction

dh. Call the corresponding solution uk,l+1
h .

Step 8k,l: If ‖uk,l+1
h − uk,lh ‖pE is smaller than εk, set uk+1

h = uk,l+1
h and

exit the l loop; otherwise continue iterations on l.
Step 9k: If εk is smaller than some fixed tolerance, exit the k loop; otherwise

divide εk by some fixed constant, say 3
2 , call the result εk+1, and continue

iterations on k.
Step 10: Stop.

Remark 3.3.

(i) Note that at Step 7 the line search minimizes J ; hence, the algorithm always
makes J decrease.
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(ii) Note that in the above algorithm ε is not a tunable coefficient; i.e., this co-
efficient cannot be compared to any stabilizing parameter usually introduced
by L2-based stabilizing techniques (e.g., GaLS, residual free bubbles, subgrid
viscosity, etc.). The sequence (εk)k≥0 is meant to accelerate the convergence
process, and it goes to zero as the number of iterations grows.

(iii) Note that the cost of one loop of the algorithm above is that of evaluating the
Hessian and solving for the descent direction; however, (3.21) does not need
to be solved very accurately. The computational cost per loop is identical
to that of an approximate Galerkin solve. Hence, the total cost of the algo-
rithm is that of an approximate Galerkin solve times the number of loops. In
the examples reported below, the number of loops required to reach a rea-
sonable convergence criterion was between 10 to 25 when using u0

h = 0. It
is very likely that this crude algorithm is not optimal, and further research
is needed to improve on this aspect of the problem. One can imagine, for
instance, embedding the above algorithm within a multigrid strategy and/or
some adaptive refinement strategy.

(iv) Using a stabilized L2-based technique to compute u0
h significantly shortens

the number of iterations in the above algorithm. In this context minimizing
the residual in L1 could be viewed as postprocessing for the L2-based method.

(v) The above regularization-based iterative algorithm has some similarities with
the so-called iteratively reweighted least-squares method of Jiang [24, Chap.
9].

(vi) When the operator L is nonlinear, the above algorithm still holds, provided

formulas (3.19) and (3.20) defining the gradient and the Hessian of Jεk(uk,lh )
are modified accordingly. In this context, solving the problem in any Lp(Ω)
does not cost more than solving the problem in the standard L2(Ω) setting.

4. Numerical results. We report in this section on results of numerical tests
meant to assess the theoretical a priori error estimates derived above and to illustrate
the performance of the method when dealing with nonsmooth data and nonlinear
problems. Unless stated explicitly otherwise, all the numerical tests reported herein
have been performed in L1(Ω).

4.1. Convergence tests.

4.1.1. A transport equation. We consider the two-dimensional (2D) domain
Ω = ]0, 1[2 and the transport equation

∂xu = f, u|x=0 = u0,(4.1)

with smooth data

f(x, y) = 2π cos(2π(x+ y)), u0(y) = sin(2πy),

s.t. the exact solution is

u = sin(2π(x+ y)).

We approximate the solution using piecewise linear and piecewise quadratic triangular
elements on unstructured Delaunay meshes. We compute the approximate solution
of (4.1) in L1(Ω). For the P1 solution we use meshes s.t. 1

10 ≤ h ≤ 1
100 , and for the

P2 solution we take h in the range 1
5 ≤ h ≤ 1

60 . All the integrals are evaluated by
using the 3 Gauss points quadrature rule for the P1 solution and the 7 Gauss points
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Fig. 1. Convergence tests for P1 approximation. Left: Error in the L1-norm and L2-norm vs.
the meshsize. Right: Error in the L1(Ω)-graph norm and H1-norm vs. the meshsize.
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Fig. 2. Convergence tests for P2 approximation. Left: Error in the L1-norm and L2-norm vs.
the meshsize. Right: Error in the L1(Ω)-graph norm and H1-norm vs. the meshsize.

quadrature rule for the P2 solution. We evaluate the errors in the L1-norm, the L2-
norm, the L1(Ω)-graph norm, and the H1-norm. The results for the P1 approximation
are displayed in Figure 1, and those for the P2 approximation are shown in Figure 2.

We note that the a priori error estimate (2.12) in the L1(Ω)-graph norm is fully
confirmed: the slope is of order one with P1 finite elements and of order two with
P2 finite elements. The error in the H1-norm is of order 1

2 for the P1 approximation
and of order 1.7 for the P2 approximation. The fact that the convergence orders
in the L1(Ω)-graph norm and the H1-norm are different confirms that the method
performs as expected and that it does not introduce excessive artificial cross-wind
diffusion. The convergence rates of the error in the L1-norm and the L2(Ω)-norm
are slightly better than first-order in the P1 case and better than second-order in the
P2 case. Note, however, that in both cases the rates are suboptimal. This result
is not surprising since transport equations have no regularizing effects; that is, the
Nitsche–Aubin duality argument that holds for elliptic equations does not hold here.

4.2. An elliptic operator. We now test the method on the Laplace operator.
We use again Ω = ]0, 1[2. We solve

−∇2p = f, p|∂Ω = p0,
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Fig. 3. Convergence tests for P1 approximation of the Laplace operator. Left: Error in the
L1-norm and L2-norm vs. the meshsize. Right: Error in the L1(Ω)-graph norm and H1-norm vs.
the meshsize.

with the data being s.t. p = x+ 2y + sin(2πx) cos(2πy) is the exact solution.
The problem is rewritten in its first-order form (3.4) and solved in this form. We

approximate the solution in L1(Ω) using P1 finite elements on unstructured Delaunay
meshes with 1

10 ≤ h ≤ 1
100 . For each mesh we measure the error in the L1(Ω)-norm,

the L2(Ω)-norm, the W 1,1(Ω)-norm, and the H1(Ω)-norm. The results are reported
in Figure 3. We observe that the rate of convergence in the W 1,1(Ω)-norm and in
the H1(Ω)-norm are of first order; that is, they are optimal. Note that the error in
the W 1,1(Ω)-norm is almost eight times lower than that in the H1(Ω)-norm. For the
L1(Ω)-norm there is not a clear rate, but we observe that the numerical results are
bracketed by two lines of slope 1.65 and 1.85. Hence, the convergence is not second-
order, but it is close to second-order. A similar conclusion holds for the convergence
rate in the L2(Ω)-norm.

4.3. Transport equation with shock-like solutions. To illustrate the per-
formance of the method when dealing with nonsmooth data, we consider again the
2D rectangular domain Ω = ]0, 1[2, and we solve the transport equation

∂xu = f, u|x=0 = u0,(4.2)

with the two source terms

f1(x, y) = 1
2γ

[
1 − tanh2

(
x−0.5
γ

)]
,

f2(x, y) = 1
2γ

[
1 − tanh2

(x−0.5(y+0.5)
γ

)]
,

for which the respective solutions are

u1(x, y) = 1
2

[
1 + tanh

(
x−0.5
γ

)]
,

u2(x, y) = 1
2

[
1 + tanh

(x−0.5(y+0.5)
γ

)]
,

where γ > 0 is a small parameter. The source terms f1 and f2 are approximations
of Dirac measures supported by the segments x = 1

2 and x − 1
2 (y − 1

2 ), respectively.
These data mimic shock-like solutions.

To emphasize the capability of the method to perform well on unrefined and
unstructured meshes, we show in Figure 4 the approximate solutions calculated on a
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Fig. 4. Piecewise linear L1 approximations for test cases (4.2). Left: source term f1; right:
source term f2.

Delaunay mesh composed of 932 triangles of meshsize h = 1
20 . The parameter γ in

the definition of the source terms is chosen to be γ = h to guarantee that the inexact
numerical integrations of the residuals are accurate enough.

Note that the solutions do not exhibit spurious over- or undershootings.

4.4. Transport equation with shear-layer-like solutions. In this section,
we compare the performance of the method with that of the least-squares method on
a transport equation with discontinuous boundary data.

4.4.1. 1D transport. We consider the 2D rectangular domain

Ω = ]0.2, 0.8[×]0, 2[,

and we solve the following transport equation:

∂xu = 0, u|x=0 =

{
1 if y ≥ 0.5,
0 otherwise.

(4.3)

The exact solution is

u(x, y) =

{
1 if y ≥ 0.5,
0 otherwise.

We perform the calculations on a Delaunay mesh with h = 1
40 . Due to the interpola-

tion process, the boundary data is regularized for 0.475 ≤ y ≤ 0.525.
We evaluate the least-squares solution (i.e., the L2(Ω) approximation) and the

L1(Ω) approximation. The results are shown in Figure 5. The L1(Ω) solution is shown
at the top of the figure, and the L2(Ω) one is shown at the bottom. For each solution
we show contour lines in the left panels of the figure. Note that for both solutions
there is some smearing in the transverse direction at the onset of the flow. This is
due to the fact that the mesh is not aligned with the flow and the boundary data has
been interpolated. In the right panels we show the projection of the graph of each
solution onto the plane x = 0. It is clear that the least-squares solution is significantly
more smeared than the L1(Ω) one. The least-squares solution also exhibits over- and
undershootings; i.e., it does not satisfy the maximum principle.

4.4.2. Curved transport. We consider the half disk

Ω = {(x, y);
√
x2 + y2 < 1; y > 0},

and let us set ∂Ω− = {−1 < x < 0; y = 0}. We want to solve the following transport
problem:

v · ∇u = 0, u|∂Ω− =

{
1 if − 1 < x < −0.74,
0 if − 0.74 < x < 0,

(4.4)
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Fig. 5. Advection equation (4.3). Top: L1(Ω) solution and mesh; bottom: L2(Ω) solution.
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Fig. 6. Advection equation (4.4). Left: L1(Ω) solution with mesh; right: L2(Ω) solution.

with the curved flow field v(x,y) = (sin θ,− cos θ), where θ is the polar angle; i.e.,
θ = arctan(y/x) ∈ [0, π[ with the convention arctan(±∞) = π/2. The exact solution
is

u(x, y) =

{
1 if

√
x2 + y2 > 0.74,

0 otherwise.

We perform the calculations on a Delaunay mesh with h = 1
40 . Due to the interpola-

tion process, the boundary condition is regularized for −0.765 ≤ x ≤ −0.715.
Contour lines of the L1(Ω) and L2(Ω) solutions are shown in Figure 6. We show

about 13 contour lines for each solution. The L1(Ω) solution is shown in the left panel
of the figure, and the L2(Ω) one is shown in the right panel. For both solutions there is
some smearing in the transverse direction at the onset of the flow due to misalignment
of the flow with the mesh and the interpolation of the data. It is clear, once again,
that the least-squares solution is significantly more smeared than the L1(Ω) solution
and exhibits over- and undershootings.

Remark 4.1. The two test cases considered above show that for a given mesh the
L1(Ω) solution has better qualitative properties than the standard L2(Ω) solution. In
particular, discontinuities are less smeared by the L1 approximation technique. We
observe also that the L1(Ω) solution satisfies the maximum principle. This numerical
observation has yet to be fully explained mathematically.
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Fig. 7. Advection equation (4.5), Case 1, ν = 0.02. Left: P1 Lagrange interpolate of the exact
solution; center, L1(Ω) solution; right, L2(Ω) solution.

Remark 4.2. Of course, if the meshes are adapted to the flow, results much
sharper than those shown here can be easily obtained. We do not show these results
here, for our objective in the present paper is rather to compare the performance of
the L1(Ω) and L2(Ω) methods on arbitrary meshes than to show that each method
can produce sharp results on adapted meshes.

4.5. Advection-diffusion equation. We conclude this series of tests on linear
equations by solving an advection-diffusion equation in the vanishing viscosity regime.

For the sake of simplicity, we consider again the rectangular domain Ω = ]0, 1[2,
and we denote

∂ΩD = {(x, y) ∈ ∂Ω; x = 0 or x = 1},
∂ΩN = {(x, y) ∈ ∂Ω; y = 0 or y = 1}.

We want to solve ⎧⎨⎩
αp+ β · ∇p+

√
ν∇·u = f ,√

ν∇p+ u = 0,
p|∂ΩD

= pD, u · n|∂ΩN
= 0.

(4.5)

We set β = (1, 0) s.t. the exact solution can be evaluated exactly.

4.5.1. Case 1. α �= 0. We set

α = 1, f = 1, pD = 0.(4.6)

The exact solution is

p(x, y) = 1
α + µ+eλ

+x + µ−eλ
−x,

λ±= −1±√
1+4αν

−2ν , µ+= − 1
α

eλ
−−1

eλ−−eλ+ , µ−= − 1
α

eλ
+−1

eλ+−eλ− .
(4.7)

We choose ν = 0.02. We compute the L1(Ω) and the least-squares approximations
on a coarse grid with h = 1

10 . To the best of our knowledge, no finite element
method is capable of producing a reasonable approximation to this problem with these
parameters (|β|h/ν = 5) without resorting to some stabilization and/or nonlinear
limiting technique. The results are shown in Figure 7. The P1 Lagrange interpolate
of the exact solution is shown in the leftmost panel of the figure, the L1 solution is in
the center panel, and the least-squares solution is in the rightmost panel.

It is clear that the least-squares solution is far from the exact solution, whereas
the L1 one is a good approximation, considering the very low number of degrees of
freedom used.



SOLVING FIRST-ORDER PDEs IN Lp 731

0

1

 
0

1

 

0

1

0

1

01

Fig. 8. Advection equation (4.5) with ν = 0.00125, Case 2. Left: side view of the graph of the
approximate solution. Right: projection onto plane y = 0 of the graph of the approximate solution.

4.5.2. Case 2. Now we set α = 0. We choose the following data:

f = 0, pD =

{
0 if x = 0,
1 if x = 1.

(4.8)

The exact solution is

p(x, y) =
ex/ν − 1

e1/ν − 1
.(4.9)

This case is frequently used in the literature to test the capability of numerical
methods to solve advection-diffusion equations with dominant advection.

We set ν = 0.00125, and we compute the L1(Ω) solution on a grid of meshsize
h = 1

40 . The result is shown in Figure 8.
It is clear that, within the capability of the mesh, the boundary layer is well-

captured and the solution is not plagued by spurious oscillations.

4.6. Viscosity solutions of first-order PDEs. A striking property of the L1

approximation technique is that it seemingly can select viscosity solutions of first-
order PDEs (i.e., in the sense of Bardos, Leroux, and Nédélec [5] and Kružkov [27]).

4.6.1. Notion of viscosity solution. To illustrate this phenomenon, let Ω be
a bounded domain of R

d with a smooth boundary. Let α > 0, and let β be a vector
field s.t. βi ∈ C1(Ω), 1 ≤ i ≤ d. Let u0 be a smooth function on ∂Ω, say u0 ∈ C2(∂Ω),
and let f ∈ W 1,1(Ω). Following Bardos, Leroux, and Nédélec, [5], we say that u is a
viscosity solution of

αu+ ∇ · (βu) = f, u|∂Ω = u0,(4.10)

if u ∈ BV(Ω), u solves the PDE, and u satisfies the boundary condition in the following
sense: ∫

∂Ω

(β · n)(u − k)(sg(u − k) − sg(u0 − k)) ≥ 0 ∀k ∈ R,(4.11)

where sg(t) is the sign of t if t = 0 and sg(0) = 0. In the present linear case, the
boundary condition amounts to enforcing u = u0 on ∂Ω− = {x ∈ ∂Ω |x · n < 0}.
The interest of (4.11) is that it generalizes easily to nonlinear equations, whereas
the notion of inflow and outflow boundary condition does not, since for nonlinear
problems the inflow or outflow status of the boundary may depend on the solution
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itself. For instance, if the linear term βu is replaced by F (u,x), then the boundary
condition u|∂Ω = u0 has to be understood in the sense∫

∂Ω

(F (u,x) − F(k,x)) · n(sg(u − k) − sg(u0 − k)) ≥ 0 ∀k ∈ R.(4.12)

Using arguments similar to those in [5] and [4], it is possible to prove that (4.10)
has a unique viscosity solution, provided α is large enough. The bulk of the argument
consists of proving that the solution to the following problem,

αuε + ∇ · (βuε) − ε∇2uε = f, uε|∂Ω = u0,(4.13)

converges in BV(Ω) and the limit is the so-called viscosity solution; i.e., the limit
satisfies the PDE in (4.10) and (4.11).

Despite the appearance, the problem (4.10) is not purely formal. It is typically
this type of problem that arises when one tries to approximate (4.13) on meshes which
are not refined enough. More precisely, when ε/h2 � 1/h the second-order term in
(4.13) is completely dominated by the first-order one, and solving (4.13) numerically
amounts to trying to solve (4.10), where the boundary condition is understood in the
classical sense instead of (4.11).

Once this point is understood, it becomes clear that the least-squares technique
cannot work properly on the advection-diffusion equation (4.13) if the mesh is not
refined enough.

Proposition 4.1. The H1-conformal approximate least-squares solution to the
linear problem (4.13) (written in mixed form) may not converge to the viscosity solu-
tion as h→ 0.

Proof. As we want to build a counterexample, let us restrict ourselves to the
1D viewpoint, and let us take Ω = ]0, 1[ , β = 1, u0 = 0, α = 1, and f = 1. Let
Eh ⊂ H1

0 (Ω) be a finite-dimensional finite element space. Thanks to crude a priori
estimates in L2(Ω) and standard inverse inequalities, it is clear that the least-squares
approximation to (4.15) converges to the solution of the following problem as ε→ 0:∫ 1

0

(uh + u′h)(vh + v′h) =

∫ 1

0

(vh + v′h) ∀vh ∈ Eh.

Since test functions in Eh satisfy vh(0) = vh(1) = 0, we obtain∫ 1

0

(uh + u′h)(vh + v′h) =

∫ 1

0

vh ∀vh ∈ Eh.

Then it is clear that, when h → 0, the solution to the above problem converges in
H1

0 (]0, 1[) to the solution of the following PDE:

w − w′′ = 1, w(0) = w(1) = 0,

which is obviously different from the viscosity solution which solves

u+ u′ = 1, u(0) = 0.

This completes the proof.
This example shows that for a given mesh the L2-based least-squares approxi-

mation technique does not select the right limit of (4.15) as ε → 0. The situation is
quite different in L1(Ω). For reasons not yet clear, numerical tests, reported in the
next section, show that the solution that minimizes the L1 distance is a reasonable
approximation of the viscosity solution.
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Fig. 9. Viscosity solution to (4.14). Left: P1 Lagrange interpolate of the exact solution; center,
L1(Ω) solution; right, L2(Ω) solution.

4.6.2. Numerical experiments. let us consider the 2D rectangular domain
Ω = ]0, 1[2 with ∂ΩD = {x = 0} ∪ {x = 1} and ∂ΩN = {y = 0} ∪ {y = 1}. We want
to solve the following scalar problem:

αu+ ∂xu = f, u|∂ΩD
= u0.(4.14)

Of course, this problem is not well-posed in the standard sense since the outflow
boundary condition is overspecified, but this problem is meaningful in the viscosity
sense as defined above. Let Eh be a H1-conformal finite element space s.t. for all vh
in Eh, vh|∂ΩD

= 0. It is clear that approximating the regularized problem

αuε + ∂xuε − ε∇2uε = f, uε|∂ΩD
= u0, ∂yuε|∂ΩN

= 0,(4.15)

and taking the limit ε→ 0, h being fixed, is equivalent to approximating (4.14) in Eh
(recall that in Eh the Dirichlet boundary condition is enforced in the standard sense).

Let us set

α = 1, f = 1, u0 = 0.(4.16)

We solve (4.14) in L1(Ω) and in L2(Ω), respectively, using continuous P1 finite ele-
ments and (3.8). To emphasize the capabilities of the L1 approximation technique, we
restrict ourselves to a very coarse mesh, h = 1/10. The results are shown in Figure 9.

In the left panel we show the P1 Lagrange interpolate of the viscosity solution,
in the center panel we show the L1 solution, and in the right panel we show the
least-squares solution. Considering the mesh used, the L1(Ω) approximation is a
reasonable approximation, whereas the least-squares solution is completely wrong
(thus confirming Proposition 4.1). Convergence tests, not reported here, show that
the L1(Ω) approximate solution converges in the L1(Ω)-norm to the viscosity solution
as h→ 0.

Contrary to what it seems, the two horn-like spikes observable on the graph of
the L1 solution are not overshootings. These are perspective effects induced by the
fact that the two corresponding P1-nodes are not aligned with the others. This is
made clear by looking at the xz-projection of the graph of the L1 solution shown in
Figure 10.

Given that the least-squares method, together with its many variants, is a central
part for the stabilization of the Galerkin technique (see, e.g., [16, 25, 26]), the above
example gives new reasons why the Galerkin least-squares method cannot generally
cope properly with shocks and boundary layers without the help of shock-capturing
terms [26, 22].
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Fig. 10. Projection in the xz-plane of the graph of the L1 solutions in Figure 9.

4.7. The Burgers equation. To finish this series of tests we propose to solve
the Burgers-like equation

∇·
((
β +

u

2

x − x0

‖x − x0‖2�2

)
u

)
= 0, u|∂Ω1 = 1, u|∂Ω0 = 0,(4.17)

in the following 2D domain:

Ω = ]0, 1[2 \{‖x0 − x‖�2 ≤ 0.2},
where ∂Ω1 = {‖x0 − x‖�2 = 0.2}, ∂Ω0 = {x = 0}, x0 = (0.5,0.5), and β = (v0, 0)
with v0 ≥ 0. This form of the Burgers equation retains the simplicity of its 1D
counterpart and allows for more realistic 2D numerical tests.

We select an entropy solution to this problem by taking the limit as t → +∞ of
the solution to the time-dependent version of (4.17), using as initial data the solution
to the following problem:

∇2u0 = 0, u0|∂Ω1
= 1, u0|∂Ω0

= 0, ∂nu0|∂ΩN
= 0,

where ∂ΩN is the complement of ∂Ω0 ∪ ∂Ω1.
The L1 approximation is computed iteratively by solving the time-dependent

problem, using the implicit Euler time-stepping. We test two configurations, v0 = 6
and v0 = 4/3, henceforth referred to as case 1 and case 2, respectively. To assess
the accuracy of the method and its sensitivity to mesh refinement, we first do the
computation on a uniform grid, h = 1/40; then we redo it on a somewhat adapted
grid with 1/10 ≤ h ≤ 1/100.

The results for case 1 are shown in Figure 11. We show the contour lines of the
solution. Essentially, the exact solution consists of two regions where u is either equal
to 1 or equal to 0, and these two regions are separated by a shock. Note that there is no
shock in the upstream region and the u = 0 solution reaches the cylinder. This means
that the boundary condition u|∂Ω1 = 1 is satisfied in the entropy sense as defined in
(4.12). We observe that the numerical solution satisfies the maximum principle and
the contour lines are concentrated in the shock region. In this case the shock spreads
over 2 to 3 elements; the reason for this is that the shock is almost aligned with
the flow. This phenomenon is comparable to the smearing observed in the transport
problem described in section 4.4. Smearing of oblique shocks is a common feature of
techniques dealing with shocks. Note that the position of the shock does not change
significantly as the mesh is refined, thus demonstrating that the coarse uniform mesh
predicts quite well the position of the shock in question.

The contour lines of the numerical solution to case 2 are shown in Figure 12. Once
more, the numerical solution is not plagued by spurious over- or undershootings. The
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Fig. 11. The Burgers equation with v0 = 6. Contour lines of the solution. Left: uniform mesh
h = 1/40; right: nonuniform mesh 1/10 ≤ h ≤ 1/100.
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Fig. 12. The Burgers equation with v0 = 4/3. Contour lines of the solution. Left: uniform
mesh h = 1/40; right: nonuniform mesh 1/10 ≤ h ≤ 1/100.

shock is almost perpendicular to the incoming flow; as a result, there is no smearing.
The shock is a.e. contained within one element only.

The two above examples show that the L1 technique is capable of selecting the
entropy solution of Burgers-like equations. Moreover, the L1 solution seems to satisfy
a maximum principle. These two numerical observations are still to be understood
and possibly proved mathematically.

5. Concluding remarks. One of the objectives driving the present work is
to show that for solving first-order PDEs supplemented with nonsmooth data the
ongoing debate pitting methods based on continuous interpolation against those based
on discontinuous ones (e.g., H1-conformal Galerkin vs. discontinuous Galerkin) is
possibly pointless, insofar as the analysis is usually restricted to the L2(Ω) setting.
In the present paper, we have tried to promote the idea that working in a functional
setting that provides for the right stability properties is as important as debating on
the nature of the approximation (interpolation) space. Once the required stability
property is guaranteed by the functional setting, the only requirement set for the
discrete space is that it possesses good interpolation properties. As an illustration of
this point of view, we have shown that, when working in L1(Ω), the often despised
continuous P1 finite element is capable of accurately approximating shocks, shear-
layers, and boundary layers.

For reasons not yet completely clear, it seems that the L1(Ω) approximation
technique is capable of selecting viscosity solutions of first-order PDEs [5, 27] without
resorting to any artificial artifact and/or tuning parameter, though this conjecture
has yet to be substantiated mathematically.
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All that has been said in this paper can be extended to spaces that are more
exotic than the Lp’s. For instance, we could consider Besov spaces or Radon measures,
provided the corresponding norms can be computed efficiently in the discrete space
Eh. While these spaces may provide better interpolation or approximation properties,
they would require the use of wavelet bases or other hierarchical approximation spaces
(for researches going in this direction, we refer the reader to, e.g., [7, 8]).

The generalization of the present work to evolution equations and conservation
laws is under investigation and will be reported in a forthcoming paper.

Acknowledgments. The author acknowledges discussions with P. Azerad, J.T.
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d’opérateurs positifs, Arch. Rational Mech. Anal., 53 (1973), pp. 69–100.
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Abstract. We consider a fully practical finite element approximation of the nonlinear degenerate
parabolic system

γ ∂u
∂t

−∇.( b(u)∇[w + αφ] ) = 0 , w = −γ∆u+ γ−1 Ψ′(u) , ∇.( c(u)∇φ) = 0

subject to an initial condition u0(·) ∈ [−1, 1] on u and flux boundary conditions on all three equations.
Here γ ∈ R>0, α ∈ R≥0, Ψ is a nonsmooth double well potential, and c(u) := 1+u, b(u) := 1−u2 are
degenerate coefficients. The degeneracy in b restricts u(·, ·) ∈ [−1, 1]. The above, in the limit γ → 0,
models the evolution of voids by surface diffusion in an electrically conducting solid. In addition
to showing stability bounds for our approximation, we prove convergence, and hence existence of
a solution to this nonlinear degenerate parabolic system in two space dimensions. Furthermore,
an iterative scheme for solving the resulting nonlinear discrete system is introduced and analyzed.
Finally, some numerical experiments are presented.

Key words. void electromigration, surface diffusion, phase field model, diffuse interface model,
degenerate Cahn–Hilliard equation, fourth order degenerate parabolic system, finite elements, con-
vergence analysis

AMS subject classifications. 65M60, 65M12, 35K55, 35K65, 35K35, 35Q60, 82C26, 65M50
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1. Introduction. Interconnect lines on microelectronic circuits usually contain
small voids or cracks due to the extreme thermal stress that they are exposed to when
cooled to room temperature during the production process. The applied electric field
and interfacial tension cause surface diffusion; that is, atoms diffuse from one part of
the void boundary to another. The void effectively “drifts” through the conductor,
changing its shape as it does so. If the void becomes large enough to sever a line,
it causes an open circuit. As producers try to reduce the dimensions of microchips
further and further, these circuit failures become more and more frequent. Hence
there is great interest in understanding the mechanism that leads to this phenomenon
known as void electromigration. For further details, see, e.g., [28, 12] and the refer-
ences therein. As the height of interconnect lines are extremely thin compared to the
dimensions of the base, voids fully penetrate in this vertical direction. Hence a two
dimensional model in the plane suffices.

Let Ω := (−L1, L1)×(−L2, L2) be the rectangular domain in R
2, representing the

interconnect line, with boundary ∂Ω. At any time t ∈ [0, T ], let the region occupied by
the void be Ω−(t) ⊂⊂ Ω with boundary Γ(t). Then the electric field in the conducting
region, Ω+(t) := Ω \Ω−(t), is E = −∇φ, where the potential φ at any time t ∈ [0, T ]
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satisfies

∆φ = 0 in Ω+(t), ∂φ
∂νΓ(t)

= 0 on Γ(t) ,(1.1a)

∂φ
∂ν = 0 on ∂1Ω, 2 ∂φ

∂ν + φ = g± := x1 ± 2 on ∂±2 Ω ,(1.1b)

νΓ(t) being the unit normal to Γ(t) pointing into Ω−(t). In the above ∂Ω = ∂1Ω∪∂2Ω,
where ∂1Ω ∩ ∂2Ω = ∅ and

∂2Ω = ∂−2 Ω ∪ ∂+
2 Ω with ∂±2 Ω := {±L1} × [−L2, L2] ,

and ν is the outward unit normal to ∂Ω; see the sketch below. Hence ∂1Ω is the
insulated boundary of Ω, while the Robin boundary conditions on the ends ∂±2 Ω
model a uniform parallel electric field, φ ≈ x1, as L1 → ∞. We note that one
could alternatively model this with either (a) the Dirichlet condition φ = x1 or (b)
the Neumann condition ∂φ

∂ν = ±1 on ∂±2 Ω. However, in deriving energy bounds it
is convenient to have a Robin condition; see (1.8) below. The motion of the void
boundary, Γ(t), then evolves according to the law

V = −∆s [α1 κ− α2 φ ] on Γ(t) ,(1.2)

where V is the velocity of Γ(t) in the direction of νΓ(t), ∆s is the surface Laplacian

≡ ∂2

∂s2 , s being arc-length, and κ is the curvature of Γ(t) (positive where Ω−(t) is
convex). Here α1 ∈ R>0 and, without loss of generality (see, e.g., [12, p. 101]),
α2 ∈ R≥0 are given parameters depending on the conductor. The first term on the
right-hand side of (1.2) is surface diffusion due to interfacial tension, which models
atoms moving around the boundary to positions of large curvature, whereas the second
term is surface diffusion due to the electric field. The void electromigration model is
then the coupled system (1.1a), (1.1b) and (1.2).

If α2 = 0, then a local existence result for the motion (1.2) can be found in [14].
Moreover, they showed that a global solution exists if the initial curve, Γ(0), is close
to a circle and that it converges to a circle. For α2 ≥ 0, the motion preserves the area
enclosed by the closed curve Γ(t) since

d
dt [m(Ω−(t))] = −

∫
Γ(t)

V ds = 0 ,

where m(D) is the measure of a domain D. In addition, for α2 = 0 this motion
decreases the length of the interface since

d
dt [m(Γ(t))] = −

∫
Γ(t)

V κ ds = −α1

∫
Γ(t)

[∂κ∂s ]
2 ds ≤ 0 .

A circular void moving at a constant speed is a solution of (1.1a), (1.1b) and
(1.2) in the case of an infinite conductor: that is, for any αi ∈ R≥0, R ∈ R>0, and
z = (z1, z2) ∈ R

2,

Γ(t) := {x ∈ R
2 : (x1 − z1(t))

2 + (x2 − z2)
2 = R2}, z1(t) := z1 + 2α2

R t,(1.3a)

where the corresponding electric potential

φ(x, t) = [x1 − z1(t)]
(
1 + R2

(x1−z1(t))2+(x2−z2)2
)

(1.3b)
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solves (1.1a), (1.1b) and (1.2) with

Ω in (1.1a) replaced by R
2 and (1.1b) replaced by ∇φ→ (1, 0)T as |x| → ∞.

(1.3c)

Observe that (1.2) reduces to V = − 2α2

R2 [x1 − z1(t)] on Γ(t). The explicit solution
(1.3a), (1.3b) was first noted in [18].

A number of authors (see, e.g., [9, 19, 28]) have considered a direct finite element
approximation of (1.1a), (1.1b) and (1.2). This involves the explicit tracking of the
approximate void boundary, the approximation of surface derivatives on it, and the
remeshing of the approximation to Ω+(t) in order to approximate φ. This direct
approach breaks down at singularities, where there is a change in topology of the
interface due to either the breakup or the coalescence of voids. In this paper we
will consider a diffuse interface/phase field model of the original “sharp interface”
void electromigration model (1.1a), (1.1b) and (1.2). The advantage of a phase field
method is that the interface is implicitly embedded and is not tracked explicitly.
Moreover, this approach can cope with the voids changing topology. One should also
note that the phase field approach carries across unchanged to the three dimensional
problem.

x
1−L1 L1

x2

−L2

L2 ∂+
2 Ω∂−

2 Ω

∂1Ω

∂1Ω

����

��

��

Ω

uγ = −1

uγ = +1

|uγ | < 1��

We introduce the interfacial parameter γ ∈ R>0 and the conserved order param-
eter uγ(·, t) ∈ K := [−1, 1] ⊂ R, where at any time t ∈ [0, T ] uγ(·, t) = −1 denotes
the void and uγ(·, t) = +1 denotes the conductor, while the void boundary is approx-
imated by the uγ(·, t) = 0 contour line inside the |uγ(·, t)| < 1 interfacial region. We
introduce also the chemical potential wγ(·, t) and the electric potential φγ(·, t). The
sharp interface model, (1.1a), (1.1b) and (1.2), is then approximated by the following
nonlinear degenerate parabolic system:

(Pγ) Find functions uγ : Ω × [0, T ] → K and wγ , φγ : Ω × [0, T ] → R such that

γ
∂uγ

∂t −∇.( b(uγ)∇[wγ + αφγ ] ) = 0 in ΩT := Ω × (0, T ],(1.4a)

wγ = −γ∆uγ + γ−1 Ψ′(uγ) in ΩT , where |uγ | < 1,(1.4b)

uγ(x, 0) = u0
γ(x) ∈ K ∀ x ∈ Ω,(1.4c)

∂uγ

∂ν = b(uγ)
∂[wγ+αφγ ]

∂ν = 0 on ∂Ω × (0, T ] ,(1.4d)

∇.( c(uγ)∇φγ) = 0 in ΩT ,(1.4e)

c(uγ)
∂φγ

∂ν = 0 on ∂1Ω × (0, T ], c(uγ)
∂φγ

∂ν + φγ = g± on ∂±2 Ω × (0, T ] .(1.4f)
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In (1.4a)–(1.4f), γ > 0 and α ≥ 0 are given constants and

Ψ(s) :=

{
1
2

(
1 − s2

)
if s ∈ K,

∞ if s �∈ K(1.5)

is an obstacle-free energy which restricts uγ(·, ·) ∈ K. In addition, we define the
degenerate diffusion coefficients

c(s) := 1 + s, b(s) := 1 − s2 = c(s) c(−s) ∀ s ∈ K.(1.6)

If α = 0, then (1.4a)–(1.4d) collapses to (Qγ), the degenerate Cahn–Hilliard equa-
tion. Existence of a solution to (Qγ), which is a fourth order degenerate parabolic
equation for uγ as b(uγ) can take on zero values, can be found in [13]. Degenerate
parabolic equations of higher order exhibit some new characteristic features which are
fundamentally different from those for second order degenerate parabolic equations.
The key point is that there is no maximum or comparison principle for parabolic equa-
tions of higher order. This drastically complicates the analysis since a lot of results
which are known for second order equations are proven with the help of comparison
techniques. Related to this is the fact that there is no uniqueness result known for
(Qγ). Although there is no comparison principle, one of the main features of (Qγ) is
the fact that one can show existence of a solution with |uγ | ≤ 1 if given initial data
|u0
γ | ≤ 1. This is in contrast to linear parabolic equations of fourth order.

Moreover, it is shown in [10] by using the techniques of formal asymptotic expan-
sions that the zero level sets of uγ , the solution to (Qγ) for a fixed γ > 0, converge
as γ → 0 to an interface, Γ(t), evolving according to the geometric motion (1.2) with

α1 = π2

16 and α2 = 0. Furthermore, on the zero level sets of uγ the chemical potential
wγ tends to −π

4κ, where κ is the curvature of the limiting interface Γ(t). This limiting
motion of surface diffusion is a purely local geometric motion for the interface and
is in contrast to the nonlocal Mullins–Sekerka motion, which is the limiting motion
of (Qγ) with a constant diffusion term b in place of the degenerate b, (1.6). It is a
straightforward matter to extend the technique of formal asymptotic expansions in
[10] for (Qγ) to (Pγ), and one obtains that the zero level sets of uγ , the solution to
(Pγ) for a fixed γ > 0, converge as γ → 0 to an interface, Γ(t), evolving according

to the modified motion (1.2) with α1 = π2

16 and α2 = π α
4 ; see [23] for details. Hence

the limiting sharp interface motion of (Pγ) is the void electromigration model, (1.1a),
(1.1b) and (1.2), for a suitable choice of α and on rescaling time. Note that (1.4e),
(1.4f) with the choice (1.6) is the natural diffuse interface approximation of (1.1a),
(1.1b). We remark that for both (Pγ) and (Qγ) the formal asymptotics yield that the
interface thickness is approximately γ π.

A phase field approximation of (1.1a), (1.1b) and (1.2), which is very similar to
(Pγ), has been considered in [8]. The only difference is in the choice of mobility b(s) =
b0 ∈ R>0 for |s| < 1 and b(s) = 0 otherwise. An alternative phase field approximation
of (1.1a), (1.1b) and (1.2), where the diffusion coefficient b is nondegenerate and
depends on |∇u|2 as opposed to u itself, is considered in [22, 21]. Finally, an alternative
fixed mesh approximation of (1.1a), (1.1b) and (1.2) is considered in [20] and in [25].
Both are based on a local level set approach to approximate (1.2) and, for α > 0,
a modified immersed interface method for approximating (1.1a), (1.1b). The former
requires approximating fourth order partial differential equations for the scalar level
set variable.

We should stress that there is no analysis of any of the above numerical approaches
to (1.1a), (1.1b) and (1.2). In this paper we introduce and analyze a finite element
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approximation of the degenerate phase field model (Pγ), which approximates the
sharp interface motion (1.1a), (1.1b) and (1.2) in the limit γ → 0. There is very little
work on the numerical analysis of degenerate parabolic equations of fourth order: for
work on the thin film equation see [2, 29, 17]; for thin film flows in the presence of
surfactants see [5]; and for work on degenerate Cahn–Hilliard systems see [3, 4, 1]. In
all of these papers, although stability bounds were proved in space dimensions d = 1
and 2, the main convergence result was restricted to one space dimension. However,
recently Grün [16] has proved convergence in two space dimensions of a finite element
approximation to the thin film equation. This approach was extended in [7] to prove
convergence in two space dimensions of a finite element approximation to the thin
film equation in the presence of surfactants and repulsive van der Waals forces. It
is the aim of this paper to adapt the techniques in [3, 4, 16] to propose and prove
convergence of a finite element approximation of (Pγ), and hence prove existence of
a solution to (Pγ).

The basic ingredients of our approach are some key energy estimates. First, we
relate F to c and G to b by the identities

c(s)F ′′(s) = 1 and b(s)G′′(s) = 1 .(1.7)

Knowing c and b (recall (1.6)), the above identities determine F and G up to a linear
term. Furthermore, we have that F and G are convex. As the analysis in this paper
is for a fixed γ, for the remainder of this paper we drop the γ subscripts in (Pγ) for
notational convenience. One can then derive formally the following energy estimates
for (P). Testing (1.4e) with φ yields that∫

Ω

c(u) |∇φ|2 dx+ 1
2

∫
∂2Ω

φ2 ds ≤ 1
2

∫
∂2Ω

g2 ds ,(1.8)

where g := g± ≡ ±(2 + L1) on ∂±2 Ω. Testing (1.4e) with F ′(u) and noting (1.7) and
(1.8) yield that

∣∣∣∣∫
Ω

∇φ .∇u dx

∣∣∣∣ = ∣∣∣∣∫
Ω

c(u)∇φ .∇[F ′(u)] dx
∣∣∣∣ ≤ 2

[∫
∂2Ω

g2 ds

] 1
2
[∫

∂2Ω

[F ′(u)]2 ds

] 1
2

.

(1.9)

Testing (1.4a) with w and (1.4b) with ∂u
∂t , combining and noting (1.6) and (1.8) yields

that

d
dt

∫
Ω

[
1
2 γ |∇u|2 + γ−1 Ψ(u)

]
dx+ 1

2 γ
−1

∫
Ω

b(u) |∇w|2 dx

≤ 1
2 α

2 γ−1

∫
Ω

b(u) |∇φ|2 dx ≤ α2 γ−1

∫
Ω

c(u) |∇φ|2 dx

≤ 1
2 α

2 γ−1

∫
∂2Ω

g2 ds .(1.10)

Testing (1.4a) with G′(u) and (1.4b) with −∆u, combining and noting (1.7), (1.5),
and (1.9) yields that

γ d
dt

∫
Ω

G(u) dx+ γ

∫
Ω

|∆u|2 dx ≤
∫

Ω

∇(γ−1 u− αφ) .∇u dx

≤ γ−1

∫
Ω

|∇u|2 dx+ 2α

[∫
∂2Ω

g2 ds

] 1
2
[∫

∂2Ω

[F ′(u)]2 ds

] 1
2

.(1.11)
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It is the goal of this paper to derive a finite element approximation of (P) that is
consistent with the energy estimates (1.8)–(1.11). Following [3], we impose the | · | ≤ 1
constraint of the discrete approximation to u as a constraint and require equation
(1.4b) only where |u| < 1. In addition, in order to derive a discrete analogue of
the energy estimates (1.9) and (1.11) we adapt a technique introduced in [29, 17] for
deriving a discrete entropy bound for the thin film equation.

This paper is organized as follows. In section 2 we formulate a fully practical finite
element approximation of the degenerate system (P) and derive discrete analogues of
the energy estimates (1.8)–(1.11). In section 3 we prove convergence, and hence
existence of a solution to the system (P) in two space dimensions. In section 4 we
introduce and prove convergence of a “Gauss–Seidel-type” iterative scheme for solving
the nonlinear discrete system for the approximations of u and w at each time level.
Finally, in section 5 we present some numerical experiments.

Notation and auxiliary results. For D ⊂ R
d, d = 1 or 2, we adopt the

standard notation for Sobolev spaces, denoting the norm of Wm,q(D) (m ∈ N, q ∈
[1,∞]) by ‖ · ‖m,q,D and the seminorm by | · |m,q,D. We extend these norms and
seminorms in the natural way to the corresponding spaces of vector and matrix valued
functions. For q = 2, Wm,2(D) will be denoted by Hm(D) with the associated norm
and seminorm written, respectively, as ‖·‖m,D and |·|m,D. For notational convenience,
we drop the domain subscript on the above norms and seminorms in the case D ≡ Ω.
Throughout, (·, ·) denotes the standard L2 inner product over Ω. In addition, we
define ∫−η := 1

m(Ω) (η, 1) ∀ η ∈ L1(Ω) .

For later purposes, we recall the following compactness results. Let X, Y , and Z
be Banach spaces with a compact embedding X ↪→ Y and a continuous embedding
Y ↪→ Z. Then the embeddings

{ η ∈ L2(0, T ;X) : ∂η∂t ∈ L2(0, T ;Z) } ↪→ L2(0, T ;Y )(1.12a)

and

{ η ∈ L∞(0, T ;X) : ∂η∂t ∈ L2(0, T ;Z) } ↪→ C([0, T ];Y )(1.12b)

are compact, and a generalized version of (1.12a), where the time derivative is replaced
by a time translation, holds. That is, any bounded and closed subset E of L2(0, T ;X)
with

lim
θ→0

{
sup
η∈E

‖η(·, · + θ) − η(·, ·)‖L2(0,T−θ;Z)

}
= 0(1.12c)

is compact in L2(0, T ;Y ); see [26].
It is convenient to introduce the “inverse Laplacian” operator G : Y → Z such

that

(∇[Gz],∇η) = 〈z, η〉 ∀ η ∈ H1(Ω),(1.13)

where Y :=
{
z ∈ (H1(Ω))′ : 〈z, 1〉 = 0

}
and Z := {z ∈ H1(Ω) : (z, 1) = 0}. Here and

throughout, 〈·, ·〉 denotes the duality pairing between (H1(Ω))′ and H1(Ω). The well
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posedness of G follows from the generalized Lax–Milgram theorem and the Poincaré
inequality

|η|0 ≤ C ( |η|1 + |(η, 1)| ) ∀ η ∈ H1(Ω).(1.14)

We note also for future reference Young’s inequality

r s ≤ θ
2 r

2 + 1
2θ s

2 ∀ r, s ∈ R, θ ∈ R>0 .(1.15)

Throughout, C denotes a generic constant independent of h, τ , and ε, the mesh
and temporal discretization parameters, and the regularization parameter. In addi-
tion, C(a1, . . ., aI) denotes a constant depending on the arguments {ai}Ii=1. Further-
more, ·(
) denotes an expression with or without the superscript . Finally, we define
for any s ∈ R

[s]− := min{s, 0}, [s]+ := max{s, 0}, [s]K := max{−1,min{s, 1}},(1.16a)

and

�s� := max{z ∈ Z : z ≤ s}.(1.16b)

2. Finite element approximation. We consider the finite element approxi-
mation of (P) under the following assumptions on the mesh:

(A) Let Ω be a rectangular domain. Let {T h}h>0 be a quasi-uniform family of
partitionings of Ω into disjoint open simplices σ with hσ := diam(σ) and
h := maxσ∈T h hσ so that Ω = ∪σ∈T hσ. In addition, it is assumed that all
simplices σ ∈ T h are right-angled.

We note that the right-angled simplices assumption is not a severe constraint, as there
exist adaptive finite element codes that satisfy this requirement; see, e.g., [24].

Associated with T h is the finite element space

Sh := {χ ∈ C(Ω) : χ |σ is linear ∀ σ ∈ T h} ⊂ H1(Ω).

We introduce also

Kh := {χ ∈ Sh : |χ| ≤ 1 in Ω} ⊂ K := {η ∈ H1(Ω) : |η| ≤ 1 a.e. in Ω} .

Let J be the set of nodes of T h and {pj}j∈J the coordinates of these nodes. Let
{χj}j∈J be the standard basis functions for Sh; that is, χj ∈ Sh and χj(pi) = δij
for all i, j ∈ J . The right angle constraint on the partitioning is required for our
approximations of b(·) and c(·) (see (2.12a), (2.12b) and (2.9a), (2.9b) below), but
one consequence is that∫

σ

∇χi .∇χj dx ≤ 0, i �= j ∀ σ ∈ T h.(2.1)

We introduce πh : C(Ω) → Sh, the interpolation operator, such that (πhη)(pj) = η(pj)
for all j ∈ J . A discrete semi-inner product on C(Ω) is then defined by

(η1, η2)
h :=

∫
Ω

πh(η1(x) η2(x)) dx =
∑
j∈J

mj η1(pj) η2(pj),(2.2)
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where mj := (1, χj) > 0. The induced discrete seminorm is then

|η|h := [ (η, η)h ]
1
2 =

(∫
Ω

πh[η2] dx

) 1
2

∀ η ∈ C(Ω).(2.3)

We introduce also the L2 projection Qh : L2(Ω) → Sh defined by

(Qhη, χ)h = (η, χ) ∀ χ ∈ Sh.(2.4)

On recalling (1.6) and (1.7), we then define functions F and G such that
c(u)∇[F ′(u)] = ∇u and b(u)∇[G′(u)] = ∇u; that is,

F ′′(s) = 1
c(s) = 1

1+s and G′′(s) = 1
b(s) = 1

c(s) c(−s) = 1
1−s2 .(2.5)

We take F, G ∈ C∞(−1, 1) such that

F (s) = (1 + s) log( 1+s
2 ) + (1 − s) and G(s) = 1

2 [F (s) + F (−s)] ;(2.6)

and, for computational purposes, we replace F, G for any ε ∈ (0, 1) by the regularized
functions Fε, Gε : R → R such that

Fε(s) :=

{
F (ε− 1) + (s− ε+ 1)F ′(ε− 1) + (s−ε+1)2

2 F ′′(ε− 1), s ≤ ε− 1,

F (s), s ≥ ε− 1,

Gε(s) := 1
2 [Fε(s) + Fε(−s)] .(2.7)

Hence Fε, Gε ∈ C2,1(R) with the first two derivatives of Fε given by

F ′
ε(s) :=

{
F ′(ε− 1) + (s− ε+ 1)F ′′(ε− 1), s ≤ ε− 1,
F ′(s), s ≥ ε− 1,

and F ′′
ε (s) :=

{
F ′′(ε− 1), s ≤ ε− 1,
F ′′(s), s ≥ ε− 1 ,

respectively. We note for later purposes that for all s ∈ K
1
2 ≤ F ′′

ε (s) ≤ ε−1, 1
2 F

′′
ε (s) ≤ G′′

ε (s) ≤ [ε (2 − ε)]−1 ≤ ε−1 ;(2.8a)

and for all s1, s2 ∈ K with s1 �= s2

1
2

F ′
ε(s1) − F ′

ε(s2)

s1 − s2
≤ G′

ε(s1) −G′
ε(s2)

s1 − s2
.(2.8b)

Similarly to the approach in [29, 17], we introduce Λε : Sh → [L∞(Ω)]2×2 such
that for all zh ∈ Sh and a.e. in Ω

Λε(z
h) is symmetric and positive semidefinite,(2.9a)

Λε(z
h)∇πh[F ′

ε(z
h)] = ∇zh.(2.9b)

We now give the construction of Λε. Let {ei}2
i=1 be the orthonormal vectors in R

2

such that the jth component of ei is δij , i, j = 1 → 2. Given nonzero constants βi,
i = 1 → 2, let σ̂({βi}2

i=1) be the reference open simplex in R
2 with vertices {p̂i}2

i=0,
where p̂0 is the origin and p̂i = βi ei, i = 1 → 2. Given a σ ∈ T h with vertices {pji}2

i=0

such that pj0 is the right-angled vertex, then there exists a rotation matrix Rσ and
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nonzero constants {βi}2
i=1 such that the mapping Rσ : x̂ ∈ R

2 → pj0 + Rσx̂ ∈ R
2

maps the vertex p̂i to pji , i = 0 → 2, and hence σ̂ ≡ σ̂({βi}2
i=1) to σ. For any zh ∈ Sh,

we then set

Λε(z
h) |σ:= Rσ Λ̂ε(ẑ

h) |σ̂ RTσ ,(2.10)

where ẑh(x̂) ≡ zh(Rσx̂) for all x̂ ∈ σ̂ and Λ̂ε(ẑ
h) |σ̂ is the 2 × 2 diagonal matrix with

diagonal entries, where k = 1 → 2:

[Λ̂ε(ẑ
h) |σ̂]kk :=

⎧⎨⎩
ẑh(p̂k)−ẑh(p̂0)

F ′
ε(ẑ

h(p̂k))−F ′
ε(ẑ

h(p̂0))
≡ zh(pjk )−zh(pj0 )

F ′
ε(z

h(pjk ))−F ′
ε(z

h(pj0 ))
if zh(pjk) �= zh(pj0),

1
F ′′

ε (ẑh(p̂0))
≡ 1

F ′′
ε (zh(pj0 ))

if zh(pjk) = zh(pj0).

(2.11)

As RTσ ≡ R−1
σ , ∇zh ≡ Rσ ∇̂ẑh, where x ≡ (x1, x2)

T , ∇ ≡ ( ∂
∂x1

, ∂
∂x2

)T , x̂ ≡ (x̂1, x̂2)
T ,

and ∇̂ ≡ ( ∂
∂x̂1

, ∂
∂x̂2

)T , it easily follows that Λε(z
h) constructed in (2.10) and (2.11)

satisfies (2.9a), (2.9b). It is this construction that requires the right angle constraint
on the partitioning T h. In a similar fashion we introduce Ξε : Sh → [L∞(Ω)]2×2 such
that for all zh ∈ Sh and a.e. in Ω

Ξε(z
h) is symmetric and positive semidefinite,(2.12a)

Ξε(z
h)∇πh[G′

ε(z
h)] = ∇zh.(2.12b)

We extend the construction (2.10)–(2.11) for Λε to Ξε.
In addition to T h, let 0 = t0 < t1 < · · · < tN−1 < tN = T be a partitioning

of [0, T ] into possibly variable time steps τn := tn − tn−1, n = 1 → N . We set
τ := maxn=1→N τn. For any given ε ∈ (0, 1), we then consider the following fully
practical finite element approximation of (P):

(Ph,τε ) For n ≥ 1 find {Φnε , Unε ,Wn
ε } ∈ Sh ×Kh × Sh such that

(Λε(U
n−1
ε )∇Φnε ,∇χ) +

∫
∂2Ω

Φnε χds =

∫
∂2Ω

g χds ∀ χ ∈ Sh,(2.13a)

γ
(
Un

ε −Un−1
ε

τn
, χ
)h

+ (Ξε(U
n−1
ε )∇[Wn

ε + αΦnε ],∇χ) = 0 ∀ χ ∈ Sh,(2.13b)

γ (∇Unε ,∇[χ− Unε ]) ≥ (Wn
ε + γ−1 Un−1

ε , χ− Unε )h ∀ χ ∈ Kh,(2.13c)

where g is as in (1.8) and U0
ε ∈ Kh is an approximation of u0 ∈ K, e.g., U0

ε ≡ Qhu0

or U0
ε ≡ πhu0, if u0 ∈ C(Ω).
Remark 2.1. We note that in the case α = 0, (2.13b), (2.13c) collapses to an

approximation of the degenerate Cahn–Hilliard equation, (1.4a)–(1.4d) with α = 0,
discussed in the multicomponent context in [4, pp. 731–734].

Below we recall some well-known results concerning Sh for any σ ∈ T h, χ, zh ∈
Sh, m ∈ {0, 1}, p ∈ [1,∞], and q ∈ (2,∞] :

|χ|1,σ ≤ C h−1
σ |χ|0,σ ;(2.14)

|χ|m,r,σ ≤ C h
−2 ( 1

p− 1
r )

σ |χ|m,p,σ for any r ∈ [p,∞] ;(2.15)

|(I − πh)η|m ≤ C h2−m |η|2 ∀ η ∈ H2(Ω) ;(2.16)

|(I − πh)η|m,q ≤ C h1−m |η|1,q ∀ η ∈W 1,q(Ω) ;(2.17) ∫
σ

χ2 dx ≤
∫
σ

πh[χ2] dx ≤ 4

∫
σ

χ2 dx ;(2.18)

|(χ, zh) − (χ, zh)h| ≤ |(I − πh)(χ zh)|0,1 ≤ C h1+m |χ|m |zh|1 .(2.19)
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It follows from (2.4) that

(Qhη)(pj) =
(η, χj)

(1, χj)
∀ j ∈ J =⇒ |Qhη|0,∞ ≤ |η|0,∞ ∀ η ∈ L∞(Ω).(2.20)

Finally, as we have a quasi-uniform family of partitionings, it holds that

|(I −Qh)η|m ≤ C h1−m |η|1 ∀ η ∈ H1(Ω).(2.21)

We define Zh := {zh ∈ Sh : (zh, 1) = 0} ⊂ Y h := {z ∈ C(Ω) : (z, 1)h = 0}. Then,
similarly to (1.13), we introduce Gh : Y h → Zh such that

(∇[Ghz],∇χ) = (z, χ)h ∀ χ ∈ Sh .(2.22)

We introduce the “discrete Laplacian” operator ∆h : Sh → Zh such that

(∆hzh, χ)h = −(∇zh,∇χ) ∀ χ ∈ Sh.(2.23)

We note for future reference, as we have a quasi-uniform family of partitionings and
as Ω is convex, that for all zh ∈ Sh

|zh|1,s ≤ C |∆hzh|0 for any s ∈ (1,∞) ;(2.24)

see, for example, [6, Lemma 3.1].
We introduce, for all ε ∈ (0, 1), cε : K → [ε, 2] and bε : K → [ε (2 − ε), 1], defined,

on recalling (2.5), (2.7), (2.8a), and (1.16a), by

cε(s) := [c(s) − ε]+ + ε = 1
F ′′

ε (s) ≥ 1
F ′′(s) = c(s) ,(2.25a)

bε(s) := 2 cε(s) cε(−s)
cε(s)+cε(−s) = 1

G′′
ε (s) ≥ 1

G′′(s) = b(s) .(2.25b)

Lemma 2.2. Let the assumptions (A) hold. Then for any given ε ∈ (0, 1) the
functions Λε, Ξε : Sh → [L∞(Ω)]2×2 satisfy for all zh ∈ Kh, for all ξ ∈ R

2, and for
all σ ∈ T h

ε ξT ξ ≤ min
x∈σ

cε(z
h(x)) ξT ξ ≤ ξT Λε(z

h) |σ ξ ≤ max
x∈σ

cε(z
h(x)) ξT ξ ≤ 2 ξT ξ ,(2.26a)

(2.26b)

ε (2 − ε) ξT ξ ≤ min
x∈σ

bε(z
h(x)) ξT ξ ≤ ξT Ξε(z

h) |σ ξ ≤ max
x∈σ

bε(z
h(x)) ξT ξ ≤ ξT ξ ,

ξT Ξε(z
h) |σ ξ ≤ 2 ξT Λε(z

h) |σ ξ .(2.26c)

Proof. The desired results (2.26a)–(2.26c) follow from the construction of Λε and
Ξε; cf. (2.10) and (2.11), (2.25a), (2.25b), and (2.8a), (2.8b).

Lemma 2.3. Let the assumptions (A) hold, and let ‖ · ‖ denote the spectral norm
on R

2×2. Then for any given ε ∈ (0, 1) the functions Λε : Sh → [L∞(Ω)]2×2 and
Ξε : Sh → [L∞(Ω)]2×2 are such that for all zh ∈ Kh and for all σ ∈ T h

max
x∈σ ‖{Λε(zh) − cε(z

h) I}(x)‖ ≤ hσ |∇[cε(z
h)] |0,∞,σ ≤ hσ |∇zh |σ | ,(2.27a)

max
x∈σ ‖{Ξε(zh) − bε(z

h) I}(x)‖ ≤ hσ |∇[bε(z
h)] |0,∞,σ ≤ 2hσ |∇zh |σ | ,(2.27b)

where I is the 2 × 2 identity matrix.
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Proof. Adopting the notation of (2.10), we have from (2.11), (2.25a), (1.6), and
the Lipschitz continuity of cε that

max
x∈σ ‖{Λε(zh) − cε(z

h) I}(x)‖ = max
x̂∈σ̂

‖{Λ̂ε(ẑh) − cε(ẑ
h) I}(x̂)‖

= max
x̂∈σ̂

max
k=1→2

| [Λ̂ε(ẑh)]kk − cε(ẑ
h)(x̂) | ≤ hσ |∇̂[cε(ẑ

h)] |0,∞,σ̂

= hσ |∇[cε(z
h)] |0,∞,σ ≤ hσ |∇zh |σ |,

where we have noted that [Λ̂ε(ẑ
h) |σ̂ ]kk = cε(ẑ

h(ξ̂(k))) ≡ cε(z
h(ξ(k))) with ξ(k) ≡

Rσ ξ̂
(k) ∈ σ for some point ξ̂(k) ∈ σ̂. Hence we obtain the desired result (2.27a). The

desired result (2.27b) follows similarly to the above on noting the Lipschitz continuity
of bε; see (2.25b).

Lemma 2.4. Let the assumptions (A) hold and Un−1
ε ∈ Kh. Then for all ε ∈ (0, 1)

and for all h, τn > 0 there exists a solution {Φnε , Unε ,Wn
ε } to the nth step of (Ph,τε )

with
∫−Unε =

∫−Un−1
ε . {Φnε , Unε } is unique. In addition, Wn

ε is unique if there exists
j ∈ J such that Unε (pj) ∈ (−1, 1). Moreover, it holds that

(Λε(U
n−1
ε )∇Φnε ,∇Φnε ) + 1

2 |Φnε |20,∂2Ω ≤ 1
2 |g|20,∂2Ω,(2.28)

|(∇Φnε ,∇Un−1
ε )| ≤ 2 |g|0,∂2Ω |πh[F ′

ε(U
n−1
ε )]|0,∂2Ω,(2.29)

and

E(Unε ) + 1
2

[
γ |Unε − Un−1

ε |21 + γ−1 |Unε − Un−1
ε |2h

]
+ 1

2 γ
−1 τn | [Ξε(Un−1

ε )]
1
2 ∇Wn

ε |20 ≤ E(Un−1
ε ) + 1

2 α
2 γ−1 τn |g|20,∂2Ω ,(2.30a)

where

E(Unε ) := 1
2 [ γ |Unε |21 − γ−1 |Unε |2h ] .(2.30b)

Furthermore, it holds that

γ (Gε(U
n
ε ) −Gε(U

n−1
ε ), 1)h + γ τn |∆hUnε |2h ≤ ε−1 γ |Unε − Un−1

ε |2h
+ τn (∇Wn

ε ,∇[Unε − Un−1
ε ] ) + τn (∇[γ−1 Unε − αΦnε ],∇Un−1

ε ) .(2.31)

Proof. Given Un−1
ε ∈ Kh, it follows immediately from (2.26a) and a Friedrich

inequality that there exists a unique solution Φnε ∈ Sh to (2.13a). In order to prove
existence of a solution {Unε ,Wn

ε } ∈ Kh×Sh to (2.13b), (2.13c), we introduce, similarly
to (2.22), for qh ∈ Kh the discrete anisotropic Green’s operator Ghqh : Zh → Zh such
that

(Ξε(q
h)∇[Ghqhzh],∇χ) = (zh, χ)h ∀ χ ∈ Sh.(2.32)

It follows immediately from (2.26b) and (1.14) that Ghqh is well-posed. It follows from

(2.13b) and (2.32) that

Wn
ε ≡ −αΦnε − γ Gh

Un−1
ε

[
Un

ε −Un−1
ε

τn

]
+ λn,(2.33)

where λn ∈ R is a constant. Hence (2.13b), (2.13c) can be restated as follows: Find
Unε ∈ Kh(Un−1

ε ) := {χ ∈ Kh : χ − Un−1
ε ∈ Zh} and a Lagrange multiplier λn ∈ R
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such that for all χ ∈ Kh

γ

[
(∇Unε ,∇(χ− Unε )) +

(
Gh
Un−1

ε

[
Un

ε −Un−1
ε

τn

]
, χ− Unε

)h]
≥ (γ−1 Un−1

ε − αΦnε + λn, χ− Unε )h.(2.34)

It follows from (2.34) that Unε ∈ Kh(Un−1
ε ) is such that for all χ ∈ Kh(Un−1

ε )

γ

[
(∇Unε ,∇(χ− Unε )) +

(
Gh
Un−1

ε

[
Un

ε −Un−1
ε

τn

]
, χ− Unε

)h]
≥(γ−1Un−1

ε − αΦnε , χ− Unε)
h.

(2.35)

There exists a unique Unε ∈ Kh(Un−1
ε ) solving (2.35) since, on noting (2.32), this is

the Euler–Lagrange variational inequality of the strictly convex minimization problem

min
zh∈Kh(Un−1

ε )

{
γ
2 |zh|21 + γ

2 τn
|[Ξε(Un−1

ε )]
1
2 ∇Gh

Un−1
ε

(zh − Un−1
ε )|20

−(γ−1 Un−1
ε − αΦnε , z

h)h
}
.

Existence of the Lagrange multiplier λn in (2.34) then follows from standard opti-
mization theory; see, e.g., [11]. Therefore we have existence of a solution {Unε ,Wn

ε } ∈
Kh × Sh to (2.13b), (2.13c). If |Unε (pj)| < 1 for some j ∈ J , then πh[1 − (Unε )2] �≡ 0
and choosing χ ≡ Unε ± δπh[1 − (Unε )2] in (2.34) for δ > 0 sufficiently small yields
uniqueness of λn and, on noting (2.33), uniqueness of Wε. Furthermore, choosing
χ ≡ 1 in (2.13b) yields

∫−Unε =
∫−Un−1

ε .
The bound (2.28) follows immediately from choosing χ ≡ Φnε in (2.13a) and

applying (1.15). Choosing χ ≡ πh[F ′
ε(U

n−1
ε )] in (2.13a) and noting (2.9b) and (2.28)

yield that

|(∇Φnε ,∇Un−1
ε )| =

∣∣∣∣∫
∂2Ω

(g − Φnε )π
h[F ′

ε(U
n−1
ε )] ds

∣∣∣∣ ≤ 2 |g|0,∂2Ω |πh[F ′
ε(U

n−1
ε )]|0,∂2Ω,

and hence the desired result (2.29). Choosing χ ≡ Wn
ε in (2.13b) and χ ≡ Un−1

ε in
(2.13c) yields that

γ (Unε − Un−1
ε ,Wn

ε )h + τn (Ξε(U
n−1
ε )∇[Wn

ε + αΦnε ],∇Wn
ε ) = 0,(2.36a)

γ (∇Unε ,∇[Un−1
ε − Unε ]) ≥ (Wn

ε + γ−1 Un−1
ε , Un−1

ε − Unε )h.(2.36b)

On noting the elementary identity

2 r (r − s) = (r2 − s2) + (r − s)2 ∀ r, s ∈ R,

it follows from (2.36a), (2.36b), (2.30b), (1.15), and (2.26c) that

E(Unε ) + 1
2

[
γ |Unε − Un−1

ε |21 + γ−1 |Unε − Un−1
ε |2h

]
+ γ−1 τn | [Ξε(Un−1

ε )]
1
2 ∇Wn

ε |20
≤ E(Un−1

ε ) − αγ−1 τn (Ξε(U
n−1
ε )∇Φnε ,∇Wn

ε )

≤ E(Un−1
ε ) + γ−1 τn

2

[
| [Ξε(Un−1

ε )]
1
2 |∇Wn

ε |20 + 2α2 | [Λε(Un−1
ε )]

1
2 ∇Φnε |20

]
.

(2.37)

Hence the desired result (2.30a) follows from (2.37) and (2.28).
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Choosing χ ≡ πh[G′
ε(U

n−1
ε )] in (2.13b) and noting (2.12b) yield that

γ (Unε − Un−1
ε , G′

ε(U
n−1
ε ))h + τn (∇[Wn

ε + αΦnε ],∇Un−1
ε ) = 0 .(2.38)

We now apply an argument similar to that in [4, Theorem 2.3]. From (2.13c) we have
for all j ∈ J on choosing χ ≡ Unε + δ χj , U

n
ε ± δ χj , U

n
ε − δ χj ∈ Kh, respectively, for

δ > 0 sufficiently small, that

γ (∇Unε ,∇χj) − (Wn
ε + γ−1 Un−1

ε , χj)
h

⎧⎨⎩
≥ 0
= 0
≤ 0

if Unε (pj)

⎧⎨⎩
= −1
∈ (−1, 1)
= 1

.

(2.39)

From (2.23), (2.2), and (2.1) it follows for all j ∈ J that

Unε (pj) = ± 1 =⇒ ±Unε (pj) ≥ ±Unε (pi) ∀ i ∈ J =⇒ ±∆hUnε (pj) ≤ 0.(2.40)

Combining (2.39) and (2.40) and noting (2.23) and (2.3) yield

γ |∆hUnε |2h = −γ (∇Unε ,∇(∆hUnε ) ) ≤ −(Wn
ε + γ−1 Un−1

ε ,∆hUnε )h

= (∇[Wn
ε + γ−1 Un−1

ε ],∇Unε ).(2.41)

It follows from (2.38), (2.8a), and (2.41) that

γ(Gε(U
n
ε ) −Gε(U

n−1
ε ), 1)h + γτn|∆hUnε |2h

≤ γ(Unε − Un−1
ε , G′

ε(U
n
ε ))h + τn(∇[Wn

ε + γ−1Un−1
ε ],∇Unε )

≤ γ(Unε − Un−1
ε , G′

ε(U
n
ε ) −G′

ε(U
n−1
ε ))h + τn(∇Wn

ε ,∇[Unε − Un−1
ε ])

+ τn(∇[γ−1Unε − αΦnε ],∇Un−1
ε )

≤ ε−1γ|Unε − Un−1
ε |2h + τn[(∇Wn

ε ,∇[Unε − Un−1
ε ]) + (∇[γ−1Unε − αΦnε ],∇Un−1

ε )],

and hence the desired result (2.31).
Remark 2.5. We note that (2.28)–(2.31) are the discrete analogues of the energy

estimates (1.8)–(1.11), respectively.
Theorem 2.6. Let the assumptions (A) hold and U0

ε ∈ Kh. Then for all ε ∈
(0, 1), for all h > 0, and for all time partitions {τn}Nn=1, the solution {Φnε , Unε ,Wn

ε }Nn=1

to (Ph,τε ) is such that
∫−Unε =

∫−U0
ε , n = 1 → N , and

γ max
n=1→N

‖Unε ‖2
1 +

N∑
n=1

[
γ |Unε − Un−1

ε |21 + γ−1 |Unε − Un−1
ε |20

]
+ γ−1

N∑
n=1

τn | [Ξε(Un−1
ε )]

1
2 ∇Wn

ε |20 ≤ C
[
γ ‖U0

ε ‖2
1 + γ−1 (1 + T |g|20,∂2Ω)

]
.(2.42)
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In addition,

γ

N∑
n=1

τn

∣∣∣G [Un
ε −Un−1

ε

τn

]∣∣∣2
1

+ γ τ−
1
2

N∑
n=1

|Unε − Un−1
ε |20

≤ C
[
γ ‖U0

ε ‖2
1 + γ−1 (1 + T |g|20,∂2Ω)

]
(2.43)

and γ max
n=1→N

(Gε(U
n
ε ), 1)h + γ

N∑
n=1

τn |∆hUnε |2h

≤ γ (Gε(U
0
ε ), 1)h + α2

N∑
n=1

τn |πh[F ′
ε(U

n−1
ε )]|20,∂2Ω

+ C(T ) [ 1 + γ−2 + ε−1τ
1
2 ]
[
γ ‖U0

ε ‖2
1 + γ−1 (1 + T |g|20,∂2Ω)

]
.(2.44)

Proof. Summing (2.30a) from n = 1 → k yields for any k ≤ N that

E(Ukε ) + 1
2

k∑
n=1

[
γ |Unε − Un−1

ε |21 + γ−1 |Unε − Un−1
ε |2h

]
+ 1

2 γ
−1

k∑
n=1

τn | [Ξε(Un−1
ε )]

1
2 ∇Wn

ε |20 ≤ E(U0
ε ) + 1

2 α
2 γ−1 tk |g|20,∂2Ω .(2.45)

The desired result (2.42) then follows from (2.45), (2.30b), (2.3), (2.18), and the fact
that Unε ∈ Kh, n = 0 → N .

From (1.13), (2.4), (2.13b), (2.26b), (2.26c), and (2.21) we obtain for any η ∈
H1(Ω) that

γ
(
∇G[

Un
ε −Un−1

ε

τn
],∇η
)

= γ
(
Un

ε −Un−1
ε

τn
, η
)

= γ
(
Un

ε −Un−1
ε

τn
, Qhη

)h
= −(Ξε(U

n−1
ε )∇[Wn

ε + αΦnε ],∇[Qhη])

≤
[
|[Ξε(Un−1

ε )]
1
2 ∇Wn

ε |0 + α |[Ξε(Un−1
ε )]

1
2 ∇Φnε |0

]
|Qhη|1

≤ C
[
|[Ξε(Un−1

ε )]
1
2 ∇Wn

ε |0 + α |[Λε(Un−1
ε )]

1
2 ∇Φnε |0

]
|η|1 .(2.46)

The first bound in (2.43) then follows from (2.46), (2.28), and (2.42). Moreover, we
have from (1.13) that

N∑
n=1

|Unε − Un−1
ε |20 ≤ τ

1
2

[
N∑
n=1

|Unε − Un−1
ε |21

] 1
2
[
N∑
n=1

τn

∣∣∣G[
Un

ε −Un−1
ε

τn
]
∣∣∣2
1

] 1
2

.

The second bound in (2.43) then follows from the first and (2.42). Finally, summing
(2.31) from n = 1 → k and noting (2.3), (2.18), and (2.26b) yield for any k ≤ N that

γ (Gε(U
k
ε ), 1)h + γ

k∑
n=1

τn |∆hUnε |2h ≤ γ (Gε(U
0
ε ), 1)h

+

k∑
n=1

[
4 ε−1 γ |Unε − Un−1

ε |20 + α τn |(∇Φnε ,∇Un−1
ε )| ]+ γ−1 tk max

n=0→k
‖Unε ‖2

1

+

[
ε−1

k∑
n=1

τn |[Ξε(Un−1
ε )]

1
2 ∇Wn

ε |20
] 1

2
[

k∑
n=1

τn |Unε − Un−1
ε |21

] 1
2

.

(2.47)
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The desired result (2.44) then follows from (2.47), (2.29), (1.15), (2.42), and
(2.43).

Lemma 2.7. Let u0 ∈ K and the assumptions (A) hold. On choosing either
U0
ε ≡ Qhu0 or, if u0 ∈ W 1,p(Ω) with p > 2, U0

ε ≡ πhu0, it follows that U0
ε ∈ Kh is

such that for all h > 0

‖U0
ε ‖2

1 + (Gε(U
0
ε ), 1)h ≤ C.(2.48)

Proof. The desired result (2.48) follows immediately from (2.20), (2.21), (2.17),
(2.7), and (2.6).

Remark 2.8. As an alternative to the approximation (Ph,τε ) of (P) one could
consider (Ph,τε ), which is the same as (Ph,τε ) but with Λε(U

n−1
ε ) in (2.13a) replaced by

Λε(U
n
ε ) and Ξε(U

n−1
ε ) in (2.13b) replaced by Ξε(U

n
ε ). This is more in line with the

approximation of the thin film equation in [17]. This has the advantage that to prove
the key energy bound (2.44) one can choose χ ≡ πh[F ′

ε(U
n
ε )] and χ ≡ πh[G′

ε(U
n
ε )] in

the modified versions of (2.13a) and (2.13b), respectively. This would simplify the

proof of (2.44) and in particular remove the term ε−1τ
1
2 on the right-hand side. The

presence of this term for our chosen scheme (Ph,τε ) leads to the constraint τ ≤ C ε2 for
our convergence results; see Lemma 3.1. However, the scheme (Ph,τε ) has the severe
disadvantage that the well posedness and computation of {Φnε , Unε ,Wn

ε } is nontrivial,
since they are coupled in a highly nonlinear system of equations.

Remark 2.9. Also in line with the approximation of the thin film equation in [17],
one could remove the inequality constraint in (2.13c) for either of the approximations
in Remark 2.8. In particular, it follows from (2.7) that

ε−1 (|s| − (1 − ε))2 ≤ 4Gε(s) ∀ |s| ≥ 1 − ε.(2.49)

On combining (2.49) with the energy bound (2.44), which still holds, one has control,
in terms of ε, on the overshoot of Unε from K in | · |h. As the inequality constraint
in (2.13c) does not lead to any theoretical or computational complications, we prefer
to impose it so one can clearly identify the three computational regions: conductor
Unε = +1, interface |Unε | < 1, and void Unε = −1.

Remark 2.10. The approximation (Ph,τε ) of (P) and all the variants mentioned
in Remarks 2.8 and 2.9 require solving for {Φnε , Unε ,Wn

ε } over the whole domain Ω,
due to the nondegeneracy of Λε(·) and Ξε(·); see (2.26a), (2.26b). For computational
speed it would be more convenient to solve for Φnε just in the conductor and interfacial
regions, Un−1

ε > −1, and for {Unε ,Wn
ε } just in the interfacial region, |Un−1

ε | < 1. With

this in mind, and adopting the notation (2.10) and (2.11), we introduce Λ̃ε, Ξ̃ε : Sh →
[L∞(Ω)]2×2 such that Λ̃ε(z

h) |σ:= RσΛ̂


ε(ẑ

h) |σ̂ RTσ and Ξ̃ε(z
h) |σ:= RσΞ̂



ε(ẑ

h) |σ̂ RTσ ,
where

[Λ̂
ε(ẑ
h) |σ̂]kk :=

{
0 if ẑh(p̂k) = ẑh(p̂0) = −1,

[Λ̂ε(ẑ
h) |σ̂]kk otherwise;

and [Ξ̂
ε(ẑ
h) |σ̂]kk :=

{
0 if ẑh(p̂k) = ẑh(p̂0) = ±1,

[Ξ̂ε(ẑ
h) |σ̂]kk otherwise.

We note that the key identities, Λε(z
h) in (2.9a), (2.9b) replaced by Λ̃ε(z

h) and Ξε(z
h)

in (2.12a), (2.12b) replaced by Ξ̃ε(z
h), still hold. We then introduce the approximation

(P̃h,τε ) of (P), which is the same as (Ph,τε ) but with Λε(U
n−1
ε ) in (2.13a) replaced by

Λ̃ε(U
n−1
ε ) and Ξε(U

n−1
ε ) in (2.13b) replaced by Ξ̃ε(U

n−1
ε ). As Λ̃ε(·) and Ξ̃ε(·) are
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now degenerate, existence of a solution {Φnε , Unε ,Wn
ε } to (P̃h,τε ) does not appear

to be trivial. However, this can easily be established by splitting the nodes into
passive and active sets; see, e.g., [3]. Moreover, one can show that Unε is unique,

Φnε (pj) is unique if (Λ̃ε(U
n−1
ε ), χj) > 0, and Wn

ε (pj) is unique if (Ξ̃ε(U
n−1
ε ), χj) > 0.

Furthermore, one can establish analogues of the energy estimates (2.42) and (2.43).
Unfortunately, it does not appear possible to establish an analogue of the key energy
estimate (2.44) for (P̃h,τε ) .

3. Convergence. Let

Uε(t) := t−tn−1

τn
Unε + tn−t

τn
Un−1
ε , t ∈ [tn−1, tn], n ≥ 1,(3.1a)

U+
ε (t) := Unε , U−

ε (t) := Un−1
ε , t ∈ (tn−1, tn], n ≥ 1.(3.1b)

We note for future reference that

Uε − U±
ε = (t− t±n ) ∂Uε

∂t , t ∈ (tn−1, tn), n ≥ 1,(3.2)

where t+n := tn and t−n := tn−1. We introduce also

τ̄(t) := τn, t ∈ (tn−1, tn], n ≥ 1.(3.3)

Using the above notation and introducing analogous notation for W+
ε and Φ+

ε , (Ph,τε )
can be restated as follows: Find {Φ+

ε , Uε,W
+
ε } ∈ L∞(0, T ;Sh) × C([0, T ];Kh) ×

L∞(0, T ;Sh) such that for all χ ∈ L∞(0, T ;Sh) and zh ∈ L∞(0, T ;Kh)∫ T

0

(Λε(U
−
ε )∇Φ+

ε ,∇χ) dt+

∫ T

0

∫
∂2Ω

Φ+
ε χdsdt =

∫ T

0

∫
∂2Ω

g χdsdt,(3.4a) ∫ T

0

[
γ
(
∂Uε

∂t , χ
)h

+ (Ξε(U
−
ε )∇[W+

ε + αΦ+
ε ],∇χ)

]
dt = 0,(3.4b)

γ

∫ T

0

(∇U+
ε ,∇[zh − U+

ε ]) dt ≥
∫ T

0

(W+
ε + γ−1 U−

ε , z
h − U+

ε )h dt.(3.4c)

Lemma 3.1. Let u0 ∈ K with
∫−u0 ∈ (−1, 1). Let {T h, U0

ε , {τn}Nn=1, ε}h>0 be
such that

(i) either U0
ε ≡ Qhu0 or U0

ε ≡ πhu0 if u0 ∈W 1,p(Ω) with p > 2;
(ii) Ω and {T h}h>0 fulfill assumptions (A), ε ∈ (0, 1) with ε → 0 as h → 0, and

τn ≤ C τn−1 ≤ C ε2, n = 2 → N .
Then there exists a subsequence of {Φ+

ε , Uε,W
+
ε }h, where {Φ+

ε , Uε,W
+
ε } solve

(Ph,τε ), and a function

u ∈ L∞(0, T ;K) ∩H1(0, T ; (H1(Ω))′)(3.5)

with u(·, 0) = u0(·) in L2(Ω) and
∫−u(·, t) =

∫−u0 for a.a. t ∈ (0, T ) such that as h→ 0

Uε, U
±
ε → u weak-∗ in L∞(0, T ;H1(Ω)),(3.6a)

G ∂Uε

∂t → G ∂u∂t weakly in L2(0, T ;H1(Ω)),(3.6b)

Uε, U
±
ε → u strongly in L2(0, T ;Ls(Ω)),(3.7a)

Ξε(U
−
ε ) → b(u) I strongly in L2(0, T ;Ls(Ω)),(3.7b)

Λε(U
−
ε ) → c(u) I strongly in L2(0, T ;Ls(Ω))(3.7c)
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for all s ∈ [2,∞). If, in addition, u0 ∈ H2(Ω) with ∂u0

∂ν = 0 on ∂Ω, U0
ε ≡ πhu0, and

α2

∫ T

0

|πh[F ′
ε(U

−
ε )]|20,∂2Ω dt ≤ C,(3.8)

then u, in addition to (3.5), satisfies

u ∈ L2(0, T ;H2(Ω))(3.9)

and there exists a subsequence of {Φ+
ε , Uε,W

+
ε }h satisfying (3.6a), (3.6b), (3.7a)–

(3.7c) and as h→ 0

∆hUε, ∆hU±
ε → ∆u weakly in L2(ΩT ),(3.10a)

Uε, U
±
ε → u weakly in L2(0, T ;W 1,s(Ω)) for any s ∈ [2,∞),(3.10b)

Uε → u strongly in L2(0, T ;C0,β(Ω)) for any β ∈ (0, 1).(3.10c)

Proof. Noting the definitions (3.1a), (3.1b) and (3.3), the bounds in (2.28), (2.42),
and (2.43), together with (1.14), (2.48) and our assumption (i), imply that

‖ [Λε(U
−
ε )]

1
2 ∇Φ+

ε ‖2
L2(ΩT ) + ‖Φ+

ε ‖2
L2(0,T ;L2(∂2Ω)) + ‖U (±)

ε ‖2
L∞(0,T ;H1(Ω))

+ ‖τ̄ 1
2 ∂Uε

∂t ‖2
L2(0,T ;H1(Ω)) + ‖ [Ξε(U

−
ε )]

1
2 ∇W+

ε ‖2
L2(ΩT ) + ‖G ∂Uε

∂t ‖2
L2(0,T ;H1(Ω))

+ τ−
1
2 ‖τ̄ 1

2 ∂Uε

∂t ‖2
L2(ΩT ) ≤ C.(3.11)

Furthermore, we deduce from (3.2) and (3.11) that

‖Uε − U±
ε ‖2

L2(0,T ;H1(Ω)) ≤ ‖τ̄ ∂Uε

∂t ‖2
L2(0,T ;H1(Ω)) ≤ C τ .(3.12)

Hence on noting (3.11), (3.12), Uε(·, t) ∈ Kh, and (1.12a) we can choose a subsequence
{Φ+

ε , Uε,W
+
ε }h such that the convergence results (3.5), (3.6a), (3.6b), and (3.7a) hold.

Then (3.5) and Theorem 2.6 yield, on noting (1.12b), assumption (i), (2.21), and
(2.17), that the subsequence satisfies the additional initial and integral conditions.

We now prove (3.7b). We have that

‖b(u) I − Ξε(U
−
ε )‖L2(0,T ;Ls(Ω)) ≤ ‖b(u) − b(U−

ε )‖L2(0,T ;Ls(Ω))

+ ‖b(U−
ε ) − bε(U

−
ε )‖L2(0,T ;Ls(Ω)) + ‖bε(U−

ε ) I − Ξε(U
−
ε )‖L2(0,T ;Ls(Ω)).(3.13)

Noting the Lipschitz continuity of b on K, (2.27b), (2.15), and (3.11), we have that

‖b(u) − b(U−
ε )‖L2(0,T ;Ls(Ω)) + ‖bε(U−

ε ) I − Ξε(U
−
ε )‖L2(0,T ;Ls(Ω))

≤ 2 ‖u− U−
ε ‖L2(0,T ;Ls(Ω)) + C h

2
s ‖∇U−

ε ‖L2(ΩT )

≤ 2 ‖u− U−
ε ‖L2(0,T ;Ls(Ω)) + C h

2
s .(3.14)

It follows from (2.25b) and (1.6) that

‖b(U−
ε ) − bε(U

−
ε )‖L2(0,T ;Ls(Ω)) ≤ C bε(1) ≤ C ε .(3.15)

Combining (3.13), (3.14), (3.15) and noting (3.7a) and our assumption (ii) on ε yield
the desired result (3.7b). A similar argument to the above yields the desired result
(3.7c).
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We now prove the results (3.10a)–(3.10c). It follows from (2.3), (2.18), (2.23),
(2.16), our assumptions on u0, and (2.14) that

|∆hU0
ε |20 = |∆h(πhu0)|20 ≤ |∆h(πhu0)|2h = −(∇(πhu0),∇(∆h(πhu0)))

= −(∇u0,∇(∆h(πhu0))) + (∇(I − πh)u0,∇(∆h(πhu0)))

≤ |∆u0|0 |∆h(πhu0)|0 + C h |u0|2 |∇(∆h(πhu0))|0 ≤ C |u0|22 ≤ C.(3.16)

Moreover, (2.44), (2.48), (3.16), (2.3), (2.18), (3.1a), (3.1b), and our assumption (ii)
on {τn}Nn=1 yield that

‖∆hU (±)
ε ‖L2(ΩT ) ≤ C .(3.17)

From (3.17), (2.23), (2.17), (2.19), (3.11), and (3.6a) we have for any η ∈ L2(0, T ;
W 1,q(Ω)), q > 2, that∫ T

0

(∆hU (±)
ε , η) dt =

∫ T

0

(∆hU (±)
ε , (I − πh)η) dt

+

∫ T

0

[
(∆hU (±)

ε , πh η) − (∆hU (±)
ε , πh η)h

]
dt

+

∫ T

0

(∇U (±)
ε ,∇(I − πh)η) dt−

∫ T

0

(∇U (±)
ε ,∇η) dt

→ −
∫ T

0

(∇u,∇η) dt as h→ 0 .(3.18)

Combining (3.17), (3.18), and the denseness of L2(0, T ;W 1,q(Ω)) in L2(ΩT ) yields
(3.10a) and, in particular, ∆u ∈ L2(ΩT ). This, together with elliptic regularity, as Ω
is a rectangle, and (3.5), proves (3.9). Furthermore, it follows from (3.10a) and (2.24)
that (3.10b) holds on extracting a further subsequence. Finally, (3.10c) follows from
(3.10b), (3.6b), (1.12a), and the compact embedding W 1,s(Ω) ↪→ C0,β(Ω).

Remark 3.2. The conditions u0 ∈ H2(Ω) with ∂u0

∂ν = 0 on ∂Ω for the re-
sults (3.10a)–(3.10c) can be replaced by a restriction on τ1 in terms of h (see [7,
Lemma 3.1]), but they are not particularly restrictive. The assumption (3.8) holds if
Uε(x, t) = 1 for all x ∈ ∂2Ω and t ∈ [0, T ], and this condition held in all our numerical
experiments, provided u0 = 1 on ∂2Ω and either L1 is chosen sufficiently large or T
is chosen sufficiently small. This can be made rigorous for the approximation (P̃h,τε )

(see Remark 2.10), as the degeneracy of Ξ̃ε leads to finite speed of propagation of the
numerical interfacial region; at each time level it can move locally at most one mesh
point; see [3].

In addition to the above lemma, we need the following two lemmas in order to
prove our main result, Theorem 3.6 below.

Lemma 3.3. Let all the assumptions of Lemma 3.1 hold. If, in addition, τn = τ ,
n = 1 → N , then∫ T−θ

0

|U±
ε (t+ θ) − U±

ε (t)|20 dt ≤ C θ ∀ θ ∈ (0, T ).(3.19)

Moreover, it holds that the subsequence of {Φ+
ε , Uε,W

+
ε }h in Lemma 3.1 is such that

for any β ∈ (0, 1)

U±
ε → u strongly in L2(0, T ;C0,β(Ω)) as h→ 0;(3.20a)
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and, on extracting a further subsequence, it holds for a.a. t ∈ (0, T ) that

U±
ε (·, t) → u(·, t) strongly in C0,β(Ω) as h→ 0.(3.20b)

Proof. The proof is similar to the proofs in [16, Lemmas 7.1 and 8.8]; see also [7,
Lemma 3.2]. It follows from (2.13b) for m = 0 → N − l, l ∈ {1, . . . , N} fixed, that

γ

m+l∑
n=m+1

τn

(
Un

ε −Un−1
ε

τn
, Um+l

ε − Umε

)h
= −

m+l∑
n=m+1

τn (Ξε(U
n−1
ε )∇[Wn

ε + αΦnε ],∇(Um+l
ε − Umε )) .(3.21)

Similarly to (2.46), we obtain from (3.21) and (2.26b), (2.26c) that

γ |Um+l
ε − Umε |2h ≤

m+l∑
n=m+1

τn an |Um+l
ε − Umε |1 =

l∑
k=1

τm+k am+k |Um+l
ε − Umε |1,

(3.22)

where an := |[Ξε(Un−1
ε )]

1
2 ∇Wn

ε |0 + 2
1
2 α |[Λε(Un−1

ε )]
1
2 ∇Φnε |0. Summing (3.22) for

m = 0 → N − l and using the uniform time step assumption yield on noting (2.28),
(2.42), and (2.48) that

γ

N−l∑
m=0

τ |Um+l
ε − Umε |2h ≤

l∑
k=1

τ

N−l∑
m=0

τ am+k |Um+l
ε − Umε |1

≤
l∑

k=1

τ

[
N−l∑
m=0

τ a2
m+k

] 1
2
[
N−l∑
m=0

τ |Um+l
ε − Umε |21

] 1
2

≤ C l τ.(3.23)

Combining (3.23), (2.3), (2.18), and (3.1b) yields (3.19) for θ = l τ . For arbitrary
θ ∈ (0, T ) with θ = µ τ , µ ∈ (0, N), we argue as follows. On recalling (1.16b), let
l = �µ�, ϑ = µ−�µ� ∈ [0, 1) and m ∈ {0, . . . , N − l} be such that t ∈ (mτ, (m+1) τ ].
Hence

U±
ε (t+ µ τ) =

{
U±
ε (t+ l τ) if t ∈ (mτ,m τ + (1 − ϑ) τ ],

U±
ε (t+ (l + 1) τ) if t ∈ (mτ + (1 − ϑ) τ, (m+ 1) τ ],

and we obtain on noting (3.23) that

γ

∫ T−µ τ

0

|U±
ε (t+ µ τ) − U±

ε (t)|2h dt

≤ τ (1 − ϑ)
N−l∑
m=0

|Um+l
ε − Umε |2h + τ ϑ

N−l−1∑
m=0

|Um+l+1
ε − Umε |2h

≤ C [(1 − ϑ) l + ϑ (l + 1)] τ = C µ τ.(3.24)

Combining (3.24), (2.3), and (2.18) yields (3.19) for all θ ∈ (0, T ). It follows from
(3.10b) and (3.19), on noting (1.12c) and the compact embedding W 1,s(Ω) ↪→
C0,β(Ω), that (3.20a) holds. Finally, the desired result (3.20b) follows immediately
from (3.20a).
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From (3.11), (2.26a), (2.26b), (2.25a), (2.25b), (1.6), and (3.20b) we see that we
can only control ∇Φ+

ε and ∇W+
ε on the sets where Λε(U

−
ε ) and Ξε(U

−
ε ) are bounded

below independently of ε, and hence h on noting (ii), i.e., on the sets where u > −1
and |u| < 1, respectively. Therefore in order to construct the appropriate limits as
h→ 0, we introduce the following open subsets of Ω. For any δ ∈ (0, 1), we define for
a.a. t ∈ (0, T )

Bδ(t) := {x ∈ Ω : |u(x, t)| < 1 − δ } ⊂ Dδ(t) := {x ∈ Ω : −1 + δ < u(x, t) } .(3.25)

From (3.20b) we have that there exist positive constants Cx(t) such that

|u(y, t) − u(z, t)| ≤ Cx(t) |y − z|β ∀ y, z ∈ Ω for a.a. t ∈ (0, T ).(3.26)

As
∫−u(·, t) =

∫−u0 ∈ (−1, 1) for a.a. t ∈ (0, T ), it follows that there exists a δ0 ∈
(0, 1 − | ∫−u0| ) such that Dδ0(t) ⊃ Bδ0(t) �≡ ∅ for a.a. t ∈ (0, T ). It immediately
follows from (3.25) and (3.26) for a.a. t ∈ (0, T ) and for any δ1, δ2 ∈ (0, δ0) with
δ1 > δ2 that

either y ∈ Bδ1(t) and z ∈ ∂Bδ2(t) or y ∈ Dδ1(t) and z ∈ ∂Dδ2(t) with z �∈ ∂Ω

=⇒ Cx(t) |y − z|β ≥ u(y, t) − u(z, t) > (δ1 − δ2),

where ∂Bδ(t) and ∂Dδ(t) are the boundaries of Bδ(t) and Dδ(t), respectively. This
implies that for a.a. t ∈ (0, T ) and any δ ∈ (0, δ0) there exists an h0(δ, t) such that for
all h ≤ h0(δ, t) there exist collections of simplices T h

B,δ(t) ⊂ T h
D,δ(t) ⊂ T h such that

Bδ(t) ⊂ Bhδ (t) := ∪σ∈T h
B,δ(t)

σ ⊂ B δ
2
(t) , Dδ(t) ⊂ Dh

δ (t) := ∪σ∈T h
D,δ(t)

σ ⊂ D δ
2
(t) .

(3.27)

Clearly, we have from (3.25) that

δ2 < δ1 < δ0 =⇒ h0(δ2, t) ≤ h0(δ1, t) .

For a.a. t ∈ (0, T ) and any fixed δ ∈ (0, δ̂0), where δ̂0 := min{δ0, 1
2}, it follows

from (3.25), (3.20b), and our assumption (ii) of Lemma 3.1 that there exists an

ĥ0(δ, t) ≤ h0(δ, t) such that for h ≤ ĥ0(δ, t)

1 − 2 δ ≤ |U±
ε (x, t)| ∀ x �∈ Bδ(t), |U±

ε (x, t)| ≤ 1 − δ
2 ∀ x ∈ Bδ(t) ,(3.28a)

U±
ε (x, t) ≤ −1 + 2 δ ∀ x �∈ Dδ(t), −1 + δ

2 ≤ U±
ε (x, t) ∀ x ∈ Dδ(t),(3.28b)

and
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ε ≤ δ .(3.29)

Lemma 3.4. Let all the assumptions of Lemma 3.3 hold. Then for a.a. t ∈ (0, T )
there exist functions

φ(·, t) ∈ H1
loc({u(·, t) > −1}), w(·, t) ≡ −γ∆u(·, t) − γ−1 u(·, t) ∈ H1

loc({|u(·, t)| < 1}),
(3.30)

where {u(·, t) > −1} := {x ∈ Ω : u(x, t) > −1} and {|u(·, t)| < 1} := {x ∈ Ω :
|u(x, t)| < 1}. Moreover, on assuming that

u(x, t) = 1 ∀ x ∈ ∂2Ω, for a.a. t ∈ (0, T ) ,(3.31)

and extracting a further subsequence from the subsequence {Φ+
ε , Uε,W

+
ε }h in Lemma

3.3, it holds as h→ 0 that

Φ+
ε → φ weakly in L2(0, T ;L2(∂2Ω)) ,(3.32a)

Λε(U
−
ε )∇Φ+

ε → H{u>−1} c(u)∇φ weakly in L2(ΩT ),(3.32b)

Ξε(U
−
ε )∇Φ+

ε → H{|u|<1} b(u)∇φ weakly in L2(ΩT ),(3.32c)

Ξε(U
−
ε )∇W+

ε → H{|u|<1} b(u)∇w weakly in L2(ΩT ),(3.32d)

where H{u>−1} and H{|u|<1} are the characteristic functions of the sets {u > −1} :=
{(x, t) ∈ ΩT : u(x, t) > −1} and {|u| < 1} := {(x, t) ∈ ΩT : |u(x, t)| < 1}, respec-
tively.

Proof. It follows from (3.11) and (2.26a)–(2.26c) that

‖Λε(U−
ε )∇Φ+

ε ‖2
L2(ΩT ) + ‖Ξε(U−

ε )∇Φ+
ε ‖2

L2(ΩT ) + ‖Ξε(U−
ε )∇W+

ε ‖2
L2(ΩT ) ≤ C.(3.33)

Hence (3.33) implies that there exist functions zi ∈ L2(ΩT ), i = 1 → 3, and, on
extracting a further subsequence from the subsequence {Φ+

ε , Uε,W
+
ε }h in Lemma 3.3,

it holds as h→ 0 that

Λε(U
−
ε )∇Φ+

ε → z1 , Ξε(U
−
ε )∇Φ+

ε → z2 , Ξε(U
−
ε )∇W+

ε → z3 weakly in L2(ΩT ) .

(3.34)

We now identify the functions zi.
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First, we consider a fixed δ ∈ (0, δ0). It follows from (1.6), (2.25a), (2.25b),
(2.26a), (2.26b), (3.28a), (3.28b), and (3.11) that for a.a. t ∈ (0, T ) and for all h ≤
ĥ0(δ, t)

δ
2 |∇Φ+

ε (·, t)|20,Dδ(t)
= c(−1 + δ

2 ) |∇Φ+
ε (·, t)|20,Dδ(t)

≤ cε(−1 + δ
2 ) |∇Φ+

ε (·, t)|20,Dδ(t)

≤ | ( [Λε(U
−
ε )]

1
2 ∇Φ+

ε )(·, t)|20 ≤ C(t) ,(3.35a)

δ (1 − δ
4 ) |∇W+

ε (·, t)|20,Bδ(t)
= b(1 − δ

2 ) |∇W+
ε (·, t)|20,Bδ(t)

≤ bε(1 − δ
2 ) |∇W+

ε (·, t)|20,Bδ(t)

≤ | ( [Ξε(U
−
ε )]

1
2 ∇W+

ε )(·, t)|20 ≤ C(t) .(3.35b)

From (3.35a), (3.35b), (3.27), (2.26a)–(2.26c), (3.28a), (3.28b), and (3.29) we have for

a.a. t ∈ (0, T ) and for all h ≤ ĥ0(δ, t)

| (Λε(U−
ε )∇Φ+

ε )(·, t)|20,Ω\Dδ(t)

≤ max
x∈Ω\D2δ(t)

cε(U
−
ε (x)) | ( [Λε(U

−
ε )]

1
2 ∇Φ+

ε )(·, t)|20,Ω\Dδ(t)

≤ C(t) cε(−1 + 4 δ) ≤ C(t) max{4δ, ε} ≤ C(t) δ ,(3.36a)

| (Ξε(U−
ε )∇Φ+

ε )(·, t)|20,Ω\Bδ(t)

≤ max
x∈Ω\B2δ(t)

2 bε(U
−
ε (x)) | ( [Λε(U

−
ε )]

1
2 ∇Φ+

ε )(·, t)|20,Ω\Bδ(t)

≤ C(t) bε(1 − 4 δ) ≤ C(t) max{4δ, ε} ≤ C(t) δ ,(3.36b)

| (Ξε(U−
ε )∇W+

ε )(·, t)|20,Ω\Bδ(t)

≤ max
x∈Ω\B2δ(t)

bε(U
−
ε (x)) | ( [Ξε(U

−
ε )]

1
2 ∇W+

ε )(·, t)|20,Ω\Bδ(t)

≤ C(t) bε(1 − 4 δ) ≤ C(t) δ .(3.36c)

From (3.35a) and appealing to the de Rham theorem (see, e.g., [27, p. 10]), we have
that there exists a function φ ∈ L2

loc(Dδ(t)) with ∇φ ∈ L2(Dδ(t)) and, on extracting
a further subsequence, such that for a.a. t ∈ (0, T )

∇Φ+
ε (·, t) → ∇φ(·, t) weakly in L2(Dδ(t)) as h→ 0.(3.37)

In order to show (3.32a) we proceed as follows. On recalling (3.20b) and (3.31) we
define open sets D±

L (t) ⊂ Dδ(t) with Lipschitz boundaries ∂D±
L (t) such that ∂±2 Ω ⊂

∂D±
L (t). Since D±

L (t) is a Lipschitz domain, Friedrich’s inequality, (3.11), and a
corresponding D±

L (t) version of (3.35a) yield that for a.a. t ∈ (0, T ) and for all h ≤
ĥ0(δ, t)

‖Φ+
ε (·, t)‖2

1,D±
L (t)

≤ C(t) [ |∇Φ+
ε (·, t)|2

0,D±
L (t)

+ |Φ+
ε (·, t)|2

0,∂±
2 Ω

] ≤ C(t) .(3.38)

Combining (3.38) and (3.37) yields that

Φ+
ε (·, t) → φ(·, t) weakly in H1(D±

L (t)) as h→ 0.(3.39)

Then we define the following elliptic operators F± : L2(∂±2 Ω) → H1(D±
L (t)):∫

D±
L (t)

[∇[F±z].∇η + [F±z] η
]

dx =

∫
∂±
2 Ω

z η ds ∀ η ∈ H1(D±
L (t)).
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On noting that ∂±2 Ω ⊂ ∂D±
L (t), we have from (3.37) and (3.39) for a.a. t ∈ (0, T ) and

any η ∈ L2(∂±2 Ω) that∫
∂±
2 Ω

Φ+
ε (·, t) η ds =

∫
D±

L (t)

[
∇Φ+

ε (·, t).∇[F±
η] + Φ+

ε (·, t)F±η
]

dx

→
∫
D±

L (t)

[∇φ(·, t).∇[F±η] + φ(·, t)F±η
]

dx =

∫
∂±
2 Ω

φ(·, t) η ds .(3.40)

Combining (3.11) and (3.40) yields the desired result (3.32a).
On noting (3.17) we have for a.a. t ∈ (0, T ) that

|∆hU+
ε (·, t)|0 ≤ C(t) .

Similarly to (3.18) this yields for a.a. t ∈ (0, T ) that as h→ 0

∆hU+
ε (·, t) → ∆u(·, t) weakly in L2(Ω).(3.41)

Combining (2.39), (2.23), (3.1b), (3.28a), and (3.27) yields for a.a. t ∈ (0, T ), and for

all h ≤ ĥ0(
δ
2 , t) that

W+
ε (·, t) ≡ −γ∆hU+

ε (·, t) − γ−1 U−
ε (·, t) on Bδ(t) .(3.42)

It follows from (3.42), (3.41), and (3.20b) for a.a. t ∈ (0, T ) that as h→ 0

W+
ε (·, t) → −γ∆u(·, t) − γ−1 u(·, t) weakly in L2(Bδ(t)).

This, together with (3.35b), yields

W+
ε (·, t) → w(·, t) weakly in H1(Bδ(t)).(3.43)

Combining (3.34), (3.37), (3.43), and (3.7b), (3.7c) yields for a.a. t ∈ (0, T ) that as
h→ 0

(Λε(U
−
ε )∇Φ+

ε )(·, t) → c(u(·, t))∇φ(·, t) weakly in L2(Dδ(t)),(3.44a)

(Ξε(U
−
ε )∇Φ+

ε )(·, t) → b(u(·, t))∇φ(·, t) weakly in L2(Bδ(t)),(3.44b)

(Ξε(U
−
ε )∇W+

ε )(·, t) → b(u(·, t))∇w(·, t) weakly in L2(Bδ(t)).(3.44c)

Repeating (3.35a), (3.35b)–(3.37) and (3.42)–(3.44a)–(3.44c) for all δ ∈ (0, δ̂0) yields,
on recalling (3.20b), that (3.30) holds and, on noting (3.36a)–(3.36c) and (3.34), the
desired results (3.32b)–(3.32d).

Remark 3.5. The assumption (3.31) is similar to the assumption (3.8); see Re-
mark 3.2.

Theorem 3.6. Let the assumptions of Lemma 3.4 hold. Then there exists a sub-
sequence of {Φ+

ε , Uε,W
+
ε }h, where {Φ+

ε , Uε,W
+
ε } solve (Ph,τε ), and functions {φ, u, w}

satisfying (3.5), (3.9), and (3.30). In addition, as h → 0 the following hold: (3.6a),
(3.6b), (3.7a)–(3.7c), (3.10a)–(3.10c), (3.20a), (3.20b) for a.a. t ∈ (0, T ), and (3.32a)–
(3.32d). Furthermore, we have that {φ, u, w} fulfill u(·, 0) = u0(·) in L2(Ω) and satisfy
for all η ∈ L2(0, T ;H1(Ω))∫

{u>−1}
c(u)∇φ .∇η dxdt+

∫ T

0

∫
∂2Ω

φ η dsdt =

∫ T

0

∫
∂2Ω

g η dsdt ,(3.45a)

γ

∫ T

0

〈∂u∂t , η〉dt+

∫
{|u|<1}

b(u)∇ [w + αφ] .∇η dxdt = 0 ,(3.45b)

where w(·, t) ≡ −γ∆u(·, t) − γ−1u(·, t) on the set {|u(·, t)| < 1} for a.a. t ∈ (0, T ).
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Proof. For any η ∈ H1(0, T ;H2(Ω)) we choose χ ≡ πhη in (3.4a), (3.4b) and
now analyze the subsequent terms. First, (2.19), the embedding H1(0, T ;X) ↪→
C([0, T ];X), (3.11), and (2.16) yield that∣∣∣∣∣

∫ T

0

[ (
∂Uε

∂t , π
hη
)h − (∂Uε

∂t , π
hη
) ]

dt

∣∣∣∣∣
=

∣∣∣∣∣−
∫ T

0

(
Uε,

∂(πhη)
∂t

)h
dt+ (Uε(·, T ), πhη(·, T ))h − (Uε(·, 0), πhη(·, 0))h

+

∫ T

0

(
Uε,

∂(πhη)
∂t

)
dt− (Uε(·, T ), πhη(·, T )) + (Uε(·, 0), πhη(·, 0))

∣∣∣∣∣
≤ C h ‖Uε‖L∞(0,T ;L2(Ω)) ‖πhη‖H1(0,T ;H1(Ω)) ≤ C h ‖η‖H1(0,T ;H2(Ω)).(3.46)

Furthermore, it follows from (1.13), (3.11), and (2.16) that∣∣∣∣∣
∫ T

0

(
∂Uε

∂t , (I − πh)η
)

dt

∣∣∣∣∣ ≤ C ‖G ∂Uε

∂t ‖L2(0,T ;H1(Ω)) ‖(I − πh)η‖L2(0,T ;H1(Ω))

≤ C h ‖η‖L2(0,T ;H2(Ω)).(3.47)

Combining (3.46), (3.47), and (3.6b) yields that∫ T

0

(
∂Uε

∂t , π
hη
)h

dt→
∫ T

0

〈∂u∂t , η〉dt as h→ 0.(3.48)

Moreover, it holds on noting (3.11), g as in (1.8), a trace inequality, and (2.16) that∣∣∣∣∣
∫ T

0

∫
∂2Ω

(Φ+
ε − g) (I − πh)η ds dt

∣∣∣∣∣
≤ [‖Φ+

ε ‖L2(0,T ;L2(∂2Ω)) + ‖g‖L2(0,T ;L2(∂2Ω))

] ‖(I − πh)η‖L2(0,T ;L2(∂2Ω))

≤ C ‖(I − πh)η‖L2(0,T ;H1(Ω)) ≤ C h ‖η‖L2(0,T ;H2(Ω)).(3.49)

In view of (2.26a)–(2.26c), (3.11), and (2.16) we deduce that∣∣∣∣∣
∫ T

0

(Ξε(U
−
ε )∇W+

ε ,∇(I − πh)η) dt

∣∣∣∣∣
≤ ‖Ξε(U−

ε )∇W+
ε ‖L2(ΩT ) ‖(I − πh)η‖L2(0,T ;H1(Ω))

≤ ‖[Ξε(U−
ε )]

1
2 ∇W+

ε ‖L2(ΩT ) ‖(I − πh)η‖L2(0,T ;H1(Ω))

≤ C h ‖η‖L2(0,T ;H2(Ω))(3.50a)

and, similarly,∣∣∣∣∣
∫ T

0

(Λε(U
−
ε )∇Φ+

ε ,∇(I − πh)η) dt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

(Ξε(U
−
ε )∇Φ+

ε ,∇(I − πh)η) dt

∣∣∣∣∣
≤ C ‖(I − πh)η‖L2(0,T ;H1(Ω)) ≤ C h ‖η‖L2(0,T ;H2(Ω)).

(3.50b)
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It follows from (3.50a), (3.50b) and (3.32b)–(3.32d) that as h→ 0∫ T

0

(Λε(U
−
ε )∇Φ+

ε ,∇(πhη)) dt→
∫
{u>−1}

c(u)∇φ.∇η dx dt,(3.51a) ∫ T

0

(Ξε(U
−
ε )∇Φ+

ε ,∇(πhη)) dt→
∫
{|u|<1}

b(u)∇φ.∇η dx dt,(3.51b) ∫ T

0

(Ξε(U
−
ε )∇W+

ε ,∇(πhη)) dt→
∫
{|u|<1}

b(u)∇w.∇η dx dt.(3.51c)

Combining (3.4a), (3.4b), (3.48), (3.49), (3.32a), (3.51a)–(3.51c), and the denseness
of H1(0, T ; H2(Ω)) in L2(0, T ;H1(Ω)) yields the desired results (3.45a), (3.45b), on
recalling (3.5) and (3.30).

Remark 3.7. We note that it is possible to prove rigorously that the formally
derived energy estimates (1.8), (1.10), and (1.11) are satisfied by the weak solution
{φ, u, w}. Using the techniques of the proof of Lemma 3.4, it is straightforward to
derive from (3.11) and (3.7b), (3.7c) that as h→ 0

[Λε(U
−
ε )]

1
2 ∇Φ+

ε → z1 weakly in L2(ΩT ), with z1 ≡ [c(u)]
1
2 ∇φ on {u > −1};

(3.52a)

[Ξε(U
−
ε )]

1
2 ∇W+

ε → z2 weakly in L2(ΩT ), with z2 ≡ [b(u)]
1
2 ∇w on {|u| < 1}.

(3.52b)

Combining (3.52a), (3.32a), and (2.28) then yields that∫
{u>−1}

c(u) |∇φ|2 dxdt+ 1
2

∫ T

0

|φ|20,∂2Ω dt

≤ lim inf
h→0

{∫ T

0

| [Λε(U−
ε )]

1
2 ∇Φ+

ε |20 dt+ 1
2

∫ T

0

|Φ+
ε |20,∂2Ω dt

}
≤ 1

2

∫ T

0

|g|20,∂2Ω dt .

(3.53)

Similarly, it follows from (3.52b), (3.6a), (3.20b), (2.30a), and (2.16) that for a.a.
t ∈ (0, T )

E(u(t)) + γ−1

∫ t

0

∫
{|u(·,t̄)|<1}

b(u) |∇w|2 dxdt̄

≤ lim inf
h→0

{
E(U+

ε (t)) + γ−1

∫ t

0

| [Ξε(U−
ε )]

1
2 ∇W+

ε |20 dt̄

}
≤ lim
h→0

E(U0
ε ) + 1

2 α
2 γ−1 t |g|20,∂2Ω = E(u0) + 1

2 α
2 γ−1 t |g|20,∂2Ω .(3.54)

We note that (3.53) and (3.54) correspond to the earlier formally derived energy
estimates (1.8) and (1.10).

For the formally derived entropy estimate (1.11) we can argue as follows. First, it
follows from (3.20b), (2.7), and assumption (ii) of Lemma 3.1 that for a.a. t ∈ (0, T )
as h→ 0

| (G(u(·, t)) −Gε(U
+
ε (·, t)), 1)h |

≤ | (G(u(·, t)) −G(U+
ε (·, t)), 1)h | + | (G(U+

ε (·, t)) −Gε(U
+
ε (·, t)), 1)h | → 0 .(3.55)
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Combining the convexity of G, (3.10a), (2.18), (2.44), (3.8), (3.55), (2.16), and as-
sumption (ii) of Lemma 3.1 yields for a.a. t ∈ (0, T ) that

γ (G(u(·, t)), 1) + γ

∫ t

0

|∆u|20 dt̄ ≤ γ (G(u(·, t)), 1)h + γ

∫ t

0

|∆u|20 dt̄

≤ lim
h→0

{
γ (Gε(U

+
ε (·, t)), 1)h + γ | (G(u(·, t)) −Gε(U

+
ε (·, t)), 1)h |}

+ γ lim inf
h→0

∫ t

0

|∆h U+
ε |2h dt̄

≤ lim
h→0

{γ (Gε(U
0
ε ), 1)h + γ | (G(u(·, t)) −Gε(U

+
ε (·, t)), 1)h |

+ C(T ) [1 + γ−2 + ε−1 τ
1
2 ] [ γ ‖U0

ε ‖2
1 + γ−1 (1 + T |g|20,∂2Ω) ]}

= γ (G(u0), 1) + C(T ) [1 + γ−2] [ γ ‖u0‖2
1 + γ−1( 1 + T |g|20,∂2Ω) ] .

This clearly corresponds to the formally derived estimate (1.11).
Remark 3.8. For our main convergence result, Theorem 3.6, we choose U0

ε ≡
πhu0. Therefore we require only the quasi-uniformity assumption in order to obtain
(a) (2.43) via (2.46) and (2.21) and (b) (3.10b) via (3.10a) and (2.24). However, in
case (a) we can replace the quasi uniformity with the far milder assumption that
{T h}h>0 is a regular partitioning at the expense of a minimum constraint on the
uniform time step, similar to the argument in [2]. On recalling (1.13) and (2.22) it is
easily established from {T h}h>0 being a regular partitioning, elliptic regularity, as Ω
is a rectangle, (1.14), and (2.19) that

‖(G − Gh)zh‖1 ≤ C h |zh|0 ∀ zh ∈ Zh .(3.56)

Then choosing χ ≡ Gh ∂Uε

∂t in (2.13b) we obtain, similarly to (2.46), that

‖Gh ∂Uε

∂t ‖L2(0,T ;H1(Ω)) ≤ C.(3.57)

Combining (3.56), (3.57) and noting (3.11), it follows that

‖G ∂Uε

∂t ‖L2(0,T ;H1(Ω)) ≤ ‖(G − Gh)∂Uε

∂t ‖L2(0,T ;H1(Ω)) + ‖Gh ∂Uε

∂t ‖L2(0,T ;H1(Ω))

≤ C h ‖∂Uε

∂t ‖L2(ΩT ) + C ≤ C (τ−
1
4 h+ 1) ≤ C

if the mild time-step constraint C h4 ≤ τ is satisfied. As for case (b), the obtained
result ‖Uε‖L2(0,T ;H2(Ω)) ≤ C is more than we need. For our main convergence result
we really need only ‖Uε‖L2(0,T ;W 1,s(Ω)) ≤ C, s > 2. However, it does not appear pos-
sible to derive this bound without using the stronger result and the quasi-uniformity
assumption.

4. Solution of the discrete system. We now discuss algorithms for solving
the resulting system of algebraic equations for {Φnε , Unε ,Wn

ε } arising at each time level
from the approximation (Ph,τε ). As (2.13a) in (Ph,τε ) is independent of {Unε ,Wn

ε }, we
solve it first to obtain Φnε and then solve (2.13b), (2.13c) for {Unε ,Wn

ε }. Solving
(2.13a) is straightforward, as it is linear.

Adopting the obvious notation, the system (2.13b), (2.13c) can be rewritten as
follows: Find {Unε ,Wn

ε } ∈ KJ × R
J such that

γM Unε + τnA
n−1Wn

ε = r,(4.1a)

γ (V − Unε )
T B Unε − (V − Unε )

T MWn
ε ≥ (V − Unε )

T s ∀ V ∈ KJ ,(4.1b)
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where M, B, and An−1 are symmetric J × J matrices, J := #J , with entries

Mij := (χi, χj)
h, Bij := (∇χi,∇χj), An−1

ij := (Ξε(U
n−1
ε )∇χi,∇χj)

and r := γM Un−1
ε − α τnA

n−1 Φnε ∈ R
J , s := γ−1M Un−1

ε ∈ R
J .(4.2)

Let An−1 ≡ AD−AL−ATL, with AL and AD being the lower triangular and diagonal
parts of the matrix An−1, and similarly for B. We use this formulation in constructing
our “Gauss–Seidel-type” iterative method to solve (2.13b), (2.13c).

Given {Un,0ε ,Wn,0
ε } ∈ Kh×Sh, for k ≥ 1 find {Un,kε ,Wn,k

ε } ∈ Kh×Sh such that

γM Un,kε + τn (AD −AL)Wn,k
ε = r + τnA

T
LW

n,k−1
ε ,(4.3a)

(V − Un,kε )T (γ (BD −BL)Un,kε −MWn,k
ε ) ≥ (V − Un,kε )T (s+ γ BTL U

n,k−1
ε )

∀ V ∈ KJ .(4.3b)

A similar iterative method is used in [15] to solve a related linear system. They prove
convergence of this approach for their linear system by analyzing the eigenvalues of
the resultant iteration matrix. Below, we prove convergence of (4.3a), (4.3b) for our
nonlinear system (2.13b), (2.13c) using an energy method.

Theorem 4.1. Let the assumptions (A) hold. Then for {Un,0ε ,Wn,0
ε } ∈ Kh×Sh

the sequence {Un,kε ,Wn,k
ε }k≥0 generated by the algorithm (4.3a), (4.3b) satisfies

‖Unε − Un,kε ‖1 → 0 and

∫
Ω

Ξε(U
n−1
ε ) |∇(Wn

ε −Wn,k
ε )|2 dx→ 0 as k → ∞.

(4.4)

Proof. Let Y n,k := Unε − Un,kε and Zn,k := Wn
ε −Wn,k

ε . Now subtracting (4.3a)
from (4.1a) and testing the resulting equation with Zn,k yield

γ [Zn,k]T M Y n,k + τn [Zn,k]T (AD −AL)Zn,k = τn [Zn,k]T ATL Z
n,k−1.(4.5)

Choosing V ≡ Un,kε in (4.1b) and V ≡ Unε in (4.3b) yields

−γ [Y n,k]T (BD −BL)Y n,k + [Y n,k]T M Zn,k ≥ −γ [Y n,k]T BTL Y
n,k−1.(4.6)

Combining (4.5) and (4.6) yields that

γ2 [Y n,k]T (BD −BL)Y n,k + τn [Zn,k]T (AD −AL)Zn,k

≤ γ2 [Y n,k]T BTL Y
n,k−1 + τn [Zn,k]T ATL Z

n,k−1.(4.7)

We now split the diagonal matrix AD := AD1 + AD2 , where (AD1)ii := −∑i−1
j=1Aij

and (AD2
)ii := −∑J

j=i+1Aij = Aii − (AD1
)ii. Then we have that

[Zn,k]T ATL Z
n,k−1 =

J∑
i=1

Zn,ki

J∑
j=1

(ATL)ij Z
n,k−1
j

≤ 1
2

J∑
i=1

J∑
j=1

(AL)ji [(Z
n,k
i )2 + (Zn,k−1

j )2]

≤ 1
2

J∑
i=1

(AD2
)ii (Z

n,k
i )2 + 1

2

J∑
j=1

(AD1
)jj (Zn,k−1

j )2.(4.8)
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Combining (4.7), (4.8), and a similar argument for B yields that

γ2

2 [Y n,k]TB Y n,k + γ2

2 [Y n,k]TBD1 Y
n,k + τn

2 [Zn,k]TAn−1 Zn,k + τn
2 [Zn,k]TAD1 Z

n,k

≤ γ2

2 [Y n,k−1]TBD1
Y n,k−1 + τn

2 [Zn,k−1]TAD1
Zn,k−1.

(4.9)

Therefore, we have that { γ2

2 [Y n,k]T BD1
Y n,k+ τn

2 [Zn,k]T AD1
Zn,k }k≥0 is a decreas-

ing sequence. Since it is bounded below the sequence has a limit. Combining this and
(4.9) yields

|Unε − Un,kε |1 → 0 and

∫
Ω

Ξε(U
n−1
ε ) |∇(Wn

ε −Wn,k
ε )|2 dx→ 0 as k → ∞.

(4.10)

Furthermore, multiplying (4.3a) with 1T := (1, . . . , 1), noting that An−1 1 = 0, and
recalling the splitting of An−1 yields that

γ (Un,kε − Un−1
ε , 1)h = τn 1TATL (Wn,k−1

ε −Wn,k
ε ) = τn 1TAD1

(Wn,k
ε −Wn,k−1

ε )

= τn 1TAD1
Zn,k−1 − τn 1TAD1

Zn,k → 0 ,(4.11)

where we have again used the fact that { τn [Zn,k]T AD1 Z
n,k }k≥0 has a limit. Com-

bining (4.10), (4.11), (2.3), and (2.18) yields the desired result (4.4).
Remark 4.2. We note that (4.3a), (4.3b) can be solved explicitly for j = 1 → J .

In particular, let r̂ := r + τn (ALW
n,k
ε + ATLW

n,k−1
ε ) and ŝ := s + γ (BL U

n,k
ε +

BTL U
n,k−1
ε ). Then, on recalling (1.16a), we set for j = 1 → J

[Un,kε ]j =

[
Mjj r̂j+τn A

n−1
jj ŝj

γ [Mjj ]2+τn γ A
n−1
jj Bjj

]
K

and [Wn,k
ε ]j =

r̂j−γ Mjj [Un,k
ε ]j

τn A
n−1
jj

.(4.12)

Remark 4.3. Although we have no convergence proof, in practice an overrelaxed
version of (4.3a), (4.3b) performed better. To this end we replace (4.12) for a given
ω ≥ 1 with

[Un,kε ]j =

[
ω

Mjj r̂j−τn An−1
jj ŝj

γ [Mjj ]2+τn γ A
n−1
jj Bjj

+ (1 − ω) [Un,k−1
ε ]j

]
K

and [Wn,k
ε ]j =

r̂j−γ Mjj [Un,k
ε ]j

τn A
n−1
jj

.(4.13)

5. Numerical results. In order to define the initial shape of the void we intro-
duce the following function. Given z ∈ R

2, a ∈ R
2 with min{a1, a2} = 1 and R ∈ R>0

we define

v(z, a,R; x) :=

⎧⎪⎨⎪⎩
−1, r(x) ≤ R− γ π

2 ,

sin( r(x)−Rγ ), |r(x) −R| < γ π
2

1, r(x) ≥ R+ γ π
2 ,

,(5.1)

where r(x) := ((x1−z1
a1

)2+(x2−z2
a2

)2)
1
2 . Equation (5.1) represents a void with the shape

of an ellipse with semiaxes a1R and a2R. In line with the asymptotics of the phase
field approach (see section 1), the interfacial thickness is not less than γ π. For the
initial data u0 to (P) we chose either (i) one ellipse or (ii) two ellipses; that is,

(i) u0(x) = v(z, a,R; x) or (ii) u0(x) = v(z, a,R; x) + v(z̃, ã, R̃; x) − 1 .

(5.2)
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Fig. 1. (α = 0). Zero level sets for solution Uε(x, t) of (Ph,τ
ε ) at times t = 0, 2× 10−4, . . . , 3×

10−3, T = 10−2 and adaptive mesh for (P̃h,τ
ε ) at times t = 0, T .

In all the experiments below, the parameters above were chosen so that these ellipses
lie in the interior of Ω; and hence the resulting u0 satisfies all the assumptions of
Lemma 3.1.

To solve for (Ph,τε ), the given domain Ω = (−L1, L1) ×(−L2, L2) was partitioned
uniformly into right-angled isosceles triangles. Throughout, we chose the number of
triangles such that there were at least approximately 6 mesh points across the interface
in each direction; that is, 8( h√

2
) ≤ γ π.

For the iterative algorithm (4.3a), (4.3b) we set, for n ≥ 1, {Un,0ε ,Wn,0
ε } ≡ {Un−1

ε ,
Wn−1
ε }, where U0

ε ≡ πhu0 and W 0
ε ≡ −γ∆hU0

ε − γ−1 U0
ε , and adopted the stopping

criterion

|Un,kε − Un,k−1
ε |0,∞ < tol,

with tol = 10−7. Furthermore, we set {Unε ,Wn
ε } ≡ {πh[ptolK (Un,kε )],Wn,k

ε }, where

ptolK (s) :=

⎧⎪⎨⎪⎩
−1 s ≤ −1 + tol,

s |s| < 1 − tol,

1 s ≥ 1 − tol.

Our first experiment is for α = 0 and shows the evolution of an ellipse to a
circle due to surface diffusion. We chose the following parameters for (Ph,τε ): L1 = 1,
L2 = 0.5, γ = 1

16π , α = 0, T = 10−2, τn = τ = 8 × 10−7, ε = 10−5. For the
initial profile we chose (5.2)(i) with z = (0, 0), a = (10, 1), and R = 0.075 and used
ω = 1.4 for the iterative algorithm (4.13). We used a uniform 128× 128 triangulation
for each of the two unit squares. In Figure 1 we plot the zero level sets for Uε(x, t)
at times t = 0, 2 × 10−4, . . . , 3 × 10−3, T . We note the very good agreement with
the direct finite element approximation of the sharp interface problem, (1.1a), (1.1b)

and (1.2), in [28, Figure 3]. We repeated the above experiment for the scheme (P̃h,τε )
(see Remark 2.10) and obtained graphically indistinguishable results. However, the

scheme (P̃h,τε ) was 2.2 times faster than solving the original approximation (Ph,τε ).

Moreover, for (P̃h,τε ) one knows a priori that Unε (pj) = Un−1
ε (pj) for all j ∈ J with

(Ξ̃ε(U
n−1
ε ), χj) = 0, the so-called passive nodes. A natural approach to utilize this

fact is to use a fine mesh in the “interfacial region” only, while employing a coarser
mesh elsewhere. We note that for α = 0 this is equivalent to using a uniform fine
mesh. However, for the above experiment the described adaptive mesh approach was
4.4 times faster than solving (P̃h,τε ) on a uniform mesh. Hence, overall to solve for

(P̃h,τε ) took 10% of the time it took to solve (Ph,τε ). Hence for all the remaining

computations we used an adaptive mesh to solve for the approximation (P̃h,τε ) .
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We should note that for α > 0 the adaptive mesh approach is not equivalent to
solving (P̃h,τε ) on a uniform mesh, since in the former case not all the active nodes

with respect to Λ̃ε(U
n−1
ε ), as opposed to Ξ̃ε(U

n−1
ε ), are represented on the fine mesh.

Hence the respective solutions Φnε can differ slightly in the interfacial region, yielding
different solutions Unε . But the electric potential is not rapidly varying away from
the interfacial region, and hence is well approximated by the coarse mesh, so there is
no need for the more costly fine mesh. Furthermore, we obtained virtually identical
results in test runs, and hence we are satisfied that these differences are negligible.

In order to implement the desired mesh we used the adaptive finite element code
Albert 1.0; see [24]. The code uses bisectioning, and its reversal, for refining and
coarsening, respectively. Hence starting with an initial right-angled isosceles trian-
gulation yields similar triangles throughout. We now describe our mesh refinement
strategy for the physically relevant case of L1 ≥ L2 and further assume without loss
of generality that L1 is an integer multiple of L2.

Given the two parameters Nc < Nf we set hc := 2
3
2 L2

Nc
and hf := 2

3
2 L2

Nf
, respec-

tively. Throughout, we choose our initial triangulation T̃ 0 to be a uniform partitioning
of Ω into triangles σ of diameter hσ = hf and fix the parameters δf = tol× 10−1 and

δc = tol × 10−3. Then, for n ≥ 1, given Un−1
ε and a triangulation T̃ n−1, a triangle

σ ∈ T̃ n−1 is marked for refinement if it, or one of its neighboring elements, satisfies

ησ :=
∣∣min
x∈σ

|Un−1
ε (x)| − 1

∣∣ > δf .

If a triangle that is marked for refinement satisfies hσ > hf , it is refined into two
smaller triangles via a bisectioning of its longest edge. A triangle σ is marked for
coarsening if it satisfies hσ < hc and ησ < δc. A triangle that is marked for coarsening
is coarsened only if all its neighboring elements are marked for coarsening as well. This
cycle is repeated until no triangle has been refined or coarsened. We note that the
maximum number of cycles is

Nf

Nc
. However, apart from the case n = 1 the number of

cycles required will be 1, due to the fact that the region of active nodes can advance
one mesh point per time step only; see Remark 3.2. The above process ensures that
all active nodes are always within the fine part of the adaptive mesh.

For the remaining experiments we adopted the following strategy. Given a γ > 0
we chose Nf such that there were at least approximately 6 mesh points across the
interface, set Nc := 1

8 Nf , and chose a suitable time step size τ . As the numerical
interfacial region can only advance by one mesh point per time step one has to choose τ
sufficiently small so that (P̃h,τε ) is capable of approximating the speed of propagation
of the void; cf. [3, section 5.1]. On obtaining the desired experiment’s solutions for
these discretization parameters we halved γ, halved hf , and quartered τ , while keeping
ε = 10−5 fixed throughout. In almost all instances we repeated the above procedure
until the solutions for two consecutive choices of γ were graphically indistinguishable.
Here we report on the converged experiments.

First, we repeated the previous experiment for α = 0 for a smaller γ = 1
32π , using

a finer mesh. In particular, we chose the following parameters for (P̃h,τε ) : L1 = 1,
L2 = 0.5, T = 10−2, τn = τ = 2 × 10−7. For the initial profile we chose (5.2)(i) with
z = (0, 0), a = (10, 1), and R = 0.075 and used ω = 1.5 for the iterative algorithm
(4.13). The refinement parameters were Nf = 256 and Nc = 32. The obtained results
were virtually identical to the ones from our earlier computations; see Figure 1. On
the right-hand side of this figure we plot the vertices of the adaptive mesh for the
latter experiment at times t = 0, T .



768 JOHN W. BARRETT, ROBERT NÜRNBERG, AND VANESSA STYLES
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Fig. 2. (α ≈ 114π). Zero level sets for Uε(x, t) at times t = 0, 4×10−5, 8×10−5, 1.2×10−4, 2×
10−4, 2.4 × 10−4, T = 3.6 × 10−4 and adaptive mesh at time t = T .

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

Fig. 3. (α = 40π). Zero level sets for Uε(x, t) at times t = 0, 1.25× 10−3, . . . , T = 3.75× 10−3

and adaptive mesh at time t = T .

In our first experiment for α > 0 we chose the radius of the initially circular void
to be relatively large compared to the width of the conductor, 2L2, in correspondence
to [9, Figure 4]. We used the following parameters for (P̃h,τε ) : L1 = 1, L2 = 0.5,
γ = 1

32π , α = 1024
9 π ≈ 114π, T = 3.6 × 10−4, τn = τ = 10−7. As initial data we

chose (5.2)(i) with z = (−0.5, 0), a = (1, 1), and R = 0.375 and used ω = 1.9 for the
iterative algorithm (4.13). The refinement parameters wereNf = 256 andNc = 32. In
Figure 2 we plot the zero level sets for Uε(x, t) at times t = 0, 4×10−5, 8×10−5, 1.2×
10−4, 2× 10−4, 2.4× 10−4, T and the vertices of the adaptive mesh at time t = T . We
note the good agreement with the direct finite element approximation of the sharp
interface problem, (1.1a), (1.1b) and (1.2), in [9, Figure 4].

The next experiment corresponds to [20, Figure 5] and [28, Figure 6]. We chose

the following parameters for (P̃h,τε ) : L1 = 2.5, L2 = 0.5, γ = 1
32π , α = 40π, T =

3.75 × 10−3, τn = τ = 6 × 10−7. As initial data we chose (5.2)(i) with z = (−1.5, 0),
a = (1, 1), and R = 0.25 and used ω = 1.9 for the iterative algorithm (4.13). The
refinement parameters were Nf = 256 and Nc = 32. In Figure 3 we plot the zero level
sets for Uε(x, t) at times t = 0, 1.25 × 10−3, . . . , T and the vertices of the adaptive
mesh at time t = T . One can observe that the circular void, with a slightly flattened
front, stably propagates through the conductor.

However, for larger α this is no longer the case. We repeated the above experiment
for α = 120π in correspondence to [28, Figure 7]. In particular, we chose L1 = 2.5,
L2 = 0.5, γ = 1

64π , α = 120π, T = 1.184×10−3, τn = τ = 5×10−8. We used the same
initial data as in Figure 3 and chose ω = 1 for the iterative algorithm (4.13). The
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Fig. 4. (α = 120π). Zero level sets for Uε(x, t) at times t = 0, 3× 10−4, . . . , T = 1.184× 10−3

and adaptive mesh at time t = T .
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Fig. 5. (α = 120π). Zero level sets for Uε(x, t) at times t = 0, 3 × 10−4, . . . , T = 1.5 × 10−3

and adaptive mesh at time t = T .

refinement parameters were Nf = 512 and Nc = 64. In Figure 4 we plot the zero level
sets for Uε(x, t) at times t = 0, 2.96 × 10−4, . . . , T and the vertices of the adaptive
mesh at time t = T . We repeated the last experiment with the same parameters
but started with the initial void more to the left and integrated for a longer time; in
particular, we set z = (−2, 0) and T = 1.5 × 10−3. This allows the void to further
change its shape; see Figure 5. The above three experiments are very sensitive to the
choice of γ and τ . Although our results show similarities with the cited ones, there is
no strong agreement between these different types of simulations.

The next experiment corresponds to [20, Figure 9]. We chose the following param-

eters for (P̃h,τε ) : L1 = 0.5, L2 = 0.5, γ = 1
32π , α = 12π, T = 1.5×10−4, τn = τ = 2×

10−7. As initial data we chose (5.2)(ii) with z = (−0.15, 0), a = (1.12, 1.6), R = 0.125,

z̃ = (0.15, 0), ã = (0.96, 1.92), and R̃ = 0.125 and used ω = 1.8 for the iterative algo-
rithm (4.13). The refinement parameters were Nf = 256 and Nc = 32. In Figure 6 we
plot the zero level sets for Uε(x, t) at times t = 0, 3.04×10−5, 3.8×10−5, 4.56×10−5, T
and the vertices of the adaptive mesh at time t = T . We note that the time the two
ellipses are merging is sensitive to the choice of γ.
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Fig. 6. (α = 12π). Zero level sets for Uε(x, t) at times t = 0, 3.04 × 10−5, 3.8 × 10−5, 4.56 ×
10−5, T = 1.5 × 10−4 and adaptive mesh at time t = T .
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Fig. 7. (α = 120π). Zero level sets for Uε(x, t) at times t = 0, 8.75×10−5, 1.75×10−4, 2.625×
10−4, T = 3.32 × 10−4 and adaptive mesh at time t = T .

The next experiment corresponds to [20, Figure 11]. We chose the following

parameters for (P̃h,τε ) : L1 = 1.5, L2 = 0.5, γ = 1
32π , α = 120π, T = 3.32 × 10−4,

τn = τ = 2.5 × 10−8. As initial data we chose (5.2)(i) with z = (−0.8, 0), a = (2, 1),
and R = 0.2 and used ω = 1.3 for the iterative algorithm (4.13). The refinement
parameters were Nf = 256 and Nc = 32. In Figure 7 we plot the zero level sets for
Uε(x, t) at times t = 0, 8.75 × 10−5, 1.75 × 10−4, 2.625 × 10−4, T and the vertices of
the adaptive mesh at time t = T .

Our final experiment corresponds to [20, Figure 10]. We chose the following pa-

rameters for (P̃h,τε ) : L1 = 1.5, L2 = 0.5, γ = 1
32π , α = 64π, T = 7.91 × 10−4,
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Fig. 8. (α = 64π). Zero level sets for Uε(x, t) at times t = 0, 1.13× 10−4, . . . , T = 7.91× 10−4

and adaptive mesh at time t = T .

τn = τ = 2.5×10−8. As initial data we chose (5.2)(ii) with z = (−1.1, 0), a = (1, 1.5),

R = 0.2, z̃ = (−0.5, 0), ã = (1, 1), and R̃ = 0.2 and used ω = 1.3 for the iterative
algorithm (4.13). The refinement parameters were Nf = 256 and Nc = 32. In Fig-
ure 8 we plot the zero level sets for Uε(x, t) at times t = 0, 1.13× 10−4, . . . , T and the
vertices of the adaptive mesh at time t = T . We note that for the last two experiments
there is good agreement for different values of γ but only partial agreement with the
cited results in [20]. However, one should note that the fixed mesh for their level
set approach of the sharp interface model, (1.1a), (1.1b) and (1.2), is rather coarse.
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Abstract. Surface diffusion is a (fourth-order highly nonlinear) geometric driven motion of a
surface with normal velocity proportional to the surface Laplacian of mean curvature. We present a
novel variational formulation for graphs and derive a priori error estimates for a time-continuous finite
element discretization. We also introduce a semi-implicit time discretization and a Schur complement
approach to solve the resulting fully discrete, linear systems. After computational verification of the
orders of convergence for polynomial degrees 1 and 2, we show several simulations in one dimension
and two dimensions with and without forcing which explore the smoothing effect of surface diffusion,
as well as the onset of singularities in finite time, such as infinite slopes and cracks.
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1. Introduction. Controlling morphological changes in stressed epitaxial films
is of paramount importance in materials science. The film may be thought of as
subjected to mechanical stresses to model its misfit with the crystalline structure of
the substrate. This in turn causes a plastic deformation of the free surface of the
film, a morphological instability of the free surface which may eventually lead to
crack formation and fracture. The simplest model couples surface diffusion of the free
surface with linear elasticity in the bulk [1, 6, 13, 14, 15, 18, 19, 20]. Investigating this
complicated nonlinear dynamics requires effective and reliable computational tools.

This paper studies the geometric motion law of surface diffusion with given forcing
but without elasticity. The dynamics of the free surface Γ(t) is thus governed by the
(highly nonlinear) fourth-order geometric PDE

V = −∆S(κ+ f),(1.1)

where V is the normal velocity of Γ(t), κ is its mean curvature, and ∆S is the Laplace–
Beltrami operator on Γ(t). In this reduced model f is given, whereas in the full model
f corresponds to the elastic energy density of the bulk Ω(t) restricted to Γ(t). Our
goal is to present novel variational formulations and finite element methods for (1.1),
which may be viewed as building blocks towards solving the fully coupled system.
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We study the graph case in this paper and the parametric case in [3]. From now
on we assume that Ω ⊆ R

d (d ≥ 1) is a fixed domain and Γ(t) := {(x, u(t, x)) | x ∈
Ω} ⊆ R

d+1 is the free surface for 0 ≤ t ≤ T described by the unknown function u. If
Q = Q(u) =

√
1 + |∇u|2 denotes the elementary surface area, then the unit normal

ν to Γ(t), its mean curvature κ, and the normal velocity V of Γ(t) can be expressed
as follows:

ν =
1

Q
(−∇u, 1)T , κ = ∇ ·

(∇u
Q

)
, V =

∂tu

Q
.

Therefore, (1.1) can be written as the following system of second-order nonlinear
PDEs:

∂tu

Q
= −∆S(κ+ f), κ = ∇ ·

(∇u
Q

)
,(1.2)

for (u, κ). Once completed with initial and boundary conditions, this system consti-
tutes our starting point. Issues about existence, uniqueness, and regularity are not
yet settled, not even for the graph formulation; we refer the reader to [12] for local
existence for closed surfaces, as well as global existence and exponential asymptotic
behavior for solutions close to a sphere. It is known, however, that the graph property
may be lost in finite time [11], an intriguing situation corroborated by simulations in
section 7.3.

We introduce in section 2 a new variational formulation with several crucial sta-
bility properties. Using C0 finite elements of any degree k ≥ 1, we obtain a space
discretization in section 3 with solutions (uh, κh) and show corresponding stability
properties. After deriving a number of auxiliary results for the semidiscrete scheme in
section 4, we use them to prove the quasi-optimal estimate in section 5 for the errors
eu = u− uh and eκ = κ− κh:

sup
t∈[0,T ]

(
||eu||2L2(Ω) +

∫
Γh(t)

|∇Seu|2
)

+

∫ T

0

(
||eκ||2L2(Ω) +

∫
Γh(t)

|∇Seκ|2
)

≤ C h2k.

(1.3)

Here C > 0 depends on the regularity of u and κ, k ≥ 1 is the polynomial degree,
and h is the mesh size. It is worth comparing our results with the existing litera-
ture. A space-time finite element method for axially symmetric surfaces is presented
by Coleman, Falk, and Moakher in [7], along with several stability properties and
very interesting dynamics, some not predicted by linearized stability. More recently,
Deckelnick, Dziuk, and Elliott provided an error analysis [9] for the axially symmetric
case. Our formulation, discretization, and analysis differ from those in [7, 9].

In section 6 we introduce a semi-implicit time discretization in the spirit of Deck-
elnick and Dziuk [8] and Dziuk [10]. This leads to a sequence of surfaces Γn and linear
elliptic PDEs on them. We derive again several crucial stability properties and discuss
a Schur complement approach for doing effective numerical linear algebra. Finally,
we show a number of numerical experiments in section 7. Their purpose is twofold:
first, we computationally verify the rate (1.3) for k = 1, 2, and, second, we explore the
nonlinear regime of (1.1) via simulation. In fact, we examine the regularizing effect
of surface diffusion, as well as whether (1.1) is capable of forming singularities. They
manifest themselves as vertical slopes |∇u| = ∞ for f = 0 and cracks for f �= 0 of a
special form. We display results for both d = 1, 2 computed with the finite element
toolbox ALBERT [17, 16].
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2. Variational formulation. In this section we write (1.2) in weak form. We
start with some notation and basic formulas.

2.1. Elementary differential geometry. Let v, w : Ω → R be (smooth) func-
tions. Since the area element is given by Q, then∫

Γ

v =

∫
Ω

v Q;

in particular, the area A(t) of Γ(t) reads A(t) =
∫
Ω
Q at time t. If ṽ is the trivial

extension of v to R
d+1, namely, ṽ(x1, . . . , xd+1) := v(x1, . . . , xd), then the tangential

gradient ∇S is given by

∇Sv = ∇d+1ṽ −∇d+1ṽ · ν ν,

where ∇d+1 denotes the gradient in R
d+1. Since ∇d+1ṽ = (∇vT , 0)T , we readily get

∇Sv·∇Sw = ∇v·∇w − 1

Q2
∇v·∇u ∇w·∇u.

Note that there is also an intrinsic definition of ∇S . If γ = ∂Γ indicates the boundary
of Γ, then this expression, together with integration by parts, yields

−
∫

Γ

∆Sv w +

∫
γ

∂νγv w =

∫
Γ

∇Sv · ∇Sw =

∫
Ω

∇Sv · ∇SwQ

=

∫
Ω

(
∇v · ∇wQ− ∇v·∇u∇w·∇u

Q

)
.

(2.1)

Here νγ denotes the intrinsic outer unit normal of Γ at γ, given by νγ = νΓ ∧ τγ with
τγ the tangential unit vector of γ with the appropriate sign for Γ ⊆ R

3.

2.2. Boundary conditions and function spaces. Let Lp(Ω), 1 ≤ p ≤ ∞, be
the usual space of Lebesgue measurable functions with norm ||v||p := (

∫
Ω
|v|p)1/p. By

〈·, ·〉 we denote the L2 inner product 〈v, w〉 :=
∫
Ω
vw for v, w ∈ L2(Ω). We indicate

with Hm,p(Ω) the Sobolev space of functions in Lp(Ω) with mth weak derivatives also
in Lp(Ω) equipped with the norm ||v||m,p := (

∑
|α|≤m

∫
Ω
|∂αv|p)1/p and Hm := Hm,2.

Furthermore, H̊1(Ω)p is the subspace of functions in H1,p with vanishing boundary
values in the sense of traces.

Finally, for a time interval [0, T ] and a function space V we define the parabolic
spaces Lp(V ) of V -valued functions that are measurable in time with ||v||Lp(V ) :=

(
∫ T
0
||v(t)||pV dt)1/p <∞.
To simplify the notation we will write ||v||∞ = ||v||L∞(L∞). This ambiguity of

notation will not lead to confusion.
We now discuss boundary conditions and corresponding function spaces X .
Periodic boundary condition. Let Ω = Πd

i=1(0, Xi) be a parallelogram. If u(t, x+
Xiei) = u(t, x), κ(t, x+Xiei) = κ(t, x) for all x ∈ ∂Ω and 1 ≤ i ≤ d, then

X := {v ∈ H1(Ω) | v(x+Xiei) = v(x) for x ∈ ∂Ω, 1 ≤ i ≤ d}.

Neumann boundary condition. If νγ · ∇Su(t, x) = νγ · ∇Sκ(t, x) = 0 for x ∈ ∂Ω,
then X := H1(Ω).

Dirichlet boundary condition. If u(t, x) = κ(t, x) = 0 for x ∈ ∂Ω, then X := H̊1(Ω).
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2.3. Weak form. We are now in a position to introduce two bilinear forms in
(v, w) and state the variational formulation of (1.2). Let

a(u; v, w) :=

∫
Ω

(
∇v·∇wQ− ∇v·∇u∇w·∇u

Q

)
,(2.2)

ã(u; v, w) :=

∫
Ω

∇v·∇w
Q

.(2.3)

Lemma 2.1 (equivalence). Let u ∈ C1([0, T ];C4(Ω̄)), let κ ∈ C0([0, T ];C2(Ω̄)),
and let X be as defined in section 2.2. Then (u, κ) is a solution of (1.2) with initial
value u0 and boundary conditions as in section 2.2 iff u(t), κ(t) ∈ X for all t ∈ [0, T ],
u(0, ·) = u0, and

〈∂tu, ψ〉 − a(u;κ, ψ) = a(u; f, ψ) ∀ψ ∈ X ,(2.4)

〈κ, ϕ〉 + ã(u;u, ϕ) = 0 ∀ϕ ∈ X .(2.5)

Proof. Multiply the first equation in (1.2) by ψ, integrate over Γ, and use formula
(2.1). Observe that the boundary term vanishes because of the choice of function space
X . Equation (2.5) follows similarly from the second equation in (1.2) integrating by
parts over Ω.

Remark 2.2 (mean curvature flow). In contrast to the mean curvature flow, for
which a divergence formulation reads [8, 10]∫

Ω

∂tu v

Q
+ ã(u;u, v) = 0 ∀ v ∈ X ,

we do not have the factor 1
Q in the parabolic term.

Remark 2.3 (comparing a and ã). The forms a and ã are symmetric and
nonnegative. If d = 1, they coincide; i.e., a(u; ·, ·) = ã(u; ·, ·). If d > 1, instead,

a(u; v, u) = ã(u; v, u) ∀ v ∈ X

because Q(1 − |∇u|2
Q2 ) = 1

Q . Similarly,

a(u; v, v) =

∫
Γ

∇Sv · ∇Sv =

∫
Ω

(
|∇v|2Q− |∇v · ∇u|2

Q

)
≥
∫

Ω

|∇v|2
Q

= ã(u; v, v).

Remark 2.4 (equivalent forms of a). Let ζ := ∇u
|∇u| be a unit vector in the

direction of ∇u, provided that ∇u �= 0, and be arbitrary otherwise. Let (χi)
d−1
i=1 be a

complementary orthonormal set perpendicular to ζ. A simple calculation then yields

a(u; v, w) =

∫
Ω

(
∇v·ζ∇w·ζ

Q
+Q

d−1∑
i=1

∇v·χi∇w·χi
)

∀v, w ∈ X .(2.6)

Another equivalent form is obtained using ⊗ to denote the tensor product in R
d:

a(u; v, w) =

∫
Ω

∇vT
(
QI − ∇u⊗∇u

Q

)
∇w;(2.7)

here I denotes the identity matrix in R
d.
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Remark 2.5 (volume conservation and area decrease). If the function v = 1 ∈ X ,
then (2.4) yields 0 = 〈∂tu, 1〉 = d

dt

∫
Ω
u, which is the formula for conservation of vol-

ume. On the other hand, if the forcing term f ≡ 0, then the area of Γ(t) is decreasing
regardless of boundary conditions (see Lemma 2.6). Both of these properties will
also hold true for the semidiscrete and fully discrete formulations of section 3 and
section 6.

With the help of the above variational form of the equations, we are in a position
to prove a stability result for the continuous solution.

Lemma 2.6 (continuous stability). Let (u, κ) be a solution of (1.2) fulfilling the
assumptions of Lemma 2.1, and let A(t) denote the area of Γ(t). There are two
constants, C1 = C1(Ω) and C2 = C2

(||∇f ||∞, A(0)
)
, such that

sup
t∈[0,T ]

||u(t)||22 +

∫ T

0

||κ||22 ≤ ||u(0)||22 + C1

∫ T

0

||∇f ||2,

sup
t∈[0,T ]

A(t) +

∫ T

0

a(u;κ, κ) ≤ C2.

Moreover, if f ≡ 0, then the function A(t) is decreasing (strictly provided that
∆Sκ �≡ 0).

Proof. We omit the proof because it is the same as that of Proposition 3.2.

3. Space discretization. Let (Th)h>0 be a family of (possibly graded) shape
regular triangulations of Ω, with h being the largest size of elements in Th. We fix
k ∈ N and denote by Xh ⊆ X the subspace of continuous finite elements of polynomial
degree k with appropriate boundary conditions. Let Ih : X ∩ C0(Ω̄) → Xh be an
interpolation operator fulfilling

||Ihv − v||p + h||∇(Ih − v)||p ≤ C hk+1||v||k+1,p(3.1)

for 1 ≤ p ≤ ∞ and v ∈ Hk+1,p(Ω) [5]. We will not need an inverse estimate for the
error analysis and thus do not require quasi uniformity of the underlying meshes.

Definition 3.1 (semidiscrete solution). A pair uh, κh with uh ∈ C1([0, T ],Xh),
κh ∈ C0([0, T ];Xh) is called a semidiscrete solution of (1.2) if uh(0, ·) = Ihu0 and

〈∂tuh, ψh〉 − a(uh;κh, ψh) = a(uh; f, ψh) ∀ψh ∈ Xh,(3.2)

〈κh, ϕh〉 + ã(uh;uh, ϕh) = 0 ∀ϕh ∈ Xh.(3.3)

From now on we consider d ≥ 2; the analysis for d = 1 is just a simplified version
of this case. We recall from Remark 2.4 that {ζ, χ1, . . . , χd−1} is a set of orthonormal
vectors for which (2.6) holds. If {ζh, χh,1, . . . , χh,d−1} denotes likewise a semidiscrete
orthonormal set and Qh = Q(uh), then

a(uh; v, w) =

∫
Ω

(
∇v·ζh∇w·ζh

Qh
+

d−1∑
i=1

∇v·χh,i∇w·χh,iQh
)
.(3.4)

Proposition 3.2 (semidiscrete stability). Let (uh, κh) be a semidiscrete solu-
tion in the sense of Definition 3.1, and let Ah(t) :=

∫
Ω
Qh denote the area of the

surface Γh(t) := {(x, uh(t, x)) |x ∈ Ω}. There are two constants, C1 = C1(Ω) and
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C2 = C2

(||∇f ||∞, Ah(0)
)
, such that

sup
t∈[0,T ]

||uh(t)||22 +

∫ T

0

||κh||22 ≤ ||uh(0)||22 + C1

∫ T

0

||∇f ||2,(3.5)

sup
t∈[0,T ]

Ah(t) +

∫ T

0

a(uh;κh, κh) ≤ C2.(3.6)

Moreover, if f ≡ 0, the function Ah(t) is decreasing (strictly if a(uh;κh, κh) > 0).
Proof. First, choose ψh := uh, ϕh := κh as test functions in (3.2) and (3.3),

respectively. In view of Remark 2.3, we get

〈∂tuh, uh〉 + 〈κh, κh〉 + ã(uh;uh, κh) − a(uh;κh, uh)︸ ︷︷ ︸
=0

= a(uh; f, uh),

and, since |∇uh|/Qh ≤ 1,

a(uh; f, uh) = ã(uh; f, uh) =

∫
Ω

∇f ·∇uh
Qh

≤ ||∇f ||2
(∫

Ω

|∇uh|2
Q2
h

)1/2

≤ C1||∇f ||2.

Integrating in time gives (3.5). We next set ψh := −κh, ϕh := ∂tuh to derive

−〈∂tuh, κh〉 + 〈κh, ∂tuh〉︸ ︷︷ ︸
=0

+a(uh;κh, κh) + ã(uh;uh, ∂tuh) = −a(uh; f, κh).

Observing that

ã(uh;uh, ∂tuh) =

∫
Ω

∇uh·∇∂tuh
Qh

=
d

dt

∫
Ω

Qh =
d

dt
Ah(t),(3.7)

we get

d

dt
Ah(t) + a(uh;κh, κh) = −a(uh; f, κh),

which implies that Ah(t) is decreasing, provided that f ≡ 0. To prove (3.6) for f �≡ 0,
we have to bound a(uh; f, κh). Making use of (3.4), we obtain

a(uh; f, κh) =

∫
Ω

(
∇f ·ζh∇κh·ζh

Qh
+

d−1∑
i=1

∇f ·χh,i∇κh·χh,iQh
)

≤ ||∇f ||∞
∫

Ω

(
|∇κh · ζh|

Qh
+

d−1∑
i=1

|∇κh · χh,i|Qh
)

≤ ||∇f ||∞
(
|Ω|
4ε

+ ε

∫
Ω

(
|∇κh · ζh|2

Qh
+

d−1∑
i=1

|∇κh · χh,i|2Qh
)

+

∫
Ω
Qh

4ε

)
= ||∇f ||∞

(
Cε + εa(uh;κh, κh) + CεAh(t)

)
,

where we have used that Qh ≥ 1. Choosing ε sufficiently small, a Gronwall argument
finally yields (3.6).

Corollary 3.3 (global existence of semidiscrete solution). For h > 0 and T > 0
there is a unique semidiscrete solution (uh, κh) fulfilling (3.2) and (3.3).
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Proof. Observing that (3.2)–(3.3) is equivalent to a system of ODEs with a locally
Lipschitz right-hand side, we get a local in time existence of the semidiscrete solution.
Using the above stability estimate, this solution can be extended to the time interval
[0, T ] by standard arguments. Uniqueness follows from the local Lipschitz continuity
of the right-hand side.

4. Auxiliary estimates. In this section we present some auxiliary lemmas
and results that will be instrumental in deriving the error estimates. Since they
will be used several times and might be of independent interest, we present them
separately.

We start by introducing the following notation:

eu := u− uh, eκ := κ− κh, Nh :=

∫
Ω

|ν − νh|2Qh.

Lemma 4.1 (basic geometric formulas). Using the notation introduced above, the
following inequalities hold:∣∣∣∣ 1Q − 1

Qh

∣∣∣∣ ≤ |ν − νh|, |Q−Qh| ≤ QQh|ν − νh|,(4.1)

and ∣∣∣∣∇u⊗∇u
Q

− ∇uh ⊗∇uh
Qh

∣∣∣∣ ≤ 3QQh |ν − νh|.(4.2)

Proof. Recalling that ν = 1
Q (∇u,−1)T and νh = 1

Qh
(∇uh,−1)T , the inequalities

in (4.1) are immediate. To prove (4.2), let us introduce the notation z := ∇u
Q and

zh := ∇uh

Qh
, and observe that

∇u⊗∇u
Q

− ∇uh ⊗∇uh
Qh

= z ⊗ z Q− zh ⊗ zhQh

= (z − zh) ⊗ z Q+ zh ⊗ z (Q−Qh) + zh ⊗ (z − zh)Qh.

Therefore, the triangle inequality and the fact that |z − zh| ≤ |ν − νh| yield
(4.2).

The following lemma is crucial for our error analysis and provides a coercivity
estimate for ã. The estimate is the same as the one that appears in the error analysis
for mean curvature flow and is due to Deckelnick and Dziuk [8] and Dziuk [10]. Even
though its proof can be found in [8, p. 347], we sketch it here for completeness.

Lemma 4.2 (coercivity of ã). The following estimate holds true:

ã(u;u, ∂teu) − ã(uh;uh, ∂teu) ≥ 1

2

d

dt
Nh(t) − ||∇∂tu(t)||∞Nh(t).

Proof. We start with two geometric relations which follow by simple calculation:

1 − 1 + ∇u · ∇uh
QQh

=
1

2

∣∣ν − νh
∣∣2, ∣∣∣∣( 1

Q
− 1

Qh

)(∇u
Q

− ∇uh
Qh

)∣∣∣∣ ≤ 1

2

∣∣ν − νh
∣∣2.(4.3)
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We now use the first equality in (4.3) to realize that

1

2
∂t
(|ν − νh|2Qh

)
= ∂t

((
1 − 1 + ∇u · ∇uh

QQh

)
Qh

)
=

∇uh · ∇∂tuh
Qh

+
∇u · ∇∂tu

Q3

(
1 + ∇u · ∇uh

)
− 1

Q

(∇uh · ∇∂tu+ ∇u · ∇∂tuh
)
,

and, upon adding and subtracting ∇uh·∂t∇u
Qh

and reordering terms, we find out that

1

2
∂t
(|ν − νh|2Qh

)
=

(∇u
Q

− ∇uh
Qh

)
· ∇∂t(u− uh)

−∂t∇u ·
(∇u
Q

− ∇uh
Qh

+
∇uh
Q

− 1 + ∇u · ∇uh
Q2

∇u
Q

)
.

We next integrate over Ω, use the definition of Nh, and add and subtract ∇∂tu ·∇uQh

Q2

to obtain

ã(u;u, ∂teu) − ã(uh;uh, ∂teu) =

∫
Ω

(∇u
Q

− ∇uh
Qh

)
· ∇∂t(u− uh)

=
1

2

d

dt

∫
Ω

|ν − νh|2Qh

+

∫
Ω

∂t∇u ·
(∇u
Q

− ∇uh
Qh

)(
1

Qh
− 1

Q

)
Qh

+

∫
Ω

∂t∇u · ∇u
Q2

(
1 − 1 + ∇u · ∇uh

QQh

)
Qh

≥ 1

2

d

dt
Nh(t) − ||∇∂tu(t)||∞Nh(t),

where we have employed both estimates (4.3). This finally concludes the proof.
The following two lemmas are consistency estimates for the bilinear forms a and ã,

respectively.
Lemma 4.3 (consistency estimate for a). For every ε > 0 there exists a constant

C = C(ε, ||∇κ||∞, ||Q||∞, ||∇f ||∞) > 0 such that

|a(u;κ,w) − a(uh;κh, w)| ≤ εa(uh; eκ, eκ) + C ||∇w||2∞ + Nh(t) ∀w ∈ X .

Proof. We first add and subtract the term a(uh;κ,w) to obtain

a(u;κ,w) − a(uh;κh, w) = a(uh;κ− κh, w) +
(
a(u;κ,w) − a(uh;κ,w)

)
=: (I) + (II)

and analyze (I) and (II) separately. By the Cauchy–Schwarz inequality,

(I) ≤ εa(uh; eκ, eκ) +
1

4ε
a(uh;w,w),

and, using the definition (2.2) of a(uh; ·, ·), we get

a(uh;w,w) =

∫
Ω

|∇w|2Qh − 1

Qh
|∇w · ∇uh|2 ≤

∫
Ω

|∇w|2Qh ≤ ||∇w||2∞Ah(t).
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Therefore,

(I) ≤ εa(uh; eκ, eκ) +
1

4ε
||∇w||2∞Ah(t).

We now turn to estimate (II). Using the equivalent form (2.7) for a, we have

(II) =

∫
Ω

∇κT
(

(Q−Qh)I −
(∇u⊗∇u

Q
− ∇uh ⊗∇uh

Qh

))
∇w.

By (4.1) and (4.2), the integrand in (II) is bounded by 4QQh |∇κ| |∇w| |ν − νh|,
which by the Cauchy–Schwarz inequality gives

(II) ≤ 4

∫
Ω

Q2|∇κ|2|∇w|2Qh +

∫
Ω

|ν − νh|2Qh
≤ 4||Q||2∞||∇κ||2∞||∇w||2∞Ah(t) +Nh(t).

Since Ah(t) ≤ C from (3.6), the bounds for (I) and (II) yield the assertion.
Lemma 4.4 (consistency estimate for ã). For every ε > 0 we have

|ã(u;u,w) − ã(uh;uh, w)| ≤ εã(uh;w,w) +
1

4ε
Nh(t) ∀w ∈ X .

Proof. Using the definition (2.3) of ã and the Cauchy–Schwarz inequality, we get

|ã(u;u,w) − ã(uh;uh, w)| ≤
∫

Ω

∣∣∣∣∇uQ − ∇uh
Qh

∣∣∣∣ |∇w| ≤ ∫
Ω

|ν − νh| |∇w|

≤ ε

∫
Ω

|∇w|2
Qh

+
1

4ε
Nh(t) = ε ã(uh;w,w) +

1

4ε
Nh(t),

which is the desired estimate.
The following lemma establishes another consistency estimate for a, this time

provided that solely the nonlinear part of a changes.
Lemma 4.5. There exists a constant C = C(||Q||∞) > 0 such that for every ε > 0

|a(u; v, w) − a(uh; v, w)| ≤ εa(uh;w,w) +
C

ε
||∇v||2∞Nh(t) ∀v, w ∈ X .

Proof. With R := ||Q||∞, we consider the following disjoint splitting of Ω: Ω =
Ω+ ∪ Ω− with Ω+ := {x ∈ Ω |Qh(x) > 2R} and Ω− := {x ∈ Ω |Qh(x) ≤ 2R}.

We first estimate the integrand of a(u; ·, ·) − a(uh; ·, ·) in the case x ∈ Ω−. Ac-
cording to (2.7), we consider this integrand written in the form

∇vT
(

(Q−Qh)I −
(∇u⊗∇u

Q
− ∇uh ⊗∇uh

Qh

))
∇w =: (I).

Since Qh(x) ≤ 2R for x ∈ Ω−, in view of (4.1) and (4.2) we have

(I) ≤ 4|∇v| |∇w|QQh|ν − νh| ≤ 8R2|∇v| |∇w|√
Qh

|ν − νh|
√
Qh

≤ ε
|∇w|2
Qh

+ 16
R4

ε
||∇v||2∞|ν − νh|2Qh.
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To analyze the case x ∈ Ω+, we choose ζ, ζh, χi, χh,i as in Remark 2.4. Since
Q(x) ≤ R and Qh(x) > 2R we have

|ν − νh| ≥ 1

Q
− 1

Qh
≥ 1

2R
and |ζ − ζh| , |χi − χh,i| ≤ 2 ≤ 4R|ν − νh|.(4.4)

Consider the integrand in the form (2.6):(∇v·ζ∇w·ζ
Q

− ∇v·ζh∇w·ζh
Qh

)
︸ ︷︷ ︸

(II)

+

d−1∑
i=1

∇wT (χi ⊗ χiQ− χh,i ⊗ χh,iQh
)∇v︸ ︷︷ ︸

(III)i

.

Since R ≥ 1, we have for (II)

(II) = ∇vT
(
ζ ⊗ ζ

Q
− ζh ⊗ ζh

Qh

)
∇w

= ∇vT
[
(ζ − ζh) ⊗ ζ

1

Q
+ ζh ⊗ ζ

(
1

Q
− 1

Qh

)
+ ζh ⊗ (ζ − ζh)

1

Qh

]
∇w

≤ C R |∇v| |∇w| |ν − νh| ≤ C2R2

4ε
||∇v||2∞ |ν − νh|2Qh + ε

|∇w|2
Qh

.

For (III)i, instead, we proceed as follows with the aid of (4.1):

(III)i = ∇wT
(
(χi − χh,i) ⊗ χiQ+ χh,i ⊗ χi (Q−Qh) + χh,i ⊗ (χi − χh,i)Qh

)
∇v

≤ 4R2 |ν − νh| |∇v| |∇w| + 5R |ν − νh|Qh|χh,i · ∇w| |∇v|

≤ ε
|∇w|2
Qh

+ ε|∇w · χh,i|2Qh +
CR4

ε
||∇v||2∞|ν − νh|2Qh.

Collecting the estimates for both cases, x ∈ Ω− and x ∈ Ω+, integrating over Ω,
and recalling (2.6), we obtain the assertion after relabeling ε.

Using Lemma 4.5 we obtain a coercivity estimate for a.
Corollary 4.6 (coercivity of a). There exists C = C(||Q||∞) > 0 such that

a(u;κ, eκ) − a(uh;κh, eκ) ≥ 1

2
a(uh; eκ, eκ) − C||∇κ||2∞Nh(t).

Proof. Adding and subtracting a(uh;κ, eκ), and using Lemma 4.5 with ε = 1/2,
we readily obtain the desired estimate.

Lemma 4.7 (coercivity of Nh(t)). There exists C = C(||Q||∞) such that

a(uh; eu, eu) ≤ CNh(t).

Proof. In light of Remark 2.4, we can write

a(uh; eu, eu) =

∫
Ω

|∇eu · ζh|2
Qh︸ ︷︷ ︸
(I)

+

d−1∑
i=1

∫
Ω

|∇eu · χh,i|2Qh︸ ︷︷ ︸
(II)i

.

By virtue of (4.1), (I) satisfies

(I) ≤ |∇eu|2
Qh

=
|∇u−∇uh|2

Qh
≤ |νQ− νhQh|2

Qh

≤ |ν(Q−Qh) + (ν − νh)Qh|2
Qh ≤ 4||Q||2∞Qh|ν − νh|2.

(4.5)
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To treat the integrand (II)i we again split Ω into Ω− and Ω+, as in Lemma 4.5.
Consider first x ∈ Ω−, namely, Qh(x) ≤ 2R with R := ||Q(t)||∞. As in (4.5), we get

|∇eu · χh,i|2Qh ≤ 4R2 |∇eu|2
Qh

≤ 16||Q||4∞Qh|ν − νh|2.

Now we consider Qh(x) > 2R. Since ∇uh · χh,i = 0, it follows from (4.4) that

∇eu · χh,i = ∇(u− uh) · χh,i = ∇u · χh,i ≤ |∇u| ≤ 2R ||∇u||∞|ν − νh|,
whence

|∇eu · χh,i|2Qh ≤ 4||Q||4∞|ν − νh|2Qh.
The desired estimate then follows by integration over Ω.

5. A priori error analysis. In this section we prove the main theoretical result
of this article, which can be stated as follows.

Theorem 5.1. Let (uh, κh) be the semidiscrete solution of Definition 3.1, and
let eu := u − uh, eκ := κ − κh. There exists a constant C depending on ||∇f ||∞,
||∂tu||L2(Hk+1(Ω)), ||∂t∇u||∞, ||κ||L2(Hk+1(Ω)), ||∂tκ||L2(Hk(Ω)), and ||∇κ||∞ such that

sup
t∈[0,T ]

(
||eu(t)||22 +

∫
Γh(t)

|∇Seu|2
)

+

∫ T

0

(
||eκ||22 +

∫
Γh(t)

|∇Seκ|2
)

≤ C h2k.

The proof of Theorem 5.1 is a consequence of two estimates, the strong and the
weak estimates, derived from the error equations (5.1) and (5.2) below by choosing
appropriate test functions.

Remark 5.2 (H1 estimate). The estimate for ∇Seu might seem surprising at first
sight since direct H1 estimates are unavailable for minimal surfaces for dimension
d > 2. It is thus worth stressing that, instead of the usual H1 norm, we have an
integral over the discrete surface Γh(t) which involves the tangential gradient ∇S . In
its derivation, we exploit parabolicity to prove first an estimate for Nh(t) and then
use Lemma 4.7 (see section 5.1).

Remark 5.3 (regularity). The required regularity of (u, κ) in Theorem 5.1 might
appear inconsistent with that of Ω for polynomial degree k > 1. In fact, we have
assumed that Ω can be partitioned exactly into finite elements but not that Ω is
polyhedral (see section 3). This would thus entail the use of isoparametric elements
for k > 1, but still Ω = Ωh might fail to hold. Accounting for the effect of Ω �= Ωh is
mostly a technical issue and is, therefore, omitted in the subsequent discussion, which
is already rather technical.

5.1. Proof of Theorem 5.1. Subtracting (3.2) and (3.3) from (2.4) and (2.5),
respectively, we get the following error equations:

〈∂teu, ψh〉 − (a(u;κ, ψh) − a(uh;κh, ψh)) = a(u; f, ψh) − a(uh; f, ψh),(5.1)

〈eκ, ϕh〉 + (ã(u;u, ϕh) − ã(uh;uh, ϕh)) = 0(5.2)

for all ψh, ϕh ∈ Xh. The strong and weak estimates below are formulated in terms of
the following interpolation errors, which can be bounded via (3.1):

ρu := u− Ihu, ρκ := κ− Ihκh.(5.3)
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The strong estimate of section 5.2 reads as follows: For all ε > 0 there exists a
constant C0 depending only on ||∇f ||∞, ||∇κ||∞, ||∂t∇u||∞, and ε such that for t ∈ [0, T ]

Nh(t) +

∫ t

0

a(uh; eκ, eκ) ≤ Nh(0) + C0

∫ t

0

(
Nh + ||eu||22

)
+ 2ε

(
||eu(t)||22 +

∫ t

0

||eκ||22
)

+
1

2ε
||ρκ(t)||22 + ||eu(0)||22 + ||ρκ(0)||22

+ C0

∫ t

0

(
||∇ρκ||2∞ + ||∂t∇ρu||22 + ||∂tρu||22 + ||∂tρκ||22

)
.

(5.4)

It is clear that to close the argument we need separate control on the term multiplied
by ε of the right-hand side of (5.4). This is provided by the weak estimate of section
5.3, which reads as follows: There exist constants C1, C2 depending on ||∇f ||∞ and
||Q||∞ such that for t ∈ [0, T ] we have

1

2
||eu(t)||22 +

∫ t

0

||eκ||22 ≤ 1

2
||eu(0)||22 +

∫ t

0

||eu||22

+ C1

∫ t

0

Nh +
1

2

∫ t

0

a(uh; eκ, eκ)

+

∫ t

0

(
||∇ρκ||22 + ||ρκ||22 + ||∂tρu||22

)
+ 2||ρu(t)||22 + C2

∫ t

0

||∇ρu||2∞.

(5.5)

To prove Theorem 5.1 we add (5.4) and (5.5) and then choose ε = 1/8 to eliminate

||eu(t)||22 +
∫ t
0
||eκ||22 from the right-hand side. Employing a Gronwall argument, we

can also remove
∫ t
0

(
Nh(s) + ||eu||22

)
from the right-hand side at the expense of an

exponential depending on C0, C1, and T . Finally, Lemma 4.7, in conjunction with
a(uh; v, v) =

∫
Γh

∇Sv · ∇Sv, yields the left-hand side of the asserted estimate. Its

right-hand side and underlying a priori regularity result from applying (3.1) to the
terms involving ρκ, ρu defined in (3.1).

5.2. Strong estimate (5.4). To prove (5.4), we choose the discrete functions

−ψh := Ihκ− κh = (κ− κh) + (Ihκ− κ) = eκ − ρκ ∈ Xh,
ϕh := ∂t(Ihu− uh) = ∂teu − ∂tρu ∈ Xh.

Adding (5.1) and (5.2), and invoking Lemma 4.2 and Corollary 4.6, we get

1

2

d

dt
Nh(t) +

1

2
a(uh; eκ, eκ) − C Nh(t)

≤ a(u;κ, eκ) − a(uh;κh, eκ) + ã(u;u, ∂teu) − ã(uh;uh, ∂teu)

=
(
a(u;κ, ρκ) − a(uh;κh, ρκ)

)− (a(u; f, eκ − ρκ) − a(uh; f, eκ − ρκ)
)

+
(
ã(u;u, ∂tρu) − ã(uh;uh, ∂tρu)

)− 〈∂teu, ρκ〉 + 〈eκ, ∂tρu〉
=: (I) + (II) + (III) + (IV ) + (V ),
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with C depending only on ||∂t∇u||∞, ||∇κ||∞, and ||Q||∞. We now proceed to estimate
each term on the right-hand side separately.

By Lemma 4.3, there is a constant C = C(ε, ||∇κ||∞, ||Q||∞, ‖∇f‖∞) such that∣∣(I)∣∣ ≤ εa(uh; eκ, eκ) + C||∇ρκ||2∞ +Nh(t).

Using Lemma 4.4 with ε = 1, we obtain∣∣(III)∣∣ ≤ ã(uh; ∂tρu, ∂tρu) +Nh(t) ≤ ||∇∂tρu||22 +Nh(t).

For any t ∈ [0, T ] we integrate (IV ) by parts on [0, t], thereby obtaining∫ t

0

(IV ) = 〈eu(0), ρκ(0)〉 − 〈eu(t), ρκ(t)〉 +

∫ t

0

〈eu, ∂tρκ〉

≤ 1

2
||eu(0)||22 +

1

2
||ρκ(0)||22 +

ε

2
||eu(t)||22 +

1

2ε
||ρκ(t)||22 +

1

2

∫ t

0

(
||eu||22 + ||∂tρκ||22

)
.

For (V ) we readily have

|(V )| ≤ ε

2
||eκ||22 +

1

2ε
||∂tρu||22.

We decompose (II) into discretization and interpolation errors as follows:

−(II) = (a(u; f, eκ) − a(uh; f, eκ))︸ ︷︷ ︸
(II)e

− (a(u; f, ρκ) − a(uh; f, ρκ))︸ ︷︷ ︸
(II)ρ

.(5.6)

In light of Lemma 4.5, there is a constant C = C(||Q||∞) such that

∣∣(II)e∣∣ ≤ 1

4
a(uh; eκ, eκ) + C||∇f ||2∞Nh(t).

Using Lemma 4.1 and (3.6), we find a constant C = C(||∇f ||∞, ||Q||∞, Ah(0)) such
that ∣∣(II)ρ∣∣ = ∣∣∣∣∫

Ω

∇fT
(

(Q−Qh)I −
(∇u⊗∇u

Q
− ∇uh ⊗∇uh

Qh

))
∇ρκ

∣∣∣∣
≤ 4

∫
Ω

|∇f | |∇ρκ|QQh |ν − νh|

≤ 4||∇f ||2∞||∇ρκ||2∞||Q||2∞
∫

Ω

Qh +

∫
Ω

|ν − νh|2Qh
≤ C||∇ρκ||2∞Ah(t) +Nh(t) ≤ C||∇ρκ||2∞ +Nh(t).

Finally, collecting the above estimates for (I) to (V ), subtracting 1
4 a(uh; eκ, eκ),

and integrating in time from 0 to t ∈ [0, T ], we arrive at (5.4).

5.3. Weak estimate (5.5). To prove (5.5), we choose the discrete functions

ψh := Ihu− uh = eu − ρu ∈ Xh,
ϕh := Ihκ− κh = eκ − ρκ ∈ Xh.
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Adding the error equations (5.1) and (5.2), we obtain

(5.7)

〈∂teu, eu〉 + 〈eκ, eκ〉 =
(
a(u;κ, eu) − a(uh;κh, eu)

)− (ã(u;u, eκ) − ã(uh;uh, eκ)
)

+〈∂teu, ρu〉 −
(
a(u;κ, ρu) − a(uh;κh, ρu)

)
+
(
a(u; f, eu − ρu) − a(uh; f, eu − ρu)

)
+ 〈eκ, ρκ〉

+
(
ã(u;u, ρκ) − ã(uh;uh, ρκ)

)
=: (I) + · · · + (V II).

We proceed now to bound each term from (I) to (V II) separately.
Adding and subtracting a(uh;κ, eu) to (I), and employing Lemma 4.5 with ε = 1

6 ,
we readily have

|(I)| ≤ |a(u;κ, eu) − a(uh;κ, eu)| + |a(uh; eκ, eu)|
≤ C||∇κ||2∞Nh(t) +

5

2
a(uh; eu, eu) +

1

6
a(uh; eκ, eκ).

Consequently, Lemma 4.7 yields the following bound with C = C(||∇κ||∞, ||Q||∞):∣∣(I)∣∣ ≤ CNh(t) +
1

6
a(uh; eκ, eκ).

Making use of Lemma 4.4 and Remark 2.3, we readily deduce (using ε = 1
6 )∣∣(II)∣∣ ≤ 1

6
ã(uh; eκ, eκ) +

3

2
Nh(t) ≤ 1

6
a(uh; eκ, eκ) +

3

2
Nh(t),

as well as (using ε = 1
2 )∣∣(V II)∣∣ ≤ 1

2
ã(uh; ρκ, ρκ) +

1

2
Nh(t) ≤ 1

2
||∇ρκ||22 +

1

2
Nh(t).

Using Lemma 4.3 with ε = 1
6 we find a constant C = C(||∇κ||∞, ||Q||∞, ||∇f ||∞)

such that ∣∣(IV )
∣∣ ≤ 1

6
a(uh; eκ, eκ) +Nh(t) + C||∇ρu||2∞.

For (V I), we obviously have
∣∣(V I)∣∣ ≤ 1

2 ||eκ||22+ 1
2 ||ρκ||22. For (III), instead, we integrate

by parts on [0, t] for any t ∈ [0, T ] to obtain∫ t

0

(III) = 〈eu(t), ρu(t)〉 − 〈eu(0), ρu(0)〉 −
∫ t

0

〈eu, ∂tρu〉

≤ 1

4
||eu(t)||22 + ||ρu(t)||22 +

1

2

∫ t

0

(
||eu||22 + ||∂tρu||22

)
.

It remains to bound (V ), which involves the right-hand side f . Applying Lemma 4.5
(with ε = 1) and Lemma 4.7, we obtain∣∣a(u; f, eu) − a(uh; f, eu)

∣∣ ≤ C||∇f ||2∞Nh(t) + a(uh; eu, eu) ≤ CNh(t),

with C = C(‖∇f‖∞, ||Q||∞). Since a(u; f, ρu)−a(uh; f, ρu) is similar to (II)ρ in (5.6),
we likewise deduce∣∣a(u; f, ρu) − a(uh; f, ρu)

∣∣ ≤ C||∇ρu||2∞Ah(t) +Nh(t) ≤ C||∇ρu||2∞ +Nh(t),
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whence, for C depending on ||∇f ||∞ and ||Q||∞, we end up with∣∣(V )
∣∣ ≤ C||∇ρu||2∞ + CNh(t).

Inserting the above bounds for (I) to (V II) back into (5.7) and integrating from
0 to t, we finally obtain the desired estimate (5.5).

6. Full discretization. In this section we introduce the fully discrete scheme
actually used in simulations, along with the linear algebra approach to its solution.

6.1. Definition and properties. To discretize in time we subdivide the time
interval into t0 = 0 < t1 < · · · < tN = T and set τn := tn+1 − tn. We define
the notion of semi-implicit fully discrete problem as follows: Set u0

h = uh(0) and for
n = 0, 1, . . . , N − 1 determine un+1

h , κn+1
h ∈ Xh by

〈un+1
h , ψh〉 − τna(unh;κ

n+1
h , ψh) = τna(unh; f

n, ψh) + 〈unh, ψh〉 ∀ψh ∈ Xh,(6.1)

〈κn+1
h , ϕh〉 + ã(unh;u

n+1
h , ϕh) = 0 ∀ϕh ∈ Xh,(6.2)

with fn := f(tn). Existence and uniqueness of solutions unh, κ
n
h follow from the

considerations in section 6.2.
We now establish a stability estimate analogous to (3.6) in Lemma 2.6.
Theorem 6.1 (fully discrete stability). Let (unh, κ

n
h)
N
n=0 be a solution of the fully

discrete equations (6.1) and (6.2), and let Anh :=
∫
Ω
Q(unh) denote the area of the

surface Γnh := {(x, unh(x)) | x ∈ Ω}. There exists C = C(||∇f ||∞, A0
h) such that

sup
1≤n≤N

Anh +

N∑
n=1

τn

∫
Γn−1
h

|∇Sκnh|2 ≤ C.(6.3)

Moreover, if f ≡ 0, Anh is a decreasing sequence (strictly if a(un−1
h ;κnh, κ

n
h) > 0).

Proof. Choose as test functions −κn+1
h and (un+1

h − unh) in (6.1) and (6.2), re-
spectively, and add both equations. One readily gets

τna(unh;κ
n+1
h , κn+1

h ) +

∫
Ω

∇un+1
h · ∇(un+1

h − unh)

Q(unh)
= −τna(unh; f

n, κn+1
h ).(6.4)

The next step consists of finding a discrete counterpart of (3.7). Observing that

|a| − |b| ≤ a · (a− b)

|b| ∀a, b ∈ R
d+1

and setting a := (∇un+1
h , 1)T , b := (∇unh, 1)T , we obtain

Q(un+1
h ) −Q(unh) ≤

∇un+1
h · ∇(un+1

h − unh)

Q(unh)
.

Inserting this into (6.4) gives An+1
h ≤ Anh if f ≡ 0. To prove (6.3) for f �≡ 0, we have

to bound the right-hand side in (6.4). This can be done similarly to (3.5), obtaining

|a(unh; f
n, κn+1

h )| ≤ C(1 +Anh) + εa(unh;κ
n+1
h , κn+1

h ),

with C = C(ε, ||∇f ||∞). Multiplying by τn, choosing ε sufficiently small, summing up
over all n, and using a discrete Gronwall argument, the result follows.
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6.2. Schur complement strategy. Let Xh = span{ϕj} ⊆ X with the usual
nodal basis functions ϕj and the corresponding nodal space X. Then, for the time
instant tn+1, the fully discrete system of equations can be rewritten as[

Ã M
MT −τnA

] [
Un+1

Kn+1

]
=

[
0

MT Un + τnF
n

]
,(6.5)

where Un, Kn denote the vector of nodal values for unh, κ
n
h, respectively,

unh =
∑
j

Unj ϕj , κnh =
∑
j

Kn
j ϕj ,

the vector Fn is given by Fnj = a(unh; f
n, ϕj), and the matrices M , A, Ã are given by

Mi,j = 〈ϕj , ϕi〉, Ai,j = a(unh;ϕj , ϕi), Ãi,j = ã(unh;ϕj , ϕi).

Notice that the matrices A and Ã depend on unh and thus have to be reassembled in
every time step.

To derive a Schur complement formulation, we have to distinguish between the
various boundary conditions (see section 2.2).

Dirichlet boundary conditions. In this case, since X := H̊1(Ω), the matrix Ã is
invertible, and a Schur complement for Kn+1 is thus given by(

MT Ã−1M + τnA
)
Kn+1 = −MT Un − τnF

n,

Ã Un+1 = −M Kn+1.

This system is decoupled and uniquely solvable for both Kn+1 and Un+1.
Periodic and Neumann boundary conditions. This case is a bit more involved

because constant functions are in Xh, whence Ã has a kernel ker(Ã) = span{1}.
Let V,W ⊆ X be the spaces of nodal values for Un+1 defined by

V := {V | 1 ·MV = 0}, W := {V | 1 · V = 0} = span{1}⊥.
Multiplying the first equation in (6.5) by 1, we see that 1 ·MKn+1 = 0, which means
that Kn+1 ∈ V. Let P be the orthogonal projection onto span{1} with respect to
the Euclidean inner product in R

I , with I = dimX. If S := (Ã|W)−1, then

SMKn+1 = −SÃUn+1 = −(Id− P )Un+1 = −Un+1 + PUn+1,

or Un+1 = −SMKn+1 + PUn+1. Consequently, using the second equation in (6.5),

(MTSM + τnA)Kn+1 −MTP Un+1 = −MT Un − τnF
n.(6.6)

Now let Π := Id − MT 1⊗MT 1
|MT 1|2 be the orthogonal projection onto V. Applying Π to

both sides of (6.6) and using that ΠMPUn+1 = 0 and ΠKn+1 = Kn+1, we arrive at

Π(MTSM + τnA)ΠKn+1 = −Π(MT Un + τnF
n).(6.7)

The matrix Π(MTSM+τnA)Π is symmetric and positive definite in V, and thus (6.7)
is uniquely solvable for Kn+1 in V. Finally, Un+1 is uniquely determined by

Ã Un+1 = −M Kn+1, 1 ·MT Un+1 = 1 ·MT Un.(6.8)

Note that the last equation is the conservation of volume
∫
Ω
(Un+1 −Un) = 0 written

in matrix-vector form; compare with Remark 2.5.
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7. Numerical experiments. The purpose of this section is to document via
several experiments the performance of the discretization scheme proposed in this
article. We open this section with some comments about the implementation of the
algorithm within the flexible adaptive finite element toolbox ALBERT [16, 17]. We
continue with a verification of the experimental orders of convergence (EOCs) achieved
by the method with different polynomial degrees and relations between time step τ
and mesh size h. We next illustrate the smoothing effect of surface diffusion (case
f = 0), and we finally present simulations driven by a forcing term which exhibit
singularity formation in finite time in both one dimension and two dimensions (case
f �= 0).

7.1. Implementation. The matrices of section 6 were assembled using the stan-
dard assembling tools of ALBERT, and the solution to the linear systems (6.7)–(6.8)
was obtained by a conjugate gradient method.

For the assembling of the linear systems, quadrature rules exact for polynomials
of degree 2k were used, where k is the degree of the finite element. For computing
the errors versus the exact solution, quadratures of order 2k + 2 were used.

For all the experiments presented in this article, domains with periodic boundary
conditions were considered. Experiments with other boundary conditions were also
carried out and will be shown elsewhere. The results were similar.

7.2. EOCs. To test the performance of the discretization scheme we consider
the domain Ω = (−1, 1) × (−1, 1) ⊂ R

2 with the exact solution

u(x, y, t) = 1 + 0.1 sin(πx) sin(2πy) cos(πt) ∀ t ∈ [0, 1].

The exact curvature κ = ∇·(∇uQ ) and right-hand side F = ∂tu−Q∆Sκ were obtained
using the symbolic capabilities of Mathematica. The finite element method of section 6
is used to compute (uh, κh), and a comparison with (u, κ) is presented in Tables 7.1–
7.4. They display the errors

errν := sup
0≤t≤T

(∫
Ω

|ν − νh|2Qh
)1/2

, erru := sup
0≤t≤T

a(uh; eu, eu)
1/2,

errκ :=

(∫ T

0

a(uh; eκ, eκ)

)1/2

, erru,2 := sup
0≤t≤T

‖eu‖2, errκ,2 :=

(∫ T

0

‖eκ‖2
2

)1/2

for different values of h and τ along with the EOCs. Given two meshes with mesh
sizes H, h and errors errH , errh, respectively, the EOC is determined according to

EOC =
log(errH/errh)

log(H/h)
,

which gives the computational exponent k in the expression errh ∼= Chk.
In Table 7.1 we show the results obtained using linear elements and a time step

τ = h. Even though τ seems to be large as compared to h, the convergence rate is
still linear, and no instabilities arise. This is not so surprising if we recall that the
fully discrete system is unconditionally stable (see Theorem 6.1). In order to verify
the error analysis in section 5 for the semidiscretization in space, we also compute the
EOCs for smaller values of τ , namely τ = 0.1h and τ = h2; see Tables 7.2 and 7.3.
Here again, we observe that the EOCs are at least 1. Moreover, as one would expect,
the errors measured in L2(Ω) norms are approximately of second order, provided
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Table 7.1

Linear elements and time step τ = h.

h errν EOC erru EOC errκ EOC erru,2 EOC errκ,2 EOC
1/2 0.5601 0.6055 18.2 0.0836 2.1921
1/4 0.2549 1.14 0.2884 1.07 7.70 1.24 0.0287 1.54 0.4366 2.33
1/8 0.1297 0.97 0.1448 0.99 4.66 0.73 0.0121 1.24 0.1773 1.30
1/16 0.0636 1.03 0.0708 1.03 2.41 0.95 0.0049 1.32 0.0630 1.49
1/32 0.0310 1.03 0.0344 1.04 1.21 0.99 0.0021 1.24 0.0262 1.26

Table 7.2

Linear elements and time step τ = 0.1h.

h errν EOC erru EOC errκ EOC erru,2 EOC errκ,2 EOC
1/2 0.5594 0.6048 18.4 0.0834 2.2249
1/4 0.2463 1.18 0.2772 1.13 7.67 1.26 0.0251 1.73 0.4071 2.45
1/8 0.1240 0.99 0.1364 1.02 4.67 0.71 0.0081 1.62 0.1484 1.46
1/16 0.0611 1.02 0.0669 1.03 2.40 0.96 0.0022 1.87 0.0397 1.90
1/32 0.0304 1.01 0.0332 1.01 1.19 1.00 0.0006 1.85 0.0102 1.97

Table 7.3

Linear elements and time step τ = h2.

h errν EOC erru EOC errκ EOC erru,2 EOC errκ,2 EOC
1/2 0.5597 0.6051 18.4 0.0835 2.2214
1/4 0.2470 1.18 0.2782 1.12 7.67 1.26 0.0254 1.71 0.4073 2.45
1/8 0.1240 0.99 0.1365 1.03 4.61 0.73 0.0082 1.63 0.1466 1.47
1/16 0.0611 1.02 0.0669 1.03 2.38 0.96 0.0022 1.93 0.0392 1.90
1/32 0.0304 1.01 0.0332 1.01 1.19 1.00 0.0005 1.98 0.0099 1.99

Table 7.4

Quadratic elements and time step τ = h2.

h errν EOC erru EOC errκ EOC erru,2 EOC errκ,2 EOC
1/2 0.1271 0.1376 7.38 0.0101 0.3277
1/4 0.0419 1.60 0.0487 1.50 2.47 1.58 0.0040 1.35 0.0797 2.04
1/8 0.0102 2.03 0.0122 1.99 0.71 1.80 0.0009 2.19 0.0152 2.39
1/16 0.0025 2.01 0.0030 2.00 0.17 2.07 0.0002 2.11 0.0032 2.24

that τ = h2; this is not predicted by our theory though. For τ = h, 0.1h we do not
recover second-order errors because the time discretization error—expected to be of
first order—dominates the space error in L2(Ω) norms.

To further verify experimentally the error estimates of section 5, which are valid
for any polynomial degree, we also compute the EOCs for quadratic elements. Ta-
ble 7.4 displays the results obtained with quadratics and τ = h2. The EOCs are about
2 in all the error norms, as predicted by theory, including those in L2(Ω). In fact, the
latter cannot exhibit EOCs close to 3 due to the choice of the time step τ = h2.

7.3. Smoothing effect in one dimension: Case f ≡ 0. In this section we
present experimental results in Ω = (−1, 1) concerning the behavior of the discrete
solution when f ≡ 0 and u0(x) = 1+ δ(x) is a perturbation of the stationary solution
u ≡ 1.

Superposition of sines. We consider the perturbation

δ(x) = 0.1 sin(πx) + 0.3 sin(16πx),(7.1)
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t = 0 t = 1 × 10−5 t = 2 × 10−5 t = 3 × 10−5

t = 1 × 10−4 t = 1 × 10−3 t = 4 × 10−3 t = 8 × 10−3

Fig. 7.1. Solutions for f ≡ 0 and u0(x) = 1 + 0.1 sin(πx) + 0.3 sin(16πx) at various instants t.
In all the plots, the x-axis ranges from −1 to 1, and the y-axis ranges from 0 to 1.5.

which results from the superposition of two frequencies. We compute the approximate
solution with linear elements and parameters h = 1/128, τ = 10−6. This choice
of discretization parameters is necessary to reflect the intrinsic time scale for this
example. Figure 7.1 depicts the solution for different time instants and shows that
high frequencies are rapidly damped, whereas the amplitude of low frequency waves
decays very slowly. To quantify the difference in the time scales it is worth noting
that the time elapsed between the first and the last plot of the first row of Figure 7.1
is 3×10−5, whereas that of the second row is almost 10−2, a difference of three orders
of magnitude. This is related to the fourth-order operator of surface diffusion.

Nonnegative perturbation. Let the perturbation be δ(x) = 0.3 δ0(0.15x), with

δ0(x) = min(1,max(0, 2 − |x|)),(7.2)

which is nonnegative and rather singular for this fourth-order flow because of its
kinks (see Figure 7.2). We compute the approximate solution with linear elements
and parameters h = 1/128, τ = 10−6. Figure 7.2 displays the solution for different
time instants and confirms the strong smoothing effect of surface diffusion alluded to
before. Another important feature that can be visualized in Figure 7.2 is the lack of
maximum principle for this equation: we start with a function u0 ≥ 1 and, after the
first time step, there are already points x with u(x) < 1. This is consistent with the
fourth-order structure of the operator. It is also worth observing that the spectrum
of u0 is rather full due to the kinks and that high and low frequencies have drastically
different decay rates.

Steep perturbation. This example shows that global in time existence may not
be expected for a classical solution of (1.1), thereby revealing some limitations of the

graph formulation. For K = 1 +
√

5
2 , we take the perturbation δ(x) = 0.3δ0(0.15x),

with

δ0(x) =

⎧⎪⎨⎪⎩
−K + (1 +K)|x| if |x| < 1,

2 − |x| if 1 ≤ |x| < 2,

0 otherwise.

(7.3)

δ is steep, and its mean value vanishes (see Figure 7.3). We compute the approximate
solution with linear elements and parameters h = 1/128, τ = 10−7. The most impor-
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t = 0 t = 1 × 10−5 t = 2 × 10−5 t = 1 × 10−4

t = 2 × 10−4 t = 4 × 10−4 t = 8 × 10−4 t = 16 × 10−4

Fig. 7.2. Solutions for f ≡ 0 and u0(x) = 1+ δ(x), with δ(x) a positive perturbation at various
times t. In all the plots, the x-axis ranges from −1 to 1, and the y-axis ranges from 0 to 1.5.

t = 0 t = 8 × 10−6 t = 16 × 10−6 t = 24 × 10−6

t = 4.8 × 10−5 t = 9.6 × 10−5 t = 19.2 × 10−5 t = 38.4 × 10−5

Fig. 7.3. Solutions for f ≡ 0 and u0(x) = 1+ δ(x) at various times t, with a steep perturbation
δ(x). In all the plots, the x-axis ranges from −1 to 1, and the y-axis ranges from 0 to 1.5.

tant features of δ are its steep slope, together with a big jump of the first derivative
around x = 0. As can be seen in Figure 7.3, the slope seems to become vertical
around t = 4.8× 10−5, which indicates that the classical solution might cease to exist
in finite time; in contrast, the discrete solution exists globally in time (see section 3).
We stress that the lack of smoothness of u0 plays a secondary role since starting with
the (smooth) solution u(t) for some small t > 0 would yield the same evolution.

To investigate the formation of singularities in finite time, we use the parametric
formulation of [2, 3] with the same initial data; for more examples and details about
the discretization for parametric surfaces, we refer the reader to [2, 3]. Since the
parametric formulation works for closed curves and surfaces, we thus embed the graph
of u0 into a closed curve (see Figure 7.4, top left). For the time scale of Figure 7.3,
the effect of this extension is negligible. Figure 7.4 displays a sequence of solutions
obtained for the same eight time instants as in Figure 7.3. We see that the parametric
evolution by surface diffusion tends to form a mushroom starting with this initial
condition. Therefore, we conclude that the continuous solution will cease to be the
graph of a function in finite time; i.e., the exact solution to the graph formulation of
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t = 0 t = 8 × 10−6 t = 16 × 10−6 t = 24 × 10−6

t = 4.8 × 10−5 t = 9.6 × 10−5 t = 19.2 × 10−5 t = 38.4 × 10−5

Fig. 7.4. Solutions obtained with a discretization for parametric curves from [2, 3] at the same
times as in Figure 7.3. In all the plots, the rectangles in thin lines are [−1, 1] × [0, 1.5].

surface diffusion exists only locally in time for certain initial conditions. To assess the
range of validity of the graph formulation, namely, to be able to detect blow-up, time
and space adaptivity might be relevant. It is worth noticing the striking similarity
of the solutions obtained with both methods. Even though the parametric solution
develops a mushroom at t = 9.6×10−5, and thus the solution to the graph formulation
is questionable thereon, they still exhibit an excellent quantitative agreement for
t > 9.6 × 10−5 (compare the last two plots of Figures 7.4 and 7.3).

7.4. Smoothing effect in two dimensions: Case f ≡ 0. In this section we
present experimental results in Ω = (−1, 1) × (−1, 1) concerning the behavior of the
discrete solution when f ≡ 0 and u0(x) = 1 + δ(x) is a perturbation of the solution
u ≡ 1.

Positive perturbation. We consider a positive perturbation as depicted in Figure 7.5
and compute the approximate solution with linear elements and parameters h = 1/16,
τ = 10−6. Figure 7.5 displays the solution for different time instants. We observe, as
in the one-dimensional case, a strong smoothing effect much faster for high frequen-
cies than for low frequencies, as well as the solution becoming less than 1 (lack of
maximum principle).

t = 0 t = 1 × 10−5 t = 5 × 10−5

t = 1 × 10−4 t = 5 × 10−4 t = 10 × 10−4

Fig. 7.5. Solutions for f ≡ 0 and u0(x) = 1+δ(x) at various time instants, with δ(x) a positive
perturbation touching the periodic boundary.
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7.5. Crack formation in one dimension: Case f = −C/u. We study here
the effect of a prescribed forcing of the form f = −C/u, which is motivated by the
following stationary situation in one dimension and corresponding linearized stability
analysis. The nonlinear evolution undergoes two distinct regimes: coarsening and
crack formation. We define the latter as the instance when the height u becomes zero
at one or more points.

Equilibrium shape of deformable solids. Following [4], we consider a two-
dimensional thin solid occupying the domain {(x, y) : −1 ≤ x ≤ 1 , 0 ≤ y ≤ u(x)}
and undergoing a plastic deformation due to competition of elastic effects and surface

tension with volume constraint
∫ 1

−1
u = 2. The solid is to adjust its shape in order to

minimize the following energy:

I(u, v, λ) :=

∫ 1

−1

√
1 + |ux|2 +

1

2

∫ 1

−1

u|vx|2 − λ

(∫ 1

−1

u− 2

)
,(7.4)

where u(x) describes the free surface of the film, v(x) is the displacement of the solid,
and λ is a Lagrange multiplier associated with the volume constraint. Hence, the first
term in (7.4) corresponds to surface tension, whereas the second one is the elastic
energy, provided that the displacement v solely depends on the horizontal variable
x. Upon variational differentiation with respect to u, v, and λ, the Euler–Lagrange
equations turn out to be

−
(

ux√
1 + |ux|2

)
x

+
1

2
|vx|2 − λ = 0, (uvx)x = 0,

∫ 1

−1

u = 2.

This immediately yields vx = C
u , whence the equation for u reads

−
(

ux√
1 + |ux|2

)
x

+
C

u2
− λ = 0.

Linearized stability analysis. Since u ≡ 1 is a solution of (1.1), then a perturbation
w of u evolves for a short time according to the linearized PDE around u:

∂tw = −∆(∆w + f ′(u)w),

where f(u) = −C/uγ from the previous discussion, with γ > 0. Taking an ansatz
w = eµteiπkx periodic in (−1, 1), we obtain the spectral relation

µ = −(πk)4 + Cγ(πk)2.(7.5)

This implies that µ > 0, provided that (πk)2 < Cγ, whence low frequency perturba-
tions grow and the rest decay for a short time (linear regime).

In the simulations below, we make the simplest choice γ = 1 and take C = 50. Our
goal is to explore the long-time behavior of (1.1) not predicted by (7.5) (nonlinear
regime). We discretize the nonlinear forcing term f(u) explicitly, namely, fn+1 =
−Ih(C/unh), and use linear finite elements with parameters h = 1/128, τ = 10−5.

Superposition of sines. We consider the sinusoidal perturbation of (7.1). Fig-
ure 7.6 displays the solution at different time instants and shows that high frequen-
cies are rapidly damped, whereas the low frequencies slowly lead to a crack formation.
This is consistent with the linearized stability analysis (7.5), according to which the
frequency k = 1 is the only unstable mode.
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t = 0 t = 3 × 10−5 t = 1 × 10−4 t = 6 × 10−4

t = 1.8 × 10−3 t = 2.2 × 10−3 t = 2.5 × 10−3 t = 2.66 × 10−3

Fig. 7.6. Solutions for f = −50/u and u0(x) = 1 + 0.1 sin(πx) + 0.3 sin(16πx) at various time
instants. In all the plots, the x-axis ranges from −1 to 1, and the y-axis ranges from 0 to 1.5.

t = 0 t = 1 × 10−4 t = 5 × 10−4 t = 1 × 10−3

t = 2 × 10−3 t = 2.5 × 10−3 t = 3 × 10−3 t = 3.5 × 10−3

Fig. 7.7. Solutions for f = −50/u and u0(x) = 1 + δ(x) at various time instants, with δ(x)
the positive perturbation of (7.2). In all the plots, the x-axis ranges from −1 to 1, and the y-axis
ranges from 0 to 1.5.

Positive perturbation. We consider the perturbation δ of (7.2) and display the
results in Figure 7.7, which shows an evolution towards crack formation in finite time.

Small perturbation. We consider a perturbation δ(x) = 0.1δ0(0.02x), with δ0 given
in (7.3). Simulations are depicted in Figure 7.8, which shows that by t = 2×10−5 the
solution is smoothed out. It seems that we have reached a constant equilibrium for a
relatively long time t ∼= 7.5× 10−3 (metastable state). Then an instability grows, and
a fracture starts to form. The latter develops rather fast.

In order to shed light on the actual evolution during the transition between the
fast smoothing of the perturbation and the crack development, we show in Figure 7.9
the solution at some time instants between 2 × 10−5 and 7.5 × 10−3, with the y-axis
ranging between 0.998 and 1.001. Even though u(t) looks constant to the eye in
Figure 7.8 for t in this interval, a magnification of the y-axis shows that this is not
the case: some long waves survive the smoothing effect, and at some point their
amplitudes start to increase.
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t = 0 t = 2 × 10−5 t = 7.5 × 10−3 t = 1 × 10−2

t = 1.25 × 10−2 t = 1.5 × 10−2 t = 1.53 × 10−2 t = 1.533 × 10−2

Fig. 7.8. Solutions for f = −50/u and u0(x) = 1 + δ(x) at various time instants, with δ(x) a
small Lipschitz perturbation. In all the plots, the x-axis ranges from −1 to 1, and the y-axis ranges
from 0 to 1.5.

t = 2 × 10−4 t = 2.5 × 10−4 t = 3 × 10−4 t = 3.5 × 10−4

t = 1 × 10−3 t = 1.5 × 10−3 t = 2 × 10−3 t = 2.5 × 10−3

Fig. 7.9. Solutions for f = −50/u and u0(x) = 1 + δ(x) at various time instants between
t = 2 × 10−5 and t = 7.5 × 10−3, with the small perturbation of Figure 7.8. In all the plots, the
x-axis ranges from −1 to 1, and the y-axis ranges from 0.998 to 1.001.

Figure 7.10 displays the Fourier modes of u(t) at times t = 0, 10−5, 10−2, 3×10−2.
We observe that all the modes except the first two decrease immediately, whereas the
first two modes increase. This is consistent with the prediction (7.5) of linearized
stability because k2π2 < 50 implies k ≤ 2.

Other simulations, also with forcing f = −50/u, do not corroborate this apparent
consistency with the linearized stability analysis. We observe that, for a fixed high
frequency, the solution either develops a crack or tends to the steady solution u = 1,
depending on the size of the perturbation; for instance, if u0(x) = 1+α sin(4πx), then
a crack forms for α ≥ 0.2375, thus violating the prediction k2π2 < 50 of (7.5). On the
other hand, for a low frequency, the solution always develops a crack regardless of the
magnitude of perturbation; for instance, if u0(x) = 1 + α sin(πx), then a crack forms
for all α ∈ [0.001, 0.5] tested. These simulations will be reported elsewhere. We also
refer the reader to [7, 9], where simulations under the assumption of axial symmetry,
but without forcing, are performed and singularities are observed as well, which do
not conform to the linearized stability analysis either.



SURFACE DIFFUSION OF GRAPHS 797

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

wave number

p
ow

er
sp

ec
tr

u
m

t0
t1
t2
t3

Fig. 7.10. Power spectrum for the solutions with f = −50/u and u0(x) = 1 + δ(x), with the
perturbation δ of Figure 7.8. The time instants are t0 = 0, t1 = 10−5, t2 = 10−2, and t3 = 3×10−2.

t = 0 t = 5 × 10−6 t = 1 × 10−5

t = 1 × 10−4 t = 1 × 10−3 t = 3 × 10−3

t = 5 × 10−3 t = 6 × 10−3 t = 6.5 × 10−3

Fig. 7.11. Solutions for f = −50/u and u0(x) = 1 + δ(x) at various time instants, with δ(x) a
small perturbation across y = cosx.

7.6. Crack formation in two dimensions: Case f = −C/u. We conclude
this section with the evolution of two-dimensional surfaces immersed in R

3. We con-
sider again the initial surface to be u0 = 1 + δ, where δ is a perturbation similar
to that of Figure 7.3. First, we choose such δ across the periodic curve y = cosx
(see Figure 7.11) and, finally, across the circle x2 + y2 = 1/4 centered at the ori-
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t = 0 t = 5 × 10−6 t = 1 × 10−5

t = 1 × 10−4 t = 1 × 10−3 t = 3 × 10−3

t = 5 × 10−3 t = 7 × 10−3 t = 7.1 × 10−3

Fig. 7.12. Solutions for f = −50/u and u0(x) = 1 + δ(x) at various time instants, with δ(x) a
small perturbation across x2 + y2 = 1/4.

gin (see Figure 7.12). We compute with linear elements and parameters h = 1/16,
τ = 10−6.

We observe first a smoothing effect followed by crack formation. The latter seems
to occur at isolated points rather than at lines, as illustrated in Figures 7.11 and 7.12.
This happens even for one-dimensional profiles in two dimensions: point singularities
seem to be preferred by this evolution.
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Abstract. We describe and analyze two numerical methods for a linear elliptic problem with
stochastic coefficients and homogeneous Dirichlet boundary conditions. Here the aim of the com-
putations is to approximate statistical moments of the solution, and, in particular, we give a priori
error estimates for the computation of the expected value of the solution. The first method gener-
ates independent identically distributed approximations of the solution by sampling the coefficients
of the equation and using a standard Galerkin finite element variational formulation. The Monte
Carlo method then uses these approximations to compute corresponding sample averages. The sec-
ond method is based on a finite dimensional approximation of the stochastic coefficients, turning the
original stochastic problem into a deterministic parametric elliptic problem. A Galerkin finite element
method, of either the h- or p-version, then approximates the corresponding deterministic solution,
yielding approximations of the desired statistics. We present a priori error estimates and include a
comparison of the computational work required by each numerical approximation to achieve a given
accuracy. This comparison suggests intuitive conditions for an optimal selection of the numerical
approximation.
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1. Introduction. Due to the great development in computational resources and
scientific computing techniques, more mathematical models can be solved efficiently.
Ideally, this artillery could be used to solve many classical partial differential equa-
tions, the mathematical models we shall focus on here, to high accuracy. However, in
many cases, the information available to solve a given problem is far from complete
and is in general very limited. This is the case when solving a partial differential
equation whose coefficients depend on material properties that are known to some ac-
curacy. The same may occur with its boundary conditions and even with the geometry
of its domain; see, for example, the works [5, 4]. Naturally, since the current engi-
neering trends are going toward more reliance on computational predictions, the need
for assessing the level of accuracy in the results grows accordingly. More than ever,
the goal then becomes to represent and propagate uncertainties from the available
data to the desired result through our partial differential equation. By uncertainty
we mean either intrinsic variability of physical quantities or simply lack of knowledge
about some physical behavior; cf. [38]. If variability is interpreted as randomness,
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then naturally we can apply probability theory. To be fruitful, probability theory
requires considerable empirical information about the random quantities in question,
usually in the form of probability distributions or their statistical moments. On the
other hand, if the only available information comes in the form of some bounds for
the uncertain variables, the description and analysis of uncertainty may be based on
other methods, such as convexity methods; cf. [8, 18]. This approach is closely related
to the so-called worst case scenario.

This work addresses elliptic partial differential equations with stochastic coef-
ficients, with applications to physical phenomena, e.g., random vibrations, seismic
activity, oil reservoir management, and composite materials; see [2, 17, 19, 22, 27, 28,
30, 39, 43] and the references therein. Solving a stochastic partial differential equation
entails finding the joint probability distribution of the solution, which is a hard prob-
lem. In practice we shall usually be satisfied with much less, namely, the computation
of some moments, e.g., the expected value of the solution, or some probability related
to a given event, e.g., the probability of some eventual failure; cf. [26, 34]. Although
the results presented in this paper can be generalized to linear elliptic stochastic
partial differential equations we now focus our study on the standard model prob-
lem, a second order linear elliptic equation with homogeneous Dirichlet boundary
conditions.

Let D be a convex bounded polygonal domain in R
d and (Ω,F , P ) be a complete

probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events,
and P : F → [0, 1] is a probability measure. Consider the following stochastic linear
elliptic boundary value problem: find a stochastic function, u : Ω×D → R, such that
P -a.e. in Ω, or, in other words, almost surely (a.s.), the following equation holds:

−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) on D,

u(ω, ·) = 0 on ∂D.
(1.1)

Here a, f : Ω × D → R are stochastic functions with continuous and bounded co-
variance functions. If we denote by B(D) the Borel σ-algebra generated by the open
subsets of D, then a, f are assumed measurable with the σ-algebra (F ⊗ B(D)). In
what follows we shall assume that a is bounded and uniformly coercive, i.e.,

∃ amin, amax ∈ (0,+∞) : P
(
ω ∈ Ω : a(ω, x) ∈ [amin, amax] ∀x ∈ D

)
= 1.(1.2)

To ensure regularity of the solution u we assume also that a has a uniformly bounded
and continuous first derivative; i.e., there exists a real deterministic constant C such
that

P
(
ω ∈ Ω : a(ω, ·) ∈ C1(D) and max

D

|∇xa(ω, ·)| < C
)

= 1(1.3)

and that the right-hand side in (1.1) satisfies

∫
Ω

∫
D

f2(ω, x)dx dP (ω) < +∞, which implies

∫
D

f2(ω, x)dx < +∞ a.s.(1.4)
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Depending on the structure of the noise that drives an elliptic partial stochastic
differential equation, there are different numerical approximations. For example, when
the size of the noise is relatively small, a Neumann expansion around the mean value
of the elliptic operator in (1.1) is a popular approach. It requires only the solution
of standard deterministic partial differential equations, the number of them being
equal to the number of terms in the expansion. Equivalently, a Taylor expansion of
the solution around its mean value with respect to the noise yields the same result.
Similarly, the work [30] uses formal Taylor expansions up to second order of the
solution but does not study their convergence properties. Recently, the work [3]
proposed a perturbation method with successive approximations. It also proves that
uniform coercivity of the diffusion is sufficient for the convergence of the perturbation
method.

When only the load f is stochastic, it is also possible to derive deterministic
equations for the statistical moments of the solution. This case was analyzed in [1, 32]
and more recently in the work [40], where a new method to solve these equations with
optimal complexity is presented.

On the other hand, the works by Deb [14], Deb, Babuška, and Oden [15], Ghanem
and Red-Horse [21], and Ghanem and Spanos [22] address the general case where all
the coefficients are stochastic. Both approaches transform the original stochastic
problem into a deterministic one with a large dimensional parameter, and they differ
in the choice of the approximating functional spaces. The works [14, 15] use finite ele-
ments to approximate the noise dependence of the solution, while [21, 22] use a formal
expansion in terms of Hermite polynomials. The approximation error in the approach
[14, 15] can then be bounded in terms of deterministic quantities, as described in this
work. After finishing this paper the authors became aware of the work [9], which de-
veloped a related error analysis for elliptic stochastic differential equations. The work
[9] gives approximation error estimates for functionals of the solution, while our work
focuses on error estimates for the strong approximation of the statistical moments
of the solution. Besides, we use the Karhunen–Loève expansion and characterize the
regularity of the solution, yielding, e.g., exponential rates of convergence; cf. section
6. On the other hand, the analysis in [9] uses the regularity of the computed func-
tional together with estimates in negative spaces for the approximation error in the
solution of the stochastic partial differential equation. This negative estimate can in
principle accommodate rough solutions; however, they require H2 spatial regularity,
an assumption that is not clearly fulfilled by rough solutions.

Monte Carlo methods are both general and simple to code, and they are naturally
suited for parallelization. They generate a set of independent identically distributed
(iid) approximations of the solution by sampling the coefficients of the equation, using
a spatial discretization of the partial differential equation, e.g., by a Galerkin finite
element method. Then using these approximations we can compute corresponding
sample averages of the desired statistics. Monte Carlo methods have a rate of con-
vergence that may be considered slow, but its computational work grows only like a
polynomial with respect to the number of random variables present in the problem.
It is worth mentioning that in particular cases their convergence can be accelerated
by variance reduction techniques; see [29]. The convergence rate of the Monte Carlo
method is interpreted in the probability sense, and a practical estimate of its error
needs an a posteriori estimate of the variance of the sampled random variable, which
in turn requires an a priori bound on higher statistical moments; cf. the Berry-Essen
theorem in [16]. Besides this, if the probability density of a random variable is smooth,
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the convergence rate of the Monte Carlo method for the approximation of its expected
value can be improved; cf. [35, 45]. Quasi-Monte Carlo methods (see [12, 41, 42])
offer a way to get a better convergence rate than the Monte Carlo method, although
this advantage seems to deteriorate in general when the number of random variables
present in the problem becomes large.

Another way to provide a notion of stochastic partial differential equations is
based on the Wick product and the Wiener chaos expansion; see [27] and [46]. This
approach yields solutions in Kondratiev spaces of stochastic distributions that are
based on a different interpretation of (1.1); the solutions proposed in [27] and [46]
are not the same as those arising from (2.1). The choice between (2.1) and [27] is a
modeling decision, based on the physical situation under study. For example, with
the Wick product we have E[a 	 u] = E[a]E[u], regardless of the correlation between
a and u, whereas this is in general not true with the usual product. A numerical ap-
proximation for Wick stochastic linear elliptic partial differential equations is studied
in [44], yielding a priori convergence rates.

This work studies the case of stochastic linear elliptic partial differential equa-
tions with random diffusion and load coefficients, stating and proving conditions for
existence and uniqueness of solutions; for example, to obtain a meaningful numerical
solution for (1.1) its diffusion coefficient should be uniformly coercive. Besides, it
compares a Monte Carlo Galerkin method with the stochastic Galerkin finite element
method introduced in [14] and introduces a related p-version, developing a priori er-
ror estimates for each case. A priori error estimates are useful to characterize the
convergence, and ultimately they provide information to compare the number of op-
erations required by numerical methods. The conclusion for now is that if the noise
is described by a small number of random parameters or if the accuracy require-
ment is sufficiently strict, then a stochastic Galerkin method is preferred; otherwise,
a Monte Carlo Galerkin method still seems to be the best choice; see section 8. It is
worth mentioning that the development of numerical methods for stochastic differen-
tial equations is still very much ongoing, and better numerical methods are expected
to appear.

2. Theoretical aspects of the continuous problem.

2.1. Notation and function spaces. Let d be a positive integer and D be
an open, connected, bounded, and convex subset of R

d with polygonal boundary
∂D. Denote the volume of D by |D| ≡ ∫

D
1dx. For a nonnegative integer s and

1 ≤ p ≤ +∞, let W s,q(D) be the Sobolev space of functions having generalized
derivatives up to order s in the space Lq(D). Using the standard multi-index notation,
α = (α1, . . . , αd) is a d-tuple of nonnegative integers, and the length of α is given by

|α| =
∑d
i=1 αi. The standard Sobolev norm of v ∈ W s,q(D) will be denoted by

‖v‖W s,q(D), 1 ≤ q ≤ +∞. Whenever q = 2, we shall use the notation Hs(D) instead
of W s,2(D). As usual, the function space H1

0 (D) is the subspace of H1(D) consisting
of functions which vanish at the boundary of D in the sense of trace, equipped with
the norm ‖v‖H1

0 (D) = {∫
D
|∇v|2 dx}1/2. Whenever s = 0 we shall keep the notation

with Lq(D) instead of W 0,q(D). For the sake of generality, sometimes we shall let H
be a Hilbert space with inner product (·, ·)

H
. In that case we shall also denote the

dual space of H, H ′, that contains linear bounded functionals, L : H → R, and is

endowed with the operator norm ‖L‖H′ = sup0 �=v∈H
L(v)
‖v‖H

.

Since stochastic functions intrinsically have different structure with respect to
ω and with respect to x, the analysis of numerical approximations requires tensor
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spaces. Let H1, H2 be Hilbert spaces. The tensor space H1 ⊗ H2 is the completion
of formal sums u(y, x) =

∑
i=1,...,n vi(y)wi(x), {vi} ⊂ H1, {wi} ⊂ H2, with respect

to the inner product (u, û)H1⊗H2
=

∑
i,j(vi, v̂j)H1

(wi, ŵj)H2
. For example, let us

consider two domains, y ∈ Γ, x ∈ D, and the tensor space L2(Γ)⊗H1(D), with tensor
inner product

(u, û)L2(Γ)⊗H1(D) =

∫
Γ

(∫
D

u(y, x)û(y, x)dx

)
dy

+

∫
Γ

(∫
D

∇xu(y, x) · ∇xû(y, x)dx

)
dy.

Thus, if u ∈ L2(Γ) ⊗ Hk(D), then u(y, ·) ∈ Hk(D) a.e. on Γ and u(·, x) ∈ L2(Γ)
a.e. on D. Moreover, we have the isomorphism L2(Γ) ⊗ Hk(D)  L2(Γ;Hk(D)) 
Hk(D;L2(Γ)) with the definitions

L2(Γ;Hk(D))

=

{
v : Γ ×D → R | v is strongly measurable and

∫
Γ

‖v(y, ·)‖2
Hk(D) < +∞

}
,

Hk(D;L2(Γ))

=

{
v : Γ ×D → R | v is strongly measurable and ∀|α| ≤ k ∃ ∂αv ∈ L2(Γ) ⊗ L2(D)

with

∫
Γ

∫
D

∂αv(y, x)ϕ(y, x)dxdy = (−1)|α|∫
Γ

∫
D

v(y, x)∂αϕ(y, x)dxdy ∀ϕ ∈ C∞
0 (Γ ×D)

}
.

Similar constructions can be done for the tensor product of Banach spaces, although
the norm for the tensor space used to obtain the completion of the formal sums has
to be defined explicitly on each case. Here the Banach space C(Γ;H) comprises all
continuous functions u : Γ → H with the norm ‖u‖C(Γ;H) ≡ supy∈Γ ‖u(y)‖H . Similar

definitions apply to the spaces Ck(Γ;H), k = 1, . . . ; cf. [20, p. 285].
Let Y be an R

N -valued random variable in (Ω,F , P ). If Y ∈ L1
P (Ω), we denote its

expected value by E[Y ] =
∫
Ω
Y (ω)dP (ω) =

∫
R

N y dµY (y), where µY is the distribution

measure for Y , defined for the Borel sets b̃ ∈ B(RN) by µY (b̃) ≡ P (Y −1(b̃)). If µY

is absolutely continuous with respect to the Lebesgue measure, then there exists a
density function ρY : R → [0,+∞) such that E[Y ] =

∫
R

N y ρY (y)dy. Analogously,

whenever Yi ∈ L2
P (Ω) for i = 1, . . . , d, the covariance matrix of Y , Cov[Y ] ∈ R

d×d, is
defined by Cov[Y ](i, j) = Cov(Yi, Yj) = E[(Yi − E[Yi])(Yj − E[Yj ])], i, j = 1, . . . , d.
Besides this, whenever u(ω, x) is a stochastic process the positive semidefinite function
Cov[u](x1, x2) = Cov[u(x1), u(x2)] = Cov[u(x2), u(x1)] is the covariance function of
the stochastic process u.

To introduce the notion of stochastic Sobolev spaces we first recall the defini-
tion of stochastic weak derivatives. Let v ∈ L2

P (Ω) ⊗ L2(D); then the α stochastic
weak derivative of v, w = ∂αv ∈ L2

P (Ω) ⊗ L2(D), satisfies
∫
D
v(ω, x)∂αφ(x)dx =

(−1)|α|
∫
D
w(ω, x)φ(x)dx∀φ ∈ C∞

0 (D) a.s.

We shall work with stochastic Sobolev spaces W̃ s,q(D) = LqP (Ω,W s,q(D)) con-
taining stochastic functions, v : Ω ×D → R, that are measurable with respect to the
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product σ-algebra F ⊗ B(D) and equipped with the averaged norms ‖v‖
W̃ s,q(D)

=

(E[‖v‖qW s,q(D)])
1/q = (E[

∑
|α|≤s

∫
D
|∂αv|qdx])1/q, 1 ≤ q < +∞, and ‖v‖

W̃ s,∞(D)
=

max|α|≤s
(

ess supΩ×D |∂αv| ). Observe that if v ∈ W̃ s,q(D), then v(ω, ·) ∈W s,q(D)
a.s. and ∂αv(·, x) ∈ LqP (Ω) a.e. on D for |α| ≤ s. Whenever q = 2, the above space

is a Hilbert space, i.e., W̃ s,2(D) = H̃s(D)  L2
P (Ω) ⊗Hs(D).

2.2. Existence and uniqueness for the solution of a linear stochastic
elliptic problem. Let us consider the tensor product Hilbert space H = H̃1

0 (D) 
L2

P (Ω;H1
0 (D)) endowed with the inner product (v, u)H ≡ E[

∫
D
∇v · ∇udx].

Define the bilinear form, B : H×H → R, by B(v, w) ≡ E[
∫
D
a∇v ·∇wdx]∀v, w ∈

H. The standard assumption (1.2) yields both the continuity and the coercivity of
B; i.e., |B(v, w)| ≤ amax ‖v‖H ‖w‖H ∀v, w ∈ H, and amin‖v‖2

H ≤ B(v, v)∀v ∈ H.
A direct application of the Lax–Milgram lemma (cf. [11]) implies the existence and
uniqueness for the solution to the following variational formulation: find u ∈ H such
that

B(u, v) = L(v) ∀v ∈ H.(2.1)

Here L(v) ≡ E[
∫
D
fvdx] ∀v ∈ H defines a bounded linear functional since the random

field f satisfies (1.4). Since the domain D is convex and bounded and assumptions
(1.2), (1.3) on the diffusion a hold, the theory of elliptic regularity (cf. [20]) implies
that the solution of (1.1) satisfies u(ω, ·) ∈ H2(D) ∩H1

0 (D) a.s. Moreover, standard
arguments from measure theory show that the solution to (2.1) also solves (1.1). The
formulation (2.1), together with assumption (2.1) on finite dimensional noise, gives
the basis for the stochastic Galerkin finite element method (SGFEM) introduced in
sections 5 and 6, while formulation (1.1) is the basis for the Monte Carlo Galerkin
finite element method (MCGFEM), discussed in section 4.

2.3. Continuity with respect to the coefficients a and f . Since the coeffi-
cients a and f are not known exactly, in the next proposition we consider a perturbed
weak formulation and estimate the size of the corresponding perturbation in the so-
lution. The proof uses standard estimates and is included in [6].

Proposition 2.1. Let (H, (·, ·)H) be a Hilbert space. Consider two symmetric

bilinear forms B, B̂ : H × H → R that are H-coercive and bounded; i.e., there exist
real constants 0 < amin ≤ amax such that

amin ‖v‖2
H
≤ min{B(v, v), B̂(v, v)} ∀v ∈ H(2.2)

and

max{|B(v, w)|, |B̂(v, w)|} ≤ amax ‖v‖H ‖w‖H ∀v, w ∈ H.(2.3)

Consider two bounded linear functionals, L, L̂ ∈ H ′, and let u,û ∈ H be the solutions
of the problems

B(u, v) = L(v) ∀v ∈ H,

B̂(û, v) = L̂(v) ∀v ∈ H.

If, in addition, we know that there exist Banach spaces, V1,V2, and positive constants,
C,γ′, such that u ∈ V2 ⊆ H ⊂ V1, ‖ · ‖V1 ≤ C‖ · ‖H , and

|(B̂ − B)(w, v)| ≤ γ′‖w‖V1
‖v‖V2

∀w ∈ H, v ∈ V2,(2.4)
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then

‖u− û‖H ≤ 1

amin
(‖L − L̂‖H′ + Cγ′‖u‖V2

).(2.5)

Next we consider a perturbation of (2.1). A direct application of Proposition 2.1
yields the following estimate.

Corollary 2.1. Let 1 < p < +∞ with 1/p+1/q = 1. Consider the Hilbert space

H = H̃1
0 (D) and perturbed coefficients, â, f̂ , satisfying 0 < amin ≤ â ≤ amax < ∞,

(P⊗dx) a.e. on D×Ω, f̂ ∈ L̃2(D). Let u and û solve E[
∫
D
â∇û ·∇vdx] = E[

∫
D
f̂vdx]

∀v ∈ H,E[
∫
D
a∇u · ∇vdx] = E[

∫
D
fvdx]∀v ∈ H. Besides this, assume that the

solution u belongs to the stochastic Sobolev space W̃ 1,2q(D). Then

‖u− û‖
H̃1

0 (D)
≤ 1

amin
(CD‖f̂ − f‖

L̃2(D)
+ ‖a− â‖

L̃2p(D)
‖u‖

W̃ 1,2q(D)
),

with CD > 0 being the Poincaré constant for the domain D; i.e., ‖v‖L2(D) ≤ CD
‖v‖H1

0 (D)∀v ∈ H1
0 (D).

Proof. Take V1 = H̃1
0 (D) and V2 = W̃ 1,2q(D). In order to apply (2.5) it is enough

to bound the difference of bilinear forms∣∣∣∣E [∫
D

(a− â)∇u · ∇vdx
]∣∣∣∣

≤
(
E

[∫
D

(a− â)2|∇u|2dx
])1/2(

E

[∫
D

|∇v|2dx
])1/2

≤
(
E

[∫
D

(a− â)2pdx

])1/2p(
E

[∫
D

|∇u|2qdx
])1/2q (

E

[∫
D

|∇v|2dx
])1/2

.

2.4. Karhunen–Loève expansions and finite dimensional noise. Here we
recall the Karhunen–Loève expansion, a suitable tool for the approximation of stochas-
tic processes. Consider a stochastic process a with continuous covariance function
Cov[a] : D×D → R. Besides this, let {(λn, bn)}∞n=1 denote the sequence of eigenpairs
associated with the compact self-adjoint operator that maps

f ∈ L2(D) �→
∫
D

Cov[a](x, ·)f(x)dx ∈ L2(D).

Its nonnegative eigenvalues,
√∫

D×D(Cov[a](x1, x2))2dx1 dx2 ≥ λ1 ≥ λ2 ≥ · · · ≥ 0,

satisfy
∑+∞
n=1 λn =

∫
D
V ar[a](x)dx. The corresponding eigenfunctions are orthonor-

mal, i.e.,
∫
D
bi(x)bj(x)dx = δij . The truncated Karhunen–Loève expansion of the

stochastic process a (cf. [33]) is

aN (ω, x) = E[a](x) +

N∑
n=1

√
λnbn(x)Yn(ω),

where the real random variables, {Yn}∞n=1, are mutually uncorrelated and have mean
zero and unit variance. These random variables are uniquely determined by Yn(ω) =

1√
λn

∫
D

(a(ω, x) − E[a](x))bn(x)dx for λn > 0. Then, by Mercer’s theorem (cf.

[37, p. 245]), we have

sup
x∈D

E[(a− aN )2](x) = sup
x∈D

+∞∑
n=N+1

λnb
2
n(x) → 0 as N → ∞.
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If, in addition,
• the images Yn(Ω), n = 1, . . . , are uniformly bounded in R,
• the eigenfunctions bn are smooth, which is the case when the covariance

function is smooth,
• and the eigenpairs have at least the decay

√
λn‖bn‖L∞(D) = O( 1

1+ns ) for
some s > 1,

then ‖a − aN‖
L̃∞(D)

→ 0. Notice that for larger values of the decay exponent s we

can also obtain the convergence of higher spatial derivatives of aN in L̃∞(D). The
last two conditions can be readily verified once the covariance function of a is known.
However, observe that it is also necessary to verify the uniform coercivity of aN , which
depends on the probability distributions of Yn, n = 1, . . . .

In many problems the source of the randomness can be approximated using just
a small number of mutually uncorrelated, sometimes mutually independent, random
variables. Take, for example, the case of a truncated Karhunen–Loève expansion
described previously.

Assumption 2.1 (finite dimensional noise). Whenever we apply some numer-
ical method to solve (1.1) we assume that the coefficients used in the computa-
tions, a, f : Ω × D → R, are finite Karhunen–Loève expansions; i.e., a(ω, x) =

E[a](x) +
∑N
n=1

√
λnbn(x)Yn(ω) and f(ω, x) = E[f ](x) +

∑N
n=1

√
λ̂nb̂n(x)Yn(ω),

where {Yn}Nn=1 are real random variables with mean value zero and unit variance,
are uncorrelated, and have images, Γn ≡ Yn(Ω), that are bounded intervals in R for
n = 1, . . . , N . Moreover, we assume that each Yn has a density function ρn : Γn → R

+

for n = 1, . . . , N .
In what follows we use the notation ρ(y) ∀y ∈ Γ for the joint probability density

of (Y1, . . . , YN ) and Γ ≡∏N
n=1 Γn ⊂ R

N for the support of such probability density.
After making Assumption 2.1, we have by the Doob–Dynkin lemma (cf. [36]) that

u, the solution corresponding to the stochastic partial differential equation (1.1), can
be described by just a finite number of random variables, i.e., u(ω, x) = u(Y1(ω), . . . ,
YN (ω), x). The number N has to be large enough so that the approximation error is
sufficiently small. Now the goal is to approximate the function u(y, x). In addition, the
stochastic variational formulation (2.1) has a deterministic equivalent in the following:
find u ∈ L2

ρ(Γ) ⊗H1
0 (D) such that∫

Γ

ρ(y)

∫
D

a(y, x)∇u(y, x) · ∇v(y, x)dxdy

=

∫
Γ

ρ(y)

∫
D

f(y, x)v(y, x)dxdy ∀ v ∈ L2
ρ(Γ) ⊗H1

0 (D).

(2.6)

In this work the gradient notation, ∇, always means differentiation with respect to
x ∈ D only, unless otherwise stated. The corresponding strong formulation for (2.6)
is an elliptic partial differential equation with an N -dimensional parameter, i.e.,

−∇ · (a(y, x) ∇u(y, x)) = f(y, x) ∀(y, x) ∈ Γ ×D,

u(y, x) = 0 ∀(y, x) ∈ Γ × ∂D.
(2.7)

Making Assumption 2.1 is a crucial step, turning the original stochastic elliptic equa-
tion (1.1) into a deterministic parametric elliptic one and allowing the use of finite
element and finite difference techniques to approximate the solution of the resulting
deterministic problem.
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Truncation of the outcomes set, Γ. For the sake of efficiency, it may be useful
to compute the solution of (2.7) in a subdomain with strictly positive probability,
Γ0 ⊂ Γ. Besides, we assume the probability density of Y to be strictly positive in Γ0.
In that case, we approximate the function

E[u(Y, ·) 1{Y ∈Γ0}] = E[u(Y, ·)|Y ∈ Γ0] P (Y ∈ Γ0)

instead of the original E[u]. If ū is an approximation of u in Γ0, then we have the
splitting

‖E[u(Y, ·)] − E[ū(Y, ·) 1{Y ∈Γ0}]‖
≤ ‖E[u(Y, ·)] − E[u(Y, ·) 1{Y ∈Γ0}]‖ + ‖E[u(Y, ·) − ū(Y, ·)|Y ∈ Γ0]‖P (Y ∈ Γ0).

(2.8)

Property 2.1 below gives a simple estimate for the first error contribution, which is
related to the truncation of Γ. The second error contribution in (2.8) is the discretiza-
tion error, and it will be analyzed for each numerical approximation separately; see
sections 4, 5, and 6. In those sections we shall simplify the notation by writing Γ = Γ0

and work with the corresponding conditional probability space.
Property 2.1. Let u be the solution of the problem (2.7); then there exists a

constant C such that∥∥E[u(Y, ·)]−E[u(Y, ·) 1{Y ∈Γ}]
∥∥
H1

0 (D)
≤ C

√
P (Y /∈ Γ0) ‖f‖L2

ρ(Γ\Γ0)⊗L2(D).(2.9)

3. The finite element spaces. In this section, we define tensor product finite
element spaces on the set Γ×D, which we will use to construct approximations of the
solution of the parametric boundary value problem (2.7), stating their approximation
properties.

3.1. Finite element spaces on the spatial set D ⊂ R
d: h-version. Con-

sider a family of finite element approximation spaces, Xd
h ⊂ H1

0 (D), consisting of
piecewise linear continuous functions on conforming triangulations (of simplices), T d

h ,
of the convex polyhedral domain, D ⊂ R

d, with a maximum mesh spacing parameter
h > 0. We will always assume that the triangulations are nondegenerate (sometimes
also called regular); cf., [11, p. 106]. Then (cf. [11, 13]) the finite element spaces Xd

h

satisfy a standard approximation estimate, namely, that for all v ∈ H2(D) ∩H1
0 (D)

min
χ∈Xd

h

‖v − χ‖H1
0 (D) ≤ C h ‖v‖H2(D),(3.1)

where C > 0 is a constant independent of v and h.

3.2. Tensor product finite element spaces on the outcomes set Γ ⊂
R

N : k-version. Let Γ =
∏N
n=1 Γn be as in subsection 2.4. Consider a parti-

tion of Γ consisting of a finite number of disjoint R
N -boxes, γ =

∏N
n=1(a

γ
n, b

γ
n),

with (aγn, b
γ
n) ⊂ Γn for n = 1, . . . , N . The mesh spacing parameters, kn > 0,

are defined by kn ≡ maxγ |bγn − aγn| for 1 ≤ n ≤ N . For every nonnegative inte-
ger multi-index q = (q1, . . . , qN ) consider the finite element approximation space of
(discontinuous) piecewise polynomials with degree at most qn on each direction yn,
Y qk ⊂ L2(Γ). Thus, if ϕ ∈ Y qk , its restriction to each of the partition boxes satisfies
ϕ|γ ∈ span

(∏N

n=1 y
αn
n : αn ∈ N and αn ≤ qn, n = 1, . . . , N

)
. It is easy to verify
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that the finite element spaces Y qk have the following approximation property: for all
v ∈ Hq+1(Γ),

min
ϕ∈Y q

k

‖v − ϕ‖L2(Γ) ≤
N∑
n=1

(
kn
2

)qn+1 ‖∂qn+1
yn v‖L2(Γ)

(qn + 1)!
.(3.2)

3.3. Tensor product finite element spaces on Γ × D: k × h-version.
Here we will discuss some approximation properties of the following tensor product
finite element spaces:

Y qk ⊗Xd
h ≡ {

ψ = ψ(y, x) ∈ L2(Γ ×D) : ψ ∈ span
(
ϕ(y)χ(x) : ϕ ∈ Y qk , χ ∈ Xd

h

)}(3.3)

with Xd
h and Y qk as in subsections 3.1 and 3.2.

For later use we recall the definition of the standard L2-projection operators
Πq
k : L2(Γ) → Y qk by

(Πq
kw − w,ϕ)L2(Γ) = 0 ∀ϕ ∈ Y qk , ∀w ∈ L2(Γ)(3.4)

and the H1
0 -projection operator Rh : H1

0 (D) → Xd
h by

(∇(Rhv − v),∇χ)L2(D) = 0 ∀χ ∈ Xd
h, ∀v ∈ H1

0 (D).(3.5)

Estimates (3.1) and (3.2) imply

‖v −Rhv‖H1
0 (D) ≤ C h ‖v‖H2(D),

‖w − Πq
kw‖L2(Γ) ≤

N∑
n=1

(
kn
2

)qn+1 ‖∂qn+1
yn w‖L2(Γ)

(qn + 1)!

(3.6)

for all v ∈ H2(D) ∩ H1
0 (D) and w ∈ Hq+1(Γ). We now state an approximation

property for the tensor product finite element spaces defined in (3.3) which is a direct
implication of the approximation properties of the spaces Y qk and Xd

h.
Proposition 3.1. There exists a constant C > 0 independent of h, N, q, and k

such that

inf
ψ∈Y q

k
⊗Xd

h

‖v − ψ‖L2(Γ;H1
0 (D))

≤ C

{
h ‖v‖L2(Γ;H2(D)) +

N∑
n=1

(
kn
2

)qn+1 ‖∂qn+1
yn v‖L2(Γ;H1

0 (D))

(qn + 1)!

}(3.7)

for all v ∈ Cq+1(Γ;H2(D) ∩H1
0 (D)).

Proof. Since Πq
k(Rhv) ∈ Y qk ⊗Xd

h, using (3.6) we obtain

infψ∈Y q
k
⊗Xd

h
‖v − ψ‖L2(Γ;H1

0 (D)) ≤ ‖v − Πq
k(Rhv)‖L2(Γ;H1

0 (D))

≤ ‖v −Rhv‖L2(Γ;H1
0 (D))

+ ‖Rhv − Πq
k(Rhv)‖L2(Γ;H1

0 (D))(3.8)

≤ C h ‖v‖L2(Γ;H2(D))

+ ‖Rhv − Πq
k(Rhv)‖L2(Γ;H1

0 (D)).
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Applying the estimate (3.2) and using the boundedness of Rh in H1
0 (D) yield

‖Rhv − Πq
k(Rhv)‖L2(Γ;H1

0 (D)) ≤ ‖v − Πq
kv‖L2(Γ;H1

0 (D))

≤
N∑
n=1

(
kn
2

)qn+1 ‖∂qn+1
yn v‖L2(Γ;H1

0 (D))

(qn + 1)!
.

The estimate (3.7) follows, combining (3.8) with the last estimate.

3.4. Tensor product finite element spaces on Γ×D: p × h-version. This
approximation space is in fact a particular case of the k × h-version with no k partition
of Γ, i.e., kn = |Γn|, n = 1, . . . , N . Instead, only the polynomial degree is increased.
Here the multi-index p = (p1, . . . , pN ) plays the role of the q from section 3.3, and we

use the tensor finite element space Zp =
⊗N

n=1 Z
pn
n , where the one dimensional global

polynomial subspaces, Zpnn , are defined by Zpnn = {v : Γn → R : v ∈ span(ys, s =
0, . . . , pn)}, n = 1, . . . , N .

4. Monte Carlo Galerkin finite element method. In this section we
describe the use of the standard Monte Carlo Galerkin finite element method
(MCGFEM) to construct approximations of the expected value of the solution.

Formulation of the MCGFEM.
• Give a number of realizations, M , a piecewise linear finite element space on D,

Xd
h, as defined in subsection 3.1.
• For each j = 1, . . . ,M , sample iid realizations of the diffusion a(ωj , ·) and the

load f(ωj , ·), based on realizations of {Yn}Nn=1, and find a corresponding approxima-
tion uh(ωj , ·) ∈ Xd

h such that

(a(ωj , ·)∇uh(ωj , ·),∇χ)L2(D) = (f(ωj , ·), χ)L2(D) ∀χ ∈ Xd
h.(4.1)

• Finally, use the sample average 1
M

∑M
j=1 uh(ωj ; ·) to approximate E[u].

Here we consider only the case where Xd
h is the same for all realizations; i.e., the

spatial triangulation is deterministic. The computational error naturally separates
into two parts:

E[u] − 1

M

M∑
j=1

uh(ωj , ·) =
(
E[u] − E[uh]

)
+

(
E[uh] − 1

M

M∑
j=1

uh(ωj , ·)
)

≡ Eh + ES .

(4.2)

The size of the spatial triangulation controls the space discretization error Eh, while
the number of realizations, M of uh, controls the statistical error ES .

To study the behavior of the statistical error, let us first consider the random
variable ‖ES‖H1

0 (D) which, due to the independence of the realizations uh(ωj , ·), j =
1, . . . ,M , satisfies the estimate

M E
[‖ES‖2

H1
0 (D)

] ≤ ‖uh‖2

H̃1
0 (D)

≤
(
CD
amin

)2

‖f‖2

L̃2(D)
,(4.3)

and a similar result also holds in L2(D). Then, thanks to (4.3) we have that, for
either H = L2(D) or H = H1

0 (D), the statistical error ‖ES‖H tends a.s. to zero as we
increase the number of realizations; i.e., we have the following.
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Proposition 4.1. Suppose that there exists a constant C > 0 independent of M
and h such that the statistical error in H norm satisfies

M E[‖ES‖2
H ] ≤ C ∀M,h.(4.4)

Then, taking the number of realizations, Mk, increasingly from the set {2k : k ∈ N},
we have, for any α ∈ (0, 1/2) and any choice of mesh size h, limMk→∞Mk

α‖ES‖H =
0 a.s.

Proof. Let ε > 0. Then (4.4) and Markov’s inequality give

P ((Mk)
α‖ES‖H > ε) ≤ E[(Mk)

2α‖ES‖2
H ]

ε2
≤ C

ε2(Mk)1−2α
.

Thus, for α ∈ (0, 1/2) we have

∞∑
k=1

P (Mα
k ‖ES‖H > ε) ≤ C

ε2

∞∑
k=1

1

M1−2α
k

≤ C

ε2

∞∑
k=1

1

(21−2α)k
<∞,

which, together with the Borel–Cantelli lemma, finishes the proof.
Under the same assumptions as in Proposition 4.1 we have that for any given

ε > 0 there exists a constant C > 0 independent of ε,M , and h such that

P

(
‖ES‖H >

ε√
M

)
≤ C

ε2
.(4.5)

Thus, within a given confidence level we have the usual convergence rate for the
Monte Carlo method, which is independent of the mesh size h. Next we present error
estimates for the space discretization error, namely, we have the following.

Proposition 4.2 (spatial discretization error estimates). There holds

h‖u− uh‖H1
0 (D) + ‖u− uh‖L2(D) ≤ C h2‖f‖L2(D) a.s.,

h‖E[u] − E[uh]‖H1
0 (D) + ‖E[u] − E[uh]‖L2(D) ≤ Ch2E[‖f‖2

L2(D)]
1/2.

The results from Proposition 4.2 and estimate (4.5) will be used in section 8 to
compare the MCGFEM with other discretizations for (1.1).

5. Stochastic Galerkin finite element method: k × h-version. This sec-
tion defines and analyzes the k × h-version of the stochastic Galerkin finite element
method (k × h-SGFEM) which, via a Galerkin variational formulation, yields approx-
imations, ukh ∈ Y qk ⊗Xd

h, of the solution u of the parametric elliptic boundary value
problem (2.7).

Formulation of the k × h-SGFEM. Denote by q = (q1, . . . , qN ) ∈ N
N a multi-

index, and let Γ be a bounded box in R
N . The k × h-SGFEM approximation is the

tensor product, ukh ∈ Y qk ⊗Xd
h, such that

(ukh, ψ)E ≡
∫

Γ

ρ
(
a∇ukh,∇ψ

)
L2(D)

dy =

∫
Γ

ρ
(
f, ψ

)
L2(D)

dy ∀ ψ ∈ Y qk ⊗Xd
h.

(5.1)

Recall that ρ : Γ → (0,+∞) is the density function of the vector-valued random
variable Y : Ω → Γ ⊂ R

N . Hence, the assumption (1.2) on the random function
a(ω, x) ≡ a(Y (ω), x) reads

a(y, x) ∈ [amin, amax] ∀(y, x) ∈ Γ ×D.(5.2)
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Although the analysis can be generalized [6], we now focus on the practical case
where both a and f are truncated Karhunen–Loève expansions. Later, section 7
discusses how to compute efficiently ukh, the solution of (5.1), by a double orthogonal
polynomials technique. By Lemma 4.1 in [31], the solution u of (2.7) satisfies u ∈
C∞(Γ;H2(D) ∩H1

0 (D)). Use (5.2) and (2.7) to obtain

‖u(y, ·)‖H1
0 (D) ≤ CD

amin
‖f(y, ·)‖L2(D) ∀y ∈ Γ,(5.3)

where CD is the constant of the Poincaré–Friedrichs inequality on D. Also, elliptic
regularity yields

‖u(y, ·)‖H2(D) ≤ C0,B ‖f(y, ·)‖L2(D) ∀y ∈ Γ,(5.4)

where C0,B is a constant which depends on D and ‖a‖L∞(Γ;W 1,∞(D)). Finally, take
derivatives with respect to yn in (2.7), proceed as in the derivation of (5.3), and follow
an inductive argument arriving at

‖∂qn+1
yn u(y, ·)‖H1

0 (D)

(qn + 1)!
≤ (rn)

qn
CD
amin

(‖∂ynf(y, ·)‖L2(D) + rn‖f(y, ·)‖L2(D)

)
, qn ≥ 0,

(5.5)

with rn ≡ √
λn‖ bna ‖L∞(Γ×D), and n = 1, . . . , N . As a consequence of (3.7), (5.4), and

(5.5) we have an a priori error estimate for the k × h-SGFEM in the energy norm.
Proposition 5.1. Let u be the solution of the problem (2.7) and ukh ∈ Y qk ⊗Xd

h

be the k × h-SGFEM approximations of u defined in (5.1). If ρ ∈ L∞(Γ) and f �= 0,
then

‖u− ukh‖E√‖a ρ‖L∞(Γ×D)‖f‖L2(Γ;L2(D))

≤ Ch+
CD
amin

N∑
n=1

kn
2

(
knrn

2

)qn (‖∂ynf‖L2(Γ;L2(D))

‖f‖L2(Γ;L2(D))
+ rn

)
,

(5.6)

where the constant C depends on D and a and is independent of q, k, h, and u.
The next step is to use Proposition 5.1 together with a duality technique to

estimate the H1
0 (D) and L2(D) errors in the approximation of the expected value of

u(Y, ·).
Theorem 5.1. Let u be the solution of the problem (2.7) and ukh ∈ Y qk ⊗Xd

h

be the k × h-SGFEM approximations of u defined in (5.1). If ρ ∈ L∞(Γ), then for
� = 0, 1 we have

∥∥E[u(Y, ·)] − E[ukh(Y, ·)]
∥∥
H�(D)

‖a ρ‖L∞(Γ×D)
≤ C

(
h2−� +

N∑
n=1

(
kn
2

)2−�(
knrn

2

)(2−�)qn
)
.

(5.7)

The constant C depends on D, f , and a, and it is independent of k, q, and h.
Proof. The case � = 1 follows directly from Proposition 5.1, so we now prove the

case � = 0. Denote e ≡ u− ukh and use the auxiliary function û that solves

−∇x·(a(y, ·) ∇û(y, ·)) = E[e](·) in D,

û(y, ·) = 0 on ∂D.
(5.8)
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Then (5.4) reads

‖û(y, ·)‖H2(D) ≤ C0,B ‖E[e]‖L2(D) ∀y ∈ Γ,(5.9)

and, since E[e] is independent of y, the estimate (5.5) for the problem (5.8) reads

‖∂qn+1
yn û(y, ·)‖H1

0 (D)

(qn + 1)!
≤ (rn)

qn+1 CD
amin

‖E[e]‖L2(D) ∀y ∈ Γ.(5.10)

Now use Galerkin orthogonality, together with (5.8), to obtain∫
Γ

ρ (E[e], e)L2(D) dy =

∫
Γ

ρ
(
a∇e,∇(û− ψ)

)
L2(D)

dy ∀ψ ∈ Y qk ⊗Xd
h,

which yields, by the Cauchy–Schwarz inequality,

‖E[e]‖2
L2(D) ≤ B̃1 B̃2,(5.11)

with

B̃1 ≡
(∫

Γ

ρ ‖√a ∇e‖2
L2(D) dy

) 1
2

and

B̃2 ≡ inf
ψ∈Y q

k
⊗Xd

h

(∫
Γ

ρ ‖√a ∇(û− ψ)‖2
L2(D) dy

) 1
2

.

Next observe that B̃1 can be bounded using (5.6). Finally, use (3.7), (5.9), and

(5.10) to bound B̃2 as follows:

(5.12)

B̃2 ≤ C ‖a ρ‖ 1
2

L∞(Γ×D)

{
h ‖û‖L2(Γ;H2(D)) +

N∑
n=1

(
kn
2

)qn+1 ‖∂qn+1
yn û‖L2(Γ;H1

0 (D))

(qn + 1)!

}

≤ C ‖a ρ‖ 1
2

L∞(Γ;L∞(D))

(
h+

CD
amin

N∑
n=1

(
rn kn

2

)qn+1
)

‖E[e]‖L2(D).

Combining (5.11), (5.6), and (5.12), the estimate (5.7) follows.
The estimates given in Proposition 5.1 and Theorem 5.1 give the optimal order

of convergence with respect to k but are not optimal with respect to q. They can
be improved by the analysis given in section 6, yielding exponential convergence with
respect to q without the need to decrease k.

6. Stochastic Galerkin finite element method: p × h-version. The goal
of this section is to analyze the p × h-version of the SGFEM method, which does
not refine the set Γ. This method yields an exponential rate of convergence with
respect to p, the degree of the polynomials used for approximation; cf. Theorem 6.2.
The application of the p-version in the y-direction is motivated by the fact that u is
analytic with respect to y ∈ Γ; cf. Lemma 6.1. The basic assumption for this section
is the following.
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Assumption 6.1. Let Γ̂n ≡∏
1≤j≤N,j �=n Γj , and let ŷn be an arbitrary element of

Γ̂n. Then for each ŷn ∈ Γ̂n let ãn(ŷn) ≡ minx∈D{E[a](x)+
∑

1≤j≤N,j �=n
√
λjbj(x)yj},

and assume a slightly stronger uniform coercivity requirement; i.e., there exists a
constant ν > 0, independent of N , such that

ãn(ŷn) −
√
λn‖bn‖L∞(D) max

y∈Γn

|y| ≥ ν > 0 ∀ŷn ∈ Γ̂n.

Observe that with the above construction we have 0 < ν ≤ amin.
p × h-version of the SGFEM method. The p × h-version SGFEM approximation

is the tensor product uph ∈ Zp ⊗Xd
h (cf. section 3.4) that satisfies

(uph, χ)E ≡
∫

Γ

ρ
(
a∇uph,∇χ

)
L2(D)

dy =

∫
Γ

ρ
(
f, χ

)
L2(D)

dy ∀ χ ∈ Zp ⊗Xd
h.(6.1)

6.1. Error estimates. A first step in the analysis of the p × h-version is to
study the energy error, i.e., to consider

‖u− uph‖E ≤
√
‖ρa‖L∞(Γ×D) min

v∈Zp⊗Xd
h

‖u− v‖L2(Γ)⊗H1
0 (D)

≤
√
‖ρa‖L∞(Γ×D)

{
min

v∈Zp⊗H1
0 (D)

‖u− v‖L2(Γ)⊗H1
0 (D)

+ min
v∈L2(Γ)⊗Xd

h

‖u− v‖L2(Γ)⊗H1
0 (D)

}
.

This bound splits the error into an L2(Γ) approximation error and a standard H1
0 (D)

FEM approximation error. The rest of this section studies the first one, since for
the second we can apply the results from Proposition 3.1 together with a density
argument. The minimizer

‖u− up‖L2(Γ)⊗H1
0 (D) = min

v∈Zp⊗H1
0 (D)

‖u− v‖L2(Γ)⊗H1
0 (D)

is the projection up = (Π1 . . .ΠN )u with Πn : L2(Γ) ⊗ H1
0 (D) → L2(Γ) ⊗ H1

0 (D)
being the natural extension of the L2 projection Π̄n : L2(Γn) → Zpnn , so the difference
u − up splits into u − up = (1 − Π1)u + · · · + (Π1 . . .ΠN−1)(1 − ΠN )u. In addition,
the boundedness of the projections Πn, n = 1, . . . , N , yields

‖u− up‖L2(Γ)⊗H1
0 (D) ≤

N∑
n=1

‖(1 − Πn)u‖L2(Γ)⊗H1
0 (D).(6.2)

Without loss of generality we now estimate the first term on the right-hand side of
(6.2), since the other terms have a completely similar behavior. Moreover, since

‖(1 − Π1)u‖2
L2(Γ)⊗H1

0 (D) =

∫
Γ̂1

(∫
Γ1

‖(1 − Π1)u(y1, ŷ1, ·)‖2
H1

0 (D)dy1

)
dŷ1

it is enough to estimate

(E1)
2(ŷ1) ≡

∫
Γ1

‖(1 − Π1)u(y1, ŷ1, ·)‖2
H1

0 (D)dy1,(6.3)
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and thus our analysis requires only one dimensional arguments in the y-direction. Let
Γ1 = (ymin, ymax), and consider the map Ψ : [−1, 1] → H1

0 (D) defined by

Ψ(t) = u(y1(t), ŷ1, ·) ∈ H1
0 (D)

with the affine transformation, y1 : [−1, 1] → Γ1, y1(t) ≡
(
ymax+ymin

2

)
+
(
ymax−ymin

2

)
t.

In the upcoming estimate of the quantities ‖dn‖H1
0 (D), to be proved in Lemma 6.2,

we need to consider a continuation of Ψ to the complex plane, namely, the following.
Lemma 6.1 (complex continuation). The function Ψ : [−1, 1] → H1

0 (D) can be
analytically extended to the complex domain.

Proof. Let t0 ∈ (−1, 1). We shall prove that the real function Ψ can be represented
as a power series for |t− t0| < rt0 for some rt0 > 0. Since Ψ depends linearly on f , let
us assume that f(y, x) = f(x) only, without loss of generality. Let y(t) = (y1(t), ŷ1),
and consider the formal series

uF (t) ≡
+∞∑
j=0

( |Γ1|(t− t0)

2

)j
uj ,

with uj ∈ H1
0 (D) satisfying∫

D

a(y(t0), ·)∇u0 · ∇v =

∫
D

fv ∀v ∈ H1
0 (D)(6.4)

and, for j ≥ 0,∫
D

a(y(t0), ·)∇uj+1 · ∇v = −
∫
D

√
λ1b1∇uj · ∇v ∀v ∈ H1

0 (D).(6.5)

This construction implies ‖uj‖H1
0 (D) ≤ (

√
λ1‖ b1

a(y(t0),·)‖L∞(D))
j CD‖f‖L2(D)

amin
, j ≥ 1, and

then

‖uF ‖H1
0 (D) ≤

CD‖f‖L2(D)

amin

1

1 − q
<∞

for q ≡ |t−t0||Γ1|
√
λ1

2 ‖ b1
a(y(t0),·)‖L∞(D) < 1. Thus, for any t0 ∈ (−1, 1) and |t − t0| <

rt0 ≡ 2

|Γ1|
√
λ1

∥∥ b1
a(y(t0),·)

∥∥
L∞(D)

, the function uF can be represented as a power series

in t − t0. At the same time, we have the equality uF (t) = Ψ(t) for t ∈ (−1, 1) since
both functions solve the linear elliptic equation

−∇ · (a(y(t), x) ∇u(y(t), x)) = f(x) ∀x ∈ D,
u(y(t), x) = 0 ∀x ∈ ∂D,

which has a unique solution. Then uF is the analytic continuation of Ψ, and the proof
is complete.

Remark 6.1. Consider the natural extension of the real variable t to the complex
variable η. Observe that Ψ(η) from Lemma 6.1 solves

−∇ · (a(y(η), x) ∇Ψ(η, x)) = f(x) ∀x ∈ D,

Ψ(η, x) = 0 ∀x ∈ ∂D.
(6.6)
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Following [24], we use the Legendre polynomials to prove approximation estimates
for the p × h-version of the SGFEM. Since the Legendre polynomials

pn(t) ≡ 1

2nn!

dn

dtn
((t2 − 1)n), n = 0, 1, . . . ,

are orthogonal with respect to the L2(−1, 1) inner product we have the error
representation

(E1)
2(ŷ1) =

|Γ1|
2

+∞∑
n=p1+1

2

2n+ 1
‖dn‖2

H1
0 (D)(6.7)

with the corresponding Fourier coefficients

dn ≡ 2n+ 1

2

∫ 1

−1

Ψ(t)pn(t)dt ∈ H1
0 (D).

Therefore, to obtain an estimate for E1 we shall study the convergence of the tail
series in (6.7).

Notation 6.1. For each ŷ1 ∈ Γ̂1, consider the natural extension of the variable
t to the complex η and introduce the real function, A : C → R:

A(η) ≡ min
x∈D

Re{a(y1(η), ŷ1, x)}

= min
x∈D

[a(0, ŷ1, x) + y1(Re{η})
√
λ1b1(x)],

with Re{η} being the real part of η ∈ C. Whenever A(η) �= 0, the extended function
Ψ, the solution of (6.6), satisfies the bound

‖Ψ(η)‖H1
0 (D) ≤ CD

‖f(y1(η), ŷ1, ·)‖L2(D)

A(η)
,(6.8)

with CD being the Poincaré constant for the domain D. Besides this, observe that

A(η) ≥ ã1(ŷ1) − |y1(Re{η})|
√
λ1‖b1‖L∞(D).(6.9)

We are now ready to estimate the Fourier coefficients in (6.7).
Lemma 6.2. Let τ ∈ (0, 1). Under Assumption 6.1 there exists a positive constant

θf (ŷ1, τ) > 0 such that

‖dn‖H1
0 (D) ≤

CD θf (2n+ 1)

τ ν 2n

∫ 1

−1

(
1 − t2

t+ 1 + δ

)n
dt,

with 0 < δ = 2(1−τ)ν
|Γ1|

√
λ1‖b1‖L∞(D)

.

Proof. Consider

dn =
2n+ 1

2

∫ 1

−1

Ψ(t)pn(t)dt =
(2n+ 1)(−1)n

n! 2n+1

∫ 1

−1

dn

dtn
Ψ(t)(1 − t2)ndt.

Use the analytic continuation of the real function Ψ to the complex domain as in
Lemma 6.1. The application of Cauchy’s formula gives

dn

dtn
Ψ(t) =

n!
(− 1

)n
2πi

∫
γt

Ψ(η)

(η − t)n+1
dη,
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where γt is a positively oriented closed circumference with the center at the real point
t ∈ (−1, 1), with radius R(t), and such that all singularities from Ψ are exterior to γt.
Estimate (6.8) implies∥∥∥∥ dndtnΨ(t)

∥∥∥∥
H1

0 (D)

≤ CD n!

2π

∫
γt

‖f(y1(η), ŷ1, ·)‖L2(D)

A(η)|η − t|n+1
|dη|

≤ CD n!

2π

(
sup
η∈γt

‖f(y1(η), ŷ1, ·)‖L2(D)

)∫
γt

|dη|
A(η)|η − t|n+1

(6.10)

≤ CD n!

(R(t))n

(
sup
η∈γt

‖f(y1(η), ŷ1, ·)‖L2(D)

)
sup
η∈γt

1

A(η)
.

Let

θf ≡ sup
t∈[−1,1]

sup
η∈γt

‖f(y1(η), ŷ1, ·)‖L2(D);

then estimate (6.10) implies

‖dn‖H1
0 (D) ≤

(2n+ 1)CDθf
2n+1

∫ 1

−1

(
1

infη∈γt A(η)

)(
1 − t2

R(t)

)n
dt.(6.11)

Let τ ∈ (0, 1). We want to choose R(t) such that

inf
t∈[−1,1]

inf
η∈γt

A(η) ≥ τν.(6.12)

Since Assumption 6.1 holds, then (6.12) is satisfied taking R(t) = 1 − |t| + δ, with

δ = 2(1−τ)ν
|Γ1|

√
λ1‖b1‖L∞(D)

. Finally, the proof concludes by combining (6.11)–(6.12) and the

definition of R(t).
Now we use a result from [24], namely, that we have the following.
Lemma 6.3 (integral estimate). Let ξ < −1, and define

r ≡ 1

|ξ| +
√
ξ2 − 1

, 0 < r < 1.

Then there holds

(−1)n
∫ 1

−1

(
t2 − 1

t+ ξ

)n
dt = (2r)n2n+1 n!

(2n+ 1)!!
Φn,0(r

2),

where Φn,0(r
2) is the Gauss hypergeometric function. Moreover, we have

Φn,0(r
2) =

√
1 − r2 + O

(
1

n1/3

)
uniformly with respect to 0 < r < 1.

Finally, we can state the estimate for the size of the series in (6.7).
Lemma 6.4. Let τ ∈ (0, 1). Under Assumption 6.1 there exists a positive constant

θf > 0 such that

(E1)(ŷ1) ≤ CDθf
√|Γ1|

τ ã1

(√
1 − r2 + O

(
1

(p1)1/3

))√
π

rp1+1

√
1 − r2

,
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with r ≡ 1

|ξ|+
√
ξ2−1

, 0 < r < 1, and ξ < −(1 + 2(1−τ)ν
|Γ1|

√
λ1‖b1‖L∞(D)

).

Proof. Use Lemmas 6.2 and 6.3, together with the asymptotic equivalence (2n)!!
(2n−1)!!

∼√
πn
2 , n→ ∞, yielding

‖dn‖H1
0 (D) ≤

2CDθf
τ ã1

√
πn

2

(√
1 − r2 + O

(
1

n1/3

))
rn.

Then use the result to estimate the tail of the series:

(E1)
2(ŷ1) =

|Γ1|
2

+∞∑
n=p1+1

2

2n+ 1
‖dn‖2

H1
0 (D).

The main result of this section, namely the exponential convergence with respect
to the multi-index p as in [24], follows from the above lemmas; i.e., we have the
following.

Theorem 6.2. Let τ ∈ (0, 1) and u be the solution of (2.6), u ∈ L2(Γ)⊗H1
0 (D),

which is analytic with respect to y, onto the subspace Zp⊗H1
0 (D). Under Assumption

6.1 there exist positive constants, 0 < C,Cf , such that

Ep ≡ min
v∈Zp⊗H1

0 (D)
‖u− v‖L2(Γ)⊗H1

0 (D)

≤ CDCf
τν

√
π|Γ|

N∑
n=1

(
1 +

1√
1 − r2n

O
(

1

(pn)1/3

))
(rn)

pn+1,
(6.13)

with 0 < rn ≡ 1

|ξn|+
√
ξ2n−1

< 1, and ξn < −(1 + 2(1−τ)ν
|Γn|

√
λn‖bn‖L∞(D)

) for n = 1, . . . , N .

Similarly, as in the k × h-version (cf. (5.7)), the p-version has a convergence
result for the approximation to the expected value of the solution.

Theorem 6.3. With the same assumptions as in Theorem 6.2 and for � = 0, 1,
we have

‖E[u− uph]‖H�(D) ≤ C

(
h2−� +

1

τ

N∑
n=1

(rn)
(2−�)(pn+1)

)
,

with 0 < rn < 1 as in Theorem 6.2 and C > 0 independent of h, pn, and rn.
The proof of the previous theorem uses Theorem 6.2 and is completely similar to

the proof of Theorem 5.1.
Remark 6.2. Whenever the coefficients a and f are independent the constants

θf from Lemma 6.2, Cf from Theorem 6.2, and C from Theorem 6.3 do not depend
on N .

7. Double orthogonal polynomials. Here we explain the idea of double or-
thogonal polynomials, used by various authors in different contexts; see, e.g., [47] to
compute efficiently the solution of the k × h-version and the p × h-version studied
in sections 5 and 6, respectively. The idea is to use a special basis to decouple the
system in the y-direction, yielding just a number of uncoupled systems, each one with
the size and structure of one Monte Carlo realization of (4.1). The double orthogonal
polynomials are able to perform the decoupling whenever the random variables in the
Karhunen–Loève expansion of a, Yn, n = 1, . . . , N , are independent.
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Without loss of generality we focus on the p-version, i.e., find uph ∈ Zp⊗Xd
h such

that ∫
Γ

ρ(y)(a(y, ·)∇uph(y, ·),∇v(y, ·))L2(D)dy

=

∫
Γ

ρ(y)(f(y, ·), v(y, ·))L2(D)dy ∀v ∈ Zp ⊗Xd
h.

(7.1)

Let {ψj(y)} be a basis of the subspace Zp ⊂ L2(Γ) and {ϕi(x)} be a basis of the
subspace Xd

h ⊂ H1
0 (D). Write the approximate solution as

uph(y, x) =
∑
j,i

uijψj(y)ϕi(x)(7.2)

and use test functions v(y, x) = ψk(y)ϕ�(x) to find the coefficients uij . Then (7.1)
gives ∑

j,i

(∫
Γ

ρ(y)ψk(y)ψj(y)(a(y, ·)∇ϕi,∇ϕ�)L2(D)dy

)
uij

=

∫
Γ

ρ(y)ψk(y)(f(y, ·), ϕ�)L2(D)dy ∀k, �,

which can be rewritten as∑
j,i

(∫
Γ

ρ(y)ψk(y)ψj(y)Ki,�(y)dy

)
uij =

∫
Γ

ρ(y)ψk(y)f�(y)dy ∀k, �,

with Ki,�(y) ≡ (a(y, ·)∇ϕi,∇ϕ�)L2(D) and f�(y) ≡ (f(y, ·), ϕ�)L2(D). If the diffu-
sion coefficient, a, is a truncated Karhunen–Loève expansion, a(y, x) = E[a](x) +∑N

n=1 bn(x)yn, and by the independence of the Yn, n = 1, . . . , N , we have a corre-
sponding “Karhunen–Loève” expression for the stiffness matrixKi,�(y) ≡

∫
D

(E[a](x)+∑N
n=1 bn(x)yn)∇ϕi(x) · ∇ϕ�(x)dx = K0

i,� +
∑N
n=1 ynK

n
i,� with deterministic coeffi-

cients K0
i,� ≡ (E[a]∇ϕi,∇ϕ�)L2(D) and Kn

i,� ≡ (bn∇ϕi,∇ϕ�)L2(D). By the same
token we have∫

Γ

ρ(y)ψk(y)ψj(y)Ki,�(y)dy = K0
i,�

∫
Γ

ρ(y)ψk(y)ψj(y)dy

+

N∑
n=1

Kn
i,�

∫
Γ

ynρ(y)ψk(y)ψj(y)dy.

Since ψk ∈ Zp, with multi-index p = (p1, . . . , pN ), it is enough to take it as the

product ψk(y) =
∏N
r=1 ψkr(yr), where ψkr: Γr → R is a basis function of the subspace

Zpr = span[1, y, . . . , ypr ] = span[ψhr : h = 1, . . . , pr + 1].

Keeping this choice of ψk in mind,∫
Γ

ρ(y)ψk(y)ψj(y)Ki,�(y)dy = K0
i,�

∫
Γ

N∏
m=1

ρm(ym)ψkm(ym)ψjm(ym)dy

+
N∑
n=1

Kn
i,�

∫
Γ

yn

N∏
m=1

ρm(ym)ψkm(ym)ψjm(ym)dy.
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Now, for every set Γn, n = 1, . . . , N, choose the polynomials, ψj(y) =
∏N
n=1 ψjn(yn),

to be biorthogonal; i.e., for n = 1, . . . , N they must satisfy∫
Γn

ρn(z)ψkn(z)ψjn(z)dz = δkj ,∫
Γn

zρn(z)ψkn(z)ψjn(z)dz = cknδkj .

(7.3)

To find the polynomials ψk we have to solve N eigenproblems, each of them with size
(1 + pn). The computational work required by these eigenproblems is negligible with
respect to the one required to solve for uij ; cf. [23, section 8.7.2]. The orthogonal-
ity properties (7.3) for ψk imply the decoupling

∫
Γ
ρψkψjdy = δkj ,

∫
Γ
ynρψkψjdy =

cknδkj . By means of this decoupling we now conclude that∑
j,i

(∫
Γ

ρ(y)ψk(y)ψj(y)Ki,�(y)dy

)

= K0
i,�

∫
Γ

ρ(y)ψk(y)ψj(y)dy +

N∑
n=1

Kn
i,�

∫
Γ

ynρ(y)ψk(y)ψj(y)dy

=

(
K0
i,� +

N∑
n=1

ckn Kn
i,�

)
δkj .

The structure of the linear system that determines uij now becomes block diago-
nal, with each block being coercive and with the sparsity structure identical to one
deterministic FEM stiffness matrix, i.e.,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
K0 +

N∑
n=1

c1n K
n

)
0 . . . 0

0

(
K0 +

N∑
n=1

c2n K
n

)
. . . 0

...
. . .

...

0 . . . 0

(
K0 +

N∑
n=1

cNn K
n

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Observe that as a consequence of the uniform coercivity assumption, each of the diag-
onal blocks in the system above is symmetric and strictly positive definite. The con-
clusion is that the computational work to find the coefficients uij in (7.2) is the same

as the one needed to compute
∏N
i=1(1 + pi) Monte Carlo realizations of uh defined in

(4.1), but the accuracies of these methods may differ. Section 8 studies this issue.

8. Asymptotical efficiency comparisons. In this section we compare
the asymptotical numerical complexity for the Monte Carlo Galerkin finite element
method (cf. section 4) with the stochastic Galerkin finite element method introduced
in sections 5 and 6. The quantity of interest, i.e., the goal of the computation, is
the expected value of the solution, E[u], and its approximation is studied in both
the L2(D) and the H1

0 (D) sense. In all the cases, the spatial discretization is done
by piecewise linear finite elements on globally quasi-uniform meshes. For the k × h-
SGFEM the Γ partitions are also assumed to be globally quasi-uniform. Besides this,
the diffusion function a is assumed to be a truncated Karhunen–Loève expansion with
independent random variables Yn, n = 1, . . . , N .
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8.1. MCGFEM versus k × h-SGFEM. Here we consider the computational
work to achieve a given accuracy bounded by a positive constant TOL for both the
MCGFEM and the k × h-SGFEM methods. This optimal computational work in-
dicates under which circumstances one method may be best suited. When using the
MCGFEM method to approximate the solution of (1.1) in H1

0 (D) the error becomes,
applying Proposition 4.2 together with (4.5), that given a confidence level, 0 < c0 < 1,
there exists a constant C > 0 depending only on c0 such that

P

(∥∥∥∥∥E[u] − 1

M

M∑
j=1

uh(·;ωj)
∥∥∥∥∥
H1

0 (D)

≤ C

(
h+

1√
M

))
≥ c0.(8.1)

Then in the sense of (8.1) we write EMCGFEM = O(h) +O(1/
√
M). The correspond-

ing computational work for the MCGFEM method is WorkMCGFEM = O((1/hd)r +
1/hd)M, where the parameter 1 ≤ r ≤ 3 relates to the computational effort devoted
to solve one linear system with n unknowns, O(nr). From now on we continue the
discussion with the optimal r = 1 that can be achieved by means of the multigrid
method; cf. [10]. Thus, choosing h and M to minimize the computational work for a
given desired level of accuracy TOL > 0 yields the optimal work

Work∗MCGFEM = O(TOL−(2+d)).(8.2)

On the other hand, if we apply a k × h-SGFEM with piecewise polynomials of
order q in the y-direction, the computational error inH1

0 (D) norm is (cf. Theorem 5.1)

ESGFEM = O(h) +O(kq+1),

and the corresponding computational work for the k × h-version is

WorkSGFEM = O(h−d(1 + q)Nk−N ).

Here N is the number of terms in the truncated Karhunen–Loève expansion of the
coefficients a and f and k is the discretization parameter in the y-direction. Similarly
as before, we can compute the optimal work for the k × h-SGFEM method, yielding

Work∗SGFEM = O((1 + q)NTOL− N
q+1 TOL−d).

Therefore, a k × h-version SGFEM is likely to be preferred whenever TOL is suf-
ficiently small and N/2 < 1 + q; i.e., if the number of terms in the Karhunen–
Loève expansion of a is large, then the degree of approximation in the y-direction,
q, has to become correspondingly large. We summarize the comparison results in
Table 1, where we also include corresponding results from the p × h-version, to be
derived in subsection 8.2. Similarly, if we are interested in controlling the difference
‖E[u] − E[uh]‖L2(D), the application of (4.2) and Proposition 4.2 for the MCGFEM
method and Theorem 5.1 on the convergence of the k × h-SGFEM method imply the
results shown in Table 2. In this case k × h-SGFEM is likely to be preferred when-
ever N/4 < (q+1) and TOL is sufficiently small. In addition, the comparison tells us
that to be able to be competitive with the Monte Carlo method when the number of
relevant terms in the Karhunen–Loève expansion is not so small, an optimal method
should have a high order of approximation and should avoid as much as possible the
coupling between the different components of the numerical solution to preserve com-
putational efficiency. The approach proposed by Ghanem and Spanos [22] based on
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Table 1

Approximation of the function E[u] in H1
0 (D). Asymptotical numerical complexity for the

MCGFEM and SGFEM methods.

MCGFEM k × h-version SGFEM p × h-version SGFEM

Work M/hd
(1+q)N

hdkN
(1+p)N

hd

H1
0 (D) Error h+ 1√

M
h+ kq+1 h+ r(p+1)

H1
0 (D) Work∗ TOL−(2+d) TOL

− N
q+1 TOL−d (logr(TOL))NTOL−d

Table 2

Approximation of the function E[u] in L2(D). Asymptotical numerical complexity for the
MCGFEM and SGFEM methods.

MCGFEM k × h-version SGFEM p × h-version SGFEM

Work M/hd
(1+q)N

hdkN
(1+p)N

hd

L2(D) Error h2 + 1√
M

h2 + k2(q+1) h2 + r2(p+1)

L2(D) Work∗ TOL−(2+d/2) (TOL)
− N

2(q+1) TOL−d/2 (logr(TOL))NTOL−d/2

orthogonal polynomials has, whenever the approximate diffusion satisfies (1.2), a high
order of approximation but introduces coupling between the different components of
the numerical solution. The uncoupling can be achieved for linear equations using
double orthogonal polynomials; see the description in section 7. With this motiva-
tion, section 6 studies the convergence of the p × h-SGFEM.

8.2. MCGFEM versus p × h-SGFEM. Here we consider the computational
work to achieve a given accuracy for both the p × h-version of SGFEM defined in
(6.1) and the MCGFEM method for the approximation of E[u] defined in section 4;
i.e., we are interested in controlling the difference ‖E[u] − E[uph]‖L2(D) or ‖E[u] −
1
M

∑M
j=1 uh(·;ωj)‖L2(D), respectively. This computational work indicates under which

circumstances one method may be better suited than the other. Besides this, let us
assume that we use in our computations a piecewise linear FEM space in D. When
using the MCGFEM method to approximate the expected value of the solution of
(1.1), we have the optimal work required to achieve a given desired level of accuracy
TOL > 0 (cf. (8.2)):

Work∗MCGFEM = O(1/TOL2+ d
2 ).

On the other hand, if we apply a p × h-version of the SGFEM, with pi = p, i =
1, . . . , N , the computational error is (cf. Theorem 6.3)

ESGFEM = O(h2) +O(r2(p+1)), 0 < r < 1,

and the corresponding computational work is (cf. section 7)

WorkSGFEM = O

(
(1 + p)N

hd

)
.

Recall that N is the number of terms in the truncated Karhunen–Loève expansion of
the coefficients a and f , and k is the discretization parameter in the y-direction. As
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before, we can compute the optimal work for the SGFEM method, yielding

Work∗SGFEM ≤ O((logr(TOL))NTOL− d
2 )

and the asymptotical comparison

lim
TOL→0

Work∗SGFEM

Work∗MCGFEM

= lim
TOL→0

(logr(TOL))NTOL2 = 0.

Therefore, for sufficiently strict accuracy requirements, i.e., sufficiently small
TOL, in the computation of E[u], SGFEM requires less computational effort than
MCGFEM. The work of Bahvalov and its subsequent extensions (cf. [7, 25, 45, 35])
generalize the standard Monte Carlo method, taking advantage of the available
integrand’s smoothness and yielding a faster order of convergence. The optimal
work of such a method is for our case, i.e., the approximation of E[u] in L2(D),

O(C(N)TOL− 1
1/2+q/N TOL−d/2), where it is assumed that the integrand u has

bounded derivatives up to order q with respect to y and the integral is done in the
N -dimensional unit cube.

The result on the computational work of the p × h-version of the SGFEM pre-
sented in this work is then related to the case q = ∞, since u is analytic with re-
spect to y. This analyticity allows the exponential convergence with respect to p; cf.
Theorem 6.3.

Notice that we discussed only the optimal asymptotical computational work re-
quired by both methods, but in practice the constants involved in the asymptotic
approximations make these comparisons just indicative and not conclusive. In addi-
tion, we have studied only the case where the integrals

∫
Γi
ρiy

kdy can be computed
exactly for k = 0, 1, . . . , and not considered the more general case where quadrature
rules are needed to approximate such integrals. For further information we refer the
reader to [6].
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Abstract. This paper develops least-squares methods for the solution of linear elastic prob-
lems in both two and three dimensions. Our main approach is defined by simply applying the L2

norm least-squares principle to a stress-displacement system: the constitutive and the equilibrium
equations. It is shown that the homogeneous least-squares functional is elliptic and continuous in
the H(div; Ω)d × H1(Ω)d norm. This immediately implies optimal error estimates for finite ele-
ment subspaces of H(div; Ω)d × H1(Ω)d. It admits optimal multigrid solution methods as well if
Raviart–Thomas finite element spaces are used to approximate the stress tensor. Our method does
not degrade when the material properties approach the incompressible limit. Least-squares methods
that impose boundary conditions weakly and use an inverse norm are also considered. Numeri-
cal results for a benchmark test problem of planar elasticity are included in order to illustrate the
robustness of our method in the incompressible limit.
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1. Introduction. The primitive physical equations for linear elastic problems
are the constitutive equation, which expresses a relation between the stress and strain
tensors, and the equilibrium equation. This first-order partial differential system is
called the stress-displacement formulation. Substituting the stress into the equilib-
rium equation leads to a second-order elliptic partial differential system called the pure
displacement formulation. However, the stress-displacement formulation is preferable
to the pure displacement formulation for some important practical problems, e.g.,
modeling of nearly incompressible or incompressible materials and modeling of plas-
tic materials where the elimination of the stress tensor is difficult. In addition, the
stress is usually a physical quantity of primary interest. It can be obtained in the pure
displacement method by differentiating displacement, but this degrades the order of
the approximation.

A mixed finite element method is based on the weak form of the stress-
displacement formulation, and it requires a stable combination of finite element spaces
to approximate these variables. Unlike mixed methods for second-order scalar elliptic
boundary value problems, stress-displacement finite elements are extremely difficult
to construct. This is caused by the symmetry constraint of the stress tensor. Re-
cently, Arnold and Winther in [3] constructed a family of stable conforming elements
in two dimensions on a triangular tessellation. Their simplest element has 21 stress
and 3 displacement degrees of freedom per triangle. The local degrees of freedom are
reduced to 12 for the stress and 3 for the displacement for a stable nonconforming
element in [4]. For previous work on mixed methods for linear elasticity, see [3] and
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references therein. Like scalar elliptic problems, mixed methods lead to saddle-point
problems. Many solution methods that work well for symmetric and positive definite
problems cannot be applied directly. Although substantial progress in solution meth-
ods for saddle-point problems has been achieved, these problems may still be difficult
and expensive to solve.

In recent years there has been increasing interest in the use of least-squares prin-
ciples for numerical approximations of partial differential equations and systems (see,
e.g., the survey paper [6], the monograph [18], and references therein). Their advan-
tages over the usual mixed finite element discretizations include that the choice of
finite element spaces is not subject to the stability condition (see, e.g., [9]), that the
resulting algebraic equations can be solved efficiently by standard multigrid methods
or preconditioned by well-known techniques, and that the value of a least-squares
functional provides a free, sharp, and practical a posteriori error indicator which
can be used efficiently in a local refinement process. For linear elasticity, in par-
ticular, least-squares methods have an additional edge over mixed methods in that
the known stable mixed elements are very limited and they have a large number of
degrees of freedom. In [11], Cai, Manteuffel, McCormick, and Parter proposed a
two-stage least-squares approach that first solves for the displacement gradient and
then solves for the displacement itself (if desired). Physical quantities such as the
strain, the stress, and the rotation are then simple linear combinations of the dis-
placement gradient. At the first stage, it has four (nine) variables in two (three)
dimensions, compared to five (nine) variables for the stress-displacement formulation.
One drawback of this approach is its requirement of sufficient smoothness on the orig-
inal problem if using standard continuous finite element approximations. Another
approach was proposed by engineers in [19] based on a displacement-stress-rotation
formulation; it has the same drawback as that of [11]. In addition, it introduces
extra variables (the rotation): one (three) variable in two (three) dimensions. For
other least-squares approaches in the engineering literature in solid mechanics, see
references in [19].

In contrast to these approaches, our aim is to develop a least-squares approach
that does not have the above-mentioned drawbacks, and that computes the stress
and the displacement directly. Thus it would be easier to extend this method to
applications such as nonlinear elasticity, plasticity, etc. The stress components are
physical quantities of primary interest in many practical applications including cou-
pling of elastic deformation with fluid flow models. The method to be developed
in this paper is based on the primitive physical equations of linear elasticity: the
stress-displacement formulation, without introducing any new variables or any new
equations. Applying the L2 norm least-squares principle to this first-order system
with an appropriately scaled constitutive equation, we develop a least-squares formu-
lation for linear elasticity. It is shown that the homogeneous least-squares functional
is elliptic and continuous in the H(div; Ω) norm for the stress and in the H1 norm
for the displacement uniformly with respect to material constants. This immediately
implies optimal error estimates for finite element subspaces of H(div; Ω)d ×H1(Ω)d.
It also admits optimal multigrid solution methods if Raviart–Thomas finite element
spaces (see, e.g., [9]) are used to approximate the stress tensor. Both discretization
accuracy and multigrid convergence rate of the method do not degrade when the ma-
terial properties approach the incompressible limit. As usual, the evaluation of the
least-squares functional on each element is a practical and sharp a posteriori error
indicator for adaptive mesh refinements. The practical performance of the resulting
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adaptive strategy will be tested numerically for a common benchmark problem of
linear elasticity in the final section of this paper.

The method here is closely related to our previous work in [12, 10]. The main
difference is the scale in the constitutive equation. The homogeneous least-squares
functionals in [12, 10] are equivalent to the H(div; Ω) norm for the stress and the
energy norm for the displacement. This means that the least-squares variational
problems in [12, 10] do not apply for incompressible materials and require effective
discretizations and efficient solvers for the pure displacement problem when materials
are nearly incompressible. These tasks remain difficult and expensive although some
progress has been achieved (see, e.g., [8] and references therein).

For completeness, we study an inverse norm least-squares functional and show
that its homogeneous form is equivalent to the L2(Ω)d×d×H1(Ω)d norm for the stress
and the displacement. This functional can be used to develop a discrete inverse norm
least-squares method (see, e.g., [7]). For some applications, it is convenient to impose
boundary conditions weakly by adding boundary functionals. Such a functional is also
studied in this paper. See [21] for how to use these types of functionals to develop a
computationally feasible numerical method.

An outline of the paper is as follows. The stress-displacement formulation for
the linear elastic problem is introduced in section 2, along with some notation, the
pure displacement formulation, and some regularity estimates. Section 3 develops the
least-squares functionals based on the stress-displacement formulation and establishes
their ellipticity and continuity. Section 4 discusses finite element approximations. Sec-
tion 5 studies a least-squares functional with boundary terms that enforces boundary
conditions weakly. Finally, numerical results for a benchmark test problem of linear
elasticity are presented in section 6.

1.1. Notation. We use the standard notation and definitions for the Sobolev
spaces Hs(Ω)d and Hs(∂Ω)d for s ≥ 0; the standard associated inner products are
denoted by (·, ·)s,Ω and (·, ·)s,∂Ω, and their respective norms are denoted by ‖ · ‖s,Ω
and ‖ · ‖s,∂Ω. (We suppress the superscript d because their dependence on dimension
will be clear by context. We also omit the subscript Ω from the inner product and
norm designation when there is no risk of confusion.) For s = 0, Hs(Ω)d coincides
with L2(Ω)d. In this case, the inner product and norm will be denoted by ‖ · ‖ and
(·, ·), respectively. Set H1

D(Ω) := {q ∈ H1(Ω) : q = 0 on ΓD}. We use H−1
D (Ω) and

H− 1
2 (∂Ω) to denote the dual of H1

D(Ω) and H
1
2 (∂Ω) with norms defined by

‖φ‖−1, D = sup
0 �=ψ∈H1

D(Ω)

(φ, ψ)

‖ψ‖1
and ‖φ‖−1/2, ∂Ω = sup

0 �=ψ∈H 1
2 (∂Ω)

(φ, ψ)

‖ψ‖1/2,∂Ω
.

Denote the product space H−1
D (Ω)d =

∏d
i=1H

−1
D (Ω) with the standard product norm.

Set

H(div; Ω) = {v ∈ L2(Ω)2 : ∇ · v ∈ L2(Ω)},
which is a Hilbert space under the norm

‖v‖H(div; Ω) =
(‖v‖2 + ‖∇ · v‖2

) 1
2 .

2. Linear elasticity and preliminaries. Let Ω be a bounded, open, connected
subset of �d (d = 2 or 3) with a Lipschitz continuous boundary ∂Ω. Denote n =
(n1, . . . , nd)

t as the outward unit vector normal to the boundary. We partition the
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boundary of the domain Ω into two open subsets ΓD and ΓN such that ∂Ω = Γ̄D∪ Γ̄N
and ΓD∩ΓN = ∅. For simplicity, we assume that ΓD is not empty (i.e., mes (ΓD) 	= 0).
Our approaches proposed in this paper can be easily extended to the pure traction
problem (ΓD = ∅) by excluding the space of infinitesimal rigid motions.

Let f = (f1, . . . , fd)
t be a given body force defined on Ω. The linear elastic

problem consists of finding a displacement field u = (u1, . . . , ud)
t and a stress tensor

σ =
(
σij
)
d×d that satisfy the equilibrium equation

d∑
j=1

∂σij
∂xj

+ fi = 0 for i = 1, . . . , d(2.1)

and boundary conditions

u = 0 on ΓD and

d∑
j=1

σij nj = 0 on ΓN for i = 1, . . . , d.(2.2)

For simplicity, here we assume that the boundary conditions are homogeneous.
Denote ε(u) = (εij(u))d×d as the linearized strain tensor, where

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The constitutive law expresses a relation between the stress and the strain tensors:

σ = C ε(u) or ε(u) = Aσ,(2.3)

where C and A are the elasticity and the compliance tensors of fourth order, respec-
tively. Denote by tr the trace operator

tr
(
ε(u)

)
= ε11(u) + · · · + εdd(u) = ∇ · u,

where ∇· stands for the divergence operator. For an isotropic elastic material, the
elasticity tensor has the following simple expression:

C ε(u) = λ tr
(
ε(u)

)
δ + 2µ ε(u),(2.4)

where δ = (δij)d×d is the identity tensor, and positive constants λ and µ are the
Lamé constants such that µ ∈ [µ1, µ2] with 0 < µ1 < µ2 and λ ∈ (0,∞). Materials
are said to be nearly incompressible or incompressible when λ is very large or infinite,
respectively. Note that both the stress and the strain tensors are symmetric. Such
symmetry of the stress stems from the conservation of angular momentum.

For a second-order tensor τ = (τij)d×d, define its divergence and normal by

∇ · τ =

⎛⎜⎝ ∂τ11/∂x1 + · · · + ∂τ1d/∂xd
...

∂τd1/∂x1 + · · · + ∂τdd/∂xd

⎞⎟⎠ and n · τ =

⎛⎜⎝ n1τ11 + · · · + ndτ1d
...

n1τd1 + · · · + ndτdd

⎞⎟⎠ ,

respectively. That is, the divergence and normal operators apply to each row of the
tensor. Then the stress-displacement system in (2.3), (2.1), and (2.2) may be rewritten
in the compact form {

σ − C ε(u) = 0 in Ω,

∇ · σ = −f in Ω
(2.5)
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with the boundary conditions

u = 0 on ΓD and n · σ = 0 on ΓN .(2.6)

There are three approaches to treating this first-order partial differential sys-
tem. One is to substitute the stress into the equilibrium equation to get the pure
displacement formulation in (2.7). Numerical methods based on this formulation
are not desirable for accurate approximations of the stress and for some impor-
tant practical problems such as the modeling of nearly incompressible or incom-
pressible or plastic materials. Another approach is to find the unique saddle point
(σ, u) ∈ HS

N (div; Ω)d × L2(Ω)d of the Hellinger–Reissner functional

J (τ , v) =
1

2
(A τ , τ ) + (∇ · τ + f , v).

Here HS
N (div; Ω)d denotes the space of square-integrable symmetric tensors with

square-integrable divergence and homogeneous normal on ΓN . Equivalently, (σ, u)
satisfies the following weak formulation:

(Aσ, τ ) + (u, ∇ · τ ) + (∇ · σ, v) = (−f , v) ∀ (τ , v) ∈ HS
N (div; Ω)d × L2(Ω)d.

Numerical methods based on this formulation require a stable combination of finite
element spaces to approximate the stress and the displacement. Known stable mixed
elements are very limited and have a large number of degrees of freedom. In addition,
the resulting indefinite algebraic system is still difficult and expensive to solve. In
this paper, we study the third approach based on the least-squares principle that
automatically stabilizes the stress-displacement system (see section 3).

We complete this section by deriving the pure displacement formulation and de-
scribing some regularity estimates. To this end, eliminating the stress in system (2.5)–
(2.6) yields the pure displacement formulation which satisfies the following second-
order elliptic partial differential system:⎧⎪⎪⎨⎪⎪⎩

2µ∇ · ε(u) + λ∇(∇ · u) = −f in Ω,

u = 0 on ΓD,

n · (2µ ε(u) + λ (∇ · u) δ) = 0 on ΓN ,

(2.7)

where ∇ stands for the gradient operator. The energy norm associated with the above
problem is defined as follows:

|||v||| =
(
2µ ‖ε(v)‖2 + λ ‖∇ · v‖2

) 1
2 .(2.8)

By using Korn’s inequality (see [14]),

‖v‖1 ≤ C ‖ε(v)‖ ∀ v ∈ H1
D(Ω)d,(2.9)

the energy norm is equivalent to the H1 norm for a fixed λ. In this paper, we use
C with or without subscripts to denote a generic positive constant, possibly different
at different occurrences, which is independent of the Lamé constant λ and the mesh
size h introduced in section 4 but may depend on the domain Ω. Note that one could
scale the variables and the right-hand side accordingly so that µ is equal to one. We
will frequently use the term uniform in reference to a relation to mean that it holds
independent of λ and h.
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The weak form of boundary value problem (2.7) has a unique solution u ∈ H1
D(Ω)d

for any f ∈ H−1
D (Ω)d (see [14]). Moreover, the solution satisfies the following H1-

regularity estimate (see, e.g., [8, 14]):

‖u‖1 + λ ‖∇ · u‖ ≤ C ‖f‖−1,D.(2.10)

Furthermore, if the domain Ω is convex or its boundary is C1, 1 and if either ΓD or
ΓN is empty, then the H2-regularity estimate

‖u‖2 + λ ‖∇ · u‖1 ≤ C ‖f‖(2.11)

holds. Both the regularity estimates in (2.10) and (2.11) suggest that the divergence
of the displacement has a different scale from the displacement itself for large λ.

3. Least-squares variational formulation. In this section, we first discuss
an appropriate stress-displacement formulation and then consider the corresponding
least-squares functionals based on such a first-order system. Our primary objective
here is to establish continuity and ellipticity of these least-squares functionals in the
appropriate Hilbert spaces.

It is convenient to view d× d-matrices as d2-vectors and vice versa. For example,
view (σij)d×d as (σ1, . . . ,σd)

t, where σj = (σj1, . . . , σjd) is the jth row of (σij)d×d
for j = 1, . . . , d. Let

b =

{
(1, 0, 0, 1)t d = 2,
(1, 0, 0, 0, 1, 0, 0, 0, 1)t d = 3,

which may be viewed as the d×d identity matrix Id×d or the identity tensor δ. Thus,

trσ = tr (σij)d×d =

d∑
i=1

σii = bt

⎛⎜⎝ σt1
...
σtd

⎞⎟⎠ = btσ.

By viewing a d × d-matrix as a d2-vector, we can then write the fourth-order
elasticity tensor as d2 × d2-matrix

C = λbbt + 2µ I.

It is clear that C is symmetric and that C is positive definite for finite λ. The compli-
ance tensor has the form

A =
1

2µ

(
I − λ

dλ+ 2µ
bbt

)
.(3.1)

Note that A = C−1 for finite λ. When the λ approaches ∞, the elasticity tensor blows
up and the compliance tensor tends to

1

2µ

(
I − 1

d
bbt

)
≡ 1

2µ
dev,(3.2)

which is not invertible. For any tensor τ , devτ = τ − 1
d (trτ )δ is the deviatoric part

of τ . Hence, for nearly incompressible or incompressible materials, it is preferable to
use the following strain and stress relation:

ε(u) = Aσ =
1

2µ

(
σ − λ

dλ+ 2µ
(trσ)δ

)
.(3.3)
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Now, the first-order system for the stress and the displacement of linear elasticity is
as follows: { Aσ − ε(u) = 0 in Ω,

∇ · σ + f = 0 in Ω
(3.4)

with boundary conditions (2.6), where A is given in (3.1).
It is important to note that the stress is symmetric; i.e.,

σ − σt = 0,(3.5)

where σt denotes the transpose of σ as a d×d-matrix. One can impose this symmetry
condition either in the solution space (in a strong sense) or in the equation (in a weak
sense). In [12], we augment (3.5) with the stress-displacement system so that our
least-squares methods have freedom to treat it either strongly or weakly depending
on discretization and solution methods. In [10], we show that the symmetry constraint
of the stress is enforced at the continuous level even without the term ‖σ−σt‖2 in the
least-squares functionals. This is because for any τ ∈ L2(Ω)d×d and any v ∈ H1(Ω)d,
we have

‖τ − τ t‖ ≤ C ‖A τ − ε(v)‖.(3.6)

Thus, A τ − ε(v) = 0 implies that τ is symmetric. Therefore, we will apply the least-
squares principle to first-order system (3.4) without augmenting (3.5). Inequality
(3.6) follows from the symmetry of ε(v), (3.1), and the triangle inequality that

‖τ − τ t‖ = 2µ

∥∥∥∥∥
(

1

2µ
τ − ε(v)

)
−
(

1

2µ
τ − ε(v)

)t∥∥∥∥∥
= 2µ ‖ (A τ − ε(v)) − (A τ − ε(v))

t ‖ ≤ 4µ ‖A τ − ε(v)‖.
Before defining least-squares functionals, let us first describe solution spaces. If

ΓN = ∅, then
∫
Ω
∇ · u dx =

∫
∂Ω

n · u ds = 0, which implies∫
Ω

trσ dx = 0.

Therefore, we are at liberty to impose such a condition for the stress σ. Let

X =

{
H(div; Ω)d if ΓN 	= ∅,
{τ ∈ H(div; Ω)d | ∫

Ω
trσ dx = 0} otherwise,

and denote its subspace by

XN = {τ ∈ X : n · τ = 0 on ΓN}.
Let

VB = XN ×H1
D(Ω)d.

For f ∈ L2(Ω)d, we define the following least-squares functionals:

G−1(σ, u ; f) = ‖Aσ − ε(u)‖2 + ‖∇ · σ + f‖2
−1,D(3.7)
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and

G(σ, u ; f) = ‖Aσ − ε(u)‖2 + ‖∇ · σ + f‖2(3.8)

for (σ, u) ∈ VB . Least-squares variational problems for the stress-displacement of
linear elasticity are then to minimize the above least-squares functionals over VB .
In this paper, we concentrate on the least-squares problem based on the L2 norm
functional in (3.8): find (σ, u) ∈ VB such that

G(σ, u ; f) = inf
(τ ,v)∈VB

G(τ , v ; f).(3.9)

Note that the inverse norm functional in (3.7) can be used to develop a discrete inverse
norm least-squares method (see [7]) as well.

Remark 3.1. Since the minimum of the quadratic functional G(σ, u ; f) is zero,
by (3.6) the symmetry of the stress tensor is guaranteed by the first term of the func-
tional, i.e., the constitutive equation.

Remark 3.2. The least-squares functionals defined in (3.7) and (3.8) differ

from those in [12, 10] mainly in the first term with an extra weight of C− 1
2 . More

precisely, the first term of the functionals in [12, 10] is ‖C− 1
2σ−C 1

2 ε(u)‖2. Note that

‖C 1
2 ε(u)‖2 = λ ‖∇u‖2 + 2µ ‖ε(u)‖2. This means that the least-squares variational

problems in [12, 10] do not apply for incompressible materials and require effective
discretizations and efficient solvers for the pure displacement problem when materials
are nearly incompressible.

Below we establish uniform continuity and ellipticity (i.e., equivalence) of the ho-
mogeneous functionals G−1(τ , v; 0) and G(τ , v; 0) in terms of the respective func-
tionals M−1(τ , v) and M(τ , v) defined on VB by

M−1(τ , v) = ‖ε(v)‖2 + ‖τ‖2

and

M(τ , v) = ‖ε(v)‖2 + ‖τ‖2 + ‖∇ · τ‖2.

To do so, we need the following fundamental inequality on the trace of XN :

‖tr τ‖ ≤ C
(√

(A τ , τ ) + ‖∇ · τ‖−1,D

)
∀ τ ∈ XN ,(3.10)

where C is a positive constant independent of λ. This inequality should be a classic
result. But the only references that we know for its proof are [1] for two dimensions
and Dirichlet boundary conditions (i.e., d = 2 and ΓN = ∅) and [12] for both two and
three dimensions and general boundary conditions. Note that

(A τ , τ ) =
1

2µ

(
‖τ‖2 − λ

dλ+ 2µ
‖tr τ‖2

)
=

1

2µ
‖dev τ‖2 +

1

d(dλ+ 2µ)
‖tr τ‖2,(3.11)

where dev τ and tr τ are the respective deviatoric and volumetric parts of τ . It is
then obvious that the divergence term in (3.10) is necessary to bound the L2 norm of
the trace. From the definition of the inverse norm and the Cauchy–Schwarz inequality,
we have that

‖∇ · τ‖−1, D ≤ ‖τ‖.(3.12)
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By (3.10), (3.11), and (3.12) it is easy to see that

‖τ‖a ≡ ((A τ , τ ) + ‖∇ · τ‖2
−1, D

) 1
2

is equivalent to the L2 norm; i.e., there exists a positive constant C independent of λ
such that

1

C
‖τ‖2 ≤ ‖τ‖2

a ≤ C ‖τ‖2 ∀ τ ∈ XN .(3.13)

Theorem 3.1. The homogeneous functionals G−1(τ , v; 0) and G(τ , v; 0) are
uniformly equivalent to the functionals M−1(τ , v) and M(τ , v), respectively; i.e.,
there exist positive constants C1 and C2, independent of λ, such that

1

C1
M−1(τ , v) ≤ G−1(τ , v ; 0) ≤ C1M−1(τ , v)(3.14)

and

1

C2
M(τ , v) ≤ G(τ , v ; 0) ≤ C2M(τ , v)(3.15)

hold for all (τ , v) ∈ VB.
Proof. It follows from (3.1) that

‖A τ‖2 =

(
1

2µ

)2
(
‖τ‖2 − 2λ

dλ+ 2µ
‖tr τ‖2 + d

(
λ

dλ+ 2µ

)2

‖tr τ‖2

)

=

(
1

2µ

)2(
‖τ‖2 − λ (dλ+ 4µ)

(dλ+ 2µ)2
‖tr τ‖2

)
≤
(

1

2µ

)2

‖τ‖2.

Thus, A τ is bounded above by τ in the L2 norm:

‖A τ‖ ≤ 1

2µ
‖τ‖.(3.16)

The upper bounds in both (3.14) and (3.15) follow easily from the triangle inequality,
(3.16), and (3.12). To show the validity of the lower bound in (3.14), we first prove
that τ in the L2 norm is bounded above by the homogeneous functional:

‖τ‖2 ≤ C G−1(τ , v ;0) ∀ (τ , v) ∈ VB .(3.17)

To this end, by the triangle inequality and (3.16) we have

‖ε(v)‖ ≤ ‖ε(v) −A τ‖ + ‖A τ‖ ≤ ‖ε(v) −A τ‖ +
1

2µ
‖τ‖.(3.18)

Since ε(v) = 1
2 (∇v + (∇v)t) is symmetric, then integration by parts; the triangle,

Cauchy–Schwarz, and Korn inequalities; and (3.6) give

|(τ , ε(v))| =

∣∣∣∣(τ , ∇v) −
(
τ − τ t

2
, ∇v

)∣∣∣∣ = ∣∣∣∣(∇ · τ , v) +

(
τ − τ t

2
, ∇v

)∣∣∣∣
≤
(
‖∇ · τ‖−1, D +

∥∥∥∥τ − τ t
2

∥∥∥∥) ‖v‖1

≤ C (‖∇ · τ‖−1, D + ‖A τ − ε(v)‖) ‖ε(v)‖,
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which, together with (3.18), implies that

|(τ , ε(v))| ≤ C G−1(τ , v ;0) + C G−1(τ , v ;0)
1
2 ‖τ‖,(3.19)

where G−1(τ , v ;0)
1
2 denotes the square root of G−1(τ , v ;0). Now, it follows from

the Cauchy–Schwarz inequality, (3.19), and (3.13) that

(A τ , τ ) = (A τ − ε(v), τ ) + (ε(v), τ )

≤ ‖A τ − ε(v)‖ ‖τ‖ + C G−1(τ , v ;0) + C G−1(τ , v ;0)
1
2 ‖τ‖

≤ C G−1(τ , v ;0) + C G−1(τ , v ;0)
1
2

(
(A τ , τ ) + ‖∇ · τ‖2

−1, D

) 1
2

≤ C G−1(τ , v ;0) + C G−1(τ , v ;0)
1
2 (A τ , τ )

1
2 .

Hence,

(A τ , τ ) ≤ C G−1(τ , v ;0),

which, together with (3.13), implies the validity of (3.17). With (3.18) and (3.17), it
is then easy to see that ‖ε(v)‖2 is also bounded above by the homogeneous functional
G−1(τ , v ;0). This completes the proof of the lower bound in (3.14). Since

G−1(τ , v ; 0) ≤ G(τ , v ; 0) and ‖∇ · τ‖2 ≤ G(τ , v ; 0),

then the lower bound in (3.15) follows from (3.14). The proof of the theorem is
therefore completed.

4. Finite element approximation. We approximate the minimum of the least-
squares functionalG(σ,u; f) in (3.9) using a Rayleigh–Ritz type finite element method.
For convenience, we use two-dimensional terminology (d = 2). Assuming that the do-
main Ω is a polygon, let Th be a triangulation of Ω with triangular elements of size
O(h) that is regular (see [13]). We restrict ourselves to triangular elements for con-
venience because extension to either rectangular or a combination of triangular and
rectangular elements is straightforward.

Since the homogeneous functional G(σ, u ;0) is equivalent to the H(div; Ω) norm
for the stress and the H1 norm for the displacement by Theorem 3.1 and Korn’s
inequality (2.9), it is then natural to approximate the stress (each row) by the standard
H(div; Ω) conforming Raviart–Thomas space of order k (see [20]) and the standard
(conforming) continuous piecewise polynomials of degree k + 1 for the displacement:

Σkh = {τ ∈ XN : τ |K ∈ RTk(K)2 ∀K ∈ Th} ⊂ XN ,(4.1)

V kh = {v ∈ C0(Ω)2 : v|K ∈ Pk(K)2 ∀K ∈ Th, v = 0 on ΓD} ⊂ H1
D(Ω)2,(4.2)

where RTk(K) is local Raviart–Thomas space of order k defined by

RTk(K) = Pk(K)2 +

(
x1

x2

)
Pk(K),

and Pk(K) is the space of polynomials of degree k on triangle K. These spaces have
the following approximation properties: if k ≥ 0 is an integer and l ∈ (0, k + 1], then

inf
τ∈Σk

h

‖σ − τ‖H(div; Ω) ≤ C hl (‖σ‖l + ‖∇ · σ‖l)(4.3)
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for σ ∈ H l(Ω)2×2 ∩ XN with ∇ · σ ∈ H l(Ω)2, and

inf
u∈V k+1

h

‖u − v‖1 ≤ C hl ‖u‖l+1(4.4)

for u ∈ H l+1(Ω)2 ∩H1
D(Ω)2.

The finite element approximation for minimizing G(σ, u; f) in (3.9) on VB be-
comes: find (σh, uh) ∈ Σkh × V k+1

h such that

G(σh, uh; f) = min
(τ ,v)∈Σk

h×V k+1
h

G(τ , v; f).(4.5)

By Theorem 3.1, (2.9), and the fact that Σkh×V k+1
h is a subspace of VB , we conclude

that (4.5) has a unique solution and is equivalent to the weak form: find (σh, uh) ∈
Σkh × V k+1

h such that

F(σh, uh; τ , v) = (−f , ∇ · τ ) ∀ (τ , v) ∈ Σkh × V k+1
h ,(4.6)

where the bilinear form F(· ; ·) has the form of

F(σh, uh; τ , v) = (Aσh − ε(uh), A τ − ε(v)) + (∇ · σh, ∇ · τ ).

Moreover, the error (σ − σh, u − uh) satisfies the orthogonality property

F(σ − σh, u − uh; τ , v) = 0 ∀ (τ , v) ∈ Σkh × V k+1
h .(4.7)

Theorem 4.1. Assume that the solution, (σ, u), of (3.9) is in H l(Ω)2×2 ×
H l+1(Ω)2 and that the divergence of the stress, ∇ · σ, is in H l(Ω)2. Let k + 1 be the
smallest integer greater than or equal to l. Then with (σh, uh) ∈ Σkh × V k+1

h , the
following error estimate holds:

‖σ − σh‖H(div; Ω) + ‖u − uh‖1 ≤ C hl(‖σ‖l + ‖∇ · σ‖l + ‖u‖l+1).(4.8)

Proof. The proof is a simple consequence of the orthogonality property (4.7)
and the approximation properties (4.3) and (4.4) of the finite element spaces Σkh ×
V k+1
h .

Theorem 3.1 indicates that the bilinear form F(· ; ·) is elliptic and continuous with
respect to the H(div; Ω) norm for the stress and the H1 norm for the displacement.
It is then well known that multigrid methods applied to the resulting discrete system
(4.6) are optimally convergent (see, e.g., [16, 2, 17, 23]).

It is obvious that the finite element approximation in (4.5) does not preserve
the symmetry of the stress. But the finite element approximation of the stress is
approximately symmetric. Moreover, one can obtain symmetric stress approximation
with the same accuracy as σh by simply computing

σ̃h =
1

2

(
σh + σth

)
.(4.9)

It should also be noted that many mixed finite element approaches commonly used
produce stress approximations which do not satisfy symmetry exactly (cf. [9, sect.
VII.2]).

Corollary 4.2. Under the assumptions of Theorem 4.1, we have that

‖σh − σth‖ ≤ C hl (‖σ‖l + ‖∇ · σ‖l + ‖u‖l+1)(4.10)
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and that

‖σ − σ̃h‖ ≤ C hl (‖σ‖l + ‖∇ · σ‖l + ‖u‖l+1) .(4.11)

Proof. Since the stress σ is symmetric, by the triangle inequality we have that

‖σh − σth‖ = ‖(σ − σh) − (σ − σh)t‖ ≤ 2‖σ − σh‖

and that

‖σ − σ̃h‖ =

∥∥∥∥1

2
(σ − σh) +

1

2
(σ − σh)t

∥∥∥∥ ≤ ‖σ − σh‖.

Now, (4.10) and (4.11) follow from the error bound in (4.8).
Nevertheless, there may be a possible reluctance in the engineering community

to accept nonsymmetric stress approximation since the symmetry is due to the con-
servation of angular momentum. In order to directly preserve the symmetry of finite
element approximations to the stress tensor, one may enforce the symmetry constraint
in the finite element approximation space. To this end, let Xs

N denote the symmetric
stress space,

Xs
N = {τ ∈ XN | τ t = τ in Ω}.

A simple and obvious choice is to use continuous piecewise polynomials of degree k
for each component of the symmetric stress:

Σk,sh = {τ ∈ C0(Ω)2×2 ∩ Xs
N : τ |K ∈ Pk(K)2×2 ∀K ∈ Th} ⊂ Xs

N .(4.12)

This space has the following approximation property: if k ≥ 1 is an integer and
l ∈ (0, k], then

inf
τ∈Σk,s

h

‖σ − τ‖H(div; Ω) ≤ C hl ‖σ‖l+1(4.13)

for σ ∈ H l+1(Ω)2∩XN . Now, the least-squares finite element approximation problem

is to minimize G over Σk,sh × V kh : find (σh, uh) ∈ Σk,sh × V kh such that

G(σh, uh ; f) = inf
(τ ,v)∈Σk,s

h ×V k
h

G(τ , v ; f).(4.14)

It is easy to see that (4.14) has a unique solution (σh, uh), that σh is symmetric, and
that σh has the following error bound:

‖σ − σh‖H(div; Ω) + ‖u − uh‖1 ≤ C hl (‖σ‖l+1 + ‖u‖l+1)(4.15)

if the solution, (σ, u), of (3.9) is in H l+1(Ω)2×2 ×H l+1(Ω)2. Note that this estimate
is not optimal in the regularity of the displacement. Nevertheless, the nodal elements
Σk,sh have many fewer local average degrees of freedom than the Raviart–Thomas
elements Σkh. Developing a better finite element space of the symmetric stress will be
a topic of our further study.
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5. Weakly imposed boundary conditions. In previous sections, boundary
conditions are imposed in the solution space. This leads to least-squares finite element
approximations that are much more accurate on the boundary than in the interior
of the domain. In the context of the least-squares method, it is natural to treat
boundary conditions weakly through boundary functionals. For many applications,
this is also convenient. In this section, we study a least-squares functional with
boundary terms minimized over a solution space free of boundary conditions. We
focus on establishing continuity and ellipticity of this functional here. See [21] for
the development of computable finite element approximations and the corresponding
iterative solvers based on this functional.

Assume the following nonhomogeneous boundary conditions:

u = g on ΓD and n · σ = h on ΓN .(5.1)

Let

V = X ×H1(Ω)d,

and for g ∈ H1/2(ΓD) and h ∈ H−1/2(ΓN ) define the least-squares functional as
follows:

G̃(σ, u; f ,g,h) = ‖Aσ − ε(u)‖2 + ‖∇ · σ + f‖2

+ ‖u − g‖2
1
2 ,ΓD

+ ‖n · σ − h‖2
− 1

2 ,ΓN

(5.2)

for (σ, u) ∈ V. The least-squares variational problem is then to minimize G̃ over V:
find (σ, u) ∈ V such that

G̃(σ, u ; f , g, h) = inf
(τ ,v)∈V

G̃(τ , v ; f , g, h).(5.3)

To establish the continuity and ellipticity of the homogeneous least-squares func-
tional G̃(u, σ ; 0, 0, 0) in V, we need the trace inequalities (see [15])

‖u‖ 1
2 , ∂Ω ≤ ‖u‖1 ∀ u ∈ H1(Ω),

‖n · v‖− 1
2 , ∂Ω ≤ ‖v‖H(div; Ω) ∀ v ∈ H(div; Ω)

and the generalized Korn inequality

‖v‖1 ≤ C (‖ε(v)‖ + ‖v‖0,ΓD
) ∀ v ∈ H1(Ω)d.(5.4)

Theorem 5.1. The homogeneous functional G̃(τ , v ; 0, 0, 0) is uniformly equiv-
alent to the functional M(v, τ ); i.e., there exists a positive constant C independent
of λ such that

1

C
M(τ , v) ≤ G̃(τ , v ; 0,0,0) ≤ CM(τ , v)(5.5)

holds for all (τ , v) ∈ V.
Proof. The upper bound in (5.5) follows easily from the triangle inequality, (3.16),

and trace inequalities. The proof of the lower bound in (5.5) is the same as that for
Theorem 3.1 except the proof on the upper bound of |(τ , ε(v))|. This is because v
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and n · τ do not satisfy any boundary conditions and our new functional has extra
boundary terms. Therefore, it suffices to show that

|(τ , ε(v))| ≤ C G̃(τ , v ;0,0,0) + C G̃(τ , v ;0,0,0)
1
2 ‖τ‖.(5.6)

To this end, the triangle, Cauchy–Schwarz, and generalized Korn inequalities give∣∣∣∣∫
∂Ω

v · (n · τ) ds∣∣∣∣ = ∣∣∣∣∫
ΓD

v · (n · τ) ds+

∫
ΓN

v · (n · τ) ds∣∣∣∣
≤ ‖v‖ 1

2 ,ΓD
‖n · τ‖− 1

2 ,ΓD
+ ‖v‖ 1

2 ,ΓN
‖n · τ‖− 1

2 ,ΓN

≤ ‖v‖ 1
2 ,ΓD

‖τ‖H(div; Ω) + ‖v‖1 ‖n · τ‖− 1
2 ,ΓN

.

Now, it follows from the symmetry of ε(v); integration by parts; the triangle, Cauchy–
Schwarz, and generalized Korn inequalities; and (3.6) that

|(τ , ε(v))| =

∣∣∣∣(τ , ∇v) −
(
τ − τ t

2
, ∇v

)∣∣∣∣
=

∣∣∣∣(∇ · τ , v) −
∫
∂Ω

v · (n · τ) ds+

(
τ − τ t

2
, ∇v

)∣∣∣∣
≤
(
‖∇ · τ‖ +

∥∥∥∥τ − τ t
2

∥∥∥∥) ‖v‖1 + ‖v‖ 1
2 ,ΓD

‖τ‖H(div; Ω) + ‖v‖1 ‖n · τ‖− 1
2 ,ΓN

≤ C
(
‖∇ · τ‖ + ‖A τ − ε(v)‖ + ‖n · τ‖− 1

2 ,ΓN

)
(‖ε(v)‖ + ‖τ‖) + ‖v‖ 1

2 ,ΓD
‖∇ · τ‖,

which, together with (3.18), implies (5.6) and, hence, the theorem.

6. Numerical results. In this section, numerical results for a benchmark prob-
lem of linear elasticity taken from [22] are presented. The problem to be considered is
given by a quadratic membrane of elastic isotropic material with a circular hole in the
center. Traction forces act on the upper and lower edges of the strip. Because of the
symmetry of the domain, it suffices to discretize only a fourth of the total geometry.
The computational domain is then given by

Ω = {x ∈ �2 : 0 < x1 < 10, 0 < x2 < 10, x2
1 + x2

2 > 1}
(see Figure 6.1). The boundary conditions on the top edge of the computational
domain (x2 = 10, 0 < x1 < 10) are set to σ · n = 4.5, the boundary conditions on
the bottom (x2 = 0, 1 < x1 < 10) are set to (σ11, σ12) · n = 0, u2 = 0 (symmetry
condition), and, finally, the boundary conditions on the left (x1 = 0, 1 < x2 < 10) are
given by u1 = 0, (σ21, σ22) ·n = 0 (symmetry condition). The material parameters are
E = 206900 for Young’s modulus and ν = 0.29 for Poisson’s ratio, and their relation
with the Lamé constants is given by

λ =
E ν

(1 + ν)(1 − 2ν)
and µ =

E

2(1 + ν)
.

Obviously, the definition of the functional in (3.8) implies

G(σh,uh; f) =
∑
K∈Th

(‖A σh − ε(uh)‖2
0,K + ‖∇ · σh + f‖2

0,K

)
=:

∑
K∈Th

GK(σh,uh; f) .
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� � � � � � � �

............
.............
.................

...........................

Fig. 6.1. Computational domain and boundary conditions.

Table 6.1

Adaptive finite element approximation (k = 1, ν = 0.29).

# elements dim Σ1
h dim V 2

h Functional (σh)22(1, 0)
l = 0 52 504 224 2.56e-1 9.8830
l = 1 115 1130 480 3.78e-2 12.5226
l = 2 243 2400 1002 7.61e-2 13.4090
l = 3 511 5058 2096 1.62e-3 13.7213
l = 4 1069 10600 4366 4.82e-3 13.8259
l = 5 2164 21468 8828 1.21e-4 13.8630
l = 6 4384 43532 17844 3.51e-5 13.8771
l = 7 8678 86190 35302 9.20e-6 13.8912
l = 8 17152 170398 69730 2.59e-6 13.8884

Due to the equivalence (3.15), the local contributions GK(σh,uh; f) to the least-

squares functional constitute an a posteriori error estimator to be used for adaptive
refinement (cf. [5]). The results in Table 6.1 are computed on a sequence of adaptively
refined meshes based on this error estimator. In each refinement step those triangles
with the largest values of GK(σh,uh; f) (roughly 25 percent) were refined regularly
(by dividing each into four congruent subtriangles). The Raviart–Thomas spaces of
order one for the stress approximation are coupled with standard quadratic conforming
elements for the displacement (Σ1

h × V 2
h in the terminology of section 4).

Table 6.1 provides a strong indication that the minimum of the functional is
inversely proportional to the square of the number of degrees of freedom:

Fh(σh,uh) ∼ 1

(dim Σ1
h + dim V 2

h )2
.

This is the optimal asymptotic convergence rate achievable with piecewise quadratic
finite elements. Of particular interest in this example is the stress component σ22

at the point (1, 0). The size of this stress component is responsible for failure of the
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Fig. 6.2. Initial triangulation and result after three adaptive refinement steps.
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Fig. 6.3. Adaptive finite element approximation for k = 1 (ν = 0.29, 0.5).

material at this point. For ν = 0.29 the value of σ22(1, 0) = 13.8873 is given in [22]
for a reference solution computed by a polynomial approximation of high degree. The
corresponding column in Table 6.1 shows the convergence of the solutions obtained
with our least-squares approach to that reference value as the mesh is refined. The
initial triangulation and the result of three adaptive refinement steps are shown in
Figure 6.2.

The robustness with respect to the incompressible limit can be seen in the doubly
logarithmic convergence graphs in Figure 6.3. In addition to the numbers of Table 6.1,
the results for the incompressible limit (ν = 0.5) are shown in Figure 6.3.
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NEWTONIAN FLUID FLOW: LINEAR STATIONARY PROBLEMS∗
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Abstract. This paper develops and analyzes two least-squares methods for the numerical so-
lution of linear, stationary incompressible Newtonian fluid flow in two and three dimensions. Both
approaches use the L2 norm to define least-squares functionals. One is based on the stress-velocity
formulation (see section 3.2), and it applies to general boundary conditions. The other is based on
an equivalent formulation for the pseudostress and velocity (see section 4.2), and it applies to pure
velocity Dirichlet boundary conditions. The velocity gradient and vorticity can be obtained alge-
braically from this new tensor variable. It is shown that the homogeneous least-squares functionals
are elliptic and continuous in the H(div; Ω)d × H1(Ω)d norm. This immediately implies optimal
error estimates for conforming finite element approximations. As well, it admits optimal multigrid
solution methods if Raviart–Thomas finite element spaces are used to approximate the stress or the
pseudostress tensor.

Key words. least-squares method, mixed finite element method, Navier–Stokes, Stokes, incom-
pressible Newtonian flow
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1. Introduction. For incompressible Newtonian fluid flow with homogeneous
density, the primitive physical equations are the conservation of momentum and the
constitutive law. The constitutive law relates the stress tensor to the deformation rate
tensor and pressure, and it states the incompressibility condition. It is a first-order
partial differential system for the physical variables stress, velocity, and pressure.
By differentiating and eliminating the stress, one obtains the well-known second-
order incompressible Navier–Stokes equations in the velocity-pressure formulation. A
tremendous amount of computational research has been done on this second-order
partial differential system (see, e.g, mathematical books [17, 18]), but these equations
may still be one of the most challenging problems in computational fluid mechanics
and computational mathematics.

In recent years there has been substantial interest in the use of least-squares prin-
ciples for the numerical approximation of Newtonian fluid flow problems (see, e.g.,
the survey paper [5], the monograph [21], and references therein). In particular, there
are many research articles in both the mathematics and engineering communities
on least-squares methods for the stationary Stokes equations (see [5]). Specifically,
least-squares methods based on five first-order partial differential systems have been
proposed, analyzed, implemented, and tested. These five first-order systems are for-
mulations for variables (i) velocity, vorticity, and pressure [5, 21], (ii) velocity, pres-
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sure, and “stress” [4], (iii) velocity, velocity gradient, and pressure [11], (iv) velocity,
velocity gradient, and pressure with additional constraints [11], and (v) constrained
velocity gradient and pressure [15]. The new “stress” variable in (ii) is actually the
deformation rate tensor and not the physical stress. Least-squares methods based on
the first three formulations employ either discrete inverse norms (see [10, 7]) or mesh-
weighted L2 norms (see [3]) in order to achieve optimal finite element approximations.
The inverse norm approach is very expensive due to its discrete inverse norm evalu-
ations, and fast multigrid solvers are still a missing ingredient for the mesh-weighted
L2 norm approaches. If the original problem is sufficiently smooth, methods based
on the last two formulations are equivalent to the H1 norm. Such equivalence implies
optimal finite element approximations and optimal convergence of multigrid solvers.
But the smoothness requirement is restrictive.

A common feature of all these formulations is that they do not involve the prim-
itive physical equations. Based on the velocity-pressure formulation of the Stokes
equations, they are derived by introducing new variables such as vorticity in (i),
“stress” in (ii), velocity gradient in (iii) and (iv), and constrained velocity gradient in
(v). Some of these new variables have physical meanings, but they are not original
physical quantities of interest.

The first objective of this paper is to develop a new least-squares method that
does not have the above mentioned drawbacks and that computes the original phys-
ical quantities directly. For linear, stationary problems of incompressible Newtonian
fluid flow, our least-squares method is based directly on the primitive first-order par-
tial differential system: the stress-velocity-pressure formulation, without introducing
any new variables nor any new equations. We define the least-squares functional by
applying a L2 norm least-squares principle to this first-order system. It is shown that
the homogeneous least-squares functional is elliptic and continuous in the H(div; Ω)d

norm for the stress, the H1(Ω)d norm for the velocity, and the L2 norm for the pres-
sure. This immediately implies optimal error estimates for conforming finite element
approximations in H(div; Ω)d × H1(Ω)d × L2(Ω). It also admits optimal multigrid
solution methods if Raviart–Thomas finite element spaces are used to approximate
the stress tensor. Both discretization accuracy and multigrid convergence rates are
uniform in the viscosity parameter.

Since the pressure can be represented in terms of the normal stress and since
the stress is an independent variable in the first-order system, the pressure can be
eliminated from the first-order system. By replacing the pressure with the normal
stress, we derive the stress-velocity formulation for incompressible Newtonian fluid
flow. We can then define the corresponding least-squares method and show identi-
cal numerical properties to those of the stress-velocity-pressure formulation, since the
stress-velocity formulation is a special case of the stress-velocity-pressure formulation.
It is important to note that, mathematically, the stress-velocity formulation for lin-
ear, stationary problems of incompressible Newtonian fluid flow is the limiting case of
the stress-displacement formulation for elastic problems when 2µ = ν. This indicates
that this paper, together with [14], develops a unified least-squares approach for both
elastic solids and incompressible Newtonian fluids with respect to spatial discretiza-
tion and fast solution solvers, even though the variables and materials have different
physical meanings. Hence, our method can be extended to problems coupling elastic
deformation with fluid flow.

Many applications in incompressible Newtonian fluid flow do not have traction
boundary conditions. It is then not necessary to use the stress as an independent
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variable. This is especially true because the stress does not contain any informa-
tion on the vorticity that is a physical quantity of great interest in fluid mechanics.
Thus, for pure velocity Dirichlet boundary conditions, we define a new independent
variable, pseudostress, in terms of the velocity gradient and pressure, and then de-
rive an equivalent first-order system containing the pseudostress and velocity. The
pressure, the velocity gradient, and, hence, the vorticity are expressed in terms of
the pseudostress. The L2 norm least-squares functional based on this first-order sys-
tem is again shown to be elliptic and continuous in the H(div; Ω)d ×H1(Ω)d norm.
Hence, Raviart–Thomas finite elements for the pseudostress and standard continuous
piecewise polynomials for the velocity yield optimal approximation, and the resulting
algebraic equations can be solved with optimal multigrid methods.

For completeness, we also study inverse norm least-squares functionals and show
that their homogeneous forms are elliptic and continuous in appropriate Hilbert
spaces. These functionals can be used to develop discrete inverse norm least-squares
methods (see, e.g., [6]). Also, for many applications, it is convenient to impose bound-
ary conditions weakly through boundary functionals. Such functionals are also studied
in this paper (see section 4.5). (See [23] for the computational feasibility of methods
based on these types of functionals.)

Least-squares methods developed in this paper for linear, stationary problems can
be easily extended to nonlinear incompressible Newtonian flows, at least in principle.
One can simply include an appropriate form of the nonlinear convection term in the
residual of the momentum equations. Possible choices for this form can (1) involve
only the velocity or (2) involve the (pseudo-) stress which replaces the velocity gradi-
ent. Mathematical analysis for least-squares methods applied to nonlinear problems
is much more difficult, but it still can be established using the abstract theory of [9].
Formulations of our methods can be easily extended to incompressible non-Newtonian
flows as well: only a simple modification is needed in the constitutive equation.

An outline of the paper is as follows. In section 2, the stress-velocity-pressure
formulation for incompressible Newtonian fluid flow problems and the corresponding
linear, stationary problems are introduced, as well as some notation and the Stokes
equations. In section 3, least-squares functionals based on the stress-velocity-pressure
and stress-velocity formulations are developed, their ellipticity and continuity are
established, and finite element approximations and multigrid solvers are discussed. In
section 4, least-squares methods for pure Dirichlet boundary conditions are developed.

1.1. Notation. We use the standard notation and definitions for the Sobolev
spaces Hs(Ω)d and Hs(∂Ω)d for s ≥ 0. The standard associated inner products are
denoted by (·, ·)s,Ω and (·, ·)s,∂Ω, and their respective norms are denoted by ‖ · ‖s,Ω
and ‖ · ‖s,∂Ω. (We suppress the superscript d because the dependence on dimension
will be clear by context. We also omit the subscript Ω from the inner product and
norm designation when there is no risk of confusion.) For s = 0, Hs(Ω)d coincides
with L2(Ω)d. In this case, the inner product and norm will be denoted by ‖ · ‖ and
(·, ·), respectively. Set H1

D(Ω) := {q ∈ H1(Ω) : q = 0 on ΓD}. We denote the duals

of H1
D(Ω) and H

1
2 (∂Ω) by H−1

D (Ω) and H− 1
2 (∂Ω) with norms defined by

‖φ‖−1, D = sup
0 �=ψ∈H1

D
(Ω)

(φ, ψ)

‖ψ‖1
and ‖φ‖−1/2, ∂Ω = sup

0 �=ψ∈H 1
2 (∂Ω)

(φ, ψ)

‖ψ‖1/2,∂Ω
.

When D = ∂Ω, we denote the dual of H1
0 (Ω) = H1

D(Ω) and its norm by H−1
0 (Ω)

and ‖ · ‖−1, 0, respectively. When D is empty, the dual of H1(Ω) and its norm are
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denoted by the respective H−1(Ω) and ‖ · ‖−1. Also, we denote the product space∏d
i=1H

−1
D (Ω) with the standard product norm by H−1

D (Ω)d. Finally, set

H(div; Ω) = {v ∈ L2(Ω)2 : ∇ · v ∈ L2(Ω)},
which is a Hilbert space under the norm

‖v‖H(div; Ω) =
(‖v‖2 + ‖∇ · v‖2

) 1
2 ,

and define the subspace

HN (div; Ω) = {v ∈ H(div; Ω) : n · v = 0}.
2. Mathematical equations for incompressible Newtonian fluid flow.

Let Ω be a bounded, open, connected subset of �d (d = 2 or 3) with a Lipschitz
continuous boundary ∂Ω. Denote the outward unit vector normal to the boundary
by n = (n1, . . . , nd)

t. We partition the boundary of Ω into two open subsets ΓD and
ΓN such that ∂Ω = Γ̄D ∪ Γ̄N and ΓD ∩ ΓN = ∅. For simplicity, we will assume that
ΓD is not empty (i.e., mes (ΓD) 	= 0).

For a second-order tensor τ = (τij)d×d, define its divergence and normal by

∇ · τ =

⎛⎜⎝ ∂τ11/∂x1 + · · · + ∂τ1d/∂xd
...

∂τd1/∂x1 + · · · + ∂τdd/∂xd

⎞⎟⎠ and n · τ =

⎛⎜⎝ n1τ11 + · · · + ndτ1d
...

n1τd1 + · · · + ndτdd

⎞⎟⎠ ,

respectively. That is, the divergence and normal operators apply to each row of the
tensor. Also denote the matrix trace operator by tr:

tr τ = τ11 + · · · + τdd.

Let f = (f1, . . . , fd)
t be a given external body force defined in Ω and g =

(g1, . . . , gd)
t be a given external surface traction applied on ΓN . Let u(x, t) =

(u1, . . . , ud)
t be the velocity vector field of a particle of fluid that is moving through

x at time t, and let σ = (σij)d×d be the stress tensor field. Without loss of generality,
we assume that the homogeneous density is one. Then conservation of momentum
implies both symmetry of the stress tensor and the local relation{

Du
Dt −∇ · σ = f in Ω,

n · σ = g on ΓN ,
(2.1)

where D
Dt is the material derivative

D

Dt
=

∂

∂t
+ u · ∇ =

∂

∂t
+

d∑
i=1

ui
∂

∂xi
.

In this paper, we restrict ourselves to linear, stationary problems, i.e., problems where
the momentum equation in (2.1) is of the form

−∇ · σ = f .(2.2)

Let ν be the viscosity parameter, p the pressure, and

ε(u) =
1

2

(∇u + (∇u)t
)
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the deformation rate tensor, where ∇u is the velocity gradient tensor with entries
(∇u)ij = ∂ui/∂xj . Then the constitutive law for incompressible Newtonian fluids is{

σ = ν ε(u) − p I in Ω,

∇ · u = 0 in Ω.
(2.3)

The second equation in (2.3) is the incompressibility condition. Without loss of gener-
ality, we assume that ν = 1, since otherwise u can be rescaled to ν u. Now, combining
(2.2) and (2.3), we have the stress-velocity-pressure formulation for incompressible
Newtonian fluid flow: ⎧⎪⎪⎨⎪⎪⎩

−∇ · σ = f in Ω,

σ + p I − ε(u) = 0 in Ω,

∇ · u = 0 in Ω.

(2.4)

Differentiating and eliminating the stress in the above system leads to the well-known
incompressible Stokes equations:{ −∇ · ε(u) + ∇ p = f in Ω,

∇ · u = 0 in Ω.
(2.5)

3. General boundary conditions. For simplicity, we assume that the bound-
ary conditions are homogeneous:

u = 0 on ΓD and n · σ = 0 on ΓN .(3.1)

When ΓN is nonempty, because of the traction boundary condition, it is natural
and necessary to have the stress be the independent variable. Hence, we study least-
squares functionals based on formulations for stress-velocity-pressure (section 3.1) and
for stress-velocity (section 3.2). Our primary goal in this section is to establish conti-
nuity and ellipticity for these least-squares functionals in appropriate Hilbert spaces.
The least-squares finite element method based on the stress-velocity formulation is
described in section 3.3.

3.1. Least-squares functionals based on the stress-velocity-pressure for-
mulation. The first-order system (2.4), together with boundary conditions (3.1), is
the stress-velocity-pressure formulation for linear, stationary incompressible Newto-
nian flow. Taking the trace of the second equation in (2.4) and using the fact that

tr ε(u) = ∇ · u = 0,

we have the following important relation between the pressure and normal stress:

trσ + d p = 0.(3.2)

Before defining least-squares functionals, let us first describe solution spaces. When
ΓD = ∂Ω, Stokes system (2.5) and (3.1) have a unique solution, provided that∫

Ω

p dx = 0.(3.3)
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Together with (3.2), this implies ∫
Ω

trσ dx = 0.

Therefore, we are at liberty to impose these conditions on the stress and pressure.
Thus, define the spaces

XN =

⎧⎪⎨⎪⎩
HN (div; Ω)d if ΓN 	= ∅,

X0 ≡
{
τ ∈ H(div; Ω)d |

∫
Ω

tr τ dx = 0

}
otherwise

and

L2
N (Ω) =

⎧⎪⎨⎪⎩
L2(Ω) if ΓN 	= ∅,

L2
0(Ω) =

{
q ∈ L2(Ω) |

∫
Ω

q dx = 0

}
otherwise.

Then for f ∈ L2(Ω)d we define the following least-squares functionals:

G−1(σ, u, p ; f) = ‖∇ · σ + f‖2
−1,D + ‖σ + p I − ε(u)‖2 + ‖∇ · u‖2(3.4)

and

G(σ, u, p ; f) = ‖∇ · σ + f‖2 + ‖σ + p I − ε(u)‖2 + ‖∇ · u‖2(3.5)

for (σ, u, p) ∈ V ≡ XN ×H1
D(Ω)d×L2

N (Ω). We will first establish uniform bounded-
ness and ellipticity (i.e., equivalence) of the homogeneous functionals G−1(τ , v, q ; 0)
and G(τ , v, q ; 0) in terms of the respective functionals M−1(τ , v, q) and M(τ , v, q)
defined on V by

M−1(τ , v, q) = ‖v‖2
1 + ‖q‖2 + ‖τ‖2

and

M(τ , v, q) = ‖v‖2
1 + ‖q‖2 + ‖τ‖2 + ‖∇ · τ‖2.

To accomplish this, let Aλ : Rd×d −→ Rd×d be a linear map defined by

Aλ τ = τ − λ

dλ+ 2µ
(tr τ ) I ∀ τ ∈ Rd×d.

The Aλ is the compliance tensor of fourth order, a terminology from elasticity. Pa-
rameters λ and µ are material constants for both solids and fluids. We will use the
following fundamental inequality for the trace of XN :

‖tr τ‖ ≤ C
(√

(Aλ τ , τ ) + ‖∇ · τ‖−1,D

)
∀ τ ∈ XN ,(3.6)

where C is a positive constant independent of λ. This inequality was proved in [1]
for two dimensions and Dirichlet boundary conditions (i.e., d = 2 and ΓN = ∅) and
in [13] for both two and three dimensions and general boundary conditions. When λ
approaches ∞, the limit of the linear map Aλ is

A∞ τ = τ − 1

d
(tr τ ) I : Rd×d −→ Rd×d.
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Note that A∞ is not an invertible map. A simple calculation gives⎧⎨⎩ (A∞ τ , τ ) = ‖τ‖2 − 1
d ‖tr τ‖2 = ‖A∞ τ‖2,

(Aλ τ , τ ) = ‖τ‖2 − λ
dλ+2µ‖tr τ‖2 = ‖A∞ τ‖2 + 2µ

d(dλ+2µ)‖tr τ‖2.
(3.7)

Since the constant in (3.6) is independent of λ, taking the limit of (3.6) as λ → ∞
and using the first equation in (3.7) we obtain

‖tr τ‖ ≤ C (‖A∞ τ‖ + ‖∇ · τ‖−1,D) ∀ τ ∈ XN .(3.8)

Let ‖τ‖a ≡ (‖A∞ τ‖2 + ‖∇ · τ‖2
−1, D

) 1
2 ; then ‖τ‖a is equivalent to the L2 norm.

Lemma 3.1. There exists a positive constant C such that

1

C
‖τ‖2 ≤ ‖τ‖2

a ≤ C ‖τ‖2 ∀ τ ∈ XN .(3.9)

Proof. From the definition of the inverse norm and the Cauchy–Schwarz inequal-
ity, we have that

‖∇ · τ‖−1, D ≤ ‖τ‖.(3.10)

Equation (3.9) follows easily from (3.7), (3.8), and (3.10).
Now we are ready to establish equivalence between functionals G−1 and M−1 and

equivalence between functionals G and M .
Theorem 3.2. The homogeneous functionals G−1(τ , v, q ; 0) and G(τ , v, q ; 0)

are uniformly equivalent to the functionals M−1(τ , v, q) and M(τ , v, q), respectively;
i.e., there exist positive constants C1 and C2 such that

1

C1
M−1(τ , v, q) ≤ G−1(τ , v, q ; 0) ≤ C1M−1(τ , v, q)(3.11)

and

1

C2
M(τ , v, q) ≤ G(τ , v, q ; 0) ≤ C2M(τ , v, q)(3.12)

hold for all (τ , v, q) ∈ V.
Proof. The upper bounds in both (3.11) and (3.12) follow easily from the triangle

inequality and (3.10).
To show the validity of the lower bound in (3.11), we first note that

‖τ − τ t‖ = ‖ (τ + q I − ε(v)) − (τ + q I − ε(v))
t ‖

≤ 2 ‖τ + q I − ε(v)‖.
We used symmetry of I and ε(v) and the triangle inequality above. Now integration
by parts and the Cauchy–Schwarz and Korn inequalities lead to

|(τ , ε(v))| =

∣∣∣∣(τ + τ t

2
, ε(v)

)∣∣∣∣ = ∣∣∣∣(τ + τ t

2
, ∇v

)∣∣∣∣
=

∣∣∣∣(τ , ∇v) −
(
τ − τ t

2
, ∇v

)∣∣∣∣ = ∣∣∣∣(−∇ · τ , v) −
(
τ − τ t

2
, ∇v

)∣∣∣∣
≤ ‖∇ · τ‖−1, D ‖v‖1 + ‖τ + q I − ε(v)‖ ‖∇v‖
≤ C (‖∇ · τ‖−1, D + ‖τ + q I − ε(v)‖) ‖ε(v)‖

≤ C G
1
2
−1(τ , v, q ;0) ‖ε(v)‖,(3.13)
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where G
1
2
−1(τ , v, q ;0) denotes the square root of G−1(τ , v, q ;0). To bound the

deformation rate tensor ε(v), it follows from the fact that

(q I, ε(v)) = (q, ∇ · v),

the Cauchy–Schwarz inequality, and (3.13) that

‖ε(v)‖2 = (ε(v) − τ − q I, ε(v)) + (τ , ε(v)) + (q, ∇ · v)

≤ ‖ε(v) − τ − q I‖ ‖ε(v)‖ + C G
1
2
−1(τ , v, q ;0) ‖ε(v)‖ + ‖q‖ ‖∇ · v‖

≤ ‖ε(v) − τ − q I‖2 + C G−1(τ , v, q ;0) +
1

2
‖ε(v)‖2 + ‖q‖ ‖∇ · v‖.

This implies that

‖ε(v)‖2 ≤ C G−1(τ , v, q ;0) + 2 ‖q‖ ‖∇ · v‖.(3.14)

Now to bound ‖q‖ in (3.14), since tr (τ + q I − ε(v)) = tr τ +d q−∇·v, we have

‖tr τ + d q −∇ · v‖ ≤ d ‖τ + q I − ε(v)‖.
It then follows from the triangle inequality that

‖q‖ ≤ 1

d
(‖tr τ + d q −∇ · v‖ + ‖tr τ‖ + ‖∇ · v‖)

≤ dG
1
2
−1(τ , v, q ;0) + ‖tr τ‖.(3.15)

Next, we bound ‖tr τ‖ above by the homogeneous functional and the L2 norm of
the deformation rate tensor. To do so, we first establish a similar upper bound for
‖A∞τ‖. Note that A2

∞ = A∞ and that (q I, A∞τ ) = 0. These identities and the
Cauchy–Schwarz inequality lead to

‖A∞τ‖2 = (τ , A∞τ ) = (τ + q I − ε(v), A∞τ ) + (ε(v), A∞τ )

≤ (‖τ + q I − ε(v)‖ + ‖ε(v)‖) ‖A∞τ‖,
which implies that

‖A∞τ‖ ≤ ‖τ + q I − ε(v)‖ + ‖ε(v)‖.(3.16)

Together with (3.9), inequality (3.16) yields

‖tr τ‖ ≤ ‖τ‖ ≤ C (‖A∞τ‖ + ‖∇ · τ‖−1,D)

≤ C (‖τ + q I − ε(v)‖ + ‖ε(v)‖ + ‖∇ · τ‖−1,D)

≤ C
(
G

1
2
−1(τ , v, q ;0) + ‖ε(v)‖

)
.(3.17)

Now, combining upper bounds in (3.14), (3.15), and (3.17) and using the Cauchy–
Schwarz inequality, we have

‖ε(v)‖2 ≤ C G−1(τ , v, q ;0) +
(
dG

1
2
−1(τ , v, q ;0) + ‖tr τ‖

)
‖∇ · v‖

≤ C G−1(τ , v, q ;0) + C
(
G

1
2
−1(τ , v, q ;0) + ‖ε(v)‖

)
‖∇ · v‖

≤ C G−1(τ , v, q ;0) + C ‖ε(v)‖ ‖∇ · v‖.
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Hence,

‖ε(v)‖2 ≤ C G−1(τ , v, q ;0),

which, together with (3.17), (3.15), and (3.9), implies that both ‖τ‖2 and ‖q‖2 are
also bounded above by the homogeneous functional G−1(τ , v, q ;0). This completes
the proof of the lower bound in (3.11). Since

G−1(τ , v, q ; 0) ≤ G(τ , v, q ; 0) and ‖∇ · τ‖2 ≤ G(τ , v, q ; 0),

then the lower bound in (3.12) follows from (3.11). The proof of the theorem is
therefore completed.

3.2. Least-squares functionals based on the stress-velocity formulation.
In this section, we derive the stress-velocity formulation by using relation (3.2) to elim-
inate the pressure. We then define least-squares functionals based on this formulation
and establish their ellipticity and continuity.

Assume that the first equation in (2.3) holds. Then it is easy to see that (3.2)
is equivalent to the incompressible condition, the second equation in (2.3). Relation
(3.2) says that the pressure is the negative of the arithmetic average of the normal
stress. Since the stress is a variable in our first-order system, using (3.2) we eliminate
the pressure in the first equation of (2.3) to obtain the following constitutive equation:

A∞ σ = σ − 1

d
(trσ) I = ε(u) in Ω.(3.18)

Note that taking the trace of this equation yields the incompressible condition. This
and the momentum equation define the stress-velocity formulation for incompressible
Newtonian fluid flow problems. In particular, for linear stationary problems, we have{ A∞ σ − ε(u) = 0 in Ω,

∇ · σ + f = 0 in Ω,
(3.19)

with boundary conditions (3.1). Let

Ṽ = XN ×H1
D(Ω)d.

For f ∈ L2(Ω)d, we define the following least-squares functionals:

G̃−1(σ, u ; f) = ‖A∞ σ − ε(u)‖2 + ‖∇ · σ + f‖2
−1,D(3.20)

and

G̃(σ, u ; f) = ‖A∞ σ − ε(u)‖2 + ‖∇ · σ + f‖2(3.21)

for (σ, u) ∈ Ṽ. We also define the norm functionals

M̃−1(τ , v) = ‖v‖2
1 + ‖τ‖2

and

M̃(τ , v) = ‖v‖2
1 + ‖τ‖2 + ‖∇ · τ‖2.
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Theorem 3.3. The homogeneous functionals G̃−1(τ , v; 0) and G̃(τ , v; 0) are
uniformly equivalent to the functionals M̃−1(τ , v) and M̃(τ , v), respectively; i.e.,
there exist positive constants C1 and C2 such that

1

C1
M̃−1(τ , v) ≤ G̃−1(τ , v ; 0) ≤ C1 M̃−1(τ , v)(3.22)

and

1

C2
M̃(τ , v) ≤ G̃(τ , v ; 0) ≤ C2 M̃(τ , v)(3.23)

hold for all (τ , v) ∈ Ṽ.
Proof. Since ‖tr τ‖ ≤ d ‖τ‖, Theorem 3.2 with the choice of q = −tr τ/d yields

the upper bounds in both (3.22) and (3.23) and the following lower bounds:

M̃−1(τ , v) ≤ C
(
G̃−1(τ , v ; 0) + ‖∇ · v‖2

)
and

M̃(τ , v) ≤ C
(
G̃(τ , v ; 0) + ‖∇ · v‖2

)
.

Now the lower bounds in both (3.22) and (3.23) are a direct consequence of the bound

‖∇ · v‖ = ‖tr (ε(v) −A∞ τ )‖ ≤ d ‖ε(v) −A∞ τ‖.

3.3. Least-squares finite element methods. In this section, we restrict our
attention to the least-squares method based on the L2 norm least-squares functional
G̃ for the stress-velocity formulation, although the method developed in this section
can be developed in the same manner for the stress-velocity-pressure formulation, and
discrete inverse norm methods can be developed for the inverse norm functionals (see
[6]). In fact, it seems that the least-squares method based on the stress-velocity formu-
lation may be preferable since it does not involve the pressure and, more importantly,
since it has mathematical structure similar to that of linear elasticity. Consequently,
we develop a unified numerical approach for both linear elasticity and linear, station-
ary incompressible Newtonian flows. The pressure, if desired, can be recovered using
(3.2).

The variational problem corresponding to the L2 norm least-squares functional
for the stress-velocity formulation is to minimize functional (3.21) over Ṽ, that is, to
find (σ, u) ∈ Ṽ such that

G̃(σ, u ; f) = inf
(τ ,v)∈Ṽ

G̃(τ , v ; f).(3.24)

By Theorem 3.3, we can conclude that (3.24) has a unique solution.
Now (3.24) very much resembles the variational problem for the least-squares

formulation of linear elasticity developed in [14]. In particular, the elasticity least-
squares problem for limiting case λ→ ∞ is precisely (3.24). In [14], optimal accuracy
for the least-squares finite element approximations and optimal multigrid convergence
rates for solving the resulting algebraic equations are established to be uniform in λ.
This indicates that using the finite elements in [14] to discretize the least-squares
problem in (3.24) will give optimal accuracy, and multigrid methods with optimal
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complexity can be used to solve the resulting algebraic equations. For completeness,
we describe these finite elements and their approximation properties and comment on
multigrid methods for solving the resulting algebraic systems. For simplicity, we take
the two-dimensional case (d = 2).

Assuming that the domain Ω is polygonal, let Th be a regular triangulation of Ω
(see [16]) with triangular elements of size O(h). Let Pk(K) be the space of polynomials
of degree k on triangle K, and denote the local Raviart–Thomas space of order k on
K:

RTk(K) = Pk(K)2 +

(
x1

x2

)
Pk(K).

Then the standard H(div; Ω) conforming Raviart–Thomas space of order k [22] and
the standard (conforming) continuous piecewise polynomials of degree k + 1 are de-
fined, respectively, by

Σkh={τ ∈ XN : τ |K ∈ RTk(K)2 ∀K ∈ Th} ⊂ XN ,(3.25)

V k+1
h ={v ∈ C0(Ω)2 : v|K ∈ Pk+1(K)2 ∀K ∈ Th, v = 0 on ΓD} ⊂ H1

D(Ω)2.(3.26)

Space Σkh is used to approximate the stress, and space V k+1
h is used to approximate

the velocity. These spaces have the following approximation properties: let k ≥ 0 be
an integer, and let l ∈ (0, k + 1]:

inf
τ∈Σk

h

‖σ − τ‖H(div; Ω) ≤ C hl (‖σ‖l + ‖∇ · σ‖l)(3.27)

for σ ∈ H l(Ω)2×2 ∩ XN with ∇ · σ ∈ H l(Ω)2 and

inf
u∈V k+1

h

‖u − v‖1 ≤ C hl ‖u‖l+1(3.28)

for u ∈ H l+1(Ω)2 ∩ H1
D(Ω)2. Based on the smoothness of σ and u, we will choose

k + 1 to be the smallest integer greater than or equal to l.
The finite element discretization of our stress-velocity least-squares variational

problem is as follows: find (σh, uh) ∈ Σkh × V k+1
h such that

G̃(σh, uh; f) = min
(τ ,v)∈Σk

h
×V k+1

h

G̃(τ , v; f).(3.29)

By Theorem 3.3 and the fact that Σkh × V k+1
h is a subspace of Ṽ, (3.29) has a unique

solution. As proved in [14], we have the following error estimations.
Theorem 3.4. Assume that the solution (σ, u) of (3.24) is in H l(Ω)2×2 ×

H l+1(Ω)2 and that the divergence of the stress ∇ · σ is in H l(Ω)2. Let k + 1 be
the smallest integer greater than or equal to l. Then with (σh, uh) ∈ Σkh × V k+1

h

denoting the solution to (3.29), the following error estimate holds:

‖σ − σh‖H(div; Ω) + ‖u − uh‖1 ≤ C hl (‖σ‖l + ‖∇ · σ‖l + ‖u‖l+1) .(3.30)

As for the pressure, it can be recovered algebraically using (3.2):

ph = −1

d
trσh.(3.31)
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It follows from (3.2), (3.31), the triangle inequality, and Theorem 3.4 that

‖p− ph‖ =
1

d
‖tr (σ − σh)‖ ≤ ‖σ − σh‖ ≤ C hl.(3.32)

Remark. Theorem 3.3 states that the homogeneous functional G̃(τ , v; 0) is equiv-
alent to the H(div; Ω) norm for the tensor variable and the H1 norm for the vector
variable. It is then well known that multigrid methods applied to discrete linear
system (3.29) have optimal convergence properties (see, e.g., [19, 2, 12, 20, 24]).

4. Pure Dirichlet boundary conditions. Many applications in incompress-
ible Newtonian fluid flow are not posed under traction boundary conditions. It is then
not necessary to use the stress as the independent variable. In fact, the stress and the
deformation rate tensor may not be the variables of choice, especially if the vorticity
is needed. This is because the vorticity is the skew-symmetric part of the velocity
gradient, and thus the stress and deformation rate tensor do not contain information
on the vorticity. For this reason, in this section we develop a least-squares method
involving variables that can recover the velocity gradient and vorticity without differ-
entiation. This least-squares method will use the finite element spaces described in
section 3.3.

For simplicity, we assume the homogeneous Dirichlet boundary condition

u = 0 on ∂Ω.(4.1)

4.1. First-order systems. Whereas the vorticity is the skew-symmetric part
of the velocity gradient, the deformation rate tensor ε(u) is the symmetric part of the
velocity gradient. From the second equation of first-order system (2.4), it is then not
possible to algebraically obtain the vorticity from the stress tensor. To accomplish
this, a new variable must be introduced in place of the stress. This new variable
should be chosen such that the resulting least-squares functionals have properties
similar to G−1 and G (G̃−1 and G̃) and such that both the stress and vorticity can be
algebraically obtained from this variable. Insight into designing this new variable can
be obtained by noting that for incompressible fluids the divergence of (∇u)

t
vanishes:

∇ · (∇u)
t
= ∇ ·

⎛⎜⎝ ∂1u1 · · · ∂1ud
...

...
...

∂du1 · · · ∂dud

⎞⎟⎠ = ∇ (∇ · u) = 0.(4.2)

Specifically, defining the new independent tensor variable, the pseudostress, to be

σ̃ =
1

2
∇u − p I,(4.3)

then

σ = σ̃ +
1

2
(∇u)t,(4.4)

and so by (4.2) we have

∇ · σ̃ = ∇ · σ.(4.5)

Moreover, using the incompressibility of u, we have

tr σ̃ = trσ = −d p.(4.6)
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The pseudostress is not symmetric and probably not a primitive physical quantity.
However, the resulting first-order system is⎧⎪⎪⎨⎪⎪⎩

−∇ · σ̃ = f in Ω,

σ̃ + p I − 1
2 ∇u = 0 in Ω,

∇ · u = 0 in Ω,

(4.7)

which is essentially equivalent to (2.4). Differentiating and eliminating σ̃ in (4.7)
leads to the incompressible Stokes equations:{ − 1

2 ∆u + ∇ p = f in Ω,

∇ · u = 0 in Ω.
(4.8)

4.2. Least-squares functionals. For f ∈ L2(Ω)d, we define the following least-
squares functionals based on first-order system (4.7):

F−1(σ̃, u, p ; f) = ‖∇ · σ̃ + f‖2
−1,0 +

∥∥∥∥σ̃ + p I − 1

2
∇u

∥∥∥∥2

+ ‖∇ · u‖2(4.9)

and

F (σ̃, u, p ; f) = ‖∇ · σ̃ + f‖2 +

∥∥∥∥σ̃ + p I − 1

2
∇u

∥∥∥∥2

+ ‖∇ · u‖2(4.10)

for (σ̃, u, p) ∈ V0 ≡ X0 ×H1
0 (Ω)d × L2

0(Ω).
Theorem 4.1. The homogeneous functionals F−1(τ , v, q ; 0) and F (τ , v, q ; 0)

are uniformly equivalent to the functionals M−1(τ , v, q) and M(τ , v, q), respectively;
i.e., there exist positive constants C1 and C2 such that

1

C1
M−1(τ , v, q) ≤ F−1(τ , v, q ; 0) ≤ C1M−1(τ , v, q)(4.11)

and

1

C2
M(τ , v, q) ≤ F (τ , v, q ; 0) ≤ C2M(τ , v, q)(4.12)

hold for all (τ , v, q) ∈ V0.
Proof. The theorem can be proved in a similar manner as in Theorem 3.2. Actu-

ally, the key inequality

‖∇v‖2 ≤ C F−1(τ , v, q ;0) + C ‖q‖ ‖∇ · v‖,(4.13)

which is similar to inequality (3.14), can be established easily: integration by parts
and the Cauchy–Schwarz inequality lead to

1

2
‖∇v‖2 =

(
1

2
∇v − τ − q I, ∇v

)
− (∇ · τ , v) + (q, ∇ · v)

≤
∥∥∥∥1

2
∇v − τ − q I

∥∥∥∥ ‖∇v‖ + ‖∇ · τ‖−1,0 ‖v‖1 + ‖q‖ ‖∇ · v‖.

Now (4.13) follows from the Poincaré and ε inequalities.
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As in section 3.2, we can derive the following first-order system without the pres-
sure: { A∞ σ̃ − 1

2 ∇u = 0 in Ω,

∇ · σ̃ + f = 0 in Ω.
(4.14)

The corresponding least-squares functionals are

F̃−1(σ̃, u ; f) =

∥∥∥∥A∞ σ̃ − 1

2
∇u

∥∥∥∥2

+ ‖∇ · σ̃ + f‖2
−1,0(4.15)

and

F̃ (σ̃, u ; f) =

∥∥∥∥A∞ σ̃ − 1

2
∇u

∥∥∥∥2

+ ‖∇ · σ̃ + f‖2(4.16)

for (σ̃, u) ∈ Ṽ0 ≡ X0 ×H1
0 (Ω)d.

Theorem 4.2. The homogeneous functionals F̃−1(τ , v; 0) and F̃ (τ , v; 0) are
uniformly equivalent to the functionals M̃−1(τ , v) and M̃(τ , v), respectively; i.e.,
there exist positive constants C1 and C2 such that

1

C1
M̃−1(τ , v) ≤ F̃−1(τ , v ; 0) ≤ C1 M̃−1(τ , v)(4.17)

and

1

C2
M̃(τ , v) ≤ F̃ (τ , v ; 0) ≤ C2 M̃(τ , v)(4.18)

hold for all (τ , v) ∈ Ṽ0.
Proof. The theorem can be shown in a similar fashion as in Theorem 3.3.
Remark. The mixed variational problem based on (4.14) is to find (σ̃, u) ∈

X0 × L2
0(Ω)d such that{

(A∞ σ̃, τ ) + 1
2 (u, ∇ · τ ) = 0 ∀ τ ∈ X0,

(∇ · σ̃, v) = −(f , v) ∀ v ∈ L2(Ω)d.
(4.19)

It is easy to see that (4.19) is essentially a vector version of the mixed formulation for
the second-order elliptic problems. Therefore, any stable pair of finite elements for
the second-order elliptic problems (see [8]) is also a stable approximation for (4.19).
This will be studied in a forthcoming paper.

4.3. Least-squares finite element methods. The variational problem for the
L2 norm least-squares formulation of (4.14) is to minimize least-squares functional
(4.16) over Ṽ0, that is, to find (σ̃, u) ∈ Ṽ0 such that

F̃ (σ̃, u ; f) = inf
(τ ,v)∈Ṽ0

F̃ (τ , v ; f).(4.20)

By Theorem 4.2, (4.20) has a unique solution. The discrete finite element problem is
to find (σ̃h, uh) ∈ Σkh × V k+1

h such that

F̃ (σ̃h, uh; f) = min
(τ ,v)∈Σk

h
×V k+1

h

F̃ (τ , v; f).(4.21)
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Since Σkh × V k+1
h is a subspace of Ṽ0 (ΓD = ∂Ω and ΓN = ∅), by Theorem 4.2, (4.21)

has a unique solution. We have the following error estimate for the finite element
approximation.

Theorem 4.3. Assume that the solution (σ̃, u) of (4.20) is in H l(Ω)2×2 ×
H l+1(Ω)2 and that ∇ · σ̃ is in H l(Ω)2. Let k + 1 be the smallest integer greater
than or equal to l. Then with (σ̃h, uh) ∈ Σkh × V k+1

h denoting the solution to (4.21),
the following error estimate holds:

‖σ̃ − σ̃h‖H(div; Ω) + ‖u − uh‖1 ≤ C hl (‖σ̃‖l + ‖∇ · σ̃‖l + ‖u‖l+1) .(4.22)

4.4. Computation of pressure, stress, and vorticity. Physical quantities
such as pressure, stress, and vorticity can be approximated in terms of σ̃h. For the
pressure, (4.6) gives

p = −1

d
tr σ̃.(4.23)

For the stress, note that the first equation in (4.14) gives

∇u = 2A∞ σ̃.(4.24)

This, together with (4.4), implies

σ = σ̃ +
1

2
(∇u)

t
= σ̃ + (A∞ σ̃)

t
= A∞ σ̃ + σ̃t.(4.25)

For the vorticity ω = ∇ × u, it can be expressed in terms of the entries of the
skew-symmetric part of the velocity gradient and, hence, the pseudostress σ̃. More
precisely, letting s = 1

2 (∇u − (∇u)t), the definition of the curl operator gives

ω =

{
2s21(u) if d = 2,

2(s32(u), s13(u), s21(u))t if d = 3.

Then by (4.24) we have

s(u) = A∞ σ̃ − (A∞ σ̃)
t
= σ̃ − σ̃t

and, hence,

ω = 2

{
σ̃21 − σ̃12 if d = 2,

(σ̃32 − σ̃23, σ̃13 − σ̃31, σ̃21 − σ̃12)
t if d = 3.

(4.26)

Equations (4.23), (4.25), and (4.26) suggest that we can approximate the pressure,
stress, and vorticity as

ph = −1

d
tr σ̃h, σh = A∞ σ̃h + (σ̃h)t,

ωh = 2

{
σ̃h21 − σ̃h12 if d = 2,

(σ̃h32 − σ̃h23, σ̃
h
13 − σ̃h31, σ̃

h
21 − σ̃h12)

t if d = 3.

From (4.23), (4.25), (4.26), the triangle inequality, and Theorem 4.3, we have the
following error estimates:

‖p− ph‖ =
1

d
‖tr(σ̃ − σ̃h)‖ ≤ C hl,

‖σ̃ − σ̃h‖ = ‖A∞(σ̃ − σ̃h) + (σ̃ − σ̃h)t‖ ≤ C hl,

‖ω − ωh‖ ≤ C ‖σ̃ − σ̃h‖ ≤ C hl.
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4.5. Weakly imposed boundary conditions. In the previous sections, bound-
ary conditions were imposed on the solution spaces. This leads to least-squares finite
element approximations that are more accurate on the boundary than in the interior
of the domain. In the context of least-squares methods, it is natural to treat bound-
ary conditions weakly through boundary functionals. This is also convenient for many
applications.

As an example of least-squares boundary functionals, we describe a least-squares
functional with boundary terms for first-order system (4.14):

F̃b(σ̃, u ; f) =

∥∥∥∥A∞ σ̃ − 1

2
∇u

∥∥∥∥2

+ ‖∇ · σ̃ + f‖2 + ‖u‖2
1
2 ,∂Ω.(4.27)

The least-squares variational problem is to minimize this functional over a solution
space free of imposed boundary conditions: find (σ̃, u) ∈ Ṽb ≡ X0 × H1(Ω)d such
that

F̃b(σ̃, u ; f) = inf
(τ ,v)∈Ṽb

F̃b(τ , v ; f).(4.28)

Using techniques in this paper and in the proof of Theorem 5.1 in [14], we can show
that there exists a positive constant C such that

1

C
M̃(τ , v) ≤ F̃b(τ , v ; 0) ≤ C M̃(τ , v)(4.29)

for all (τ , v) ∈ Ṽb. To develop computable finite element methods and the corre-
sponding iterative solvers based on this functional, see [23].

4.6. Relation to existing least-squares methods. There are many existing
least-squares methods for the Stokes equations. Since the pseudostress σ̃ involves the
velocity gradient and the pressure, our approach has some similarities with the meth-
ods in [11, 15]. In [11], the velocity gradient is introduced as an independent variable;
two additional (consistent) constraints (vanishing trace and curl of the velocity gradi-
ent) are added to the original system; the variables of the least-squares method are the
velocity, velocity gradient, and pressure; and the homogeneous L2 norm least-squares
functional is elliptic and continuous in (H(div; Ω)d∩H(curl ; Ω)d)×H1(Ω)d×H1(Ω),
where H(curl ; Ω) is the Hilbert space consisting of square-integrable vectors whose
curls are also square-integrable. In [15], a constrained velocity gradient (the velocity
gradient satisfying the incompressibility condition) is introduced as an independent
variable; the least-squares method is based on the div-curl system of the constraint
velocity gradient and the pressure; and the homogeneous functional is elliptic and
continuous in (H(div; Ω)d ∩H(curl ; Ω)d) ×H1(Ω). Both methods require sufficient
smoothness for the original problem, and, hence, their applicability is very limited.

As a side remark, we comment that the div-curl least-squares method can be
developed for our formulations. To see this, applying the curl operator to the first
equation of (4.14) leads to the following div-curl system:{ ∇× (A∞ σ̃) = 0 in Ω,

∇ · σ̃ + f = 0 in Ω,
(4.30)

with boundary conditions n × (A∞ σ̃) = n × ∇u = 0 on ∂Ω. The corresponding
least-squares functionals are defined as

F̄−1(σ̃; f) = ‖∇ × (A∞ σ̃) ‖2
−1,0 + ‖∇ · σ̃ + f‖2

−1(4.31)
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and

F̄ (σ̃; f) = ‖∇ × (A∞ σ̃) ‖2 + ‖∇ · σ̃ + f‖2.(4.32)

These div-curl approaches will be studied in a forthcoming paper.
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Abstract. Standard weak solutions to the Poisson problem on a bounded domain have square-
integrable derivatives, which limits the admissible regularity of inhomogeneous data. The concept
of solution may be further weakened in order to define solutions when data is rough, such as for
inhomogeneous Dirichlet data that is only square-integrable over the boundary. Such very weak
solutions satisfy a nonstandard variational form (u, v) = G(v). A Galerkin approximation combined
with an approximation of the right-hand side G defines a finite-element approximation of the very
weak solution. Applying conforming linear elements leads to a discrete solution equivalent to the
text-book finite-element solution to the Poisson problem in which the boundary data is approximated
by L2-projections. The L2 convergence rate of the discrete solution is O(hs) for some s ∈ (0, 1/2)
that depends on the shape of the domain, assuming a polygonal (two-dimensional) or polyhedral
(three-dimensional) domain without slits and (only) square-integrable boundary data.
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1. Introduction. Applications such as optimal control, inverse problems, and
shape optimization sometimes call for boundary data that are rougher than the the-
ory for elliptic or parabolic boundary-value problems routinely assumes. This note
addresses numerical issues in the presence of rough boundary data.

We restrict the discussion to a simple case, the Poisson equation with inhomoge-
neous Dirichlet conditions,

−∆u = f in Ω,(1a)

u = g on Γ,(1b)

where Ω is a bounded domain in R
2 or R

3, Γ the domain boundary, and f and g are
given data. Integration by parts yields that smooth solutions to (1) satisfy∫

Ω

∇u · ∇v dx =

∫
Ω

fv dx(2)

for each smooth v vanishing on Γ. The “standard” weak solution to (1), the basis for
finite-element discretizations, satisfies variational expression (2) with u and v being
elements in certain subspaces of H1(Ω), the Sobolev space of order one.

Which type of boundary data g makes sense to specify in (1)? The answer depends
on which type of functions we accept as being solutions. For standard weak solutions,
it is necessary that g can be extended continuously into a function in H1(Ω). Such
extensions are not always possible—there are even continuous functions g on the
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boundary Γ that do not extend continuously. The situation is even worse for non-
smooth data. For instance, no function with jump discontinuities on the boundary
can be extended continuously into a function in H1(Ω).

However, even weaker solutions to system (1) than the standard weak solution
relax the requirements on g. Integrating (2) by parts once more reveals that solutions
to (1) satisfy

−
∫

Ω

u∆v dx = −
∫

Γ

g
∂v

∂n
dΓ +

∫
Ω

fv dx(3)

for each smooth v vanishing on Γ. The boundary integral on the right-hand side of
expression (3) now makes sense for g being merely square-integrable, as long as the
normal derivative of v is also square-integrable on the boundary. Variational expres-
sion (3)—in a version made precise in section 4—is the basis for defining very weak
solutions to the Poisson equation with boundary data being no more than square-
integrable. Compared to the variational form (2), the nonstandard variational form (3)
relaxes the regularity requirement on u and g at the price of higher regularity require-
ments on v, a particular example of the method of transposition, treated in great
generality in the classic three-volume treatise of Lions and Magenes [15].

This note considers a numerical approximation based on the Lions-type variational
expression (3) and proves optimal-order convergence rates for linear, conforming el-
ements. To the best of my knowledge, this approach to discretizing problems with
rough boundary data has not previously been reported in the literature. Previous
analysis of problems with rough data has concerned other discretization approaches.

Babuška [1] defines weak solutions using a generalized Lax–Milgram lemma, a
version that would apply, for instance, to the form (3) in the case of full elliptic
regularity and a smooth boundary. (Because of lack of regularity, we cannot directly
use his method here.) He considers finite-element approximations of the Poisson
problem based on the standard variational form (2) with homogeneous boundary
data and proves error bounds that cover also very weak solutions such as Green’s
functions.

French and King [8] analyze a parabolic initial–boundary-value problem for convex
domains in R

2. Using temporal averaging combined with spatial L2-projections for the
boundary data, they prove error estimates for a standard finite-element approximation
in space, combined with the backward Euler scheme in time, of a very weak solution
to the parabolic problem.

In the context of an optimal-control problem for a second-order elliptic equation
on convex domains in R

2, French and King [7] introduce a standard finite-element
approximation and show that it converges to the very weak solution defined by trans-
position. Another contribution in this direction is by Bramble and King [2]. They
consider elliptic problems on smooth, curved domains in R

2, and their error estimates
hold also for rough boundary data.

In all articles cited above, L2(Γ)-projections approximate the rough boundary
data, which allows the use of the standard variational form (2). In contrast, this arti-
cle uses the Lions-type variational form (3) as the basis for discretization. Thus, the
variational form in the discretization is identical to the one used to define the (very)
weak solution, and projection of the data is not needed. Nonetheless, a perhaps sur-
prising result of this article (Theorem 5.2) is that the discrete solution obtained with
the current approach is equivalent to the standard finite-element approximation com-
bined with L2(Γ)-projections of the inhomogeneous data. This observation removes
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Flow direction

Fig. 1. Wall-normal velocity disturbance levels depicting Tollmien–Schlichting waves in a
boundary layer over a flat plate. The lower picture shows the result after applying boundary control
at a portion of the wall.

some of the arbitrariness of the standard method with data projections, showing its
equivalence with a systematic scheme based on the Lions-type variational form.

Another difference from previous work is that the analysis below covers both
two and three space dimensions with polygonal or polyhedral boundaries, without
assuming convexity of the domain. The analysis in the articles cited above is restricted
to two dimensions and assumes convex, polygonal domains.

Solutions as weak as the ones considered here have interest beyond mathematical
curiosity. Applications in which very weak solutions appear naturally are boundary
control and inverse problems [4, 9, 14]. The rest of the presentation starts with a short
outline of this background in section 2. Section 3 reviews some fundamentals, nota-
tion, and the approximation properties that are needed, setting the stage for a more
precise description in section 4 of the Poisson-equation solution based on transposi-
tion. Section 5 introduces a finite-element approximation of the very weak solution,
proving convergence rates and equivalence with the “standard” approximation with
projection of the data.

2. Background. Scientific and technical reasons prompt the need for control-
ling the behavior of solutions to partial differential equations, for instance through
boundary action. In fluid-dynamics applications, the object is typically to manage the
evolution of disturbances. Figure 1 depicts a boundary layer with evolving Tollmien–
Schlichting waves, the most unstable disturbance according to linear stability theory.
The pictures are snapshots from numerical solutions of the unsteady, incompressible
Navier–Stokes equations in three space dimensions. A suitable blowing and suction
at a portion of the lower boundary dramatically damps the disturbances, as shown
in the lower picture of Figure 1. Chevalier et al. [4] report details of this and sev-
eral similar computations. The blowing and suction is the numerical solution to a
nonlinear optimization problem that minimizes the disturbances in the domain over
a space of admissible controls. The admissible controls are boundary conditions with
no more regularity a priori than being square-integrable functions on a portion of the
lower boundary and during a finite time interval. This is a weaker regularity require-
ment on the boundary condition than needed for weak solutions of the Navier–Stokes
equations.

The same regularity concern is an issue also for simpler problems that are eas-
ier to analyze. Consider, for instance, the following inverse problem for the Poisson
equation (1). Given a function z defined in a subdomain ω ⊂ Ω, find the boundary
condition g that yields u = z in ω. Thinking of (1) as a model for steady heat con-
duction in a homogeneous, isotropic solid, the inverse problem consists of estimating
the temperature g on the boundary given measurements in the interior (in ω).
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The inverse problem above is only solvable for a very restricted class of targets
z. Perhaps the easiest way of getting around this restriction is to solve a linear
least-squares problem and minimize the objective function

J(g) =
ε

2

∫
Γ

g2 dΓ +
1

2

∫
ω

(u− z)2 dx,

where ε > 0 is a (Tikhonov) regularization parameter, included to prevent g from
becoming unbounded. The classical exposition of optimal control problems of this
sort is the book by Lions [14]. A newer review by Glowinski and Lions [9] covers also
numerical aspects.

To minimize J among all g ∈ L2(Γ), u needs to be well defined and square-
integrable for each g ∈ L2(Γ). However, the standard variational form (2) of the
Poisson equation requires also the derivatives of u to be elements in L2(Ω), a property
that does not hold for all g ∈ L2(Ω). Including also derivatives (possibly fractional) of
g along the boundary in the regularization term of J fixes this problem. However, the
derivatives of g complicate a numerical solution of the control problem and introduce
an extra smoothing, which may be unwanted, of the g that minimizes J .

There are also other reasons to prefer L2 norms. For instance, for studies of
stability and transition in fluid mechanics, the customary measure of the “size” of
velocity quantities is expressed as L2-like norms, because of the connection to the
kinetic energy of the fluid (Schmid and Henningson [16]).

3. Preliminaries.

3.1. Notation, function spaces. Consider an open, bounded, and connected
domain Ω in R

2 or R
3 with a Lipschitz boundary Γ; that is, the boundary is locally

the graph of a Lipschitz function (for details see Definition 1.2.1.1 in Grisvard [11],
for instance). We denote by Hs(Ω) the Sobolev space of order s on Ω. When s is
a nonnegative integer, Hs(Ω) is the space in which each function and all its (weak)
partial derivatives up to order s are square-integrable over Ω. We use the convention
H0(Ω) = L2(Ω) and H0(Γ) = L2(Γ). Introducing a norm containing integrals over
the domain, as in Definition 1.2.1 in Grisvard [12], generalizes the definition of Hs(Ω)
to any real positive s. An alternative generalization uses interpolation of Hilbert
spaces, as in section 2 of Chapter 1 in Lions and Magenes [15, Volume 1]. Brenner
and Scott [3, Theorem 12.2.7] provide a proof that the spaces generated in these two
ways are equivalent when the boundary is Lipschitz.

The trace γv of a function v ∈ Hs(Ω) generalizes to Sobolev spaces the restriction
v|Γ of a smooth function v to the boundary. Unfortunately, the presence of “edges”
and “corners” on a nonsmooth boundary complicates the trace concept compared to
the case when the boundary is smooth. Nevertheless, it follows from Theorem 1.5.1.2
in Grisvard [11] that for s ∈ (1/2, 1], each function v in Hs(Ω) has a well-defined trace
γv in the Sobolev space Hs−1/2(Γ), and that there exists a C > 0 such that

‖γv‖s−1/2,Γ ≤ C‖v‖s ∀v ∈ Hs(Ω).(4)

Expression (4) uses the notation ‖ · ‖s,Γ for norms on Hs(Γ). Analogously to Hs(Ω),
integrals over the Lipschitz boundary Γ define a norm on Hs(Γ) as long as s ∈ [0, 1]
(section 1.3.3 in Grisvard [11]). Restricting the domain of integration, we may also
define norms ‖ · ‖s,Γi

on open subsets Γi of Γ.
The closure of C∞

0 (Ω), the infinitely differentiable functions with compact sup-
port in Ω, with respect to the norm in Hs(Ω) forms a subspace denoted Hs

0(Ω). In
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particular it holds that

H1
0 (Ω) =

{
v | v ∈ H1(Ω), γv = 0

}
;

that is, H1
0 (Ω) is the subspace of functions in H1(Ω) with zero trace.

Negative norms are defined by

‖v‖−s = sup
w∈Hs

0 (Ω)\{0}

1

‖w‖s

∫
Ω

vw dx, s > 0.(5)

This norm can be used to define H−s(Ω), a space of distributions on Ω strictly larger
than L2(Ω) (for instance, the space H−1(Ω) can then be identified with the dual
space of H1

0 (Ω)). However, we will need the norm (5) only for estimates of functions
v ∈ L2(Ω).

The “dual” to definition (5),

‖w‖s = sup
v∈L2(Ω))\{0}

1

‖v‖−s

∫
Ω

vw dx,(6)

holds for any w ∈ Hs
0(Ω). Yosida [18, Chapter III, section 10] provides a detailed

proof for s = 1, but the arguments are unchanged for any s > 0. From definition (6)
one immediately obtains the Cauchy–Schwarz-like inequality∫

Ω

vw dx ≤ ‖v‖−s‖w‖s.(7)

Similarly,

‖g‖−s,Γi = sup
h∈Hs

0 (Γi)\{0}

1

‖h‖s,Γi

∫
Γi

gh dΓ(8)

defines negative norms on open subsets Γi of Γ. Again, we will apply this norm only
on functions g ∈ L2(Γi). Let g ∈ L2(Γ) and h ∈ C∞

0 (Γi) \ {0} be given. Extending h
by zero on Γ \ Γi, we see that

1

‖h‖s,Γi

∫
Γi

gh dΓ =
1

‖h‖s,Γ

∫
Γ

gh dΓ.

Noting that the extended h is in Hs
0(Γi) as well as in Hs

0(Γ), and taking supremum,
it follows that

‖g‖−s,Γi ≤ ‖g‖−s,Γ.(9)

Throughout the following, C denotes a positive constant, independent of the
choice of functions and, later, of the mesh parameter h. However, adhering to a
customary abuse of notation, the actual value of C may change, even within the same
chain of inequalities.

3.2. Regularity of the Poisson problem with homogeneous boundary
conditions. Let Ω be a polyhedral domain in R

3 or a polygonal domain in R
2.

We require the domain to be Lipschitz, which excludes domains with slits. Given
v ∈ L2(Ω), there is a unique z ∈ H1

0 (Ω) such that∫
Ω

∇z · ∇w dx =

∫
Ω

vw dx ∀w ∈ H1
0 (Ω).(10)
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The regularity properties of solutions to (10) are crucial in the development below.
In fact, the possibility of defining the very weak solutions is a consequence of the fact
that the regularity is better than merely z ∈ H1

0 (Ω).
Indeed, if the boundary is smooth, the additional regularity z ∈ H2(Ω) holds.

This is still true for polygonal or polyhedral boundaries if the domain is convex. The
regularity is reduced, however, in the vicinity of nonconvex portions of polygonal or
polyhedral boundaries. Grisvard [12] proves precise regularity results (Theorem 2.4.3
for the two-dimensional case and Corollary 2.6.7 for the three-dimensional case), stat-
ing that there exists an ε ∈ (0, 1/2], which depends on the shape of the domain,
such that solutions to (10) are actually in H3/2+ε(Ω). The following estimate will be
needed.

Theorem 3.1. There exist an ε ∈ (0, 1/2] and a C > 0 such that the solution
z ∈ H1

0 (Ω) to (10) satisfies

‖z‖3/2+ε−s ≤ C‖v‖−s ∀v ∈ L2(Ω)(11)

for each s ∈ [0, 1].
Proof. By the regularity result quoted above, the closed-graph theorem yields

that there exists an ε ∈ (0, 1/2] such that

‖z‖3/2+ε ≤ C‖v‖0 ∀v ∈ L2(Ω).(12)

Using the notation

‖ |∇w| ‖2
0 =

∫
Ω

|∇w|2 dx,

(10) implies that

1

‖ |∇w| ‖0

∫
Ω

∇z · ∇w dx =
1

‖ |∇w| ‖0

∫
Ω

vw dx

for each nonzero w ∈ H1
0 (Ω). Taking the supremum yields that

‖z‖1/2+ε ≤ C‖z‖1 ≤ C‖ |∇z| ‖0

= C sup
w∈H1

0 (Ω)\{0}

1

‖ |∇w| ‖0

∫
Ω

∇z · ∇w dx

= C sup
w∈H1

0 (Ω)\{0}

1

‖ |∇w| ‖0

∫
Ω

vw dx ≤ C‖v‖−1 ∀v ∈ L2(Ω),

(13)

where the second and the last inequality follow from the fact that the seminorm
‖ |∇z| ‖0 is equivalent to ‖z‖1 for z ∈ H1

0 (Ω). Estimates (12) and (13) imply that
the linear mapping v �→ z is bounded from L2(Ω) into H3/2+ε as well as from H−1

into H1/2+ε(Ω). Estimate (11) then follows by operator interpolation of the mapping
v �→ z.

We will also need expressions for the boundary flux associated with the solution
z to (10) and the regularity properties of the boundary flux. Let us first assume full
elliptic regularity, that is, z ∈ H2(Ω) ∩ H1

0 (Ω). Integration by parts of the product
−φ∆z then yields that the boundary flux ∂z/∂n satisfies

−
∫

Γ

∂z

∂n
φ dΓ =

∫
Ω

vφ dx−
∫

Ω

∇z · ∇φdx ∀φ ∈ H1(Ω).(14)
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If, moreover, the boundary is smooth, the boundary flux is an element in H1/2(Γ).
On polyhedral boundaries, however, the discontinuity of boundary normals compli-
cates the definition of boundary-flux spaces. Nevertheless, the integration-by-parts
property (14) holds also for Lipschitz domains in R

n as long as z ∈ H2(Ω) ∩H1
0 (Ω);

it follows from Proposition 5.1.6 in Brenner and Scott [3], for instance. The following
theorem proves a similar expression for less regular z.

Theorem 3.2. There are an ε ∈ (0, 1/2] and a C > 0 such that, associated with
any v ∈ L2(Ω) and corresponding solution z ∈ H1

0 (Ω) to (10), there exists a unique
λ ∈ L2(Γ) satisfying

−
∫

Γ

λφ dΓ =

∫
Ω

vφ dx−
∫

Ω

∇z · ∇φdx ∀φ ∈ H1(Ω)(15)

and the estimates

‖λ‖0,Γ ≤ C‖v‖0,

‖λ‖ε−s,Γi
≤ C‖v‖−s for i = 1, . . . , I and ∀s ∈ [0, ε).

(16)

Proof. By assumption, the boundary of Ω can be written Γ = ∪Ii=1Γi, where each
(open and bounded) Γi is a planar polygon or a line segment embedded in R

3 and R
2,

respectively. Let ni denote the (constant) outward-directed unit normal associated
with each polygonal surface (or line segment) Γi. By Theorem 3.1, we know that there
is an ε ∈ (0, 1/2] such that, for each v ∈ L2(Ω) supplied to (10), the solution satisfies
z ∈ H3/2+ε−s ∀s ∈ [0, 1]. Differentiation is a continuous operator from Hα(Ω) into
Hα−1(Ω) as long as α �= 1/2 [11, Theorem 1.4.4.6]. Thus, for each i = 1, . . . , I,

∂z

∂ni
= ni · ∇z

resides in H1/2+ε−s(Ω) since 3/2 + ε − s �= 1/2 for any ε ∈ (0, 1/2] and s ∈ [0, 1].
By further restricting s, we can apply the trace theorem for Lipschitz boundaries
(Grisvard [11, Theorem 1.5.1.2]) to obtain the bounds, for s ∈ [0, ε), i = 1, . . . , I,∥∥∥∥ ∂z∂ni

∥∥∥∥
ε−s,Γ

≤ C

∥∥∥∥ ∂z∂ni
∥∥∥∥

1/2+ε−s
≤ C ‖z‖3/2+ε−s ,(17)

where the second inequality follows from the above-mentioned continuity of differen-
tiation.

Now, for i = 1, . . . , I, we define λi ∈ L2(Γ) as

λi =

⎧⎨⎩
∂z

∂ni
on Γi,

0 on Γ \ Γi,

and λ ∈ L2(Γ) as

λ =

I∑
i=1

λi.(18)

The definition of λ, together with inequality (17) and Theorem 3.1, yields esti-
mate (16).
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Noting that λ in effect is a weak representation for ∂z/∂n, we will prove the
integration-by-parts formula (15) by approximating z by smooth functions. Indeed,
since C∞

0 (Ω) is dense inH3/2+ε(Ω)∩H1
0 (Ω), there exists a sequence {ζn}∞n=1 ⊂ C∞

0 (Ω)
such that

ζn → z in H3/2+ε(Ω)(19)

as n→ ∞. It follows from inequality (17) that

∂ζn
∂ni

→ λi in L2(Γi)(20)

as n→ ∞.
Forming −∆ζn, multiplying by w ∈ H1

0 (Ω), integrating by parts, and noting that
strong convergence in H3/2+ε(Ω) ∩ H1

0 (Ω) implies convergence in H1
0 (Ω), it follows

from (19) and (10) that∫
Ω

w(−∆ζn) dx =

∫
Ω

∇w · ∇ζn dx→
∫

Ω

∇w · ∇z dx

=

∫
Ω

wv dx ∀w ∈ H1
0 (Ω)

(21)

as n→ ∞. Since H1
0 (Ω) is dense in L2(Ω), expression (21) yields that

−∆ζn → v weakly in L2(Ω).(22)

Let φ ∈ H1(Ω). Integration by parts yields∫
Ω

φ(−∆ζn) dx = −
∫

Γ

∂ζn
∂n

φ dΓ +

∫
Ω

∇φ · ∇ζn dx

= −
I∑
i=1

∫
Γi

∂ζn
∂ni

φdΓ +

∫
Ω

∇φ · ∇ζn dx.
(23)

Letting n → ∞, it follows from (18), (20), (21), and (22) that expression (23) con-
verges to ∫

Ω

φv dx = −
∫

Γ

λφ dΓ +

∫
Ω

∇φ · ∇z dx,

which proves that the λ defined in expression (18) satisfies expression (15). Finally,
since λ depends linearly on v ∈ L2(Ω), estimate (16) also provides uniqueness of λ for
each given v ∈ L2(Ω).

3.3. Approximation properties. Let us now triangulate the polygonal or
polyhedral domain Ω and introduce a mesh parameter h > 0 that characterizes the
triangulation. We assume nondegenerate meshes [3, Def. 4.4.13]; that is, there is a
limit to how “thin” the tetrahedral may become as the mesh is refined. Denote by V h

the space of continuous functions that are linear on each triangle or tetrahedron in
the mesh, and denote by V h0 the subspace of functions in V h vanishing on Γ. We have
V h ⊂ H1(Ω) and V h0 ⊂ H1

0 (Ω). The restriction to Γ of functions in V h is denoted
γV h. We also define Mh as the space of all functions vh ∈ V h that vanish at each
mesh point in the strict interior of the domain. We have that V h = Mh ⊕ V h0 ; that
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is, each function in V h is the sum of unique functions in Mh and V h0 . Also note
that each function gh ∈ γV h uniquely extends to a function ĝh ∈ Mh that equals
gh at the boundary but vanishes at all nodes in Ω. This extension property is use-
ful when solving inhomogeneous boundary-value problems: Given an approximation
gh ∈ γV h of the boundary data g, extend gh to ĝh ∈Mh, write the solution uh ∈ Vh
as uh = uh,0 + ĝh, where uh,0 ∈ V h0 , and solve for uh,0.

An interpolation operator Πh from Hs(Ω) into V h characterizes the approxima-
tion properties of V h. If s > d/2, where d is the space dimension, it follows from
the Sobolev embeddings that Πh can simply be chosen as the linear interpolator of
function values at the nodes of the triangulation. However, we need to consider small
values of s, so pointwise values may not be well defined. It is therefore appropriate to
choose the Scott and Zhang interpolator [17], which uses a local averaging to generate
nodal values. This interpolator yields optimal-order estimates, and the averaging is
constructed to preserve piecewise-polynomial boundary conditions, a property that
Lemma 5.3 exploits.

The following approximation properties hold for V h: There exists a constant
C > 0 such that, for all h > 0,

‖v − Πhv‖1 ≤ Chs‖v‖1+s ∀v ∈ H1+s(Ω), s ∈ [0, 1],(24a)

‖v − Πhv‖0 ≤ Chs‖v‖s ∀v ∈ Hs(Ω), s ∈ [0, 2].(24b)

Standard textbooks, such as Ciarlet [5], prove these properties for integral values of s.
Scott and Zhang [17] supply a proof for the particular case of the above-mentioned Πh.
Operator-interpolation arguments, discussed by Brenner and Scott [3, Chapter 12],
for instance, extend the estimates to intermediate real numbers s.

We also need to approximate functions defined on the boundary. Recall that the
domain is polyhedral or polygonal, so Γ = ∪Ii=1Γi, where each Γi is an open planar
polygon or an open line segment that does not overlap any other Γi. The space γiV

h

of traces of function in V h on Γi is a space of continuous, piecewise-linear functions
on the triangles (or intervals) of Γi. We may thus define an interpolation operator
Πγi
h from Hs(Γi) into γiV

h with properties analogous to Πh,

‖g − Πγi
h g‖0,Γi ≤ Chs‖g‖s,Γi ∀g ∈ Hs(Γi), s ∈ [0, 2].(25)

Another type of approximation in V h, γV h, and γiV
h are the L2-projections, that

is, the functions Phv ∈ V h, P γh g ∈ γV h, and P γih g ∈ γiV
h satisfying

∫
Ω

Phv wh dx =

∫
Ω

vwh dx ∀wh ∈ V h,(26a) ∫
Γ

P γh g ϕh dΓ =

∫
Γ

gϕh dΓ ∀ϕh ∈ γV h,(26b) ∫
Γi

P γih g ϕh dΓ =

∫
Γi

gϕh dΓ ∀ϕh ∈ γiV
h, i = 1, . . . , I,(26c)

which are well defined for each v ∈ L2(Ω) and g ∈ L2(Γ). The L2-projections produce
the discrete functions that minimize the L2 error.
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For any g ∈ L2(Γi) and ψ ∈ Hs
0(Γi), we have

(27)

∫
Γi

(g − P γih g)ψ dΓ =

∫
Γi

(g − P γih g)(ψ − P γih ψ) dΓ

≤ ‖g − P γih g‖0,Γi
‖ψ − P γih ψ‖0,Γi

≤ ‖g − Πγi
h g‖0,Γi

‖ψ − Πγi
h ψ‖0,Γi

≤ C‖g‖0,Γi
hs‖ψ‖s,Γi

∀s ∈ [0, 2],

where the first equality follows from definition (26c), the second inequality from the
fact that the L2(Γi)-projection is optimal, and the third from estimate (25). Dividing
expression (27) by ‖ψ‖s,Γi

and taking the supremum over all ψ ∈ Hs
0(Γi) \ {0} yields,

by definition (5),

‖g − P γih g‖−s,Γi ≤ Chs‖g‖0,Γi ∀s ∈ [0, 2].(28)

We will also need the inverse estimate

‖vh‖s,Γ ≤ Ch−s‖vh‖0,Γ, s ∈ [0, 1].(29)

In contrast to an approximation estimate like (25), the inverse estimate requires quasi-
uniform mesh refinements [3, Definition 4.4.13]. That is, the quotient between the
largest and smallest diameter of any triangle or line segment should stay uniformly
bounded as the mesh is refined. Brenner and Scott [3, Theorem 4.5.11], for instance,
prove inverse estimates for integral s and domains in R

n. Local bi-Lipschitz change
of variables, partition of unity, and operator interpolation extend these estimates to
estimate (29).

4. The variational form. We will make precise the idea of a solution to the
Poisson equation based on the Lions-type variational expression (3). Let us define a
linear form G : L2(Ω) → R by the following procedure.

1. Given an element v ∈ L2(Ω), find z ∈ H1
0 (Ω) such that∫

Ω

∇z · ∇w dx =

∫
Ω

vw dx ∀w ∈ H1
0 (Ω).(30)

2. From v and z, find λ ∈ L2(Γ) such that

−
∫

Γ

λφ dΓ =

∫
Ω

vφ dx−
∫

Ω

∇z · ∇φdx ∀φ ∈ H1(Ω).(31)

3. Set, for given g ∈ L2(Γ) and f ∈ L2(Ω), uniquely associated with each G,

G(v) = −
∫

Γ

gλ dΓ +

∫
Ω

fz dx.(32)

Theorem 4.1. The form G is a bounded linear functional on L2(Ω).
Proof. From Theorem 3.2 it follows that λ and the boundary integral involved in

the definition of G are well defined for each g ∈ L2(Γ). The form G is linear in v since
λ and z are linear in v. From (30) follows the estimate

‖z‖1 ≤ C‖v‖−1.(33)

Thus,

|G(v)| ≤ ‖g‖0,Γ ‖λ‖0,Γ + ‖f‖−1‖z‖1 ≤ C (‖g‖0,Γ‖λ‖0,Γ + ‖f‖−1‖v‖−1)

≤ C(‖g‖0,Γ + ‖f‖0)‖v‖0,
(34)
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where estimates (7), (33), and (16) are used in the first, second, and third inequality,
respectively.

By Theorem 4.1 and Riesz representation, the following problem thus has a unique
solution:

Find u ∈ L2(Ω) such that∫
Ω

uv dx = G(v) ∀v ∈ L2(Ω).
(35)

Problem (35) defines a weak solution to the Poisson problem (1), in which the
boundary data g needs only to be square-integrable. The price to pay for the reduced
regularity requirement on g is that u �∈ H1(Ω) in general and that the meaning of
boundary condition u = g will be weak; it will be satisfied only in a distributional
sense acute a la Theorem 6.5 in Chapter 2 of Lions and Magenes [15, Volume 1].

Similar to solutions to (10), solutions to problem (35) have higher regularity than
asked for.

Theorem 4.2. For each f ∈ L2(Ω) and g ∈ L2(∂Ω) associated with defini-
tion (32) of G, there exists an ε ∈ (0, 1/2] so that the solution to problem (35) resides
in Hs(Ω) for each s ∈ [0, ε).

Proof. First, note that Hs
0(Ω) = Hs(Ω) for s ∈ (0, 1/2], which follows from

the fact that C∞
0 (Ω) is dense in Hs(Ω) for s ∈ (0, 1/2] [11, Theorem 1.4.2.4]. This

equivalence allows the use of expression (6) to estimate ‖u‖s.
To estimate the boundary-integral term in the definition (32) of G, write the

L2(Γ)-norm of λ as a sum over contributions from each polygonal surface and utilize
estimate (16) in Theorem 3.2. It then follows that there exists an ε ∈ (0, 1/2] such
that, for each s ∈ [0, ε),(∫

Γ

gλ dΓ

)2

≤ ‖λ‖2
0,Γ‖g‖2

0,Γ =

I∑
i=1

‖λ‖2
0,Γi

‖g‖2
0,Γ

≤ C

I∑
i=1

‖λ‖2
ε−s,Γi

‖g‖2
0,Γ ≤ C‖v‖2

−s‖g‖2
0,Γ ∀v ∈ L2(Ω).

(36)

We also estimate the second integral in the definition (32) of G as∫
Ω

fz dx ≤ ‖f‖−1‖z‖1 ≤ ‖f‖−1‖z‖3/2+ε ≤ C‖f‖−1‖v‖−s ∀v ∈ L2(Ω),(37)

where the last inequality follows from Theorem 3.1. Equation (35), the definition (32)
of G, and estimates (36) and (37) yield that, for some ε ∈ (0, 1/2],∫

Ω

uv dx ≤ C‖v‖−s(‖g‖0,Γ + ‖f‖−1) ∀v ∈ L2(Ω), ∀s ∈ [0, ε).(38)

Dividing expression (38) by ‖v‖−s, taking the supremum over all v ∈ L2(Ω) \ {0},
and using property (6) yields the conclusion.

5. Numerical approximations. Recall the standard Galerkin approximation
of the Poisson problem with inhomogeneous boundary data: If gh ∈ γVh approximates
the boundary data, we solve the problem:

Find uh ∈ V h such that uh|Γ = gh and∫
Ω

∇uh · ∇vh dx =

∫
Ω

fvh dx ∀vh ∈ V h0 .
(39)



APPROXIMATIONS OF VERY WEAK SOLUTIONS 871

The error in this approximation depends on how the boundary data is approximated.
For homogeneous boundary data, gh = 0, standard error estimates and the regularity
according to Theorem 3.1 yield that there exists an ε ∈ (0, 1/2] such that

‖uh − u‖1 ≤ Ch1/2+ε‖f‖0,(40)

where the estimate holds for ε = 1/2 when the domain is convex.
Since V h ⊂ L2(Ω), we can apply a Galerkin approximation to problem (35):

Find ũh ∈ V h such that∫
Ω

ũhvh dx = G(vh) ∀vh ∈ V h.
(41)

Subtracting (35) with v = vh from (41), we obtain∫
Ω

(ũh − u)vh dx = 0 ∀vh ∈ V h,

implying that the Galerkin approximation is optimal in L2(Ω),

‖ũh − u‖0 = inf
vh∈V h

‖u− vh‖0 ≤ ‖u− Πhu‖.(42)

Approximation (41) is useless as a numerical method, however, since to compute
G(vh), we need the exact solutions z and λ to problems (30) and (31) for each vh ∈ V h.
A natural alternative is to use numerical approximations zh and λh instead, which
pertains to a modification of G—a so-called variational crime. For this, define the
linear form Gh : L2(Ω) → R as follows:

1. Given v ∈ L2(Ω), find zh ∈ V h0 such that∫
Ω

∇zh · ∇wh dx =

∫
Ω

vwh dx ∀wh ∈ V h0 .(43)

2. From v and zh, compute λh ∈ γV h such that

−
∫

Γ

λhφh dΓ =

∫
Ω

vφh dx−
∫

Ω

∇zh · ∇φh dx ∀φh ∈Mh.(44)

3. Set, given g ∈ L2(Γ) and f ∈ L2(Ω),

Gh(v) = −
∫

Γ

gλh dΓ +

∫
Ω

fzh dx.(45)

A second approximation to (35) is as follows:

Find uh ∈ V h such that∫
Ω

uhvh dx = Gh(vh) ∀vh ∈ V h.
(46)

At first glance, approximation (46) appears unreasonably costly to implement,
since the computation of each component of the vector Gh(vh) requires the solution
of (43) and (44)! However, a remarkable property of approximation (46), shown in
Theorem 5.2, is its equivalence to the standard Galerkin approximation (39), pro-
vided that the L2(Γ) projection is used to approximate the inhomogeneous boundary
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conditions. Thus, in practical computations, approximation (46) can be implemented
as a standard Galerkin approximation combined with L2-projections of the bound-
ary data. The equivalence of Theorem 5.2 is a consequence of the properties of the
mapping vh �→ (zh, λh) involved in the definition of Gh.

Lemma 5.1. The mapping vh �→ (zh, λh), defined by solving (43) and (44), is
bijective as a mapping V h → V h0 × γV h. Moreover, the functions vh, zh, and λh
satisfy ∫

Ω

vhψh dx = −
∫

Γ

λhψh dΓ +

∫
Ω

∇zh · ∇ψh dx ∀ψh ∈ V h.(47)

Proof. Let vh ∈ V h be given, and let zh ∈ V h0 and λh ∈ γV h be the unique
solutions to (43) and (44) for v = vh.

Expression (43) with v = vh can be written

0 =

∫
Ω

vhwh dx−
∫

Ω

∇zh · ∇wh dx ∀wh ∈ V h0 .(48)

Adding (48) to (44) with v = vh yields

−
∫

Γ

λhφh dΓ =

∫
Ω

vh(φh + wh) dx−
∫

Ω

∇zh · ∇(φh + wh) dx(49)

for each φh ∈ Mh and each wh ∈ V h0 . Since V h = V h0 ⊕Mh, and since functions in
V h0 vanish on Γ, it follows that vh, zh, and λh are related through expression (47).

Conversely, let zh ∈ V h0 and λh ∈ γV h be given. Expression (47) defines an
equation for vh corresponding to a square linear system with a positive-definite matrix.
Equation (47) thus has a unique solution vh ∈ V h. The mapping vh �→ (zh, λh) is
thus bijective, since the mapping itself as well as its inverse are one-to-one.

With the aid of the mapping of Lemma 5.1, we can transfer between the “new”
approximation (46) and the traditional (39), as follows.

Theorem 5.2. The function uh ∈ V h is a solution to problem (46) if and only
if

uh ∈ V h such that∫
Ω

∇uh · ∇zh dx =

∫
Ω

fzh dx ∀zh ∈ V h0 ,(50a)

uh = P γh g on Γ,(50b)

where P γh g is the L2(Γ)-projection of g on γV h, that is,

P γh g ∈ γV h such that∫
Γ

P γh g rh dΓ =

∫
Γ

g rh dΓ ∀rh ∈ γV h.
(51)

Proof. (i) Let uh be the solution to problem (50). Let vh ∈ V h be given, and
compute zh ∈ V h0 and λh ∈ γV h by solving (43) and (44) with v = vh. By Lemma 5.1,
vh, zh, and λh are related through the expression

−
∫

Γ

λhψh dΓ +

∫
Ω

∇zh · ∇ψh dx =

∫
Ω

vhψh dx ∀ψh ∈ V h.
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Choosing ψh = uh, it follows that

−
∫

Γ

λhuh dΓ +

∫
Ω

∇zh · ∇uh dx =

∫
Ω

vhuh dx.(52)

Using (50a) to replace the second term in expression (52), we obtain∫
Ω

uhvh dx = −
∫

Γ

λhuh dΓ +

∫
Ω

fzh dx = −
∫

Γ

λh P
γ
h g dΓ +

∫
Ω

fzh dx

= −
∫

Γ

λhg dΓ +

∫
Ω

fzh dx = Gh(vh),

(53)

where we have used (50b) in the second equality, definition (51) of P γh g in the third,
and definition (45) of Gh in the fourth equality. Since vh ∈ V h was arbitrary, we have
shown that if uh solves (50), it also solves (46).

(ii) Conversely, let uh be the solution of problem (46), and let λh ∈ γV h and
zh ∈ V h0 be given. By Lemma 5.1, there is a unique vh ∈ V h satisfying∫

Ω

vhψh dx = −
∫

Γ

λhψh dΓ +

∫
Ω

∇zh · ∇ψh dx ∀ψh ∈ V h.(54)

Choosing ψh = uh, we find

−
∫

Γ

λhuh dΓ +

∫
Ω

∇zh · ∇uh dx =

∫
Ω

vhuh dx.(55)

Since uh is a solution of problem (46), the right-hand side of expression (55) satisfies∫
Ω

vhuh dx = −
∫

Γ

gλ̂h dΓ +

∫
Ω

fẑh dx,(56)

where ẑh and λ̂h are the solutions to (43) and (44) with v = vh. However, since by

Lemma 5.1, ẑh and λ̂h are uniquely defined by vh, we have ẑh = zh and λ̂h = λh.
Substituting expression (56) into expression (55), we obtain∫

Ω

∇uh · ∇zh dx =

∫
Γ

λh(uh − g) dΓ +

∫
Ω

fzh dx

=

∫
Γ

λh(uh − P γh g) dΓ +

∫
Ω

fzh dx,

where in the last equality we introduce P γh g ∈ γV h as the solution of (51). Since
the choices of zh and λh were arbitrary, it follows that both (50a) and the boundary
condition (50b) must be satisfied.

The difference between problems (41) and (46) lies in the use of an approximated
linear form Gh in problem (46). It is therefore crucial to analyze the error that the
use of Gh introduces. Lemma 5.4, which estimates (G − Gh), needs the following
discrete extension result.

Lemma 5.3. There exists a C > 0, independent of h > 0, such that for each
gh ∈ γV h, a uh ∈ V h exists satisfying uh|Γ = gh and

‖uh‖1 ≤ C‖gh‖1/2,Γ.
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Proof. Let gh ∈ γV h be given. The functions in γV h are continuous and piece-
wise linear on the boundary, so γV h ⊂ H1/2(Γ) (in fact, γV h ⊂ H1(Γ)). By The-
orem 1.5.1.3 of Grisvard [11], the trace map γ : H1(Ω) → H1/2(Ω) has a right
continuous inverse E. The Scott and Zhang interpolator Πh, discussed in section 3.3,
continuously maps functions in H1(Ω) into V h. Composing Πh and E, we define
uh ∈ V h such that uh = ΠhEgh. Note that γuh = gh since the Scott and Zhang in-
terpolator preserves piecewise-polynomial boundary conditions. Moreover, since both
E and Πh are continuous, we find that

‖uh‖1 ≤ C‖gh‖1/2,Γ.

Remark 1. Similar results are reported in the estimate (5.5) of Scott and Zhang [17]
and in Lemma 11 of Gunzburger and Hou [13].

Lemma 5.4. Assume a quasi-uniform triangulation, characterized by the mesh
parameter h, of the polyhedral (or polygonal) domain Ω having a Lipschitz boundary.
There are an ε ∈ (0, 1/2] and a C > 0 such that, given g ∈ L2(Γ) and f ∈ L2(Ω), the
linear forms G and Gh, defined in expressions (32) and (45), satisfy, for each h > 0,

(G−Gh)(v) ≤ C
(
hε‖g‖0,Γ + h1/2+ε‖f‖−1

)
‖v‖0 ∀v ∈ L2(Ω).

Proof. Let v ∈ L2(Ω) be given, and let z and λ be the solutions to (30) and (31)
associated with the given v. Likewise, let zh and λh be the solutions to (43) and (44)
associated with v. By definitions (32) and (45), we find that

(G−Gh)(v) = −
∫

Γ

g(λ− λh) dΓ +

∫
Ω

f(z − zh) dx

= −
∫

Γ

(λ− λh)P
γ
h g dΓ −

∫
Γ

λ(g − P γh g) dΓ +

∫
Ω

f(z − zh) dx,

(57)

introducing P γh g, the L2(Γ) projection of g on γV h, defined as in (26b).

We will estimate each of the terms in the right-hand side of expression (57),
starting with the first. Let ϕh ∈ γV h be given. Choose φh ∈ Vh so that φh|Γ = ϕh
and so that the estimate of Lemma 5.3 is satisfied. From (31) and (44) it follows that

−
∫

Γ

(λ− λh)ϕh dΓ = −
∫

Ω

∇(z − zh) · ∇φh dx

≤ ‖zh − z‖1‖φh‖1 ≤ C‖zh − z‖1‖ϕh‖1/2,Γ

≤ C‖zh − z‖1 h
−1/2‖ϕh‖0,Γ ≤ Ch1/2+ε‖v‖0 h

−1/2‖ϕh‖0,Γ

= Chε‖v‖0‖ϕh‖0,Γ,

(58)

where the second inequality follows from Lemma 5.3 and the third from inverse esti-
mates (29) (the inverse estimate needs the assumption of quasi-uniform mesh refine-
ments); expression (40) yields the existence of an ε ∈ (0, 1/2] such that the fourth
inequality holds.

Next we estimate the second term in the right-hand side of expression (57) as
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follows: ∫
Γ

λ(g − P γh g) dΓ =

I∑
i=1

∫
Γi

λ(g − P γh g) dΓ ≤
I∑
i=1

‖λ‖ε,Γi‖g − P γh g‖−ε,Γi

≤ C‖v‖0

I∑
i=1

‖g − P γh g‖−ε,Γi ≤ C‖v‖0‖g − P γh g‖−ε,Γ

≤ Chε‖v‖0‖g‖0,Γ,

(59)

where the second, third, and fourth inequalities use estimates (16), (9), and (28),
respectively. The third term in the right-hand side of expression (57) is estimated by
expression (40),∫

Ω

f(z − zh) dx ≤ ‖f‖−1‖z − zh‖1 ≤ Ch1/2+ε‖f‖−1‖v‖0.(60)

Substituting estimates (58) (with ϕh = P γh g), (59), and (60) into expression (57)
yields the required estimate

(G−Gh)(v) ≤ C
(
hε‖P γh g‖0,Γ + hε‖g‖0,Γ + h1/2+ε‖f‖−1

)
‖v‖0

≤ C
(
hε‖g‖0,Γ + h1/2+ε‖f‖−1

)
‖v‖0,

where in the second inequality we have used the bound ‖P γh g‖0,Γ ≤ ‖g‖0,Γ that holds
for an L2-projection.

The final result of this article is that the solution to (46) converges to the solution
of (35) at a rate that depends, through ε, on the shape of the domain, where ε = 1/2
corresponds to a convex domain.

Theorem 5.5. Assume a quasi-uniform triangulation, characterized by the mesh
parameter h, of the polyhedral (or polygonal) domain Ω having a Lipschitz boundary.
There are an ε ∈ (0, 1/2] and a C > 0 such that, given g ∈ L2(Γ) and f ∈ L2(Ω), the
solutions u and uh to problems (35) and (46) satisfy, for each h > 0,

‖u− uh‖0 ≤ C
(
hs‖u‖s + hε‖g‖0,Γ + h1/2+ε‖f‖−1

)
for each s ∈ [0, ε).

Proof. The solution error may be decomposed as u− uh = (u− ũh) + (ũh − uh),
where ũ is the solution to problem (41). Thus,

‖u− uh‖0 ≤ ‖u− ũh‖ + ‖ũh − uh‖.(61)

By estimate (42), approximation property (24b), and Theorem (4.2), there exists an
ε ∈ (0, 1/2] so that

‖u− ũh‖0 ≤ Chs‖u‖s ∀s ∈ [0, ε).(62)

Equations (41) and (46) yield that∫
Ω

(ũh − uh)vh dx = G(vh) −Gh(vh) ∀vh ∈ V h,
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so choosing vh = ũh − uh means that

‖ũh − uh‖2
0 = (G−Gh)(ũh − uh).(63)

Using Lemma 5.4 in expression (63) implies that

‖ũh − uh‖0 ≤ C
(
hε‖g‖0,Γ + h1/2+ε‖f‖−1

)
.(64)

Substituting estimates (62) and (64) into expression (61) provides the required esti-
mate.

Remark 2. Theorem 5.5 only provides convergence rates for boundary data in
L2(Γ). By the equivalence proven in Theorem 5.2, smoother data will improve the
convergence rate, since error estimates for the standard approach then apply. Fix,
Gunzburger, and Peterson [6], French and King [7, 8], and Bramble and King [2] prove
various error estimates that apply for smoother data.
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verges, although in a weaker sense, also for rough data. This comment sparked an
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to Ridgway Scott. I also thank Max Gunzburger, Steven Hou, and Christer Kiselman
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REFERENCES
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Abstract. We propose a method to integrate an initial value problem formed by the differential
equations of a perturbed dynamical system plus the initial condition. The approach consists of several
steps. First of all, if the original system does not enjoy a continuous symmetry, it is transformed
up to a certain order of approximation M into an equivalent but equivariant one after truncation
at order M . Second, this new symmetry allows us to define a reduction map which produces in
its whole phase space a splitting of the transformed equations. Specifically, the latter system is
decoupled into two subsystems, also initial value problems, one of them defined in the orbit space
associated with the reduction and the other linear in its coordinates. As a third step the reduced
subsystems are analytically resolved or numerically integrated using standard methods. Finally, the
solution of the original system is recovered by inverting back the reduction map and thereafter the
analytic transformations. We apply our procedure to three examples.

Key words. initial value problems, Lie transformations, generalized normal forms, reduced
equations, invariant theory, orbit spaces, Lie groups, semianalytic integration, numerical simulation
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1. Introduction. The goal of this paper is the analysis of initial value problems
composed by ordinary differential equations (ODEs) of the type

Dx(t) =

L∑
i=0

εi

i!
F i(x(t)),(1.1)

where t ∈ I ⊆ R stands for the independent variable, x ∈ Rm, ε is a small parameter,
and, for each 0 ≤ i ≤ L, F i represents a smooth vector field with m components
defined in an open set Ω ⊆ Rm. Symbol D represents a differential operator, and
thus Dη(s) = dη/ds; see, for instance, [20]. The initial condition we add is written as
x(t0) = x0 ∈ Rm, with t0 ∈ I. Since L can be understood as the degree reached by
the Taylor series of a certain smooth vector field with respect to ε, it could be infinity,
at least formally speaking.

In the context of perturbation theory, systems modeled by an ODE such as (1.1)
are called perturbed dynamical systems; see, for example, [34]. Indeed, these equa-
tions are formed by the sum of a principal part F 0 plus a small and regular per-
turbation. Our purpose is to give a methodology for the analytical or numerical
approximation of system (1.1) with adequate initial values, taking advantage of pre-
vious manipulations of the equations.

First of all, the initial value problem is converted into a simpler one, called a gen-
eralized normal form, by means of formal changes of variables: “generalized” meaning
that we extend the standard approach for smooth vector fields based on simplifications
through normal forms in a sense that will be specified later on and “simpler” indicating
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that in the process of the transformation we introduce a formal (continuous) symmetry
in the equations; in other words, we make the transformed system equivariant.

Afterwards, we define a reduction map and make use of a decomposition lemma (or
splitting lemma) so that the transformed vector field can be split into two subsystems
defined in two different invariant spaces. One of the subsystems, the so-called reduced
system, contains the fundamental dynamics of the original system and is defined in
a quotient space (called an orbit space; see [1, 35, 21, 13, 7]), whereas the other
is a system of linear differential equations with time-dependent coefficients and is
defined in a Lie group. Actually, the reduction can be performed thanks to the formal
symmetry introduced through the normal form approach.

As the initial vector x(t0) is also transformed using the change of coordinates,
we build two initial value problems, one defined in the orbit space and the other on
the Lie group. More precisely, the initial value problem defined in the orbit space
is a differential system of equations with constraints among the unknowns. These
restrictions appear in the reduction process as a result of constructing the orbit space.

Once we write the subsystems in the appropriate coordinates we have to solve
both differential equations with analytical—if possible—or numerical methods. Note
that in some cases the reduction is so drastic that we can arrive at two initial value
problems that can be solved straightforwardly by means of quadratures, as we shall
see in the first and second examples of section 4.

The solution of the original initial value problem is recovered through two steps.
First, we shall pass from the vector-valued solutions obtained in the orbit space and
in the Lie group to the extended normal form system solving a system of smooth
equations (in many cases algebraic equations, as we shall discuss later). Second, the
solution of the departure system will be determined by using the inverse change of
coordinates.

Our implementation uses Lie transformations for differential equations. The
method was introduced by Kamel [27] and Henrard [25]; see also the basic paper
by Deprit [15] for Hamiltonian systems. The advantage of working with Lie trans-
formations is that the computations are done in an ascendent way (starting at first
order, e.g., with terms factored by ε), arriving at the desired order, say M , where the
changes of coordinates—direct and inverse changes—can be obtained explicitly. This
feature is in contrast to other techniques based on near-identity transformations such
as the classical Poincaré method [43] or the Krylov, Bogoliubov, and Mitropolsky the-
ory of averaging [29, 5], as these procedures provide the formula in mixed coordinates
(the original and the transformed ones), and so an inversion of the resulting series is
needed. Note, however, that the Lie transformations of Kamel, Henrard, and Deprit
and the theory of averaging are based on and inspired by the work of Poincaré.

Here we use the setting given by Meyer [34] through his general perturbation
theorem. At this point we emphasize that our procedure is global in the sense that we
do not use local expansions around equilibrium points. Nevertheless, the convergence
of the transformations is not discussed through the paper, though it is well known that
generally transformations based on normal form techniques diverge. Basically, in the
setting of smooth vector fields a convergent transformation can be guaranteed if there
is a nontrivial local one-parameter group of symmetries; see [10, 52] and the recent
book by Cicogna and Gaeta [9]. For polynomial vector fields and the Poincaré–Dulac
normal form approach, strong hypotheses of the eigenvalues of the linear part are used
to obtain convergence of normal forms. In this framework it is worth mentioning the
works by Poincaré [42], Siegel [47], Markhashov [31], and Bryuno [6].
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The connection of the general perturbation theorem with the reduction of a dy-
namical system through the introduction of symmetries has been given for polynomial
vector fields in [40]; see also a previous paper by Cicogna and Gaeta [8] dealing with
a simpler version. Here we enlarge those studies, considering smooth vector fields and
reduction techniques for the case that the Lie group related to the formal symmetry
introduced is finitely generated, as we shall detail in section 3. The extension to
nonpolynomial vector fields is justified by the use of reduction techniques from the
point of view of global analysis of dynamical systems. As examples of global analysis
of dynamical sytems based on normal forms of nonpolynomial vector fields we men-
tion the case of perturbed Keplerian systems; see Deprit [16], Cushman [12], Barrio
and Palacián [4] and the references therein. Note that in these cases the authors deal
with normal forms avoiding collision trajectories, and therefore the perturbations of
the two-body problem are smooth functions (but are, in general, nonpolynomial).

Possible fields of application of our approach for perturbed differential equations
are classic and quantum mechanics and astrodynamics. The different versions of the
n-body problem (general setting or restricted n-body problems; see, for instance,
[48]), the motion of artificial satellites around a planet taking into account the gravity
potential of the planet (which depends on its shape) [11], or the orbital motion of
the Moon [17] are examples of very complex problems to be treated numerically. In
classical and quantum mechanics we cite the examples of motion of electrons under
the influence of electrical or magnetic fields [18] and the case of ion traps modeled by
resonant Hamiltonians with n degrees of freedom [22]. However, generically in these
problems, poor numerical approximations are obtained. There are various reasons for
this; we mention two: (i) usually very long time spans are required in the simulations;
(ii) an initial value problem can depend on external parameters and the corresponding
solutions when fixing different values of the parameters and can be very sensitive with
respect to them. In this case, a numerical method often exhibits a blind behavior and
is not useful for dealing with the solution of the problem. Other sources of problems
when dealing with numerical methods are related to the involved expressions defining
the original vector field; on other occasions the system of differential equations has a
high dimension, and it leads to using very expensive methods from a computational
point of view. Finally, if the equations to be resolved are expected to present a chaotic
behavior, a numerical treatment can yield unsatisfactory results.

A common idea present in many perturbed ODEs of mechanics [29, 5, 44] is that
these problems can be dramatically simplified due to the fact that they are formulated
in such a way that some of the variables are angles which oscillate very rapidly in
comparison with other angles. Terms of the equation related to the “fast” angles
are called short-period terms, whereas terms related to the “slow” ones are called
long-period terms. However, short- and long-period terms appear coupled in most
applications. If one is interested in the solution of a problem for a long time—for
instance to extract information about the numerical stability of some trajectories—a
typical approach consists in converting the original equation into an equivalent one
but “eliminating” the fast angles up to a certain order (with an appropriate change
of coordinates). Thus, one arrives at a simplified problem which can be studied using
long steps of time. This is the theory (or the method) of averaging in its modern
version formulated by Krylov, Bogoliubov, and Mitropolsky. Using these techniques,
Laskar [30] has analyzed the stability of the solar system for a time interval of 109

years; see also the review paper by Marmi [32]. A rigorous analysis of artificial
satellites orbiting at low altitude has to take into account the oblateness of the Earth
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and the atmospheric friction. In [28] a numerical ODE-solver is proposed based on
previous averaging of the initial equations. A semianalytical theory [3, 4] has been
applied to simplify the original problem, transforming it into another one whose terms
are only of long-period type. Hence, the simplified system is numerically solved using
a Runge–Kutta method of order eight due to Dormand and Prince and equipped with
variable stepsize and continuous output [23].

Nevertheless, to our knowledge, the approach described above has not been fol-
lowed by the community of applied mathematicians. Besides, the simplification of a
system through formal changes of variables can be generalized with the aim of con-
sidering not only the case of angular variables but other types of coordinates. This
is, consequently, better formulated by the use of reduction to the orbit space (see the
seminal paper by Michel [35] and the recent book by Chossat and Lauterbach [7])
but adding the equation in the Lie group. In section 3 we shall show that the av-
eraging method is a particular case of the reduction method we use. Indeed, the
variables “eliminated” are the coordinates of the Lie group; therefore, to recover all
the departure variables, one needs to solve the linear system of equations in the Lie
group.

In this respect the splitting lemma (that is, our splitting decomposition of the
transformed equations), together with the relation of the transformed system with
the original one, is the essential tool to achieve the solution of the initial ODE via
normal forms. In [37] the standard treatment of building formal symmetries of smooth
vector fields is extended with the aim of constructing some invariant manifolds of the
original ODE using Lie transformations, invariant theory, and reduction techniques.
However, the integration of a certain initial value problem such as (1.1) using splitting
decompositions is also new.

It can happen that the integration—numerical or analytical—of the correspond-
ing systems in the orbit space and in the Lie group becomes a difficult task. This
feature can be caused because the constraints defining the orbit space are involved
expressions or due to the fact that the differential system in the orbit space is of
high dimension; note that the number of variables in the orbit space can be bigger
than the number of original coordinates. Under those circumstances our approach is
not recommended, and one must resort to numerical integrations. However, on many
interesting occasions, the use of Lie transformations and the subsequent reduction
simplify the problem enormously, as we will see in section 4.

The paper has five sections. Section 2 contains the required setting for the gener-
alized normal form formalism. Section 3 contains the central part of the paper and is
devoted to the solution of the reduced equations and to describe how one can obtain
the solution of the original system. We start this section concretely by describing the
geometrical aspects of the reduction after the application of generalized normal forms,
dealing with the invariants related to the symmetry introduced by the Lie transfor-
mations. We continue showing how the reduced phase spaces are constructed and
how the original differential equation is decomposed into the corresponding systems.
After that we relate the reduction techniques used with the integration of initial value
problems related to such equations. In section 4 we illustrate the technique with three
examples. Finally, in section 5 the conclusions of our work are outlined.

2. Analytic reduction.

2.1. Lie transformations for vector fields. Meyer’s approach to the calcu-
lation of formal symmetries employs Lie transformations and is based on previous
work by Kamel [27] and Henrard [25]. In [34], Meyer presents a Lie transformation
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treatment in the context of tensor fields. We start by recalling the method applied to
smooth vector fields.

Let us consider the differential system

Dx(t) = F 0(x(t)) +

∞∑
i=1

εi

i!
F i(x(t)),(2.1)

where t represents the time variable, x ∈ Rm, and ε stands for a dimensionless small
parameter. The vector field F i, for i ≥ 0, has m components, which are analytic
functions in x, and we truncate the series (2.1) at order L; then F i ≡ 0 for i > L.
We define by [·, ·] the Lie bracket of two vector fields g1(x) and g2(x) in Rm, that is,
[g1, g2] = Dg1(x)g2 −Dg2(x)g1.

Let us describe the typical algorithm of Lie transformations for ODEs. A smooth
vector field (2.1) depending on a small parameter ε is transformed into another vector
field

Dy(t) = G0(y(t)) +

∞∑
i=1

εi

i!
Gi(y(t)),(2.2)

where G0(y(t)) ≡ F 0(x(t)), through a generating function

W (x; ε) =
∞∑
i=0

εi

i!
W i+1(x),

following the recursive formula

F
(j)
i = F

(j−1)
i+1 +

i∑
k=0

(
i

k

)[
F

(j−1)
i−k ,W k+1

]
,(2.3)

with i ≥ 0, j ≥ 1. Besides, F
(0)
i ≡ F i and F

(i)
0 ≡ Gi for all i ≥ 0.

Note that W (x; ε) is conserved under the transformation, and thus it can also
be expressed as W (y; ε), that is, W (x; ε) ≡W (y; ε). Hence, (2.3) yields the partial
differential identity

LF 0
(W i) +Gi = F̃ i,(2.4)

where F̃ i collects all the terms known from the previous orders plus F i. In this
identity, called the homology equation, W i and Gi are determined according to the
specific requirements of the Lie transformation one performs. Besides, LF 0

denotes
the Lie operator associated with the Lie bracket of two vector functions, i.e., given
two vector fields g1 and g2: Lg1

(g2) = [g2, g1].
The transformation x = X(y; ε) relates the “old” variables x with the “new”

ones y and is a near-identity change of coordinates. The direct change is given by

x = y +

∞∑
i=1

εi

i!
y

(i)
0 .(2.5)

Vectors y
(i)
0 , i ≥ 1, are calculated recursively with the aid of

y
(j)
i = y

(j−1)
i+1 +

i∑
k=0

(
i

k

)(
y

(j−1)
k ,W i+1−k

)
,(2.6)
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with i ≥ 0, j ≥ 1, and y
(0)
i ≡ 0 for i ≥ 1, y

(0)
0 ≡ y, and each W i+1−k is written in

terms of y. Besides, given two vector fields g1(y) and g2(y), the operator (g1, g2) is
computed as Dg1(y)g2. Consequently, (2.5) gives the set of coordinates x in terms
of y with the use of the generating function W .

Similar formulae can be used to obtain the inverse transformation y = Y (x; ε),
which explicitly reads as

y = x+
∞∑
i=1

εi

i!
x

(0)
i .(2.7)

Now x
(0)
0 ≡ x, and for i ≥ 1 vectors x

(0)
i are calculated recursively by means of

x
(j)
i = x

(j+1)
i−1 +

i−1∑
k=0

(
i− 1

k

)
(x

(j)
i−k−1,W k+1),(2.8)

with i ≥ 1, j ≥ 0. This time x
(i)
0 ≡ 0 for i ≥ 1, the Jacobians appearing in the

operators of (2.8) are computed with respect to x, and W k+1 is also written in x.
Formulae (2.5) and (2.6) can be used to transform any function expressed in the

old coordinates x, say P (x; ε) =
∑�
i=0(ε

i/i!)P i(x), as a function of the new variables

y, after identifying each P i(x) with y
(0)
i (and replacing in the identification x by

y). The result is the function P in terms of y. In a similar fashion, (2.7) and (2.8)
should be used to transform any function written in terms of y as a function of the
coordinates x.

2.2. Generalized normal forms. The above method is formal in the sense that
the convergence of the various series is not discussed. Moreover, the series diverge
in many applications. However, the first orders of the transformed system can give
interesting information, and the process can be stopped at a certain order M . It
means that these terms of the series are useful to construct both the transformed
vector field and the generating function since they are unaffected by the divergent
character of the whole process. Now we are ready to build formal symmetries for
vector fields using Lie transformations.

Theorem 2.1 (generalized normal forms). Let M ≥ 1 be given, let {Pi}Mi=0,
{Qi}Mi=1, and {Ri}Mi=1 be sequences of vector spaces of smooth vector fields in x ∈ Rm

defined in a common domain Ω in Rm, and let T ≡ T (x) be a vector field in some
{Pi}Mi=0 with the following properties:

(i) Qi ⊆ Pi, i = 1, . . . ,M ;
(ii) F i ∈ Pi, i = 0, 1, . . . ,M ;
(iii) for any D ∈ Pi and any K ∈ Rj one has [D,K] ⊆ Pi+j for all i + j =

1, . . . ,M ;
(iv) for any D ∈ Pi, i = 1, . . . ,M , one can find E ∈ Qi and K ∈ Ri such that

E = D + [F 0,K] and [E,T ] = 0.

Then there is a smooth vector field W ,

W (x; ε) =

M−1∑
i=0

εi

i!
W i+1(x),
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with W i ∈ Ri, i = 1, . . . ,M , such that the change of variables x = X(y; ε) is the
general solution of the initial value problem

Dx(ε) = D1W (x; ε),

x(0) = y,

and transforms the convergent vector field

F (x; ε) =
∞∑
i=0

εi

i!
F i(x)

to the convergent vector field

G(y; ε) =
M∑
i=0

εi

i!
Gi(y) + O(εM+1),

with Gi ∈ Qi and [Gi,T ] = 0, i = 1, . . . ,M . Besides, if [F 0,T ] = 0, then T ≡ T (y)
is a formal symmetry of G.

Proof. It appears in [40]. Note that we are requiring that functions E ∈ Qi

satisfy [E,T ] = 0. In the above D1W (x; ε) stands for the derivatives of W with
respect to x, that is, the Jacobian. In general, Diη(u1, . . . ,u�) refers to dη/dui, if
i ∈ {1, . . . , �}, whereas Djω(s) = dω/dsj , using Bourbaki notation [20].

If we drop the remainder ofG and makeM → +∞, the resulting formal expansion
does not converge, in general, as further and deep conditions on the vector field F
and on the change of coordinates of the Lie transformation should be added; see, for
example, [10, 52].

The number of possible normal forms of F one calculates depends on the different
Lie transformations one can execute or, in other words, on the independent symmetries
T of F 0 selected in order to apply Theorem 2.1. This is in contrast to the usual
approach of normal forms in which one chooses T to be F 0 or, in the polynomial
setting, the semisimple part of F 0. However, we allow T to be any symmetry of F 0.
Hence, the vector field G is called a generalized normal form of F ; see also [38, 40].

Next, we can determine a formal continuous symmetry of the original system by
going back to the departure system. Specifically, we compute T ∗(x; ε) as

T ∗(x; ε) = T (x) +

M∑
i=1

εi

i!
T (x)

(0)
i ,(2.9)

where T (x)
(0)
i are calculated using

T (x)
(j)
i = T (x)

(j+1)
i−1 +

i−1∑
k=0

(
i− 1

k

)
(T (x)

(j)
i−k−1,W k+1),(2.10)

with i ≥ 1 and j ≥ 0. Now T (x)
(0)
0 ≡ T (x) and, for i ≥ 1, T (x)

(i)
0 ≡ 0. Then

T ∗(x; ε) is an asymptotic symmetry of F , i.e., [F ,T ∗] = O(εM+1).
We have to note that given a vector field T with [F 0,T ] = 0 it is not always

possible in practice to solve the homology equation (2.4) due to the difficulties in
finding out the pair (Gi,W i) satisfying it. Therefore, on some occasions we will stop
the computation of a normal form at the order we had reached without trouble.
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Estimates of the error committed by the application of Theorem 2.1 are ob-
tained from the theory developed for the method of averaging. Taking into consid-
eration that y = Y (x; ε) and x = X(y; ε), for a given vector field S(x; ε) we call
S∗(x; ε) = S(X(Y (x; ε); ε); ε); then one can conclude that by using an adequate
norm ‖S∗(x; ε) − S(x; ε)‖ = O(εM+1) on a time scale 1/ε; see [44] for details. This
remark gives the key to know how accurate we get when computing approximate so-
lutions in (2.1). Using these considerations we shall bound the errors in the first and
second examples of section 4.

3. Solution of the original equations.

3.1. Decoupling of the transformed equation. From a geometrical stand-
point the consequence of introducing a symmetry by making use of Theorem 2.1 is
that the dimension of the phase space where the transformed system is defined—the
so-called reduced phase space—is reduced from m to s (s denoting the number of
functionally independent first integrals associated with T (y)). Let us see how this is
achieved with some details.

System (2.1) is defined over an open subset of Rm. This is the phase space of the
dynamical system determined by (2.1). Given T , an m-dimensional vector field such
that [F 0,T ] = 0, the application of Theorem 2.1 after truncating at order M leads to
a smooth vector field that we denote by H(y; ε):

Dy(t) = H(y; ε) =

M∑
i=0

εi

i!
Gi(y),(3.1)

where H0 ≡ F 0, and each Gi is constructed so that [Gi,T ] = 0 for 1 ≤ i ≤M .
We need to show how the transformation performed in section 2 is effective in

the sense that we really simplify the departure system. We took inspiration from the
result obtained by Gaeta in [21], adapting it to our requirements. Associated with the
one-parameter group of symmetries introduced through the Lie transformation there
is an (m− s)-dimensional Lie group GT such that H is GT -equivariant, that is, fixed
ε > 0, for any y ∈ Rm and any g ∈ GT , and the identity H(y; ε) = H(gy; ε) holds.

In [46] Schwarz generalized a result obtained by Hilbert for polynomial first in-
tegrals. Specifically, Schwarz showed that given a compact Lie group GT and any
GT -equivariant vector field, there is a set of smooth functions defined in a domain
Ω ⊆ Rm (in other words, C∞(Ω)-functions) such that any GT -equivariant smooth
function defined over Ω can be written as a C∞(Ω)-function of those functions. These
functions, designated by ϕi(y), i = 1, . . . , r (with y ∈ Ω), correspond to the r lin-
early independent first integrals of the system Dy(t) = T (y(t)), from which s (with
1 ≤ s ≤ r) are functionally independent. The requisite of GT to be compact cannot be
avoided in order to ensure the existence of a finite number of first integrals. However,
we can relax somewhat this hypothesis in three important cases:

(i) When T is a homogeneous linear vector field, we do not care about the com-
pactness of the Lie group. Indeed, a classic theorem by Weitzenböck [53] guarantees
that the polynomial invariant algebra of the symmetry T (i.e., the set of all polyno-
mial first integrals associated with T ), denoted by I(T ), is finitely generated. The
semisimple case was treated by Walcher [50, 51], whereas the extension to nonsemisim-
ple vector fields is treated, for instance, in [14]. In summary, if T is a polynomial
vector we can always find a finite number of polynomial first integrals, regardless of
the compactness of GT . Note that even for a nonpolynomial ODE one could obtain a
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nonpolynomial normal form using a polynomial vector field T as the symmetry to be
extended in the process. Hence in this case the algebra I(T ) is also finitely generated.

(ii) If GT is a linearly reductive Lie group, Hilbert proved that GT has a finite num-
ber of generators, and therefore I(T ) is finitely generated. A constructive algorithm
to compute the required first integrals of I(T ) is given by Derksen [19].

(iii) If GT is not compact and (i) and (ii) do not hold we can still apply the
Frobenius theorem in the neighborhood of any point y ∈ Ω, finding out a finite set
of linearly independent generators from which s are functionally independent. See
Theorem 2.17 of the book by Olver [36] for a derivation of these invariants.

Suppose now that we are in the situation that GT is finitely generated and that we
have already determined its generators. The set {ϕ1, . . . , ϕr} has the structure of a
ring of scalar fields with the standard product and addition of C∞-functions. Denote
by L∗

T (z) the Lie derivative of a function z : Ω → R related to T , e.g., L∗
T (z(y)) =

〈Dz(y),T 〉. So L∗
T (ϕi(y)) = 0 for i ∈ {1, . . . , r}. Hence, the ϕi are the linearly

independent solutions of the linear partial differential equation L∗
T (ϕi(x)) = 0. Note

that s ≤ m, but r can be any value.
We follow now the construction of Walcher [50] but in the context of smooth

functions. First, we make ϕ = (ϕ1, . . . , ϕr) and ϑ = (ϑ1, . . . , ϑm−s). Then we
consider the map �T over Rm as follows:

�T : Ω ⊆ Rm −→ Rr,

y �→ ϕ(y).

Let S(Rr) be the associative and graded algebra of all C∞-maps from Rr to R, and
let J = {γ ∈ S(Rr) : γ(ϕ(y)) = 0 for all y ∈ Ω}; then J is a prime ideal in S(Rr)
because for γ1, γ2 ∈ S(Rr) and γ1 · γ2 ∈ J one has γ1(ϕ(y)) · γ2(ϕ(y)) = 0 for all
y ∈ Ω. Let Y = {y ∈ Ω : γ(y) = 0 for all γ ∈ J} be an irreducible variety. It is
clear that �T (Ω) ⊆ Y and dim Y = s (that is, the maximum number of functionally
independent C∞(Ω)-functions on Y ), and the rank of D�T (y) is equal to s at most
points of Ω.

Next, we define the reduction map as the surjective map

πT : Ω ⊆ Rm −→ Y,

y �→ ϕ(y).

By construction, the map πT is a solution-preserving map from the equivariant vec-
tor field H(y; ε) to a differential equation defined in the reduced space (or reduced
phase space) Y and reflects the actual reduction process; see the details in [50]. In
addition, Y has the structure of a variety (semialgebraic whenever T is of polynomial
character) and is defined as a set of (smooth) equalities and inequalities that we call
reduced phase space. However, the passage to the space Y must be combined with
an additional differential equation in the Lie group GT to make the splitting explicit.
We have the following result.

Theorem 3.1 (splitting lemma). Given the generalized normal form system
(3.1) with H a smooth function of y and ε (fixed) defined in Ω ⊆ Rm and with the
necessary assumptions on the smooth vector field T to make GT finitely generated, H
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can be transformed into a triangular system as

Dϕ(t) = α(ϕ(t); ε) =

M∑
i=0

εi

i!
αi(ϕ(t)),

Dϑ(t) = β(ϑ(t),ϕ(t); ε) =
M∑
i=0

εi

i!
βi(ϑ(t),ϕ(t)),

(3.2)

α and β being smooth functions obtained constructively from H, ϕ, and ϑ and having
dimensions r and m− s, respectively.

Proof. A similar result is proven in [21], but we propose a different version.
(See also [1] for details and the seminal paper by Michel [35].) The reason for the
appearance of α and β comes from the fact that they are constructed order by order
in powers of ε. The first equation of (3.2) depends exclusively on the ϕi, is called
the reduced system, and is defined over Rr (or, using the reduction map πT , over
Y ), whereas the second equation of (3.2) is defined in the Lie group GT . We use that
Dϕ(t) = Dϕ(y)H(y; ε) and take into account that the right-hand member of this
equation can be expressed completely in terms of ϕ, as α is GT -invariant. Next, we
make the identification

α(ϕ; ε) = Dϕ(y)H(y; ε), that is, αi(ϕ) = Dϕ(y)Hi(y).

For each i, the construction of βi is done with the aid of αi and Hi. It must
be performed once the coordinates ϑ have been calculated as functions of y. Now
there is no systematic way to encounter the components of ϑ, as it depends on each
particular case. The dimensions of the vector fields α and β follow, respectively, from
the dimensions of ϕ and ϑ.

Theorem 3.1 is also called the splitting decomposition. Note that as there is not a
unique set of coordinates, there is not a unique function β. From a qualitative stand-
point the relevant part of the normal form is given by the equation on Y . However,
the equation on the Lie group must be taken into account if an integration (either
analytical or numerical) of (3.1) is needed. In this case, if the solution of the equation
involving the ϕi is known, then the solution of the remaining equation on GT can be
obtained. In particular for polynomial normal forms, this equation is linear in ϑ. As
there are r − s functionally independent relations among the ϕi(y), these relations
are indeed the constraints determining the phase space where the normal form system
in Y is defined. Besides, the basic properties of system (3.1) are also reflected in Y .
For instance, asymptotic expressions at a certain order M of the analytic integrals of
the initial system must be found from the analysis of the normal form in the reduced
space. The invariance of some subsets of Rm is formally preserved when passing to
the reduced space; see a proof in [50].

Whenever GT is compact the set Y can be identified with the orbit space Ω/GT ,
and our reduction process coincides with the reduction to the orbit space because in
this case the invariants separate orbits; see, for instance, [7]. However, for noncompact
Lie groups the variety Y is topologically better behaved than Ω/GT ; see [50].

The relation of the procedure described through Theorem 3.1 and the theory of
averaging is rather clear; see, for instance, [5, 44]. Indeed, it is easy to see that the
passage from the original equation to the system defined in the reduced phase space
can be interpreted as an average of the equation over all “angular” variables ϑi since
the coordinates of the Lie group are absent in Y . (The latter has sense, provided that
no small divisor appears in the generating functions; otherwise a partial averaging
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is needed; that is, one needs to choose adequately those angles out of the resonance
domain; therefore, a different selection of the symmetry of the principal part is used.)
However, the way we have followed seems to be more transparent and general, as the
reduction process does not depend on the variables we use, and the coordinates of GT

do not need to be actual angles; see some examples in [41, 56].
For Hamiltonian systems we can perform symplectic transformations. In this

context there is a scalar function associated with the initial vector field F . This
function is called a Hamiltonian or Hamilton function and is usually denoted by H.
If J designates the skew-symmetric matrix of order 2n,

J =

(
0 In

−In 0

)
,

one has F = JDH(x). Moreover, we need to select T (a symmetry of F 0) such that
it has a Hamiltonian nature. That is, T has to be related to a constant of motion
(an integral) that we denote by T through T = JDT (x). As T is constant over the
solutions of F one can fix a real value for it, i.e., T ≡ c ∈ I ⊆ R.

The Lie bracket of two vector fields is replaced by the Poisson bracket of two
scalar fields P and Q; specifically, if x = (x1, . . . , x2n), the Poisson bracket is defined
over an open domain of R2n as the quantity

{P,Q}(x) =

n∑
i=1

DiP(x)Di+nQ(x) −Di+nP(x)DiQ(x).

Note that (x1, . . . , xn) stand for the coordinates, whereas (xn+1, . . . , x2n) refer to
their conjugate momenta. Moreover, all computations are carried out in the scalar
framework, and the generating function W is related to a scalar W through W =
JDW(x).

As a consequence, the normal form is by construction a function depending
exclusively on q [38]. Thus, the second equation of system (3.2) gets reduced to
Dp(t) = β(q(t); ε). Observe that the variables q(t) are not canonical; however, the
vector field β admits a symplectic structure because the generating function is also
a Hamiltonian. This time the reduction is done adding an extra step. First of all,
Theorem 3.1 is applied, and q and α are calculated. Consequently, if a departure
Hamiltonian defines a dynamical system on a 2n-dimensional phase space, that is, a
system of n degrees of freedom, after a symplectic reduction, the resulting Hamilto-
nian lies on a phase space of dimension s if s is even or of dimension s− 1 if s is odd.
Strictly speaking, there is an infinite number of reduced phase spaces, one for each
value of c ∈ I ⊆ R. See [37] for an application to the Hénon and Heiles family of
Hamiltonians with two degrees of freedom.

Several reductions of a departure system can be performed successively. Indeed, if
T 1, . . . ,T k correspond to k functionally independent vector fields commuting with the
principal part of a dynamical system such as (2.1), it is possible (at least theoretically)
to apply up to k different reductions (conversions to normal forms followed by the
passage to the corresponding invariants and the splitting decompositions). Thus an
originally m-dimensional system (m ≥ 3) could be reduced to a system of dimension
one. We shall see an example of this in section 4.3. However, in practice it is quite
unlikely to execute more than one transformation due to the difficulty in solving the
homology equation in the Lie transformation.

The coordinates of the orbit space receive also the name of generators of the re-
duced phase space and are indeed the r linearly independent first integrals related
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to T . Since the dimension of the quotient space Ω/GT is s, there are s functionally in-
dependent invariants. However, the number r of algebraically independent invariants
cannot be obtained in a systematic manner, and it depends on each reduction; that
is, it is determined by the choice of the vector field T , but r ≥ s is always satisfied.
There are at least r − s relations involving the ϕi. These relations are used to define
the reduced phase space.

The reduced phase space can have singular points. In particular, the reduction is
called regular whenever Ω/GT is a regular manifold [33], whereas if there is a vector
x ∈ Rm such that its isotropy subgroup is nontrivial, the reduced phase space is a
manifold with singularities. That reduction is called singular [2]. See details in [37].

If the reduction is symplectic, there is another possibility of introducing singular-
ities in the reduced phase space. After determining the corresponding invariants and
computing the reduced (Hamiltonian) equations up to the desired order, the value
of T has to be fixed to a constant c ∈ R. This constant appears as a parameter
in the constraints which define the reduced phase spaces. In other words, one has a
parametric family of reduced phase spaces with at least one parameter.

Thus, these reduced phase spaces have different numbers of singularities accord-
ing to the values the parameter c takes. We stress that this situation cannot be
detected by analyzing the corresponding isotropy subgroups. A straightforward way
of calculating the singularities consists in parametrizing the reduced phase space and
computing thereafter its gradient vector. The new singularities are those points where
the gradient vanishes.

3.2. Integration of the reduced equations. System (3.2) is solved analyti-
cally if the reduction procedure has simplified the original system enough; otherwise
one resorts to numerical schemes.

First of all, we need to add to (3.2) the adequate initial conditions. Notice that x0

must be converted into a vector y0. It is done by constructing first the inverse change
(x → y) using formula (2.7) and truncating it at order M . Then x is replaced by
x0, and one obtains an m-dimensional vector y0. Then, by means of πT , the vector
q0 is calculated, and, finally, p0 is determined from the explicit expressions of the
coordinates ϑi.

Associated with the system

Dq(t) = α(q(t); ε),
(3.3)

q(t0) = q0,

one has some algebraic constraints among the ϕi, which are responsible for defining
the orbit space. The number of relations to take into account is r − s (it is zero in
some cases). This makes (3.3) a differential equation with constraints, which must
either be solved analytically or integrated using adequate numerical methods (see, for
example, [24] for generic systems and [26] for a specific algorithm in the Hamiltonian
context). Note that the method chosen to execute the numerical computation must
have a global error of a size similar to O(εM+1) in order not to lose accuracy obtained
with the analytic transformation.

Once the vector q(t) has been determined (either explicitly by analytic means or
approximately with numerical tools) we are ready to solve the linear problem

Dp(t) = β(p(t), q(t); ε),
(3.4)

p(t0) = p0.



890 JESÚS PALACIÁN

We remark that at this step q(t) is a known function of time. Sometimes system (3.4)
is readily solved analytically, for instance in some one-dimensional systems (then
one has s = m − 1). On other occasions we apply an explicit Runge–Kutta method
maintaining the global error such as O(εM+1). Thus, we obtain p(t) either analytically
or numerically.

Finally, if the reduction process is in the Hamiltonian context one can make use
of numerical methods based upon symplectic integrators (see, for instance, [45, 57])
to approximate the reduced equations.

3.3. Going back to the original equations. The recovering of the original
ODE is a crucial step that makes our approach different from others based on aver-
aging techniques, since our goal is to provide the (approximate) solution of a certain
initial value problem. Thus, we need to pass to the initial set of variables through the
inversion of the reduction map and the truncated change of coordinates, as we detail
now.

We obtain y(t) from q(t) and p(t). This is achieved by solving a system of equa-
tions usually of nonlinear nature. In general, in many applications, the coordinates
ϕi and ϑi are easily expressible in terms of y, and this step is immediate (see, for
instance, the examples of [39]). However, it could occur that a Newton (or quasi-
Newton) method would be needed to obtain each yi(t). This would make the whole
method rather complicated, and one would probably resort to applying numerical
integrations from the very beginning.

From y(t) we make use of the direct change of coordinates given by (2.5) to
determine x(t). This is the last step of the entire process.

4. Applications. All the calculations we present in the three examples have
been done with the numerical and analytical routines of Mathematica, Version 4.2 [55]
on a PowerMac G4. The formulae obtained have been translated to LaTeX using the
Mathematica function TeXForm[formulae], so as to avoid mistakes in the transcription
process.

4.1. Stiff perturbed ODE in two dimensions. Let the following planar non-
linear perturbed initial value problem be given:

Dx1(t) = −2x1 + x2 + ε(−2x2
1 + x2

2),
(4.1)

Dx2(t) = 998x1 − 999x2 + ε(x2
1 + x1x2 + x2

2),

with x1(0) = 1/2, x2(0) = 3/5, and ε = 10−4. As the eigenvalues of the linear part
of (4.1) are λ1 = −1000 and λ2 = −1, the equation is clearly stiff.

We start by using an analytic method to approximate the solution. First, we make
a linear transformation of the original equation so as to diagonalize the linear part of
it. This is achieved by defining y1 = (−x1 +x2)/999 and y2 = (998x1 +x2)/999. The
new system, in short Dy(t) = f(y; ε), reads as

Dy1(t) = −1000y1 + ε(996002y2
1 + 2000y1y2 − y2

2),
(4.2)

Dy2(t) = −y2 + 3ε(331669y2
1 + 997y1y2 + y2

2),

with initial conditions y1(0) = 1
9990 and y2(0) = 2498

4995 .
Now the linear part of (4.2) can be written as Ay with A = diag{−1000,−1}

and y = (y1, y2)
t. We choose now the vector field T (y) = Ay. Clearly, T represents

a symmetry of the linear part because [Ay,T (y)] = 0. Our purpose is to extend
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this symmetry to higher orders by applying an adequate Lie transformation, passing
from y to the new coordinates z = (z1, z2)

t. Let us denote by w(y) ≡ w(z) =
(w1(z), w2(z))

t the generating function, by g(z) = (g1(z), g2(z))
t the nonlinear part

of the resulting equation, and by f̃(z) = (f̃1(z), f̃2(z))
t the nonlinear part of (4.2)

(without ε and replacing y by z). Now the homology equation (2.4) which has to be
solved in the unknowns w and g takes the following form:

1000w1(z) − 1000z1D1w1(z) − z2D2w1(z) = f̃1(z) − g1(z),
(4.3)

w2(z) − 1000z1D1w2(z) − z2D2w2(z) = f̃2(z) − g2(z).

As g is chosen so that [g,T (z)] = 0, we take g(z) = (|z1|999/1000z2, 0)t, and hence the
transformed equation after truncation is Dz(t) = h(z; ε) = Az+εg(z). Observe that
due to the trivial form of g we can get the solution of this latter differential equation
and deduce from it the solution of y in terms of t. Then we would avoid the passage
to the reduced equations and the subsequent study. However, we prefer to continue
with the standard treatment in order to show all the steps. The expression for the
generating function reads as

w1(z) = −498001

500
z2
1 − 2000z1z2 − 1

998
z2
2 +

1

1000
|z1|999/1000z2 log |z1|,

w2(z) = −995007

1999
z2
1 − 2991

1000
z1z2 − 3z2

2 .

This completes the normal form procedure at first order. Note that since the limit of
w1 when z1 tends to zero is finite, we extend the domain of definition of the generating
function and consider also the axis z1 = 0.

The vector spaces Pi and Ri are chosen as the spaces of continuous vector fields
in R2 whose coefficients are in R. For each i, the space Qi corresponds to the
vector subspace of Pi for which the Lie bracket [q, Ty] = 0 for any continuous two-
dimensional vector field q. Of course, if we remove the axis y1 = 0 from our analysis,
we can consider all vector spaces smooth functions.

Now we calculate the first integrals and the coordinates of the Lie group arriving
at the expressions ϕ = z1z

−1000
2 and ϑ = z2. Thus r = s = 1, and m−s = 1. We need

to transform the initial conditions y1(0) and y2(0) in order to obtain z1(0) and z2(0).
This is done by means of the inverse Lie transformation (2.7), yielding z = Z(y; ε),
where

z1 = y1 + ε

(
498001

500
y2
1 + 2000y1y2 +

1

998
y2
2 − 999

1000
|y1|999/1000y2 log |y1|

)
,

z2 = y2 + ε

(
995007

1999
y2
1 +

2991

1000
y1y2 + 3y2

2

)
.

Replacing in the latter equation y1(0) and y2(0) by their specific values we get z1(0) =
1.101382 × 10−4 and z2(0) = 0.500175. Now we can obtain the reduced equations
together with their initial conditions ϕ0 and ϑ0:

Dϕ(t) = ε|ϕ|999/1000, ϕ0 = 8.31439 × 10296(4.4)

and

Dϑ(t) = −ϑ, ϑ0 = 0.500175.(4.5)
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Note that (4.4) is defined in R, which is indeed the reduced phase space (as r = s
there is no constraint for the reduced phase space). The Lie group is also isomorphic
to R. We are lucky this time and can calculate explicit solutions of ϕ and ϑ as
functions of time. We have that

ϕ(t) =

(
|ϕ0|1/1000 +

εt

1000

)1000

, ϑ(t) = ϑ0 exp(−t).

Now z1 and z2 are directly written as functions of time: z1(t) = ϕ(t)ϑ(t)1000 and
z2(t) = ϑ(t). The next step consists in calculating the vector y in terms of z, i.e., the
direct change y = Y (z; ε). This is done by means of (2.5) arriving at

y1 = z1 − ε

(
498001

500
z2
1 + 2000z1z2 +

1

998
z2
2 − 999

1000
|z1|999/1000z2 log |z1|

)
,

y2 = z2 − ε

(
995007

1999
z2
1 +

2991

1000
z1z2 + 3z2

2

)
.

Finally, we put the initial variables x in terms of y and arrive at an approximate
solution of the stiff problem x(t) up to order O(ε2).

A bound of the error made in the process of the Lie transformation is obtained
after computing ‖h(z; ε)−f(Y (z; ε); ε)‖ = ε2‖e(z)‖+O(ε3), where ‖e(z)‖2 is given
by

1

|z1|1/500
{
z2
1z

2
2 [0.995505z1 + 0.002991z2

+(−0.000995505z1 − 2.991 × 10−6z2) log |z1|]2
+[−0.497752z3

1 + 0.995003z2
1z2 − 10−6|z1|999/1000z2

2 + 0.001z1z
2
2 − 10−6z3

2

+(0.000497752z3
1 − 0.000994007z2

1z2 + 10−6z1z
2
2 + 1.001 × 10−9z3

2) log |z1|]2
}
.

Bounding z such that max {|z1|, |z2|} = 1 and fixing ε = 10−4 we conclude that
‖e(z)‖ ≤ 1.79177 × 10−8 is an upper bound of the global error. Finally, using the
changes y = Y (z; ε), together with the linear transformation relating y and x, we
obtain that whenever the variable x is controlled such that |x1| ≤ 2 and |x2| ≤ 1000,
the total error of the computation never exceeds 1.79177 × 10−8 in an approximate
time interval [0, 104].

Notice that we could have chosen another vector field T (y) to make the transfor-
mation and construct the reduced equations, for instance T (y) = (y1,−y2)t. Then
the process would not be the same, and it would lead to a different asymptotic ap-
proximation of the original equation.

If we perform a numerical integration of (4.1) in a time interval [0, 104] and use a
Runge–Kutta–Felhberg embedded scheme of orders 4–5 equipped with dense output,
the iteration stops at t = 367.75, as the process does not converge. However, using
the backward-difference formula [23, 24] with variable order (i.e., a stiff-ODE-solver)
there is convergence after 258 steps, obtaining a result which is exact up to 14 or 15
digits, and thus in many cases it is better than our approach. However, varying the
initial conditions in the domain defined by |x1| ≤ 2 and |x2| ≤ 1000, the numerical
integration by means of the backward-difference integrator does not converge where
the analytical procedure gives satisfactory results.
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4.2. Analytical integration of the Lorenz equations. We apply the theory
of sections 2 and 3 to the Lorenz system given by

Dx1(t) = 10(x2 − x1), Dx2(t) = 28x1 − x2 − x1x3, Dx3(t) = x1x2 − 8

3
x3,

(4.6)

where t represents the time variable. To the latter system we add some initial condi-
tions x(0) = (1/15,−1/11, 1/10)t. Equation (4.6) has been widely analyzed through
the literature (see, for instance, the book by Verhulst [49] and the references therein),
mainly with regard to its chaotic behavior and the existence of a strange attractor.
Our aim now is to apply the method described in section 2 to system (4.6) with the
goal of analyzing the Lorenz equations in a vicinity of the origin.

The linear part of (4.6) is given by Ax, where x = (x1, x2, x3)
t and

A =

⎛⎝−10 10 0
28 −1 0
0 0 −8/3

⎞⎠,
and its eigenvalues are λ1,2 = 1

2 (−11 ± √
1201) and λ3 = −8/3. Now we make

the corresponding linear change of variables x → y′ so that A becomes diagonal
(we call it AJ) with the eigenvalues in its diagonal. We stretch the variables, say
y′ → εy, so as to introduce a dimensionless small parameter ε > 0. Then the resulting
differential equation Dy(t) = f(y; ε) can be considered as a perturbed dynamical
system. We look for a symmetry of the linear part AJy. It is achieved by taking
T = diag{1,√2, 0}, and thus AJT = TAJ and [AJy, Ty] = 0. This time s = r = 1,
m− s = 2.

We perform the Lie transformation with the aim of constructing a new set of
coordinates z in terms of y. Let wi(y) ≡ wi(z) = (w1i(z), w2i(z), w3i(z))

t be the
generating function at order i, gi(z) = (g1i(z), g2i(z), g3i(z))

t be the nonlinear part

of the transformed equation, and f̃ i(z) = (f̃1i(z), f̃2i(z), f̃3i(z))
t be the known part

at each order; hence the homology equation (2.4) reads as

8

3
w1i(z) + n1z3D3w1i(z) − n2z2D2w1i(z) −

8

3
z1D1w1i(z) = f̃1i(z) − g1i(z),

n2w2i(z) + n1z3D3w2i(z) − n2z2D2w2i(z) −
8

3
z1D1w2i(z) = f̃2i(z) − g2i(z),

−n1w3i(z) + n1z3D3w3i(z) − n2z2D2w3i(z) −
8

3
z1D1w3i(z) = f̃3i(z) − g3i(z),

where n1 = (−11 +
√

1201)/2 and n2 = (11 +
√

1201)/2.
We denote by Dz(t) = h(z; ε) the normal form up to order three, and it is given

by

(4.7)

Dz1(t)=−8

3
z1+ε

(−9 +
√

1201)

56
z2
3−ε3

238268911748107+3427671328157
√

1201

3389702400(32622739+543621
√

1201)
z4
3 ,

Dz2(t)=−11+
√

1201

2
z2+ε2

3(1893759619−24165531
√

1201)

10117320080(25+3
√

1201)
z3
3 ,

Dz3(t)=
−11+

√
1201

2
z3+ε2

15(1201−1689
√

1201)

134512(25+3
√

1201)
z3
3 .
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Terms in (4.7) factored by ε form the vector h1, whereas those factored by ε2 are part
of h2, and those factored by ε3 define h3. Besides, [hi, Ty] = 0 for 1 ≤ i ≤ 3. The
expressions of w1, w2, and w3 have been calculated using rational arithmetic, but
we display an approximation with 10 digits. Thus we obtain the generating function
w = w1 + εw2 + (ε2/2)w3:

w(z; ε) = (0.0181340700z2
2 + 0.0385714285z2z3,

− 0.1082080981z1z2 − 0.0053011728z1z3,

− 0.0131559168z1z2 + 0.1082080981z1z3)
t

+ ε(−0.0031438583z1z
2
2 + 0.0008811978z1z2z3 + 0.0087311650z1z

2
3 ,

− 0.0009063498z2
1z2 + 0.0017330286z3

2 − 0.0013559321z2
1z3

+ 0.0028053572z2
2z3 + 0.0038427758z2z

2
3 ,

0.0024674265z2
1z2 + 0.0000168333z3

2 + 0.0009063498z2
1z3

− 0.0020552276z2
2z3 − 0.0032459561z2z

2
3)t

+ ε2(−0.0000795658z2
1z

2
2 + 0.0001163808z4

2 + 0.0004142502z2
1z2z3

+ 0.0001652742z3
2z3 − 0.0003707416z2

1z
2
3

− 0.0000956330z2
2z

2
3 − 0.0002239279z2z

3
3 ,

− 0.0000618375z3
1z2 + 0.0001945584z1z

3
2 − 0.0000817780z3

1z3

+ 0.0004607450z1z
2
2z3 − 0.0004185807z1z2z

2
3 + 0.0000749699z1z

3
3 ,

0.0001084983z3
1z2 − 0.0000998823z1z

3
2 + 0.0000618375z3

1z3

− 0.0004245437z1z
2
2z3 − 0.0005441518z1z2z

2
3

− 0.0014274482z1z
3
3)t + O(ε3).

The vector spaces Pi and Ri coincide and are identified with the homogeneous
polynomial spaces of dimension 3 and of degree i with coefficients in R. Given an
i, the space Qi corresponds to the vector subspace of Pi for which the Lie bracket
[q, Ty] = 0 for any homogeneous polynomial vector q of degree i.

The first integrals associated with Tz are the invariant polynomials determined
from the partial differential equation 〈Dϕ(z), Tz〉 = 0, obtaining ϕ = z3; therefore
the coordinates of the Lie group are ϑ1 = z1 and ϑ2 = z2. The key point to obtain
only one invariant—and, consequently, transform the initial system to a simpler one—
is the nonexistence of resonant conditions among the entries of T . After computing
the normal form up to order three, we pass to the reduced equations, yielding that

Dϕ(t) =
−11 +

√
1201

2
ϕ+

15(1201 − 1689
√

1201)

134512(25 + 3
√

1201)
ε2ϕ3,(4.8)

and

(4.9)

Dϑ1(t) =
−9 +

√
1201

56
εϕ2 − 238268911748107 + 3427671328157

√
1201

3389702400(32622739 + 543621
√

1201)
ε3ϕ4 − 8

3
ϑ1,

Dϑ2(t) =
3(1893759619 − 24165531

√
1201)

10117320080(25 + 3
√

1201)
ε2ϕ3 − 11 +

√
1201

2
ϑ2.

Observe that if we were interested in calculating some invariant sets of (4.6) through
the normal forms, it could be enough to analyze the equilibria of the scalar equa-
tion (4.8) defined in R. These critical points are in correspondence with two-dimensional
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tori of the original equation which would be approximated using the direct Lie trans-
formation. See [41, 37] for more details.

Solutions of (4.8) and (4.9) are obtained straightforwardly, as ϕ is first written
explicitly as a function of time. Specifically, if ϕ0 = ϕ(0), we have

ϕ(t)=
8
√

8407(416 −√
1201) exp

(
−11+

√
1201

2 t
)
ϕ0√

538048(416−√
1201)+15(1201−1689

√
1201){1−exp[(−11+

√
1201)t]}ε2ϕ2

0

.

(4.10)

This expression is inserted in the linear equations (4.9). We rewrite system (4.9) as

Dϑ1(t) = a(t; ε) − 8

3
ϑ1, Dϑ2(t) = b(t; ε) − 11 +

√
1201

2
ϑ2,(4.11)

where a(t; ε) and b(t; ε) come from (4.9) after substituting ϕ by its expression given
in (4.10). Hence we get

ϑ1(t) = exp

(
−8

3
t

)(
(ϑ1)0 +

∫ t

0

exp

(
8

3
s

)
a(s; ε) ds

)
,

(4.12)

ϑ2(t) = exp

(
−11 +

√
1201

2
t

)(
(ϑ2)0 +

∫ t

0

exp

(
11 +

√
1201

2
s

)
b(s; ε) ds

)
,

the constants (ϑ1)0 and (ϑ2)0 being, respectively, ϑ1(0) and ϑ2(0). Note that z3(t) =
ϕ(t), z1(t) = ϑ1(t), and z2(t) = ϑ2(t). Moreover, ϕ0 = z3(0), (ϑ1)0 = z1(0), and
(ϑ2)0 = z2(0). Thus, z(0) is obtained from y(0) using the expression z = Z(y; ε),
i.e., the inverse Lie transformation. As the expressions with rational arithmetic are
quite involved, we display the corresponding numerical approximations with 10 digits.
We have z = Z(y; ε) with

z1 = y1 + ε(−0.0181340700y2
2 − 0.0385714y2y3)

+ ε2(0.00314386y1y
2
2 − 0.00873117y1y

2
3 − 0.000881198y1y2y3)

+ ε3(−0.000263461y2
1y

2
2 + 2.06654 × 10−6y4

2 − 0.000133513y2
1y2y3

+ 0.0000146633y3
2y3 − 0.000783226y2

1y
2
3 + 0.0000128441y2

2y
2
3

+ 0.0000176879y2y
3
3),

z2 = y2 + ε(0.108208y1y2 + 0.00530117y1y3)

+ ε2(0.00090635y2
1y2 − 0.00173303y3

2 + 0.00135593y2
1y3

− 0.00280536y2
2y3 − 0.00384278y2y

2
3)

+ ε3(0.0000154594y3
1y2 + 0.000295189y1y

3
2 + 0.000182807y3

1y3

− 0.000140385y1y
2
2y3 − 0.000605481y1y2y

2
3 − 0.0000504421y1y

3
3),

z3 = y3 + ε(0.0131559y1y2 − 0.108208y1y3)

+ ε2(−0.00246743y2
1y2 − 0.0000168333y3

2 − 0.00090635y2
1y3

+ 0.00205523y2
2y3 + 0.00324596y2y

2
3)

+ ε3(0.00022467y3
1y2 + 4.6008581025 × 10−6y1y

3
2 − 0.0000154594y3

1y3

− 0.000358644y1y
2
2y3 + 0.000191187y1y2y

2
3 + 0.00117751y1y

3
3).

Now y must be expressed in terms of z so as to obtain the direct change y =
Y (z; ε) that we do not write down for reasons of space.
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Fixing a value for t we evaluate z(t) with the aid of (4.10) and (4.12) (the initial
conditions ϕ0, (ϑ1)0 = z1(0), and (ϑ2)0 = z2(0) are supposed to be calculated pre-
viously). Then we determine y(t) by replacing z(t) in the latter system. Hence, we
undo the scaling y(t) = y′(t)/ε, and in the end we get x(t) inverting back the Jordan
linear change of variables.

Concerning an estimation of the error we know that

‖f(y; ε) − h(Z(y; ε); ε)‖ = ε4‖e(y)‖ + O(ε5),

where ‖e(y)‖2 stands for the quantity

1.75 × 10−10y8
1(y2

2 + y2
3)

+ 10−9y6
1y3(−1.806y3

2 − 1.744y2
2y3 + 1.277y2y

2
3 − 2.705y3

3)

+ 10−10y2
2y

2
3(1.42y6

2 + 2.84y5
2y3 + 3.47y4

2y
2
3 + 1.95y3

2y
3
3 + 2.80y2y

5
3 + 3.31y6

3)

+10−8y4
1(0.0763y6

2 + 0.2359y5
2y3 + 0.4409y4

2y
2
3 + 0.5054y3

2y
3
3 + 0.04450y2

2y
4
3

− 1.0003y2y
5
3 + 1.5684y6

3)

+ 10−9y2
1(−0.122y8

2 − 0.688y7
2y3 − 1.725y6

2y
2
3 − 2.249y5

2y
3
3 − 1.083y4

2y
4
3

− 1.396y3
2y

5
3 − 0.545y2

2y
6
3 + 3.645y2y

7
3 + 0.389y8

3).

We restrict ourselves to a vicinity of the origin of the original system. So we bound
y by taking max{|y1|, |y2|, |y3|} = 10, and choosing ε = 10−2 we have that the global
error of our approach is upper bounded by ε4‖e(y)‖ ≤ 1.33969 × 10−7 on a time
scale of order t ≈ 100. Then, going back to the variable x, the solution of the Lorenz
equation is calculated with an error less than 1.33969×10−7, provided that we consider
|x1| ≤ 0.26, |x2| ≤ 2.28, and |x3| ≤ 1.18.

Note that the solution of (4.6) is calculated almost explicitly. The only drawback
is the determination of ϑ1(t) and ϑ2(t) since it is impossible to put the integrals
appearing in (4.12) in terms of known functions of time. However, it is not hard
to obtain an approximation of such integrals using polynomial interpolation or even
to evaluate them explicitly for a given value of t by means of a standard algorithm
capable of approximating numerically definite integrals maintaining the global error
smaller than 10−7.

4.3. Reduction and numerical integration of free particles in three de-
grees of freedom. Suppose we have the case of a free particle in three degrees of
freedom (point mass) whose position is given by the vector x = (x, y, z)t, whereas
its corresponding velocity is the vector X = (X,Y, Z)t. If the particle is subject
to a weak perturbation, the dynamical system describing this effect is given by the
Hamilton function

H(x,X; c) =
1

2
(X2 + Y 2 + Z2) + P(x,X; c),(4.13)

where P refers to the perturbation and is a generic polynomial in x and X of degree
three or higher and c contains some parameter(s) of the problem.

First, we define the symplectic change

x = X∗, y = Y ∗, z = Z∗, X = x∗, Y = y∗, Z = z∗.(4.14)

Then, after dropping the asterisks to avoid tedious notation, Hamiltonian (4.13) be-
comes

H(x;X; c) = H0(x) + P(x,X; c) =
1

2
(x2 + y2 + z2) + H1(x,X; c),(4.15)
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where we have identified P with H1. By means of the linear change (4.14) the un-
perturbed part of H0 is proportional to the square of the distance of the particle to
the origin, and we can use the whole H0 as a sole coordinate. Indeed, we introduce a
set of orbital variables (r, ϑ, ν,R,Θ, N)—called polar-nodal variables—where r stands
for the radial distance from the origin of reference to the particle, ϑ represents the
argument of latitude, and ν is the right ascension of the node, whereas R, Θ, and N
are the conjugate momenta of r, ϑ, and ν, respectively. Besides, rR = 〈x,X〉, the
action Θ designates the modulus of the angular momentum vector, i.e., Θ = ‖x×X‖,
and N = xY − yX stands for the third component of the angular momentum; see
more details in [11]. Whittaker [54] demonstrated that the transformation

� : (r, ϑ, ν,R,Θ, N) −→ (x, y, z,X, Y, Z),

defined by

x = x̄ cos ν − ȳ cos I sin ν, X = X̄ cos ν − Ȳ cos I sin ν,
y = x̄ sin ν + ȳ cos I cos ν, Y = X̄ sin ν + Ȳ cos I cos ν,
z = ȳ sin I, Z = Ȳ sin I,

(4.16)

where cos I = N/Θ and x̄, ȳ, X̄, and Ȳ are given through

x̄ = r cosϑ, X̄ = R cosϑ− Θ

r
sinϑ,

ȳ = r sinϑ, Ȳ = R sinϑ+
Θ

r
cosϑ,

(4.17)

is symplectic. We have to take into account that the transformation � is singular for
Θ = 0, and Θ = |N | as I is an angle defined in (0, π). Therefore, the domain of
validity of the change given by � is the subset of R6 defined by

∆ = [0,+∞) × [0, 2π) × [0, 2π) ×R× (0,∞) × (−Θ,Θ).

Let us denote by PN the set of polar-nodal coordinates. In these variables we
have H0 = r2/2 and H1(x,X; c) ≡ H1(PN ; c). Every term of H1 contains powers of
r, R, Θ, N , or (1−N2/Θ2)1/2, whereas ϑ and ν appear through sines and cosines of
multiples of them. Now the Lie operator associated with H0 is the nilpotent1 linear
operator

LH0
= rD4(·(PN )),

and the transformation can be executed readily. In fact, if Wi designates the scalar
generating function at order i, the homology equation which has to be solved at each
order is

rD4Wi(PN ) + Ki = H̃i.(4.18)

Our goal is to construct a formal change of coordinates PN → PN
′, that is,

(r, ϑ, ν,R,Θ, N) −→ (r′, ϑ′, ν′, R′,Θ′, N ′),

so that Θ′ and N ′ become formal integrals of the transformed Hamiltonian. We drop
the primes for the polar-nodal variables to avoid tedious notation. Indeed, since both

1Its nilpotent character is analyzed in [39].
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Θ and N are integrals of H0, it could be possible to build a unique transformation
such that the new Hamiltonian K has them as integrals. (Note that the correspond-
ing vector fields T 1 and T 2 are the constant six-dimensional vectors (respectively,
(0,0,0,0,−1,0) and (0,0,0,0,0,−1)).)

Next, one has to bring H to polar-nodal coordinates by means of the transforma-
tions (4.16) and (4.17). Then the homology equation has to be solved, and H̃i is split
as

H̃i(r, ϑ, ν,R,Θ, N) = H̃i

∗
(r,−,−, R,Θ, N) + H̃i

#
(r, ϑ, ν,R,Θ, N),

where H̃i

∗
groups all the terms of H̃i independent of ϑ and of ν. So a term belongs

to ker(LΘ)∩ker(LN ) if and only if it is independent of ϑ and of ν. Hence, Ki is taken

to be H̃i

∗
, and Wi is obtained by solving the quadrature (4.18). The process can be

iterated to any order. After M steps, the transformed Hamiltonian K is given by

K(r, ϑ, ν,R,Θ, N) =
1

2
r2 + εK1(r,R; Θ, N) + · · · + εM

M !
KM (r,R; Θ, N) + O(εM+1).

Dropping the tail to K and giving the same name to the resulting Hamiltonian, we
observe that it is independent of ϑ and of ν. In fact, our Lie transformation can be
understood as an average over the angles ϑ and ν. Then Θ and N are integrals of K.
In this situation K defines a Hamiltonian vector field with one degree of freedom in
the coordinate r and its momentum R.

Next, as we have introduced the integrals Θ and N , we build the invariants of
the group of symmetry associated with them. The Poisson brackets of the terms
ϕ1 = x2 + y2 + z2, ϕ2 = X2 + Y 2 + Z2, ϕ3 = xX + yY + zZ, ϕ4 = xY − yX,
and ϕ5 = (xY − yX)2 + (xZ − zX)2 + (yZ − zY )2 with respect to Θ and N vanish,
and they are related through ϕ1ϕ2 = ϕ2

3 + ϕ5. Thus, we have r = 5, s = 4, and
m − s = 2. However, two of the five differential equations associated with the ϕi
are trivial, as Θ and N become constants of motion. Note that the cases excluded
in polar-nodal variables, i.e., Θ = 0 and |N | = Θ, are recovered with the use of the
invariants, as they are polynomials, and thus they define perfectly the reduced phase
space. Nevertheless, it is relevant only if one is interested in analyzing the behavior
of the whole original system through its normal form.

Now we fix values for Θ and N , that is, ϕ4 = c1, ϕ5 = c2 ≥ 0, with |c1| ≤ √
c2.

So K is transformed into the following Hamilton function in nonsymplectic variables:

T (ϕ1, ϕ2, ϕ3; c1, c2) =
1

2
ϕ1 + εT1(ϕ1, ϕ2, ϕ3; c1, c2) + · · · + εM

M !
TM (ϕ1, ϕ2, ϕ3; c1, c2).

Note that the generators of the phase space satisfy

ϕ1ϕ2 = ϕ2
3 + c2,(4.19)

defining, therefore, a two-dimensional surface with respect to the axes ϕ1, ϕ2, and
ϕ3, that is, a hyperbolic paraboloid. In the case c2 = 0 the surface has a singularity
at the origin of the frame defined by ϕ1, ϕ2, and ϕ3. However, it is still possible to
analyze this situation in the context of singular reduction. See the images depicted
in Figure 4.1.

There still remains the extreme situation ϕ1 = 0. It implies that x = y = z ≡ 0,
which forces us to consider ϕ3 = ϕ4 = ϕ5 ≡ 0, whereas ϕ2 ≥ 0. In this case the
reduced phase space gets reduced to the straight line.



INTEGRATION OF PERTURBED INITIAL VALUE PROBLEMS 899

1
ϕ

2
ϕ3

ϕ

Fig. 4.1. Reduced phase spaces (orbit spaces) for a Hamiltonian like T (ϕ1, ϕ2, ϕ3) satisfying
(4.19). The surface on the left is regular and corresponds to the cases c2 �= 0. The surface on the
right has a singularity at the origin and is related to c2 = 0.

As an application of the above paragraphs we take in Hamiltonian (4.15) the per-
turbation H1 = c xyz, with the constant c > 0 being sufficiently small to consider P
a small perturbation of H0 with small parameter c. Note that with this choice func-
tion H represents a three-degrees-of-freedom Hamilton function in the six-dimensional
space spanned by x and X.

To simplify the problem by means of coordinate formal transformations, we first
need to write xyz in terms of polar-nodal variables. We do it using formulae (4.16)
and (4.17). Then we apply the Lie transformation up to order two, i.e., up to an error
of size O(c3), calculating K1(= 0), K2 together with W1 and W2.

Hamiltonian K, after truncation, reads as

K(r,R; Θ, N) =
1

2
r2 +

c2

1536r8
[18Θ6sin2 I(8 − 12sin2 I + 5sin4 I)

+ (−8 − 24sin2 I + 21sin4 I)r6R6

+ Θ2(−8 − 120sin2 I + 105sin4 I)r4R4

− 6Θ4(8 + 16sin2 I − 17sin4 I + 3sin6 I)r2R2].

The generating function W is a finite Fourier series in ϑ and ν whose coefficients
are powers of r, R, Θ, and (1 − N2/Θ2)1/2. Specifically, it is written as the sum
W1 + cW2, where W1 contains 48 terms and W2 is composed of 200 terms.

The vector spaces Pi and Ri are spaces of functions whose terms are rational
in r, R, Θ, and (1 − N2/Θ2)1/2, whereas the dependence on ϑ and on ν is through
sines and cosines. The functions characterizing these spaces are often called Poisson
series [17, 16]. However, the spaces Qi are purely rational and are indeed the vector
subspaces of Pi which do not contain the trigonometric part of Pi.

The direct and inverse changes of coordinates are also large formulae. More
precisely, the passage from the “old” r to the new one is a trigonometric sum in ϑ
and ν with 312 terms. The equations of the direct changes for ϑ, ν, R, Θ, and N are
also Fourier sums with 579, 454, 336, 340, and 236 terms, respectively. The inverse
change contains 338 terms for r, 579 terms for ϑ, 452 for ν, 333 for R, 340 for Θ, and
236 terms for N .

The passage from K to T is constructive. Using the identities rR = ϕ3 and
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r2 = ϕ1 and fixing Θ =
√
c2 and N = c1 we conclude that

T (ϕ1, ϕ3; Θ, N) =
1

2
ϕ1 +

c2

1536ϕ4
1

[−18c61c2(5c2 − ϕ2
3)

+ 18c21c2(c2 + ϕ2
3)(c

2
2 − 4c2ϕ

2
3 − ϕ4

3)

+ c22(18c32 − 60c22ϕ
2
3 − 23c2ϕ

4
3 − 11ϕ6

3)

+ 3c41(18c32 + 16c22ϕ
2
3 + 35c2ϕ

4
3 + 7ϕ6

3)].

Observe that as T is independent of ϕ2—a feature of the perturbation we have
chosen—the differential equation in the ϕi contains only two terms, although we
can determine ϕ2 with the aid of (4.19). Besides, we have to work with trajectories
not very close to the origin, as ϕ1 appears in the denominator of T . The first equation
of (3.2) is determined now taking into account that Dr(t) = D4K(PN ) and DR(t) =
−D1K(PN ) and thenDϕ1(t) = 2rD4K(PN ) andDϕ3(t) = RD4K(PN )−rD1K(PN ).
We obtain

Dϕ1(t) =
c2ϕ3

384c22ϕ
3
1

[18c61c2 − 18c21c2(3c2 + ϕ2
3)(c2 + 3ϕ2

3)

− c22(60c22 + 46c2ϕ
2
3 + 33ϕ4

3) + c41(48c22 + 210c2ϕ
2
3 + 63ϕ4

3)],

Dϕ3(t) = −ϕ1 +
c2

192c22ϕ
4
1

[−18c61c2(5c2 − ϕ2
3)

+ 18c21c2(c2 + ϕ2
3)(c

2
2 − 4c2ϕ

2
3 − ϕ4

3)

+ c22(18c32 − 60c22ϕ
2
3 − 23c2ϕ

4
3 − 11ϕ6

3)

+ 3c41(18c32 + 16c22ϕ
2
3 + 35c2ϕ

4
3 + 7ϕ6

3)].

(4.20)

The relevant dynamics of (4.13) is reflected in (4.20). However, we are interested
in a numerical approximation of the original equation to which we add some initial
conditions. We need to find out an numerical solution of (4.20) and to pose the
corresponding system in the Lie group.

Now as candidates for coordinates of the Lie group we take ϑ and ν, since they are
the angles which have “disappeared” in the analytic transformation. From Dϑ(t) =
D5K(PN ), Dν(t) = D6K(PN ) we arrive at the second equation of (3.2) which is, as
expected, independent of ϑ and of ν:

Dϑ(t) = − c2

768c
5/2
2 ϕ4

1

[18c61c2ϕ
2
3 − 18c21c2(c2 − ϕ2

3)
2
(2c2 + ϕ2

3)

+ c32(−54c22 + 120c2ϕ
2
3 + 23ϕ4

3)

+ c41(−54c32 + 105c2ϕ
4
3 + 42ϕ6

3)],

Dν(t) =
c2c1

128c22ϕ
4
1

[9c41c2(−5c2 + ϕ2
3) + 3c2(c2 + ϕ2

3)(c
2
2 − 4c2ϕ

2
3 − ϕ4

3)

+ c21(18c32 + 16c22ϕ
2
3 + 35c2ϕ

4
3 + 7ϕ6

3)].

(4.21)

Observe that once ϕ1(t) and ϕ3(t) will be numerically calculated from (4.20), the
angles ϑ(t) and ν(t) shall be readily determined.

We choose initial conditions for Hamiltonian (4.15), concretely up to 10 digits
we put positions x0 = (−0.0639671104, 0, 0.0581813272)t, and for velocities we write
X0 = (−0.0369885382,−0.1719633719, 0.0336429492)t. Using (4.16) and (4.17), we
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have that r0 = 0.086468827, ϑ0 = 1.5707963267, ν0 = 1.5707963267, R0 = 0.05,
Θ0 = 0.014869471, and N0 = 0.011. Fixing the value c = 10−4, we obtain H0(x0) =
0.003738429, whereas H1(x0,X0; c) = 2.139918249 × 10−8, and therefore H1 can be
considered as a small perturbation of H0.

We switch now to polar-nodal variables. First, we need to know the value of
the transformed variables, obtained using the inverse Lie change. The transformed
initial conditions are given by the six-tuple (r′0, ϑ

′
0, ν

′
0, R

′
0,Θ

′
0, N

′
0) = (0.086469074,

1.570796662, 1.570796248, 0.0500000954, 0.0148695127, 0.0110000280). (Now we have
recovered the primes for the transformed variables.) Then the initial conditions for
system (4.20) are determined, yielding ϕ10 = 0.007476900 and ϕ30 = 0.004323461.
Note that the initial conditions for (4.21) are given by ϑ′0 and ν′0. Besides, the values
for the constants are c1 = 0.0110000280 and c2 = 0.0002211024. Note that Θ′(t) =
Θ′

0 ≡ √
c2 and N ′(t) = N ′

0 ≡ c1.
System (4.20) has been numerically solved using an Adams–Moulton method and

76 steps in the interval [0, 15]. With the approximations ϕ1(t) and ϕ3(t) we determine
r′(t) =

√
φ1(t) and R′(t) = ϕ3(t)/

√
ϕ1(t). Equation (4.21) is solved obtaining ϑ′(t)

and ν′(t) for t ∈ [0, 15], also with the same Adams–Moulton formula and using 108
steps. Next, the passage from the prime polar-nodal variables to the original ones is
done after using the direct change of coordinates. Finally, the transformation from
the polar-nodal variables to the Cartesian ones is performed with the aid of (4.16)
and (4.17). This completes our seminumerical treatment.

Instead of estimating the size of the global error committed with our approach, we
have calculated the solution of the initial value problem given by Hamiltonian (4.15)
with initial conditions x0 and X0 given above. We have used an Adams–Moulton
method, obtaining a solution after 196 steps in the interval [0, 15]. Comparison be-
tween the fully numerical and seminumerical approaches gives a coincidence of seven
digits in the six coordinates for all t in [0, 15]. As the value of the Hamiltonian is
an invariant of the whole process (as it represents the total energy of the problem),
we have compared the value of H(x0,X0; c) with H(x(t),X(t); c) for t ∈ [0, 15], ob-
taining that the difference coincides in at least eight digits. Note that within this
approximation our approach behaves better, as the integration of (4.20) and (4.21) is
much simpler than the integration of the equation defined through H.

If we enlarge the interval [0, 15], the seminumerical solution begins to become
worse. This is explainable from the point of view of the type of solution related to the
original unperturbed problem (e.g., (4.13) or (4.15) with c ≡ 0). Indeed, if c = 0, ex-
cepting the radial velocity R, the rest of the polar-nodal variables are constants. More-
over, R(t) = −r0t+ R0, which means that as t becomes big, the term |R(t)| also in-
creases. Adding now the perturbation c �= 0 it implies that the solution is not bounded
while t becomes big. This is an unavoidable feature of the present problem, in contrast
to other systems which are formed by a principal equation with bounded solutions to
which we attach a small perturbation, as it occurs, for quasi-periodic equations and
the elimination of some angular variables (or the time) using averaging procedures.

5. Concluding remarks. This paper outlines a new method for building ap-
proximate solutions of initial value problems in the cases where the differential equa-
tion is formed by a principal part plus a small regular perturbation. The main features
of the technique we present are the following:

• The method is based on the analytic reduction of the original problem by
means of the introduction of a formal symmetry through appropriate Lie transfor-
mations. After truncating, the reduction process carries out the decoupling of the
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transformed original system into two subsystems which are either solved analytically
or approximated numerically. We stress that the symmetry properties of the general-
ized normal form are responsible for allowing the symmetry reduction.

• Compared with the standard numerical routines our approach has the advan-
tage of modifying analytically the initial equation, arriving therefore at a simplified
version of it. These transformed systems can sometimes be solved analytically. This
leads to a full analytic approximation of the problem with the typical error committed
after truncating the normal formal transformation.

• However, if the transformed equations cannot be solved directly, one can still
use a numerical algorithm for differential equations with constraints, which involves
less computational effort than the solution of the original equations. This is really
useful when the dimensions of the two subsystems are small.

• On some occasions the choice of adequate coordinates is crucial to perform the
computations, especially those concerning the Lie transformation treatment. Besides,
as the splitting of the transformed equation into the two subsystems is usually not
apparent, one has to put much care in the determination of the coordinates of the Lie
group. Unfortunately, there is no systematic manner for the selection of the variables
in which one carries out the Lie transformation, though the coordinates of the orbit
space can be obtained constructively.
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procedures we shared during the elaboration of the paper. The remarks and sugges-
tions of the anonymous referees have contributed significantly to improve a previous
version of the paper.

REFERENCES

[1] M. Abud and G. Sartori, The geometry of spontaneous symmetry breaking, Ann. Physics,
150 (1983), pp. 307–372.

[2] J. M. Arms, R. H. Cushman, and M. J. Gotay, A universal reduction procedure for Hamil-
tonian group actions, in The Geometry of Hamiltonian Systems, T. Ratiu, ed., Springer–
Verlag, Berlin, New York, 1991, pp. 33–51.

[3] R. Barrio and J. Palacián, Semianalytical methods for high–eccentric orbits: Zonal harmon-
ics and air drag terms, Adv. Astron. Sci., 95 (1997), pp. 331–339.

[4] R. Barrio and J. Palacián, High–order averaging of eccentric artificial satellites perturbed
by the Earth’s potential and air–drag terms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng.
Sci., 459 (2003), pp. 1517–1534.

[5] N. N. Bogoliubov and Y. A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear
Oscillators, Gordon and Breach, New York, 1961.

[6] A. D. Bryuno, Local Methods in Nonlinear Differential Equations. Part I. The Local Method
of Nonlinear Analysis of Differential Equations. Part II. The Sets of Analyticity of a Nor-
malizing Transformation, Springer Series in Soviet Mathematics, Springer–Verlag, Berlin,
New York, 1989.

[7] P. Chossat and R. Lauterbach, Methods in Equivariant Bifurcations and Dynamical Sys-
tems, Adv. Ser. Nonlinear Dynam. 15, World Scientific, Singapore, 2000.

[8] G. Cicogna and G. Gaeta, Normal forms and nonlinear symmetries, J. Phys. A, 27 (1994),
pp. 7115–7124.

[9] G. Cicogna and G. Gaeta, Symmetry and Perturbation Theory in Nonlinear Dynamics,
Lecture Notes in Phys. New Ser. M Monogr. 57, Springer–Verlag, Berlin, New York, 1999.

[10] G. Cicogna and S. Walcher, Convergence of normal form transformations: The role of
symmetries, Acta Appl. Math., 70 (2002), pp. 95–111.

[11] S. L. Coffey and A. Deprit, Third order solution to the main problem in satellite theory, J.
Guidance Control Dynam., 5 (1982), pp. 363–371.

[12] R. H. Cushman, Reduction, Brouwer’s Hamiltonian, and the critical inclination, Celestial
Mech., 31 (1983), pp. 401–429.



INTEGRATION OF PERTURBED INITIAL VALUE PROBLEMS 903

[13] R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, Birkhäuser,
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Abstract. In this paper, we are concerned with the domain decomposition method with La-
grange multipliers for solving three-dimensional elliptic problems with variable coefficients. We shall
first introduce a weighted saddle-point problem resulting from this domain decomposition, which can
be solved by existing iterative methods. Then we will construct two simple preconditioners, one for
the system associated with the displacement variable and the other for the Schur complement system
associated with the multiplier variable, that are applicable to various discretization schemes. The
new preconditioners possess such local properties that they can be implemented cheaply. We will
show that the condition number of the global preconditioned system grows only as the logarithm of
the dimension of the local problem associated with an individual substructure and is independent of
the large variations of the coefficients across the local interfaces.
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1. Introduction. In recent years, there has been a fast growing interest in the
domain decomposition methods (DDMs) with Lagrange multipliers, which were stud-
ied early in [11], [12], [13], and [26]. This kind of DDM has many advantages over the
traditional DDMs in applications (cf. [1], [19], [25], [34], and [35]).

It is known that the DDM with Lagrange multipliers results in a saddle-point
problem of the displacement variable and the multiplier variable. There exist two
different approaches for solving such a saddle-point problem: (1) eliminate the dis-
placement to build an interface equation of the multiplier and solve the interface
equation by some PCG method (see [1], [14], [15], [19], [29], and [34]); (2) solve the
saddle-point problem itself by some preconditioned iterative method (see [24], [25],
and [35]). Each of the approaches has its individual merits: the PCG iteration of the
first approach has the optimal convergence, while the interface equation need not be
built in the second approach, and so inexact solvers can be applied to both the primal
and the Schur complement system (this is important for solving nonlinear problems
and problems with variable coefficients). As we know, the displacement corresponds
to a singular (positive semidefinite) problem on a floating subdomain. There exist
many techniques to deal with such singularity, for example FETI-type methods (see
[13], [15], [14], and [24]). The interface equation in a FETI method is always derived
in a subspace by using a projection, and the interface equation can be solved by the
projected PCG method with the Dirichlet preconditioner. The projection is realized by
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solving a coarse problem, and each local solver in the preconditioner, which is defined
on the boundary of a subdomain, can be implemented by solving a local Dirichlet
problem (see [13] and [15] for details).

In the present paper, we consider the second approach mentioned above for solv-
ing saddle-point problems and propose a new strategy to handle the singularity. We
discuss a general DDM with Lagrange multipliers for three-dimensional elliptic prob-
lems with variable coefficients, which allows finite element discretization with non-
matching grids and coupling discretization by the finite element and the spectral
element. We will first transform the resulting saddle-point system into another equiv-
alent saddle-point system in which the system corresponding to the displacement is
positive definite. Then we construct two new preconditioners for the primal problem
corresponding to the displacement and the Schur complement system corresponding
to the multiplier, respectively. Each local solver in the preconditioner for the Schur
complement is defined on the common face of two neighboring subdomains and can be
implemented in a more efficient manner. The new method successfully avoids the ac-
tion of the projections used in [24] and reduces the cost of computation significantly.
It is shown that the global preconditioned system has a nearly optimal condition
number, which is independent of the large variations of the coefficient across the local
interfaces.

Also, the method can be extended to nonlinear problems with some elliptic prop-
erties.

The outline of the remainder of the paper is as follows. We introduce an aug-
mented saddle-point problem in section 2. In section 3, we construct the precondi-
tioners for the saddle-point system and give general convergence results. The main
results of the paper will be shown in section 4. In section 5, we discuss various choices
of the multiplier space and introduce one class of cheap local solver. Finally, we report
some numerical results in section 6.

2. Domain decomposition and the saddle-point problem. This section is
devoted to the introduction of the augmented saddle-point problem.

Consider the model problem{−div(a∇u) = f in Ω,
u = 0 on ∂Ω,

(2.1)

where Ω is a bounded, connected Lipschitz domain in R
3 and a ∈ L∞(Ω) is a positive

function.
Let H1

0 (Ω) denote the standard Sobolev space, and define the bilinear form

A(v, w) =

∫
Ω

a∇v · ∇wdx, v, w ∈ H1
0 (Ω).

Let (·, ·) denote the L2(Ω) inner product. The weak formulation of (2.1) in H1
0 (Ω) is

then given by the following: find u ∈ H1
0 (Ω) such that

A(u, v) = (f, v) ∀v ∈ H1
0 (Ω).(2.2)

In the following, we define a discrete problem of (2.2) based on nonoverlapping
domain decomposition.

Let the domain Ω be decomposed into Ω̄ =
⋃N
k=1 Ω̄k, which satisfy Ωi ∩ Ωj = ∅

when i �= j. For simplicity of exposition, we consider only the case of geometrically
conforming partitionings of the region into subdomains:
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(i) If Ω̄i ∩ Ω̄j �= ∅ for some i �= j, then Γij = Ω̄i ∩ Ω̄j is a face of both Ωi and Ωj .
Define Γ = ∪Γij .

(ii) Each subdomain Ωk has the same “size” d in the usual way (see [8]
and [38]).

As usual, we assume that each Ωk is a polyhedron. Let V (Ωk) be a finite-
dimensional space on Ωk, for example a finite element space or a spectral element
space. We assume that V (Ωk) ⊂ H1(Ωk) for each subdomain Ωk. If ∂Ωk ∩ ∂Ω �= ∅,
we require that all functions in V (Ωk) vanish on ∂Ωk∩∂Ω. Define V (Ω) =

∏N
k=1 V (Ωk)

and V (∂Ωk) = V (Ωk)|∂Ωk
. In the next section, we will use several additional spaces.

For Γij ⊂ Γ, define the local trace spaces Vi(Γij) = V (∂Ωi)|Γij and Vj(Γij) =
V (∂Ωj)|Γij

. Besides, define

V 0
i (Γij) = Vi(Γij) ∩H1

0 (Γij) and V 0
j (Γij) = Vj(Γij) ∩H1

0 (Γij).

It is possible that Vi(Γij) �= Vj(Γij) and V 0
i (Γij) �= V 0

j (Γij), for example for finite
element discretization with nonmatching grids or coupling discretization of the finite
element and the spectral element.

Let W (Γij) be a given finite-dimensional space on the face Γij , which will be
chosen as the local multiplier space. We assume that the space W (Γij) contains the
constant function. There are many ways to define the local multiplier space W (Γij),
for example the well-known mortar element method (see [6], [4], [22], and section 5
for details). Define W (Γ) =

∏
Γij⊂ΓW (Γij).

Let Pij : L2(Γij) → W (Γij) be the orthogonal projection with respect to the
L2(Γij) inner product. For v ∈ V (Ω), set v|Ωk

= vk. Define

Ṽ (Ω) = {v ∈ V (Ω) : Pij(vi|Γij
− vj |Γij

) = 0 for each Γij ⊂ Γ}.

Note that we do not require that Ṽ (Ω) ⊂ H1
0 (Ω).

Define the local bilinear form

Ak(v, w) =

∫
Ωk

a∇v · ∇wdx, v, w ∈ H1(Ωk).

The discrete problem of (2.2) is the following: find ū ∈ Ṽ (Ω) such that

N∑
k=1

Ak(ūk, vk) = (f, v) ∀v ∈ Ṽ (Ω).(2.3)

We assume that the system (2.3) has a unique solution.
Let Ak : V (Ωk) → V (Ωk) be the local operator defined by

(Akv, w)Ωk
= Ak(v, w), v ∈ V (Ωk) ∀w ∈ V (Ωk).

By introducing the sign function

σij =

{
1, i < j,
−1, i > j,

we define the operator Bk : V (Ωk) →W (Γ) as follows:

(Bku)|Γij
=

{
σijPij(uk|Γij ), Γij ⊂ ∂Ωk,

0, Γij �⊂ ∂Ωk.
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Define the operators A : V (Ω) → V (Ω) and B : V (Ω) →W (Γ) by

A = diag(A1 A2 · · ·AN )

and

Bv =
N∑
k=1

Bkvk, v ∈ V (Ω),

respectively. Let 〈·, ·〉 denote the L2(Γ) inner product and Bt : W (Γ) → V (Ω) denote
the adjoint of B, which satisfies

(Btµ, v) = 〈µ,Bv〉 ∀µ ∈W (Γ), v ∈ V (Ω).

It is easy to see that the space Ṽ (Ω) can be written as

Ṽ (Ω) = {v ∈ V (Ω) : Bv = 0}.

Then (2.3) is equivalent to the following saddle-point problem: find (ū, λ) ∈ V (Ω) ×
W (Γ) such that {

Aū+Btλ = f,
Bū = 0.

(2.4)

Here the unknown λ is called the Lagrange multiplier for the constraint Bū = 0.
Although the operator A is block diagonal, the system (2.4) cannot be solved

in the standard way (refer to [26] and [19]). The main difficulty is that each local
operator Ak corresponding to some internal subdomain Ωk is singular on V (Ωk) (so
the global operator A is also singular on V (Ω)). To handle this singularity, many
existing methods have to consider a subspace of λ and project λ repeatedly into this
subspace, which increase the cost of calculation. For example, the paper [24] discussed
the preconditioned conjugate residual method for solving the system (2.4) based on
this technique.

In the following we propose a new way to deal with such singularity. It is easy to
see that

ker(A) ∩ ker(B) = {0},(2.5)

and so the operator A+ rBtB is positive definite for any positive number r. Because
of this, we may consider the augmented Lagrange multiplier framework{

(A+ d−1BtB)ū+Btλ = f,
Bū = 0,

(2.6)

which has the same solution as (2.4). A similar method has been discussed in [35],
but an additional interface unknown ϕ was introduced.

The coefficient a(x) has possible large variation from one subdomain to another.
To avoid the influence of these large variations, we will consider another augmented
Lagrange multiplier formulation instead of (2.6). Let αk and βk be the positive
constants defined by

αk ≤ a(x) ≤ βk ∀x ∈ Ωk, (k = 1, . . . , N).(2.7)
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Then

αk|v|21,Ωk
≤ (Akv, v)Ωk

≤ βk|v|21,Ωk
∀ ∈ H1(Ωk).(2.8)

For a face Γij ⊂ Γ, define αij = min{αi, αj}.
Define the operator B̄k : V (Ωk) →W (Γ),

(B̄ku)|Γij
=

{
σijα

1
2
ijPij(uk|Γij ), Γij ⊂ ∂Ωk,

0, Γij �⊂ ∂Ωk,

and define B̄ : V (Ω) →W (Γ) by

B̄v =

N∑
k=1

B̄kvk, v ∈ V (Ω).

It is easy to see that B̄v = 0 if and only if Bv = 0. Thus, the system (2.4) has the
same solution with the weighted saddle-point problem{

(A+ d−1B̄tB̄)ū+Btλ = f,
Bū = 0.

(2.9)

Note that the operator A∗ = A+ d−1B̄tB̄ is also symmetric and positive definite on
V (Ω) and generates a sparse stiffness matrix such as A.

Since the operator A∗ is not yet block diagonal, it is not practical to eliminate
directly the variable ū in (2.9). Fortunately, many iterative methods have been devel-
oped for solving saddle-point problems such as (2.9), for example the inexact Uzawa-
type methods (see [2], [9], [20], and [21]), the preconditioned MINRES (i.e., conjugate
residual) method (see [30]), and the PCG method based on a positive definite refor-
mulation (see [10]). For all the iterative methods, the projections P and PR used in
[24] need not be introduced (since A∗ is positive definite).

In order to illustrate an advantage of the new method, we consider the precondi-
tioned MINRES method for solving the system (2.9). Define

M =

(
A∗ Bt

B 0

)
, U =

(
ū
λ

)
, F =

(
f
0

)
.

The system (2.9) can be written as

MU = F.(2.10)

Let Ā : V (Ω) → V (Ω) be a preconditioner for A∗, and let S̄ : W (Γ) → W (Γ) be
a preconditioner for the Schur complement S̃ = BĀ−1Bt. Define the block-diagonal
preconditioner M̄ for M by

M̄−1 =

(
Ā−1 0
0 S̄−1

)
.

Then the preconditioned MINRES method for (2.10) is the MINRES method (see
[30]) applied to the preconditioned system

M̄−1MU = M̄−1F.(2.11)
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The convergence speed of this method is determined by the condition number
cond(M̄−1M), which depends on cond(Ā−1A∗) and cond(S̄−1S̃).

In the next section, we consider the construction of the preconditioners Ā and
S̄. As we will see, Ā−1 has the form Ā−1 = A−1

0 + Â−1, where A0 is a coarse solver,

and Â is a block-diagonal operator. Moreover, S̄ is also a block-diagonal operator.
Thus, the coarse solver needs to be implemented only once at each MINRES iteration
for (2.11). For the method proposed in [24], two similar coarse solvers (contained,
respectively, in the projections P and PR) need to be implemented at least twice at
each MINRES iteration. Besides, the local solvers in S̄ are also cheaper than the
existing local solvers.

3. General results. In this section we present the main resuts of this paper.
Here we do not involve concrete structures of the spaces V (Ω) and W (Γ).

For convenience, following [38], the symbols <∼, >∼, and =∼ will be used in the rest

of this paper. x1
<∼ y1, x2

>∼ y2, and x3
=∼ y3 mean that x1 ≤ C1y1, x2 ≥ c2y2, and

c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3, and C3 that are independent of the
dimensions of the approximate spaces V (Ω) and W (Γ). Define S = B(A∗)−1Bt.

We first construct a preconditioner for A∗. To handle the “nonlocal” operator
B̄tB̄, we need a coarse solver.

Define V0 = ker(A), which consists of piecewise constant functions. The nat-
ural choice of the coarse solver is the restriction of A∗ on V0. But, for numerical
consideration, we can also define the coarse solver A0 : V0 → V0 by

(A0v0, w0) = d
∑
Γij

αij(ai − aj)(bi − bj), v0 ∈ V0 ∀w0 ∈ V0,

where ak = v0|Ωk
and bk = w0|Ωk

(const.). It is easy to see that the coarse solver
A0 is positive definite on V0. The action of A−1

0 is very cheap to implement, which
is similar to that of the coarse solver in the substructuring preconditioner for two-
dimensional problems (refer to [7]). Since the space W (Γij) contains the piecewise
constant function, we have Pij(v0i|Γij − v0j |Γij

) = ai − aj (const.) for v0 ∈ V0.
Thus, the operator A0 is spectrally equivalent to the restriction operator of A∗ on V0.
Namely,

(A0v0, v0) =∼ d−1〈B̄v0, B̄v0〉 = (A∗v0, v0) ∀v0 ∈ V0.(3.1)

Note that the coarse solver A0 is much simpler and cheaper than the one in the
classical substructuring method for three-dimensional problems (compare [8]).

Define the (local) solver Āk : V (Ωk) → V (Ωk) by

(Ākv, w)Ωk
= αk[(∇v,∇w)Ωk

+ d−2(v, w)Ωk
], v ∈ V (Ωk) ∀w ∈ V (Ωk).

In some applications, we would like to consider an inexact solver for Āk. Let Âk be a
symmetric and positive definite operator on V (Ωk). Assume that there is a positive
number γk, which may depend slightly on the dimension of V (Ωk), such that

(Ākv, v)Ωk
<∼ (Âkv, v)Ωk

<∼ γk(Ākv, v)Ωk
∀v ∈ V (Ωk).(3.2)

Define Â = diag(Â1, Â2, . . . , ÂN ). Let Q0 : V (Ω) → V0 denote the L2 orthogonal
projection. Define γ = max1≤k≤N (βk/αk) and γ̂ = max1≤k≤N γk.
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Theorem 3.1. Define Ā−1 = Â−1 +A−1
0 Q0. Then

cond(Ā−1A∗) <∼ γ · γ̂,(3.3)

which is independent of the large variants of a(x) across the local interfaces Γij.
Remark 3.1. When Ωk is a regular domain, the action of Ā−1

k can be implemented
by FFT, which is much cheaper than that of the exact solver corresponding to Ak.
For such Ωk, we can define Âk = Āk, and so γk = 1. In general, the operator Âk can
be chosen as the (algebraic) multigrid preconditioner, the hierarchical basis precondi-
tioner, or the ILU preconditioner for Āk. For the case of the multigrid preconditioner,
we have γk <∼ 1.

We next construct a preconditioner for the Schur complement S̃ or S.
To explain our motivation, we first consider a direct choice of the preconditioner.
Let Btk : W (Γ) → V (Ωk) be the adjoint of Bk, which is defined by

(Btkµ, v)Ωk
= 〈µ,Bkv〉 = 〈µ,Bkv〉∂Ωk

∀µ ∈W (Γ), v ∈ V (Ωk),

and define the operator Rk : W (Γ) → V (Ωk) by Rk = Ā−1
k Btk. Let Iij : W (Γ) →

W (Γij) denote the natural restriction operator and Itij : W (Γij) → W (Γ) denote the
zero extention operator, which is just the adjoint of Iij .

For a face Γij , let 〈·, ·〉Γij denote the L2 inner product on the local interface Γij .
Define the operator Sij : W (Γij) →W (Γij) by

〈Sijλij , µij〉Γij = (ĀiRiI
t
ijλij , RiI

t
ijµij)Ωi

+ (ĀjRjI
t
ijλij , RjI

t
ijµij)Ωj ∀µij ∈W (Γij).

It can be verified that Sij is spectrally equivalent to the restriction of the operator S̃
(or S) on W (Γij).

By the general framework given in [17], we can define a preconditioner by (refer
to [19])

Ŝ−1 =
∑
Γij

ItijS
−1
ij Iij .(3.4)

Since Sij results in a dense stiffness matrix, the action of S−1
ij is expensive to imple-

ment (when W (Γij) has high dimensions). Because of this, we will construct another
preconditioner by replacing Sij with a cheaper local solver.

Throughout this paper, we assume that the local multiplier space W (Γij) is as-
sociated with the local trace space Vi(Γij) (to distinguish it from Vj(Γij)) in the sense
that dim(W (Γij)) = dim(V 0

i (Γij)) and W (Γij) has a vector space structure similar to
that of V 0

i (Γij) (refer to the mortar element method in [6] and [4]). Here we do not
require W (Γij) ⊂ Vi(Γij). It is also possible that W (Γij) is independent of Vi(Γij)
and Vj(Γij) (refer to [19] and [26]).

When the coefficient a(x) has a large variation across the local interface Γij , we
need a particular choice of the index i. Throughout this paper, we always assume
that

H1: the index i is chosen such that αi ≤ αj (so αij = αi).
Note that the particular choice of the index i will not influence applications of

our method.
Remark 3.2. When V 0

i (Γij) = V 0
j (Γij) (namely, the meshes on Γij are matching),

we need not choose a particular index i. If the two local trace spaces on Γij have the
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relation that either a space is a subspace of another one or a space has much smaller
dimension than another one the index i can also be chosen such that V 0

i (Γij) ⊂
V 0
j (Γij) or dim(V 0

i (Γij)) � dim(V 0
j (Γij)). But, for simplicity of exposition, we will

not discuss this choice in this paper (refer to [16]).

Let ‖ · ‖1/2,Γ0
ij

denote the norm on the space H
1/2
00 (Γij) (namely, the norm

‖ · ‖
H

1/2
00 (Γij)

in [28]). Define the discrete dual seminorm ‖ · ‖−∗,Γij
by

‖µ‖−∗,Γij
= sup
v∈V 0

i
(Γij)

|〈µ, v〉Γij |
‖v‖ 1

2 ,Γ
0
ij

, µ ∈W (Γij).

For a face Γij , let n0(i, j) denote the dimension of the space W (Γij). Assume
that

H2: for each face Γij there is a number G(n0(i, j)) > 1 such that the inverse
estimate holds:

‖µ‖0,Γij
≤ G(n0(i, j))‖µ‖−∗,Γij

∀µ ∈W (Γ).(3.5)

Hypothesis H2 implies that ‖ · ‖−∗,Γij is a norm on W (Γij).
For each face Γij , let Λij be a symmetric and positive definite operator on W (Γij).

As the desired local solver, we hope that Λij is spectrally equivalent to Sij . But, for
convenience, we assume that

H3: norm (〈Λij ·, ·〉Γij )
1/2 is spectrally equivalent to dual norm α

−1/2
i ‖ · ‖−∗,Γij .

Now we define the preconditioner S̄ by

S̄−1 =
∑
Γij

ItijΛ
−1
ij Iij .

To estimate the condition number of the preconditioned system S̄−1S, we further
assume that

H4: when W (Γij) �⊂ Vi(Γij), the inequality holds:

G(n0(i, j)) · inf
vδ∈Vi(Γij)

‖v − vδ‖0,Γij
<∼ ‖v‖ 1

2 ,Γij
∀v ∈ Vj(Γij).(3.6)

Set G(n) = maxΓij⊂ΓG(n0(i, j)).
Theorem 3.2. Let conditions H1–H4 be satisfied. Then we have

cond(S̄−1S̃) ≤ Cγ̂[1 + log(dG2(n))]2(3.7)

and

cond(S̄−1S) ≤ C[1 + log(dG2(n))]2.(3.8)

Moreover, the constant C in (3.7) and (3.8) can be bounded by γ2, which is independent
of the large variations of the coefficient a(x) across the local interfaces Γij.

Theorems 3.1 and 3.2 will be proved in the next section. From their proofs, we
will see that

λmin(Ā−1A∗) >∼ γ̂−1 and λmin(S̄−1S̃) >∼ γ̂−1γ−1.

Thus, using Lemma 2.1 of [30], together with (3.3) and (3.7), we deduce the following.
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Corollary. Let M̄ and M be defined as in the last section. Then

cond(M̄−1M ≤ Cγ̂[1 + log(dG2(n))]2.(3.9)

Moreover, the constant C in (3.9) can be bounded by γ2, which is independent of the
large variations of the coefficient a(x) across the local interfaces Γij .

In section 5, we will estimate the positive number G(n0(i, j)) for different choices
of W (Γij). For example, for the finite element discretization we have G(n0(i, j)) <∼
h
−1/2
i , where hi denotes the diameter of the triangulation on Ωi. A kind of cheap local

solver Λ−1
ij will also be derived in section 5, which needs only O(n2

0(i, j)) arithmetic
operations without any particular requirement to W (Γij).

4. Analyses. This section is devoted to prove the results given in the last sec-
tion.

4.1. On Theorem 3.1. To prove Theorem 3.1, we need a lemma.
Lemma 4.1. The following inequality holds:

d−1(B̄tB̄v, v) <∼ (Âv, v) ∀v ∈ V (Ω).(4.1)

Proof. As in section 2, we set v|Ωk
= vk. For any index k, the number of indices

l such that 〈B̄kvk, B̄lvl〉 �= 0 is independent of N (which equals six at most). Thus,

(B̄tB̄v, v) = 〈B̄v, B̄v〉 =

∥∥∥∥∥
N∑
k=1

B̄kvk

∥∥∥∥∥
2

0,Γ

<∼
N∑
k=1

‖B̄kvk‖2
0,Γ.(4.2)

By the definition of the operator B̄k, we have

‖B̄kvk‖2
0,Γ =

∑
Γkj⊂∂Ωk

αkj‖Pkj(vk|Γkj
)‖2

0,Γkj
≤

∑
Γkj⊂∂Ωk

αkj‖vk‖2
0,Γkj

,

which implies that

N∑
k=1

‖B̄kvk‖2
0,Γ ≤

∑
Γij

αij(‖vi‖2
0,Γij

+ ‖vj‖2
0,Γij

)

≤
∑
Γij

(αi‖vi‖2
0,Γij

+ αj‖vj‖2
0,Γij

)

=

N∑
k=1

αk‖vk‖2
0,∂Ωk

.

Substituting the above inequality into (4.2) and using the trace theorem lead to

d−1(B̄tB̄v, v) <∼
N∑
k=1

αk(d
−1‖vk‖2

0,∂Ωk
)

<∼
N∑
k=1

αk(|vk|21,Ωk
+ d−2‖vk‖2

0,Ωk
) =

N∑
k=1

(Āvk, vk)Ωk
,

which, together with (3.2), yields (4.1).
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Proof of Theorem 3.1. The inequality (3.3) can be derived by

γ̂−1(v,A∗v) <∼ ((Â−1 +A−1
0 Q0)A

∗v,A∗v) <∼ γ(v,A∗v) ∀v ∈ V (Ω).

Consider the space decomposition V (Ω) = V0 + V̄ , with V̄ ⊂ V (Ω). By the abstract
Schwarz theory, we need only to prove that

(a) for any ϕ0 ∈ V0 and ϕ̄ ∈ V̄ , we have

(A∗(ϕ0 + ϕ̄), ϕ0 + ϕ̄) <∼ γ[(A0ϕ0, ϕ0) + (Âϕ̄, ϕ̄)];(4.3)

(b) for any v ∈ V (Ω), there is a decomposition v = v0 + v̄ with v0 ∈ V0 and v̄ ∈ V̄
such that

(A0v0, v0) + (Âv̄, v̄) <∼ γ̂(A∗v, v).(4.4)

We first prove (a). By the triangle inequality and (3.1), we have

(A∗(ϕ0 + ϕ̄), ϕ0 + ϕ̄) ≤ 2[(A∗ϕ0, ϕ0) + (A∗ϕ̄, ϕ̄)]

<∼ (A0ϕ0, ϕ0) + (Aϕ̄, ϕ̄) + d−1(B̄tB̄ϕ̄, ϕ̄).(4.5)

But (2.8) and (3.2) imply that

(Aϕ̄, ϕ̄) ≤
N∑
k=1

βk|ϕ̄|21,Ωk
≤

N∑
k=1

(βk/αk)(Āk(ϕ̄|Ωk
), ϕ̄|Ωk

)Ωk

<∼
N∑
k=1

(βk/αk)(Âk(ϕ̄|Ωk
), ϕ̄|Ωk

)Ωk
≤ γ(Âϕ̄, ϕ̄).

Substituting this inequality into (4.5) and using (4.1) yield (4.3).
Now we prove (b). Let γΩk

(vk) denote the average value of vk on Ωk. Define
v0 ∈ V0 as follows: for the internal subdomains Ωk, define v0|Ωk

= γΩk
(vk); otherwise,

v0|Ωk
= 0. Moreover, we define v̄ = v− v0. Thus, by Friedrich’s inequality, we obtain

d−2αk(v̄k, v̄k)Ωk
= d−2αk‖vk − (v0|Ωk

)‖2
0,Ωk

<∼ αk|vk|21,Ωk
.(4.6)

Using (3.2) and (4.6), we deduce

(Âv̄, v̄) =

N∑
k=1

(Âkv̄k, v̄k)Ωk
≤

N∑
k=1

γk(Ākv̄k, v̄k)Ωk

<∼
N∑
k=1

γkαk(|v̄k|21,Ωk
+ |vk|21,Ωk

) = 2

N∑
k=1

γkαk|vk|21,Ωk
.

This, together with (2.8), leads to

(Âv̄, v̄) <∼ γ̂(A∗v, v).(4.7)

On the other hand, we have

(A0v0, v0) = (A∗v0, v0) = (A∗(v − v̄), v − v̄)

≤ 2[(A∗v, v) + (A∗v̄, v̄)].(4.8)
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It follows by (4.1) and (4.7) that

(A∗v̄, v̄) <∼ (Âv̄, v̄) <∼ γ̂(A∗v, v).

Substituting the above inequality into (4.8) yields

(A0v0, v0) <∼ γ̂(A∗v, v),

which, together with (4.7), gives (4.4).

4.2. On Theorem 3.2. In this subsection we prove Theorem 3.2. We consider
only the inequality (3.7). The inequality (3.8) can be proved in the same way. To
prove (3.7), we need some auxiliary results.

Consider the natural space decompositionW (Γ) =
∑

Γij
ItijW (Γij). The following

result can be derived by Theorem 2.1 of [17] (refer to [33]). This result can be regarded
as a variant of the abstract Schwarz theory (see [32] and [37]).

Lemma 4.2. Assume that the following conditions are satisfied:
(i) for each µ ∈W (Γ), we have∑

Γij

〈ΛijIijµ, Iijµ〉Γij
<∼ C1γ̂〈S̃µ, µ〉;(4.9)

(ii) for any φij ∈W (Γij), we have〈
S̃

(∑
Γij

Itijφij

)
,
∑
Γij

Itijφij

〉
<∼ C2[1 + log(dG2(n))]2

∑
Γij

〈Λijφij , φij〉Γij .(4.10)

Then the inequality (3.7) holds with C <∼ C1C2.

The above lemma gives a convenient way to estimate the condition number of the
preconditioned Schur complements. To estimate the constants C1 and C2 in Lemma
4.2, we need to study carefully a discrete dual norm on the local boundary ∂Ωk
(k = 1, . . . , N).

Define V (∂Ωk) = V (Ωk)|∂Ωk
and W (∂Ωk) = W (Γ)|∂Ωk

. Let ‖ · ‖−∗,∂Ωk
be the

discrete dual norm defined by

‖µ‖−∗,∂Ωk
= sup
v∈V (∂Ωk)

|〈µ, v〉∂Ωk
|

‖v‖ 1
2 ,∂Ωk

, µ ∈W (∂Ωk),

with

‖v‖ 1
2 ,∂Ωk

= (|v|21
2 ,∂Ωk

+ d−1‖v‖2
0,∂Ωk

)
1
2 .

For a function µ ∈W (Γ), define ±µ ∈W (Γ) by

(±µ)|Γij = σij(µ|Γij ) for each Γij ⊂ Γ.

Lemma 4.3. For any index k, we have

β−1
k ‖ ± µ‖2

−∗,∂Ωk
<∼ (ĀkRkµ,Rkµ)Ωk

<∼ α−1
k ‖ ± µ‖2

−∗,∂Ωk
∀µ ∈W (Γ).(4.11)

Proof. We first prove that for any extension ṽ of v ∈ V (∂Ωk) which satisfies
ṽ ∈ V (Ωk) and ṽ|∂Ωk

= v we have

〈µ,Bkṽ〉 = 〈±µ, v〉∂Ωk
.(4.12)
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In fact, by the definitions of the operator Bk, we deduce

〈µ,Bkṽ〉 =
∑

Γkj⊂∂Ωk

〈µ, σkjPkj(v|Γkj
)〉Γkj

=
∑

Γkj⊂∂Ωk

〈σkj(µ|Γkj
), Pkj(v|Γkj

)〉Γkj

=
∑

Γkj⊂∂Ωk

〈σkj(µ|Γkj
), v〉Γkj

.

This implies (4.12). Here we have used the fact that σkj(µ|Γkj
) ∈W (Γkj).

We then prove the second inequality of (4.11).
Since Rk = Ā−1

k Btk on W (Γ), it follows by (4.12) that

(ĀkRkµ,Rkµ)Ωk
= (Btkµ,Rkµ)Ωk

= 〈µ,BkRkµ〉 = 〈±µ,Rkµ〉∂Ωk
.(4.13)

By the Cauchy inequality and the trace theorem, we obtain

〈±µ,Rkµ〉∂Ωk
≤ ‖ ± µ‖−∗,∂Ωk

· ‖Rkµ‖ 1
2 ,∂Ωk

<∼ ‖ ± µ‖−∗,∂Ωk
· ‖Rkµ‖1,Ωk

.(4.14)

Using (4.14) and the equality

αk‖Rkµ‖2
1,Ωk

= (ĀkRkµ,Rkµ)Ωk

leads to

〈±µ,Rkµ〉∂Ωk
<∼ α

− 1
2

k ‖ ± µ‖−∗,∂Ωk
· ((ĀkRkµ,Rkµ)Ωk

)
1
2 .

Substituting the above inequality into (4.13) yields

(ĀkRkµ,Rkµ)Ωk
<∼ α−1

k ‖ ± µ‖2
−∗,∂Ωk

.(4.15)

Now we prove the first inequality of (4.11).
For any v ∈ V (∂Ωk) there is an extension ṽ ∈ V (Ωk) such that ṽ|∂Ωk

= v and

‖ṽ‖1,Ωk
<∼ ‖v‖ 1

2 ,∂Ωk
.(4.16)

Using the definition of the operator Rk and the Cauchy inequality yields

|〈µ,Bkṽ〉∂Ωk
| = |(Btkµ, ṽ)Ωk

| = |(ĀkRkµ, ṽ)Ωk
|

≤ ((ĀkRkµ,Rkµ)Ωk
)

1
2 · ((Ākṽ, ṽ)Ωk

)
1
2 .

This, together with (4.16) and the inequality

(Ākṽ, ṽ)Ωk
≤ βk‖ṽ‖2

1,Ωk
,

leads to

|〈µ,Bkṽ〉∂Ωk
| <∼ ((ĀkRkµ,Rkµ)Ωk

)
1
2 · β 1

2

k ‖v‖ 1
2 ,∂Ωk

.
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Thus, it follows by (4.12) that

‖ ± µ‖−∗,∂Ωk
= sup
v∈V (∂Ωk)

frac|〈µ,Bkṽ〉∂Ωk
|‖v‖ 1

2 ,∂Ωk

<∼ β
1
2

k ((ĀkRkµ,Rkµ)Ωk
)

1
2 ,

which, together with (4.15), gives the desired result.
When estimating the constant C2, some extension results of the discrete dual

norm ‖ · ‖−∗,∂Ωk
will play a key role (refer to [19]). Before proving these results, we

give two restriction operators and their properties.
For an open face Γij ⊂ Γ, make a regular and quasi-uniform triangulation with

the diameter hij = 1/G2(n0(i, j)). Let Nij and Z(Γij) denote, respectively, the
set of the corresponding nodes and the space which consists of continuous piece-
wise linear polynomials associated with this triangulation. For vij∈Z(Γij), we define
I0
∂Γij

vij , I
0
Γij
vij∈Z(Γij) by

I0
∂Γij

vij(s) =

{
vij(s) if s ∈ Nij ∩ ∂Γij ,
0 if s∈Nij ∩ Γij

and

I0
Γij
vij(s) =

{
vij(s) if s ∈ Nij ∩ Γij ,
0 if s ∈ Nij ∩ ∂Γij .

It is easy to see that vij = I0
∂Γij

vij + I0
Γij
vij on Γ̄ij .

The following two inequalities can be found in [12] and [38].
Lemma 4.4. Let vij ∈ Z(Γij). Then

‖I0
Γij
vij‖ 1

2 ,Γij
<∼ [1 + log(d/hij)]‖vij‖ 1

2 ,Γij
(4.17)

and

‖I0
∂Γij

vij‖0,∂Γij
<∼ [1 + log(d/hij)]

1
2 ‖vij‖ 1

2 ,Γij
.(4.18)

The following result can be viewed as a variant of the H− 1
2 -extension proved in

[18] (see also [19]).
Lemma 4.5. Let hypothesis H2 hold. Then, for each Γij ⊂ Γ, we have

sup
v∈Vi(Γij)

|〈µij , v〉Γij |
‖v‖ 1

2 ,Γij

<∼ [1 + log(dG2(n0(i, j)))]‖µij‖−∗,Γij
∀µij ∈W (Γij).(4.19)

Proof. For any v∈Vi(Γij), let vij be the L2 projection of v on Z(Γij). Then

|〈µij , v〉Γij | ≤ |〈µij , v − vij〉Γij |
+ |〈µij , vij〉Γij

|.(4.20)

It is well known that

‖vij − v‖0,Γij≤Ch
1
2
ij‖v‖ 1

2 ,Γij
.
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This, together with (3.5), leads to

|〈µij , v − vij〉Γij
| ≤ ‖µij‖0,Γij

· ‖v − vij‖0,Γij

<∼ ‖µij‖0,Γij · h
1
2
ij‖v‖ 1

2 ,Γij

<∼ ‖µij‖−∗,Γij · ‖v‖ 1
2 ,Γij

.(4.21)

Here we have used the relation h
1
2
ij = 1/G(n0(i, j)). Since

vij = I0
Γij
vij + I0

∂Γij
vij ,

we have

|〈µij , vij〉Γij
| ≤ |〈µij , I0

Γij
vij〉Γij

| + |〈µij , I0
∂Γij

vij〉Γij
|

≤ |〈µij , I0
Γij
vij〉Γij | + ‖µij‖0,Γij · ‖I0

∂Γij
vij‖0,Γij

≤ ‖µij‖−∗,Γij
· ‖I0

Γij
vij‖ 1

2 ,Γij

+ ‖µij‖0,Γij
· h 1

2
ij‖I0

∂Γij
vij‖0,∂Γij ,(4.22)

where a direct computation is used to bound the term ‖I0
Γij
vij‖ 1

2 ,Γij
by

h
1
2
ij‖I0

∂Γij
vij‖0,∂Γij using the discrete L2 norm. Substituting (4.17), (4.18), and (3.5)

into (4.22), we obtain

|〈µij , vij〉Γij | <∼ [1 + log(d/hij)]‖µij‖−∗,Γij
· ‖vij‖ 1

2 ,Γij
,

which, together with (4.20) and (4.21), yields

|〈µij , v〉Γij
| <∼ [1 + log(d/hij)]‖µij‖−∗,Γij

· ‖v‖ 1
2 ,Γij

.

Here we have used the fact

‖vij‖ 1
2 ,Γij

<∼ ‖v‖ 1
2 ,Γij

.

Therefore, we deduce (4.19) (note that hij = 1/G2(n0(i, j))).
Lemma 4.6. Let conditions H2 and H4 be satisfied. Then, for each Γij ⊂ Γ, we

have

‖Itijµij‖−∗,∂Ωi
<∼ [1 + log(dG2(n0(i, j)))]‖µij‖−∗,Γij ∀µij ∈W (Γij)(4.23)

and

‖Itijµij‖−∗,∂Ωj
<∼ [1 + log(dG2(n0(i, j)))]‖µij‖−∗,Γij ∀µij ∈W (Γij).(4.24)

Proof. Since

‖v‖ 1
2 ,∂Ωi

≥ ‖v‖ 1
2 ,Γij

∀v ∈ Vi(∂Ωi),

the inequality (4.23) is a direct consequence of (4.19).
Now we consider (4.24). By (4.19), it suffices to prove that

sup
v∈Vj(Γij)

|〈µij , v〉Γij |
‖v‖ 1

2 ,Γij

<∼ sup
v∈Vi(Γij)

|〈µij , v〉Γij |
‖v‖ 1

2 ,Γij

+ ‖µij‖−∗,Γij ∀µij ∈W (Γij).(4.25)
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Let P iij : L2(Γij) → Vi(Γij) denote the L2 projection. Then, for any v ∈ Vj(Γij), we
have

|〈µij , v〉Γij
|

‖v‖ 1
2 ,Γij

≤

⎧⎪⎨⎪⎩
|〈µij ,P

i
ijv〉Γij

|
‖v‖ 1

2
,Γij

if W (Γij) ⊂ Vi(Γij),

|〈µij ,P
i
ijv〉Γij

|
‖v‖ 1

2
,Γij

+
|〈µij ,v−P i

ijv〉Γij
|

‖v‖ 1
2
,Γij

if W (Γij) �⊂ Vi(Γij).
(4.26)

Using the Cauchy inequality and (3.5) yields

|〈µij , v − P iijv〉Γij
| ≤ ‖µij‖0,Γij

· ‖v − P iijv‖0,Γij

<∼ G(n0(i, j))‖µij‖−∗,Γij · inf
vδ∈Vi(Γij)

‖v − vδ‖0,Γij .

Thus, it follows by condition H4 that

|〈µij , v − P iijv〉Γij |
‖v‖ 1

2 ,Γij

<∼ ‖µij‖−∗,Γij (W (Γij) �⊂ Vi(Γij)).(4.27)

Note that ‖v‖ 1
2 ,Γij

>∼ ‖P iijv‖ 1
2 ,Γij

, and using (4.26), together with (4.27), we obtain

sup
v∈Vj(Γij)

|〈µij , v〉Γij |
‖v‖ 1

2 ,Γij

<∼ sup
v∈Vj(Γij)

|〈µij , P iijv〉Γij
|

‖P iijv‖ 1
2 ,Γij

+ ‖µij‖−∗,Γij .

Since P iijv ∈ Vi(Γij), this leads to (4.25).
The following lemma is a direct consequence of the following relations:

Itij(V
0
i (Γij)) ⊂ V (∂Ωi) and Itij(V

0
j (Γij)) ⊂ V (∂Ωj).

Lemma 4.7. For each face Γij ⊂ Γ we have

‖µ‖−∗,Γij
<∼ ‖ ± µ‖−∗,∂Ωi ∀µ ∈W (Γ)(4.28)

and

sup
v∈V 0

j
(Γij)

|〈µ, v〉Γij
|

‖v‖ 1
2 ,Γ

0
ij

<∼ ‖ ± µ‖−∗,∂Ωj
∀µ ∈W (Γ).(4.29)

For ease of notation, define S0 = BA−1
0 Q0B

t.
Lemma 4.8. For µ ∈ W (Γ), define µij = Iijµ ∈ W (Γij). Let assumptions H1

and H3 hold. Then

〈S0µ, µ〉 <∼ [1 + log(dG2(n))]2
∑
Γij

〈Λijµij , µij〉Γij .(4.30)

Proof. Define u0 = A−1
0 Q0B

tµ (∈ V0). Then

〈S0µ, µ〉 = 〈Bu0, µ〉 = (Q0B
tµ, u0) = (Au0, u0)

=∼ d−1(B̄tB̄u0, u0) = d−1‖B̄u0‖2
0,Γ.(4.31)

In the following we estimate d−1‖B̄u0‖2
0,Γ by using the relation

d−1‖B̄u0‖2
0,Γ

=∼ 〈µ,Bu0〉.(4.32)
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From the definitions of V0, B, and B̄, we know that

(B̄u0)|Γij
= α

1
2
ij(Bu0)|Γij

is a constant for each Γij , which is denoted by a0
ij . Using (4.32) and the Cauchy–

Schwarz inequality yields

d−1‖B̄u0‖2
0,Γ

=∼
∑
Γij

a0
ijα

− 1
2

ij 〈µ, 1〉Γij

≤
(∑

Γij

(a0
ij)

2

) 1
2

·
(∑

Γij

α−1
ij 〈µ, 1〉2Γij

) 1
2

=∼ d−1‖B̄u0‖0,Γ ·
(∑

Γij

α−1
ij 〈µ, 1〉2Γij

) 1
2

.

Thus,

‖B̄u0‖2
0,Γ

<∼
∑
Γij

α−1
ij |〈µ, 1〉Γij |2.(4.33)

Since V (∂Ωi) contains the constant function, we have

|〈µ, 1〉Γij | = |〈Itijµij , 1〉∂Ωi |
≤ ‖Itijµij‖−∗,∂Ωi

· ‖1‖ 1
2 ,∂Ωi

=∼ d
1
2 ‖Itijµij‖−∗,∂Ωi

.

Substituting the above inequality into (4.33) and using (4.23) lead to

d−1‖B̄u0‖2
0,Γ

<∼ [1 + log(dG(n))]2
∑
Γij

α−1
ij ‖µij‖2

−∗,Γij
.

Hence, from (4.31) we have

〈S0µ, µ〉 <∼ [1 + log(dG(n))]2
∑
Γij

α−1
ij ‖µij‖2

−∗,Γij
.(4.34)

Note that α−1
ij = α−1

i (see assumption H1), and by (4.34) and the condition H3 we
obtain (4.30). Now we can prove Theorem 3.2 easily.

Proof of Theorem 3.2. By Lemma 4.2, we need only to estimate the constants C1

and C2 in (4.9) and (4.10).
For simplicity of exposition, we assume that γk =∼ 1. It is easy to see that

(µ ∈W (Γ))

〈S̃µ, µ〉 =
N∑
k=1

〈BkÂ−1
k Btkµ, µ〉∂Ωk

+ 〈BA−1
0 Q0B

tµ, µ〉

=∼
N∑
k=1

(Ā−1
k Btkµ,B

t
kµ)Ωk

+ 〈S0µ, µ〉

=

N∑
k=1

(ĀkRkµ,Rkµ)Ωk
+ 〈S0µ, µ〉.(4.35)
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We first estimate the constant C1.
By condition H3, we have

〈ΛijIijµ, Iijµ〉Γij
<∼ α−1

i ‖Iijµ‖2
−∗,Γij

.

This, together with Lemmas 4.7 and 4.3, leads to

〈ΛijIijµ, Iijµ〉Γij
<∼
βi
αi

(ĀiRiµ,Riµ)Ωi
.

Summing over Γij to the above inequality and using (4.35) yield (4.9) with C1 ≤
max1≤k≤N (βk/αk) = γ.

We next estimate the constant C2.
For ease of notation, define φ =

∑
Γij

Itijφij . Then, from (4.35), we have〈
S̃

(∑
Γij

Itijφij

)
,
∑
Γij

Itijφij

〉
= 〈S̃φ, φ〉

=∼
N∑
k=1

(ĀkRkφ,Rkφ)Ωk
+ 〈S0φ, φ〉.(4.36)

It follows by Lemma 4.3 that

(ĀkRkφ,Rkφ)Ωk
<∼ α−1

k ‖ ± φ‖2
−∗,∂Ωk

<∼ α−1
k

∑
Γkj⊂∂Ωk

‖ ± Itkj(φ|Γkj
)‖2

−∗,∂Ωk
.

Substituting the above inequality into (4.36) and noting that φ|Γij = φij yield〈
S̃

(∑
Γij

Itijφij

)
,
∑
Γij

Itijφij

〉
<∼ 〈S0φ, φ〉

+
∑
Γij

[α−1
i ‖Itijφij‖2

−∗,∂Ωi
+ α−1

j ‖Itijφij‖2
−∗,∂Ωj

].

This, together with Lemma 4.6, leads to〈
S̃

(∑
Γij

Itijφij

)
,
∑
Γij

Itijφij

〉
<∼ 〈S0φ, φ〉 + [1 + log(dG2(n))]2

∑
Γij

α−1
i ‖φij‖2

−∗,Γij
.

(4.37)

Thus, Lemma 4.8 and condition H3 yield (4.10) with C2 ≤ γ.

5. Detailed discussions. In this section, we discuss some details on the precon-
ditioner S̄. Theorem 3.2 indicates that the condition number of the preconditioned
Schur complements is determined mainly by the positive numbers G(n0(i, j)) in the
inverse estimate (3.5). However, the verification of such an inverse estimate depends
on the underlying approximate spaces.
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5.1. Approximate spaces. As usual, we assume that each Ωk is a polyhedron.
We consider both the finite element space and the spectral element space.

(I) pure finite element discretizations.
With each subdomain Ωk we associate a regular and quasi-uniform triangulation

Tk made of elements that are either hexahedra or tetrahedra. We denote by hk the
mesh size of Tk; i.e., hk denotes the maximum diameter of any tetrahedra in the mesh
Tk. The triangulations in the subdomains are independent of one other and gener-
ally do not match at the interfaces between subdomains. Hence, each interface Γij is
provided with two different (two-dimensional) meshes Tij and Tji, which are associ-
ated with Ti and Tj , respectively. Define V (Ωk) as the space consisting of continuous
piecewise linear functions associated with Tk. For each Γij ⊂ Γ, we choose Tij or Tji
to define the local multiplier space W (Γij); for example, choose Tij . There are many
ways to define the local Lagrange multiplier space W (Γij).

For the case of triangulation made of parallelepipeds, the multiplier space W (Γij)
can be defined as the tensor product of two one-dimensional multiplier spaces. Thus,
we consider only the case where the face Γij is meshed with triangular elements.

Case (i). W (Γij) is the mortar space (refer to [6], [3], and [4]).
We denote by xm, 1 ≤ m ≤ n(i, j), all the nodes on Γij associated with the tri-

angulation Tij and distinguish the internal nodes in Γij (numbered from 1 to n0(i, j))
from the boundary notes which belong to ∂Γij (numbered from n0(i, j)+1 to n(i, j)).
All these nodes are associated with the shape functions φm so that each function ϕ
in W (Γij) can be written as

ϕ =

n(i,j)∑
m=1

ϕ(xm)φm,

and each function ϕ in V 0
i (Γij) can be written as

ϕ =

n0(i,j)∑
m=1

ϕ(xm)φm.

For a node xm on ∂Γij (n0(i, j) + 1 ≤ m ≤ n(i, j)), only the following two cases are
possible: (a) there are Q(m) internal nodes xlm ∈ Γij such that each xlm and xm are
just two end points of an edge of some triangle on Γij ; (b) all three vertices of the
triangle containing xm are on the boundary of Γij (such xm is a vertex of Γij). For
case (b), let xlm (l = 1, 2) denote the other two vertices of the triangle containing xm,
and set Q(m) = 2. Now we choose Q(m) positive numbers alm satisfying

Q(m)∑
l=1

alm = 1

and define

ϕ(xm) =

Q(m)∑
l=1

almϕ(xlm).

The definition of the space W (Γij) is then

W (Γij) =

{
ϕ ∈ Vi(Γij) : ∀m, n0(i, j) + 1 ≤ m ≤ n(i, j), ϕ(xm) =

Q(m)∑
l=1

almϕ(xlm)

}
.
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It is easy to see that the above space can also be written as

W (Γij) =

{
ϕ ∈ Vi(Γij) : ϕ =

n0(i,j)∑
m=1

ϕ(xm)φm +

n(i,j)∑
m=n0(i,j)+1

[
Q(m)∑
l=1

almϕ(xlm)

]
φm

}
.

Case (ii). W (Γij) is the dual basis space (see [23] and [36]).
We will define a map Fij which takes V 0

i (Γij) to the space of discontinuous func-
tions which are linear when restricted to the triangles of Tij . Let τ be a triangle with
vertices {yl, l = 1, 2, 3} and vl denote the value of a function ϕ ∈ V 0

i (Γij) at yl. We
define Fij by the following rules:

1. If all three vertices of τ are in Γij , then we set Fijϕ = w, where w is the linear
function with values w1 = 3v1 − v2 − v3, w2 = 3v2 − v1 − v3, and w3 = 3v3 − v1 − v2.

2. If exactly one vertex (say y1) of τ is on ∂Γij , then we set w1 = (v2 + v3)/2,
w2 = (5v2 − 3v3)/2, and w3 = (5v3 − 3v2)/2.

3. If exactly one vertex (say y1) of τ is in Γij , then we set w1 = w2 = w3 = v1.
4. If none of the vertices of τ are in Γij then we set w1 = w2 = w3 = vl, where vl

is value of ϕ at the interior vertex which is closest to the triangle.
Let {xl : l = 1, . . . , n0(i, j)} be the nodes in Γij . We get a dual basis by defining

ψl = Fijϕl, for l = 1, . . . , n0(i, j). In fact, it easily follows from the above definitions
that {ψl : l = 1, . . . , n0(i, j)} is linearly independent and satisfies (ϕl, ψm) = 0 when-
ever l �= m. We define W (Γij) to be the span of {ψl : l = 1, . . . , n0(i, j)}. Note that
W (Γij) �⊂ Vi(Γij).

The existence and uniqueness of the solution ū of (2.3) and the error estimates of
ū have been shown, respectively, in [4] (for Case (i)) and in [23] (for Case (ii)).

(II) coupling spectral and finite element discretization (refer to [5]).
We use spectral discretization on some subdomains, but we use finite element

discretization on the other subdomains. Consider an interface Γij . Without loss of
generality, we assume that V (Ωi) is the spectral space of all polynomial functions
with degree ≤ ni, but V (Ωj) is the usual linear finite element space (see (I)).

When αi ≤ αj , we choose the multiplier space W (Γij) as the spectral space of all
polynomial functions with degree ≤ ni−2. Otherwise, we choose W (Γij) as a suitable
linear finite element space associated with the triangulation Tji (see [5] for details).

The existence and uniqueness of the solution ū of (2.3) and the error estimates of
ū have been shown in [5] under suitable assumptions.

Note that for all the cases considered above, we have dim(W (Γij)) = dim(V 0
i (Γij)).

5.2. Estimate of the positive numbers G(n0(i, j)). The following result
can be derived directly by the definition of ‖ · ‖−∗,Γij .

Theorem 5.1. Assume that there exists a positive number E(n0(i, j)) such that
for any µij ∈W (Γij) there is a function ϕ ∈ V 0

i (Γij) satisfying

|〈µij , ϕ〉Γij
| ≥ E(n0(i, j))‖µij‖0,Γij · ‖ϕ‖0,Γij .(5.1)

Then

G(n0(i, j)) ≤ E1(n0(i, j))/E(n0(i, j)),(5.2)

where E1(n0(i, j)) is defined by the inverse estimate

‖v‖ 1
2 ,Γ

0
ij
≤ E1(n0(i, j))‖v‖0,Γij

∀v ∈ V 0
i (Γij).(5.3)

Using Theorem 5.1, we can estimate G(n0(i, j)) for various cases.
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Proposition 5.1. For the two cases in discretization (I), we have G(n0(i, j))
<∼ h

−1/2
i .

Proof. From the standard inverse estimate of the finite element functions, we know
that the positive number E1(n0(i, j)) in (5.3) can be estimated by E1(n0(i, j)) <∼
h
−1/2
i . We need only to prove the positive number E(n0(i, j)) in (5.1) satisfies
E(n0(i, j)) >∼ 1.

For Case (ii), this inequality has been shown in [23].
Now we consider Case (i). It has been shown in [4] that the mortar projection

πij : L2(Γij) → V 0
i (Γij) defined by∫
Γij

(ϕ− πijϕ)µds = 0, ϕ ∈ L2(Γij) ∀µ ∈W (Γij)

satisfies the L2 stability

‖πijϕ‖0,Γij
<∼ ‖ϕ‖0,Γij ∀ϕ ∈ L2(Γij).

Thus,

〈µij , πijµij〉Γij
= 〈µij , µij〉Γij

>∼ ‖µij‖0,Γij · ‖πijµij‖0,Γij ,

which means that the function ϕ = πijµij ∈ V 0
i (Γij) satisfies (5.1) with E(n0(i, j)) >∼

1.
Proposition 5.2. For discretization (II), we assume that the coupling interface

Γij is affinely equivalent to the reference square. Then G(n0(i, j)) <∼ (n3
i /d)

1/2 (or

G(n0(i, j)) <∼ h
−1/2
j ).

Proof. From the standard inverse estimate of the spectral element, we know that
the positive number E1(n0(i, j)) in (5.3) can be estimated by E1(n0(i, j)) <∼ nid

− 1
2 .

We need only to prove the positive number E(n0(i, j)) in (5.1) satisfies E(n0(i, j)) >∼
n
−1/2
i . This inequality can be proved as in Case (i) of Proposition 5.1 by using the

inequality (3.2) of [31], which is also true for the current situation.
The following result can be derived by Proposition 5.1 and the approximate prop-

erty of the finite element space Vi(Γij).
Proposition 5.3. For Case (ii) in discretization (I), assumption H4 holds.
The following proposition is a direct consequence of Proposition 5.2 and the ap-

proximate property of the finite element space V 0
j (Γij).

Proposition 5.4. For discretization (II), let the coupling interface Γij be affinely
equivalent to the reference square. We assume that hjn

3
i /d is sufficiently small. Then

assumption H4 holds.
Remark 5.1. From the above discussion, we know that the positive number G(n)

in (3.7) and (3.8) can be estimated by

G2(n) <∼
{

h−1 for discretization (I),
max{h−1, n̂3/d} for discretization (II).

Here, h = minhi and n̂ = maxni.
Remark 5.2. We believe that when n3

i and n̂3 are replaced by n2
i and n̂2, respec-

tively, the results in this section still hold. However, the proof seems complicated.
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5.3. On the local solvers. It is clear that the preconditioner S̄ is determined
by the local solvers Λij (Γij ⊂ Γ). When the local multiplier space W (Γij) has low
dimension n0(i, j), the action of the inverse S−1

ij can be implemented exactly (which

needs O(n3
0(i, j)) arithmetic operations), and Λij can be chosen as Sij itself (refer to

[18] and [19]). Otherwise, we have to develop a cheaper solver Λij , which would be
spectrally equivalent to Sij (namely, satisfies assumption H3). For this purpose, we
need an auxiliary result.

Let Qij : W (Γij) → V 0
i (Γij) denote the L2 projection on V 0

i (Γij), and let Qtij :

V 0
i (Γij) →W (Γij) denote its adjoint with respect to the L2(Γij) inner product.

Theorem 5.2. Let Λ̂ij : V 0
i (Γij) → V 0

i (Γij) be a symmetric and positive definite

operator satisfying 〈Λ̂ij ·, ·〉Γij
=∼ ‖ · ‖2

1
2 ,Γ

0
ij

. Define Λij = α−1
i QtijΛ̂

−1
ij Qij. Then the

operator Λij satisfies hypothesis H3.
Proof. Since there is a positive number E(n0(i, j)) satisfying (5.1) in all cases, it

can be verified that the operator Qij : W (Γij) → V 0
i (Γij) is nonsingular. Hence, the

operator Λij is symmetric and positive definite on W (Γij). It suffices to prove that

‖µij‖−∗,Γij
=∼ 〈(Λ̂−1

ij Qijµij , Qijµij〉
1
2

Γij
∀µij ∈W (Γij).(5.4)

Define vij = Λ̂−1
ij Qijµij . Since vij ∈ V 0

i (Γij), we have from the assumption to Λ̂ij

‖µij‖−∗,Γij ≥ |〈µij , vij〉Γij
|

‖vij‖ 1
2 ,Γ

0
ij

=
|〈Qijµij , vij〉Γij

|
‖vij‖ 1

2 ,Γ
0
ij

= 〈Qijµij , Λ̂−1
ij Qijµij〉

1
2

Γij
·
〈Λ̂ijvij , vij〉

1
2

Γij

‖vij‖ 1
2 ,Γ

0
ij

>∼ 〈Qijµij , Λ̂−1
ij Qijµij〉

1
2

Γij
∀µij ∈W (Γij).(5.5)

On the other hand, we have for any v ∈ V 0
i (Γij)

|〈µij , v〉Γij | = |〈Qijµij , v〉Γij |
= |〈Λ̂− 1

2
ij Qijµij , Λ̂

1
2
ijv〉Γij |.

Thus, using the Cauchy inequality and the assumption, we deduce

|〈µij , v〉Γij
| ≤ 〈Λ̂−1

ij Qijµij , Qijµij〉
1
2

Γij
· 〈Λ̂ijv, v〉

1
2

Γij

<∼ 〈Λ̂−1
ij Qijµij , Qijµij〉

1
2

Γij
· ‖v‖ 1

2 ,Γ
0
ij
.(5.6)

By the definition of ‖ · ‖−∗,Γij , the inequality (5.6) leads to

‖µij‖−∗,Γij
<∼ 〈Λ̂−1

ij Qijµij , Qijµij〉
1
2

Γij
∀µij ∈W (Γij).

This, together with (5.5), yields (5.4).
By Theorem 5.2, we need only to define a suitable operator Λ̂ij so that the action

of the operator Λ−1
ij is cheap to implement.

Remark 5.3. Of course, the operator Λ̂ij can be chosen as the positive square

root of the discrete Laplace operator (refer to [8] and [38]). But this choice of Λ̂ij is
not practical for a triangular face Γij or spectral element discretization.
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We first study the action of (QtijΛ̂
−1
ij Qij)

−1. For µ ∈W (Γij), set (QtijΛ̂
−1
ij Qij)

−1µ
= λ ∈ W (Γij). We need only to explain how to get this λ from µ ∈ W (Γij). Since

the operator Qij is nonsingular, we have (QtijΛ̂
−1
ij Qij)

−1 = Q−1
ij Λ̂ij(Q

t
ij)

−1. Thus,

Qijλ = Λ̂ij(Q
t
ij)

−1µ, which implies that

〈Qijλ, ϕ〉Γij
= 〈Λ̂ij(Qtij)−1µ, ϕ〉Γij

∀ϕ ∈ V 0
i (Γij).

Namely,

〈λ, ϕ〉Γij = 〈µ̃, Λ̂ijϕ〉Γij ∀ϕ ∈ V 0
i (Γij).(5.7)

Here the function µ̃ satisfies Qtijµ̃ = µ.
As in section 2, set dim(W (Γij)) = n0(i, j). Let {ϕmij} and {ψmij } (m = 1, . . . ,

n0(i, j)) denote a basis of the spaces V 0
i (Γij) and W (Γij), respectively. Then the

functions µ and λ can be written as

µ =
∑
m

amψ
m
ij and λ =

∑
m

zmψ
m
ij ,

respectively. Define the vectors

bij = (a1, a2, . . . , an0(i,j))
t, χij = (z1, z2, . . . , zn0(i,j))

t.

Let Kij and Mij denote the coupling matrix and the mass matrix with the entries
〈ϕkij , ψlij〉Γij

and 〈ψkij , ψlij〉Γij (k, l = 1, . . . , n0(i, j)), respectively. Besides, let Nij

denote the stiffness matrix of the operator Λ̂ij associated with the basis {ϕmij}. It can
be verified by (5.7) that the vector χij is determined by

Kijχij = Nij b̃ij ,(5.8)

with b̃ij satisfying

Kt
ij b̃ij = Mijbij .(5.9)

The above two equations show the action of the local solver Λ−1
ij = αi(Q

t
ijΛ̂

−1
ij Qij)

−1.

It follows by (5.8) and (5.9) that the matrix form of Λ−1
ij is αiK

−1
ij Nij(K

−1
ij )t.

From the viewpoint of computation, we need only to know the matrix Nij instead

of the operator Λ̂ij . In the following, we define an appropriate matrix Nij such that

the corresponding operator Λ̂ij (for a given basis) satisfies the assumption in Theorem
5.2. Since the linear system (5.8) does not involve the action of N−1

ij , we can define
Nij in a more direct way. This is the main advantage of our preconditioner over the
existing preconditioners.

We first consider discretization (I).
For Case (i), both {ϕmij} and {ψnij} are chosen as the nodal basis functions, but,

for Case (ii), {ψnij} is chosen as the dual basis of {ϕmij}. It is clear that both Mij

and Kij are sparse and band matrices. In particular, Kij is a diagonal matrix for
Case (ii).

Let {xkij} denote the nodes associated with the triangulation Tij . Define the

operator Λ̂ij : V 0
i (Γij) → V 0

i (Γij) by
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〈Λ̂ijϕ,ψ〉Γij
= h4

i

∑
xm
ij

,xn
ij

∈Tij

xm
ij

=xn

ij

(ϕ(xmij ) − ϕ(xnij))(ψ(xmij ) − ψ(xnij))

|xmij − xnij |3

+h2
i

∑
xm
ij
∈Tij

ϕ(xmij ) · ψ(xmij )

dist(xmij , ∂Γij)
, ϕ ∈ V 0

i (Γij) ∀ψ ∈ V 0
i (Γij).(5.10)

In particular, for the nodal basis {ϕkij} of V 0
i (Γij), we have

〈Λ̂ijϕmij , ϕnij〉Γij
=

⎧⎪⎪⎨⎪⎪⎩
∑

xl
ij

∈Tij

xl
ij

=xm

ij

h4
i

|xl
ij
−xm

ij
|3 +

h2
i

dist(xm
ij
,∂Γij)

if n = m,

−h4
i

|xm
ij
−xn

ij
|3 if n �= m.

This equality gives the entries of the matrix Nij .
If choosing ψ = ϕ in (5.10), then the right-hand side of (5.10) is just the discrete

form of the norm ‖ϕ‖2
1
2 ,Γ

0
ij

(refer to [38]). Therefore, the operator Λ̂ij satisfies the

assumption in Theorem 5.2.
Since (refer to [38])

‖ϕ‖ 1
2 ,Γ

0
ij

=∼ [1 + log(d/hi)]
1
2 ‖ϕ‖ 1

2 ,Γij
, ϕ ∈ V 0

i (Γij),

the matrix Nij can be replaced by [1 + log(d/hi)]N
0
ij , where the entries of the matrix

N0
ij are defined by

cijmn =

⎧⎪⎪⎨⎪⎪⎩
∑

xl
ij

∈Tij

xl
ij

=xm

ij

h4
i

|xl
ij
−xm

ij
|3 +

h2
i

d if n = m,

−h4
i

|xm
ij
−xn

ij
|3 if n �= m.

Remark 5.4. The calculation of the matrix Nij is needed only once before im-
plementing a certain iterative algorithm, so its complexity is much smaller than that
of the global iterations. We would like to compare the arithmetic complexity of the
local solver Λ−1

ij with that of the existing local solvers. Since the matrix Kij is sparse

and band, solving χ by (5.8) and (5.9) needs only O(n2
0(i, j)) arithmetic operations.

This local solver seems cheaper than all the existing local solvers, including the one
in the classical substructuring method (if there is no particular assumption to the
triangulation). For example, the action of the local solver in the FETI-type meth-

ods is implemented by solving a local Dirichlet problem with O(n
3/2
0 (i, j)) unknown,

and so it needs O(n3
0(i, j)) arithmetic operations. We point out that we need not

make a particular requirement to the meshes on Γij here. This is a very important
merit in DDMs for three-dimensional problems. If the meshes on Γij have a particular

structure, we can decrease the arithmetic operations by defining special operator Λ̂ij .
Now we consider discretization (II) (on parallelepiped). Without loss of generality,

we assume that Γij = J2 with J = [−1, 1]. Let Lk(x) denote the Legendre polynomial
of degree k (k = 0, . . . , ni − 1) defined on J . Define

φk(x) =

√
k +

1

2

∫ x

−1

Lk(t)dt, k = 1, . . . , ni − 1.



928 QIYA HU, ZHONGCI SHI, AND DEHAO YU

It is clear that φk(−1) = φk(1) = 0. Let the basis functions of W (Γij) and V 0
i (Γij)

be defined by

ψmn(x, y) = Lm(x)Ln(y), m, n = 0, . . . , ni − 2

and

ϕmn(x, y) = φm(x)φn(y), m, n = 1, . . . , ni − 1,

respectively. Let K0 and M0 denote the coupling matrix and the mass matrix with
the entries 〈φk, Ll〉J (l = 0, . . . , ni − 2) and 〈φk, φl〉J (l = 1, . . . , ni − 1), respectively
(k = 1, . . . , ni − 1). It is clear that

Kij = K0 ⊗K0 and Mij = M0 ⊗M0.(5.11)

From the orthogonality of the Legendre polynomial, we infer that K0 and M0 are
sparse and band matrices with bandwidth ≤ 5. Thus, the matrices Kij and Mij are
also sparse and band (with constant bandwidth) by (5.11).

To compute the matrix Nij , we need to investigate the norm ‖ · ‖2
1/2,Γ0

ij
. It can

be verified directly that (see Theorem 13.1 of [28])

‖v‖2
1
2 ,Γ

0
ij

=∼ ‖ϕ‖2

H
1
2
00(J)

·‖ψ‖2
0,J+‖ϕ‖2

0,J ·‖ψ‖2

H
1
2
00(J)

, v(x, y) = ϕ(x)ψ(y) ∈ V 0
i (Γij).

(5.12)

Define

V 0(J) = span{φ1, φ2, . . . , φni−1}.

Let Λ0 : V 0(J) → V 0(J) be a symmetric and positive definite operator, which satisfies

〈Λ0φ, φ〉J =∼ ‖φ‖2

H
1
2
00(J)

∀φ ∈ V 0(J).(5.13)

Define

〈Λ̂ijv, w〉Γij
= 〈Λ0ϕ

1, ψ1〉J · 〈ϕ2, ψ2〉J + 〈ϕ1, ψ1〉J · 〈Λ0ϕ
2, ψ2〉J ,

v(x, y) = ϕ1(x)ϕ2(y) ∈ V 0(J) ∀w(x, y) = ψ1(x)ψ2(y) ∈ V 0(J).(5.14)

It follows by (5.13) and (5.14) that the operator Λ̂ij satisfies the assumption in The-
orem 5.2. We define the operator Λ0 by

〈Λ0ϕ,ψ〉J =

∫
J

∫
J

(ϕ(x) − ϕ(y))(ψ(x) − ψ(y))

(x− y)2
dxdy

+

∫
J

ϕ(x)ψ(x)

dist(x, ∂J)
dx, ϕ ∈ V 0(J) ∀ψ ∈ V0(J),

such that the condition (5.13) is satisfied. In particular, we have

〈Λ0φm, φn〉J =

∫
J

∫
J

(φm(x) − φm(y))(φn(x) − φn(y))

(x− y)2
dxdy

+

∫
J

φm(x)φn(x)

dist(x, ∂J)
dx, m, n = 1, . . . , ni − 1.(5.15)
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Let N0 denote the stiffness matrix of the operator Λ0 associated with the basis
{φk}. From (5.14), we have

Nij = N0 ⊗M0 +M0 ⊗N0.(5.16)

The matrix M0 can be obtained easily, which has only O(ni) nonzero entries (so the
matrix Nij has O(n3

i ) nonzero entries at most).
To calculate the matrix N0, we need to derive a formula to evaluate the inner

product 〈Λ0φm, φn〉J . Define

Im,n(k, l) =

∫
J

∫
J

∫ x
y
tkLm(t)dt · ∫ x

y
tlLn(t)dt

(x− y)2
dxdy,

k = 0, . . . , ni − 1 −m; l = 0, . . . , ni − 1 − n; m,n = 1, . . . , ni − 1.

Then∫
J

∫
J

(φm(x) − φm(y))(φn(x) − φn(y))

(x− y)2
dxdy =

√
m+

1

2

√
n+

1

2
Im,n(0, 0).

It is well known that

Lk+1(x) =
2k + 1

k + 1
xLk(x) − k

k + 1
Lk−1(x), k = 1, . . . , ni − 1.

Thus, we can obtain the following recurrence formulas (m,n ≥ 2):

I1,n(k, l) =
2n+ 1

n+ 1
I1,n−1(k, l + 1) − n

n+ 1
I1,n−2(k, l),

Im,1(k, l) =
2m+ 1

m+ 1
Im−1,1(k + 1, l) − m

m+ 1
Im−2,1(k, l),

and

Im,n(k, l) =
2m+ 1

m+ 1
· 2n+ 1

n+ 1
Im−1,n−1(k + 1, l + 1) +

m

m+ 1
· n

n+ 1
Im−2,n−2(k, l)

− 2m+ 1

m+ 1
· n

n+ 1
Im−1,n−2(k + 1, l) − m

m+ 1
· 2n+ 1

n+ 1
Im−2,n−1(k, l + 1).

For any k, l = 0, . . . , ni − 2, the integration I1,1(k, l) can be evaluated easily. Thus,
the integration ∫

J

∫
J

(φm(x) − φm(y))(φn(x) − φn(y))

(x− y)2
dxdy

can be evaluated by the above recurrence formulas. In an analogous way, we can

evaluate the integration
∫
J
φm(x)φn(x)
dist(x,∂J) dx, and so we can get the value 〈Λ0φm, φn〉J by

(5.15).
Remark 5.5. For the case of the spectral element, the dimension of the spaces

W (Γij) and V 0
i (Γij) are n0(i, j) = (ni − 1)2. It is easy to see that the computation

of the matrix N0 needs O(n4
i ) = O(n2

0(i, j)) arithmetic operations. This calculation
is needed only once in the preprocessing step and thus is minor to global iterations.
From the above discussion, we know that solving χ by (5.8) needs only O(n3

i ) =

O(n
3
2
0 (i, j)) arithmetic operations. Note that the number of unknowns corresponding

to the subdomain Ωi is (ni + 1)3. To our knowledge, there is no literature to discuss
the FETI method for spectral element discretization.
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6. Numerical experiments. In this section, we apply our newly proposed
DDM to solve two elliptic problems: the first one with large jumps in the coefficient
across interfaces and the second one with a singular solution.

Consider the elliptic equation of the second order{−div(a∇u) = f in Ω,
u = g on ∂Ω,

(6.1)

where Ω is the unit cube: Ω = [0, 1]3.
Let Ω be decomposed intoN equal cubes of size d, with the cubes numbered as Ω1,

Ω2, . . . ,ΩN in the usual way. The coefficient a is defined by a(x, y, z) = ak(1 + xyz)
for (x, y, z) ∈ Ωk, where ak is a constant and will be given below. The functions f and
g will be determined by the exact solution of (6.1) with continuous a (i.e., ak = 1).
Note that the exact solution with jump a is difficult to construct.

The finite element or the spectral element discretization will be used on each
subdomain Ωk. As demonstrated in section 2, the DDM with Lagrange multipliers
results in the augmented saddle-point problem (2.9). The corresponding algebraic
system will be solved by the Uzawa-type method described by Algorithm 3.1 in [21].
This method needs to compute an approximation Ψ(·) in its inner iteration. For our
current examples, the approximation Ψ(·) is generated by a one-step multiplicative
Schwarz iteration with solvers Âk and a coarse solver A0, where the optimal relaxation
factor is added in the standard way. In the case of finite element discretization, Âk is
chosen to be the multigrid preconditioner corresponding to Āk; in the case of spectral
element discretization, Âk is chosen to be Āk itself (since the stiffness matrix of Āk has
a particular structure). For the outer iteration, we use the preconditioner introduced
in subsection 5.3.

To investigate the convergence for jump a, we have to choose a termination cri-
terion carefully, which would not be influenced by possible large jumps. Let |‖ · |‖
denote the weighted Euclidean norm with the weights 1 (for the primal vector) and
{α2

ij} (for the multiplier vectors; refer to section 2).
The initial guess is chosen as the zero vector, and the termination criterion ε is

defined to be the (relative) residual norm

ε = |‖F −MUn|‖/|‖F|‖.
Here M, F , and U denote the algebraic form of M , F , and U , respectively. The
iteration terminates when ε ≤ 10−5.

Example 6.1. In (6.1), the constant ak is defined by

ak =

{
1 if k is odd,

10−5 if k is even.

We take the analytic solution to be u = exyz.
Case (i). Each subdomain Ωk is divided into small cubes of size h, and the

standard Q1 element is used on Ωk. The multiplier space on a local interface is
spanned by the (two-dimensional) mortar multiplier basis, which is the tensor product
of two one-dimensional mortar multiplier bases given in [6].

The numerical results are summarized in Table 1.
This table indicates that the iteration counts depend slightly on the ratio d/h

and are almost independent of N or h itself.
Case (ii). We use the same discretization on the subdomains near the boundary

∂Ω as the one used in Case (i), but with the spectral element discretization on the
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Table 1

Iteration counts for the case with matching grids.

d/h d = 1/4 (N = 64) d = 1/5 (N = 125) d = 1/6 (N = 216)
8 40 42 43
16 45 46 47

Table 2

Iteration counts for the coupling discretization.

d/h n d = 1/4 (N = 64) d = 1/5 (N = 125)
8 3 40 41
8 5 45 46
16 3 44 45
16 5 45 46

inner subdomains. The basis in the spectral space is defined as the tensor product
of three one-dimensional Legendre polynomial bases with degree n. The multiplier
space is defined as in subsection 5.1.

The iteration counts are given in Table 2.
This table indicates that the iteration counts are indeed determined by max{d/h, n2}

for the coupling discretization.
Example 6.2. In (6.1), we take the analytic solution to be the singular solution

u(x, y, z) = (x+ y + z)0.2.
Since u is singular at the original point, we use the finite element discretization

with nonmatching grids. Set d = 1/4 (N = 64) or d = 1/5 (N = 125), and divide
each cube into small cubes with the size h1, h2, or h3 (h1 < h2 < h3). Here the
size h1 is used in the subdomains Ωk ⊂ [0, d]3, the size h2 in the subdomains Ωk ⊂
[0, 2d]3\[0, d]3, and the size h3 in the subdomains Ωk ⊂ Ω\[0, 2d]3. Again the standard
Q1 element is used on each cube. The multiplier is chosen as the tensor product of
two one-dimensional dual basis multiplier associated with the coarse triangulation on
the interface.

We shall compare the performances for the cases with same ak and different ak:
Case 1. The constant ak ≡ 1 for all subdomains Ωk.
Case 2. The constant ak is defined by

ak =

⎧⎨⎩
106 if Ωk ⊂ [0, d]3,
103 if Ωk ⊂ [0, 2d]3\[0, d]3,
1 if Ωk ⊂ Ω\[0, 2d]3.

The iteration counts are reported in Tables 3 and 4, respectively.
All the numerical results reported in this section clearly demonstrate the efficiency

of our method, and this confirms the theoretical results presented in this paper. In
particular, we have seen that the iteration counts are not affected by nonmatching
grids or jump coefficients.

7. Conclusions. In this paper we have proposed a new DDM with Lagrange
multipliers for solving three-dimensional elliptic problems with variable coefficients.
For this method, the singularity on floating domains is handled by combining the
augmented method and the preconditioning technique. To construct a preconditioner
for the Schur complement, we have developed a class of inexact local solver for three
important multiplier spaces, which are less expensive than the existing local solvers.
Both the theoretical results and the numerical experiments show that our method is
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Table 3

Iteration counts for nonmatching grids (Case 1).

d/h1 d/h2 d/h3 d = 1/4 (N = 64) d = 1/5 (N = 125)
16 8 4 39 40
32 16 8 44 45

Table 4

Iteration counts for nonmatching grids (Case 2).

d/h1 d/h2 d/h3 d = 1/4 (N = 64) d = 1/5 (N = 125)
16 8 4 41 42
32 16 8 45 46

efficient, even if the grids are nonmatching and the coefficient has large variations
across local interfaces.

Acknowledgment. The authors wish to thank two anonymous referees for many
constructive comments which led to a great improvement of the results and the pre-
sentation of the paper.
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Abstract. In this paper, we present a new numerical scheme for the nonlinear Schrödinger
equation. This is a relaxation-type scheme that avoids solving for nonlinear systems and preserves
density and energy. We give convergence results for the semidiscretized version of the scheme and
perform several numerical experiments.
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1. Introduction and statement of the results. We present in this article a
semidiscretized numerical scheme for the nonlinear Schrödinger equation defined for
x ∈ R

d by {
iut + ∆u = λ|u|2σu, t > 0,
u(x, 0) = u0(x),

(1.1)

where we set λ ∈ R
∗, σ ∈ N

∗, and ∆ the classical Laplacian operator.
Both density N and energy E are conserved quantities:

N(t) =

∫
R

d

|u|2(t, x)dx,

E(t) =

∫
R

d

1

2
|∇u|2 +

λ

2σ + 2
|u|2σ+2dx.

Using these conserved quantities, it is well known that the system (1.1) is globally
well posed in H1(Rd) if λ < 0, and blow-up may occur if λ > 0 (see, for example,
[11], [7], [12]).

A large number of articles are devoted to the numerical study of this equation
using many different time discretizations. The standard cases use schemes of Crank–
Nicolson type [9], Runge–Kutta type [3], [1], [2], symplectic type (see, for example,
[13], [14]), or splitting type [15], [6]. Recently, Zouraris [16] proved the convergence
of scheme developed by [10]. In [4], Bao, Jin, and Markowich use a time-splitting
spectral scheme for the more general nonlinear Schrödinger equation (1.2):

iεut +
ε2

2
∆u− V(x)u− f(|u|2)u = 0, t > 0, x ∈ R

d,(1.2)

where V is a given real-valued electrostatic potential and f is a real-valued smooth
function. Typically, for f(ρ) = δρ and V(x) = |x|2, this equation is called the Gross–
Pitaevskii equation. In [4], the authors study the behavior of the scheme with respect
to the oscillations due to ε. They show that the splitting scheme gives better results
than the classical Crank–Nicolson one with respect to ε.
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However, only Crank–Nicolson-type schemes succeed in preserving both density
and energy. The aim of the present paper is to derive a convergent explicit numerical
approximation of (1.1) preserving both conserved quantities.

The scheme is constructed as follows. We rewrite (1.1) as the system of two
equations: {

φ = |u|2σ, t > 0, (a)
iut + ∆u = λφu, t > 0, (b)

(1.3)

with u(x, 0) = u0(x).
Let T ∗ be the existence time of the solution and Tδt < T ∗ the computation time.

We use N points for the time discretization, thus defining a time step δt = Tδt/N .
Equations (1.3a) and (1.3b) are discretized at times tn = nδt and tn+ 1

2
= (n+ 1

2 )δt,

n = 1, . . . , N , respectively. We define the variables φn+ 1
2 and un+1, which represent

the approximations of |u|2σ at time tn+ 1
2

and u at time tn+1, respectively. So, we get
the semidiscrete-in-time relaxation scheme which reads⎧⎪⎪⎨⎪⎪⎩

φn+ 1
2 + φn−

1
2

2
= |un|2σ, (a)

i
un+1 − un

δt
+ ∆

(
un+1 + un

2

)
= λ

(
un+1 + un

2

)
φn+ 1

2 , (b)

(1.4)

with the initial data u0(x) = u0(x) and φ−
1
2 (x) = |u0(x)|2σ. Since only time dis-

cretization is involved, the space discretization may be of either finite difference type
or finite element type.

Compared to the Crank–Nicolson scheme, which is also based in a time-centering
method, this scheme allows us to avoid a costly numerical treatment of the nonlinearity
and to preserve the flexibility of spatial discretization choice. On the other hand, we
show its capability of conserving the density and energy. There are indications that
the order of convergence may be equal to two. We compute in the last section the
numerical order pnum for different meshes.

The main results of this article are the proof of local existence and uniqueness of
a solution in Hs(Rd), s > d/2 + 2, for the scheme (1.4) and its convergence to the
solution of (1.1). Moreover, we prove for the case σ = 1 that density and energy are
conserved quantities.

Let us define uδt(t, x)=
∑N−1
n=0 u

n(x)I[tn,tn+1[ and φδt(t, x)=
∑N−1
n=0 φ

n+ 1
2 (x)I[tn,tn+1[

for t ∈ [0, Tδt] and x ∈ R
d. Then, the results are as follows in Theorem 1.1.

Theorem 1.1. Let u0 belong to Hs(Rd), s > d/2 + 2, and let u be the maximal
solution to (1.1) defined in C2([0, T ∗[;Hs(Rd)). Then, there exists a unique maximal
solution (uδt, φδt) of (1.4) in L∞([0, Tδt]; (H

s(Rd))2) which verifies

sup
t∈[0,Tδt]

(‖uδt‖Hs + ‖φδt‖Hs) ≤ C(T ∗, ‖u0‖Hs).

If s > d/2+4, then lim infδt→0 Tδt ≥ T ∗ and ∀T < T ∗, the solution (uδt, φδt) to (1.4)
converges to (u, |u|2σ) in L∞([0, T ]; (Hs(Rd))2) as δt→ 0.

Remark 1. In the previous theorem, the solution u is maximal in the sense that
if T ∗ <∞, then ‖u‖Hs → ∞ as t→ T ∗.

In sections 2 and 3, we prove the local existence of a solution and the convergence
of the scheme. We emphasize the main difficulties in proving the theorem and the
way to solve them. The scheme is proved to be conservative in section 4. In the last
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section, we compute solutions of (1.1) with the relaxation scheme and compare to
other schemes and give an estimate of the order of convergence.

An abridged version of this paper as well as the application of this scheme to the
Davey–Stewartson system can be found in [5].

2. Local existence and uniqueness of strong solutions. We prove in this
section the following proposition.

Proposition 2.1. Let u0 belong to Hs(Rd), s > d/2+2, and let u be the maximal
solution to (1.1) defined in C2([0, T ∗[;Hs(Rd)). Then, there exists a unique maximal
solution (uδt, φδt) of (1.4) in L∞([0, Tδt]; (H

s(Rd))2) which verifies

sup
t∈[0,Tδt]

(‖uδt‖Hs + ‖φδt‖Hs) ≤ C(T ∗, ‖u0‖Hs).

2.1. Main problems and ideas of the proof. As we stated in the introduc-
tion, the relaxation scheme first consists of changing system (1.1) into the system
(1.3). Then, both equations in (1.3) are discretized on two staggered time grids.

There are many ways in which we might prove local existence of solutions. Here
we detail some solutions.

1. The first idea for proving existence of solutions is to express φn+ 1
2 as a

function of |un|2 and to plug it into iu
n+1−un

δt + ∆(u
n+1+un

2 ) = λ(u
n+1+un

2 )φn+ 1
2 .

Unfortunately, the computation of the quantity φ2p+ 1
2 for n = 2p gives φ2p+ 1

2 =

|u0|2σ +
∑p
k=1 2δt |u

2k|2σ−|u2k−1|2σ
δt (a similar form is obtained for n = 2p+ 1). Hence,

the term φ•+
1
2 is nothing but the discretization of

φ(t) = |u|2σ(0) +

∫ t

0

∂ζ |u|2σ(ζ)dζ.(2.1)

Contrary to the continuous evolution equation, where φ = |u|2, we have a loss of
uniformity with respect to time. Hence, we cannot preserve this idea.

2. Another possibility is to consider these equations as a system in which one
simultaneously studies the evolution of the two variables φ and u. From this, it
is possible to use usual fixed point techniques in order to prove the existence and
uniqueness of solutions. Thanks to (1.4.a), the discrete derivative of φn+1/2 is given

by φn+ 1
2 −φn−3/2

2δt = |un|2σ−|un−1|2σ
δt . In a sense, the control of the discrete derivative of

φ depends on the control of the term |un|2σ−|un−1|2σ
δt . As σ ∈ N

∗ and with the help of

(1.4b), we have |un|2σ−|un−1|2σ
δt = Im(∆(u

n+1+un

2 )f(un+1, un)), where f is a function
with parameter σ. Therefore, the operator ∆ causes a loss of regularity for the time
derivative of u, and we have to give up this solution.

3. The two previous demonstrations lead us to control the discrete derivative

of un. Then, the new idea is to take vn+ 1
2 = un+1−un

δt as a new independent variable.
In the continuous framework, this last manipulation amounts to writing{

φt = |u|2σt ,
iut + ∆u = λφu,

(2.2)

and setting v = ut, which is the solution to ivt+∆v = λ(φtu+φv). Hence, the system



A RELAXATION SCHEME FOR NLS 937

(2.2) reads ⎧⎪⎨⎪⎩
φt = 2Re(uv)(σ(|u|2)σ−1) ≡ Φσ,

iut + ∆u = λφu ≡ λU,

ivt + ∆v = λ(2Re(uv)(σ(|u|2)σ−1)u+ φv) ≡ λVσ.

(2.3)

This system is semilinear and now can be treated easily by a classical fixed point
procedure in usual Sobolev spaces. Nevertheless, the discrete case again is slightly
more difficult. Indeed, the term vn+ 1

2 , which is the discrete equivalent of v, does

not propagate through the linear part of the Crank–Nicolson scheme iu
n+1−un

δt +

∆(u
n+1+un

2 ) but through iv
n+ 3

2 −vn− 1
2

2δt + ∆( v
n+ 3

2 +2vn+ 1
2 +vn− 1

2

4 ), which generates two
unitary groups and makes the proof more difficult to handle than in the continuous
case.

2.2. Notation. We first denote by S(t) the group associated to the linear
Schrödinger equation iut + ∆u = 0, u(0, x) = u0(x). Therefore, we can represent

the solution of (1.1) by u(t, x) = S(t)u0 − i
∫ t

0
S(t− ζ)λ|u|2σu(ζ)dζ.

We introduce also the various operators A = (1 − iδt∆2 )−1(1 + iδt∆2 ), B = (1 −
iδt∆2 )−1, Ξk = (1 +A)−1(Ak − (−1)k), and Sδt(t) =

∑N−1
n=0 A

n(x)I[tn,tn+1[. Then, we
have the following lemma.

Lemma 2.2.

1. A is a unitary operator on Hs ∀s.
2. B is a bounded operator on Hs and ‖B‖s ≤ 1.
3. BΞk is a bounded operator on Hs and ‖BΞk‖s ≤ 1.
4. limδt→0 Sδt(t) = S(t) for the strong topology of operators.
5. limδt→0B = 1.

Since σ ∈ N
∗, |un+1|2σ − |un|2σ = (|un+1|2 − |un|2)fσ(|un+1|2, |un|2), where fσ is

a C1 function. For example, we have f1(a, b) ≡ 1 and f2(a, b) ≡ a+ b.

We also set vn+ 1
2 = un+1−un

δt . Then, we derive from the scheme (1.4) the discrete

equivalents of the nonlinearities U , Φσ, and Vσ, namely, Un+ 1
2 , Φ

n+ 1
2

σ , and V
n+ 1

2
σ :

Un+ 1
2 = φn+ 1

2

(
un+1 + un

2

)
,

Φ
n+ 1

2
σ = 2Re

(
vn+ 1

2

(
un+1 + un

2

))
fσ(|un+1|2, |un|2),

V
n+ 1

2
σ =

(
φn+ 3

2 + φn−
1
2

2

)(
vn+ 3

2 + 2vn+ 1
2 + vn−

1
2

4

)

+ 2Re

(
vn+ 1

2

(
un+1 + un

2

))
fσ(|un+1|2, |un|2)

(
un+2 + un+1 + un + un−1

4

)
.

2.3. Proof of Proposition 2.1. The proof is made up of three steps. As
stressed above, we need to modify system (1.4) in order to exhibit the equation for

vn+ 1
2 . The second step consists of solving this new system by a standard fixed point

procedure. And, in the last step, we prove that the solution thus obtained is indeed
the solution to (1.4).

Step 1: transformation of system (1.4). To begin, let us write (1.4b) at time tn−
3
2 ,

n ≥ 2.
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We have iu
n−1−un−2

δt + ∆(u
n−1+un−2

2 ) = λ(u
n−1+un−2

2 )φn−
3
2 . After subtraction

from (1.4b) and division by 2δt, we get

i
vn+ 1

2 − vn−
3
2

2δt
+ ∆

(
vn+ 1

2 + 2vn−
1
2 + vn−

3
2

4

)

= λ

(
φn+ 1

2 + φn−
3
2

2

)(
vn+ 1

2 + 2vn−
1
2 + vn−

3
2

4

)

+λ

(
φn+ 1

2 − φn−
3
2

2δt

)(
un+1 + un + un−1 + un−2

4

)
.

Moreover, from (1.4a), the term φn+ 1
2 −φn− 3

2

2δt equals |un|2σ−|un−1|2σ
δt . This equality

together with the definition of fσ yields

φn+ 1
2 − φn−

3
2

2δt
=

( |un|2 − |un−1|2
δt

)
fσ(|un|2, |un−1|2).

On the other hand, a simple computation gives 2Re(vn−
1
2 (u

n+un−1

2 )) = |un|2−|un−1|2
δt .

Collecting all the previous information, we get the system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn+ 3
2 − φn−

1
2

2δt
= Φ

n+ 1
2

σ , (a)

i
un+2 − un+1

δt
+ ∆

(
un+2 + un+1

2

)
= λUn+ 3

2 , (b)

i
vn+ 3

2 − vn−
1
2

2δt
+ ∆

(
vn+ 3

2 + 2vn+ 1
2 + vn−

1
2

4

)
= λV

n+ 1
2

σ . (c)

(2.4)

Step 2: existence and uniqueness of scheme (2.4). This system (2.4) is clearly
the discrete equivalent of (2.3). Expressed in this way, the system is semilinear and
can be solved by a fixed point procedure in the integral formulation for the vector
(φ, u, v)t.

Before going any further, we have to define the initial data. We set u0(x) = u0(x),

φ−
1
2 = φ+ 1

2 = |u0|2σ, v− 1
2 = u0−u−1

δt , and v
1
2 = u1−u0

δt . Also, we define the quantity
u−1 by

Au−1 = (A+ 1)u0 − u1.

The choice of u−1 is not arbitrary; indeed, it is the only choice that ensures that,

for the initial data v
1
2 and v−

1
2 defined as above, the solution to iv

n+ 3
2 −vn− 1

2

2δt +

∆ vn+ 3
2 +2vn+ 1

2 +vn− 1
2

4 = fn+ 1
2 is bounded in l∞(0, N ;Hs) as soon as (fn+ 1

2 )n is bound-

ed in l1(0, N ;Hs). Obviously, the definitions of v
1
2 and v−

1
2 involve the term u1.

However, since u1 = Au0 − iδtλB(u
1+u0

2 )φ
1
2 , u1 exists in Hs(Rd) (at least for small

δt) and is unique.
Now, we transform system (2.4) in order to obtain Duhamel’s formula. First,

(2.4b) becomes un+2 = Aun+1 − iλδtBUn+ 3
2 , which leads immediately to un+2 =

An+2u0 − iλ
∑n+1
k=0 δtBA

n+1−kUk+
1
2 . We apply the same transformation to (2.4a).

However, for n = 0, it leads to φ
3
2 = |u0|2σ + 2δtΦ

1
2 , and for n = 1, we have
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φ
5
2 = |u0|2σ + 2δtΦ

3
2 . Therefore, the equation for φ will be different according to the

evenness of n. Indeed, for n ≥ 0, we find

φn+ 3
2 = |u0|2σ +

[n/2]∑
k=1

2δtΦ
2k− 1

2
σ if n is odd,

φn+ 3
2 = |u0|2σ +

n/2∑
k=0

2δtΦ
2k+ 1

2
σ if n is even.

Then, the last component, vn+ 3
2 , is governed by

vn+ 3
2 − (A− 1)vn+ 1

2 −Avn−
1
2 = −2iλδtBV n+ 1

2 .

Using the roots of the characteristic equation r2 − (A− 1)r − A = 0, the component

vn+ 3
2 is

vn+ 3
2 = (A+ 1)−1

{
(An+2 − (−1)n+2)v

1
2 +A(An+1 − (−1)n+1)v−

1
2

− iλ

n+1∑
k=1

2δtB(An+2−k − (−1)n+2−k)V k−
1
2

σ

}

= Ξn+1(Ξv
1
2 +Av−

1
2 ) − iλ

n∑
k=0

2δtB Ξn+1−k V k+
1
2

σ .

Collecting all of the above calculations, the system (2.4) reads for n ≥ 0 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn+ 3
2 =

∣∣∣∣∣∣∣∣∣∣∣
|u0|2σ +

[n/2]∑
k=1

2δtΦ
2k− 1

2
σ if n is odd,

|u0|2σ +

n/2∑
k=0

2δtΦ
2k+ 1

2
σ if n is even,

un+2 = An+2u0 − iλ

n+1∑
k=0

δtB An+1−k Uk+
1
2 ,

vn+ 3
2 = Ξn+1(Ξv

1
2 +Av−

1
2 ) − iλ

n∑
k=0

2δtB Ξn+1−k V k+
1
2

σ .

(2.5)

Let us define the sequences

UN = (u2, . . . , uN+1),

ΦN = (φ
3
2 , . . . , φN+ 1

2 ),

VN = (v
3
2 , . . . , vN+ 1

2 ),

ŨN = (ũ2, . . . , ũN+1),

Φ̃N = (φ̃
3
2 , . . . , φ̃N+ 1

2 ),

ṼN = (ṽ
3
2 , . . . , ṽN+ 1

2 ),

and the space XN = l∞(0, N ;Hs(Rd)) endowed with the usual norm ‖.‖XN
=

supn∈[0,N ] ‖(.)n‖s, where ‖·‖s indicates the norm of Hs(Rd).
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The proof of existence and uniqueness for the previous system consists of showing
the existence of a unique fixed point for the map T defined by

X3
N

T−→ X3
N ,

(ŨN , Φ̃N , ṼN ) 
−→ (UN ,ΦN ,VN ),

where, for n ∈ [0, N − 1],

φn+ 3
2 =

∣∣∣∣∣∣∣∣∣∣∣
|u0|2σ+

[n/2]∑
k=1

2δt2Re

(
ṽ2k− 1

2

(
ũ2k + ũ2k−1

2

))
fσ(|ũ2k|2, |ũ2k−1|2) if n is odd,

|u0|σ2+

n/2∑
k=0

2δt2Re

(
ṽ2k+ 1

2

(
ũ2k+1 + ũ2k

2

))
fσ(|ũ2k+1|2, |ũ2k|2) if n is even,

un+2 = An+2u0 − iλ

n+1∑
k=0

δtB An+1−k
(
φ̃k+

1
2

(
ũk+1 + ũk

2

))
,

vn+ 3
2 = Ξn+1

(
Ξv

1
2 +Av−

1
2

)

−iλ
n∑
k=0

2δtB Ξn+1−k

⎛⎜⎜⎝
(
φ̃k+ 3

2 +φ̃k− 1
2

2

)(
ṽk+ 3

2 +2ṽk+ 1
2 +ṽk− 1

2

4

)
+2Re

[
ṽk+

1
2

(
ũk+1+ũk

2

)]
fσ(|ũ2k+1|2, |ũ2k|2)

(
ũk+2+ũk+1+ũk+ũk−1

4

)
⎞⎟⎟⎠.

So that all terms are well defined, we set ũ−1 = u−1, ũ0 = u0, ũ1 = u1, φ̃−
1
2 =

φ̃
1
2 = |u0|2σ, ṽ− 1

2 = v−
1
2 , and ṽ

1
2 = v

1
2 .

Let us define BR, the ball of X3
N centered on 0 with radius R endowed with the

usual norm on X3
N , by

BR = {(UN ,ΦN ,VN ) ∈ X3
N/‖UN‖XN

+ ‖ΦN‖XN
+ ‖VN‖XN

≤ R}.

Then, we show that the application T sends BR into BR with some a priori estimates.
Let us make the assumption that Φ̃N , ŨN , and ṼN belong to XN .

In the continuous case of nonlinear Schrödinger equation (1.1), fσ = σ(|u|2)σ−1.
In our discrete case, fσ does not involve the more powerful power of |u|2. As we
choose the Sobolev space Hs(Rd) for s > d/2 + 2 and σ ∈ N

∗, fσ belongs to Hs if
u ∈ Hs.

Estimate on ΦN : ∀n, ‖φn+3/2‖s ≤ ‖u0‖2σ
s + c1Tδt‖ŨN‖2σ−1

XN
‖ṼN‖XN

, with c1
independent of n and δt.

Estimate on UN : Lemma 2.2 leads to ‖un‖s ≤ ‖u0‖s + c2Tδt‖Φ̃N‖XN
‖ŨN‖XN

,
with c2 independent of n and δt.

Estimate on VN : the term Ξn+1(Ξv
1
2 +Av−

1
2 ) is not a priori bounded. However,

thanks to the definition of u−1, Ξn+1(Ξv
1
2 +Av−

1
2 ) = An+2v−

1
2 . This term is therefore

bounded. Lemma 2.2 yields

‖vn+ 1
2 ‖s ≤ ‖v− 1

2 ‖s + c3Tδt

(
‖Φ̃N‖XN

‖Φ̃N‖XN
+ ‖ṼN‖XN

‖ŨN‖2σ−1
XN

)
,

with c3 independent of n and δt.
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Collecting these three estimates, we finally have

‖UN‖XN
+ ‖ΦN‖XN

+ ‖VN‖XN
≤ (‖u0‖s + ‖u0‖2σ

s + ‖v− 1
2 ‖s) + c4(R)Tδt.

Now, we define R by ‖u0‖s + ‖u0‖2σ
s + ‖v− 1

2 ‖s = R
2 and define Tδt such that

c6(R)Tδt ≤ R
2 to ensure that T maps BR into itself.

By similar arguments, it is easy to show that T is a contraction in BR if Tδt is
small enough. Therefore, T has a unique fixed point. This last argument shows the
existence and uniqueness of the solution to (2.4).

Step 3: equivalence between systems (2.4) and (1.4). Let (un+1, vn+ 1
2 , φn+ 1

2 ) be

the solution of system (2.4). We already know that the couple (un+1, φn+ 1
2 ) solves

(2.4b) at time tn+ 1
2 . We have to show that vn+ 1

2 = un+1−un

δt and φn+ 1
2 +φn− 1

2

2 =

|un|2σ. If we rewrite (2.4b) at time tn−
3
2 , we have iu

n−1−un−2

δt + ∆(u
n−1+un−2

2 ) =

λ(u
n−1+un−2

2 )φn−
3
2 . We subtract this last equality from (2.4b) at time tn+ 1

2 and
divide the result by 2δt. Then, we have

i
un+1−un

δt − un−1−un−2

δt

2δt
+ ∆

(
un+1−un

δt + 2u
n−un−1

δt + un−1−un−2

δt

4

)

= λ

(
φn+ 1

2 − φn−
3
2

2δt

)(
un+1 + un + un−1 + un−2

4

)

+ λ

(
φn+ 1

2 + φn−
3
2

2

)(
un+1−un

δt + 2u
n−un−1

δt + un−1−un−2

δt

4

)
.

This identity is a discrete equivalent of the continuous equation iutt + ∆ut =

λφtu + λφut. We know that φn+ 1
2 −φn− 3

2

2δt = 2Re(vn−
1
2 (u

n+un−1

2 ))fσ(|un|2, |un−1|2).
Finally, we get

i
un+1−un

δt − un−1−un−2

δt

2δt
+ ∆

(
un+1−un

δt + 2u
n−un−1

δt + un−1−un−2

δt

4

)

= λ2Re

(
vn−

1
2

(
un + un−1

2

))
fσ(|un|2, |un−1|2)

(
un+1 + un + un−1 + un−2

4

)

+ λ

(
φn+ 1

2 + φn−
3
2

2

)(
un+1−un

δt + 2u
n−un−1

δt + un−1−un−2

δt

4

)
.

As before, the continuous case reads iutt + ∆ut = λ2Re(vu)u + λφut. We set

wn+ 1
2 = vn+ 1

2 − (u
n+1−un

δt ). Then, the subtraction of this last equation from (2.4c)

taken at time tn−
1
2 leads to

i
wn+ 1

2 − wn−
3
2

2δt
+ ∆

(
wn+ 1

2 + 2wn−
1
2 + wn−

3
2

4

)

= λ

(
φn+ 1

2 + φn−
1
2

2

)(
wn+ 1

2 + 2wn−
1
2 + wn−

3
2

4

)
,
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with initial data w
1
2 = w− 1

2 = 0. This is a linear Schrödinger equation with regular

potential. So, the only solution is zero. Thus, we have vn+ 1
2 = un+1−un

δt . Thanks

to this equality, we get φk+ 1
2 −φk− 3

2

2δt = |un|2−|un−1|2
δt . Summing this last relation for

k ∈ [0, n] yields φn+ 1
2 +φn− 1

2

2 = |un|2.
The systems (1.4) and (2.4) are equivalent, thus proving Proposition 2.1.

3. Convergence of the relaxation scheme for strong solutions. The result
of this section reads as follows.

Proposition 3.1. Let u be the maximal solution to equation (1.1) defined in
C2([0, T ∗[;Hs(Rd)), s > d/2+4. Then, if Tδt = Nδt, lim infδt→0 Tδt ≥ T ∗ and ∀T <
T ∗ the solution (uδt, φδt) to (1.4) given by Proposition (2.1) converges to (u, |u|2σ) in
L∞([0, T ]; (Hs(Rd))2) as δt→ 0.

3.1. Ideas and difficulties of the proof. The proof of convergence is done
comparing the integral formulation of solutions (uδt, φδt) and (u, |u|2σ). However, for
the same reasons as those developed for the proof of Proposition (2.1), we cannot
directly show the result of convergence on system (1.4). A priori, we have to work
on system (2.4). Since we wish to compare integral formulations of the solutions, we
particularly focus on system (2.5).

Duhamel’s formula of system (2.3) is given for x ∈ R
d and t > 0 by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ(x, t) = |u0(x)|2σ +

∫ t

0

Φσ(x, ζ)dζ, (a)

u(x, t) = S(t)u0(x) − iλ

∫ t

0

S(t− ζ)U(x, ζ)dζ, (b)

v(x, t) = S(t)v(x, t = 0) − iλ

∫ t

0

S(t− ζ)Vσ(x, ζ)dζ. (c)

(3.1)

Thanks to the consistency of BAn+1−kUk+
1
2 and S(t − ζ)U(x, ζ) (respectively,

Φ
2k+ 1

2
σ and Φσ), it is quite easy to show convergence of un+2 to u(x, t) (respectively,

φn+ 3
2 and φ(x, t)).

Therefore, the only difficulty arises from the comparison between vn+ 3
2 and v(x, t).

Thanks to the definition of u−1, we have already seen that Ξn+1(Ξv
1
2 + Av−

1
2 ) =

An+2v−
1
2 . Thus, the contribution of the initial datum is easily handled. However,

the second part of Duhamel’s formula involves the bounded operator BΞn+1−k which
generates two semigroups according to the evenness of n+ 1 − k. Actually,

limδt→0 (BΞn+1−k)n+1−k=2p =
exp (i∆tn+1−k/2) − 1

2
,

limδt→0 (BΞn+1−k)n+1−k=2p+1 =
exp (i∆tn+1−k/2) + 1

2
.

Separately, these two semigroups are different from S. As a consequence, with
the current forms of vn+ 3

2 and v(x, t), we cannot prove the convergence.

3.2. Proof of Proposition 3.1. Actually, we have to find another form for the
term

∑n
k=0BΞn+1−kV k+

1
2 . First, we remark that Ξk =

∑k
l=1(−1)l−1Ak−l. This

leads us to write
n∑
k=0

2δtBΞn+1−kV k+
1
2 =

n∑
k=0

2δtB

n+1−k∑
l=1

(−1)l−1An+1−k−lV k+
1
2 .
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Finally, by rearranging the previous sums, we get

n∑
k=0

BΞn+1−kV k+
1
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p−1∑
l=0

2δtBA2l+1

⎛⎝p−l−1∑
j=0

δt
V 2j+ 3

2 − V 2j+ 1
2

δt

⎞⎠
+

p∑
l=0

2δtBA2l

⎛⎝V 1
2 +

p−l−1∑
j=0

δt
V 2j+ 5

2 − V 2j+ 3
2

δt

⎞⎠ if n= 2p,

p∑
l=0

2δtBA2l+1

⎛⎝V 1
2 +

p−l−1∑
j=0

δt
V 2j+ 5

2 − V 2l+ 3
2

δt

⎞⎠
+

p∑
l=0

2δtBA2l

⎛⎝p−l∑
j=0

δt
V 2j+ 3

2 − V 2j+ 1
2

δt

⎞⎠ if n = 2p+ 1.

Once more, we observe discrete forms of the time derivative. The continuous
equation for v(x, t) may therefore be interpreted as

v(x, t) = S(t)v(x, t = 0) − iλ

∫ t

0

S(t− s)

∫ s

0

∂τV (x, τ)dτds.(3.2)

Unfortunately, ∂τV involves a time derivative of v (denoted by w) and φ (denoted by
ψ) simultaneously. Therefore, we have to find a discrete system which is equivalent

to (1.4) and allows us to control the time derivatives of vn+ 3
2 (defined by wn+1 =

vn+ 3
2 −vn+ 1

2

δt ) and φn+ 3
2 (defined by ψn+1 = φn+ 3

2 −φn+ 1
2

δt ) in order to compare the new

formulations of vn+ 3
2 and v(x, t). This new system is proved to be well posed, and

Duhamel’s formulations for ψn+1 and wn+1 read, respectively,

ψn = ψ−1 +

p∑
k=0

2δtΨ2k, n = 2p+ 1,

ψn = ψ0 +

p∑
k=1

2δtΨ2k−1, n = 2p,

and with the convention D = (1 − iδt∆)−1(1 + iδt∆) and E = (1 − iδt∆)−1,

wn = Dpw1 − iλ

p−1∑
k=0

2δtEDp−k−1W 2(k+1), n = 2p+ 1,

wn = Dpw0 − iλ

p−1∑
k=0

2δtEDp−k−1W 2k+1, n = 2p.

The terms Ψ and W denote the nonlinearities involved in Duhamel’s formula (see the
appendix for the proof and a complete set of notation).

As before, the formulations are different according to the parity of n. However,
the proof of convergence is not really influenced by the choice of n. So from now on,
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we choose n to be odd. We define for t ∈ [tn, tn+1[ and x ∈ R
d

uδt(x, t) = un(x), Uδt(x, t) = Un+ 1
2 (x),

φδt(x, t) = φn+ 1
2 (x), Φδt(x, t) = Φn+ 1

2 (x),

vδt(x, t) = vn+ 1
2 (x), Vδt(x, t) = V n+ 1

2 (x),
ψδt(x, t) = ψn(x), Ψδt(x, t) = Ψn(x),
wδt(x, t) = wn(x), Wδt(x, t) = Wn(x).

Taking u ∈ C2(0, T ;Hs(Rd)) with s > d/2 + 4, φ, v = ut, ψ = φt, and w = utt
always belong to Hs(Rd), and we define the applications Uδt and U as follows:

(Hs(Rd))5
Uδt−→ (L∞(0, T ;Hs(Rd))5,

(uδt, φδt, vδt, ψδt, wδt)(0) 
−→ (uδt, φδt, vδt, ψδt, wδt)(t),

(Hs(Rd))5
U−→ (L∞(0, T ;Hs(Rd))5,

(u, φ, ut, φt, utt)(0) 
−→ (u, φ, ut, φt, utt)(t).

In the same way, let us define Fδt and F as the two applications

(L∞(0, T ;Hs(Rd))5
Fδt−→ (L∞(0, T ;Hs(Rd))5,

(uδt, φδt, vδt, ψδt, wδt) 
−→ (Uδt,−iΦδt, Vδt,−iΨδt,Wδt),

and

(L∞(0, T ;Hs(Rd))5,
F−→ (L∞(0, T ;Hs(Rd))5,

(u, φ, v, ψ, w) 
−→ (U,−iΦ, V,−iΨ,W ).

Finally, we set the operators B = (B, I,B, I, E), S(t) = (S(t), 1, S(t), 1, S(t)), and for
t ∈ [tn, tn+1[, Sδt(t) = (An, 1, An, 1, D�n/2�).

We proceed as in [8] for the proof of convergence. We have to evaluate ‖U(t) −
Uδt(t)‖(Hs)5 for t = tn+1 (we do not replace t by tn+1, in order to simplify the
notation). This leads to

∥∥∥∥S(t)U(0)−Sδt(t)Uδt(0)−i
∫ t

0

(S(t− τ)F(U)(τ)−BSδt(t− τ)Fδt(Uδt)(τ))dτ
∥∥∥∥

(Hs)5

≤ ‖(S(t) − Sδt(t))U(0)‖(Hs)5 + ‖Sδt(t)(U(0) − Uδt(0))‖(Hs)5

+
∑n
k=0

∥∥∥∥∫ tk+1

tk

BSδt(t− tk)Fδt(Uδt)(κδt)−S(t− τ)F(U)(τ)dτ

∥∥∥∥
(Hs)5

.

(3.3)

We introduce the variable κδt in this inequality in order to insist on the fact that
the term Fδt(Uδt)(κδt) does not depend on the variable τ . For example, the first
component of Fδt(Uδt)(κδt) is

Fδt(Uδt)(κδt) = φδt(tk+ 1
2
)

(
uδt(tk+1) + uδt(tk)

2

)
.



A RELAXATION SCHEME FOR NLS 945

In order to control the third term in the right-hand side of (3.3), we write each integral
as ∥∥∥∥∫ tk+1

tk

(BSδt(t− tk)Fδt(Uδt)(κδt)−S(t− τ)F(U)(τ))dτ

∥∥∥∥
(Hs)5

≤
∥∥∥∥∫ tk+1

tk

[BSδt(t− tk) − S(t− tk)]Fδt(Uδt)(κδt)dτ
∥∥∥∥

(Hs)5

+

∥∥∥∥∫ tk+1

tk

[S(t− τ) − S(t− tk)]F(U)(τ)dτ

∥∥∥∥
(Hs)5

+

∥∥∥∥∫ tk+1

tk

S(t− tk)[Fδt(Uδt)(κδt) −F(U)(τ)]dτ

∥∥∥∥
(Hs)5

≡ Ik,n1 + Ik,n2 + Ik,n3 .

Let T1 = Nδt. Then, the inequality (3.3) means

‖U − Uδt‖L∞([0,T1],Hs)5 ≤ ‖(S − Sδt)U(0)‖L∞([0,T1],Hs)5

+ ‖Sδt(U(0) − Uδt(0))‖L∞([0,T1],Hs)5

+ sup
n∈[0,N ]

n∑
k=0

(Ik,n1 + Ik,n2 + Ik,n3 ).

(3.4)

Thanks to Lemma 2.2, Sδt −→ S for the strong topology of operators in (Hs)5, and
B −→ 1 in (Hs)5, we have

‖(S − Sδt)U(0)‖L∞([0,T1],Hs)5 → 0 as δt→ 0,

sup
n∈[0,N ]

n∑
k=0

Ik,n1 → 0 as δt→ 0,

sup
n∈[0,N ]

n∑
k=0

Ik,n2 → 0 as δt→ 0.

Since u ∈ C2(0, T ;Hs), we also have

‖Sδt(U(0) − Uδt(0))‖L∞([0,T1],Hs)5 → 0 as δt→ 0.

It remains to deal with the term Ik,n3 . For this, we write, as in [8], F(U)(τ) =
Fδt(U)(κδt) +Rκ(τ). Thus,

Ik,n3 ≤
∫ tk+1

tk

‖Fδt(Uδt)(κδt) −Fδt(U)(κδt)‖(Hs)5 + δt sup
τ∈[tk,tk+1]

‖Rκ(τ)‖(Hs)5

≡ Jk + δtGk(δt).

Since u ∈ C2(0, T ;Hs), we have
∑N
k=0 δtGk(δt) → 0 as δt → 0. Thanks to the form

of Fδt, we get

Jk ≤
∫ tk+1

tk

C1f(‖U(κδt)‖(Hs)5 , ‖Uδt(κδt)‖(Hs)5)‖U(κδt) − Uδt(κδt)‖(Hs)5dτ,

where f is a C∞ function and C1 is a constant which is independent of n and
δt. Now, referring to uniform estimates of U and Uδt in [0, T1], we have Jk ≤
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C2δt ‖U − Uδt‖L∞([0,T1],Hs)5 , with C2 a constant independent of n and δt. Finally,

the inequality (3.4) leads to

‖U − Uδt‖L∞([0,T1],Hs)5 ≤ o(1) + CT1 ‖U − Uδt‖L∞([0,T1],Hs)5 .

Taking CT1 < 1, we get

‖U − Uδt‖L∞([0,T1],Hs)5 ≤ o(1).

Applying once more the proof with the initial datum U(T1), we get the lower semi-
continuity of the existence time Tδt as δt→ 0 and the convergence on [0, T ] ∀T < T ∗.

Hence, we have proved Theorem 1.1.

4. Conservation laws. As we recalled in the introduction, (1.1) has two con-
served quantities which are the density defined by

∫
R

d |u|2dx and the energy
∫

R
d

1
2 |∇u|2+

λ
2σ+2 |u|2σ+2dx. The minimum requirement for the numerical scheme is to conserve
these two quantities. For example, for σ = 1, the Crank–Nicolson scheme (see [9])
has this property, contrary to the split-step scheme (see [15]) which conserves only
the density. We show in this section that the relaxation scheme conserves the two
quantities, but only for σ = 1.

Proposition 4.1. Let (un)n and (φn−
1
2 )n be solutions of (1.4) with σ = 1

belonging to l∞([0, N ];Hs(Rd)2), s > d/2 + 2. Then, ∀n ≤ N , we have∫
R

d

|un|2dx =

∫
R

d

|u0|2dx,(4.1)

∫
R

d

(
|∇un|2+λ|un|2φn− 1

2 − λ
(φn−

1
2 )2

2

)
dx=

∫
R

d

(
|∇u0|2+λ|u0|2φ− 1

2 −λ (φ−
1
2 )2

2

)
dx.

(4.2)

Moreover, if (φn−
1
2 )n ∈ l∞([0, N ];L∞(Rd)), then∫

R
d

|un|2dx =

∫
R

d

φn+ 1
2 dx.(4.3)

Remark 2.

1. We remark that
∫

R
d |un|2φn− 1

2 dx =
∫

R
d
φn+ 1

2 φn− 1
2

2 dx+
∫

R
d

(φn− 1
2 )2

2 dx. There-
fore, (4.2) reads

E0 =

∫
R

d

(
|∇un|2 +

λ

2
φn+ 1

2φn−
1
2

)
dx =

∫
R

d

(
|∇u0|2 +

λ

2
φ

1
2φ−

1
2

)
dx.

Since φn+ 1
2 represents |un|2, this is the notation that we choose in order to

show the conservation of the energy.
2. Since φ

1
2 = φ−

1
2 = |u0|2, E0 =

∫
R

d |∇u0(x)|2 + λ
2 |u0(x)|4dx.

3. In the continuous case, we know that we have to find φ = |u|2. We do not
exactly recover this property in the discrete case; however, (4.3) tells us that
this property can be recovered in a weaker formulation.

Proof.
• Multiplying (1.4b) by un+1 + un, integrating in space, taking the imaginary

part, and summing in n, we get (4.1).

• Multiplying (1.4b) by un+1−un

δt , integrating in space, and taking the real part,

we get − ∫
R

d

|∇un+1|2−|∇un|2
2δt dx = λ

∫
R

d

|un+1|2−|un|2
2δt φn+ 1

2 dx. Summing these
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equalities for n ∈ [0, N ] yields

−
∫

R
d

|∇uN+1|2
2δt

− |∇u0|2
2δt

dx = λ
N∑
n=0

∫
R

d

|un+1|2 − |un|2
2δt

φn+ 1
2 dx.(4.4)

Multiplying (1.4a) by φn+ 1
2 −φn− 1

2

δt , we have (φn+ 1
2 )2−(φn− 1

2 )2

2δt = |un|2φn+ 1
2 −|un|2φn− 1

2

δt .
Summing again from 0 to N gives

(φN+ 1
2 )2 − (φ−

1
2 )2

2δt
=

N∑
k=0

|uk|2φk+ 1
2

δt
−

N∑
k=0

|uk|2φk− 1
2

δt

=

N∑
k=0

(|uk|2 − |uk+1|2)φk+ 1
2

δt

+
|uN+1|2φN+ 1

2

δt
− |u0|2φ− 1

2

δt
.

Plugging this last equality into (4.4) yields (4.2).

• Finally,
∫

R
d|un|2dx=

∫
R

d|un−1|2dx; thus
∫

R
d
φn+ 1

2 +φn− 1
2

2 dx=
∫

R
d
φn− 1

2 +φn− 3
2

2 dx.

We therefore obtain
∫

R
d φ

n+ 1
2 dx =

∫
R

d φ
n− 3

2 dx. As
∫

R
d φ

1
2 dx =

∫
R

d φ
− 1

2 dx,

we have
∫

R
d φ

n+ 1
2 dx =

∫
R

d φ
n− 1

2 dx, which implies (4.3) because φ−
1
2 =

|u0|2.
5. Numerical experiments. We test the relaxation scheme on the nonlinear

Schrödinger equation

i
∂u

∂t
+
∂2u

∂x2
= −2|u|2u,

with the initial datum u(x, 0) = i exp (2ik0x)
cosh (x+2) , x ∈ R. We know the exact solution for

this initial datum which is the soliton solution uex(x, t) =
i exp i(2k0x+(1−4k2

0)t)
cosh (x+2−4k0t)

.

We want to compute in a first experiment the numerical order pnum. Let us define
Ω as the computational domain. The numerical order pnum is computed by

pnum =
1

lnn
ln

(
sup
t

‖unδt − uex‖L2(Ω)(t)

‖uδt − uex‖L2(Ω)(t)

)
.

In order to avoid any numerical reflections due to the boundaries, we take Ω =
[−50, 50] and k0 = 0. Then, the Dirichlet boundary condition is almost verified. We

use finite difference approximation for the spatial differential operator ∂2u
∂x2 . As we

want to identify only the time numerical order, we take a fine mesh with δx = 5.10−4.
The number of points is therefore N = 200000.

The full discrete scheme reads

φ
n+ 1

2
j = 2|unj |2 − φn−

1
2 ,

i
un+1
j − unj
δt

+
un+1
j−1 − 2un+1

j + un+1
j+1 + unj−1 − 2unj + unj+1

2δx2
=
un+1
j + unj

2
φ
n+ 1

2
j ,

un+1
0 = 0, un+1

N = 0.
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Table 5.1

Computation of pnum.

n = 5 n = 10 n = 50
pnum 2.000713 2.003127 2.002260

Table 5.2

Cpu time for relaxation and Crank–Nicolson schemes.

N = 1000 N = 2000
Relaxation scheme 7.1s 15.12s
Crank–Nicolson scheme 23.90s 53.32s
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0.6

0.7

0.8

0.9

1

Numerical solution at t=1

|u
|

Fig. 5.1. Comparison between exact and numerical solutions at time t = 1.

The results displayed in Table 5.1 are computed for δt = 10−3. Then, the order of
the relaxation scheme should be two.

In our next experiment, we take Ω = [−10, 10], N = 1024, δt = 10−3, and the
final time t = 1. We plot in Figure 5.1 the modulus of the exact and the numerical
solutions at t = 1. The velocity of the soliton is well preserved as its amplitude. Next,
we plot the conserved quantities, namely density (here, equal to 2) and energy (equal
to 11

3 ), in Figure 5.2. On the one hand, the density is conserved with a precision of

10−6 and on the other hand, the energy, which is
∫

R

1
2 |∇u|2 − 1

2 |u|4dx, is conserved
with a precision of 10−2 after 1000 iterations. We plot in Figure 5.3 the numerical
error ‖uex−unum‖L2 . The result is very accurate. The Crank–Nicolson scheme gives
the same results. However, due to the nonlinear step in this scheme, the used cpu
time is more important, as we can see in Table 5.2 for different mesh size.

Finally, we experiment with the two-dimensional case. We consider the nonlinear
Schrödinger equation iut + ∆u = −2|u|2u. The computational domain is now Ω =
[−10, 10] × [−10, 10] and we discretize it with 200 × 200 points. We take δt = 10−2,
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Fig. 5.2. Density and energy.
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Fig. 5.3. Error estimate.

Fig. 5.4. Initial datum and computed solution at time t = 0.5.

and the final time t is 0.5. The initial datum is exp (−x2 − y2).

The computational time is 166s for the relaxation scheme and 336s for the Crank–
Nicolson one. Actually, the nonlinear step involved in the Crank–Nicolson scheme is
very costly. At each time step, two or three iterations are necessary in order for the
Newton scheme to be convergent. We plot in Figure 5.4 the amplitude of the solution
at time t = 0 and t = 0.5.
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Fig. 5.5. Density and energy in the two-dimensional case.

The density and energy are well preserved (see Figure 5.5).

6. Conclusion. We define a new numerical scheme adapted to the nonlinear
Schrödinger equation which avoids costly nonlinear computations. We prove local
existence of solutions and the convergence of the scheme. Moreover, this scheme
conserves the density and the energy quantities. It can be easily adapted to other
systems of equations such as the Davey–Stewartson systems, for example.

Appendix. Equivalent system of (2.5). After algebraic calculations on sys-
tem (2.5), this new system reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+2−un+1

δt − i∆
(
un+2+un+1

2

)
= −iλUn+ 3

2 ,

φn+ 3
2 −φn− 1

2

2δt = Φn+ 1
2 ,

vn+ 3
2 −vn− 1

2

2δt − i∆

(
vn+ 3

2 +2vn+ 1
2 +vn− 1

2

4

)
= −iλV n+ 1

2 ,

ψn+1−ψn−1

2δt = Ψn,

wn+1−wn−1

2δt − i∆wn+1+wn−1

2 = −iλWn,

with ψn+1 = φn+ 3
2 −φn+ 1

2

δt , wn+1 = vn+ 3
2 −vn+ 1

2

δt ,

Ψn= 2Re
(
wn u

n+1+2un+un−1

4

)
+ 2

∣∣∣∣ vn+ 1
2 +vn− 1

2

2

∣∣∣∣2 ,
Wn=

(
ψn+1 + ψn−1

2

)(
vn+ 3

2 + 3vn+ 1
2 + 3vn−

1
2 + vn−

3
2

8

)
+

(
φn+ 3

2 +φn+ 1
2 +φn− 1

2 +φn− 3
2

4

)(
wn+1+2wn+wn−1

4

)
+ 2

[
Re
(
wn
(
un+1+2un+un−1

4

))
+

∣∣∣∣ vn+ 1
2+vn− 1

2

2

∣∣∣∣2
](

un+2+2un+1+2un+2un−1+un−2

8

)
+ 2Re

(
vn+ 1

2 un+1+un

2 +vn− 1
2 un+un−1

2

2

)(
vn+ 3

2 +vn+ 1
2 +vn− 1

2 +vn− 3
2

4

)
.
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The proof of existence and uniqueness of this new system is similar to that of system
(2.4), but is now in Hs(Rd) with s > d/2 + 4 in order to ensure the regularity of wn.
Obviously, we can prove that system (1.4) and this new system are equivalent.

The equivalent continuous version of this system is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut − i∆u = −iλφu,
φt = 2Re(uv),
vt − i∆v = −iλ(2Re(uv)u+ φv),
ψt = 2Re(wu) + 2|v|2,
wt − i∆w = −iλ(ψv + φw + 2(Re(wu+ |v|2))u+ 2Re(vu)v),

and we can define Ψ(x, t) = 2Re(wu) + 2|v|2 and W (x, t) = ψv + φw + 2(Re(wu +
|v|2))u+ 2Re(vu)v.

Duhamel’s formulations for ψn and wn read, respectively,

ψn = ψ−1 +

p∑
k=0

2δtΨ2k, n = 2p+ 1,

ψn = ψ0 +

p∑
k=1

2δtΨ2k−1, n = 2p,

and with the convention D = (1 − iδt∆)−1(1 + iδt∆) and E = (1 − iδt∆)−1,

wn = Dpw1 − iλ

p−1∑
k=0

2δtEDp−k−1W 2(k+1), n = 2p+ 1,

wn = Dpw0 − iλ

p−1∑
k=0

2δtEDp−k−1W 2k+1, n = 2p.
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Abstract. In this paper, geometric interpolation by parametric polynomial curves is considered.
Discussion is focused on the case where the number of interpolated points is equal to r + 2, and
n = r denotes the degree of the interpolating polynomial curve. The interpolation takes place in
R
d with d = n. Even though the problem is nonlinear, simple necessary and sufficient conditions

for existence of the solution are stated. These conditions are entirely geometric and do not depend
on the asymptotic analysis. Furthermore, they provide an efficient and stable way to the numeric
solution of the problem.
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order
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1. Introduction. Let a sequence of data points

TTTTTTTTT 0, TTTTTTTTT 1, . . . , TTTTTTTTT r+1 ∈ R
d, TTTTTTTTT i �= TTTTTTTTT i+1,(1.1)

be given. A parametric curve interpolates these points in the geometric sense if
the parameter values at which it passes through the points TTTTTTTTT i are not prescribed in
advance. In the limiting case of the geometric interpolation, if two consecutive points
coincide, this scheme leads to the interpolation of a point and a tangent direction at
the same parameter value. Further, threefold interpolation at a point also requires
the curvature to be known there, etc. The threefold interpolation by cubics in the
plane can be traced back to [3], the paper that initiated the study of geometric
interpolation. In order to make the proofs of the results simple, only distinct points
TTTTTTTTT i will be considered in this paper. The extension to the osculatory case will appear
elsewhere.

The disadvantage of the geometric approach is obvious. Namely, the problem of
finding the interpolatory curve is nonlinear, so the questions of existence, uniqueness,
and computation of the solution arise.

However, there are important advantages, too. Free parameter values at which
the points TTTTTTTTT i are interpolated may raise the approximation order. This fact has been
observed in [3] and in many of the subsequent papers. As a bound for the polynomial
geometric interpolation, it has been conjectured in [5] that a parametric polynomial
curve of degree n in d-dimensional Euclidean space can, in general, interpolate

r + 2 = n+ 1 +

⌊
n− 1

d− 1

⌋
points in R

d and reach the same approximation order. The conjecture has been proved
only for a few particular cases. But perhaps the most important bonus of all is that
the geometric approach provides the basis for the Gm continuous spline schemes where
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the interpolants do not depend on the local parametrization. This is an important
and often-required property in the CAGD applications, and some of the results can
be found in [4, 10, 12].

Suppose now that the interpolatory curve is a parametric polynomial curve

BBBBBBBBBn : [a, b] → R
d

of degree n. Since linear reparametrization does not change the degree of the poly-
nomial, assumptions a := 0 and b := 1 can be made. Thus the construction of BBBBBBBBBn
requires determining ti,

t0 := 0 < t1 < t2 < · · · < tr < tr+1 := 1,(1.2)

such that

BBBBBBBBBn(ti) = TTTTTTTTT i, i = 0, 1, . . . , r + 1.(1.3)

This is the nonlinear part of the problem. Once ti are known, it is straightforward
to obtain the curve BBBBBBBBBn in any of the well-known forms, such as Bézier, Newton, or
Lagrange.

In order to keep the number of free parameters equal to the number of the un-
knowns, a Diophantine equation has to be satisfied [4], i.e.,

dn− (d− 1) r = d.

The case

n = r = d(1.4)

turns out to be the simplest to handle [6]. Nevertheless, few results can be found in
the literature without the assumption that the data points are sufficiently dense and
taken from some smooth underlying curve. In the plane case (d = 2), some results
are included in [10, 8, 9], and in the space case (d = 3) they are included in [4].

As it will be shown below, the case n = r = d can be worked out without any
asymptotic assumptions. However, if n > d, the interpolation problems become much
harder to tackle, and the asymptotic approach seems to be necessary [3, 11].

Let us assume (1.4) throughout the paper and simplify the notation of BBBBBBBBBn to

BBBBBBBBB := BBBBBBBBBn = BBBBBBBBBd.

The equations that determine the unknowns ti in this particular case will be worked
out in the next section.

The key role in the paper is played by the matrix of data differences,

∆T :=
(
∆TTTTTTTTT i

)d
i=0

, ∆TTTTTTTTT i := TTTTTTTTT i+1 − TTTTTTTTT i,(1.5)

and by the signs of its minors

Di := det
(
∆TTTTTTTTT j

)d
j=0
j �=i

,(1.6)

i.e., the signs of the volumes of the d-simplexes, based upon the points

TTTTTTTTT 0, TTTTTTTTT 1, . . . , TTTTTTTTT i−1, TTTTTTTTT i+1 − ∆TTTTTTTTT i, TTTTTTTTT i+2 − ∆TTTTTTTTT i, . . . , TTTTTTTTT d+1 − ∆TTTTTTTTT i.
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If the vectors ∆TTTTTTTTT i do not belong to a proper subspace of R
d, the matrix ∆T is of full

rank, and the following conclusion can be made.
Theorem 1.1. Suppose rank ∆T = d. Then the interpolating curve BBBBBBBBB exists if

and only if the minors Di are all of the same sign. If BBBBBBBBB exists, it is regular, and the
parameter values ttttttttt := (ti)

d
i=1 are determined uniquely.

In the plane case, the signs of the Di can be identified by certain angles, as has
already been observed in [10, 8]. More generally, if the data are convex in the discrete
sense, one has

sign (D0) = sign (Dd) .

The additional requirements of Theorem 1.1 simply guarantee that the data stay
convex under the translations

TTTTTTTTT j → TTTTTTTTT j − ∆TTTTTTTTT i, j = i+ 1, i+ 2, . . . , d, i = 1, 2, . . . , d− 1;

i.e., they are not too twisted. Here the sequence of vectors vvvvvvvvv1, vvvvvvvvv2, . . . , vvvvvvvvvm, vvvvvvvvvi ∈ R
d,

m ≥ d, is considered to be convex in the discrete sense if all the volumes of the
d-simplexes, i.e.,

det(vvvvvvvvvi, vvvvvvvvvi+1, . . . , vvvvvvvvvi+d−1), i = 1, 2, . . . ,m− d+ 1,

are of the same sign.
Let S− : R

d+1 → {0, 1, . . . , d} denote the number of strong sign changes in xxxxxxxxx :=
(xi)

d
i=0 ∈ R

d+1, i.e., the number of actual sign changes in the sequence x0, x1, . . . , xd
with zero terms discarded. Then Theorem 1.1 actually requires that the kernel of ∆T
is spanned by

xxxxxxxxx =
(
(−1)iDi

)d
i=0

,

with

S−(xxxxxxxxx) = d.

This observation can be extended to the case of deficient rank ∆T < d, but then the
uniqueness or the regularity of a solution cannot be expected. Still, the following fact
can be established.

Theorem 1.2. Let rank ∆T < d. An interpolating curve BBBBBBBBB of degree ≤ d can be
found if and only if there exists xxxxxxxxx ∈ ker ∆T such that S−(xxxxxxxxx) = d.

In the setup of Theorem 1.2, all regular BBBBBBBBB will return the same interpolatory
curve, considered as a set of points. But the speed of moving along the curve will
be different. The additional free parameters should be used to decrease the degree of
the interpolating curve if possible. If the obtained lower-degree curve is unique, the
proof of Theorem 1.1 can be repeated, and the conclusion that it is regular can also
be made. Reduction of the degree is not always possible. As an example, take a cubic
curve that interpolates five points in R

3. If the data are lying on a plane, a cubic is
still needed, as a quadratic curve can interpolate four planar points in general.

Although the problem of determining the unknowns ti is nonlinear, there is an
efficient and stable way to the numerical solution, given as the following result.

Theorem 1.3. Suppose that the requirements of Theorem 1.1 are satisfied. The
continuation method [1] will always compute the numerical solution.

Practical evidence shows that the best way is to start the continuation method
as a one-step method. This step has to be reduced only if in the solution some of the
tis are close together.
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2. The equations. Under the assumption (1.4) the system (1.3) can be rewrit-
ten as

BBBBBBBBB(ti) = TTTTTTTTT i, i = 0, 1, . . . , d+ 1,

where the unknowns are (vector) coefficients of the polynomial curve BBBBBBBBB, and scalars
(ti)

d
i=1 have to satisfy (1.2). But the divided difference on arbitrary d+2 points maps

a polynomial of degree ≤ d to zero, so

[t0, t1, . . . , td+1]BBBBBBBBB = 000000000,

and [t0, t1, . . . , td+1] should map the data TTTTTTTTT i to zero, too. Since ti are required to be
different, this fact can be written as

d+1∑
i=0

1

ω̇(ti)
TTTTTTTTT i = 000000000, ω(t) :=

d+1∏
i=0

(t− ti), ω̇(t) :=
dω

dt
(t),(2.1)

i.e., d scalar equations for d scalar unknowns t1, t2, . . . , td. The equations (2.1) are
the only nonlinear part on the way to the interpolatory curve BBBBBBBBB, and one can effi-
ciently solve them by the continuation method as stated in Theorem 1.3. The final
construction of BBBBBBBBB then follows the function case and is straightforward.

3. The proofs. The assertions in the introduction seem quite simple, but the
proofs will take several steps. Here is a brief outline:

1. The system (2.1) will be transformed in a form more suitable for the analysis
of the existence and the uniqueness.

2. It will be shown that the existence of a unique solution of the system (2.1)
implies that Di should all be of the same sign (with Lemma 3.1 as part of
the proof).

3. Lemma 3.2 will establish the fact that any solution of (2.1) that satisfies (1.2)
should be simple, and Lemma 3.3 will ensure that any such solution cannot
have tis arbitrary close.

4. A proof that the system (2.1) has a unique solution for particular data will
be outlined in Lemma 3.4.

5. The convex homotopy will help to carry over the conclusions from the par-
ticular to the general case in order to complete the proof of Theorem 1.1.

6. The proofs of Theorems 1.2 and 1.3 will complete the section.
Step 1. Let us recall that [t0, t1, . . . , td+1]1 = 0. So the system (2.1) can be

rewritten as

d+1∑
i=0

1

ω̇(ti)
(TTTTTTTTT i − TTTTTTTTT 0) =

d+1∑
i=1

1

ω̇(ti)
(TTTTTTTTT i − TTTTTTTTT 0) = 000000000(3.1)

or

(TTTTTTTTT i − TTTTTTTTT 0)
d+1
i=1 ωωωωωωωωω = 000000000,(3.2)

where

ωωωωωωωωω :=

(
1

ω̇(ti)

)d+1

i=1

.(3.3)
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By inserting I = U−1U between the two factors in (3.2), where

U :=

⎛⎜⎜⎜⎝
1 1 . . . 1
0 1 . . . 1
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎟⎠ ∈ R
d+1,d+1, U−1 =

⎛⎜⎜⎜⎝
1 −1 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎟⎠ ,

the equations (3.1) become

∆T ω
Σ
ωΣ
ωΣωΣ
ω

ΣωΣ
ω

ΣωΣωΣ = 000000000,(3.4)

with

∆T = (TTTTTTTTT i − TTTTTTTTT 0)
d+1
i=1 U

−1 ∈ R
d,d+1

defined by (1.5), and

ωΣ
ωΣ
ωΣωΣ
ωΣωΣ
ωΣωΣωΣ := Uωωωωωωωωω =

⎛⎝d+1∑
j=i

1

ω̇(tj)

⎞⎠d+1

i=1

.(3.5)

If at least one of the determinants Di defined in (1.6) is different from zero, then ∆T
is of full rank d, and the kernel of ∆T is spanned by the vector(

(−1)d+1−iDi

)d
i=0

.

Since ωΣ
ωΣ
ω

ΣωΣ
ω

ΣωΣ
ω

ΣωΣωΣ should be proportional to it, the nonlinear system (3.4) becomes

α

d+1∑
j=i

1

ω̇(tj)
= (−1)d+1−iDi−1, i = 1, 2, . . . , d+ 1,(3.6)

i.e., d+ 1 scalar equations for d+ 1 unknowns α, t1, t2, . . . , td.
Step 2. The form of the system (3.6) is suitable to proceed with the next part

of the proofs. Let t0 := 0 < t1 < · · · < td < td+1 := 1, and let α �= 0 be a unique
solution of the system (3.6). Then

Dd = α
1

ω̇(td+1)
�= 0,

and sign (Dd) = sign (α). Thus

sign (Di−1) = sign (α) , i = 1, 2, . . . , d,

if and only if

S−(ω
Σ
ωΣ
ωΣωΣ
ωΣωΣ
ωΣωΣωΣ

) = d.

This equality will be established with the help of the following lemma.
Lemma 3.1. Let pi, 1 ≤ i ≤ d, be the interpolating polynomial of degree ≤ d+ 1

that interpolates the data

pi(tj) =

{
0, j = 0, 1, . . . , i− 1,
1, j = i, i+ 1, . . . , d+ 1,
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at d+ 2 distinct points t0 < t1 < · · · < td+1. Then pi is of degree d+ 1, and the sign
of its leading coefficient is equal to (−1)d+1−i.

Proof. The interpolating conditions imply pi �= const; thus p′i �= 0. By Rolle’s
theorem, p′i has at least i−1 zeros on (t0, ti−1) and at least d−i+1 zeros on (ti, td+1),
i.e., at least d zeros on (t0, td+1). Since p′i does not vanish identically, the degree of p′i
is d, and the degree of pi is d+ 1. Note that p′i must be increasing on (ti−1, ti), and
sign (p′i(ti)) = 1. But then sign (p′i(td+1)) = (−1)d+1−i. Since the leading coefficient
of pi has to be of the same sign as p′i(td+1), the lemma has been proved.

Let pi be the polynomial studied in Lemma 3.1. Its leading coefficient is equal to
the divided difference

[t0, t1, . . . , td+1]pi =

d+1∑
j=0

pi(tj)

ω̇(tj)
=

d+1∑
j=i

1

ω̇(tj)
,

and the fact

sign

⎛⎝d+1∑
j=i

1

ω̇(tj)

⎞⎠ = (−1)d+1−i

is confirmed by the conclusion of Lemma 3.1. The first part of the proof of Theorem
1.1 is complete.

Step 3. Let us continue with the next step of the proofs. If two consecutive
equations in (3.6) are subtracted, the system reads as

α

ω̇(ti)
= (−1)d+1−i(Di−1 +Di), i = 1, 2, . . . , d+ 1, Dd+1 := 0.(3.7)

The system (3.7) will have a simple solution if the Jacobian J at that point is non-
singular. A straightforward computation gives J as

J := J(ttttttttt, α)diag

(
1

ω̇(ti)

)d+1

i=1

A,(3.8)

with A := (aij)
d+1
i,j=1, and

aij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α

ti − tj
, i �= j, j < d+ 1,

d+1∑
k=0
k �=i

α

tk − ti
, i = j, j < d+ 1,

1, j = d+ 1.

The suggestions in [7] will help us to prove the following lemma.
Lemma 3.2. The determinant of the matrix A is given as

detA = d!αd (t0 − td+1)
1

ω̇(t0)
.

Proof. By definition, detA is a sum of terms of the form

const
∏
i �=j

1

ti − tj
,(3.9)
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where the total degree of the denominator, viewed as a polynomial in the variables

t�, � = 0, 1, . . . , d+ 1,

is d, but for some terms const could be zero. The terms involving

1

ti − tj
or

1

(ti − tj)2
, i, j = 1, 2, . . . , d+ 1, i �= j,(3.10)

could not take part in (3.9). To see this, observe that for fixed i �= j, 0 ≤ i, j ≤ d,
only the elements

(
aii aij
aji ajj

)
α

⎛⎜⎝
1

tj − ti

1

ti − tj
1

tj − ti

1

ti − tj

⎞⎟⎠+ other terms

in the matrix A are involved. So the contribution of (3.10) to detA is computed as
the determinant of the matrix A where all the other elements in rows i and j and in
columns i and j are set to zero. But then all the 2× 2 minors obtained from the rows
i and j vanish identically, and the Laplace expansion shows that this determinant is
equal to zero. A similar argument works for i = d+ 1, j = 0, too. But then only the
d possible divisors t0 − ti, i = 1, 2, . . . , d, are left, and detA has to be of the form

detA = αd
c∏d

i=1(t0 − ti)
αd(t0 − td+1)

c

ω̇(t0)
,

where c is a constant independent of ti. Since

c =
1

αd (t0 − td+1)
det
(
diag(t0 − ti)

d+1
i=1 A

)
,

the sequence of limits t1 → t0, t2 → t0, . . . , td → t0 simplifies c to

c =
1

t0 − td+1
det

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0 0
1 2 · · · 0 0
...

...
. . .

...
...

1 1 · · · d 0
−1 −1 · · · −1 t0 − td+1

⎞⎟⎟⎟⎟⎟⎠ = d!,

and the lemma is proved.
It is convenient now to describe all the admissible solutions of (3.7) as a set D,

D := {ttttttttt =
(
ti
)d
i=1

| 0 := t0 < t1 < · · · < td < td+1 := 1} × {α |α �= 0}.
The restriction of D to the case α > 0 will be denoted by D+ and the restriction to
the case α < 0 by D−.

Lemma 3.3. Let Di be all positive (negative). The system (3.7) cannot have a
solution arbitrary close to the boundary ∂D+ (∂D−).

Proof. Without loss of generality, one can assume that sign (α) = sign (Di) > 0.
The last equation in (3.7) reads

α

ω̇(td+1)
=

α

(td+1 − t0)(td+1 − t1) · · · (td+1 − td)
= Dd.(3.11)
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Note that

td+1 − td ≤ td+1 − ti ≤ 1, i = 0, 1, . . . , d,

so the inequality

(td+1 − td)
d+1 ≤ ω̇(td+1) ≤ td+1 − td

gives the bounds on α in (3.11) as

(td+1 − td)
d+1 ≤ α

Dd
≤ td+1 − td.(3.12)

Since [t0, t1, . . . , td+1]1 = 0, summing all equations in (3.7) yields

α

ω̇(t0)
= (−1)d+1D0,

and, further, as in (3.12),

(t1 − t0)
d+1 ≤ α

D0
≤ t1 − t0.(3.13)

The inequalities (3.12) and (3.13) show that t1 − t0 and td+1 − td should go to zero
with α, i.e.,

t1 − t0 = o(1), td+1 − td = o(1) as α→ 0.(3.14)

More generally, with

(ti+1 − ti)
d+1−i

i−1∏
j=0

(ti − tj) ≤ (−1)d+1−i ω̇(ti) ≤ (ti+1 − ti)

i−1∏
j=0

(ti − tj)

one obtains the bounds from the ith equation in (3.7) as

(ti+1 − ti)
d+1−i ≤ α

(Di−1 +Di)
∏i−1
j=0(ti − tj)

≤ ti+1 − ti, i = 1, 2, . . . , d.(3.15)

Let α → 0. The product
∏i−1
j=0(ti − tj) cannot go faster to zero as α since the right-

hand side in (3.15) is bounded by one. So one has either

α∏i−1
j=0(ti − tj)

= o(1) as α→ 0(3.16)

or

α∏i−1
j=0(ti − tj)

= const as α→ 0.(3.17)

The possibility (3.16) cannot hold for all i since this would, together with (3.14),
imply td+1 → t0, but td+1 = 1, t0 = 0, a contradiction. So at least for one i the
equation (3.17) holds, and (3.15) further implies that ti+1 − ti ≥ const. Suppose that
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�, 1 ≤ � ≤ d, is the smallest index such that t�, t�+1 are separated, i.e., t� − t0 =
o(1) as α→ 0, but t�+1 − t� = const > 0. Then

1

ti − tj
=

1

t0 − tj
(1 + O(ti − t0)), i ≤ � < j,

and

1

ω̇(ti)
=

1∏�
j=0
j �=i

(ti − tj)

1∏d+1
j=�+1(t0 − tj)

(
1 +

�∑
i=0

O(ti − t0)

)
, i ≤ �.(3.18)

Let

w :=

d+1∏
j=�+1

(tj − t0) ≥ (t�+1 − t�)
d+1−� = constd+1−� > 0.

By inserting (3.18) into (3.7), multiplied by w, one computes

α∏�
j=0
j �=i

(ti − tj)
= (−1)�−iw(Di−1 +Di) + higher-order terms, i = 0, 1, . . . , �,

and the summing of these equations yields

�∑
i=0

α∏�
j=0
j �=i

(ti − tj)
[t0, t1, . . . , t�]α = wD� + higher-order terms.(3.19)

The left-hand side of (3.19) vanishes, since � ≥ 1 and, consequently, [t0, t1, . . . , t�]α =
0. On the other hand, the right-hand side is positive if higher-order terms are small
enough. This implies that not all of the first �+ 1 equations of (3.7) can be satisfied
if α � 1. So α has to be bounded away from 0, and the equations (3.7) imply that
ti+1 − ti ≥ const > 0 for all i. The lemma is confirmed.

Step 4. The fourth step of the proofs considers the system (2.1) with a particular
set of data points.

Lemma 3.4. Let us suppose that the data points (1.1) are taken on the polynomial
curve fffffffff(t) := (tk)dk=1 as

T ∗
i := fffffffff(ηi), i = 0, 1, . . . , d+ 1,(3.20)

where

η0 := 0 < η1 < · · · < ηd < ηd+1 := 1.(3.21)

Then the system of nonlinear equations (2.1) has a unique solution.
Proof. First, note that the determinants which correspond to the particular data

(3.20) are

D∗
i := det (∆T ∗

i )
d
j=0
j �=i

(3.22)

and can be computed as

D∗
i = d!

∫ η1

η0

dx1

∫ η2

η1

dx2 . . .

∫ ηi

ηi−1

dxi

∫ ηi+2

ηi+1

dxi+1 . . .

∫ ηd+1

ηd

V (x1, x2, . . . , xd)dxd,
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where

V (x1, x2, . . . , xd) =
∏
j>i

(xj − xi)

is the Vandermonde determinant. This implies that D∗
i > 0, and rank ∆T ∗ = d, since

ηi are ordered by (3.21). The necessary conditions of Theorem 1.1 are met, and one
of the solutions of (2.1) for the particular data is obviously

ti = ηi, i = 1, . . . , d.

In order to complete the proof of Theorem 1.1 for these data, it must be shown that
this is the only solution that satisfies (1.2). The system in its basic form (2.1) is

d+1∑
i=0

η�i
ω̇(ti)

= 0, � = 1, 2, . . . , d,(3.23)

and the identity [t0, t1, . . . , td+1]1 = 0 can always be added. But then (3.23) is reduced
to the fact that the vector (

1

ω̇(ti)

)d+1

i=0

should span the kernel of the matrix Mηηηηηηηηη , where

Mzzzzzzzzz :=
(
z�i
)d;d+1

�=0;i=0
, zzzzzzzzz = (zi)

d+1
i=0 ,

since by assumption (3.21) the matrix Mηηηηηηηηη is obviously of full rank, i.e., d+ 1. But

Mηηηηηηηηη

(
1

ω̇(ηi)

)d+1

i=0

(
[η0, η1, . . . , ηd+1]η η

�
)d
�=0

= 000000000.

Thus ( 1
ω̇(ηi)

)d+1
i=0 spans the kernel of Mηηηηηηηηη , too, and

000000000 = Mηηηηηηηηη

(
1

ω̇(ti)

)d+1

i=0

= constMηηηηηηηηη

(
1

ω̇(ηi)

)d+1

i=0

= constMttttttttt

(
1

ω̇(ti)

)d+1

i=0

= const1Mttttttttt

(
1

ω̇(ηi)

)d+1

i=0

.

So ti and ηi are equivalent, and one can simplify further discussion by exchanging the
role of the unknowns and the parameters. Thus suppose ti to be known and ηi to be
determined.

The equations (3.23) imply that the values ηi must be equal to the values p(ti)
of some polynomial p of degree ≤ d, and

[t0, t1, . . . , td+1]p
� = 0, � = 1, 2, . . . , d.(3.24)

It is easy to see that (3.24) does not, in general, determine the polynomial p uniquely,
even for small d. Take d = 3, and equidistant partition ti = i

4 . Then the divided
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difference [t0, t1, t2, t3, t4] obviously maps to zero the powers t�, � = 1, 2, 3, but also
p�, where

p(t) :=
1

3
t(16 − 45t+ 32t2).

However, this p does not produce ηi = p(ti) in the order as required in (3.21) since it
is not monotone on [0, 1].

Let us proceed to show that for a particular choice of ti the solution of (3.24) that
satisfies (3.21) is unique. Let 0 < h� 1, and

ti =
i

d
h, i = 1, 2, . . . , d.

Note that p(0) = 0, p(1) = 1. Thus p can be expressed as follows:

p(t) =

d∑
i=1

cit
i, cd := 1 −

d−1∑
i=1

ci,

and the first equation of (3.24) is satisfied automatically. Let us recall that the divided
difference can also be written as∮

∂Ω

f(z)

ω(z)
dz =

d+1∑
i=0

Res

(
f

ω
; ti

)
= [t0, t1, . . . , td+1]f, ti ∈ I,

if f is analytical on the set Ω ⊂ C, I ⊂ Ω. Here, Res(g; z) denotes the residuum of g
at z. Thus (3.24) can be written as

d+1∑
i=0

Res

(
p�

ω
; ti

)
= 0, � = 2, 3, . . . , d.(3.25)

The fraction p�

ω has only isolated singularities in C
∗; therefore

d+1∑
i=0

Res

(
p�

ω
; ti

)
+ Res

(
p�

ω
;∞
)

= 0, � = 2, 3, . . . , d,

and the system (3.25) is simplified to

Res

(
p�

ω
;∞
)

= 0, � = 2, 3, . . . , d.(3.26)

The rational function 1
ω expands at ∞ as

1

ω(z)
=

1

zd+2
+

∞∑
i=d+3

1

zi

(
d+ 1

2
h+ O(h2)

)
.

Also,

p�(z) =

� d∑
k=�

zk
∑

i1+i2+···+i�=k
ci1ci2 . . . ci� .(3.27)
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In (3.27), only the terms with k ≥ d+1 will contribute to the residue. Since d+1 > �,
the system (3.26) reads

� d∑
k=d+1

∑
i1+i2+···+i�=k

ci1ci2 . . . ci� + O(h) = 0, � = 2, 3, . . . , d.(3.28)

But p�(1) = 1, and (3.27) simplifies (3.28) to

1 −
d∑
k=l

∑
i1+i2+···+i�=k

ci1ci2 . . . ci� + O(h) = 0, � = d, d− 1, . . . , 2.(3.29)

First, let us consider (3.29) when h→ 0. Then the first two equations read as

1 − cd1 = 0(3.30)

and

1 − cd−1
1 − dcd−2

1 c2 = 0,(3.31)

and the rest read as

1 − c�1 − �c�−1
1 cd−�+1 + g�(c1, c2, . . . , cd−�) = 0, � = d− 2, d− 3, . . . , 2.(3.32)

Equation (3.30) implies that c1 = 1 is the only real solution. This is true also for
even d, because c1 = −1 implies that p is not monotone. But then (3.31) implies
that c2 = 0, and (3.32) implies that ci = 0, i = 3, 4, . . . , d− 1. A brief look at (3.29)
reveals that g�(c1, c2, . . . , cd−�) involves products that include at least two ci, with
2 ≤ i ≤ d− �. So the lower triangular nonlinear system (3.30), (3.31), and (3.32) has
a nonsingular Jacobian at the limit point h = 0, and the limit solution is

(c1, c2, . . . , cd−1) = (1, 0, . . . , 0).

Thus, by the implicit function theorem, there exists h0 > 0 such that for all h, 0 ≤
h ≤ h0, there is a unique monotone solution p of the system (3.24), i.e., p(t) = t,
independently of h. Consequently, the system (3.6) has a unique solution (3.21)
which implies the unique solution of the system (2.1), too.

Step 5. Consider now the general case. Without loss of generality, one may
assume that Di are all positive. Let us join the particular data D∗

i , defined in (3.22),
and the general data Di with a convex homotopy,

Di(λ) := (1 − λ)D∗
i + λDi > 0, λ ∈ [0, 1].

Let

HHHHHHHHH(ttttttttt, α;λ) :=

(
α

ω̇(ti)

)d+1

i=1

−
(
(−1)d+1−i(Di−1(λ) +Di(λ)

))d+1

i=1
, λ ∈ [0, 1],

so that the system (3.7) is simplified to

HHHHHHHHH(ttttttttt, α;λ) = 000000000.(3.33)
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Note that Di(λ) = (1 − λ)D∗
i + λDi ≥ min{D∗

i , Di} > 0. So the system (3.33)
satisfies the requirements of Lemma 3.3 for any λ ∈ [0, 1]. As a consequence, the
zeros of HHHHHHHHH are apart from the boundary ∂D+ for all λ ∈ [0, 1]. Let

S := {(ttttttttt, α) ∈ D+ |HHHHHHHHH(ttttttttt, α;λ) = 0, λ ∈ [0, 1]}
be the set of solutions of (3.33) for all λ ∈ [0, 1], and let Co(S) ⊃ S be its convex
hull. The set D+ is convex. Thus Lemma 3.3 implies that Co(S) ⊂ D+. But D+ is

an open set, and the compact set Co(S) can be enlarged a little to a compact set D̃
with a smooth boundary so that the following relations are satisfied:

Co(S) ⊂ D̃ ⊂ D+, Co(S) ∩ ∂D̃ = ∅.

The map HHHHHHHHH is clearly differentiable on D̃ and does not vanish on the boundary ∂D̃.
But then Brouwer’s degree [2, pp. 52–53] of HHHHHHHHH is invariant for λ ∈ [0, 1] on D̃. In HHHHHHHHH,
only the data depend on λ, and a brief look at the homotopy reveals that its Jacobian
is simply J(ttttttttt, α), as given in (3.8). This simplifies Brouwer’s degree to∑

(ttttttttt,α)∈D̃,HHHHHHHHH(ttttttttt,α;λ)=0

sign
(
detJ(ttttttttt, α)

)
.

By Lemma 3.2, det J vanishes nowhere in D+ ⊃ D̃, and Brouwer’s degree is further
simplified to

± # {(ttttttttt, α) | (ttttttttt, α) ∈ D̃, HHHHHHHHH(ttttttttt, α;λ) = 0},

so it provides the exact count of zeros in D̃. But by Lemma 3.4 the particular problem
HHHHHHHHH(ttttttttt, α; 0) = 0 has a unique solution in D̃, as do all HHHHHHHHH(ttttttttt, α;λ) = 0.

In order to complete the proof of Theorem 1.1, it remains to show that BBBBBBBBB, based
upon ttttttttt that we have just determined, is a regular curve.

Note that BBBBBBBBB can also be written as

BBBBBBBBB =
d+1∑
j=0

TTTTTTTTT j�j , �j(t) :=
ω(t)

(t− tj)ω̇(tj)
.

If BBBBBBBBB is not regular, then

ḂBBBBBBBB(t̃) = 0 = ∆TU(�̇i(t̃))
d+1
i=1

for some t̃ ∈ [0, 1]. Since ker ∆T is spanned by ωωωωωωωωωΣ = Uωωωωωωωωω, given in (3.5) and (3.3), the

vector
(
�i(t̃)

)d+1

i=1
should be proportional to ωωωωωωωωω. But then

ω̇(ti)�̇i(t̃) =

(
ω̇(t̃)

t̃− ti
− ω(t̃)

(t̃− ti)2

)
= const

for all ti �= t̃, which implies that at least two of ti are equal, a contradiction that con-
firms the regularity of the interpolating curve. The proof of Theorem 1.1 is complete.

Step 6. The proof of Theorem 1.3 will precede the proof of Theorem 1.2.
Proof of Theorem 1.3. The conclusion of the theorem follows from Lemma 3.2.

Since the Jacobian of HHHHHHHHH is globally nonsingular it is also nonsingular on the set
HHHHHHHHH−1(000000000); thus 000000000 is a regular value of the map HHHHHHHHH. This implies [1, p. 38] that the
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convergence of the Euler–Newton method as a continuation method is ensured for a
suitable small step-length when the solution curve from the particular system (λ = 0)
to our general one (λ = 1) is traced.

Proof of Theorem 1.2. If the interpolating polynomial BBBBBBBBB exists, then the corre-
sponding ω

Σ
ω

Σ
ωΣωΣ
ωΣωΣ
ω

ΣωΣωΣ ∈ ker ∆T , as defined in (3.5), clearly satisfies S−(ωΣ
ω

Σ
ω

ΣωΣ
ω

ΣωΣ
ω

ΣωΣωΣ) = d. On the other

hand, if xxxxxxxxx = (xi)
d
i=0 ∈ ker ∆T can be found such that S−(xxxxxxxxx) = d, then xi may replace

the right-hand side (−1)d+1−iDi in (3.6). The existence part of Theorem 1.1 still
carries through, and Theorem 1.2 is proved.

Let us illustrate the last proof by a simple example. Let data be given on a line
in a plane,

TTTTTTTTT 0 =

(
0
0

)
, TTTTTTTTT 1 =

1

3

(
1
1

)
, TTTTTTTTT 2 =

1

2

(
1
1

)
, TTTTTTTTT 3 =

(
1
1

)
.(3.34)

Then

∆T =
1

6

(
2 1 3
2 1 3

)
,

and rank ∆T = 1. Furthermore, the vector xxxxxxxxx ∈ ker ∆T such that S−(xxxxxxxxx) = d = 2 is
given as a parametric family:

xxxxxxxxx = xxxxxxxxx(µ) := (µ,−3 − 2µ, 1) , µ > 0.

For such an xxxxxxxxx, the system (3.6) has the solution

t1 = t1(µ) :=
1

1 − µ

(
1 −

√
2µ(µ+ 2)

3(µ+ 1)

)
, t2 = t2(µ) := t1(µ) +

√
µ

6(µ+ 1)(µ+ 2)
,

and the data (3.34) are interpolated by a quadratically parametrized line

BBBBBBBBB = φ

(
1
1

)
, φ(t) :=

(1 − 2t22)t− (1 − 2t2)t
2

2t2(1 − t2)
.

Furthermore, the curve BBBBBBBBB is regular if and only if

1 − 1√
2
≤ t2 ≤ 1√

2
,
(√

3 − 1
)(√

2 − 1
)
≤ µ ≤

(√
2 + 1

)(
2 +

√
6
)
.

There is only one free parameter to decrease the degree of BBBBBBBBB, and t2 = t2(2) = 1
2

reduces the parametrization to the simplest case φ(t) = t. This parametrization is
regular since it is a unique solution of degree one of the interpolation problem. This
concludes the proofs.
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SIAM J. NUMER. ANAL. c© 2004 Society for Industrial and Applied Mathematics
Vol. 42, No. 3, pp. 968–973

Abstract. We prove the saturation of methods for solving linear ill-posed problems in Hilbert
spaces for a wide class of regularization methods. It turns out that, under a certain convexity
assumption, saturation must necessarily occur. We provide easy to verify assumptions, which allow
us to calculate the rate at which saturation occurs.
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1. Introduction and problem formulation. We study the numerical solution
of operator equations Ax = y under the presence of noise, which means we are given

yδ = Ax+ δξ,

where the operator A acts between Hilbert spaces X and Y . Moreover, the noise ξ
is assumed to be bounded ‖ξ‖ ≤ 1. If A acts injectively and has dense range, then
the problem of recovering the unknown x from noisy observations yδ is known to
be ill-posed. In this case we are interested in regularization methods given by some
operator function α→ gα(A∗A), 0 < α ≤ a; i.e., the approximation to x ∈ X is given
by choosing some α = α(δ) and letting

xα,δ := gα(A∗A)A∗yδ.

The most famous method is Tikhonov–Phillips regularization, where

xα,δ := (αI +A∗A)−1A∗yδ.

The error of any regularization gα for approximating x, based on observations yδ,
is given by e(x, gα, δ) := sup‖ξ‖≤1 ‖x − gα(A∗A)A∗yδ‖. For the performance of a
given regularization it is interesting to know how sensitive it is with respect to a
priori smoothness assumptions. This is captured by the notion of the qualification of
the regularization: The higher its qualification, the more it is capable of reacting to
smoothness assumptions. In this respect, Tikhonov–Phillips regularization is known
to have qualification 1; more generally, it can provide the optimal order of accuracy
for all concave source conditions within the framework of variable Hilbert scales; see,
e.g., [3, 6]. We will not turn to this subject in this paper.

Here we ask for saturation, i.e., the maximal smoothness, where a given regular-
ization can provide the best possible order of approximation. This is made precise
in section 2. The main result establishes fairly general conditions under which satu-
ration must occur; the core of them is a certain convexity property. The saturation
phenomenon has been studied several times. We do not recall the history but refer
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the reader to [2], summarizing also the recent [7, 8]. Our attitude is different. Most
importantly, the analysis is based on a geometric concept, which indicates why satu-
ration occurs. As a side effect, this approach is so general that it covers fairly general
regularization methods.

We conclude our study with several examples to exhibit that these conditions are
easy to verify in specific situations.

2. Main result. As indicated in section 1 we discuss regularization in the form
of

xα,δ := gα(A∗A)A∗yδ.

More formally, given any bounded operator A:X → Y , the operator A∗A acts in Y ,
and we assume it has a norm bound ‖A∗A‖ ≤ a. By spectral calculus, each bounded
(Borel-measurable) function defined on (0, a] taking real values can be assigned a
respective function taking nonnegative operators to self-adjoint ones. Therefore we
may and do identify gα with its real-valued function. In terms of real functions gα
the requirements can be expressed as follows.

Definition 2.1 (see [9, 6]). A family gα, 0 < α ≤ a, of bounded (Borel-
measurable) functions is called regularization if there are constants γ∗ and γ for which

sup
0<λ≤a

|1 − λgα(λ)| ≤ γ, 0 < α ≤ a,

and

sup
0<λ≤a

√
λ |gα(λ)| ≤ γ∗√

α
, 0 < α ≤ a.(2.1)

The regularization gα is said to have qualification ρ, for an increasing function ρ :
(0, a] → R+, if sup0<λ≤a |1 − λgα(λ)| ρ(λ) ≤ γρ(α), 0 < α ≤ a.

Remark 1. The above notion of qualification extends the usual one, where the
functions ρ are restricted to monomials ρ(t) := tµ for 0 < µ < ∞. The analysis of
regularization methods in this general framework was carried out in [6]. The results
of that study are not a prerequisite for the present discussion, but the ideas also rely
on geometric concepts.

The main objective in this study is saturation, which is made precise as follows.
Definition 2.2. A family gα, 0 < α ≤ a, is said to have saturation ψ, for a

certain function ψ: [0, a] → R+, if for all 0 �= x ∈ X there are δ(x) > 0 and a constant

c := c(x) > 0 such that inf0<α≤a
e(x,gα,δ)
ψ(δ) ≥ c for 0 < δ ≤ δ(x).

Remark 2. The above notion is consistent with and formalizes the usual approach.
For instance, Theorem 3.1 in [8] may be rephrased as follows: The rate of Tikhonov
regularization cannot exceed δ2/3 as δ → 0, regardless of the choice of regularization
parameter and regardless of the actual smoothness of x �= 0.

We shall reprove this result within a general framework.
The main result in this study is as follows.
Theorem 2.3. Suppose regularization α→ gα is chosen such that
(i) for some c > 0 the following lower bound is valid:

sup
0<λ≤a

√
λ |gα(λ)| ≥ c√

α
, 0 < α ≤ a;(2.2)
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(ii) for some increasing function ρ, the regularization has maximal qualification
ρ; i.e., for all 0 < λ ≤ a there is c := c(λ) > 0 for which

inf
0<α≤a

|1 − λgα(λ)|
ρ(α)

≥ c;(2.3)

(iii) for all 0 < α ≤ a the functions

λ −→ |1 − λgα(λ)|2 , 0 < λ ≤ a,(2.4)

are convex.
Let Θ(t) :=

√
tρ(t), t > 0. Then gα has saturation ρ ◦ Θ−1; i.e., there is c > 0 for

which inf0<α≤a
e(x,gα,δ)
ρ(Θ−1(δ)) ≥ c‖x‖.

Let us comment on the assumptions. The bound in (2.2) serves as a normalization
for the choice of the regularization parameter α and is related to (2.1).

The second assumption (2.3) is related to the qualification. Assumption (2.4) in
[7] is a similar condition for the case of saturation of power type.

However, to prove saturation in [7], this assumption has to be accompanied by
an additional set ((2.5)–(2.9)) of technical ones. In this paper we clearly indicate a
geometric assumption (2.4), which seems to be responsible for saturation.

Last, the function Θ from above actually controls the best possible accuracy
under the a priori smoothness assumption related to ρ. So, if the regularization has
qualification ρ and the actual smoothness is just or not covered by ρ, then δ →
ρ(Θ−1(δ)) yields the best possible accuracy; see [6] for details.

Finally, as seen from the proof, the constant c in the saturation bound depends
on x only through the quotient ‖Ax‖/‖x‖.

The proof is based on the following two lemmas.
Lemma 2.4. Let ρ: (0, a] → R+ be any increasing function. For all 0 < α, δ ≤ a

we have

max
{
ρ(α), δ/

√
α
} ≥ ρ(Θ−1(δ)).(2.5)

Proof. By assumption, the function Θ is increasing, and limt→0 Θ(t) = 0. There-
fore, we may let β := Θ−1(δ). Then (2.5) can be rewritten as

max
{
ρ(α),

√
β/αρ(β)

}
≥ ρ(β).

The latter inequality can easily be verified by distinguishing the two cases α ≤ β and
α > β.

Lemma 2.5 (Peierls–Bogolyubov [1, Problem IX.8.14]). Suppose ϕ : [0, a] → R+

is bounded measurable such that ϕ2 is convex. Then ‖x‖ϕ(
‖Ax‖2

‖x‖2 ) ≤ ‖ϕ(A∗A)x‖.
Proof. The operator A∗A admits a spectral family (Eλ)λ∈(0,a] for which

‖Ax‖2 = 〈A∗Ax, x〉 =

∫
λd〈Eλx, x〉, x ∈ X.

Because
∫
d〈Eλx, x〉 = ‖x‖2 we can use Jensen’s inequality to conclude that

ϕ2

(‖Ax‖2

‖x‖2

)
= ϕ2

(
1

‖x‖2

∫
λd〈Eλx, x〉

)
≤ 1

‖x‖2

∫
ϕ2(λ)d〈Eλx, x〉 =

‖ϕ(A∗A)x‖2

‖x‖2
.
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The proof is complete.
Remark 3. We note that the above inequality is a special case of an interpolation

type inequality, which was established in [4]. For more details we refer the reader
to [5].

We are now ready to prove Theorem 2.3.
Proof. For each fixed α and δ we consider the function ē:X × Y → R+, given by

(x, ξ) → ē(x, gα, δξ) := ‖(I − gα(A∗A)A∗A)x− δgα(A∗A)A∗ξ‖.(2.6)

Furthermore, we shall exploit the following fact: For any x, y ∈ X it holds that
max {‖x+ y‖, ‖x− y‖} ≥ ‖x‖. By symmetry, for fixed x we have

e(x, gα, δ) ≥ max {ē(x, gα, δξ), ē(x, gα,−δξ)} ≥ ‖(I − gα(A∗A)A∗A)x‖.
Also, by similar reasoning, for fixed ξ

max {ē(x, gα, δξ), ē(−x, gα, δξ)} ≥ δ‖gα(A∗A)A∗ξ‖.
Since

e(x, gα, δ) ≥ max
‖ξ‖≤1

max {ē(x, gα, δξ), ē(−x, gα, δξ)} ,

we arrive at e(x, gα, δ) ≥ max {‖(I − gα(A∗A)A∗A)x‖, δ‖gα(A∗A)A∗:Y → X‖} . Us-
ing the convexity assumption for (2.4) and Lemma 2.5 we deduce with λ̄ := ‖Ax‖/‖x‖
that

‖(I − gα(A∗A)A∗A)x‖ ≥ ‖x‖ ∣∣1 − λ̄2gα(λ̄2)
∣∣ .

By assumption (2.3), we can find c > 0 for which

‖(I − gα(A∗A)A∗A)x‖ ≥ c‖x‖ρ(α).

Finally, assumption (2.2) allows us to determine c′(x) for which

e(x, gα, δ) ≥ c′(x) max
{
ρ(α), δ/

√
α
}
.

Applying Lemma 2.4 allows us to complete the proof.
It may not be clear from the very beginning whether ρ from (2.3) exists. This

can be clarified under an additional monotonicity assumption. For this purpose it
is convenient to introduce the function r: (0, a] × (0, a] → R as r(α, λ) := rα(λ) :=
1 − λgα(λ).

Corollary 2.6. Let regularization gα be chosen such that (2.2) is satisfied. If

1. for all α the function λ→ |rα(λ)|2 is convex and
2. for all λ the function α→ |rα(λ)| is nondecreasing,

then the function α→ ρ(α) := inf0<λ≤a |rα(λ)| is nondecreasing and obeys (2.3), with
constant c = 1.

Thus gα has saturation at ρ ◦ Θ−1, precisely, e(x, gα, δ) ≥ ‖x‖ρ(Θ−1(cδ/‖x‖)),
with c from (2.2).

Proof. We need only to show that ρ is nondecreasing and obeys (2.3) with constant
1. Plainly, for α < β we have

ρ2(α) ≤ sup
ξ≤β

ρ2(ξ) = sup
ξ≤β

inf
0<λ≤a

|rξ(λ)|2

≤ inf
0<λ≤a

sup
ξ≤β

|rξ(λ)|2 = inf
0<λ≤a

|rβ(λ)|2 = ρ2(β).

Moreover, by construction, for all α, λ it holds that |rα(λ)|/ρ(α) ≥ 1, which allows us
to complete the proof.
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3. Examples. We close our investigation with several examples. It is easy to
see that Examples 1–3 below also obey the assumptions made in Corollary 2.6.

Example 1. Tikhonov regularization gα(λ) := 1/(α + λ) obeys the assumptions
of the theorem with ρ(α) = α. Therefore, for each x �= 0 it holds that e(x, gα, δ) ≥
cδ2/3, as δ → 0.

Example 2. n-fold iterated Tikhonov regularization, corresponding to

gnα(λ) := 1/λ

(
1 −

(
α

α+ λ

)n)
,

allows us to apply the theorem with ρ(α) = αn, since for each λ there is c′(λ), where(
α

α+ λ2

)n
≥ c′αn.

Thus it has maximal qualification ρ(α) = αn, and hence saturation at ψ(δ) :=
δ2n/(2n+1).

It is interesting to see that regularization with infinite qualification in the classical
sense may have saturation. We exhibit this in the following example.

Example 3. Landweber iteration gα(λ) := 1/λ
(
1 − (1 − µλ)1/α

)
, where µ < 1/a

and 1/α ≥ 1, corresponding to the number of iterations greater than or equal to 1,
has maximal qualification ρκ(α) := exp(−κ/α) for some positive κ. Therefore, it can
be seen that it has saturation at ψ(δ) := δ(log(1/δ))1/2κ.

This example shows that even powerful regularization still may not allow us to
regularize very mildly ill-posed problems properly.

If there is no maximal qualification, then the saturation phenomenon need not
occur.

Example 4. The spectral cut-off, which is defined as

gα(λ) :=

{
1/λ, α ≤ λ ≤ a,
0, 0 < λ < α,

has arbitrary qualification. More specifically, |1 − λgα(λ)| = 0, provided that α < λ.
Therefore, there is no maximal qualification in the sense of (2.3). Also, the convexity
assumption for (2.4) is violated. Thus, if, for example, the element x has a finite
expansion in u1, u2, . . . , say of length n, then the spectral cut-off has error of the
order δ, which clearly is best possible, if only δ ≤ sn and α = a. This can be seen
using the representation of the error as presented in (2.6). We refer the reader to [6]
for more details on the behavior of the spectral cut-off.
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Abstract. Strong-stability-preserving Runge–Kutta (SSPRK) methods are a specific type of
time discretization method that have been widely used for the time evolution of hyperbolic partial
differential equations (PDEs). Under a suitable stepsize restriction, these methods share a desirable
nonlinear stability property with the underlying PDE, e.g., stability with respect to total variation,
the maximum norm, or other convex functionals. This is of particular interest when the solution
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order greater than 4. In this paper, we give a systematic treatment of explicit SSPRK methods with
general (i.e., possibly negative) coefficients up to order 5. In particular, we show how to optimally
treat negative coefficients (corresponding to a change in the upwind direction of the spatial discretiza-
tion) in the context of effective CFL coefficient maximization and provide proofs of optimality of
some explicit SSPRK methods of orders 1 to 4. We also give the first known explicit fifth-order
SSPRK schemes and show their effectiveness in practice versus more well-known fifth-order explicit
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1. Introduction. Solutions to hyperbolic partial differential equations (PDEs)
are commonly approximated by sequentially discretizing the spatial and temporal
derivatives. For example, in the method of lines, a discretization of the spatial deriva-
tives of the PDE is carried out to produce a large set of coupled time-dependent
ordinary differential equations (ODEs). These ODEs can then be treated by suitable
time-stepping techniques such as linear multistep or Runge–Kutta methods.

In the numerical solution of hyperbolic PDEs, difficulties may arise due to the
presence of shock waves or other discontinuous behavior. In particular, the numerical
solution to such problems often suffers from spurious oscillations or overshoots. This
usually represents unphysical behavior, and it is almost always desirable to use a
numerical method that suppresses it. One of the first families of such schemes were
called total variation diminishing (TVD); see [22, 21]. Following more recent work
[4], we refer to them as strong stability preserving (SSP).

In particular, we are interested in the development, analysis, and optimization of
SSP Runge–Kutta (SSPRK) time-stepping methods for the hyperbolic conservation
law

ut + f(u)x = 0(1.1)
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subject to appropriate initial conditions. When a SSPRK method with nonnegative
coefficients is used it is convenient to consider a semidiscretization of (1.1) in space
to yield a large coupled set of ODEs:

U̇ = F (U).(1.2)

More generally, following [22, 21, 3, 4], upwind-biased (F (U)) and downwind-biased
(F̃ (U)) spatial discretizations may be applied in some combination to achieve favor-
able nonlinear stability properties for a given time-stepping scheme. For simplicity
we refer to upwind-biased and downwind-biased spatial discretizations as upwind and
downwind spatial discretizations, respectively.

Optimal explicit SSPRK schemes with nonnegative coefficients and where the
number of stages s is equal to the order p for s = p = 1, 2, and 3 have been known
for some time. Gottlieb and Shu [3] showed that no such method exists with non-
negative coefficients when s = p = 4. In [25], Spiteri and Ruuth proposed a new
class of explicit SSPRK methods with nonnegative coefficients with s > p. They gave
optimal explicit SSPRK schemes with s stages and orders 1 and 2 (see also [21, 3]),
as well as specific schemes for p = 3, s = 4, 5 and p = 4, s = 5. The advantage
afforded by these high-stage schemes is that the increase in the CFL coefficient allows
for a large enough increase in the stable time step to more than offset the increase in
computational cost per step. However, in [20] they showed that it was impossible to
have an explicit SSPRK method with order greater than 4 with nonnegative coeffi-
cients. In this paper, we give a unified treatment of all explicit SSPRK schemes with
positive and/or negative coefficients of up to order 5 in terms of the effective CFL
coefficient. We find that many of the optimal explicit SSPRK methods under the
constraint of nonnegative coefficients are also optimal in terms of the effective CFL
coefficient when negative coefficients are allowed. We also present the first fifth-order
explicit SSPRK methods.

We remark that explicit fifth-order SSP multistep schemes have been successfully
constructed [21, 13, 4]. The most efficient scheme of this type that explicitly appears
in the literature [21] is

Un+1 =
7

20
Un +

3

10
Un−1 +

4

15
Un−2 +

7

120
Un−4 +

1

40
Un−5 +

291201

108000
F (Un)

− 198401

86400
F̃ (Un−1) +

88063

43200
F (Un−2) − 17969

43200
F̃ (Un−4) +

73061

432000
F (Un−5).(1.3)

This six-step scheme involves evaluations of both upwind and downwind operators
and has an effective CFL coefficient of 0.065. In this paper we construct explicit
SSPRK methods with up to a 325% improvement in the effective CFL coefficient over
this scheme. Comparable gains are also shown to arise in practice.

We further note that in this paper we deal with explicit Runge–Kutta methods
where the number of stages s can be substantially larger than the order p. These
methods are optimized with respect to the effective CFL coefficient, which is a the-
oretical measure of the stepsize restriction required for nonlinear stability. Although
perhaps similar at first glance, this is not in general related to maximizing the area of
the (linear) stability region of a Runge–Kutta method; see [3] for a counterexample.
For work on the optimization of the linear stability regions of explicit Runge–Kutta
methods, we refer the reader to [15] and the references therein.
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The remainder of the paper is organized as follows. In section 2 we review some
relevant results on SSP schemes as well as define important concepts such as the
effective CFL coefficient. In sections 3 and 4 we use analytical as well as numerical
techniques to find explicit SSPRK methods up to order 5 with optimal effective CFL
coefficients. In section 5 we show the efficiency of the new optimized fifth-order
explicit SSPRK methods versus the optimal fifth-order multistep method (1.3) and
a commonly used fifth-order explicit Runge–Kutta method. Finally, in section 6 we
conclude by summarizing the main findings of the paper.

2. Background on SSP schemes. In this section we give some theoretical
background on SSPRK schemes. We begin by recalling the definition of strong sta-
bility.

Definition 2.1. A sequence {Un} is said to be strongly stable in a given
seminorm || · || if ||Un+1|| ≤ ||Un|| for all n ≥ 0.

Strong stability turns out to have an interesting relationship to the more classical
concept of contractivity (see, e.g., [23, 7, 8]). In this case for equations (1.2) satisfying
a one-sided Lipschitz condition, we have that the distance between all exact solutions
starting from different initial conditions is nonincreasing in time. It is reasonable to
then require the same property of the numerical solution; i.e., ||Ũn+1 − Un+1|| ≤
||Ũn − Un|| for all n ≥ 1. In classical stability analysis, Ũn is usually assumed to
be a perturbation of Un. It is interesting that many of the optimal SSP schemes
found in [25] agree with optimal contractive schemes in [8]. In fact, recent work by
Ferracina and Spijker [2] for schemes with positive coefficients shows that the stepsize
coefficient C (see below) for strong stability is equivalent to the related quantity
R(A, b) [8] arising in contractivity studies.

To begin our analysis, assume that upwind spatial discretizations are appropriate,
and consider an s-stage, explicit Runge–Kutta method written in the form

U (0) = Un,(2.1a)

U (i) =

i−1∑
k=0

(αikU
(k) + ∆tβikF (U (k))), i = 1, 2, . . . , s,(2.1b)

Un+1 = U (s),(2.1c)

where all the αik ≥ 0 and αik = 0 only if βik = 0 [21].

For consistency, we must have that
∑i−1
k=0 αik = 1, i = 1, 2, . . . , s. Hence, if

both sets of coefficients αik, βik are nonnegative, then (2.1) is a convex combination
of forward Euler steps with various step sizes βik

αik
∆t. The strong stability property

follows easily from this observation.
The Runge–Kutta scheme (2.1) is not written in standard Butcher array form;

however, the representation (2.1) maps uniquely to a Butcher array. On the other
hand, written in this form, it is particularly convenient to make use of the following
result [22, 4].

Theorem 2.2. If the forward Euler method is strongly stable under the CFL
restriction ∆t ≤ ∆tFE, then the Runge–Kutta method (2.1) with βik ≥ 0 is SSP,
provided

∆t ≤ C∆tFE ,

where C is the CFL coefficient

C ≡ min
i,k

αik
βik

.
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SSPRK schemes with negative coefficients βik are also possible with the appropri-
ate interpretation. Following the procedure first suggested in [21], whenever βik < 0,
the operator F̃ (·) is used instead of F (·), where F̃ (·) approximates the same derivatives
as F (·) but is assumed to be strongly stable for Euler’s method solved backwards in
time under a suitable time-step restriction. In practice, this corresponds to a change
in upwinding direction or, in other words, downwinding. This allows the following
generalization of Theorem 2.2.

Theorem 2.3. Let Euler’s method applied forward in time combined with the
spatial discretization F (·) be strongly stable under the CFL restriction ∆t ≤ ∆tFE.
Let Euler’s method applied backwards in time combined with the spatial discretization
F̃ (·) also be strongly stable under the same CFL restriction ∆t ≤ ∆tFE. Then the
Runge–Kutta method (2.1) is SSP, provided

∆t ≤ C∆tFE ,

where C is the CFL coefficient

C ≡ min
i,k

αik
|βik| ,(2.2)

where βikF (·) is replaced by βikF̃ (·) whenever βik is negative.
We note that the assumptions on strong stability of Euler’s method applied for-

ward and backwards in time restrict the theoretical advantages of this result to nondis-
sipative equations such as (1.1).

Irreducible explicit Runge–Kutta methods have one (new) function evaluation per
stage. We note that if every coefficient βik is positive, then the number of stages is
trivially equal to the number of function evaluations. However, if both F (U (k)) and
F̃ (U (k)) are required for some k, the Runge–Kutta method (2.1) has more function
evaluations1 than stages. So the first step in creating a fair comparison of the com-
putational cost of a given Runge–Kutta method and in deriving optimal schemes is
to consider general methods that allow only one (new) function evaluation per stage.
A necessary and sufficient condition for this is that the nonzero coefficients βik for a
given k are all of the same sign. To see this, let K− be the set of levels k such that
all βik ≤ 0, and we consider

U (0) = Un,

U (i) =

i−1∑
k=0

αikU
(k) + ∆t

{
βikF̃ (U (k))), k ∈ K−,
βikF (U (k))) otherwise,

i = 1, 2, . . . , s− 1,(2.3)

Un+1 = U (s).

For the remainder of the paper, we will tacitly assume that the schemes under con-
sideration are of this form. Naturally, schemes that are written combining positive
and negative coefficients βik within a given level k can be augmented with additional
stages to be of this form. Thus, without loss of generality, we have that the total

1The only difference between F̃ (·) and F (·) is a change in the upwind direction; so F̃ (·) can
clearly be computed with the same cost as F (·) [4]. Indeed, recent studies make the assumption
that if both F̃ (U(k)) and F (U(k)) must be computed for some k, the cost, as well as the storage
requirements for that k, doubles [3, 4, 25, 17]; i.e., each is given equal weight.
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number of evaluations of F (·) and F̃ (·) is identically equal to the number of stages of
the method.

We note that this formulation allows one to search for the optimal scheme for
a given order and a given number of stages (function evaluations). This is a more
appropriate description of what should be optimized than has been considered in
the literature thus far. For example, searching for the scheme with the largest CFL
coefficient (or even effective CFL coefficient, see below) for a given order results in
the number of stages tending to infinity.

Another advantage to this formulation is that schemes can be represented and
implemented in Butcher array form using (3.6) since differences of the form F (U (i))−
F̃ (U (i)) do not arise; i.e., the method can be implemented as

Ki =

⎧⎪⎨⎪⎩
F
(
Un + ∆t

∑i−1
j=1 aijKj

)
if bi ≥ 0,

F̃
(
Un + ∆t

∑i−1
j=1 aijKj

)
otherwise,

i = 1, 2, . . . , s,

Un+1 = Un + ∆t

s∑
i=1

biKi.

This form is often desirable for implementing fifth-order schemes because the storage
requirements can be reduced. We further remark that the differences F (U (i))−F̃ (U (i))
contribute to artificial dissipation and smearing. For example, this difference is pro-
portional to the discrete Laplacian when first-order upwinding is applied to the linear
advection equation. A natural consequence of our formulation is that during opti-
mization these dissipative differences do not arise, leading to schemes with smaller
errors and less smearing than would otherwise occur.

In section 5, we compare the computational efficiencies of various Runge–Kutta
methods. In order to make a fair comparison of the relative efficiencies of these
methods and to derive optimal schemes we make the following definition.

Definition 2.4. The effective CFL coefficient Ceff of an SSPRK method is C/s,
where C is the CFL coefficient of the method and s is the number of stages (function
evaluations) required for one step of the method.

As conjectured in Shu and Osher [22] and subsequently proven in Gottlieb and
Shu [3], the optimal two-stage, order-two explicit SSPRK scheme with nonnegative
coefficients is the modified Euler scheme:

U (1) = Un + ∆tF (Un),

Un+1 =
1

2
Un +

1

2
U (1) +

1

2
∆tF (U (1)).

It has a CFL restriction ∆t ≤ ∆tFE , which implies a CFL coefficient of 1. Hence-
forth, we will refer to this scheme as SSP(2,2). In general, we adopt the conven-
tion of referring to the best (in terms of effective CFL coefficient) known s-stage,
order-p explicit SSPRK scheme as SSP(s,p), where s is equal to the total number
of function evaluations of F (·) and F̃ (·). In [25] a class of s-stage, order-two ex-
plicit SSPRK schemes was given and proved to be optimal with a CFL coefficient of
s− 1.
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Shu and Osher [22] also conjectured that the optimal three-stage, order-three
explicit SSPRK scheme with nonnegative coefficients is

U (1) = Un + ∆tF (Un),

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tF (U (1)),

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tF (U (2)),

which has a CFL coefficient of 1 as well. The optimality of this scheme was later
proved by Gottlieb and Shu [3]. This scheme is commonly called the third-order TVD
Runge–Kutta scheme, but we will refer to it as SSP(3,3).

In [20], Ruuth and Spiteri derived a linear bound that can be used to prove
that the optimal four-stage, order-three explicit SSPRK scheme with nonnegative
coefficients is

U (1) = Un +
1

2
∆tF (Un),

U (2) = U (1) +
1

2
∆tF (U (1)),

U (3) =
2

3
Un +

1

3
U (2) +

1

6
∆tF (U (2)),

Un+1 = U (3) +
1

2
∆tF (U (3)),

which has a CFL coefficient of 2. This observation appears in [25]. Following [25] we
will refer to this scheme as SSP(4,3).

Moving on to methods with five stages and order 3 gives a numerically optimized
scheme, SSP(5,3), with a CFL coefficient of approximately 2.65. It can be proven
that this is also the optimal explicit SSPRK scheme with five stages and order 3
via the following line of reasoning. The CFL coefficient C of SSP(5,3) is equal to
the radius of absolute monotonicity R(A, b) for linear constant-coefficient problems
[7]. Because C ≤ R(A, b) [2] and C (and R(A, b)) for nonlinear problems cannot
exceed that for linear problems, we conclude that SSP(5,3) is the optimal five-stage,
third-order explicit SSPRK scheme. A similar line of reasoning can be applied to
prove the optimality of SSP(3,3), SSP(4,3), as well as the first- and second-order SSP
schemes. Indeed, we have produced schemes of the form SSP(s,3), s ≤ 9, with CFL
coefficients equal to R(A, b) for linear constant-coefficient problems; hence they are
also optimal SSP schemes for nonlinear problems. It is worth mentioning, however,
that this approach does not seem to be useful for proving the optimality of schemes
of order greater than 3.

The main advantage offered by these high-stage schemes is that the additional
computational cost incurred per step is more than offset by the increase in stable
step size. For example, SSP(4,3) costs 33% more than SSP(3,3) but offers a 100%
larger CFL coefficient. Thus for SSP(4,3), Ceff = 2/4 = 1/2, whereas for SSP(3,3),
Ceff = 1/3. This translates into a (1/2 − 1/3)/1/3 = 50% increase in computational
efficiency.

In [3], Gottlieb and Shu proved that it is impossible to have an explicit SSPRK
method of order 4 in four stages having only nonnegative coefficients.2 In section 3.3

2We remark that a proof that it is also impossible to have a fourth-order explicit Runge–Kutta
method with four stages and R(A, b) > 0 appeared earlier and independently of this [8].
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we prove the stronger result that it is in fact impossible to obtain an explicit SSPRK
method of order 4 with any four (general) function evaluations. In [25] a five-stage,
order-four explicit SSPRK scheme with nonnegative coefficients is given. It turns
out that this scheme coincides with Kraaijevanger’s optimal five-stage, order-four
contractive scheme [8, 2]. A further study of explicit SSPRK methods of order 4 and
s = 6, 7, 8 stages can be found in [24]. For the examples investigated in that paper,
it was found that the increased stage number did lead to noteworthy improvements
in practical performance. It is also worth mentioning that these high-stage schemes
have modest storage requirements.

In [20] it is shown that explicit SSPRK schemes with nonnegative coefficients do
not exist with order greater than 4. A similar restriction to orders 4 or less was proven
for contractive schemes [8]. This means that the search for explicit schemes of order 5
and higher must involve evaluations of the downwinded operator F̃ (·). In the remain-
der of the paper we present a unified treatment of explicit SSPRK schemes that use
both upwinded and downwinded operators in terms of the effective CFL coefficient
and prove the optimality of several lower-order schemes.

In section 4 we give the first fifth-order explicit SSPRK methods, optimized
in terms of the effective CFL coefficient. A fifth-order explicit SSPRK method in
the form (2.1) was thought to have been found in [22], based on a fifth-order ex-
plicit Runge–Kutta scheme on page 143 of [9], which was in turn based on a par-
ticular choice from a family of fifth-order explicit Runge–Kutta schemes that ap-
peared in [12]. The family of schemes in question is described by the Butcher
tableau

0 0 0 0 0 0 0

γ γ 0 0 0 0 0

1
4

1
4 − 1

32 γ
−1 1

32 γ
−1 0 0 0 0

1
2

1
2 − 32σ − 1

8
1−64σ
γ

1
8

1−64σ
γ 32σ 0 0 0

3
4 − 9

16 + 24σ − 6σ− 3
16

γ

6σ− 3
16

γ
3
4 − 24σ 9

16 0 0

1 11
7 − 384

7 σ − 1
7

7
2−96σ

γ
1
7

7
2−96σ

γ
384
7 σ − 12

7
8
7 0

7
90 0 16

45
2
15

16
45

7
90

.(2.4)

Unfortunately, although this family of explicit Runge–Kutta schemes (2.4) is in-
deed fifth order, there is an error in the particular member of this family upon which
the reported fifth-order explicit SSPRK method was based. This proposed scheme
has coefficient matrix A given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

1
2 0 0 0 0 0

1
8

1
8 0 0 0 0

0 0 1
2 0 0 0

0 − 3
16

3
8

9
16 0 0

1
7

4
7

6
7 − 12

7
8
7 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This scheme was meant to correspond to the particular choice of σ = 1
64 and (arbi-

trary) γ = 1
2 . However, it is easily verified that this scheme does not belong to the
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family of explicit fifth-order schemes (2.4), differing in the coefficients a31 and a32.
In fact it is only second order ; e.g., it is easily seen that the third-order condition
bTAc = 1

6 is not satisfied.

3. Optimal SSPRK methods. In this section we prove some optimality results
in terms of the effective CFL number for some low-order explicit SSPRK methods
(p = 1, 2, 3). Optimal schemes for high-order methods (p = 4, 5) are determined
numerically. We begin by describing the form of the optimization problem solved
in all cases. We then prove some existence and optimality results for some explicit
SSPRK methods of up to order 4. Section 4 contains some numerical results for the
first explicit SSPRK methods of order 5.

3.1. Formulation of the optimization problem. We seek to optimize an
s-stage, order-p explicit SSPRK scheme by maximizing its effective CFL coefficient
according to Theorem 2.3. That is, we seek the global maximum of the nonlinear
programming problem

max
(αik,βik)

min
αik
|βik| ,(3.1)

where αik, βik, k = 0, 1, . . . , i − 1, i = 1, 2, . . . , s, are real and 0 ≤ αik ≤ 1. As
noted in section 2, we insist that for each k and i = k+ 1, k+ 2, . . . , s that βik ≥ 0 or
βik ≤ 0 to ensure that the number of function evaluations corresponds to the number
of stages. The case αik = βik = 0 is defined as NaN in the sense that it is not included
in the minimization process if it occurs. The objective function (3.1) is also subject
to the constraints

i−1∑
k=0

αik = 1, i = 1, 2, . . . , s,(3.2)

s∑
j=1

bjΦj(t) =
1

γ(t)
, t ∈ Tq, q = 1, 2, . . . , p.(3.3)

Here the functions Φj(t) are nonlinear constraints that are polynomial in αik, βik
and that correspond to the order conditions for a Runge–Kutta method to be of
order p (see, e.g., [5]); i.e., Tq stands for the set of all rooted trees of order equal to
q. The number of constraints represented by the Runge–Kutta order conditions is
equal to

p∑
q=1

card(Tq),

where card(Tq) is the cardinality of Tq. Also, we use the notation bj in the usual
sense of the Butcher array representation of a Runge–Kutta method; again this would
be a polynomial function of the coefficients αik and βik. It can be expected that
the particular choice of coefficients αik, βik that maximizes the quantity (2.2) for a
given Runge–Kutta method will be naturally produced by the solution to this non-
linear programming problem; hence the result will be a sharp estimate of the CFL
coefficient.

However, this formulation of the nonlinear programming problem does not lend
itself easily to numerical solution; see [25] for further discussion. By introducing a
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dummy variable z, the nonlinear programming problem can be reformulated as

max
(αik,βik)

z(3.4a)

subject to

αik ≥ 0,(3.4b)

βk+1,k, βk+2,k, . . . , βsk ≥ 0,(3.4c)

or βk+1,k, βk+2,k, . . . , βsk ≤ 0, k = 0, . . . , s− 1,
i−1∑
k=0

αik = 1, i = 1, 2, . . . , s,(3.4d)

s∑
j=1

bjΦj(t) =
1

γ(t)
, t ∈ Tq, q = 1, 2, . . . , p,(3.4e)

αik − z|βik| ≥ 0, k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s.(3.4f)

Numerical optimization software may be applied to the reformulated problem
(3.4) for various combinations of s and p. In our initial approach we considered using
Matlab’s Optimization Toolbox but found that it was nontrivial to determine an initial
guess to start the nonlinear iteration. Subsequent efforts focused on BARON [26], a
deterministic, global optimization software package that uses algorithms of the branch-
and-bound type. This approach was found to be superior to Matlab’s Optimization
Toolbox in the sense that it is faster, gives improved optima, and satisfies active
constraints to 15 decimal digits.

In each of the cases s = 7, 8, 9 numerically optimal fifth-order SSPRK schemes
were found in less than 90 minutes on a (shared) cluster of 96 dual 1.2 GHz Athlon
processors with BARON. See [19] for further details on applying BARON to the
optimization of SSPRK schemes.

3.2. Optimality of some low-order methods. We now give new results on
optimal effective CFL coefficients for some low-order explicit SSPRK methods. Pre-
vious results primarily focus on optimizing raw CFL coefficients for methods with
nonnegative coefficients. Here we give existence and optimality results in the con-
text of effective CFL coefficients for methods with no sign restriction on their coeffi-
cients.

Theorem 3.1. For s = 1, 2, 3, . . . , the optimal s-stage explicit SSPRK method of
order 1 has effective CFL coefficient 1 and can be represented in the form of SSP(s, 1);
i.e.,

αik =

{
1, k = i− 1,
0 otherwise,

βik =

{ 1
s , k = i− 1,

0 otherwise,
i = 1, 2, . . . , s.

Before giving the proof of Theorem 3.1, we introduce the following notation and
give two useful lemmas. We find it convenient to write the general s-stage explicit
Runge–Kutta method in the following form (cf. [3]):

U (0) = Un,(3.5a)

U (i) = U (0) + ∆t

i−1∑
k=0

κik

{
F (U (k)) if κik ≥ 0,

F̃ (U (k)) otherwise,
i = 1, 2, . . . , s,(3.5b)

Un+1 = U (s).(3.5c)
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Using the fact that the βik at a particular level are all of the same sign, the coefficients
κik are related to the coefficients αik, βik recursively by

κik = βik +

i−1∑
j=k+1

αijκjk.(3.6)

We remark that the coefficients κik can be related to the Butcher array quantities
aik, bk by

aik = κi−1,k−1, k = 1, 2, . . . , i− 1, i = 1, 2, . . . , s− 1,

bk = κs,k−1, k = 1, 2, . . . , s.

It is also important to note that sgn(κik) = sgn(βik), motivating the use of (3.5).
Lemma 3.2. If a method of the form (2.1) with αik ≥ 0 has a CFL coefficient

c ≥ m > 0, then 0 ≤ |κik| ≤ 1
m for all k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s.

Proof. From Theorem 2.3, if c ≥ m > 0, then αik ≥ m|βik| or, equivalently,
|βik| ≤ 1

m αik for all i, k such that αik �= 0.
Now

αik ≥ 0,

i−1∑
k=0

αik = 1, i = 1, 2, . . . , s, ⇒ αik ≤ 1

for all i, k. Hence, |βik| ≤ 1
m for all i, k. In particular, |κ10| = |β10| ≤ 1

m for any
valid explicit SSPRK method.

We now proceed by induction on stage � of an s-stage method. Assume |κij | ≤ 1
m

for j = 0, 1, . . . , � − 1; i = 1, 2, . . . , �. (We have just shown that this result holds for
� = 1.) Now consider stage (� + 1) of a valid explicit SSPRK method; i.e., consider
coefficients κ�+1,k for k = 0, 1, . . . , � with

�∑
k=0

α�+1,k = 1.

Then, using (3.6),

|κ�+1,0| =

∣∣∣∣∣
�∑

k=1

α�+1,kκk0 + β�+1,0

∣∣∣∣∣
≤

�∑
k=1

α�+1,k|κk0| + |β�+1,0|

≤ 1

m

�∑
k=1

α�+1,k +
1

m
α�+1,0

=
1

m
.

Similar arguments can be used to show |κ�+1,j | ≤ 1
m for j = 1, 2, . . . , �. The lemma

now follows by induction.
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Lemma 3.3. Suppose a consistent s-stage explicit SSPRK method (2.1) has coef-
ficients βik ≤ 0 at � distinct stages; i.e., βik ≤ 0 for all i and k = k1, k2, . . . , k� with
0 ≤ k1 < k2 < · · · < k� ≤ s − 1. Then the CFL coefficient C of the method satisfies
C ≤ s− �.

Proof. Because the method is consistent, we have

s−1∑
k=0

κsk = 1.(3.7)

But by the definition of κik it is clear that κsk1 , κsk2 , . . . , κsk� ≤ 0. Thus

s−1∑
k=0

k �=k1,k2,...,k�

κsk ≥ 1.(3.8)

The desired result C ≤ s − � now follows immediately from applying Lemma 3.2 to
(3.8).

Proof of Theorem 3.1. For nonnegative coefficients {βik} the result for the raw
CFL coefficient has been shown in [25]. By Lemma 3.3, a method containing any
βik < 0 must have a CFL coefficient C ≤ s− 1 < s, and thus we must have Ceff < 1.
This completes the proof.

Remark 1. As noted in [25], despite the increase in the raw CFL coefficient, these
first-order methods do not offer a theoretical computational advantage.

Theorem 3.4. For s = 2, 3, 4, . . . , the optimal s-stage explicit SSPRK method
of order 2 has effective CFL coefficient s−1

s and can be represented in the form of
SSP(s, 2); i.e.,

αik =

{
1, k = i− 1,
0 otherwise,

βik =

{
1
s−1 , k = i− 1,

0 otherwise,
i = 1, 2, . . . , s− 1,

αik =

⎧⎨⎩
1
s , k = 0,
s−1
s , k = s− 1,

0 otherwise,
βik =

{
1
s , k = s− 1,
0 otherwise,

i = s.

Proof. For nonnegative coefficients {βik} the result for the raw CFL coefficient
has been shown in [25]. By Lemma 3.3, any consistent, s-stage method with some
βik < 0 must have a CFL coefficient C ≤ s − 1, and thus we must have Ceff ≤ s−1

s .
This completes the proof.

Remark 2. As noted in [25], in this case the theoretical increase in the raw
CFL coefficient more than offsets the increased work per step, leading to an overall
computational advantage with increasing s. However, the effective CFL coefficient is
bounded above by 1.

We now give some specific optimality results for methods of order 3.
Theorem 3.5. The optimal three-stage explicit SSPRK method of order 3 has ef-

fective CFL coefficient Ceff = 1/3, and an optimal representation is given by
SSP(3,3).
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Proof. For nonnegative coefficients {βik} the result for the raw CFL coefficient
has been shown in [3].

Now suppose we allow βik < 0 in an attempt to improve the CFL coefficient.
From the third-order condition bTAc = 1/6, we have β10β21β32 = 1/6 > 0; so the
scheme must have βik ≤ 0 at exactly two levels. But then we may apply Lemma 3.3
to show that C ≤ 1, and hence its Ceff ≤ 1/3.

Theorem 3.6. The optimal four-stage explicit SSPRK method of order 3 has ef-
fective CFL coefficient Ceff = 2/3, and an optimal representation is given by SSP(4,3).

Proof. For nonnegative coefficients {βik} the result for the raw CFL coefficient
has been shown in [25]. By Lemma 3.3 it is clear that C ≤ 2 if the βik ≤ 0 at two or
more levels. So the only possibility for an improvement in the CFL coefficient over
SSP(4,3) is if βik ≤ 0 at precisely one level. But then by the third-order condition
bTAc = 1/6, one of the following must hold:

κ43κ32κ21 ≥ 1/6,

κ43κ32κ20 ≥ 1/6,

κ43κ31κ10 ≥ 1/6,

κ42κ21κ10 ≥ 1/6.

Supposing that the CFL coefficient is greater than 2 in any of these statements leads
to a condition of the form κ4iκijκjk ≤ 1/8, i = 2, 3, 1 ≤ j ≤ i − 1, 0 ≤ k ≤ j − 1,
by Lemma 3.2 and gives rise to a contradiction. Hence the optimal scheme must be
SSP(4,3).

3.3. A fourth-order result. In this section we demonstrate that, even allowing
negative coefficients βik, there is no four-stage explicit SSPRK method of order 4. We
begin with a lemma.

Lemma 3.7. If s = p, the βik at a particular level k, for some 0 ≤ k ≤ s − 1,
k + 1 ≤ i ≤ s, are all of the same sign, i.e., βikβjk ≥ 0 for k + 1 ≤ i, j ≤ s, and the
CFL coefficient is positive, then κik �= 0 for k + 1 ≤ i ≤ s.

Proof. From the order conditions, we have
∏p
i=1 βi,i−1 = 1

p! ; so each βi,i−1 �=
0, 1 ≤ i ≤ s. Since the CFL coefficient is positive, this implies each αi,i−1 > 0, 1 ≤
i ≤ s. Expanding κij in terms of the α and β coefficients (see, e.g., [3]) it is easily

seen that |κij | ≥ |βj+1,j

∏i−1
k=j+1 αk+1,k| > 0, proving our result.

We note that Lemma 3.7 is only relevant for s = p = 1, 2, 3, 4.3 In this section,
we will, of course, be interested specifically in the case with s = p = 4.

In proving the main result of this section, we will make extensive use of the
following lemma, which follows immediately from Lemma 3.7 and the definition of
the κij .

Lemma 3.8. If s = p, the βik at a particular level k, for some 0 ≤ k ≤ s − 1,
k + 1 ≤ i ≤ s, are all of the same sign, and the CFL coefficient is positive, then
κik, k + 1 ≤ i ≤ s are also all of that same sign and are nonzero.

We now give the main result of this section.
Theorem 3.9. There is no four-stage explicit SSPRK method of order 4 with a

positive CFL coefficient.
Proof. General case. We proceed by contradiction. If two parameters u and v

are such that u �= v, u �= 0, u �= 1/2, u �= 1, v �= 0, v �= 1, and 6uv − 4(u+ v) + 3 �= 0,

3It is possible to have schemes with s = p > 4 for linear, constant-coefficient problems.
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then the coefficients κik �= 0 may be written as functions of u and v [18]:

κ10 = u,

κ20 = v − κ21,

κ21 =
v(v − u)

2u(1 − 2u)
,

κ30 = 1 − κ31 − κ32,

κ31 =
(1 − u)[u+ v − 1 − (2v − 1)2]

2u(v − u)[6uv − 4(u+ v) + 3]
,

κ32 =
(1 − 2u)(1 − u)(1 − v)

v(v − u)[6uv − 4(u+ v) + 3]
,

κ40 =
1

2
+

1 − 2(u+ v)

12uv
,

κ41 =
2v − 1

12u(v − u)(1 − u)
,

κ42 =
1 − 2u

12v(v − u)(1 − v)
,

κ43 =
1

2
+

2(u+ v) − 3

12(1 − u)(1 − v)
.

Similar to [3], there are five possibilities to consider:
1. u < 0. If v < 0, then κ10κ40 < 0. Conversely, if v > 0, then κ10κ20 < 0. Both

results contradict Lemma 3.8.
2. 0 < u < 1

2 and v < u.
κ21κ41 > 0 implies that v < 0. But this implies κ10κ20 < 0, contradicting
Lemma 3.8.

3. 0 < u < 1
2 and v > u.

κ21κ41 > 0 requires v > 1
2 . κ20 > 0 requires v < 3u − 4u2 ≤ 9

16 . κ32κ42 > 0
and κ31κ41 > 0 require u > 2 − 5v + 4v2. Since this is a decreasing function
of v for v ≤ 9

16 , we obtain u > 2 − 5(3u− 4u2) + 4(3u− 4u2)2. Rearranging,
we find that 0 > 2((2u− 1)2 + 4u2)(2u− 1)2, which is impossible.

4. u > 1
2 and v < u. We can only have κ32κ42 > 0 in one of two ways:

(a) 1 − u > 0 and 6uv − 4(u+ v) + 3 > 0.
κ21κ41 > 0 requires 0 < v < 1

2 . Simple calculation yields

κ30 =
(2 − 6u+ 4u2) + (−5 + 15u− 12u2)v + (4 − 12u+ 12u2)v2

2uv(6uv − 4(u+ v) + 3)
;

hence κ30 > 0 requires

A+Bv + Cv2 ≡ (2 − 6u+ 4u2)

+ (−5 + 15u− 12u2)v

+ (4 − 12u+ 12u2)v2 > 0.

It is easy to show that when 1
2 < u < 1 we have A < 0, B < 0, and



HIGH-ORDER SSPRK METHODS WITH DOWNWINDING 987

C > 0. Thus for 0 < v < 1
2 we have

A+Bv + Cv2 < max

(
A,A+

1

2
B +

1

4
C

)
= max

(
A,

1

2
(1 − 2u)(1 − u)

)
< 0,

resulting in a contradiction.
(b) 1 − u < 0 and 6uv − 4(u+ v) + 3 < 0.

Suppose v < 0. Then κ10κ20 > 0 implies v < −u(4u − 3) < −u, and
κ21κ31 > 0 implies u + v − 1 − (2v − 1)2 > 0. Together these yield a
contradiction.
Now suppose v > 0. κ21κ41 > 0 implies v > 1

2 . κ31κ41 > 0 requires
u+ v − 1 − (2v − 1)2 < 0, which implies

(1 − 4v)(1 − v) = 4v2 − 5v + 1 > u− 1 > 0.

Given the restrictions on v, this is true only if v < 1
4 , contradicting the

requirement that v > 1
2 .

5. u > 1
2 and v > u. κ21κ41 > 0 requires u > 1. This implies κ42 > 0; so

by Lemma 3.8, κ32 > 0. It is now easily seen that κ10 > 0, κ21 < 0, and
κ43 > 0. Thus κ10κ21κ32κ43 < 0, contradicting the fourth-order condition
κ10κ21κ32κ43 = 1

4! .
If 6uv − 4(u+ v) + 3 = 0, u = 0, or v = 0, then this method is not fourth order [18].

Special cases. There remain three special cases [18, 5].
1. u = 1

2 , v = 0; κ42 = w �= 0, κ40 = 1
6 − w, κ41 = 2

3 , and κ43 = 1
6 .

2. u = v = 1
2 ; κ40 = 1

6 , κ42 = w �= 0, κ41 = 2
3 − w, and κ43 = 1

6 .
3. u = 1, v = 1

2 ; κ43 = w �= 0, κ41 = 1
6 − w, κ40 = 1

6 , and κ42 = 2
3 .

In these cases, κ32 is obtained from

κ43κ32 = κ42(1 − v).

The remaining coefficients κ21 and κ31 are then the solutions to the (nonsingular)
linear system

κ42κ21uv + κ43(κ31u+ κ32v) =
1

8
,

κ42κ21 + κ43κ31 = κ41(1 − u).

It is easily verified that in each case the κik fail to have the same sign at each level
whenever negative βik are considered.

4. Fifth-order explicit SSPRK methods. In this section, we give the results
of the numerical optimization procedure outlined in section 3. Examples of optimal
explicit SSPRK methods of order 4 and up to eight stages with positive coefficients
appear in [24]. We have also constructed optimal explicit SSPRK methods of order 3
and up to nine stages. Here we design the first optimized fifth-order explicit SSPRK
methods. No formal proofs of optimality are given; however, the methods described
here are the results of extensive numerical testing. We now give the coefficients of
the Butcher tableaus for SSP(7,5), SSP(8,5), and SSP(9,5) in Tables 1–3, respectively.
The Butcher tableau format is provided because this is the more advantageous format
for implementation.
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Table 1

Butcher tableau entries for SSP(7,5). The CFL coefficient is 1.178508348471858.

Entry Value

a(2, 1) 0.392382208054010
a(3, 1) 0.310348765296963
a(3, 2) 0.523846724909595
a(4, 1) 0.114817342432177
a(4, 2) 0.248293597111781
a(4, 3) 0
a(5, 1) 0.136041285050893
a(5, 2) 0.163250087363657
a(5, 3) 0
a(5, 4) 0.557898557725281
a(6, 1) 0.135252145083336
a(6, 2) 0.207274083097540
a(6, 3) −0.180995372278096
a(6, 4) 0.326486467604174
a(6, 5) 0.348595427190109
a(7, 1) 0.082675687408986
a(7, 2) 0.146472328858960
a(7, 3) −0.160507707995237
a(7, 4) 0.161924299217425
a(7, 5) 0.028864227879979
a(7, 6) 0.070259587451358
b(1) 0.110184169931401
b(2) 0.122082833871843
b(3) −0.117309105328437
b(4) 0.169714358772186
b(5) 0.143346980044187
b(6) 0.348926696469455
b(7) 0.223054066239366

5. Numerical studies. In this section, we study the numerical behavior of our
fifth-order schemes and the optimal known fifth-order SSP multistep method (1.3)
for a few test problems designed to capture solution features that pose particular
difficulties to numerical methods. Our focus here is to illustrate the stability behav-
ior of various fifth-order schemes rather than to provide a detailed accuracy study.
If a study of the relative error constants was desired it would be more appropri-
ate to consider systems where the spatial discretization errors are dominated by the
time-stepping error. Experiments using the standard implementation of Fehlberg’s
fifth-order explicit Runge–Kutta method [5] are also included because this method is
commonly used in method-of-lines discretizations of hyperbolic conservation laws. We
remark that Fehlberg’s scheme does not have a positive CFL coefficient in its stan-
dard implementation (using only F (·)) because SSP methods of order greater than 4
require evaluations of F̃ (·) [20].

We remark that tests using the popular Dormand–Prince scheme [5] gave results
very similar to Fehlberg’s scheme. For clarity, we do not include these simulations in
our plotted results.

5.1. Test problems. There are a variety of solution features in computational
fluid dynamics that commonly cause numerical problems. For example, many numer-
ical methods produce significant errors near sonic points (points where the wavespeed
equals zero). Upwind methods, in particular, are forced to give sonic points special
consideration since the upwind direction changes at sonic points. Shock waves, con-
tact discontinuities, and expansion fans may also lead to a variety of serious problems,
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Table 2

Butcher tableau entries for SSP(8,5). The CFL coefficient is 1.875684961641323.

Entry Value

a(2, 1) 0.276409720937984
a(3, 1) 0.149896412080489
a(3, 2) 0.289119929124728
a(4, 1) 0.057048148321026
a(4, 2) 0.110034365535150
a(4, 3) 0.202903911101136
a(5, 1) 0.169059298369086
a(5, 2) 0.326081269617717
a(5, 3) 0.450795162456598
a(5, 4) 0
a(6, 1) 0.061792381825461
a(6, 2) 0.119185034557281
a(6, 3) 0.199236908877949
a(6, 4) 0.521072746262762
a(6, 5) −0.001094028365068
a(7, 1) 0.111048724765050
a(7, 2) 0.214190579933444
a(7, 3) 0.116299126401843
a(7, 4) 0.223170535417453
a(7, 5) −0.037093067908355
a(7, 6) 0.228338214162494
a(8, 1) 0.071096701602448
a(8, 2) 0.137131189752988
a(8, 3) 0.154859800527808
a(8, 4) 0.043090968302309
a(8, 5) −0.163751550364691
a(8, 6) 0.044088771531945
a(8, 7) 0.102941265156393
b(1) 0.107263534301213
b(2) 0.148908166410810
b(3) 0.105268730914375
b(4) 0.124847526215373
b(5) −0.068303238298102
b(6) 0.127738462988848
b(7) 0.298251879839231
b(8) 0.156024937628252

including oscillations, overshoots, and smearing that can spread discontinuities over
several cells. In particular, contact discontinuities do not have any physical compres-
sion, and thus smearing increases progressively with the number of time steps. Even
when approximating smooth solutions, most numerical methods exhibit obvious flaws.
For example, many stable numerical methods continuously erode the solution, leading
to amplitude and dissipation errors [11].

To investigate the behavior of our time-stepping schemes, we consider three of
Laney’s five test problems [11]. These three problems involve all of the important
flow features identified above: shocks, contacts, expansion fans, sonic points, and
smooth solutions. Similar to Laney, we focus on the behavior of the numerical scheme
for interior regions rather than boundaries and impose periodic boundary conditions
on the domain [−1, 1]. It is known that sometimes a conventional (and intuitive)
treatment of the boundary data (especially in the case of inflow boundary conditions)
within the stages of a Runge–Kutta method can lead to a deterioration in the overall
accuracy of the integration. We refer the reader to [1] and the references therein for a
discussion of this problem and a method for its resolution. The spatial discretization
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Table 3

Butcher tableau entries for SSP(9,5). The CFL coefficient is 2.695788289294857.

Entry Value

a(2, 1) 0.234806766829933
a(3, 1) 0.110753442788106
a(3, 2) 0.174968893063956
a(4, 1) 0.050146926953296
a(4, 2) 0.079222388746543
a(4, 3) 0.167958236726863
a(5, 1) 0.143763164125647
a(5, 2) 0.227117830897242
a(5, 3) 0.240798769812556
a(5, 4) 0
a(6, 1) 0.045536733856107
a(6, 2) 0.071939180543530
a(6, 3) 0.143881583463234
a(6, 4) 0.298694357327376
a(6, 5) −0.013308014505658
a(7, 1) 0.058996301344129
a(7, 2) 0.093202678681501
a(7, 3) 0.109350748582257
a(7, 4) 0.227009258480886
a(7, 5) −0.010114159945349
a(7, 6) 0.281923169534861
a(8, 1) 0.114111232336224
a(8, 2) 0.180273547308430
a(8, 3) 0.132484700103381
a(8, 4) 0.107410821979346
a(8, 5) −0.129172321959971
a(8, 6) 0.133393675559324
a(8, 7) 0.175516798122502
a(9, 1) 0.096188287148324
a(9, 2) 0.151958780732981
a(9, 3) 0.111675915818310
a(9, 4) 0.090540280530361
a(9, 5) −0.108883798219725
a(9, 6) 0.112442122530629
a(9, 7) 0.147949153045843
a(9, 8) 0.312685695043563

Entry Value

b(1) 0.088934582057735
b(2) 0.102812792947845
b(3) 0.111137942621198
b(4) 0.158704526123705
b(5) −0.060510182639384
b(6) 0.197095410661808
b(7) 0.071489672566698
b(8) 0.151091084299943
b(9) 0.179244171360452

and the results of three test cases follow.

5.2. Spatial discretization. Similar to [22, 25], we choose finite-difference Shu–
Osher methods (ENO) to spatially discretize the equations. These methods are de-
rived using flux reconstruction and have a variety of desirable properties. For exam-
ple, they naturally extend to an arbitrary order of accuracy in space, and they are
independent of the time discretization, thus allowing experimentation with different
time discretization methods. Moreover, educational codes are also freely available
[11, 10], an attribute which is desirable for standardizing numerical studies. Since we
are focusing on fifth-order Runge–Kutta methods we carry out our simulations using
a fifth-order spatial discretization. We further note that flux splitting is carried out
according to

f+(U) =
1

2
(f(U) + αni+1/2U),

f−(U) =
1

2
(f(U) − αni+1/2U),
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where αni+1/2 = max{|f ′(Uni+1)|, |f ′(Uni )|}. To evaluate F̃ (·) we simply negate the
discretization that arises when we apply the Shu–Osher finite difference method to
the PDE evolved backwards in time4 (see [21] for further details on the procedure).
For further details on the underlying discretization, as well as code for the spatial
discretization, see [11, 10].

It is noteworthy that high-order, fully TVD spatial discretization schemes are also
available; see Osher and Chakravarthy [16]. In these numerical studies, we choose
Shu–Osher spatial discretization schemes rather than TVD schemes because TVD
schemes only obtain between first- and second-order accuracy at extrema and they
have “been largely superseded by Shu and Osher’s class of high-order ENO methods”
[11].

It is also noteworthy that recent variations on Shu–Osher methods such as meth-
ods based on WENO reconstructions (e.g., [14, 6]) also naturally combine with SSPRK
schemes. See [11] for detailed discussions on these and other spatial discretizations
appropriate for hyperbolic conservation laws.

5.3. Test case 1: Linear advection of a sinusoid. In this test case, the
smooth initial conditions

u(x, 0) = − sin(πx)

are evolved to time t = 30 according to the linear advection equation

∂u

∂t
+
∂u

∂x
= 0

using a constant grid spacing of ∆x = 1/80. Because this evolution causes the initial
conditions to travel around the periodic domain [−1, 1] exactly 15 times, it is clear
that the exact solution is just u(x, 30) = − sin(πx). Test case 1 effectively illustrates
the evolution of a smooth solution with no sonic points and is useful for verifying
convergence rates for high-order schemes. Moreover, even on completely smooth so-
lutions most numerical methods designed for hyperbolic conservation laws exhibit
obvious flaws [11]. This test case is quite helpful for understanding phase and ampli-
tude errors but should not be used to study dispersion because only one frequency
is present in the exact solution. It is also informative to contrast these results with
those derived for problems involving shocks and other discontinuities.

To quantify the accuracy of the computed solution, we use the logarithm of the
l1 errors, i.e.,

log10

(
1

N

N∑
i=1

|Ui − u(xi, 30)|
)
,

4To illustrate the procedure, consider a first-order spatial discretization of F̃ for Burgers’s equa-
tion. To proceed we need to construct an upwind spatial discretization for Burgers’s equation evolved
backwards in time, i.e.,

ut = uux.

Carrying out a first-order upwind discretization with a uniform discretization step size h gives −F̃ :

−F̃ =

{
Uj(Uj+1 − Uj)/h if Uj > 0,
Uj(Uj − Uj−1)/h otherwise,

from which F̃ is trivially obtained.
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Fig. 1. l1 errors as a function of the effective CFL number for test case 1.
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where N is the number of grid points and xi is the ith grid node. A plot of the error
is given in Figure 1. To ensure a fair comparison for methods with a different number
of stages, the error is plotted as a function of the effective CFL number5 rather than
the CFL number itself. This implies that for a particular plot the total number of
function evaluations at a particular abscissa value will be the same for each scheme.
We start calculating errors for an effective CFL number of 0.02 and continue until the
numerical method is so unstable that a value of NaN is returned; i.e., the scheme has
become completely unstable.

In this test example, the main conclusion is that Fehlberg’s scheme and our new
fifth-order explicit SSPRK schemes all outperform the multistep scheme (1.3) by more
than 350%, with SSP(9,5) giving more than a 400% improvement. It is not surprising
that Fehlberg’s scheme performs well on this smooth problem because schemes based
purely on a linear stability analysis are expected to perform well. SSP schemes are
designed to outperform on problems involving discontinuities in the solution or its
derivatives; so in this case there is no reason to expect that schemes derived using a
nonlinear stability analysis will necessarily outperform classical schemes based on a
linear stability analysis.

5.4. Test case 2: Linear advection of a square wave. In this test case, the
discontinuous initial conditions

u(x, 0) =

{
1 for |x| < 1/3,
0 for 1/3 < |x| ≤ 1

5Similar to the definition of effective CFL coefficient, the effective CFL number of an SSPRK
method is

(
1
s

)
∆t
∆x

, where s is the number of stages required for one step of the method.
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Fig. 2. l1 errors as a function of the effective CFL number for test case 2.
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are evolved to time t = 4 according to the linear advection equation

∂u

∂t
+
∂u

∂x
= 0

using a constant grid spacing of ∆x = 1/320. Because this evolution causes the initial
conditions to travel around the periodic domain [−1, 1] exactly two times, it is clear
that the exact solution at the final time is just u(x, 4) = u(x, 0). Test case 2 exhibits
two jump discontinuities in the solution that correspond to contact discontinuities.
This test case nicely illustrates progressive contact smearing and dispersion.

The log of the l1 errors as a function of the effective CFL number are plotted in
Figure 2. Based on these plots, it is immediately clear that a material improvement in
stability is obtained using our new fifth-order SSPRK schemes. Indeed, our schemes
all outperform the multistep scheme (1.3) by 200% or more, with SSP(9,5) giving a
340% improvement. We also find that our schemes significantly outperform Fehlberg’s
scheme on this nonsmooth test. In particular, SSP(9,5) gives a 40% improvement over
Fehlberg’s scheme.

5.5. Test case 3: Evolution of a square wave by Burgers’s equation. In
this test case, the discontinuous initial conditions

u(x, 0) =

{
1 for |x| < 1/3,

−1 for 1/3 < |x| ≤ 1

are evolved to time t = 0.3 according to Burgers’s equation

∂u

∂t
+

∂

∂x

(
1

2
u2

)
= 0
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Fig. 3. l1 errors as a function of the effective CFL number for test case 3.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−2.8

−2.75

−2.7

−2.65

−2.6

−2.55

−2.5

−2.45

−2.4

Effective CFL number

lo
g1

0(
er

ro
r)

MS 

SSP(7,5)

Fehlberg 

SSP(9,5) 

SSP(8,5) 

using a constant grid spacing of ∆x = 1/320. In this example, the jump at x = −1/3
creates a simple centered expansion fan, and the jump at x = 1/3 creates a steady
shock. Until the shock and expansion fan intersect (at time t = 2/3), the exact
solution is

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
−1 for −∞ < x < b1,

−1 + 2 x−b1
b2−b1 for b1 < x < b2,

1 for b2 < x < bshock,
−1 for bshock < x <∞,

where b1 = −1/3 − t, b2 = −1/3 + t, and bshock = 1/3 [11]. Test case 3 is partic-
ularly interesting because it illustrates the behaviors near sonic points (u = 0) that
correspond to an expansion fan and a compressive shock.

The log of the l1 errors as a function of the effective CFL number are plotted
in Figure 3. In this nonlinear test case, we find a dramatic improvement for our
new schemes over the multistep scheme (1.3). They all give more than a 350% im-
provement, with SSP(9,5) giving more than a 575% improvement. We also find that
our schemes significantly outperform Fehlberg’s scheme on this nonsmooth test. The
SSP(9,5) scheme, in particular, gives more than a 150% improvement over Fehlberg’s
scheme.

6. Conclusions. We have studied high-order SSP explicit Runge–Kutta meth-
ods with downwind-biased spatial discretizations. We find that by requiring that the
nonzero coefficients βik for a given k are all of the same sign we obtain a more appro-
priate description of what should be optimized. This leads to more efficient schemes
with less smearing. When the order of the explicit Runge–Kutta method is less than
or equal to 4 we prove in a variety of cases that there is no advantage in terms of the
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effective CFL coefficient to using downwind-biased spatial discretizations. To achieve
explicit SSPRK methods with fifth- or higher-order accuracy, however, downwind-
biased discretizations are necessary. This paper provides the first examples of such
schemes. We find that these new schemes are much more efficient than existing fifth-
order explicit SSP multistep methods (both theoretically and in practice) and handily
outperform classical explicit fifth-order schemes on nonsmooth problems. In particu-
lar, we found that in our marginally resolved test cases (involving shocks and contact
discontinuities) larger time steps and improved efficiency were found as the effective
CFL coefficient (and the number of stages) increased. In a well-resolved problem (test
case 1), however, the practical performance of SSPRK schemes and classical Runge–
Kutta schemes was very similar. This suggests that high-order SSPRK schemes with
large effective CFL coefficients have the potential to provide high-order accuracy in
smooth regions of the flow while still yielding large stable steps in marginally resolved
regions. It is our hope that by providing numerically optimal schemes of this type we
will stimulate further numerical studies and comparisons of SSPRK schemes against
more classical approaches.

Acknowledgments. The authors thank J. Rusak for his help with the uncon-
strained global optimization. We also thank S. Gottlieb for interesting discussions on
downwind-biased spatial discretizations.
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Abstract. Replacing the median by a general M-estimator, we construct in this paper a host
of variants of the robust nonlinear pyramid transforms proposed by Donoho and Yu [SIAM J. Math.
Anal., 31 (2000) pp. 1030–1061]. Some of these new variants are more amenable to numerical
implementations with provable properties when compared to the Donoho–Yu median-based pyramid
transforms. At the crux of this generalized construction is the following result: the inverse problem of
interpolating a univariate polynomial of degree n with n+1 prescribed values for any given continuous
M-estimator on n + 1 nonoverlapping intervals is a well-posed procedure. While the proof of this
result is nonconstructive, we study the use of Newton methods for constructing such a polynomial
interpolant and report numerical results in some test cases.
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1. Introduction. Donoho and Yu introduced in [3] a family of nonlinear pyra-
mid transforms of signals which is reminiscent of linear biorthogonal wavelet trans-
forms but has the advantage of being robust against non-Gaussian noise. Underlying
their construction are the concept of measuring the median values of a signal over in-
tervals at multiple scales and the accurate prediction of fine-scale median values from
coarse-scale ones based on polynomial interpolation. The latter polynomial interpola-
tion procedure, shown to be well posed by Goodman and Yu using a nonconstructive
argument [6], involves the solution of a nonsmooth system of equations for which no
existing equation solvers are shown to be convergent.

Instead of directly attacking the computationally challenging median interpola-
tion problem, we introduce in this paper a broad class of “continuous M-estimators”
that include the continuous median as a special case. These M-estimators naturally
lead to new classes of nonlinear pyramid transforms that extend the original family
introduced by Donoho and Yu, which is based on the continuous median. Extending
the result of Goodman and Yu, we demonstrate that the interpolation problem of
the continuous M-estimators by polynomials is also well posed. With the use of a
“smooth kernel,” the latter interpolation problem is equivalent to solving a system
of differentiable equations, which can be accomplished by, say, a stabilized Newton
method that can be demonstrated to be globally and quadratically convergent. In
turn, this implies that the pyramid transforms can be implemented using a broad
class of robust statistics with the aid of a provably convergent Newton method.
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In summary, the main contribution of our work is twofold: first, based on the class
of continuous M-estimators, we have significantly broadened the original Donoho–
Yu family of nonlinear pyramid transforms; more importantly, a large class of such
transforms can be implemented by solving smooth systems of nonlinear equations by
provably convergent numerical methods.

2. Continuous M-estimators. We begin with a brief review of the median
value of a continuous function f : R → R on an interval I and the associated interpo-
lation problem. Specifically, the latter value is defined as

med(f |I) := arg min
m∈R

∫
I

| f(t) −m | dt.(2.1)

A key step in the Donoho–Yu proposal for accurately predicting fine-scale medians
from coarse-scale ones [3] (see section 5 for more details) requires the inversion of the
map

M : Πn → R
n+1, p �→ ( med(p|Ii) )ni=0,(2.2)

where Ii, i = 0, . . . , n, are nonoverlapping intervals and Πn is the (n+1)-dimensional
vector space of polynomials of degree not exceeding n. While this nonlinear map is
known to be a homeomorphism [6], implying that M−1 exists, computing M−1(a)
for a given vector a is nevertheless not an easy task. In general, we have to resort
to numerical methods. (In the case of n = 2, closed-form formulas for M−1 can
be found in [3, section 2].) Newton’s method applied to the system of nonlinear
equations M(p) = a is a prime candidate for this task. Nevertheless, since the map
M is not everywhere differentiable, a classical Newton method for smooth systems
(such as the ones in [2, 11]) is therefore not applicable. Although there exist provably
convergent Newton methods for “semismooth” systems (see [5, Chapters 7 and 8]
and the references therein), it is an open problem at this time whether M in (2.2) is
semismooth in general.

Partly to broaden the continuous median and partly to alleviate the computa-
tional difficulty with inverting the nondifferentiable map M in (2.2), this paper in-
troduces the class of continuous M-estimators defined with respect to triples (K, f, ρ)
satisfying the following blanket specifications: (a) K is a solid, compact, connected
set whose boundary, denoted ∂K, has measure zero; (b) f is a real-valued continu-
ous function defined on K; and (c) ρ : R → R+ is a convex function with a unique
minimizer at zero, and ρ(0) = 0. The solidness of K implies that its interior, denoted
int K, is nonempty; hence K has positive measure. The convexity of ρ implies its
continuity.

Corresponding to such a triple (K, f, ρ), we define the minimand θ(·;K, f, ρ) :
R → R+ and the continuous M-estimator m(f ;K, ρ) as follows:

θ(m;K, f, ρ) :=

∫
K

ρ(f(x) −m) dx, m ∈ R,

m(f ;K, ρ) := arg min
m∈R

θ(m;K, f, ρ).

When the pair (K, ρ) is clear from the context, we write m(f) for m(f ;K, ρ). Implicit
in the above definition of m(f ;K, ρ) is the assertion that this is a well-defined quantity
(i.e., it exists and is unique); this will be justified in Theorem 2.2. Throughout the
paper, we let C(K) denote the set of continuous real-valued functions defined on K.



CONTINUOUS M-ESTIMATORS 999

Before establishing properties of the continuous M-estimator, we give several
choices of the convex function ρ. Among these choices all are continuously differen-
tiable except the absolute value function and the third one, which are both piecewise
linear. The nomenclature “continuous M-estimator” is coined as a generalization of
the well-known robust Huber M-estimator [7], which is recovered from the fourth
function.

1. ρ(t) = |t|p for p ≥ 1. For p = 1, the resulting m(f ;K, ρ) is the continuous
median of f on K:

med(f |K) = arg min
m

∫
K

| f(x) −m | dx,

generalizing the case of an interval K. For p = 2, the resulting m(f ;K, ρ) is the
average of f on K:

ave(f |K) =
1

meas K

∫
K

f(x) dx,

where “meas” is the abbreviation of “measure.”
2. ρε(t) =

√
t2 + ε2 − ε for some ε > 0; this function ρε is a strictly convex, C∞

approximation to the absolute-value function | · |. As we will prove in Proposition
4.4, m(f ;K, ρε) converges to med(f |K) as ε ↓ 0. Consequently, for ε > 0 sufficiently
small, we expect m(f ;K, ρε) to be as robust against outliers as the standard median.
(A rigorous quantification of this claim is in the scope of robust statistics, which we
will not get into in this paper.)

3. ρ(t) = αmax(t, 0)+ (1−α) max(−t, 0) for α ∈ (0, 1). The resulting m(f ;K, ρ)
measures the continuous α-quantile of the function f over K, i.e., the unique value
m, such that

meas{t ∈ K : f(t)≥m}≤α meas K and meas{t ∈ K : f(t)≤m}≤ (1−α)meas K.

4. For a given c > 0,

ρ(t) =

{
1
2 t

2 if | t | ≤ c,

c | t | − 1
2 c

2 if | t | > c.
(2.3)

The resulting m(f ;K, ρ) is a continuous version of the Huber estimator for discrete
empirical data.

2.1. Basic properties. We begin our study of the continuous M-estimator by
stating the following result that summarizes several basic properties of the minimand
θ(·;K, f, ρ) and shows in particular that this function inherits many properties of ρ.
In the proof of this and other results, we will freely use known properties of convex
functions, which can all be found in the classic treatise by Rockafellar [10].

Proposition 2.1. Let the triple (K, f, ρ) satisfy the blanket assumptions. The
following statements hold for the function θ := θ(·;K, ρ, f).

(a) θ is convex (thus continuous) and coercive on R; coercivity means

lim
|m|→∞

θ(m) = ∞.

(b) If ρ is strictly convex, then so is θ.
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(c) The right and left derivatives of θ are equal to, respectively,

θ ′
+(m) := lim

h→0+

ϕ(t+ h) − ϕ(t)

h
= −

∫
K

ρ ′
−(f(x) −m) dx,

θ ′
−(m) := lim

h→0+

ϕ(t) − ϕ(t− h)

h
= −

∫
K

ρ ′
+(f(x) −m) dx.

(d) If ρ is k-times continuously differentiable on R for some k ≥ 1, then so is θ.
(e) If ρ is twice differentiable and ρ′′(t) > 0 for all t ∈ R, then so is θ.
(f) θ is differentiable at m if and only if the set Ωm has measure zero, where

Ωm := {x ∈ K : ρ is not differentiable at f(x) −m }.

Proof. The convexity of θ follows from that of ρ; the coercivity of θ follows from
the inequalities

lim inf
|m |→∞

θ(m)

|m | ≥ min( ρ(1), ρ(−1) ) lim inf
|m|→∞

∫
K

| f(x) −m |
|m | dx > 0.

Since K has positive measure, (b) is obvious. To prove (c), let h ∈ (0, 1]. We have

θ(m+ h) − θ(m)

h
=

∫
K

[
ρ(f(x) −m− h) − ρ(f(x) −m)

h

]
dx.

Since ρ ′
−(t) exists for all t, by the compactness of K, it follows that for every ε > 0

there exists δ > 0 such that for all x ∈ K and all h ∈ (0, δ],∣∣∣∣ ρ(f(x) −m− h) − ρ(f(x) −m)

h

∣∣∣∣ ≤ | ρ ′
−(f(x) −m) | + ε.

Since the right-hand side, as a function of x, is clearly integrable on K, it follows by
the dominated convergence theorem that

θ ′
+(m) =

∫
K

−ρ ′
−(f(x) −m) dx.

Similarly, we can establish the desired formula for the left derivative of θ at m. The
differentiability of θ in parts (d) and (e) can be proved easily. The positivity of θ ′′ in
part (e) follows from the formula

θ ′′(m) =

∫
K

ρ ′′(f(x) −m) dx.(2.4)

Finally, it is clear that if the set Ωm has measure zero, then

θ ′
+(m) = θ ′

−(m) = −
∫
Dm

ρ ′(f(x) −m) dx,

where Dm is the complement of Ωm in K. Conversely, suppose that Ωm has positive
measure. Since the set of nondifferentiable points of ρ is countable, it follows that
there must exist a t0 ∈ R such that the set

Λ := {x ∈ K : f(x) −m = t0 }
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has positive measure. Since ρ ′
+(f(x) −m) ≥ ρ ′

−(f(x) −m) for all x ∈ K, it follows
that ∫

K

[ ρ ′
+(f(x) −m) − ρ ′

−(f(x) −m) ] dx ≥ ( ρ ′
+(t0) − ρ ′

−(t0) ) meas Λ.

Since the right-hand side is positive, it follows that θ ′
−(m) > θ ′

+(m); (f) therefore
holds.

The next result summarizes various properties of the continuous M-estimator
m(f ;K, ρ). Part (a) asserts the well-definedness of this minimizer and gives its vari-
ational characterization; part (b) says that this minimizer must belong to the range
f(int K); part (c) is a technical property that will be used subsequently.

Theorem 2.2. Let (K, ρ, f) satisfy the blanket assumptions. The following state-
ments are valid.

(a) m(f ;K, ρ) exists and is unique; it is the unique scalar m̄ satisfying∫
K

ρ ′
+(f(x) − m̄) dx ≥ 0 ≥

∫
K

ρ ′
−(f(x) − m̄) dx.

(b) There exists x̄ ∈ int K such that f(x̄) = m(f ;K, ρ).
(c) If m(f) = min f := minimum value of f on K, then meas {x ∈ K : f(x) =

m(f) = min f} > 0.
Proof. The existence of a global minimizer of θ(·;K, ρ, f) follows from its convexity

(and thus continuity) and its coercivity on R. Moreover, such a global minimizer m̄
is characterized by the inclusion 0 ∈ ∂θ(m̄;K, ρ, f), with the latter subgradient equal
to the interval [

−
∫
K

ρ ′
+(f(x) − m̄)dx, −

∫
K

ρ ′
−(f(x) − m̄)dx

]
.

Thus, except for the uniqueness of the minimizer of θ(·;K, ρ, f), (a) holds. By way of
contradiction, we assume that no x̄ ∈ int K exists satisfying m̄ = f(x̄). The function
f(x) − m̄ then never vanishes on int K. Without loss of generality, we may assume
that f(x) − m̄ is positive on int K. By convexity of ρ, it follows that ρ ′

−(f(x) − m̄)
is positive on int K, which implies∫

K

ρ ′
−(f(x) − m̄) dx > 0

because ∂K has measure zero. The above inequality contradicts the variational char-
acterization of m̄. It remains to show the uniqueness of m(f ;K, ρ). Suppose there
are two distinct minimizers m1 and m2. Since θ(·;K, ρ, f) is convex, 1

2m1 + 1
2m2 is

also a minimizer. Therefore,∫
K

[
ρ(f(x) −m1/2 −m2/2) − 1

2 ρ(f(x) −m1) − 1
2 ρ(f(x) −m2)

]
dx = 0.

Since the integrand on the left-hand side is continuous and nonpositive, it follows that

ρ(f(x) −m1/2 −m2/2) = 1
2 ρ(f(x) −m1) + 1

2 ρ(f(x) −m2)

for all x ∈ K. By what has been proved above, it follows that there exist x1 	= x2 in
K such that f(xi) = mi for i = 1, 2. Hence, by the connectedness of K, there exists
x∗ ∈ K such that

f(x∗) = 1
2 m1 + 1

2 m2.
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Since ρ is a nonnegative function, we deduce ρ(f(x∗) − m1) = 0 = ρ(f(x∗) − m2),
which yields f(x∗) = m1 = m2, a contradiction. Finally, to prove (c), assume for
contradiction that the measure of the set in question is zero. We then have∫

K

ρ ′
−(f(x) − min f) dx =

∫
K+

ρ ′
−(f(x) − min f) dx,

where K+ := {x ∈ K : f(x) > min f = m(f)}. By assumption, meas K+ =
meas K > 0. Since ρ ′

−(f(x) − min f) > 0 on K+, it follows that∫
K

ρ ′
−(f(x) − min f) dx > 0,

which contradicts the characterization of m(f) because min f = m(f) by ass-
umption.

It is clear that for any constant c > 0, m(f + c) = m(f) + c. The next result
identifies an important monotonicity property of the continuous M-estimator.

Theorem 2.3. Let f and g be in C(K) such that f ≥ g on K. It holds that
m(f) ≥ m(g); moreover, strict inequality holds if either (a) f 	= g, ρ is differentiable,
and ρ ′ is strictly increasing or (b) f > g in the interior of K.

Proof. Assume for contradiction that m(f) < m(g). We have∫
K

ρ ′
+(g(x) −m(g)) dx ≥ 0 ≥

∫
K

ρ ′
−(f(x) −m(f)) dx.

Since ρ ′
− is nondecreasing, we deduce∫

K

ρ ′
−(f(x) −m(f)) dx ≥

∫
K

ρ ′
−(g(x) −m(f)) dx

and ∫
K

ρ ′
+(g(x) −m(f)) dx ≥

∫
K

ρ ′
+(g(x) −m(g)) dx.

Consequently, ∫
K

ρ ′
+(g(x) −m(f)) dx ≥ 0 ≥

∫
K

ρ ′
−(g(x) −m(f)) dx.

By the variational characterization and uniqueness of m(g), it follows that m(f) =
m(g), which is a contradiction. If ρ is differentiable, then m(f) and m(g) are the
unique scalars mf and mg that satisfy the equations∫

K

ρ ′(f(x) −m(f)) dx = 0 and

∫
K

ρ ′(g(x) −m(g)) dx = 0,

respectively. If f 	= g, then there must exist an open set O contained in the interior of
K such that f(x) > g(x) for all x ∈ O. If m(f) = m(g), the above characterizations
of m(f) and m(g) immediately yield a contradiction, using the fact that f > g on the
open set O ⊂ K. Consequently, strict monotonicity of m (i.e., m(f) > m(g)) holds
under (a).

Assume (b). Writing θf := θ(·;K, ρ, f) and θg := θ(·;K, ρ, g), we divide the
remaining proof into six steps.
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Step 1. Since f > g in the interior of K, we must have

meas {x ∈ K : g(x) > m(g) } ≤ meas {x ∈ K : f(x) > m(g) };
the claim is that strict inequality also holds:

meas {x ∈ K : g(x) > m(g)} < meas {x ∈ K : f(x) > m(g)}.(2.5)

To prove this assertion, we distinguish between two cases (i) m(g) = min g and (ii)
m(g) > min g.

Step 2. Assume that m(g) = min g. Since {x ∈ int K : f(x) > m(g)} = int K
and meas ∂K = 0, it follows that

meas {x ∈ K : f(x) > m(g) }
= meas {x ∈ int K : f(x) > m(g) } = meas int K = meas K

= meas {x ∈ K : g(x) = min g = m(g) } + meas {x ∈ K : g(x) > m(g) }
> meas {x ∈ K : g(x) > m(g) },

where the last inequality follows from Theorem 2.2(c). Consequently, (2.5) holds in
case (i).

Step 3. In case (ii), we have min g < m(g). Consider the sets

E := {x ∈ K : g(x) ≥ m(g) } and U := {x ∈ K : f(x) > m(g) }.
Since E is contained in the closure of U , we must have meas U ≥ meas E. The
desired inequality (2.5) follows readily if we can show meas U > meas E. Assume for
contradiction that meas U = meas E. It then follows that meas (U \E) = 0. But the
only way the set U \ E, which is open in K, has zero measure is when it is empty.
This means U = E. So E = U is both open and closed in K, which is a connected
set. Hence either E = U = K or E = U = ∅. The former is not possible because
m(g) > min g; the latter is not possible because m(g) belongs to the range g(K). This
establishes the claim, and thus (2.5) too.

Step 4. Inequality (2.5) implies

−
∫
K

ρ ′
∓(f(x) −m(g)) dx < −

∫
K

ρ ′
∓(g(x) −m(g)) dx.

Consequently,

(θf )
′
±(m(g)) < (θg)

′
±(m(g)).(2.6)

Since (θf )
′
+(m(f)) ≥ 0, to show m(f) > m(g), it suffices to show

(θf )
′
+(m(g)) < 0.(2.7)

Note that (2.6) is only good enough to imply that (θf )
′
−(m(g)) < 0, which is weaker

than (2.7). If either θf or θg is differentiable at m(g), then (2.7) follows readily.
This is clear in the former case, whereas in the latter case we have (θf )

′
+(m(g)) <

(θg)
′(m(g)) = 0.
Step 5. If θf and θg both fail to be differentiable at m(g), let

fα := α f + (1 − α) g and θα(m) :=

∫
K

ρ(fα(x) −m)dx, α ∈ [0, 1].
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We claim that there exists α∗ ∈ (0, 1) such that θα∗ is differentiable at m(g). With
this claim established, we can complete the proof as follows. Since f > fα∗ > g in the
interior of K, together with the result in Step 4 and part (a) proved above, we arrive
at m(f) ≥ m(fα∗) > m(g). Thus we are left only with the proof of the last claim.

Step 6. Let B be the set of points at which ρ fails to be differentiable. For each
t ∈ B and α ∈ (0, 1), define

Nα,t := {x ∈ int K : fα(x) −mg = t }.

Note that for fixed t ∈ B and α > α ′, the sets Nα,t and Nα ′,t are disjoint. Since K
has finite measure, for each t ∈ B and each n = 1, 2, . . . , only a finite number of α
satisfies meas Nα,t > 1/n. Hence the set {α ∈ (0, 1) : meas Nα,t > 0} is countable.
Since B is countable, it follows that

{α ∈ (0, 1) : meas Nα,t > 0 for some t ∈ B} =
⋃
t∈B

{α ∈ (0, 1) : meas Nα,t > 0}

is countable. But (0, 1) is uncountable, so there exists α∗ ∈ (0, 1) such that

0 = meas
⋃
t∈B

Nα∗,t = meas {x ∈ int K : fα∗(x) ∈ B }

= meas {x ∈ K : fα∗(x) ∈ B }.

By part (f) of Proposition 2.1, it follows that θα∗ is differentiable at m(g).
Remark. It is in general not true that if f ≥ g and f 	= g, then m(f) > m(g),

even if f is almost everywhere strictly greater than g. An example is if f and g are
continuous functions defined on an interval I and are both strictly increasing, and
f(x) > g(x) except at the midpoint of I. With ρ = | · |, it follows that m(f) =
med(f |I) = f(midpoint of I) = g(midpoint of I) = med(g|I) = m(g).

Part (a) of the next result implies that the continuous M-estimator m(f) is non-
expansive, and thus continuous, in its argument; the second part extends part (b) of
Theorem 2.2.

Corollary 2.4. The following two statements hold.
(a) The continuous M-estimator m is nonexpansive on C(K); i.e.,

|m(f) −m(g) | ≤ max
x∈K

| f(x) − g(x) | ∀ f, g ∈ C(K).

(b) If f and g in C(K) are such that m(f) = m(g), then x ∈ int K exists such
that f(x) = g(x).

Proof. Let σ := maxx∈K |f(x) − g(x)|. We have g − σ ≤ f ≤ g + σ on K. An
application of the monotonicity of m yields

m(g) − σ = m(g − σ) ≤ m(f) ≤ m(g + σ) = m(g) + σ,

from which the desired nonexpansiveness of m follows readily.
To prove statement (b), assume for contradiction that f(x) 	= g(x) for all x ∈

int K. It then follows that either f > g on int K or f < g on int K. Either case
yields a contradiction to the assumption that m(f) = m(g) by the strict monotonicity
of m.

The next result asserts a “strong minimizing” property of m(f ;K, ρ) associated
with a C 2 function ρ with positive second derivatives. A consequence of this property
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is that a global a posteriori error bound exists for the continuous M-estimator; see
the last inequality in the proposition below.

Proposition 2.5. Let f ∈ C(K) and ρ ∈ C 2 be given. If ρ ′′(f(x)−m(f)) does
not vanish identically on K, then θ ′′(m(f);K, f, ρ) > 0. Hence, positive constants c
and δ exist such that

|m−m(f) | ≤ δ ⇒ θ(m;K, f, ρ) − θ(m(f);K, f, ρ) ≥ c |m−m(f) |2(2.8)

and

|m−m(f) | > δ ⇒ θ(m;K, f, ρ) − θ(m(f);K, f, ρ) ≥ c δ |m−m(f) |.(2.9)

Consequently, there exists η > 0 such that, for all m ∈ R,

|m−m(f) |
≤ η max

{
θ(m;K, f, ρ) − θ(m(f);K, f, ρ),

√
θ(m;K, f, ρ) − θ(m(f);K, f, ρ)

}
.

Proof. Write θ := θ(·;K, f, ρ). By part (d) of Proposition 2.1, θ ′′ exists. More-
over, the expression (2.4) shows that θ ′′ is nonnegative on R. If θ ′′(m(f)) = 0, then
since f is continuous on K and ρ ′′ is nonnegative and continuous on R, it follows that
ρ ′′(f(x) − m(f)) = 0 for all x ∈ K. But this contradicts the assumption that the
latter function does not vanish identically on K. Consequently, θ ′′(m(f)) > 0.

The existence of δ and c satisfying (2.8) is a standard second-order consequence of
the minimizing property of m(f) and of the positivity of θ ′′(m(f);K, f, ρ). To prove
(2.9), let m be such that m −m(f) > δ. (The proof of the case m −m(f) < −δ is
similar and omitted.) Define m ′ := m(f) + δ. We then have

m ′ =
δ

m−m(f)
m+

m−m(f) − δ

m−m(f)
m(f),

which implies, by convexity of θ,

θ(m ′) ≤ δ

m−m(f)
θ(m) +

m−m(f) − δ

m−m(f)
θ(m(f)).

Since θ(m ′) ≥ θ(m(f)) + c(m ′ −m(f))2 = θ(m(f)) + cδ2, (2.9) follows readily. The
last assertion of the proposition is immediate from (2.8) and (2.9).

3. Interpolation of continuous M-estimators. In this and the next section,
we consider the interpolation of the continuous M-estimators of polynomials on given
intervals. This section establishes the well-posedness of the interpolation problem
using nonconstructive topological arguments, generalizing the main result in [6]. The
next section discusses Newton’s method for solving the interpolation problem with a
smooth ρ.

Denote by Πn the space of all polynomials of degree ≤ n. Let I be a given closed
finite interval. For any nonzero p ∈ Πn and any m ∈ R, the set p−1(m) ∩ I has at
most n elements. Hence, the set

{t ∈ I : ρ is not differentiable at p(t) −m }
is countable; consequently, by part (f) of Proposition 2.1, the function θ(m) is differ-
entiable everywhere on R. Hence, for p ∈ Πn we have∫

I

ρ ′
±(p(t) −m(p ; I, ρ)) dt = 0.(3.1)
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We introduce the map Mρ : R
n+1 → R

n+1 associated with n + 1 nonoverlap-
ping compact intervals Ii, for i = 0, . . . , n, each with a nonempty interior, where
nonoverlapping means int Ii ∩ int Ij = ∅ for all i 	= j. For each vector a ∈ R

n+1 with
components ai for i = 0, . . . , n, let Mρ(a) be the (n + 1)-vector whose ith compo-
nent, for i = 0, . . . , n, is equal to m(p ; Ii, ρ), where p is the polynomial in Πn with
coefficients aj ; i.e.,

p(t) ≡
n∑
j=0

aj t
j , t ∈ R.(3.2)

The goal of this section is to establish the following main result, which immediately
implies the well-posedness of the interpolation problem of continuous M-estimators:
given any values mi, i = 0, . . . , n, there exists a unique p ∈ Πn such that m(p ; Ii, ρ) =
mi for all i; moreover, such an interpolant p depends continuously on the data mi.

Theorem 3.1. Mρ is a homeomorphism from R
n+1 onto R

n+1.
Proof. It suffices to show that Mρ is continuous, injective, and norm-coercive [8,

Theorem 5.3.8]. By Corollary 2.4(a), Mρ is Lipschitz continuous. Indeed, for any
two vectors a and b in R

n+1 with associated polynomials p and q, we have, for every
i = 0, 1, . . . , n,

|m(p ; Ii, ρ) −m(q ; Ii, ρ) | ≤ sup
t∈Ii

| p(t) − q(t) | ≤ Li ‖ a− b ‖,

where ‖ · ‖ denotes the Euclidean norm in R
n+1 and Li > 0 is a constant that

depends on the interval Ii and is independent of ρ and the vectors a and b. Letting
L = max0≤i≤n Li, we deduce

‖Mρ(a) − Mρ(b) ‖ ≤ L ‖ a− b ‖ ∀ ρ and ∀ a, b ∈ R
n+1.(3.3)

Note that the Lipschitz constant L is independent of ρ; hence the family of maps {Mρ :
ρ} is equi-Lipschitz continuous. Injectivity of Mρ follows easily from Corollary 2.4(b):
If p, q ∈ Πn are such that Mρ(p) = Mρ(q), then there exists, for every i = 0, . . . , n,
a point ti ∈ int Ii such that p(ti) = q(ti); this implies p = q. It remains to show
norm-coerciveness; i.e., we need to show that

lim
‖a‖→∞

‖Mρ(a) ‖ = ∞.(3.4)

We divide the remaining proof into several major steps.
Step 1. Define, for any scalar c > 0, the function ρc : R → R by ρc(t) := ρ(ct) for

all t ∈ R. Observe that for any interval I and any function f ∈ C(I), we have

m(f ; I, ρ) = arg min
m

∫
I

ρ(f(t) −m) dt = arg min
m

∫
I

ρc

(
f(t)

c
− m

c

)
dt

= cm

(
f

c
; I, ρc

)
.

It follows that for a nonzero vector a ∈ R
n+1,

Mρ(a) = ‖ a ‖Mρ‖a‖ (a/‖a‖) .(3.5)

Let Sn denote the unit sphere in R
n+1. Clearly, if

inf { ‖Mρc(a) ‖ : c ≥ 1, a ∈ Sn } > 0,(3.6)
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then (3.4) follows. It is clear that (3.6) implies

inf { ‖Mρc(a) ‖ : c ≥ 1 } > 0 ∀ a ∈ Sn.(3.7)

Thanks to the compactness of Sn and the equi-Lipschitz continuity of {Mρc : c > 0},
the converse implication also holds. Indeed, assume that (3.7) holds but (3.6) does
not. There exist sequences {ak} ⊂ Sn and {ck} ∈ [1,∞) such that Mρck

(ak) → 0.

Since Sn is compact, we may assume without loss of generality that the sequence {ak}
converges to some a∞ ∈ Sn. By (3.3), we have

‖Mρck
(ak) − Mρck

(a∞) ‖ ≤ L ‖ ak − a∞ ‖ ∀ k.
Consequently, it follows that

lim
k→∞

Mρck
(a∞) = 0,

which contradicts (3.7). Hence (3.6) ⇐⇒ (3.7).
Step 2. Let a ∈ R

n+1 be an arbitrary nonzero vector, and let p ∈ Πn be given by
(3.2). Since p has no more than n roots and since there are (n + 1) nonoverlapping
intervals Ii, it follows that one of two cases must hold:

(i) there exists j ∈ {0, . . . , n} such that p > 0 or p < 0 on Ij , or
(ii) n ≥ 1 and there exists j ∈ {0, . . . , n − 1} such that Ij and Ij+1 intersect

at a common endpoint where p vanishes and p(x)p(y) < 0 for all x ∈ int Ij and
y ∈ int Ij+1.
To see this, note the following special property of a polynomial. Namely, if a polyno-
mial does not change sign and does not vanish in an interval except at one interior
point of the interval, then the latter point must be a root of the polynomial of multi-
plicity at least two. By this property and a straightforward counting argument, one
can easily show that if neither of the above two cases hold, then, counting multiplici-
ties, p must have at least n + 1 zeros, which is impossible. To complete the proof of
the theorem, we show that (3.7) holds in either case (i) or (ii) above.

Step 3. In case (i) there exists δ > 0 such that p or −p ≥ δ on Ij . Since
m(p ; Ij , ρc) = p(tj) for some tj ∈ Ij , it follows that ‖Mρc(a)‖ ≥ δ for all c > 0.

Step 4. In case (ii) we prove (3.7) by contradiction. If (3.7) fails, then there exists
a sequence {ck} in [1,∞) such that

lim
k→∞

m(p ; Ii, ρck) = 0 for i = j and j + 1.

Without loss of generality, we may assume that

p < 0 on int Ij and p > 0 on int Ij+1.

For i = j, j + 1, write mk,i := m(p ; Ii, ρck) and θk,i := θ(·; Ii, p, ρck). By part (c) of
Theorem 2.2, it follows that mk,j < 0 and mk,j+1 > 0 for all k.

By (3.1), we have the following optimality condition:

(3.8)∫
Ij

ρ ′
± (ck[p(t) −mk,j ]) dt = 0 =

∫
Ij+1

ρ ′
± (ck[p(t) −mk,j+1]) dt ∀ k = 1, 2, . . . .

Since meas{t ∈ Ii : p(t) = 0} = 0, an elementary property of measure gives

lim
m↑0

meas {t ∈ Ij : p(t) ≥ m} = 0 = lim
m↓0

meas {t ∈ Ij+1 : p(t) ≤ m}.(3.9)
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By continuity of p, there exist ε > 0, δ > 0, Ji ⊂ Ii with meas Ji ≥ ε for i = j, j + 1
such that p ≤ −δ and p ≥ δ on Jj and Jj+1, respectively. Pick k large enough such
that mk,j+1 −mk,j < δ (in particular, −δ < mk,j < 0 and 0 < mk,j+1 < δ),

meas {t ∈ Ij : p(t) > mk,j} < ε and meas {t ∈ Ij+1 : p(t) < mk,j+1} < ε.

We then have

0 =

∫
Ij

(ρck) ′
+(p(t) −mk,j) dt = T1 + T2 + T3,

where

T1 :=

∫
{t:p(t)≤−δ}

(ρck) ′
+(p(t) −mk,j) dt

≤
∫
{t:p(t)≤−δ}

(ρck) ′
+(−δ −mk,j) dt ≤ ε(ρck) ′

+(−mk,j+1)

T2 :=

∫
{t:−δ<p(t)<mk,j}

(ρck) ′
+(p(t) −mk,j) dt < 0

T3 :=

∫
{t:p(t)≥mk,j}

(ρck) ′
+(p(t) −mk,j) dt

≤
∫
{t:p(t)>mk,j}

(ρck) ′
+(−mk,j) dt ≤ ε (ρck) ′

+(−mk,j),

by the monotonicity of (ρck) ′
+. Hence

0 < (ρck) ′
+(−mk,j+1) + (ρck) ′

+(−mk,j).

Similarly, using

0 =

∫
Ij+1

(ρck) ′
+(p(t) −mk,j+1) dt,

we can deduce 0 > (ρck) ′
+(−mk,j) + (ρck) ′

+(−mk,j+1), which is a contradiction.

4. Newton’s method for interpolation. By Theorem 3.1, the equation

Mρ(a) = b(4.1)

has a unique solution for every vector b ∈ R
n+1; moreover, such a solution depends

continuously on b. A natural approach to solve (4.1) is by Newton’s method, possibly
with a globalization scheme [2]. In order for this method to be directly applica-
ble, we take ρ to be twice continuously differentiable throughout this section. This
smoothness assumption allows us to completely bypass the difficulty in dealing with
the nonsmoothness of the original median-interpolation problem considered in [3, 6].
Moreover, by the theorem below, if ρ ′′ > 0, then Mρ is a diffeomorphism on R

n+1; i.e.,
both Mρ and (Mρ)

−1 are differentiable maps. In particular, Mρ has a nonsingular
Jacobian matrix everywhere on R

n+1.
Theorem 4.1. Let Ii, i = 0, . . . , n, be n + 1 nonoverlapping compact intervals,

each with a nonempty interior. Let ρ : R → R be a twice continuously differentiable
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function with ρ ′′ > 0 on R. If ρ has a minimizer at zero such that ρ(0) = 0, then Mρ

is a diffeomorphism from R
n+1 onto itself.

Proof. For simplicity, we write M for Mρ. The positivity of ρ ′′ implies that ρ
is strictly convex on R. Hence, zero is the unique minimizer of ρ. For i = 0, . . . , n,
write

θi(m, a) :=

∫
Ii

ρ

⎛⎝ n∑
j=0

aj t
j −m

⎞⎠ dt.(4.2)

As a function of the two arguments (m, a) ∈ R
1+(n+1), θi is twice continuously dif-

ferentiable. For any fixed but arbitrary vector a ∈ R
n+1, the continuous M-estimator

Mi(a) is the unique root m of the equation

∂θi(m, a)

∂m
= 0,

which is a parametric, nonlinear equation with m as the primary variable and a as
the parameter. By Proposition 2.5,

∂2θi(Mi(a), a)

∂m2
> 0.

Therefore, by the implicit-function theorem, it follows that Mi (and thus M) is a
differentiable function on R

n+1. We claim that the Jacobian matrix of M at a ∈ R
n+1,

denoted JM(a), is nonsingular. Note that

∂Mi(a)

∂aj
=

(
∂2θi(Mi(a), a)

∂m2

)−1 (
∂2θi(Mi(a), a)

∂m∂aj

)
.(4.3)

If e ∈ R
n+1 is such that JM(a)e = 0, then we have

n∑
j=0

∂2θi(Mi(a), a)

∂m∂aj
ej = 0 ∀ i = 0, . . . , n.

By a direct differentiation, we can see that the above is equivalent to∫
Ii

ρ ′′
(

n∑
�=0

a� t
� − Mi(a)

)
q(t) dt = 0, i = 0, . . . , n,

where q(t) ≡ ∑n
j=0 ej t

j . Since ρ ′′ is everywhere positive, it follows that q has at
least one zero in int Ii for every i = 0, . . . , n. Consequently, the polynomial q(t),
which is of degree n, has n + 1 distinct real roots. This is not possible unless q(t) is
the zero polynomial. Hence JM(a) must be nonsingular. This implies that M−1 is
differentiable; hence M is a diffeomorphism on R

n+1.
The condition ρ ′′ > 0 cannot be dispensed with in the above theorem. For

example consider ρ = | · |p; then ρ ∈ C2 when p ≥ 2. On the other hand, M|·|p is
homogeneous of degree 1; i.e.,

M|·|p(c a) = cM|·|p(a); thus DvM|·|p(0) = M|·|p(v),

where Dv denotes the directional derivative operator in the direction v. This implies
that M|·|p is differentiable at the origin if and only if M|·|p is a linear map; but an
elementary calculation shows that (unless n ≤ 1) the latter is true when and only
when p = 2.
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4.1. Method I. With the above preparation, we can formally state a globally
convergent Newton method for solving (4.1); see [2, 11]. In essence, this is the damped
Newton method that involves two main computational steps in each iteration: the first
step is solving the Newton equation

Mρ(a
k) + JMρ(a

k) dak = b(4.4)

for the direction dak at the current iterate ak; the second step is performing an Armijo
line search [1, section 1.2, p. 29] on the merit function

φ(a) := 1
2 (Mρ(a) − b )T (Mρ(a) − b )

at the current iterate along the computed Newton direction. Normally, given scalars
σ ′ and β in (0, 1), the latter line search calls for the determination of the smallest
nonnegative integer i satisfying

φ(ak + βidak) − φ(ak) ≤ σ ′ βi∇φ(ak)T dak.

With the function φ on hand and the search direction dak computed from (4.4), we
have

∇φ(ak) = JMρ(a
k)T (Mρ(a

k) − bk ),

which yields ∇φ(ak)T dak = −2φ(ak). Noting the latter identity, we formulate the
following algorithm.

Newton’s Algorithm for Interpolation.
(a) (inputs). Let the function ρ and the (n+1) intervals Ii satisfy the assumptions

in Theorem 4.1. Let b ∈ R
n+1 and a0 ∈ R

n+1 be given. Let σ and β be given scalars
in (0, 1). Set k = 0.

(b) (solving linear equations). Solve (4.4) for the Newton direction dak.
(c) (Armijo line search). Let ik be the smallest nonnegative integer i such that

φ(ak + βidak) ≤ ( 1 − σ βi )φ(ak).

Set τk := βik and ak+1 := ak + τkda
k. Let k ← k + 1.

(d) If ‖Mρ(a
k) − b‖ ≤ tolerance, stop. Otherwise return to step (b).

While the convergence of Newton’s method is well known (cf. [2, Chapter 6] or
[5, Chapter 8], e.g.), for completeness we give a sketch of the proof of the following
result, omitting some details.

Theorem 4.2. Under the assumptions of Theorem 4.1, the algorithm as described
above generates a well-defined sequence {ak} that converges Q-superlinearly to the
unique solution of (4.1). Moreover, ik = 0 for all but finitely many k. Finally, if ρ ′′

is Lipschitz continuous on R, then the convergence is Q-quadratic.
Proof. The well-definedness of each search direction dak is ensured by the non-

singularity of JMρ(a) on R
n+1. Since the method is essentially a gradient-related

line-search method applied to the unconstrained minimization of the merit function
φ(a), standard results from nonlinear programming, such as [1, Proposition 1.2.1],
guarantee that the sequence {ak} is well defined and that every accumulation point
of the sequence is a stationary point of φ. At least one such point must exist because
φ has bounded level sets; in turn, the latter is due to the diffeomorphism property
of Mρ. Since ∇φ(a) = JMρ(a)

T (Mρ(a) − b) and JMρ(a) is a nonsingular matrix
for all a, it follows that every accumulation point of the sequence {ak} satisfies (4.1).
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Since the latter equation has a unique solution, it follows that {ak} converges to
the unique solution of (4.1). Letting a∗ be the unique zero of (4.1), we note that
∇2φ(a∗) = JMρ(a

∗)TJMρ(a
∗) is positive definite. Therefore, by verifying the well-

known Dennis–Moré condition (see [2, equation (6.3.10)]), Theorem 6.3.4 in the latter
reference immediately yields the assertion about the ultimate attainment of a unit
step size (i.e., ik = 0 for all but finitely many k). This in turn readily implies the
quadratic convergence statement.

4.2. Method II. We present below an alternative formulation of the system of
equations (4.1) which results in a total bypass of the evaluation of Mρ(a). Neverthe-
less, we should caution the reader that there is a theoretical difference between the
alternative formulation and the original equation (4.1) that will become clear in the
following discussion.

Since Mi(a) ≡ (Mρ)i(a) satisfies
∫
Ii
ρ ′(p(t)−Mi(a)) dt = 0, it is clear that (4.1)

is equivalent to

∫
Ii

ρ ′

⎛⎝ n∑
j=0

ajt
j − bi

⎞⎠ dt = 0, i = 0, . . . , n.(4.5)

Define the C1 map Fρ := F : R
n+1 → R

n+1, where Fi(a) is the left-hand side of the
above equation. It is useful to clarify the difference between the two functions M and
F in terms of the following function:

ψi(m, a) :=

∫
Ii

ρ ′

⎛⎝ n∑
j=0

ajt
j −m

⎞⎠ dt = −∂θi(m, a)
∂m

, (m, a) ∈ R
1+(n+1),

where θi(m, a) is given by (4.2). While Mi(a) is the (unique) zero of ψi(·, a) on R,
Fi(a) is the value of ψi(·, a) at a given value bi ∈ R.

A similar Newton method can be applied to the equation

F (a) = 0.(4.6)

It is easy to show that

∂Fi(a)

∂aj
=

(
∂2θi(bi, a)

∂m∂aj

)
.(4.7)

Under the assumptions of Theorem 4.1, we can show that JF (a) is nonsingular for all
a ∈ R

n+1. Thus F is a local homeomorphism everywhere on R
n+1. However, unlike

M, F is in general not a global homeomorphism. In fact, for a function ρ whose
derivative ρ ′ is bounded (e.g., ρ(t) ≡ √

t2 + c −√
c for any c > 0), it is clear that F

has a bounded range and therefore cannot be norm-coercive, and thus it cannot be a
global homeomorphism.

In spite of the theoretical difference, Newton’s method can be applied to (4.6).
Omitting the details, we summarize the two main computational steps in each itera-
tion. At the beginning of each iteration, an iterate ak ∈ R

n+1 is given. We then solve
for dak in the equation

F (ak) + JF (ak) dak = 0



1012 JONG-SHI PANG AND THOMAS P.-Y. YU

and next perform an Armijo line search on the merit function

ϕ(a) := 1
2 F (a)TF (a)

starting at ak and moving along the direction dak. In the resulting scheme, there is
no longer a need to evaluate M(ak). The convergence of this alternative application
of Newton’s method is summarized below.

Theorem 4.3. Under the assumptions of Theorem 4.1, the algorithm as described
above generates a well-defined sequence {ak}. If the level set

L(a0) := { a ∈ R
n+1 : ‖F (a) ‖2 ≤ ‖F (a0) ‖2 }

is bounded, then {ak} is bounded, and all other conclusions of Theorem 4.2 remain
valid.

Proof. Since the sequence {ak} is contained in the level set L(a0), the boundedness
of {ak} follows from that of the set. The rest of the proof is similar to that of
Theorem 4.2.

In summary, when Newton’s method is applied to the two equivalent equations,
(4.1) and (4.6), the resulting algorithms differ computationally and theoretically. The
computational difference lies in the need to evaluate the continuous M-estimators
M(a) at intermediate polynomials. The theoretical difference lies in the choice of
initial iterate a0. With (4.1), there is no restriction on a0; with (4.6), a0 should be
such that the level set L(a0) is bounded.

4.3. Smoothed continuous medians. In addition to producing M-estimators
that are of independent interest, the choice of a C 2 function ρ can be used to approx-
imate the continuous median. One such family of “smoothed continuous medians” is
obtained by letting

ρε(t) :=
√
t2 + ε2 − ε, t ∈ R,

where ε is a positive scalar presumed to be small. Note that ρε is globally Lipschitz
continuous on R and ρ ′′

ε is positive everywhere. Notice that

0 ≤ | t | − ρε(t) < ε ∀ t ∈ R.

By the next proposition (which is stated in a general context), the above inequality
implies that {m(f ; Ii, ρε)} converges to med(f |Ii), as ε ↓ 0, for all f ∈ C(Ii). This
limit justifies the use of m(f ; Ii, ρε) as an approximation of the continuous median
med(f |Ii).

Proposition 4.4. Let ρ : R → R+ be a convex function with a unique minimizer
at zero such that ρ(0) = 0. For every ε > 0, let ρε be a convex function with the same
properties as ρ. Assume that there exists a constant η > 0 such that, for every ε > 0
sufficiently small,

| ρ(t) − ρε(t) | ≤ η ε ∀ t ∈ R;

then, for every f ∈ C(K),

lim
ε↓0

m(f ;K, ρε) = m(f ;K, ρ).

Proof. For every ε > 0, there exists x(ε) ∈ int K such that m(f ;K, ρε) = f(x(ε)).
Consequently, it follows that

sup
ε>0

|m(f ;K, ρε) | < ∞.
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To establish the desired limit, it suffices to show that for every sequence of positive
scalars {εk} converging to zero, the sequence {m(f ;K, ρεk)} converges to m(f ;K, ρ).
In turn, it suffices to show that if

lim
k(∈κ)→∞

m(f ;K, ρεk) = m∞,

where κ is an infinite subset of {1, 2, . . . }, then∫
K

ρ(f(x) −m) dx ≥
∫
K

ρ(f(x) −m∞) dx(4.8)

for all m ∈ R. Writing mk := m(f ;K, ρεk), we have, for every k,∫
K

ρεk(f(x) −m) dx ≥
∫
K

ρεk(f(x) −mk) dx.

For all k sufficiently large, we have∫
K

ρεk(f(x) −m) dx ≤
∫
K

ρ(f(x) −m) dx+ η εk meas (K)

and ∫
K

ρεk(f(x) −mk) dx ≥
∫
K

ρ(f(x) −mk) dx− η εk meas (K).

Passing to the limit k(∈ κ) → ∞ readily yields the desired inequality (4.8).

4.4. Method II applied to interpolation of medians and smoothed medi-
ans. We have implemented a Matlab solver MEstimatorInterp that applies Method
II in section 4.2 to the M-estimator interpolation problem. We shall report and com-
pare some of the numerical results based on this solver in the next subsection. In the
implementation, we evaluate a polynomial using its Lagrange form. Specifically, for
a polynomial Li in Πn, we write, relative to the interval Ii,

Li(x) :=

⎡⎣ n∏
j=0,j =i

(x− xi )

⎤⎦ ⎡⎣ n∏
j=0,j =i

(xj − xi )

⎤⎦−1

, xj = midpoint of Ij .

The numerical result pertains to the following:
(i) MEstimatorInterp applied to the smoothed median-interpolation problem. In

this case

Fi(a) =

∫
Ii

ρ′
(

n∑
i=0

aiLi(t) − bi

)
dt, ρ′(t) =

t√
t2 + 0.01

.(4.9)

(ii) MEstimatorInterp applied to the median-interpolation problem. In this case

Fi(a) =

∫
Ii

sign

(
n∑
i=0

aiLi(t) − bi

)
dt.(4.10)

Since ρ = | · | does not satisfy assumptions in Theorem 4.3, there is no guarantee that
the method would converge.
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(iii) MedianInterp in [4, section 2.1.4] applied to the median-interpolation prob-
lem. Based on a fixed-point iteration, an implementation of this solver, whose conver-
gence has not been established, is freely available in WaveLab 802 at http://www-
stat.stanford.edu/˜wavelab/.

(iv) Same as (ii), except that the initial guess is chosen to be the fourth iterate
computed from the fixed-point method in (iii).

Here are some implementation details:
Initial guess. Except in case (iv), we use the midpoint interpolant of the data

p0 :=
∑n
i=0 biLi as the initial guess. This is motivated by the heuristic

med(p|I) ≈ p(midpoint of I) ≈ m(p; I,
√

(·)2 + ε2 − ε).

Computing F (a). The integrals (4.9) and (4.10) are computed using quad() in
Matlab 6.1. This routine is based on a recursive adaptive Simpson quadrature. The
tolerance is set to tol = 10−12. The evaluations of

∑
i aiLi(t) in the integrands of

(4.9) and (4.10) are performed using Neville’s algorithm.
Computing JF (a). For the computation of the Jacobian of F in the case of (4.9),

one can in principle use (4.7), which basically involves an integral with ρ ′′ appearing
in the integrand. This approach, however, turns out to be quite problematic for the
purpose of smoothed median interpolation, since in this application ρ′(x) ≈ sign(x)
and ρ′′(x) ≈ the dirac function. Thus we approximate ∂Fi(a)/∂aj based on a central
divided difference:

∂Fi(a)

∂aj
≈ Fi(a+ hej) − Fi(a− hej)

2h
, h = 10−8 ≈

√
machine precision,(4.11)

where ej is the jth vector in the standard basis of R
n+1. This bypasses the singularity

of ρ′′ at zero. The finite difference (4.11) is applicable to the case of the median-
interpolation problem; however, we remind the reader that at the time this article
is written it is not known whether Method II applied to (4.10) would enjoy any
convergence property.

Stopping criterion. We terminate a Newton iteration when the number of steps
in a Armijo line search exceeds an upper bound MAX_LINE_SEARCH (chosen to be 10
in MEstimatorInterp.)

4.5. Numerical experiments.
Experiment I. n = 4,(b0, b1, b2, b3, b4) = (−1.2, 1.3,−0.9, 1.0,−0.8).
Experiment II. n = 6, (b0, b1, b2, b3, b4, b5, b6) = (0.05, 0.7, 0.6,−0.25,−0.38,

−0.3,−1.5).
In both experiments, we take Ii = [i, i + 1]. Each of (i)–(iv) in section 4.4 is

applied to both datasets above; in the following discussion we label the corresponding
subexperiments as I(i)–I(iv) and II(i)–II(iv), respectively. The left panels of Figure 1
depict the error curves log(||F (ak)||) versus k; on the right panels we graph the
midpoint, median, and smoothed median (with smoothing factor ε = 0.1) interpolants
of the data.

While Method II applied to median interpolation converges in Experiment II(ii),
the method clearly fails in Experiment I(ii). Nevertheless, the latter failure of conver-
gence is remedied by Experiment I(iv). As mentioned, there is currently no theoretical
guarantee that the Newton method with line search applied to the nonsmooth systems
in (ii) would enjoy any global (or even local) convergence property. Moreover, one
can see from Figure 1(a) and (c) that Newton Method II applied to the nonsmooth
median interpolation does not seem to offer fast convergence.
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Fig. 1. Error curves (left) and polynomial interpolants (right).

On the other hand, Newton Method II applied to the smoothed median-interpo-
lation problem exhibits superlinear convergence in Experiments I(i) and II(i), as ex-
pected from Theorem 4.3. As seen from Figure 1(a) and (c), the rates of convergence
are noticeably faster than those in Experiment I(iii) and II(iii).

In summary the fixed-point algorithm used in MedianInterp for solving the me-
dian interpolation problem converges slower than Newton Method II applied to the
smoothed median-interpolation problem. The latter method has a provable superlin-
ear convergence property, while the former method has a conjectured linear conver-
gence property. In terms of actual computational speed, one step of Newton iteration
in our current implementation of MEstimatorInterp is much slower than one step
of fixed-point iteration in MedianInterp; this is to be expected. Indeed, one can
definitely improve the implementation of MEstimatorInterp.

During the revision of this article, we received the preprint by Qi [9], who studies
the smoothness properties of Mρ and Fρ defined in section 4.1 and 4.2 in the case of the
Huber M-Estimator (i.e., when ρ is given by (2.3).) The same article also illustrates a
fundamental difficulty in the numerical solution of the median-interpolation problem:
specifically, it is shown in section 4 of [9] that F|·|, unlike M|·|, is in general not
even locally Lipschitz. This supports the slow convergence observed empirically in
Experiments I(ii),(iv) and II(ii),(iv).
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5. Nonlinear pyramid transforms based on M-estimators. Following the
same strategy proposed in [3], one can now use the results in this paper to construct
new nonlinear pyramid transforms: for a given signal f : R → R, one measures the
M-estimators of f over dyadic intervals Ij,k = [2−jk, 2−j(k + 1)], performs coarse-to-
fine prediction using local polynomial interpolation, which has been shown to be a
well-posed procedure by Theorem 3.1, and then defines the pyramid coefficients based
on the errors of such predictions.

Nonlinear subdivision operator. We first define a new class of nonlinear subdivi-
sion operators which will serve the purpose of coarse-to-fine prediction. Denote by
l(Z) the vector space of all real sequences defined on Z. Let ρ be a convex function
with the standard assumptions. Let L ≥ 1 be an integer. For a given y ∈ l(Z) and
h > 0, define Sρ,L;h(y) ∈ l(Z) as follows.

1. Interpolation: for each k ∈ Z, let pk ∈ Π2L be the unique polynomial such
that

m(pk; [h(k + l), h(k + l + 1)], ρ) = yk+l, l = −L, . . . , L.

2. Imputation:

(Sρ,L;h(y))2k := m(pk; [hk, h(k + 1/2)], ρ),

(Sρ,L;h(y))2k+1 := m(pk; [h(k + 1/2), h(k + 1)], ρ), k ∈ Z.

Since m(f ;K, ρ) = m(f(T ·);T−1(K), ρ) for any invertible affine map T , the op-
erator Sρ,L;h is independent of the scale parameter h; thus we drop the subscript h
and write Sρ,L : l(Z) → l(Z). It is worth mentioning that Theorem 3.1 implies that
Sρ,L is a bounded operator on l∞(Z).

Pyramid transform. For a continuous signal f : R → R, a ρ, and an integer
L ≥ 1, we define an M-estimator interpolating pyramid transform of f , denoted by
MeIPT(f ;L, ρ), as follows.

1. Formation of M-estimators of f over dyadic blocks:

mj,k := m(f ; Ij,k, ρ), j = j0, j0 + 1, . . . , k ∈ Z.

2. Coarse-to-fine prediction: m̃j+1 = Sρ,L((mj,k)k).
3. Formation of detailed coefficients: dj,k = mj,k − m̃j,k.

MeIPT(f ;L, ρ) := {(m0,k)k∈Z, (d1,k)k∈Z, (d2,k)k∈Z, . . . }.

There is also an inversion process for recovering f from MeIPT(f ;L, ρ) based on
sequentially reversing the steps above. For this purpose we need also the observation
that

lim
j→∞

∥∥∥∥∥f −
∑
k∈Z

m(f ; Ij,k, ρ)1[2−jk,2−j(k+1))

∥∥∥∥∥
L∞

= 0

when f is a bounded continuous function.
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For j = j0, j0 + 1, j0 + 2, . . . ,
1. fj :=

∑
k∈Z

mj,k1[2−jk,2−j(k+1)).
2. Coarse-to-fine prediction: m̃j+1 = Sρ,L((mj,k)k).
3. Recovery of scale j+1 M-estimators of f : mj+1,k = m̃j+1,k+dj+1,k, k ∈

Z.

(fj)j → f uniformly on compact sets.(5.1)

Discussion. In practice, however, one typically recovers an estimate of f from a
certain perturbed version of MeIPT(f ;L, ρ); in this case the convergence in (5.1) has
to be reexamined, and also the stability of MeIPT becomes a very important issue.
While these open problems are beyond the scope of the current paper, based on
Theorem 3.1 we expect MeIPT to be a decent tool for signal compression. Following
the formulation and arguments in [3, Proof of P3, p. 1055], the transform coefficients
in MeIPT(f) can be shown to have good sparsity when f is piecewise smooth; and
the sparsity improves gracefully as the smoothness of f improves. Such a property
is attributable to the accurate coarse-to-fine prediction power of the operator Sρ,L,
thanks to a polynomial exactness property of Sρ,L guaranteed by Theorem 3.1.

Robust pyramid transform based on smoothed medians. Combining the ideas in
this and the last section, one can now construct MeIPT based on smoothed con-
tinuous medians. Such pyramid transforms had been found experimentally to be as
robust against outliers as the median-interpolating pyramid transforms considered in
[3]. This is to be expected by virtue of Proposition 4.4.
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Abstract. A time-domain approach is presented to solve nonlinear circuits with lossless trans-
mission lines. Mathematically, the circuits are described by a special kind of nonlinear differential-
algebraic equations (DAEs) with multiple constant delays. In order to directly compute these delay
systems in time-domain, decoupling by waveform relaxation (WR) is applied to the systems. For the
relaxation-based method we provide a new convergence proof. Numerical experiments are given to
illustrate the novel approach.

Key words. nonlinear circuits, transmission lines, differential-algebraic equations with multiple
delays, waveform relaxation, circuit simulation
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1. Introduction. A recent advance in VLSI technology has led to the develop-
ment of high-speed integrated circuits in which the conductors must be regarded as
transmission lines [1, 2]. At low bit rates, the lines may be considered as lossless.

The simulation task is to compute the transient response of a circuit consisting of
nonlinear devices interconnected by transmission lines. These lines cause delay of the
signals, and if they are terminated in nonlinear devices, they usually cause reflections
as well.

In this paper we report a new method to simulate a circuit with lossless transmis-
sion lines. The circuit equations are nonlinear differential-algebraic equations (DAEs)
with multiple constant delays. In time-domain waveform relaxation (WR) decoupling
is applied to the system. The decoupled subsystems are some standard ordinary
differential equations (ODEs) and algebraic equations (AEs). The general-purpose
circuit simulators can be used to solve the subsystems. WR is a parallel process of
computing transient solutions for large systems in time-domain [3, 4, 5, 6, 7]. Recent
works on WR convergence for DAEs are reported in [8, 9, 10, 11, 12]. For a standard
system of ODEs with usual delay, the papers [13, 14] considered simple WR methods.
However, none of the works can be directly applied to this special kind of DAE with
multiple delays in simulation of transmission lines. In this paper we provide a detailed
proof of the proposed method. Three illustrative examples are also presented.

2. Models of lossless transmission lines. In general, a transmission line is
described by telegrapher’s equations. For a lossless transmission line system shown
in Figure 1, at time t (0 ≤ t ≤ Te) let v(x, t) and i(x, t) respectively be voltage and
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x=0

i(x,t)

v(x,t)
x=d

Fig. 1. A segment of lossless transmission line.

current at point x (0 ≤ x ≤ d). The basic equations are⎧⎪⎨⎪⎩
∂v(x, t)

∂x
= −L∂i(x, t)

∂t
,

∂i(x, t)

∂x
= −C ∂v(x, t)

∂t
,

(1)

where L is inductance and C is capacitance for unit length.
Differentiate the first part of (1) with respect to x and the second part of (1) with

respect to t, and then combine them to obtain

∂2v(x, t)

∂x2
= LC

∂2v(x, t)

∂t2
.(2)

Similarly,

∂i(x, t)

∂x2
= LC

∂2i(x, t)

∂t2
.(3)

Let LC = 1/ν2, where ν is velocity of signal propagation. The solution of (2) and
(3) has the form ⎧⎪⎨⎪⎩

v(x, t) = f
(
t− x

ν

)
+ g

(
t+

x

ν

)
,

i(x, t) =
1

z0
f
(
t− x

ν

)
− 1

z0
g
(
t+

x

ν

)
,

(4)

where z0 =
√
L/C. By (4), we get⎧⎪⎨⎪⎩

f
(
t− x

ν

)
=

1

2
[v(x, t) + z0i(x, t)],

g
(
t+

x

ν

)
=

1

2
[v(x, t) − z0i(x, t)].

(5)

Let τ = d
ν , which is the delay of a signal going from x = 0 to x = d. Now at

x = d we have 2v(d, t) = [v(0, t− τ) + z0i(0, t− τ)] + [v(d, t) − z0i(d, t)] or

v(d, t) = v(0, t− τ) + z0i(0, t− τ) − z0i(d, t).(6)

At x = 0, we have 2v(0, t) = [v(0, t) + z0i(0, t)] + [v(d, t− τ) − z0i(d, t− τ)] or

v(0, t) = v(d, t− τ) − z0i(d, t− τ) + z0i(0, t).(7)
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+

v(d,t)

i(0,t) i(d,t)

v(0,t)

z0z0

+

WBWA

Fig. 2. Characteristic 2-port of lossless transmission line system.

+

E(t)

v1 v2

c1 c2 R2

R1

WA, WB, z0

Fig. 3. A linear circuit with transmission lines.

Define two quantities{
WA(t− τ) = v(d, t− τ) − z0i(d, t− τ),
WB(t− τ) = v(0, t− τ) + z0i(0, t− τ).

(8)

Then (6) and (7) become{
v(0, t) = z0i(0, t) +WA(t− τ),
v(d, t) = −z0i(d, t) +WB(t− τ).

(9)

By (8) and (9), we have {
WA(t) = 2v(d, t) −WB(t− τ),
WB(t) = 2v(0, t) −WA(t− τ).

(10)

The transmission line is therefore characterized by⎧⎪⎨⎪⎩
i(0, t) =

1

z0
v(0, t) − 1

z0
−WA(t− z),

1pti(d, t) =
1

−z0 v(d, t) +
1

z0
+WB(t− z).

(11)

Its equivalent circuit is shown in Figure 2.

For a linear circuit with the lossless transmission line system given in Figure 3,
the circuit equations are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c1
dv1(t)

dt
=
E(t)

R1
−
(

1

R1
+

1

z0

)
v1(t) +

1

z0
WA(t− τ),

c2
dv2(t)

dt
= −

(
1

R2
+

1

z0

)
v2(t) +

1

z0
WB(t− τ),

WA(t) = 2v2(t) −WB(t− τ), WB(t) = 2v1(t) −WA(t− τ).

(12)

Its equivalent circuit is also shown in Figure 4.
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+

z0z0

+

WBWAE(t)

v1 v2

c2c1

R1

R2

+

Fig. 4. An equivalent circuit for a distributed network.

+

c1

v1 v3

v4

c2

c4

c3

v2
R1

R4

R3E(t)
WA1, WB1, z01 WA2, WB2, z02

WA3, WB3, z03

Fig. 5. A linear circuit with multiple transmission lines.

Another distributed circuit is given in Figure 5; its circuit equations are described
by DAEs with multiple constant delays as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1
dv1(t)

dt
= −

(
1

R1
+

1

z01

)
v1(t) +

1

z01
WA1(t− τ1) +

E(t)

R1
,

c2
dv2(t)

dt
= −

(
1

z01
+

1

z02
+

1

z03

)
v2(t) +

1

z01
WB1(t− τ1) +

1

z02
WA2(t− τ2)

+
1

z03
WA3(t− τ3),

c3
dv3(t)

dt
= −

(
1

R3
+

1

z02

)
v3(t) +

1

z02
WB2(t− τ2),

c4
dv4(t)

dt
= −

(
1

R4
+

1

z03

)
v4(t) +

1

z03
WB3(t− τ3),

WA1(t) = 2v2(t) −WB1(t− τ1), WB1(t) = 2v1(t) −WA1(t− τ1),
WA2(t) = 2v3(t) −WB2(t− τ2), WB2(t) = 2v2(t) −WA2(t− τ2),
WA3(t) = 2v4(t) −WB3(t− τ3), WB3(t) = 2v2(t) −WA3(t− τ3).

(13)
The systems of (12) and (13) have no standard form of ODEs with finite delays

as studied in [13, 14]. To clearly understand this point, we may see the case of (12).
First, from the algebraic part of (12) we know that

WA(t) = 2v2(t) −WB(t− τ)
= 2v2(t) − 2v1(t− τ) +WA(t− 2τ)

(14)

and

WB(t) = 2v1(t) −WA(t− τ)
= 2v1(t) − 2v2(t− τ) +WB(t− 2τ).

(15)
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Since WA(t) and WB(t) are defined on [−τ, Te], where τ < +∞, we cannot rewrite
(12) as a system of ODEs with delay. If the functions in (12) are defined on (−∞, Te],
by (14) and (15), WA(t− τ) and WB(t− τ) can be expressed as

WA(t− τ) = 2

∞∑
j=1

[v2(t− (2j − 1)τ) − v1(t− 2jτ)](16)

and

WB(t− τ) = 2

∞∑
j=1

[v1(t− (2j − 1)τ) − v2(t− 2jτ)].(17)

Substituting (16) and (17) into the differential part of (12), we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c1
dv1(t)

dt
=
E(t)

R1
−
(

1

R1
+

1

z0

)
v1(t) +

2

z0

∞∑
j=1

[v2(t− (2j − 1)τ) − v1(t− 2jτ)],

c2
dv2(t)

dt
= −

(
1

R2
+

1

z0

)
v2(t) +

2

z0

∞∑
j=1

[v1(t− (2j − 1)τ) − v2(t− 2jτ)].

(18)
However, it is now a system with infinite delays. The convergence conditions of WR
in [13, 14] are still not suitable for simulation of transmission lines. This also further
illustrates that for this kind of simulation problems it is better to directly use DAEs
with delay.

3. WR of DAEs with multiple delays. Let us study the following circuit
system of DAEs with multiple constant delays:⎧⎪⎪⎨⎪⎪⎩

C(t)
dx(t)

dt
+G(x(t), t) +DW (t− τ) = b(t),

A(t)x(t) +W (t) +BW (t− τ) = 0,

x(0) = x0, W (θ) ≡ ϕ(θ) (−τ ≤ θ < 0), t ∈ [0, Te],

(19)

where C(·), A(·) are two matrix-valued functions in Rn×n and R2m×n; D,B are two
constant matrices in Rn×2m and R2m×2m; G(·, ·) is a nonlinear function; and for any
t the functions x(t) ∈ Rn×1, W (t− τ) ∈ R2m×1 are to be computed, in which

W (t− τ) = [y1(t− τ1), z1(t− τ1), . . . , ym(t− τm), zm(t− τm)]t.(20)

We also define τ ′ = min1≤i≤m{τi}(> 0).
For the above circuit system, b(·) is a known input function, x0 is an initial value,

and ϕ(θ) is an initial state of the transmission line system such that

ϕ(θ) = [y1(θ1), z1(θ1), . . . , ym(θm), zm(θm)]t,(21)

in which −τi ≤ θi < 0 (1 ≤ i ≤ m). We also assume that the initial values x0,
W0(= W (0)) are consistent; that is, A(0)x0 + W0 + BW (−τ) = 0. Further, by
invoking the above characteristic of transmission lines, we assume that the form of B
in (19) is a block diagonal matrix such that

B =

⎡⎢⎣ Id 0
. . .

0 Id

⎤⎥⎦ ∈ R2m×2m,(22)
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where Id =
[
0 1
1 0

]
.

In (19), we assume that C(·), dC(·)
dt , A(·), and ∂G

∂x are continuous. Moreover, C(t)

for all t ∈ [0, Te] are nonsingular and ∂G
∂x is bounded. In this paper we always assume

that (19) has a unique solution for given initial value and state.

Let F : (Rn)2 × [0, Te] �→ Rn be a splitting function of G which satisfies

F (u, u, t) = G(u, t), t ∈ [0, Te],(23)

where u ∈ Rn. The WR decoupling of (19) is⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1(t)

dx(k)(t)

dt
+ F (x(k)(t), x(k−1)(t), t) = C2(t)

dx(k−1)(t)

dt
−DW (k−1)(t− τ) + b(t),

A1(t)x
(k)(t) +W (k)(t) = A2(t)x

(k−1)(t) −BW (k−1)(t− τ),

x(k)(0) = x0, W (k)(θ) ≡ ϕ(θ) (−τ ≤ θ < 0), t ∈ [0, Te], k = 1, 2, . . . ,
(24)
where C(·) = C1(·)−C2(·), A(·) = A1(·)−A2(·), and x(0),W (0) are two initial guesses.

Similarly, for i = 1, 2 we assume that Ci(·), dCi(·)
dt , Ai(·), and ∂F

∂ui
are continuous,

where ∂F
∂ui

(i = 1, 2) are the partial derivatives of F (x(k)(·), x(k−1)(·), ·) with respect
to the first two arguments. Moreover, we also assume that C1(t) for all t ∈ [0, Te] are
nonsingular and ∂F

∂ui
(i = 1, 2) are bounded. By the relaxation-based method (24),

equation (19) is now decoupled into two independent subsystem ODEs and AEs for
any fixed k.

Let the function pair (x,W ) be the exact solution of (19). We define ε(l)(·) =
x(l)(·) − x(·) and δ(l)(·) = W (l)(·) −W (·) for an index l such that ε(l)(0) = 0 and
δ(l)(θ) ≡ 0, where −τ ≤ θ < 0. By (19) and (24), according to the known mean
theorem of vector functions we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

C1(t)
dε(k)(t)

dt
+
∂F

∂u1
ε(k)(t) +

∂F

∂u2
ε(k−1)(t) = C2(t)

dε(k−1)(t)

dt
−Dδ(k−1)(t− τ),

A1(t)ε
(k)(t) + δ(k)(t) = A2(t)ε

(k−1)(t) −Bδ(k−1)(t− τ),

ε(k)(0) = 0, δ(k)(θ) ≡ 0 (−τ ≤ θ < 0), t ∈ [0, Te], k = 1, 2, . . . .
(25)

We write the differential part of (25) as⎧⎪⎪⎪⎨⎪⎪⎪⎩
dε(k)(t)

dt
= −C−1

1 (t)
∂F

∂u1
ε(k)(t) + C−1

1 (t)C2(t)
dε(k−1)(t)

dt
− C−1

1 (t)
∂F

∂u2
ε(k−1)(t)

− C−1
1 (t)Dδ(k−1)(t− τ),

ε(k)(0) = 0, t ∈ [0, Te], k = 1, 2, . . . .
(26)
We now denote X(·) = −C−1

1 (·) ∂F∂u1
and let the matrix-valued function Φ(·) satisfy

⎧⎨⎩
dΦ(t)

dt
= X(t)Φ(t),

Φ(0) = I, t ∈ [0, Te].
(27)

Using the fundamental solution matrix Φ(·) and doing some calculations as in [15],
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for t ∈ [0, Te] we have

ε(k)(t) = C−1
1 (t)C2(t)ε

(k−1)(t)

− Φ(t)

∫ t

0

Φ−1(s)

[
C−1

1 (s)
∂F

∂u1
C−1

1 (s)C2(s) + C−1
1 (s)

∂F

∂u2
+
d(C−1

1 C2)(s)

ds

]
ε(k−1)(s)ds

− Φ(t)

∫ t

0

Φ−1(s)C−1
1 (s)Dδ(k−1)(s− τ)ds.

(28)
For a positive parameter λ, multiplying both sides of (28) by e−λt, we have

e−λtε(k)(t) = C−1
1 (t)C2(t)(e

−λtε(k−1)(t))

− e−λtΦ(t)

∫ t

0

eλsΦ−1(s)

[
C−1

1 (s)
∂F

∂u1
C−1

1 (s)C2(s) + C−1
1 (s)

∂F

∂u2
+
d(C−1

1 C2)(s)

ds

]
× (e−λsε(k−1)(s))ds

− e−λtΦ(t)

∫ t

0

eλsΦ−1(s)C−1
1 (s)DJ(τ)(e−λ(s−τ)δ(k−1)(s− τ))ds, t ∈ [0, Te],

(29)
where

e−λ(s−τ)δ(k−1)(s− τ)

= [e−λ(s−τ1)(y(k−1)
1 (s− τ1) − y1(s− τ1)), e

−λ(s−τ1)(z(k−1)
1 (s− τ1) − z1(s− τ1)), . . . ,

e−λ(s−τm)(y(k−1)
m (s− τm) − ym(s− τm)), e−λ(s−τm)(z(k−1)

m (s− τm) − zm(s− τm))]t

and

J(τ) =

⎡⎢⎣ e−λτ1I 0
. . .

0 e−λτmI

⎤⎥⎦ ∈ R2m×2m,

in which I =
[
1 0
0 1

]
.

All functions appearing in (29) are bounded due to the stated assumptions. There
are two positive constants K1 and K2 such that

‖e−λtε(k)(t)‖ ≤ ‖C−1
1 (t)C2(t)‖‖e−λtε(k−1)

(t)‖ + e−λtK1

∫ t

0

eλs‖e−λsε(k−1)(s)‖ds

+ e−λtK2‖J(τ)‖
∫ t

0

eλs‖e−λ(s−τ)δ(k−1)(s− τ)‖ds, t ∈ [0, Te],

(30)
where the norm is adopted as one of ‖ · ‖p, where p = 1, 2,∞.

We define ‖u‖t = supa≤s≤t{‖u(s)‖} for a vector or matrix function u(·) on [a, b].
The function ‖u‖t is monotonically increasing with respect to t on [a, b]. Because

‖J(τ)‖ = e−λτ
′
and

e−λt
∫ t

0

eλsds ≤ 1

λ
, t ∈ [0, Te],

we can rewrite (30) as

‖ε(k)‖t ≤ ‖C−1
1 C2‖t‖ε(k−1)‖t +

K1

λ
‖ε(k−1)‖t +

K2e
−λτ ′

λ
‖δ(k−1)‖t−τ

≤
(
‖C−1

1 C2‖t +
K1

λ

)
‖ε(k−1)‖t +

K2e
−λτ ′

λ
‖δ(k−1)‖t, t ∈ [0, Te].

(31)
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We now write the algebraic part of (25) for a fixed k as

δ(k)(t) = −A1(t)ε
(k)(t) +A2(t)ε

(k−1)(t) −Bδ(k−1)(t− τ), t ∈ [0, Te].(32)

Using e−λt to multiply its two sides, on [0, Te] we know that

e−λtδ(k)(t) = −A1(t)(e
−λtε(k)(t))+A2(t)(e

−λtε(k−1)(t))−e−λτB(e−λ(t−τ)δ(k−1)(t−τ)),
(33)
where

e−λτB =

⎡⎢⎣ e−λτ1Id 0
. . .

0 e−λτmId

⎤⎥⎦ ∈ R2m×2m.

For t ∈ [0, Te], it follows that

‖δ(k)‖t ≤ ‖A1‖t‖ε(k)‖t + ‖A2‖t‖ε(k−1)‖t + ‖e−λτB‖‖δ(k−1)‖t−τ
≤ ‖A1‖t‖ε(k)‖t + ‖A2‖t‖ε(k−1)‖t + e−λτ

′‖δ(k−1)‖t(34)

due to the fact ‖e−λτB‖ = e−λτ
′
. Substituting (31) into the above inequality, we get

‖δ(k)‖t ≤
[(

‖C−1
1 C2‖t +

K1

λ

)
‖A1‖t + ‖A2‖t

]
‖ε(k−1)‖t

+

(
e−λτ

′
+
K2e

−λτ ′

λ
‖A1‖t

)
‖δ(k−1)‖t, t ∈ [0, Te].

(35)

By (31) and (35), we have[ ‖ε(k)‖Te

‖δ(k)‖Te

]
≤M(1/λ)

[ ‖ε(k−1)‖Te

‖δ(k−1)‖Te

]
, k = 1, 2, . . . ,(36)

where

M(1/λ) =

[
‖C−1

1 C2‖Te
+ K1

λ
K2e

−λτ′

λ

(‖C−1
1 C2‖Te

+ K1

λ )‖A1‖Te + ‖A2‖Te e−λτ
′
+ K2e

−λτ′

λ ‖A1‖Te

]
.(37)

It is a known conclusion that for any matrix H(= (hij)) its spectral radius ρ(H)
is a continuous function of hij for all i and j. Since the spectral radius of M(0) is
‖C−1

1 C2‖Te , the spectral radius of M(1/λ) will be less than one for some large λ if the
quantity ‖C−1

1 C2‖Te is less than one. Thus, we have proven the following theorem.
Theorem 3.1. For the nonlinear circuit system with lossless transmission lines

(19), its WR method (24) is convergent if

sup
0≤t≤Te

‖C−1
1 (t)C2(t)‖ < 1.(38)

Let us denote α = sup0≤t≤Te
‖C−1

1 (t)C2(t)‖ and β = sup0≤t≤Te
‖C−1

1 (t)D‖. We
rewrite the WR method (24) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx(k)(t)

dt
= C−1

1 (t)C2(t)
dx(k−1)(t)

dt
− C−1

1 (t)F (x(k)(t), x(k−1)(t), t)

− C−1
1 (t)DW (k−1)(t− τ) + C−1

1 (t)b(t),

W (k)(t) = −A1(t)x
(k)(t) +A2(t)x

(k−1)(t) −BW (k−1)(t− τ),

x(k)(0) = x0, W (k)(θ) ≡ ϕ(θ) (−τ ≤ θ < 0), t ∈ [0, Te], k = 1, 2, . . . .

(39)
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Now, we briefly define a basic 2 × 2 matrix as

N =

[
α β
0 ‖B‖

]
.(40)

If one tries to use a known convergence result in [8, 12], the condition ρ(N) < 1 is
necessary. However, under the assumption of Theorem 3.1 in the paper it is impossible
because we know

ρ(N) = max{α, ‖B‖}(41)

and ‖B‖ = 1.
To speed up the WR convergence of (24), a windowing technique can be used for a

long interval [0, Te]. The decoupled subsystems by WR with windowing are separately
solved on windows [Ti, Ti+1] with time points Ti (0 = T0 < T1 < · · · < TN = Te).
The computation of the WR solutions starts at T0 and goes on from one window to
another window until TN = Te is reached. Namely,⎧⎪⎪⎪⎨⎪⎪⎪⎩

C1(t)
dx

(k)
i (t)

dt
+ F (x

(k)
i (t), x

(k−1)
i (t), t) = C2(t)

dx
(k−1)
i (t)

dt
−DW

(k−1)
i (t− τ) + b(t),

A1(t)x
(k)
i (t) +W

(k)
i (t) = A2(t)x

(k−1)
i (t) −BW

(k−1)
i (t− τ), t ∈ [Ti, Ti+1],

x
(k)
i (Ti) = x

(ki−1)
i−1 (Ti), k = 1, 2, . . . , ki, i = 0, 1, . . . , N − 1,

(42)

where x
(k−1)
−1 (0) = x0, W

(l)(t− τ) ≡ ϕ(t− τ) if t ≤ τ , and the initial guesses x
(0)
i (t) ≡

x
(ki−1)
i−1 (Ti), W

(0)
i (t− τ) ≡W

(ki−1)
i−1 (Ti − τ) on [Ti, Ti+1] for all i.

4. Numerical experiments. Our numerical experiments are done for three
simple circuits with transmission lines.

4.1. Example 1. The circuit is shown in Figure 3. For (12), its WR method is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1
dv

(k)
1 (t)

dt
+

(
1

R1
+

1

z0

)
v
(k)
1 (t) =

1

z0
W

(k−1)
A (t− τ) +

E(t)

R1
,

c2
dv

(k)
2 (t)

dt
+

(
1

R2
+

1

z0

)
v
(k)
2 (t) =

1

z0
W

(k−1)
B (t− τ),

−2v
(k)
2 (t) +W

(k)
A (t) = −W (k−1)

B (t− τ), −2v
(k)
1 (t) +W

(k)
B (t) = −W (k−1)

A (t− τ),

[v
(k)
1 (0), v

(k)
2 (0)]

t
= [v1(0), v2(0)]

t
,

[W
(k)
A (θ),W

(k)
B (θ)]

t ≡ [ϕA(θ), ϕB(θ)]
t

(−τ ≤ θ < 0),

t ∈ [0, Te], k = 1, 2, . . . .
(43)
We assume that the system starts from rest. The parameters are defined as c1 = c2 =
10−3nF, R1 = 50Ω, R2 = 100Ω, z0 = 24.5Ω, τ = 0.244ns, Te = 2.684ns, and

E(t) =

⎧⎨⎩
(

4 +
t− 2 × 10−10

2 × 10−10

)
V , 2 × 10−10 < t ≤ 4 × 10−10;

0 otherwise.

The implicit Euler method, where the time-step is 0.0122ns, is taken to compute
the decoupled ODEs. We define the iterative error as the sum of the squared differ-
ences of successive waveforms taken over all time points. The numerical results are
given in Table 1. The far end voltage v2(t) is shown in Figure 6.
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Table 1

WR of a linear circuit in Example 1.

Numbers of iterations Iterative errors

1, 2, 3, 4, 5 1.3820, 1.2130, 5.6123 ×10−1, 2.7017 ×10−1, 1.2604 ×10−1

6, 7, 8, 9 6.1703 ×10−2, 2.9241 ×10−2, 1.4721 ×10−2, 6.5511 ×10−3

10, 11 1.9368 ×10−3, 3.4737 ×10−4

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

v
2

Time (ns)

Vo
lta

ge
 (v

olt
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Fig. 6. Far end voltage of a linear circuit in Example 1.

4.2. Example 2. The circuit is shown in Figure 5. For (12), its WR method is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1
dv

(k)
1 (t)

dt
+

(
1

R1
+

1

z01

)
v
(k)
1 (t) =

1

z01
W

(k−1)
A1 (t− τ1) +

E(t)

R1
,

c2
dv

(k)
2 (t)

dt
+

(
1

z01
+

1

z02
+

1

z03

)
v
(k)
2 (t) =

1

z01
W

(k−1)
B1 (t− τ1) +

1

z02
W

(k−1)
A2 (t− τ2)

+
1

z03
W

(k−1)
A3 (t− τ3),

c3
dv

(k)
3 (t)

dt
+

(
1

R3
+

1

z02

)
v
(k)
3 (t) =

1

z02
W

(k−1)
B2 (t− τ2),

c4
dv

(k)
4 (t)

dt
+

(
1

R4
+

1

z03

)
v
(k)
4 (t) =

1

z03
W

(k−1)
B3 (t− τ3),

−2v
(k)
2 (t) +W

(k)
A1 (t) = −W (k−1)

B1 (t− τ1), −2v
(k)
1 (t) +W

(k)
B1 (t) = −W (k−1)

A1 (t− τ1),

−2v
(k)
3 (t) +W

(k)
A2 (t) = −W (k−1)

B2 (t− τ2), −2v
(k)
2 (t) +W

(k)
B2 (t) = −W (k−1)

A2 (t− τ2),

−2v
(k)
4 (t) +W

(k)
A3 (t) = −W (k−1)

B3 (t− τ3), −2v
(k)
2 (t) +W

(k)
B3 (t) = −W (k−1)

A3 (t− τ3),

[v
(k)
1 (0), v

(k)
2 (0), v

(k)
3 (0), v

(k)
4 (0)]

t
= [v1(0), v2(0), v3(0), v4(0)]

t
,

[W
(k)
A1 (θ1),W

(k)
B1 (θ1), . . . ,W

(k)
A3 (θ3),W

(k)
B3 (θ3)]

t

≡ [ϕA1(θ1), ϕB1(θ1), . . . , ϕA3(θ3), ϕB3(θ3)]
t
,

−τi ≤ θi ≤ 0, 1 ≤ i ≤ 3, t ∈ [0, Te], k = 1, 2, . . . .
(44)
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Fig. 7. Far end voltage of a circuit with multiple transmission lines in Example 2.
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Fig. 8. A transistor and its circuit.

We also assume that the system starts from total rest for the example. The parameters
are defined as c1 = c4 = 0.1nF, c2 = c3 = 0.2nF, R1 = 50Ω, R3 = 50Ω, R4 = 50Ω,
z01 = 10Ω, z02 = 20Ω, z03 = 30Ω, τ1 = 1ns, τ2 = 0.9ns, τ3 = 0.8ns, Te = 30ns,
and

E(t) =

{
1V, 0.1ns < t ≤ 0.2ns;
0 otherwise.

We let the time-step be 0.01ns. The far end voltage v4(t) is shown in Figure 7
after nine waveform iterations.

4.3. Example 3. Now we compute a circuit which includes transistors. The
transistor is given in Figure 8. The transistor equations are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ic = 0.98i1 − i2 + c
d(vc − vb)

dt
,

ie = −0.98i2 + i1 + c
d(vb − ve)

dt
,

ib = ie − ic, i1 = 10−6(e40(vb−ve) − 1), i2 = 10−6(e40(vb−vc) − 1).

(45)
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vccvcc

Rc
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v4 (= vout)
v2 v3

WA, WB, z0

Rb

vi n

v1

Ce

Fig. 9. A nonlinear circuit with transistors and transmission lines.
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Fig. 10. Far end voltage of a nonlinear circuit with transistors and transmission lines in
Example 3 (left: computed result; right: long time behavior).

The circuit is shown in Figure 9. Its equations are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vin − v1
Rb

= −0.98 × 10−6(e40(v1−v2) − 1) + 10−6(e40v1 − 1)

+ 10−9 dv1
dt

− 0.98 × 10−6(e40v1 − 1) + 10−6(e40(v1−v2) − 1)

− 10−9 d(v2 − v1)

dt
,

vcc − v2
Rc

=
v2 −WA(t− τ)

z0
+ 0.98 × 10−6(e40v1 − 1) − 10−6(e40(v1−v2) − 1)

+ 10−9 d(v2 − v1)

dt
,

WB(t− τ) − v3
z0

+ 0.98 × 10−6(e40(v3−v4) − 1) − 10−6(e40(v3−vcc) − 1) − 10−9 dv3
dt

= −0.98 × 10−6(e40(v3−vcc) − 1) + 10−6(e40(v3−v4) − 1) + 10−9 d(v3 − v4)

dt
,

−0.98 × 10−6(e40(v3−vcc) − 1) + 10−6(e40(v3−v4) − 1) + 10−9 d(v3 − v4)

dt
=

v4
Re

+ ce
dv4
dt
,

WA(t) = 2v3(t) −WB(t− τ), WB(t) = 2v2(t) −WA(t− τ).
(46)
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The above circuit parameters are set to be vcc = 5V, Rb = 50Ω, Rc = 1000Ω, Re =
1000Ω, ce = 10pF, z0 = 25Ω, τ = 0.1µs, Te = 2µs, v1(0) = v2(0) = v3(0) = 0.65V,
ϕA(θ) ≡ ϕB(θ) ≡ 0 (−τ ≤ θ < 0), and

vin(t) =

{
0, 0.05µs < t ≤ 0.06µs;
0.8V otherwise.

The Gauss–Seidel WR method of (46) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 × 10−9 dv
(k)
1

dt
+
v
(k)
1

Rb
+ 10−8e40(v

(k)
1 −v(k−1)

2 ) + 10−8e40v
(k)
1

= 10−9 dv
(k−1)
2

dt
+
vin
Rb

+ 2 × 10−8,

−10−9 dv
(k)
1

dt
+ 10−9 dv

(k)
2

dt
+

(
1

Rc
+

1

z0

)
v
(k)
2 + 0.98 × 10−6e40v

(k)
1 − 10−6e40(v

(k)
1 −v(k)

2 )

=
W

(k−1)
A (t− τ)

z0
+
vcc
Rc

− 2 × 10−8,

2 × 10−9 dv
(k)
3

dt
+
v
(k)
3

z0
+ 10−8e40(v

(k)
3 −vcc) + 10−8e40(v

(k)
3 −v(k−1)

4 )

= 10−9 dv
(k−1)
4

dt
+
W

(k−1)
B (t− τ)

z0
+ 2 × 10−8,

−10−9 dv
(k)
3

dt
+ (1 + ce) × 10−9 dv

(k)
4

dt
+
v
(k)
4

Re
− 10−6e40(v

(k)
3 −v(k)

4 ) + 0.98 × 10−6e40(v
(k)
3 −vcc)

= −2 × 10−8,

−2v
(k)
3 (t) +W

(k)
A (t) = −W (k−1)

B (t− τ), −2v
(k)
2 (t) +W

(k)
B (t) = −W (k−1)

A (t− τ),

[v
(k)
1 (0), v

(k)
2 (0), v

(k)
3 (0), v

(k)
4 (0)]

t
= [v1(0), v2(0), v3(0), v4(0)]

t
,

[W
(k)
A (θ),W

(k)
B (θ)]

t ≡ [ϕA(θ), ϕB(θ)]
t
, −τ ≤ θ < 0, t ∈ [0, Te], k = 1, 2, . . . .

(47)

The spectral radius of the Gauss–Seidel splitting on the coefficient matrix of the
derivative term in (47) is 0.5. The Gauss–Seidel WR method (47) is convergent by
our theorem of the paper. In our computations, we let the time-step be 10−3µs and
the number of Newton iterations be 5. After 28 waveform iterations the computed
voltage vout(t)(= v4(t)) is shown in Figure 10.

5. Conclusion. We have presented an interesting time-domain approach to solv-
ing a circuit with lossless distributed elements. The circuit is described by DAEs with
multiple constant delays. The WR process decouples the system into ODEs and AEs.
A detailed proof of convergence of the new method is given. This approach directly
leads to the solution of the circuit in time-domain, and any of the general-purpose
circuit simulators can be used to solve the decoupled subsystems.

Acknowledgments. The author wishes to thank Professor Omar Wing for his
encouragement and for supplying the third example. He also thanks Professor J. R.
Cash for his valuable suggestions.
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A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS
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Abstract. In this paper, we examine the discontinuous Galerkin (DG) finite element approxi-
mation to convex distributed optimal control problems governed by linear parabolic equations, where
the discontinuous finite element method is used for the time discretization and the conforming finite
element method is used for the space discretization. We derive a posteriori error estimates for both
the state and the control approximation, assuming only that the underlying mesh in space is nonde-
generate. For problems with control constraints of obstacle type, which are the kind most frequently
met in applications, further improved error estimates are obtained.

Key words. optimal control, a posteriori error analysis, finite element approximation, discon-
tinuous Galerkin method
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1. Introduction. Optimal control or design is crucial to many engineering ap-
plications. Efficient numerical methods are essential to successful applications of
optimal control. Nowadays, the finite element method seems to be the most widely
used numerical method in computing optimal control problems, and the relevant lit-
erature is extensive. Some recent progress in this area has been made in, for example,
[40, 41, 43]. Systematic introduction of the finite element method for PDEs and op-
timal control problems can be found in, for example, [10, 40, 43]. For instance, there
have been extensive theoretical studies for finite element approximation of various
optimal control problems; see [3, 15, 16, 18, 19], [20, 21, 22, 23, 24, 25, 26], and
[37, 39, 44, 45]. For optimal control problems governed by linear elliptic or parabolic
state equations, a priori error estimates of finite element approximation were estab-
lished long ago; see, for example, [15, 18, 26, 37]. Furthermore a priori error estimates
have been also established for some important flow control problems; see, e.g., [19, 20].
A priori error estimates have also been obtained for a class of state constrained con-
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trol problems in [44], although the state equation is assumed to be linear. In [32],
the linear assumption has been removed by reformulating the control problem as an
abstract optimization problem in some Banach spaces and then applying nonsmooth
analysis. In fact, the state equation there can be a variational inequality.

In this paper, we examine an important class of finite element algorithms for
a convex distributed optimal control problem governed by a linear parabolic equa-
tion, where the discontinuous polynomial base is used in time discretization and the
conforming finite element method is used in space discretization. We present an
a posteriori error analysis for this approximation.

Adaptive finite element approximation is among the most important means to
boost the accuracy and efficiency of the finite element discretization. It ensures a
higher density of nodes in certain areas of the given domain, where the solution is
more difficult to approximate using an a posteriori error indicator. The decision about
whether further refinement of meshes is necessary is based on the estimate of the
discretization error. If further refinement is to be performed, then the error indicator
is used as a guide to show how the refinement might be accomplished most efficiently.
The literature in this area is huge. Some of the techniques directly relevant to our
work can be found in [1, 5, 33, 36, 46]. It is our belief that adaptive finite element
enhancement is one of the future directions to pursue in developing sophisticated
numerical methods for optimal design problems.

Although adaptive finite element approximation is widely used in numerical sim-
ulations, it has not yet been fully utilized in optimal design. Initial attempts in
this aspect have only been reported recently for some design problems (see, e.g.,
[2, 4, 38, 42]), and only a posteriori error indicators of a heuristic nature are used
in most applications. For instance, in some existing work on adaptive finite element
approximation of optimal design, the mesh refinement is guided by a posteriori error
estimators based on a posteriori error estimates solely from the state equation for
a fixed control. Thus error information from the approximation of the control (de-
sign) is not utilized. This strategy was found to be inefficient in recent numerical
experiments (see [7, 27]). Although these methods may work well in some particular
applications, they cannot be applied confidently in general. It is unlikely that the
potential power of adaptive finite element approximation has been fully utilized due
to the lack of more sophisticated a posteriori error indicators.

It is not straightforward to rigorously derive suitable a posteriori error estimators
for general optimal control problems. In particular, it seems difficult to apply gradi-
ent recovery techniques since the control is normally not differentiable. Recovering
approximation in function values is in general difficult. For a similar reason, it also
seems difficult to apply the local solution strategy.

Very recently, some error indicators of residual type were developed in [6, 7, 27,
30, 34, 35, 36]. These error estimators are based on a posteriori estimation of the
discretization error for the state and the control (design).

When there is no constraint in a control problem, normally the optimality con-
ditions consist of coupled partial differential equations only. Consequently one may
be able to write down the dual system of the whole optimality conditions, and then
to apply the weighted a posteriori error estimation technique to obtain a posteri-
ori estimators for objective functional approximation error of the control problem;
see [6, 7]. Such estimators have indeed been derived for some unconstrained elliptic
control problems, and have proved quite efficient in the numerical tests carried out
in [6].
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However, there frequently exist some constraints for the control in applications.
In such cases, the optimality conditions often contain a variational inequality and
then have some very different properties. For example, the dual system is generally
unknown. Thus it does not seem to be always possible to apply the techniques used
in [6, 7] to constrained control problems.

In our work, constrained cases are studied via residual estimation using the norms
of energy type. A posteriori error estimators are derived for some constrained control
problems governed by elliptic and parabolic equations; see [27, 34, 35, 36].

In recent years, the discontinuous Galerkin (DG) discretization has proved useful
in computing time-dependent convection and diffusion equations; see [12, 13, 14] for
the DG time-stepping method where only time discretization is discontinuous. It
will be simply referred as to the DG method in this paper, although we are aware
that there exist several DG discretization schemes in the literature. The DG has
proved important in diffusion dominated equations, such as the heat equations, which
govern our control problems to be examined in this paper. Furthermore the DG
method has been found useful in computing optimal control of diffusion dominated
systems; see [40]. However, there is a lack of an a posteriori error analysis for the
DG approximation of the control systems, which is vital for further studies of mesh
adaptivity of the control problems.

The purpose of this work is to extend the approaches in [12, 27, 34, 35, 36]
and to derive a posteriori error estimates for the DG finite element approximation of
distributed convex optimal problems governed by linear parabolic equations. Deriving
such estimates for the DG finite element scheme is much more involved than for the
backward-Euler scheme; see [36]. For example, some approaches applied in [12, 13, 14]
have to be essentially modified for our purpose. Furthermore, novel approaches are
needed to derive the improved estimates for the control with constraints of obstacle
type. Optimal control with obstacle constraints is most frequently met in practical
control problems. In fact, the majority of the existing research on constrained control
concentrates on this type problem; see [28] and [43], for instance.

The plan of the paper is as follows. In section 2 we shall give a brief review of
the finite element method and the discontinuous Galerkin discretization, and then
construct the approximation schemes for the optimal control problem. In section 3,
a posteriori error bounds are derived for the control problem. In section 4, some
applications are discussed. In section 5, improved error estimates are derived for the
problem with an obstacle constraint.

Let Ω and ΩU be bounded open sets in R
n (n ≤ 3) with Lipschitz boundaries ∂Ω

and ∂ΩU . In this paper we adopt the standard notation Wm,q(Ω) for Sobolev spaces
on Ω with norm ‖ · ‖m,q,Ω and seminorm | · |m,q,Ω. We denote Wm,2(Ω) by Hm(Ω)
and set H1

0 (Ω) ≡ {v ∈ H1(Ω) : v|∂Ω = 0}.
We denote by Ls(0, T ;Wm,q(Ω)) the Banach space of all Ls integrable functions

from (0, T ) into Wm,q(Ω) with norm ‖v‖Ls(0,T ;Wm,q(Ω)) = (
∫ T
0
‖v‖sWm,q(Ω)dt)

1
s for

s ∈ [1,∞) and the standard modification for s = ∞. Similarly, we define the spaces
H1(0, T ;Wm,q(Ω)) and Cl(0, T ;Wm,q(Ω)). The details can be found in [29]. In
addition c or C denotes a general positive constant independent of h.

2. Approximation scheme of optimal control problems governed by
parabolic equations. In this section we study the finite element and the discontin-
uous Galerkin approximation of distributed convex optimal control problems, where
the state is governed by a parabolic equation. In this paper, we shall take the state



ADAPTIVE DG FE METHOD FOR PARABOLIC OPTIMAL CONTROL 1035

space W = L2(0, T ;Y ) with Y = H1
0 (Ω) and the control space X = L2(0, T ;U)

with U = L2(ΩU) to fix the idea. Let B be a linear continuous operator from X to
L2(0, T ;Y ′) and K be a closed convex set in X. We are interested in the following
optimal control problem:

min
u∈K

∫ T

0

(g(y) + h(u)) dt

subject to ⎧⎪⎨⎪⎩
∂ty − div(A∇y) = f +Bu, x ∈ Ω, t ∈ (0, T ],

y|∂Ω = 0, t ∈ [0, T ],

y(x, 0) = y0(x), x ∈ Ω,

where f ∈ L2(0, T ;Y ′), y0 ∈ H1
0 (Ω), and

A(x) = (aij(x))n×n ∈ (C∞(Ω̄))n×n

such that there is a constant c > 0 satisfying

(Aξ) · ξ ≥ c|ξ|2 ∀ξ ∈ R
n.

Let

a(v, w) =

∫
Ω

(A∇v) · ∇w ∀v, w ∈ H1(Ω),

(f1, f2) =

∫
Ω

f1f2 ∀f1, f2 ∈ L2(Ω),

(v, w)U =

∫
ΩU

vw ∀v, w ∈ L2(ΩU).

It follows from the assumptions on A that there are constants c and C > 0 such that

a(v, v) ≥ c‖v‖2
1,Ω, |a(v, w)| ≤ C|v|1,Ω|w|1,Ω ∀v, w ∈ Y.

Then a weak formulation of the convex optimal control problem reads as

min
u∈K

∫ T

0

(g(y) + h(u)) dt,(1)

where y ∈W is subject to{
(∂ty, w) + a(y, w) = (f +Bu,w) ∀w ∈ Y, t ∈ (0, T ],

y(0) = y0.

We assume that g is a convex functional which is continuously differentiable on L2(Ω),
and h is a strictly convex and continuously differentiable function on U . We further
assume that h(u) → +∞ as ‖u‖U → ∞ and that the functional g(·) is bounded below.
This setting includes the most widely used quadratic control problem:

min
u∈K

{
1

2

∫ T

0

(‖y − zd‖2
L2(Ω) + ‖u‖2

L2(ΩU ))dt

}
,



1036 WENBIN LIU, HEPING MA, TAO TANG, AND NINGNING YAN

where y, u are defined as above and zd is a given state. It is well known (see, e.g., [28])
that the control problem (1) has a unique solution (y, u), and that a pair (y, u) is the
solution of (1) if and only if there is a costate p ∈ W such that the triplet (y, p, u)
satisfies the following optimality conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∂ty, w) + a(y, w) = (f +Bu,w) ∀w ∈ Y, y(0) = y0,

−(∂tp, q) + a(q, p) = (g′(y), q) ∀q ∈ Y, p(T ) = 0,∫ T

0

(h′(u) +B∗p, v − u)U dt ≥ 0 ∀v ∈ K,

(2)

where B∗ is the adjoint operator of B.
Let us consider the finite element approximation of the control problem (1). Here

we consider only n-simplices Lagrange elements.
Let Ωh be a polygonal approximation to Ω with boundary ∂Ωh. Let Th be a

partitioning of Ωh into disjoint regular n-simplex τ , so that Ω̄h = ∪τ∈Th τ̄ . Each
element has at most one face on ∂Ωh, and joint elements τ̄ and τ̄ ′ have either only
one common vertex or a whole edge or face if τ and τ ′ ∈ Th. We further require that
Pi ∈ ∂Ωh implies Pi ∈ ∂Ω, where {Pi} (i = 1, 2, . . . , J) is the vertex set associated
with the triangulation Th. We assume that Ω is a convex polygon so that Ω = Ωh.
The convexity assumption is also important to have the H2 a priori estimate for the
dual equations in Lemma 3.4, which is used in deriving our L2-L2 and L∞-L2 a pos-
teriori error estimates, although it is not needed for L2-H1 estimates. Without the
convexity assumption, in general the order of our estimates for the state and costate
approximation will be lower if ∂Ω is nonsmooth. We denote by hτ the maximum
diameter of the element τ in Th.

Associated with Th is a finite dimensional subspace Sh of C(Ω̄h) such that w|τ
are m-order polynomials (m ≥ 1) for all w ∈ Sh and τ ∈ Th. Let Y h = Sh ∩H1

0 (Ω),
Wh = L2(0, T ;Y h); it is easy to see that Y h ⊂ Y , Wh ⊂W .

Similarly, we do a partitioning of ΩU and use the following corresponding nota-
tions: ThU , τU , hτU , PU

i (i = 1, 2, . . . , JU), and ΩhU = ΩU .
Associated with ThU is another finite dimensional subspace Uh of L2(ΩhU) such

that v|τU are m-order polynomials (m ≥ 0) for all v ∈ Uh and τU ∈ ThU . Here there
is no requirement for the continuity. Let Xh = L2(0, T ;Uh). It is easy to see that
Uh ⊂ U and Xh ⊂ X.

Let Kh be an approximation of K. Here we assume that Kh ⊂ K and Kh ⊂ Xh

for ease of exposition. A nonconforming finite element method will be used later for
the problem with the constraint of obstacle type. For more general cases, the readers
are referred to [35]. Then a possible semidiscrete finite element approximation of (1)
is as follows:

min
uh∈Kh

∫ T

0

(g(yh) + h(uh)) dt(3)

with yh ∈Wh subject to{
(∂tyh, w) + a(yh, w) = (f +Buh, w) ∀w ∈ Y h, t ∈ (0, T ],

yh(0) = yh0 ,

where Kh is a closed convex set in Xh, yh0 ∈ Y h is an approximation of y0.
It follows that the control problem (3) has a unique solution (yh, uh) and that a

pair (yh, uh) ∈Wh×Kh is the solution of (3) if and only if there is a costate ph ∈Wh
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such that the triplet (yh, ph, uh) ∈ Wh ×Wh ×Kh satisfies the following optimality
conditions:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∂tyh, w) + a(yh, w) = (f +Buh, w) ∀w ∈ Y h, yh(0) = yh0 ,

−(∂tph, q) + a(q, ph) = (g′(yh), q) ∀q ∈ Y h, ph(T ) = 0,∫ T

0

(h′(uh) +B∗ph, v − uh)U dt ≥ 0 ∀v ∈ Kh.

(4)

The optimality conditions in (4) are the semidiscrete approximation to the prob-
lem (1). Now, we are going to consider the fully discrete approximation for the above
semidiscrete problem by using the DG method.

Let 0 = t0 < t1 < · · · < tN = T , Ik = (tk−1, tk], ∆tk = tk−tk−1 (k = 1, 2, . . . , N).
For k = 1, 2, . . . , N , construct the finite element spaces Y h,k ∈ H1

0 (Ω) (similar to Y h)
with the mesh Th,k, and construct the finite element spaces Uh,k ∈ L2(ΩU) (similar to

Uh) with the mesh Th,kU . Let hτk (hτk
U
) denote the maximum diameter of the element

τk (τkU ) in Th,k (Th,kU ). To simplify notation, we will regard a discrete quantity Qk as
Q(t) such that Q(t)|Ik ≡ Qk, and we will denote τ(t), τU(t), hτ (t), and hτU (t) by τ ,
τU , hτ , and hτU , respectively. Let

W δ =

⎧⎨⎩w | w(x, t)|Ω×Ik =

r∑
j=0

tjϕj(x), ϕj ∈ Y h,k

⎫⎬⎭ , r ≥ 0,

Xδ = {v | v(x, t)|Ω×Ik = ψ(x), ψ ∈ Uh,k}, Kδ ⊂ (Xδ ∩K),

[w]k = w+
k − w−

k , w±
k = lim

s→0±
w(tk + s).

The fully discrete approximation scheme is to find (yδ, uδ) ∈W δ ×Xδ such that

min
uδ∈Kδ

∫ T

0

(g(yδ) + h(uδ)) dt(5)

subject to

∫ T

0

((∂tyδ, w) + a(yδ, w)) dt +

N−1∑
k=1

([yδ]k, w
+
k ) + ((yδ)

+
0 − yh0 , w

+
0 )

=

∫ T

0

(f +Buδ, w) dt ∀w ∈W δ,

where yh0 ∈ Y h,0 is the approximation to y0. It follows that the control problem (5)
has a unique solution (yδ, uδ), and that a pair (yδ, uδ) ∈ W δ ×Xδ is the solutions of
(5) if and only if there is costate pδ ∈ W δ such that the triplet (yδ, pδ, uδ) satisfies
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the following optimality conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

((∂tyδ, w) + a(yδ, w)) dt+

N−1∑
k=0

([yδ]k, w
+
k )

=

∫ T

0

(f +Buδ, w) dt ∀w ∈W δ, (yδ)
−
0 = yh0 ,∫ T

0

(−(∂tpδ, q) + a(pδ, q)) dt−
N∑
k=1

([pδ]k, q
−
k )

=

∫ T

0

(g′(yδ), q) dt ∀q ∈W δ, (pδ)
+
N = 0,∫ T

0

(h′(uδ) +B∗pδ, v − uδ)U dt ≥ 0 ∀v ∈ Kδ.

(6)

This is a finite dimensional optimization problem and may be solved by existing
mathematical programming methods. The above DG approximation of the control
problem has been used in practical problems; see [40].

In order to obtain a numerical solution of acceptable accuracy for the optimal
control problem, the finite element meshes have to be refined according to a mesh
refinement scheme. Adaptive finite element approximation uses a posteriori error
indicator to guide the mesh refinement procedure. In the following section we shall
derive some a posteriori error estimates for the DG finite element approximation of
the optimal control problem governed by parabolic equations, which can be used as
such an error indicator in developing adaptive finite element schemes of the control
problem.

3. A posteriori error estimates. In this section we derive a posteriori error
estimates for the DG finite element approximation of the convex optimal problem
governed by a parabolic equation. In general, analysis of the finite element approxi-
mation of a control problem governed by parabolic equations is more involved than
is that of a control problem governed by elliptic equations. The main complication
is due to the fact that the properties of the time variable and its discretization are
quite different from those of the space (elliptic) variables. Thus different techniques
are needed to handle the two groups of variables, and their interactions.

We now need more assumptions on B and g in deriving our estimates. We es-
sentially assume that B is bounded from L2(0, T ;L2(ΩU )) to L2(0, T ;L2(Ω)) so that
differential operators are excluded. To derive L∞ estimates, we need a continuity
from L2(ΩU ) to L2(Ω) uniformly with respect to t, while we have embedded U into
X. For g we assume that its derivative is Lipschitz continuous. Thus we make the
following assumptions:

|(Bv,w)X | = |(v,B∗w)| ≤ C‖v‖0,ΩU
‖w‖0,Ω ∀ v ∈ U,w ∈ Y,(7)

|(g′(v) − g′(w), q)| ≤ C‖v − w‖0,Ω‖q‖0,Ω ∀ v, w, q ∈ Y,(8)

and there is a constant c > 0 such that

(h′(v) − h′(w), v − w) ≥ c‖v − w‖2
0,ΩU

∀ v, w ∈ U,(9)

(g′(v) − g′(w), v − w) ≥ 0 ∀ v, w ∈ Y,(10)

which are convex conditions on the functionals h and g. These conditions hold for
the quadratic control problems where Ω = ΩU and B = I.
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The following lemma is important in deriving residual type a posteriori error
estimates.

Lemma 3.1. Let πh be the average interpolation operator defined in [21]. For
any v ∈W 1,q(Ωh) and 1 ≤ q ≤ ∞,

‖v − πhv‖l,q,τ ≤ C
∑

τ̄ ′∩τ̄ �=∅
hm−l
τ |v|m,q,τ ′ , v ∈Wm,q(τ ′), l = 0, 1, l ≤ m ≤ 2.

Remark 3.1. One of the key steps in deriving a posteriori error estimates for
the discontinuous Galerkin method is to construct a suitable L2 stable approximation
of the solution of the dual equation. In [12], this approximation is defined to be
the space-time L2-projection of the solution. However, for this selection the spatial
projection error cannot be bounded locally due to the global nature of the projecting onto
continuous piecewise polynomial functions. This leads to the inconvenience restriction
in [12] on the mesh used in the approximation: the change in the size of the elements
in the mesh must be very smooth, which may be unrealistic in an adaptive finite
element implementation. We shall define this approximation to be the L2-projection
of the solution of the dual equation in time, but the quasi-interpolant of the solution
in space as defined in [21]. It follows from Lemma 3.1 that this approximation is L2

stable. Furthermore, optimal approximation results hold on local patches surrounding
a particular element. It is then possible to derive a posteriori error estimates assuming
only nondegeneracy of the mesh.

Lemma 3.2 (see [25]). For all v ∈W 1,q(Ω), 1 ≤ q ≤ ∞,

‖v‖0,q,∂τ ≤ C(h−1/q
τ ‖v‖0,q,τ + h1−1/q

τ |v|1,q,τ ).(11)

3.1. L2(L2) error estimates. First, let us present a lemma which is essential
for our a posteriori error estimate analysis. Assuming that one can find an element v
in Kδ to approximate the optimal control in an appropriate way, the approximation
error in the control is then shown to be represented by an a posteriori error estimator,
plus the approximation error in the costate. For constraints of obstacle type, this
assumption can be verified for piecewise constant control approximation by taking v
to be the integral average of the optimal control; see Examples 3.1 and 3.2.

Lemma 3.3. Let (y, p, u) and (yδ, pδ, uδ) be the solutions of (2) and (6). Assume
that (9), (10), and (7) hold; Kδ ⊂ K; for all 1 ≤ k ≤ N , (h′(uδ) + B∗pδ)|τk

U×Ik ∈
H1(τkU × Ik); and there is a v ∈ Kδ such that

∣∣∣∣∫
Ik

(h′(uδ) +B∗pδ, v − u)U dt

∣∣∣∣
≤ C

∫
Ik

∑
τU∈Th,k

U

(hτU |h′(uδ) +B∗pδ|1,τU + ∆tk‖∂t(h′(uδ) +B∗pδ)‖0,τU )‖u− uδ‖0,τU dt.

(12)

Then we have

‖u− uδ‖2
L2(0,T ;L2(ΩU )) ≤ C

(
η2
1 + ‖pδ − puδ‖2

L2(0,T ;L2(Ω))

)
,(13)

where

η2
1 =

N∑
k=1

∑
τU∈Th,k

U

∫
Ik

(h2
τU |h′(uδ) +B∗pδ|21,τU + ∆t2k‖∂t(h′(uδ) +B∗pδ)‖2

0,τU ) dt
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and (yuδ , puδ) ∈W ×W is defined by the following system:{
(∂ty

uδ , w) + a(yuδ , w) = (f +Buδ, w) ∀w ∈ Y, t ∈ (0, T ],

yuδ(0) = y0,
(14)

{
−(∂tp

uδ , q) + a(q, puδ) = (g′(yuδ), q) ∀q ∈ Y, t ∈ [0, T ),

puδ(T ) = 0.
(15)

Proof. It follows from (9), (2)3, and (6)3 that, for any v ∈ Kδ,

c‖u− uδ‖2
L2(0,T ;L2(ΩU )) ≤

∫ T

0

(h′(u), u− uδ)U dt−
∫ T

0

(h′(uδ), u− uδ)U dt

≤ −
∫ T

0

(B∗p, u− uδ)U dt−
∫ T

0

(h′(uδ), u− uδ)U dt+

∫ T

0

(h′(uδ) +B∗pδ, v − uδ)U dt

≤
∫ T

0

(h′(uδ) +B∗pδ, v − u)U dt+

∫ T

0

(B∗(pδ − puδ), u− uδ)U dt

+

∫ T

0

(B∗(puδ − p), u− uδ)U dt,

(16)

where puδ is defined in (15). It is easy to see from (2), (14), and (15) that

(∂t(y
uδ − y), w) + a(yuδ − y, w) = (B(uδ − u), w) ∀w ∈ Y,(17)

−(∂t(p
uδ − p), q) + a(q, puδ − p) = (g′(yuδ) − g′(y), q) ∀q ∈ Y.(18)

Taking w = puδ − p in (17) and q = yuδ − y in (18) and using (yuδ − y)|t=0 =
(puδ − p)|t=T = 0 and (10) lead to∫ T

0

(B(uδ − u), puδ − p) dt = (yuδ − y, puδ − p)
∣∣∣T
0

(19)

+

∫ T

0

(g′(yuδ) − g′(y), yuδ − y) dt ≥ 0.

Let v be the function satisfying (12). Then by (12), (7), and (19),

c‖u− uδ‖2
L2(0,T ;L2(ΩU )) ≤ C

(
η2
1 + ‖pδ − puδ‖2

L2(0,T ;L2(Ω))

)
+
c

2
‖u− uδ‖2

L2(0,T ;L2(ΩU )),

(20)

which completes the proof.
The assumption (12) is related to approximation properties of the convex set K.

For instance, it always holds for unconstrained control, where K = U . For constraints
of obstacle type, this assumption can also be verified.

We shall use the following dual equations: For given f ∈ L2(0, T ;L2(Ω)),{
∂tϕ− div(A∇ϕ) = f, (x, t) ∈ Ω × (0, T ],

ϕ|∂Ω = 0, t ∈ [0, T ], ϕ(x, 0) = 0, x ∈ Ω,
(21)

and {
−∂tψ − div(A∗∇ψ) = f, (x, t) ∈ Ω × [0, T ),

ψ|∂Ω = 0, t ∈ [0, T ], ψ(x, T ) = 0, x ∈ Ω.
(22)
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A similar idea is used in [21] for a Lagrange–Galerkin method.
Lemma 3.4 (see [21]). Assume that Ω is a convex domain. Let ϕ and ψ be the

solutions of (21) and (22), respectively. Then, for v = ϕ or v = ψ,

‖v‖L∞(0,T ;L2(Ω)) ≤ C‖f‖L2(0,T ;L2(Ω)),

‖∇v‖L2(0,T ;L2(Ω)) ≤ C‖f‖L2(0,T ;L2(Ω)),

‖D2v‖L2(0,T ;L2(Ω)) ≤ C‖f‖L2(0,T ;L2(Ω)),

‖∂tv‖L2(0,T ;L2(Ω)) ≤ C‖f‖L2(0,T ;L2(Ω)),

where D2v = max1≤i,j≤n |∂2v/∂xi∂xj |.
In the following we deal with the error ‖pδ − puδ‖L2(0,T ;L2(Ω)) to derive the final

estimates. Let ∂Th,k be the set consisting of all the faces l of any τk ∈ Th,k such that
l is not on ∂Ω. The A-normal derivative jump over the interior face l is defined by

[(A∇v) · n]l = ((A∇v)|∂τ1
l
− (A∇v)|∂τ2

l
) · n,

where n is the unit outer normal vector of τ1
l on l = τ̄1

l ∩ τ̄2
l . Let hl be the maximum

diameter of the face l.
Lemma 3.5. Let (y, p, u), (yδ, pδ, uδ), and puδ be the solutions of (2), (6), and

(15), respectively. Under the conditions of Lemma 3.4 and (8),

‖pδ − puδ‖2
L2(0,T ;L2(Ω)) ≤ C

∑
i=0,2–7

η2
i ,

where

η2
0 = ‖yh0 − y0‖2

0,Ω,

η2
2 =

N∑
k=1

∑
τ∈Th,k

∫
Ik

h4
τ

∥∥∥∥∂tpδ + g′(yδ) + div(A∗∇pδ) +
[pδ]k
∆tk

∥∥∥∥2

0,τ

dt,

η2
3 =

N∑
k=1

∑
τ∈Th,k

∫
Ik

∆t2k ‖(πk − I)(g′(yδ) + div(A∗∇pδ))‖2
0,τ dt,

η2
4 =

N∑
k=1

∑
τ∈Th,k

∫
Ik

h4
τ

∥∥∥∥∂tyδ − f −Buδ − div(A∇yδ) +
[yδ]k−1

∆tk

∥∥∥∥2

0,τ

dt,

η2
5 =

N∑
k=1

∑
τ∈Th,k

∫
Ik

∆t2k ‖(πk − I)(f + div(A∇yδ))‖2
0,τ dt,

η2
6 =

N∑
k=1

∑
l∈∂Th,k

∫
Ik

h3
l (‖[(A∇yδ) · n]‖2

0,l + ‖[(A∗∇pδ) · n]‖2
0,l) dt,

η2
7 =

N∑
k=1

∑
τ∈Th,k

∆tk(‖[yδ]k−1‖2
0,Ω + ‖[pδ]k‖2

0,Ω),

where πk : L2(Ik) → Pr(Ik) is the L2-projection operator on the variable t.
Proof. Let ϕ be the solution of (21) with f = pδ − puδ and ϕI ∈ Xδ be the

interpolation of ϕ such that

ϕI |Ω×Ik = πh,kπkϕ, k = 1, 2, . . . , N,(23)
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where πh,k is defined in Lemma 3.1 corresponding to the partitioning Th,k and πk :
L2(Ik) → Pr(Ik) is the L2-projection operator on the variable t. Then it follows from
(21), (15), (6), and Green’s formula that

‖pδ − puδ‖2
L2(0,T ;L2(Ω)) =

∫ T

0

(pδ − puδ , f) dt

=

∫ T

0

(pδ − puδ , ∂tϕ− div(A∇ϕ)) dt

=

∫ T

0

(−(∂t(pδ − puδ), ϕ) + a(ϕ, pδ − puδ)) dt−
N∑
k=1

([pδ]k, ϕ
−
k )

=

∫ T

0

(−(∂tpδ + g′(yuδ), ϕ) + a(ϕ, pδ) − a(ϕI , pδ) + (∂tpδ + g′(yδ), ϕI)) dt

+

N∑
k=1

([pδ]k, (ϕI − ϕ)−k ) ,

which leads to

‖pδ − puδ‖2
L2(0,T ;L2(Ω))

=

N∑
k=1

∫
Ik

−
(
∂tpδ + g′(yδ) + div(A∗∇pδ) +

[pδ]k
∆tk

, ϕ− ϕI

)
dt

+

∫ T

0

(g′(yδ) − g′(yuδ), ϕ) dt+

∫ T

0

∑
l∈∂Th

∫
l

[(A∗∇pδ) · n](ϕ− ϕI) dt

+

N∑
k=1

∫
Ik

(
[pδ]k
∆tk

, (ϕI)
−
k − ϕI + ϕ− ϕ−

k

)
dt

:=

4∑
i=1

Ii.

(24)

For simplicity, let

rp(x, t)
∣∣∣
Ω×Ik

:= ∂tpδ + g′(yδ) + div(A∗∇pδ) +
[pδ]k
∆tk

.

By Lemmas 3.1 and 3.4,

I1 =

N∑
k=1

∫
Ik

(rp, (πh,k − I)πkϕ+ (πk − I)ϕ) dt

=

N∑
k=1

∫
Ik

((rp, (πh,k − I)πkϕ) − ((πk − I)(g′(yδ) + div(A∗∇pδ)), (πk − I)ϕ)) dt

≤ C

N∑
k=1

∑
τ∈Th,k

∫
Ik

(
h4
τ‖rp‖2

0,τ + ∆t2k‖(πk − I)(g′(yδ) + div(A∗∇pδ))‖2
0,τ

)
dt

+ σ(‖D2(πkϕ)‖2
L2(0,T ;L2(Ω)) + ‖∂tϕ‖2

L2(0,T ;L2(Ω)))

≤ C(η2
2 + η2

3) + Cσ‖puδ − pδ‖2
L2(0,T ;L2(Ω)).

(25)
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It is easy to see that from (8) and Lemma 3.4,

I2 =

∫ T

0

(g′(yδ) − g′(yuδ), ϕ) dt

≤ C‖yδ − yuδ‖2
L2(0,T ;L2(Ω)) + σ‖puδ − pδ‖2

L2(0,T ;L2(Ω)).

(26)

Similarly, by Lemmas 3.1, 3.2, and 3.4,

I3 =

∫ T

0

∑
l∈∂Th

∫
l

[(A∗∇pδ) · n](ϕ− ϕI) dt

=

N∑
k=1

∑
l∈∂Th,k

∫
Ik

∫
l

[(A∗∇pδ) · n](ϕ− πh,kϕ) dt

≤ C

N∑
k=1

∑
l∈∂Th,k

∫
Ik

h3
l ‖[(A∗∇pδ) · n]‖2

0,l dt+ σ‖D2ϕ‖2
L2(0,T ;L2(Ω))

≤ Cη2
6 + Cσ‖puδ − pδ‖2

L2(0,T ;L2(Ω)).

(27)

It follows from Lemma 3.4 and the Schwarz inequality that

I4 =

N∑
k=1

∫
Ik

(
[pδ]k
∆tk

, (ϕI)
−
k − ϕI + ϕ− ϕ−

k

)
dt

≤
N∑
k=1

∆tk‖[pδ]k‖2
0,Ω + σ

(
‖∂tϕI‖2

L2(0,T ;L2(Ω)) + ‖∂tϕ‖2
L2(0,T ;L2(Ω))

)
≤ Cη2

7 + Cσ‖puδ − pδ‖2
L2(0,T ;L2(Ω)).

(28)

Thus, the above estimates give

‖pδ − puδ‖2
L2(0,T ;L2(Ω)) ≤ C

∑
i=2,3,6,7

η2
i + C‖yδ − yuδ‖2

L2(0,T ;L2(Ω)).(29)

Similarly, let ψ be the solution of (22) with f = yδ − yuδ and ψI ∈ Xδ be the
interpolation of ψ such that

ψI |Ω×Ik = πh,kπkψ, k = 1, 2, . . . , N.(30)
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Then, by Lemma 3.4, (14), (6), and Green’s formula,

‖yδ − yuδ‖2
L2(0,T ;L2(Ω)) =

∫ T

0

(yδ − yuδ , f) dt =

∫ T

0

(yδ − yuδ ,−∂tψ − div(A∗ψ)) dt

=

∫ T

0

((∂t(yδ − yuδ), ψ) + a(yδ − yuδ , ψ)) dt+

N−1∑
k=1

([yδ]k, ψ
+
k ) + ((yδ − yuδ)+0 , ψ

+
0 )

=

∫ T

0

((∂tyδ − f −Buδ, ψ) + a(yδ, ψ) − a(yδ, ψI) − (∂tyδ − f −Buδ, ψI)) dt

+

N−1∑
k=0

([yδ]k, (ψ − ψI)
+
k ) + ((yδ − yuδ)+0 , ψ

+
0 ) − ([yδ]0, ψ

+
0 )

=
N∑
k=1

∫
Ik

(
∂tyδ − f −Buδ − div(A∇yδ) +

[yδ]k−1

∆tk
, ψ − ψI

)
dt

+

∫ T

0

∑
l∈∂Th

∫
l

[(A∇yδ) · n](ψ − ψI) dt

+

N∑
k=1

∫
Ik

(
[yδ]k−1

∆tk
, ψ+

k−1 − ψ + ψI − (ψI)
+
k−1

)
dt

+((yδ)
−
0 − (yuδ)+0 , ψ

+
0 ) :=

4∑
i=1

Ji.

(31)

Let

ry(x, t)
∣∣∣
Ik

:= ∂tyδ − f −Buδ − div(A∇yδ) +
[yδ]k−1

∆tk
.

Then, as in (25), (27), and (28),

J1 =

N∑
k=1

∫
Ik

(ry, (πh,k − I)πkψ + (πk − I)ψ) dt

=

N∑
k=1

∫
Ik

((ry, (πh,k − I)πkψ) + ((πk − I)(f + div(A∇yδ)), (πk − I)ψ)) dt

≤ C
N∑
k=1

∑
τ∈Th,k

∫
Ik

(
h4
τ‖ry‖2

0,τ + ∆t2k‖(πk − I)(f + div(A∇yδ))‖2
0,τ

)
dt

+ σ(‖D2(πkψ)‖2
L2(0,T ;L2(Ω)) + ‖∂tψ‖2

L2(0,T ;L2(Ω)))

≤ C(η2
4 + η2

5) + Cσ‖yuδ − yδ‖2
L2(0,T ;L2(Ω)),

(32)

J2 =

∫ T

0

∑
l∈∂Th

∫
l

[(A∇yδ) · n](ψ − ψI) dt ≤ Cη2
6 + σ‖yuδ − yδ‖2

L2(0,T ;L2(Ω)),(33)

J3 =

N∑
k=1

∫
Ik

(
[yδ]k−1

∆tk
, ψ+

k−1 − ψ + ψI − (ψI)
+
k−1

)
dt

≤ Cη2
7 + σ‖yuδ − yδ‖2

L2(0,T ;L2(Ω)),

(34)
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and

J4 = ((yδ)
−
0 − (yuδ)+0 , ψ

+
0 ) ≤ Cη2

0 + σ‖yuδ − yδ‖2
L2(0,T ;L2(Ω)).

Hence

‖yδ − yuδ‖2
L2(0,T ;L2(Ω)) ≤ C

∑
i=0,4-7

η2
i .(35)

We complete the proof by combining the estimates (29) and (35).
From Lemmas 3.3 and 3.5, we have the following a posteriori error estimates.
Theorem 3.1. Let (y, p, u) and (yδ, pδ, uδ) be the solutions of (2) and (6).

Assume that the conditions in Lemmas 3.3–3.5 are valid; then

‖u− uδ‖2
L2(0,T ;L2(Ω)) + ‖y − yδ‖2

L2(0,T ;L2(Ω)) + ‖p− pδ‖2
L2(0,T ;L2(Ω)) ≤ C

7∑
i=0

η2
i ,

where ηi are defined in Lemmas 3.3 and 3.5.
Proof. We obtain from (13), (35), and (29) that

‖u− uδ‖2
L2(0,T ;L2(Ω)) + ‖yuδ − yδ‖2

L2(0,T ;L2(Ω)) + ‖puδ − pδ‖2
L2(0,T ;L2(Ω)) ≤ C

7∑
i=0

η2
i .

Then the desired results follows from the triangle inequality and

‖p− puδ‖L2(0,T ;L2(Ω)) ≤ C‖y − yuδ‖L2(0,T ;L2(Ω)) ≤ C‖u− uδ‖L2(0,T ;L2(Ω)),(36)

which can be derived from (17) and (18).
It seems to be difficult to derive any lower error bounds for the control prob-

lem. As matter of fact, there seem to be no good lower a posteriori error bounds in
the literature even for the full backward-Euler finite element approximation of lin-
ear parabolic equations. The main difficulty seems to be that the properties of the
time variable and its discretization are quite different from those of the space vari-
ables. Novel techniques are yet to be developed to derive lower bounds for such mixed
approximations.

Remark 3.2. It is clear that the above a posteriori error estimator consists
of two parts. The η2

1 part results from the approximation error of the inequality in
the optimality condition (2). The other (more familiar) part (η2

i (i = 0, 2, . . . , 7)) is
contributed from the approximation error of the state and costate equations and in this
sense is more or less standard. Among them, η2

1 mainly indicates the approximation
error for the control, and the other part mainly reflects the approximation error for
the state and costate.

The part (η2
i (i = 0, 2, . . . , 7)) can be further divided into two parts: one from

the approximation error of the state equation and the other from that of the costate
equation. Clearly, a posteriori error estimators obtained solely from the state equation,
which only present the part contributed from the state equation, may fail to reflect the
main approximation error of the optimal control problem and thus fail to yield efficient
mesh refinements.

The above error estimates are applicable to a wide range of control problems. It
may be possible to further improve them in some individual cases, as will be seen
in the next section. To this end, it is clear that one needs to derive improved error
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estimates for the approximation of the inequality in (2), and thus one requires explicit
information on the structure of K.

Remark 3.3. It is generally difficult to know the exact bounding constant C in
Theorem 3.1, as is true for most a posteriori error estimates of residual type. The
constant is contributed from those in the interpolation results (e.g., Lemmas 3.1–3.2),
the stability results (e.g., Lemmas 3.3–3.4), and the Sobolev embedding theorems. For
simpler situations, it may be possible to trace down all those constants and to give
the bounding constant good upper bounds; see [9] for some of the latest advances on
this aspect. Generally this is a complex procedure. On the other hand, a posteriori
estimators of residual type can be (actually have widely been) used to guide mesh
refinements without having exact knowledge on the bounding constants, provided they
are not too large. It seems that the magnitude of the bounding constants does not cause
any serious problems in guiding mesh refinements for elliptic and parabolic equations,
although it does bring up serious concerns in CFD (see [23]), since it can indeed be
extremely large there.

In our case, it seems that the bounding constant in Theorems 3.1–3.2 will have a
similar magnitude as those for the standard parabolic equation case, as the only new
contribution here is from the constant C in Lemma 3.3. This constant can be traced
down in Examples 3.1–3.2, which in turns depends on the bounding constant for the
integral averaging interpolator πaδ,k. It is known that the bounding constant associated
with πaδ,k will not be very large; see [9] for the details.

Remark 3.4. It is not straightforward to develop suitable implementation tech-
niques for (x-t) mesh adaptivity of parabolic control problems. To the best of our
knowledge, there seems to be no existing work in the literature, even using the same
meshes for the state and the control. For instance, it seems impossible to simply extend
the mesh adaptivity techniques developed for evolutional equations (e.g., parabolic or
Navier–Stokes equations) to the control problem that we have just studied. Although
the state equation is evolutional, the optimal control problem itself is clearly not. It
is impossible to solve the control problem step by step in time, although this is possible
for the state equation. This calls for new implementation techniques on mesh adap-
tivity for the optimal control governed by evolutional state equations. From the above
analysis of η2

1 (η2
i ), it is also clear that the most suitable implementation, and thus the

optimal mesh refinements will greatly depend on what is the most important quantity
to be computed in a particular control problem. It also depends on the structure of the
meshes used in the computations. Furthermore, as some large discretized optimization
problems may need to be repeatedly solved, one may have to use a suitable multigrids
method together with mesh adaptivity. Issues like which items in the estimator are
more important and how to pick up the constant C are also important. It is clear that
a systematic study of this is much needed. These issues will be investigated in our
future research.

3.2. L∞(L2) error estimates. In some adaptive schemes, it is more desirable
to have L∞(L2) estimates. In this subsection, we give error estimates in L∞(L2)-
norm. Concretely, we shall use the norm of the following form:

‖v‖Ik,Q =

{
1

∆tk

∫
Ik

‖v(t)‖2
0,Q dt

}1/2

, Q = ΩU , τU ,Ω, τ, l.
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We now need to consider the following dual equations for any 1 ≤ k ≤ N − 1:{
∂tϕ− div(A∇ϕ) = 0, (x, t) ∈ Ω × (tk, T ],

ϕ|∂Ω = 0, t ∈ [tk, T ], ϕ(x, tk) = ϕ∗(x), x ∈ Ω,
(37)

and {
−∂tψ − div(A∗∇ψ) = 0, (x, t) ∈ Ω × [0, tk),

ψ|∂Ω = 0, t ∈ [0, tk], ψ(x, tk) = ψ∗(x), x ∈ Ω.
(38)

We have the following stability results [12].
Lemma 3.6. Assume that Ω is a convex domain. Let ϕ and ψ be the solutions

of (37) and (38), respectively. Then

‖ϕ‖L∞(tk,T ;L2(Ω)) ≤ C‖ϕ∗‖L2(Ω),

‖ϕ‖L2(tk,tk+ε;L2(Ω)) ≤ C
√
ε‖ϕ∗‖L2(Ω), 0 < ε < T − tk,

‖∇ϕ‖L2(tk,T ;L2(Ω)) ≤ C‖ϕ∗‖L2(Ω),

‖√t− tk |D2ϕ|‖L2(tk,T ;L2(Ω)) ≤ C‖ϕ∗‖L2(Ω),

‖√t− tk ∂tϕ‖L2(tk,T ;L2(Ω)) ≤ C‖ϕ∗‖L2(Ω)

and

‖ψ‖L∞(0,tk;L2(Ω)) ≤ C‖ψ∗‖L2(Ω),

‖ψ‖L2(tk−ε,tk;L2(Ω)) ≤ C
√
ε‖ψ∗‖L2(Ω), 0 < ε < tk,

‖∇ψ‖L2(0,tk;L2(Ω)) ≤ C‖ψ∗‖L2(Ω),

‖√tk − t |D2ψ|‖L2(0,tk;L2(Ω)) ≤ C‖ψ∗‖L2(Ω),

‖√tk − t ∂tψ‖L2(0,tk;L2(Ω)) ≤ C‖ψ∗‖L2(Ω),

where D2v = max1≤i,j≤n |∂2v/∂xi∂xj |.
Theorem 3.2. Let (y, p, u) and (yh, ph, uh) be the solutions of (2) and (6),

respectively. Assume that the conditions in Theorem 3.1 and Lemma 3.6 are valid;
then

max
1≤k≤N

(‖u− uh‖2
Ik,ΩU

+ ‖y − yh‖2
Ik,Ω

+ ‖p− ph‖2
Ik,Ω

) ≤ C

8∑
i=0

N
2
i ,

where

N
2
0 = ‖yh0 − y0‖2

0,Ω,

N
2
1 = max

1≤k≤N

∑
τU∈Th,k

U

(
h2
τU ‖∇(h′(uδ) +B∗pδ)‖2

Ik,τU
+ ∆t2k‖∂t(h′(uδ) +B∗pδ)‖2

Ik,τU

)
,

N
2
2 = max

1≤k≤N

∑
τ∈Th,k

h2
τ (∆tk + LNh

2
τ )

∥∥∥∥∂tpδ + g′(yδ) + div(A∗∇pδ) +
[pδ]k
∆tk

∥∥∥∥2

Ik,τ

,

N
2
3 = max

1≤k≤N

∑
τ∈Th,k

∆t2k ‖(πk − I)(g′(yδ) + div(A∗∇pδ))‖2
Ik,τ

,

N
2
4 = max

1≤k≤N

∑
l∈∂Th,k

hl(∆tk + LNh
2
l ) ‖[(A∗∇pδ) · n]‖2

Ik,l
,
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N
2
5 = max

1≤k≤N

∑
τ∈Th,k

h2
τ (∆tk + LNh

2
τ )

∥∥∥∥∂tyδ − f −Buδ − div(A∇yδ) +
[yδ]k−1

∆tk

∥∥∥∥2

Ik,τ

,

N
2
6 = max

1≤k≤N

∑
τ∈Th,k

∆t2k ‖(πk − I)(f + div(A∇yδ))‖2
Ik,τ

,

N
2
7 = max

1≤k≤N

∑
l∈∂Th,k

hl(∆tk + LNh
2
l ) ‖[(A∇yδ) · n]‖2

Ik,l
,

N
2
8 = max

1≤k≤N
(‖[yδ]k−1‖2

0,Ω + ‖[pδ]k‖2
0,Ω),

where

LN = max

{
max

1≤k≤N−2

N∑
k′=k+2

∆tk′

tk′−1 − tk
, max

2≤k≤N

k−1∑
k′=1

∆tk′

tk − tk′

}
.

Proof. We first consider ‖u−uh‖L2(Ik;L2(ΩU )). As in (16) and (20), for any v ∈ Kδ,
we have

c‖u− uδ‖2
L2(Ik;L2(ΩU )) ≤

∫
Ik

(h′(u), u− uδ)U dt−
∫
Ik

(h′(uδ), u− uδ)U dt

≤
∫
Ik

(h′(uδ) +B∗pδ, v − u)U dt+

∫
Ik

(B∗(pδ − p), u− uδ)U dt

≤ C

∫
Ik

(
h2
τU |h′(uδ) +B∗pδ|21,τU + ∆t2k‖∂t(h′(uδ) +B∗pδ)‖2

0,τU

)
dt

+C
(
‖pδ − puδ‖2

L2(Ik;L2(Ω)) + ‖puδ − p‖2
L2(Ik;L2(Ω))

)
+
c

2
‖u− uδ‖2

L2(Ik;L2(ΩU )).

It is easy to see from (18) and (8) that

‖puδ − p‖Ik,Ω ≤ ‖puδ − p‖2
L∞(0,T ;L2(Ω)) ≤ C‖yuδ − y‖2

L2(0,T ;L2(Ω))

≤ C‖u− uδ‖2
L2(0,T ;L2(ΩU )).

We thus obtain

‖u− uδ‖2
Ik,ΩU

≤ C
(
N

2
1 + ‖pδ − puδ‖2

Ik,Ω

)
+ C‖u− uδ‖2

L2(0,T ;L2(ΩU )).(39)

The last term above has been estimated in Theorem 3.1.
We consider ‖pδ − puδ‖2

Ik,Ω
for any 1 ≤ k ≤ N . Let ϕ be the solution of the dual

problem

{
∂tϕ− div(A∇ϕ) = pδ − puδ , (x, t) ∈ Ω × Ik,

ϕ|∂Ω = 0, t ∈ Ik, ϕ(x, tk−1) = 0, x ∈ Ω,
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and let ϕI be defined as in (23). Then, similarly to (24),

‖pδ − puδ‖2
L2(Ik;L2(Ω)) =

∫
Ik

(pδ − puδ , ∂tϕ− div(A∇ϕ)) dt

=

∫
Ik

(−(∂t(pδ − puδ), ϕ) + a(ϕ, pδ − puδ)) dt+ (pδ − puδ , ϕ)−k

=

∫
Ik

(−(∂tpδ + g′(yuδ), ϕ) + a(ϕ, pδ) − a(ϕI , pδ) + (∂tpδ + g′(yδ), ϕI)) dt

+([pδ]k, (ϕI)
−
k ) + (pδ − puδ , ϕ)−k

=

∫
Ik

(
∂tpδ + g′(yδ) + div(A∗∇pδ) +

[pδ]k
∆tk

, ϕI − ϕ

)
dt+

∫
Ik

(g′(yδ) − g′(yuδ), ϕ) dt

+

∫
Ik

∑
l∈∂Th

∫
l

[(A∗∇pδ) · n](ϕ− ϕI) dt+

∫
Ik

(
[pδ]k
∆tk

, (ϕI)
−
k − ϕI + ϕ− ϕ+

k−1

)
dt

+(pδ − puδ , ϕ)−k :=

5∑
i=1

Ii.

It is easy to see that Ii (i = 1–4) can be estimated in the same way as in (25)–(28)
such that

I1 ≤ C
∑
τ∈Th

∫
Ik

(
h4
τ‖rp‖2

0,τ + ∆t2k‖(πk − I)(g′(yδ) + div(A∗∇pδ))‖2
0,τ

)
dt(40)

+σ‖pδ − puδ‖2
L2(Ik;L2(Ω)),

I2 ≤ C‖yδ − yuδ‖2
L2(Ik;L2(Ω)) + σ‖pδ − puδ‖2

L2(Ik;L2(Ω)),

I3 ≤ C
∑
l∈∂Th

∫
Ik

h3
l ‖[(A∗∇pδ) · n]‖2

0,l dt+ σ‖pδ − puδ‖2
L2(Ik;L2(Ω)),(41)

I4 ≤ ∆tk‖[pδ]k‖2
0,Ω + σ‖pδ − puδ‖2

L2(0,T ;L2(Ω)).(42)

We bound I5 by

I5 ≤ ‖(pδ − puδ)−k ‖0,Ω

√
∆tk ‖∂tϕ‖L2(Ik;L2(Ω))

≤ C∆tk‖(pδ − puδ)−k ‖2
0,Ω + σ‖pδ − puδ‖2

L2(Ik;L2(Ω)).
(43)

Thus, the above estimates give

‖pδ − puδ‖2
Ik,Ω

≤ C

⎛⎝ ∑
i=2–4,8

N
2
i + ‖yδ − yuδ‖2

Ik,Ω
+ ‖(pδ − puδ)−k ‖2

0,Ω

⎞⎠ .(44)

We then consider ‖yδ − yuδ‖2
Ik,Ω

. Let ψ be the solution of the dual problem

⎧⎨⎩ −∂tψ − div(A∗∇ψ) = yδ − yuδ , (x, t) ∈ Ω × Ik,

ψ|∂Ω = 0, t ∈ Ik, ψ(x, tk) = 0, x ∈ Ω,
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and let ψI be defined as in (30). Then, similarly to (31), for 1 ≤ k ≤ N ,

‖yδ − yuδ‖2
L2(Ik;L2(Ω)) =

∫
Ik

(yδ − yuδ ,−∂tψ − div(A∗ψ)) dt

=

∫
Ik

((∂t(yδ − yuδ), ψ) + a(yδ − yuδ , ψ)) dt+ (yδ − yuδ , ψ)+k−1

=

∫
Ik

((∂tyδ − f −Buδ, ψ) + a(yδ, ψ) − a(yδ, ψI) − (∂tyδ − f −Buδ, ψI)) dt

−([yδ]k−1, (ψI)
+
k−1) + (yδ − yuδ , ψ)+k−1

=

∫
Ik

(
∂tyδ − f −Buδ − div(A∇yδ) +

[yδ]k−1

∆tk
, ψ − ψI

)
dt

+

∫
Ik

∑
l∈∂Th

∫
l

[(A∇yδ) · n](ψ − ψI) dt+

∫
Ik

(
[yδ]k−1

∆tk
, ψ−

k − ψ + ψI − (ψI)
+
k−1

)
dt

+(yδ − yuδ , ψ)+k−1 :=

4∑
i=1

Ji,

where Ji (i = 1–3) can be estimated as in (40)–(43) so that

J1 ≤ C

∫
Ik

(
h4
τ‖ry‖2

0,τ + ∆t2k‖(πk − I)(f + div(A∇yδ))‖2
0,τ

)
dt

+σ‖yδ − yuδ‖2
L2(Ik;L2(Ω)),

J2 ≤ C
∑
l∈∂Th

∫
Ik

h3
l ‖[(A∇yδ) · n]‖2

0,l dt+ σ‖yδ − yuδ‖2
L2(Ik;L2(Ω)),

J3 ≤ ∆tk‖[yδ]k−1‖2
0,Ω + σ‖yδ − yuδ‖2

L2(Ik;L2(Ω)),

J4 ≤ C∆tk‖(yδ − yuδ)+k−1‖2
0,Ω + σ‖yδ − yuδ‖2

L2(Ik;L2(Ω)).

Therefore,

‖yδ − yuδ‖2
Ik,Ω

≤ C

(∑
i=5–8

N
2
i + ‖(yδ − yuδ)+k−1‖2

0,Ω

)
.(45)

We need to further consider ‖(pδ−puδ)−k ‖2
0,Ω and ‖(yδ−yuδ)+k−1‖2

0,Ω (1 ≤ k ≤ N).

We note that ‖(pδ−puδ)−N‖2 = ‖[pδ]N‖2
0,Ω ≤ N2

8. For any 1 ≤ k ≤ N −1, let ϕ be the

solution of (37) with ϕ∗ = (pδ − puδ)−k and ϕI be defined as in (23). Then, by (37),
(15), and (6),

‖(pδ − puδ)−k ‖2
0,Ω = ((pδ − puδ)−k , ϕ∗) − ((pδ − puδ)+k , ϕ∗) + (pδ − puδ , ϕ)+k

=

∫ T

tk

(−(∂t(pδ − puδ), ϕ) + a(ϕ, pδ − puδ)) dt−
N∑

k′=k+1

([pδ]k′ , ϕ
−
k′) − ([pδ]k, ϕ∗)

=

∫ T

tk

(−(∂tpδ + g′(yuδ), ϕ) + a(ϕ, pδ) − a(ϕI , pδ) + (∂tpδ + g′(yδ), ϕI)) dt

+
N∑

k′=k+1

([pδ]k′ , (ϕI − ϕ)−k′) − ([pδ]k, ϕ∗)
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=

N∑
k′=k+1

∫
Ik′

(
∂tpδ + g′(yδ) + div(A∗∇pδ) +

[pδ]k′

∆tk′
, ϕI − ϕ

)
+

∫ T

tk

(g′(yδ) − g′(yuδ), ϕ) dt

+

∫ T

tk

∑
l∈∂Th

∫
l

[(A∗∇pδ) · n](ϕ− ϕI) dt

+
N∑

k′=k+1

∫
Ik′

(
[pδ]k′

∆tk′
, (ϕI)

−
k′ − ϕI + ϕ− ϕ−

k′

)

−([pδ]k, ϕ∗) :=

5∑
i=1

IIi.

We have to treat the cases in which tk is near T and away from T differently. For
simplicity, let ck = 1 for 1 ≤ k ≤ N − 2 and cN−1 = 0. We decompose II1 as follows:

II1 =

( ∑
k′=k+1

+ck

N∑
k′=k+2

)∫
Ik′

((rp, (πh,k − I)πkϕ) + ((πk − I)rp, (πk − I)ϕ)) dt

:= II11 + ckII12.

By Lemmas 3.1 and 3.6, we have

II11 ≤ C

∫
Ik+1

∑
τ∈Th

hτ‖rp‖0,τ |πkϕ|1,τ dt+

∫
Ik+1

‖(πk − I)rp‖0,Ω‖ϕ‖0,Ω dt

≤ C

∫
Ik+1

∑
τ∈Th

h2
τ‖rp‖2

0,τ dt+ σ

∫
Ik+1

|ϕ|21,Ω dt

+C∆tk+1

∫
Ik+1

‖(πk − I)rp‖2
0,Ω dt+ σ‖ϕ‖2

L∞(Ik+1;L2(Ω))

≤ C(N2
2 + N

2
3) + Cσ‖(pδ − puδ)−k ‖2

0,Ω,

(46)

and

II12 ≤ C

N∑
k′=k+2

⎛⎝∫
Ik′

∑
τ∈Th

h2
τ‖rp‖0,τ |πkϕ|2,τ dt

+∆tk′‖(πk − I)rp‖L2(Ik′ ;L2(Ω))‖∂tϕ‖L2(Ik′ ;L2(Ω))

)

≤ C

N∑
k′=k+2

∫
Ik′

(tk′−1 − tk)
−1
∑
τ∈Th

h4
τ‖rp‖2

0,τ dt+ σ

∫ T

tk+1

(t− tk)‖D2ϕ‖2
0,Ω dt

+C

N∑
k′=k+2

∆tk′‖(πk − I)rp‖L2(Ik′ ;L2(Ω))
1√

tk′−1 − tk
‖√t− tk∂tϕ‖L2(Ik′ ;L2(Ω))

≤ CLN max
k+2≤k′≤N

∑
τ∈Th

(
h4
τ ‖rp‖2

Ik,τ
+ ∆t2k′ ‖(πk − I)rp‖2

Ik,τ

)

(47)
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+ σ

∫ T

tk+1

|t− tk|
(‖D2ϕ‖2

0,Ω + ‖∂tϕ‖2
0,Ω

)
dt

≤ C(N2
2 + N

2
3) + Cσ‖(pδ − puδ)−k ‖2

0,Ω.

It follows from (8) and Lemma 3.6 that

II2 ≤ C‖yδ − yuδ‖2
L2(0,T ;L2(Ω)) + σ‖(pδ − puδ)−k ‖2

0,Ω.

By using (11) and Lemma 3.1, we can estimate II3 in the same way as for II1 such
that

II3 =

(∫ tk+1

tk

+ck

∫ T

tk+1

) ∑
l∈∂Th

∫
l

[(A∗∇pδ) · n](ϕ− πh,kϕ) dt

≤ C

∫ tk+1

tk

∑
l∈∂Th

hl‖[(A∗∇pδ) · n]‖2
0,l dt+ σ

∫ tk+1

tk

|ϕ|21,Ω dt

+Cck

∫ T

tk+1

|t− tk|−1
∑
l∈∂Th

h3
l ‖[(A∗∇pδ) · n]‖2

0,l dt+ σ

∫ T

tk+1

|t− tk|‖D2ϕ‖2
0,Ω dt

≤ CN
2
4 + Cσ‖(pδ − puδ)−k ‖2

0,Ω.

(48)

We rewrite II4 as

II4 =

( ∑
k′=k+1

+ck

N∑
k′=k+2

)∫
Ik′

(
[pδ]k′

∆tk′
, (ϕI)

−
k′ − ϕI + ϕ− ϕ−

k′

)
dt := II41 + ckII42.

We then use Lemma 3.6 again to obtain

II41 = ([pδ]k+1, (ϕI − ϕ)−k+1) +

∫ tk+1

tk

(
[pδ]k+1

∆tk+1
, ϕ− πh,kϕ

)
dt

≤ C‖[pδ]k+1‖0,Ω(∆t
−1/2
k+1 ‖ϕ‖L2(Ik+1;L2(Ω)) + ‖ϕ‖L∞(Ik+1;L2(Ω)))

≤ C‖[pδ]k+1‖2
0,Ω + σ‖(puδ − pδ)

−
k ‖2

0,Ω,

(49)

II42 =

N∑
k′=k+2

∫
k′

(
[pδ]k′

∆tk′
, (ϕI)

−
k′ − ϕI + ϕ− ϕ−

k′

)
dt

≤ C

N∑
k′=k+2

‖[pδ]k′‖0,Ω

√
∆tk′‖∂tϕ‖L2(Ik′ ;L2(Ω))

≤ C

N∑
k′=k+2

∆tk′

tk′−1 − tk
‖[pδ]k′‖2

0,Ω + σ‖√t− tk ∂tϕ‖2
L2(tk+1,T ;L2(Ω))

≤ CLN max
k+2≤k′≤N

‖[pδ]k′‖2
0,Ω + Cσ‖(puδ − pδ)

−
k ‖2

0,Ω,

(50)

and

II5 ≤ C‖[pδ]k‖2
0,Ω + σ‖(puδ − pδ)

−
k ‖2

0,Ω.(51)

We thus have shown that

‖(puδ − pδ)
−
k ‖2

0,Ω ≤ C
∑

i=2–4,8

N
2
i + C‖yδ − yuδ‖2

L2(0,T ;L2(Ω)).(52)
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The last term above has been estimated in Theorem 3.1.
It remains to estimate ‖(yδ − yuδ)+k ‖2

0,Ω (0 ≤ k ≤ N − 1). Since

‖(yδ − yuδ)+0 ‖2
0,Ω ≤ ‖[yδ]0‖2

0,Ω + ‖(yδ)−0 − (yuδ)+0 ‖2
0,Ω ≤ N

2
8 + N

2
0,

we need only to consider the cases of 1 ≤ k ≤ N − 1. Let ψ be the solution of (38)
with ψ∗ = (yδ − yuδ)+k and ψI be defined as in (30). Then, by (38) and (14),

‖(yδ − yuδ)+k ‖2
0,Ω = ((yδ − yuδ)+k , ψ∗) − (yδ − yuδ , ψ)−k + (yδ − yuδ , ψ)−k

=

∫ tk

0

((∂t(yδ − yuδ), ψ) + a(yδ − yuδ , ψ)) dt+

k−1∑
k′=0

([yδ]k′ , ψ
+
k′)

+(yh0 − y0, ψ
+
0 ) + ([yδ]k, ψ∗)

=

∫ tk

0

((∂tyδ − f −Buδ, ψ) + a(yδ, ψ) − a(yδ, ψI) − (∂tyδ − f −Buδ, ψI)) dt

+
k∑

k′=1

([yδ]k′−1, (ψ − ψI)
+
k′−1) + (yh0 − y0, ψ

+
0 ) + ([yδ]k, ψ∗)

=

k∑
k′=1

∫
Ik′

(
∂tyδ − f −Buδ − div(A∇yδ +

[yδ]k′−1

∆tk′
, ψ − ψI

)

+

∫ tk

0

⎛⎝ ∑
l∈∂Th

∫
l

[(A∇yδ) · n](ψ − ψI)

⎞⎠ dt

+
k∑

k′=1

∫
Ik′

(
[yδ]k′−1

∆tk′
, ψ+

k′−1 − ψ + ψI − (ψI)
+
k′−1

)
+(yh0 − y0, ψ

+
0 ) + ([yδ]k, ψ∗) :=

5∑
i=1

JJ i.

Let c1 = 0 and ck = 1 for 2 ≤ k ≤ N − 1. Then, as in (46)–(51),

JJ 1 =

(
ck

k−1∑
k′=1

+
∑
k′=k

)∫
Ik′

{(ry, (πh,k − I)πkψ) + ((πk − I)ry, (πk − I)ψ)} dt

≤ C(N2
5 + N

2
6) + σ‖(yuδ − yδ)

+
k ‖2

0,Ω,

JJ 2 =

(
ck

k−1∑
k′=1

+
∑
k′=k

)∫
Ik′

∑
l∈∂Th

∫
l

[(A∇yδ) · n](ψ − πh,kψ) dt

≤ CN
2
7 + σ‖(yuδ − yδ)

+
k ‖2

0,Ω,

JJ 3 =

(
ck

k−1∑
k′=1

+
∑
k′=k

)∫
Ik′

(
[yδ]k′−1

∆tk′
, (ψI)

−
k′ − ψI + ψ − ψ−

k′

)
dt

≤ CN
2
8 + σ‖(yuδ − yδ)

+
k ‖2

0,Ω,

JJ 4 ≤ C‖yh0 − y0‖2
0,Ω + σ‖(yuδ − yδ)

+
k ‖2

0,Ω,

JJ 5 ≤ C‖[yδ]k‖2
0,Ω + σ‖(yuδ − yδ)

+
k ‖2

0,Ω.

Hence

‖(yδ − yuδ)+k ‖2
0,Ω ≤ C

∑
i=0,5–8

N
2
i .(53)
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We complete the proof by combining the estimates (39), (44), (45), (52), and (53)
and the result of Theorem 3.1.

In the rest of the section, we apply the results obtained to some model control
problems. We only consider the piecewise constant finite element space for the ap-
proximation of the control.

Example 3.1. Consider the case K = {v ∈ X : v ≥ φ0}, where φ0 is a constant.
Let Kδ = {v ∈ Xδ : v ≥ φ0}. Then it is easy to see that Kδ ⊂ K. Let v in Lemma 3.3
be such that v|τk

U×Ik = πaδ,ku, where πaδ,ku is the integral average of u on τkU ×Ik. Then

v = πaδ,ku ∈ Kδ, and for 1 ≤ k ≤ N ,∣∣∣∣∫
Ik

(h′(uδ) +B∗pδ, v − u)U dt

∣∣∣∣ = ∣∣∣∣∫
Ik

(h′(uδ) +B∗pδ, πaδ,ku− u)U dt

∣∣∣∣
=

∣∣∣∣∫
Ik

((πaδ,k − I)(h′(uδ) +B∗pδ), (πaδ,k − I)(u− uδ))U dt

∣∣∣∣
≤ C

∫
Ik

∑
τU∈Th,k

U

(hτU |h′(uδ) +B∗pδ|1,τU + ∆tk‖∂t(h′(uδ) +B∗pδ)‖0,τU )‖u− uδ‖0,τU dt.

Hence, the condition (12) in Lemma 3.3 is satisfied. Consequently the estimates
obtained in Theorems 3.1–3.2 are applicable.

Example 3.2. Consider the case K = {v ∈ X :
∫
ΩU

v ≥ 0}. Let Kδ = {v ∈ Xδ :∫
ΩU

v ≥ 0}. Then it is easy to see that Kδ ⊂ K. Let v in Lemma 3.3 be defined as in

Example 3.1. Then, the condition (12) in Lemma 3.3 is also satisfied.

4. Improved error estimates for the constraint of obstacle type. It seems
to be difficult to further improve the estimates obtained in Theorems 3.1 and 3.2 with-
out having structure information on the constraint set K. In this section, we consider
a case where the constraint set is of obstacle type, which is met very frequently in
real applications. We are then able to derive improved error estimates for the DG
scheme of the finite element approximation to the parabolic optimal control problem
(6). As mentioned in section 3, the essential step is to derive improved estimates for
the approximation of the inequality in (2), via utilizing the structure information of
K. Such improved estimates are found to be useful in computing elliptic control prob-
lems; see [27]. We shall only examine piecewise constant or piecewise linear control
approximation.

We assume that the constraint on the control is an obstacle such that

K = {v ∈ X : v ≥ φ a.e. in ΩU × (0, T ]},
where φ ∈ X. We define the coincidence set (contact set) Ω−

U (t) and the noncoinci-
dence set (noncontact set) Ω+

U (t) as follows:

Ω−
U (t) := {x ∈ ΩU : u(x, t) = φ(x, t)}, Ω+

U (t) := {x ∈ ΩU : u(x, t) > φ(x, t)}.
Let

Kδ = {v ∈ Xδ : v ≥ φδ in ΩU × (0, T ]},(54)

where φδ ∈ Xδ is an approximation to φ satisfying φδ ≥ φ. Hence, we have that
Kδ ⊂ K. In this section, we assume that

h(u) =

∫
ΩU

j(u),
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where j(·) is a convex continuously differentiable function on R. Then, it is easy to
see that

∫ T

0

(h′(u), v)U =

∫ T

0

(j′(u), v)U =

∫ T

0

∫
ΩU

j′(u)v.

We shall assume the following uniform convexity condition:

(j′(t) − j′(s))(t− s) ≥ c(t− s)2 ∀s, t ∈ R.

It can be seen that the inequality in (2) is now equivalent to the following:

j′(u) +B∗p ≥ 0, u ≥ φ, (j′(u) +B∗p)(u− φ) = 0, a.e. in ΩU × (0, T ].(55)

In order to have the improved a posteriori error estimate, we divide ΩU × (0, T ] into
the following three subsets:

Ωφ = {(x, t) ∈ ΩU × (0, T ] : (B∗pδ)(x, t) ≤ −j′(φδ)},
Ω0
φ = {(x, t) ∈ ΩU × (0, T ] : (B∗pδ)(x, t) > −j′(φδ), uδ = φδ},

Ω+
φ = {(x, t) ∈ ΩU × (0, T ] : (B∗pδ)(x, t) > −j′(φδ), uδ > φδ}.

Then, it is easy to see that the above three subsets do not overlap each other, and

Ω̄U × (0, T ] = Ω̄φ ∪ Ω̄0
φ ∪ Ω̄+

φ .

We shall show that h′(uδ) +B∗pδ can be replaced by (j′(uδ) +B∗pδ)|Ωφ
in the error

estimates. Note that j′(u) + B∗p = 0 when u > φ. Thus in a sense, the set Ωφ is an
approximation of the noncoincidence set {(x, t) : x ∈ Ω+

U (t), t ∈ (0, T ]}.
Theorem 4.1. Let (y, p, u) and (yδ, pδ, uδ) be the solutions of (2) and (6),

respectively. Assume that all the conditions of Lemma 3.5 hold, and Kδ is defined
in (54) with φ ∈ L2(0, T ;L2(ΩU )). Moreover, assume that j′(·) and g′(·) are locally
Lipschitz continuous. Then

‖uδ − u‖2
L2(0,T ;L2(ΩU )) + ‖yδ − y‖2

L2(0,T ;L2(Ω)) + ‖pδ − p‖2
L2(0,T ;L2(Ω)) ≤ C

8∑
i=0

η̂2
i ,

where η̂2
i = η2

i (i = 0, 2–7) are given in Lemma 3.5 and

η̂2
1 =

∫
Ωφ

|j′(uδ) +B∗pδ|2,

η̂2
8 = ‖φ− φδ‖2

0,Ω0
φ
.

Proof. We consider ‖uδ − u‖2
L2(0,T ;L2(ΩU )). From the uniform convexity of j, we
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have that

c‖u− uδ‖2
L2(0,T ;L2(ΩU )) ≤

∫ T

0

(j′(u) − j′(uδ), u− uδ)U

=

∫ T

0

(j′(u) +B∗p, u− uδ)U +

∫ T

0

(j′(uδ) +B∗pδ, uδ − u)U

+

∫ T

0

(B∗(pδ − puδ), u− uδ)U +

∫ T

0

(B∗(puδ − p), u− uδ)U(56)

=

∫ T

0

(j′(u) +B∗p, u− uδ)U +

∫ T

0

(j′(uδ) +B∗pδ, uδ − u)U

+

∫ T

0

(B∗(pδ − puδ), u− uδ)U +

∫ T

0

(yuδ − y, y − yuδ)

≤
∫ T

0

(j′(u) +B∗p, u− uδ)U +

∫ T

0

(j′(uδ) +B∗pδ, uδ − u)U

+

∫ T

0

(B∗(pδ − puδ), u− uδ)U :=

3∑
1

Ii.

We first estimate I1. Note that∫ T

0

(j′(u) +B∗p, u− uδ)U(57)

=

∫
Ωφ∪Ω+

φ

(j′(u) +B∗p)(u− uδ) +

∫
Ω0

φ

(j′(u) +B∗p)(u− φδ).

Let

w =

{
uδ, (x, t) ∈ Ωφ ∪ Ω+

φ ,

u, (x, t) ∈ Ω0
φ.

Then, w ∈ K, and hence∫
Ωφ∪Ω+

φ

(j′(u) +B∗p)(u− uδ) =

∫ T

0

∫
ΩU

(j′(u) +B∗p)(u− w) ≤ 0.(58)

Note that (j′(u) +B∗p)(u− φ) = 0. We have that∫
Ω0

φ

(j′(u) +B∗p)(u− φδ) =

∫
Ω0

φ

(j′(u) +B∗p)((u− φ) + (φ− φδ))

=

∫
Ω0

φ

(j′(u) +B∗p)(φ− φδ).(59)

It follows from (57)–(59) that

I1 =

∫ T

0

(j′(u) +B∗p, u− uδ)U ≤
∫

Ω0
φ

(j′(u) +B∗p)(φ− φδ).(60)
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Next we estimate I2. It is clear that∫ T

0

(j′(uδ) +B∗pδ, uδ − u)U

=

∫
Ωφ

(j′(uδ) +B∗pδ)(uδ − u) +

∫
Ω+

φ

(j′(uδ) +B∗pδ)(uδ − u)

+

∫
Ω0

φ

(j′(φh) +B∗pδ)(φδ − u).(61)

First it is easy to see that∫
Ωφ

(j′(uδ) +B∗pδ)(uδ − u) ≤ C

∫
Ωφ

(j′(uδ) +B∗pδ)2 + Cσ‖uδ − u‖2
L2(0,T ;L2(ΩU ))

= Cη̂2
1 + Cσ‖uδ − u‖2

L2(0,T ;L2(ΩU )).(62)

Second, let τU × (ti, ti+1] be such that uδ|τU×(ti,ti+1] > φδ; it follows from (6) that

there exist ε > 0 and ψ ∈ Xδ, such that ψ ≥ 0, ‖ψ‖L∞(ti,ti+1;L∞(τU )) = 1, and∫ ti+1

ti

∫
τU

(j′(uδ) +B∗pδ)(uδ − (uδ − εψ)) = ε

∫ ti+1

ti

∫
τU

(j′(uδ) +B∗pδ)ψ ≤ 0.

Note that on Ω+
φ , (j′(uδ) +B∗pδ) > (j′(φδ) +B∗pδ) > 0. We have that∫

(τU×(ti,ti+1])∩Ω+
φ

|j′(uδ) +B∗pδ|ψ =

∫
(τU×(ti,ti+1])∩Ω+

φ

(j′(uδ) +B∗pδ)ψ

≤ −
∫

(τU×(ti,ti+1])∩Ωφ

(j′(uδ) +B∗pδ)ψ ≤
∫

(τU×(ti,ti+1])∩Ωφ

|j′(uδ) +B∗pδ|.

Let τ̂Uti be the reference element of τU × (ti, ti+1], τ
0
Uti

= (τU × (ti, ti+1]) ∩ Ω+
φ , and

τ̂0
Uti

⊂ τ̂Uti be the image of τ0
Uti

. Let n be the dimension of ΩU and ki = ti+1 − ti.
Note that j′(·) is locally Lipschitz continuous. It follows from the equivalence of the
norm in a finite dimensional space that∫

τ0
Uti

|j′(uδ) +B∗pδ|2 ≤ ChnτUki

∫
τ̂0
Uti

|j′(uδ) +B∗pδ|2

≤ ChnτUki

(∫
τ̂0
Uti

|j′(uδ) +B∗pδ|ψ
)2

≤ Ch−nτU k
−1
i

(∫
τ0
Uti

|j′(uδ) +B∗pδ|ψ
)2

≤ Ch−nτU k
−1
i

(∫
τUti

∩Ωφ

|j′(uδ) +B∗pδ|
)2

≤ C

∫
τUti

∩Ωφ

|j′(uδ) +B∗pδ|2.

Therefore, ∫
Ω+

φ

(j′(uδ) +B∗pδ)(uδ − u)

≤ C

∫
Ω+

φ

(j′(uδ) +B∗pδ)2 + Cσ‖uδ − u‖2
L2(0,T ;L2(ΩU ))

≤ C

∫
Ωφ

(j′(uδ) +B∗pδ)2 + Cσ‖uδ − u‖2
L2(0,T ;L2(ΩU ))(63)

= Cη̂2
1 + Cσ‖uδ − u‖2

L2(0,T ;L2(ΩU )).
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It follows from the definition of Ω0
φ that (j′(φδ) +B∗pδ) > 0 on Ω0

φ. Then we have∫
Ω0

φ

(j′(φh) +B∗pδ)(φδ − u) =

∫
Ω0

φ

(j′(φδ) +B∗pδ)((φδ − φ) + (φ− u))

≤
∫

Ω0
φ

(j′(uδ) +B∗pδ)(φδ − φ).(64)

Thus it follows from (61)–(64) that

I2 =

∫ T

0

(j′(uδ) +B∗pδ, uδ − u)U ≤ Cη̂2
1 +

∫
Ω0

φ

(j′(uδ) +B∗pδ)(φδ − φ)

+Cδ‖uδ − u‖2
L2(0,T ;L2(ΩU )).(65)

Then it follows from (60) and (65) that

I1 + I2 =

∫ T

0

(j′(u) +B∗p, u− uδ)U +

∫ T

0

(j′(uδ) +B∗pδ, uδ − u)U

≤ Cη̂2
1 +

∫
Ω0

φ

(j′(u) +B∗p− j′(uδ) −B∗pδ)(φ− φδ)

+Cσ‖uδ − u‖2
L2(0,T ;L2(ΩU ))(66)

≤ C(η̂2
1 + ‖φ− φδ‖2

0,Ω0
φ
) + Cσ(‖uδ − u‖2

L2(0,T ;L2(ΩU ))

+‖j′(uδ) − j′(u)‖2
L2(0,T ;L2(ΩU )) + ‖B∗(pδ − puδ)‖2

L2(0,T ;L2(ΩU ))

+‖B∗(puδ − p)‖2
L2(0,T ;L2(ΩU )))

≤ C(η̂2
1 + η̂2

8) + Cσ‖uδ − u‖2
L2(0,T ;L2(ΩU )) + C‖pδ − puδ‖2

L2(0,T ;L2(Ω)).

Here we used the inequalities

‖j′(uδ) − j′(u)‖2
L2(0,T ;L2(ΩU )) ≤ C‖uδ − u‖2

L2(0,T ;L2(ΩU )),

‖B∗(pδ − puδ)‖2
L2(0,T ;L2(ΩU )) ≤ C‖pδ − puδ‖2

L2(0,T ;L2(ΩU )),

and

‖B∗(puδ − p)‖2
L2(0,T ;L2(ΩU )) ≤ C‖puδ − p‖2

L2(0,T ;L2(Ω)) ≤ C‖uδ − u‖2
L2(0,T ;L2(ΩU )).

Finally for I3, it is easy to show that

I3 =

∫ T

0

(B∗(pδ − puδ), u− uδ)U

≤ C‖B∗(pδ − puδ)‖2
L2(0,T ;L2(Ω)) + Cσ‖uδ − u‖2

L2(0,T ;L2(ΩU ))(67)

≤ C‖pδ − puδ‖2
L2(0,T ;L2(Ω)) + Cσ‖uδ − u‖2

L2(0,T ;L2(ΩU )).

Thus, we obtain from (56), (66), and (67) that

‖uδ − u‖2
L2(0,T ;L2(ΩU )) ≤ C(η̂1 + η̂8 + ‖pδ − puδ‖2

L2(0,T ;L2(Ω))).
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The remainder of the proof is the same as for Lemma 3.5 and Theorem 3.1.
Remark 4.1. By the same argument, we can obtain a similar estimate in the

L∞(L2) norm considered in Theorem 3.2. It is worth noting that there may be differ-
ent approaches to derive sharp a posteriori error bounds for the obstacle constraints.
Noticeably, it may be possible to design some penalty schemes to solve the optimality
system, and then apply the techniques used in [8, 17, 22] to derive sharp bounds.

Remark 4.2. Here the key idea is to remove some inactive data in the coincidence
set and to thus obtain sharper error estimates for the approximation of the inequality
in (2). In fact, as seen in the above proof, only the part where j′(uδ) + B∗pδ ≤ 0
needs to be left in the estimator η̂2

1. Let us define

Ω̂φ = {(x, t) ∈ ΩU × (0, T ] : (B∗pδ)(x, t) ≤ −j′(uδ)}.

In a sense, the set Ω̂φ is an approximation of the noncoincidence set. It follows that

(j′(uδ) + B∗pδ)|Ω̂φ
≤ 0, while j′(u) + B∗p ≥ 0. Thus on Ω̂φ, j

′(uδ) + B∗pδ truly

indicates the error. In fact, we have∫
Ω̂φ

|j′(uδ) +B∗pδ|2 ≤
∫

Ω̂φ

|j′(uδ) +B∗pδ − (j′(u) +B∗p)|2

≤ C(‖u− uδ‖2
L2(0,T ;L2(ΩU )) + ‖p− pδ‖2

L2(0,T ;L2(Ω))).

For ease of computation, we have used the set Ωφ, which is a little larger than Ω̂φ.
However, we still have

η̂2
1 ≤ C(‖u− uδ‖2

L2(0,T ;L2(ΩU )) + ‖p− pδ‖2
L2(0,T ;L2(Ω)) + η̂2

8).

On the coincidence set, u = φ. Therefore the error should be indicated by η̂8, and the
term j′(uδ) +B∗pδ should not appear there.
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Abstract. We develop and analyze a new discontinuous finite volume method for second order
elliptic problems with tensor coefficients. An optimal order error estimate is obtained in a mesh
dependent norm. An L2-error estimate is also obtained.
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1. Introduction. Like the finite element method and the finite difference method,
the finite volume method is a discretization technique for solving partial differential
equations. The integral formulation of a finite volume scheme for a partial differ-
ential equation (PDE) is obtained by integrating the PDE over a control volume,
and it represents in general the conservation of a quantity of interest, such as mass,
momentum, or energy. Due to this natural association, finite volume methods are
widely used in practical problems, such as fluid mechanics computations [18, 19, 20].
Recently, Chou, Kwak, and Vassilevski [10, 12, 13, 11] applied finite volume element
methods involving nonconforming trial functions to diffusion, diffusion-reaction, and
Stokes problems and obtained optimal order error estimates in a discrete H1 norm.

Unlike the standard conforming and nonconforming finite element methods, the
discontinuous Galerkin method does not require continuity of the approximation func-
tions across the interelement boundary but instead enforces the connection between
elements by adding a penalty term. These methods came from the idea of enforcing
Dirichlet boundary conditions through penalties (see Lions [17], Aubin [3], Babuska
[4], and Nitsche [21]). Because of the use of discontinuous functions, discontinuous
Galerkin methods have the advantages of a high order of accuracy, high paralleliz-
ability, localizability, and easy handling of complicated geometries. Due to these
advantages, the study of discontinuous Galerkin methods has been an active research
area since its introduction by Reed and Hill [22]. The discontinuous Galerkin methods
have been used to solve hyperbolic and elliptic equations by many researchers. For
example, see [5, 6, 7, 8, 9, 14, 15, 16, 23]. Recently, Arnold et al. [2] provided a frame-
work for the analysis of a large class of discontinuous Galerkin methods for second
order elliptic problems. Most literature concerning discontinuous Galerkin methods
for finite element approximations can be found in the references given in [2].

However, very little has been done using discontinuous functions for the finite
volume approximation. In this paper, we developed a new discontinuous finite volume
method (DFV) in which discontinuous piecewise polynomials are used for the trial
functions. It is natural to assume that the advantages of using discontinuous functions
in finite element methods should apply to finite volume methods. The nature of the
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Fig. 1. Dual partitions.

discontinuity of the trial function is such that the elements in the corresponding dual
partition have the smallest support, as compared with the cases when conforming
(classical finite volume methods) and nonconforming elements (more recent finite
volume methods [10]) are used for the trial functions. This discontinuous finite volume
scheme will be analyzed for the elliptic problems and an optimal order error estimate
will be obtained in a discrete H1 norm. However, our method and analysis can be
applied to solve more complex problems, like the Stokes equations, the system of
linear elasticity, and plate problems.

In Figure 1, we compare dual partitions associated with conforming elements,
nonconforming elements, and our new discontinuous elements. The shaded region
in Figure 1(a) represents a typical element in the dual partition when conforming
elements are used for trial functions. This region involves six elements in the pri-
mary partition. This case is the classical finite volume scheme, where the continuous
piecewise linear functions are used for the trial functions. The shaded quadrilateral
in Figure 1(b) is an element in the dual partition associated with nonconforming el-
ements [10] which involves two elements of the primary partition. Figure 1(c) shows
that the elements of the dual partition associated with our new discontinuous finite
volume method have the best local ability when only one element in the primary
partition is involved. The localizability of the discontinuous element and its dual
partition in our method should provide an advantage for parallel computing.

Since the discontinuous functions are used in the approximation, the number
of unknowns is larger. However, the small support of the control volume for this
method makes the method more suitable to the domain decomposition such that the
information can be updated triangle by triangle in the primary partition.

We consider the model problems

−∇ ·B∇u = f in Ω, u = 0 on ∂Ω,(1.1)

where Ω is a bounded convex polygon in R2. B = (bij)2×2 ∈W 1,∞(Ω)4 is a symmetric
matrix value function and satisfies the following condition: there exists a constant
β > 0 such that

βξT ξ ≤ ξTBξ ∀ξ ∈ R2.(1.2)

We will use the standard definitions for the Sobolev spaces Hs(K) and their
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associated inner products (·, ·)s,K , norms ‖ · ‖s,K , and seminorms | · |s,K , s ≥ 0. The
space H0(K) coincides with L2(K), in which case the norm and inner product are
denoted by ‖ · ‖K and (·, ·)K , respectively. If K = Ω, we drop K.

This paper is organized as follows. In section 2, we derive a discontinuous finite
volume formulation for the elliptic problems. In section 3, an optimal order error
estimate is obtained in a mesh dependent norm and a first order L2-error estimate is
derived.

2. Discontinuous finite volume formulation. The simplicity of the finite
volume method is due to its use of piecewise constant functions as test functions. To
keep the same dimension for the spaces of the trial functions and test functions, two
different triangulations are needed. Let Rh be a triangulation of Ω with diam(K) ≤
h, K ∈ Rh. Assume that the triangulation Rh is quasi-uniform. We define the dual
partition Th of Rh for the test function space as follows. We divide each K ∈ Rh into
three triangles by connecting the barycenter and the three corners of the triangle as
shown in Figure 2. Let Th consist of all these triangles Tj .

We define the finite dimensional space associated with Rh for the trial functions
as

Vh = {v ∈ L2(Ω) : v|K ∈ P1(K) ∀K ∈ Rh}(2.1)

and define the finite dimensional space Ph for test functions associated with the dual
partition Th as

Ph = {q ∈ L2(Ω) : q|T ∈ P0(T ) ∀T ∈ Th},

where Pl(T ) consists of all the polynomials with degree less than or equal to l defined
on T .

Let V (h) = Vh +H2(Ω) ∩H1
0 (Ω). Define a mapping γ : V (h) → Ph as

γv|T =
1

h e

∫
e

v|T ds, T ∈ Th,

as shown in Figure 3. The above idea of connecting the trial function and test function
spaces in the Petrov–Galerkin method through an operator was introduced in [10] in
the context of elliptic problems.

Multiplying (1.1) by q ∈ Ph, we have

−
∑
T∈Th

∫
∂T

B∇u · nqds = (f, q),(2.2)
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where n is the unit outward normal vector on ∂T . Let Tj ∈ Th (j = 1, 2, 3) be three
triangles in K ∈ Rh. Then we have

∑
T∈Th

∫
∂T

B∇u · nqds =
∑
K∈Rh

3∑
j=1

∫
∂Tj

B∇u · nqds(2.3)

=
∑
K∈Rh

3∑
j=1

∫
Aj+1CAj

B∇u · nqds+
∑
K∈Rh

∫
∂K

B∇u · nqds,

where A4 = A1.
Let e be an interior edge shared by two elements K1 and K2 in Rh, and let n1

and n2 be unit normal vectors on e pointing exterior to K1 and K2, respectively. We
define the average {·} and jump [·] on e for scalar q and vector w, respectively, as (see
[2])

{q} =
1

2
(q|∂T1 + q|∂T2), [q] = q|∂T1n1 + q|∂T2n2,

{w} =
1

2
(w|∂T1 + w|∂T2

), [w] = w|∂T1
· n1 + w|∂T2

· n2.

If e is a edge on the boundary of Ω, we define

{q} = q, [w] = w · n.
Let Γ denote the union of the boundaries of the triangle K of Rh and Γ0 := Γ\∂Ω.

A straightforward computation gives∑
K∈Rh

∫
∂K

qv · nds =
∑
e∈Γ

∫
e

[q] · {v}ds+
∑
e∈Γ0

∫
e

{q}[v]ds.(2.4)

Using (2.4) and the fact that [B∇u] = 0, (2.3) becomes

∑
T∈Th

∫
∂T

B∇u · nqds =
∑
K∈Rh

3∑
j=1

∫
Aj+1CAj

B∇u · nqds+
∑
e∈Γ

∫
e

[q] · {B∇u}ds.

Our discontinuous finite volume approximation problem for (1.1) is to find uh ∈ Vh
such that

a(uh, q) = (f, q) ∀q ∈ Ph(2.5)
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with

a(v, q) = −
∑
K∈Rh

3∑
j=1

∫
Aj+1CAj

B∇u · nqds−
∑
e∈Γ

∫
e

[q] · {B∇v}ds

+ α
∑
e∈Γ

[γv]e · [q]e,

where α is a real number that will be determined later. In the definition of a(·, ·), γv
and q are piecewise constant functions and so are their jump functions [γv]e and [q]e.
Thus the penalty term in the definition of a(·, ·) is the same as the penalty term in
many discontinuous Galerkin formulation for the finite element methods [2].

Define the following bilinear form:

A(v, w) = a(v, γw) ∀v, w ∈ V (h).

Then the approximation problem (2.5) becomes the following: find uh ∈ Vh such that

A(uh, v) = (f, γv) ∀v ∈ Vh.(2.6)

Since [γu]e = 0, it is easy to see that u, the solution of (1.1), satisfies

A(u, v) = (f, γv) ∀v ∈ Vh.(2.7)

Let

A1(v, w) = −
∑
K∈Rh

3∑
j=1

∫
Aj+1CAj

B∇u · nγwds.

Thus

A(v, w) = A1(v, w) −
∑
e∈Γ

∫
e

[γw] · {B∇v}ds+ α
∑
e∈Γ

[γv]e · [γw]e.

Let ∇hv be the function whose restriction to each element K ∈ Rh is equal to ∇v.
Let

B̄|K =
1

meas(K)

∫
K

B(x)dx ∀K ∈ Rh.

We define a norm ||| · ||| for V (h) as follows:

|||v|||2 = |v|21,h +
∑
e

[γv]2e,(2.8)

where |v|21,h =
∑
K |v|21,K . It is easy to see that |||·||| defines a norm. (We use C with or

without subscripts in this note to denote a generic positive constant, possibly different
at different occurrences, that is independent of the mesh size h but may depend on
the domain Ω.)

The following trace inequality can be found in [1]. For w ∈ H2(K) and for an
edge e of K,

‖w‖2
e ≤ C(h−1

e |w|2K + he|w|21,K),(2.9)
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where C depends only on the minimum angle of K.
Lemma 2.1. For any v, w ∈ V (h), we have

A1(v, w) = (B∇hv,∇hw) +
∑
K

∫
∂K

(γw − w)B∇v · nds

+
∑
K

(∇ ·B∇v, w − γw)K .(2.10)

Furthermore, if v, w ∈ Vh, then

A1(v, w) ≥ (B∇hv,∇hw) − C1h|||v||||||w|||.(2.11)

Proof. Using the divergence theorem on each triangle Tj for v ∈ Vh, we have

A1(v, w) = −
∑
K

3∑
j=1

∫
Aj+1CAj

B∇v · nγwds = −
∑
K

3∑
j=1

γw

∫
Aj+1CAj

B∇v · nds

=
∑
K

3∑
j=1

γw

∫
AjAj+1

B∇v · nds−
∑
K

∑
Tj

(∇ ·B∇v, γw)Tj

=
∑
K

3∑
j=1

∫
AjAj+1

(γw − w)B∇v · nds+
∑
K

∫
∂K

wB∇v · nds

−
∑
K

∑
Tj

(∇ ·B∇v, γw)Tj

=
∑
K

∫
∂K

(γw − w)B∇v · nds+
∑
K

(B∇v,∇w)K +
∑
K

(∇ ·B∇v, w)K

−
∑
K

∑
Tj

(∇ ·B∇v, γw)Tj

=
∑
K

∫
∂K

(γw − w)B∇v · nds+ (B∇hv,∇hw) +
∑
K

(∇ ·B∇v, w − γw)K .

If v, w ∈ Vh, the inverse inequality and (2.9) imply∑
K

∫
∂K

(γw − w)B∇v · nds =
∑
K

∫
∂K

(γw − w)(B − B̄)∇v · nds

≤ Ch‖B‖1,∞
∑
K

(h−1‖w − γw‖2
K + h|w − γw|21,K)

1
2 · (h−1|v|21,K + h|v|22,K)

1
2

≤ Ch|||v||||||w|||,(2.12)

where |w − γw|21,K =
∑3
j=1 |w − γw|21,Tj

. Let ∇(∇v) = (∇vx1 ,∇vx2), a two by two
matrix. Then∑

K

(∇ ·B∇v, w − γw)K =
∑
K

(∇ ·B · ∇v +B : ∇(∇v), w − γw)K .

Since ∇(∇v) = 0 for v ∈ Vh,∑
K

(∇ ·B∇v, w − γw)K ≤ Ch‖B‖1,∞|||v||||||w|||.(2.13)
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Equations (2.12) and (2.13) imply (2.11).
Lemma 2.2. There is a constant C independent of h such that for α large enough

and h small enough

A(v, v) ≥ C|||v|||2 ∀v ∈ Vh.(2.14)

Proof. The trace inequality (2.9) and the inverse inequality give that for v ∈ Vh∑
e

∫
e

[γv] · {B∇hv}ds

≤ C‖B‖1,∞

(∑
K

(|v|21,K + h2|v|22,K)

) 1
2
(∑

e

h−1
e

∫
e

[γv]2ds

) 1
2

≤ C|||v|||
(∑

e

[γv]2e

) 1
2

.

Using the inequality above and Lemma 2.1, we have

A(v, v) ≥ (B∇hv,∇hv) + α
∑
e

[γv]2e −
∑
e

∫
e

[γv] · {B∇v}ds− C1h|||v|||2

≥ |v|21,h + α
∑
e

[γv]2e − C|||v|||
(∑

e

[γv]2e

) 1
2

− C1h|||v|||2

≥ C|||v|||2 − C1h|||v||| ≥ C|||v|||2.
The last inequality is obtained by using the generalized arithmetic-geometric mean

inequality and choosing α large enough and h small enough .
In the following, we will assume that α is large enough and h small enough so

that (2.14) holds.
Lemma 2.3. For v, w ∈ V (h), we have

A(v, w) ≤ C

⎛⎝|||v||| +
(∑

K

h2|v|22,K
) 1

2

⎞⎠ |||w|||.(2.15)

If v, w ∈ Vh, then

A(v, w) ≤ C|||v||||||w|||.(2.16)

Proof. By Lemma 2.1, the trace inequality (2.9), and the Cauchy–Schwarz in-
equality, we have

|A1(v, w)| ≤ |(B∇hv,∇hw)|

+

∣∣∣∣∣∑
K

∫
∂K

(w − γw)B∇v · nds
∣∣∣∣∣+
∣∣∣∣∣∑
K

(∇ ·B∇v, w − γw)K

∣∣∣∣∣
≤ C‖B‖1,∞(|v|1,h|w|1,h +

∑
K

(h−1‖w − γw‖2
K + h|w − γw|21,K)

1
2 · (h−1|v|21,K + h|v|22,K)

1
2

+
∑
K

h(|v|1,K + |v|2,K)|w|1,K)

≤ C

⎛⎝|v|1,h|w|1,h +

(∑
K

h2|v|22,K
) 1

2

|w|1,h
⎞⎠ .
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Fig. 4. A path.

The definition of A(v, w) and the inequality above imply that

A(v, w) ≤ C(|v|1,h|w|1,h +

(∑
K

h2|v|22,K
) 1

2

|w|1,h

+

(∑
K

(|v|21,K + h2|v|22,K)

) 1
2
(∑

e

[γw]2e

) 1
2

+ α

(∑
e

[γv]2e

) 1
2
(∑

e

[γw]2e)
1
2

)

≤ C(|||v||| +
(∑

K

h2|v|22,K)
1
2

)
|||w|||.

Equation (2.15) and the inverse inequality imply (2.16).

3. Error estimates. We will derive an optimal order error estimate in the norm
||| · ||| defined in (2.8) and a first order error estimate in the L2-norm. We start with
the following lemma.

Lemma 3.1. There exists a constant C independent of h such that

‖w‖ ≤ C|||w||| ∀w ∈ Vh.

Proof. The proof is similar to the proof of Lemma 2.1 in [12]. Let |e| denote the
length of edge e. Since [w] is continuous on ei ∈ Γ, there exists xi ∈ ei such that∫

ei

[w]ds = [w](xi)|ei|,(3.1)

where [w](xi) = w|K1(xi)−w|K2(xi) and K1 and K2 are the two triangles that share
ei. If ei is an edge on the boundary, then xi ∈ ei is a point such that

∫
ei
wds =

w(xi)|ei|. For any x = x0 ∈ K ∈ Rh, we can find a path from x0 to xl, a point on the
boundary, by joining a sequence of xi as shown in Figure 4, where xi (i = 1, . . . , l)
satisfy (3.1). Let C0 be a constant such that lh ≤ C0. Let {Ki}li=1 be the sequence
of triangles in Rh containing xi (i = 0, . . . , l) as shown in Figure 4.
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Define w(x1
0) = w(x0), w(x2

1) = w|K1
(x1), and w(x1

1) = w|K2
(x1). In general,

w(x2
i ) = w|Ki(xi) and w(x1

i ) = w|Ki+1(xi). The mean value theorem, the Cauchy–
Schwarz inequality, and (3.1) give

|w(x)|2 = |w(x0)|2 =

∣∣∣∣∣
l∑
i=1

(w(x1
i−1) − w(x2

i )) +

l∑
i=1

[w](xi)

∣∣∣∣∣
2

(3.2)

≤ Cl

(
l∑
i=1

(∇w(x̄i)
2(xi−1 − xi)

2 +

l∑
i=1

[γw]2ei

)
,(3.3)

where x̄i ∈ Ki is a point between xi−1 and xi. As in [12], we have

|∇w(x̄i)|2h2 ≤ C|∇w|2Ki
.(3.4)

Equation (3.4) implies

|w(x)|2 ≤ Cl

(
l∑
i=1

|∇w|2Ki
+

l∑
i=1

[γw]2ei

)
.(3.5)

Integrating (3.5) over K gives∫
K

|w(x)|2 ≤ Clh2

(
l∑
i=1

|∇w|2Ki
+

l∑
i=1

[γw]2ei

)
.(3.6)

For each x ∈ Ω, choose the path such that, when adding all the K ∈ Rh, the same
Ki appears at most l times. Then using the fact that lh ≤ C0, we have

‖w‖2 =

∫
Ω

|w(x)|2 ≤ C

(
|w|21,h +

∑
e

[γw]2e

)
≤ C|||w|||2.(3.7)

This completes the proof.
Let uI ∈ Vh be the interpolation of u. It is well known that

|u− uI |s,K ≤ Ch2−s|u|2,K ∀K ∈ Rh, s = 0, 1,(3.8)

where C depends only on the angle of K. The Cauchy–Schwarz inequality implies

[γv]2e =

(
1

h e

∫
e

[v]ds

)2

≤
(

1

h e

)2 ∫
e

[v]2ds

∫
e

ds

=

∫
e

1

h e
[v]2ds.(3.9)

The definitions of the norm ||| · |||, (3.9), (2.9), and (3.8) give

|||u− uI |||2 = |u− uI |21,h +
∑
e

[γu− γuI ]
2
e(3.10)

≤ C

(
|u− uI |21,h +

∑
e

∫
e

h−1
e [u− uI ]

2ds

)

≤ C

(
|u− uI |21,h +

∑
K

h−2‖u− uI‖2
K

)
≤ Ch2|u|22
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and (∑
K

h2|u− uI |22,K
) 1

2

≤ Ch|u|2.(3.11)

Theorem 3.2. Let uh ∈ Vh and u ∈ H2(Ω)∩H1
0 (Ω) be the solutions of (2.5) and

(1.1), respectively; then there exists a constant C independent of h such that

|||u− uh||| ≤ Ch|u|2(3.12)

and

‖u− uh‖ ≤ Ch|u|2.(3.13)

Proof. Subtracting (2.6) from (2.7) gives

A(u− uh, v) = 0 ∀v ∈ Vh.(3.14)

Using (2.14), (3.14), and (2.15), we have

|||uh − uI |||2 ≤ CA(uh − uI , uh − uI)(3.15)

= CA(u− uI , uh − uI)

≤ C(|||u− uI ||| +
(∑

K

h2|u− uI |22,K)
1
2

)
|||uh − uI |||.

Using (3.15), (3.10), and (3.11), we have

|||uh − uI ||| ≤ Ch|u|2.(3.16)

The triangle inequality and (3.10) imply (3.12). Using Lemma 3.1 and (3.16), we have

‖uh − uI‖ ≤ C|||uh − uI ||| ≤ Ch|u|2.
Equation (3.8) and the triangle inequality imply (3.13). We have completed the
proof.
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[5] I. Babǔska and M. Zlámal, Nonconforming elements in the finite element method with

penalty, SIAM J. Numer. Anal., 10 (1973), pp. 863–875.
[6] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the

numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131
(1997), pp. 267–279.

[7] C. E. Baumann and J. T. Oden, A discontinuous hp finite element method for convection-
diffusion problems, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 311–341.

[8] Z. Chen, B. Cockburn, C. Gardner, and J. Jerome, Quantum hydrodynamic simulation of
hysteresis in the resonant tunneling diode, J. Comput. Phys., 117 (1995), pp. 274–280.



1072 XIU YE

[9] B. Cockburn, S. Hou, and C.-W. Shu, TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws IV: The multidimensional case,
Math. Comp., 54 (1990), pp. 545–581.

[10] S. H. Chou, Analysis and convergence of a covolume method for the generalized Stokes problem,
Math. Comp., 66 (1997), pp. 85–104.

[11] S. H. Chou and P. S. Vassilevski, A general mixed co-volume framework for constructing
conservative schemes for elliptic problems, Math. Comp., 68 (1999), pp. 991–1011.

[12] S. H. Chou and D. Y. Kwak, A covolume method based on rotated bilinears for the generalized
stokes problem, SIAM J. Numer. Anal., 35 (1998), pp. 494–507.

[13] S. H. Chou and D. Y. Kwak, Analysis and convergence of a MAC scheme for the generalized
Stokes problem, Numer. Methods Partial Differential Equations, 13 (1997), pp. 147–162.

[14] B. Cockburn, G. E. Karniadakis, and C.W. Shu, eds., The Discontinuous Galerkin Meth-
ods: Theory, Computation and Applications, Lect. Notes Comput. Sci. Eng. 11, Springer-
Verlag, Berlin, 2000.

[15] B. Cockburn and C. W. Shu, The local discontinuous Galerkin finite element method for
time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), pp. 2440–
2463.

[16] J. Douglas, Jr. and T. Dupont, Interior Penalty Procedures for Elliptic and Parabolic
Galerkin Methods, Lecture Notes Phy. 58, Springer-Verlag, Berlin, 1976.

[17] J.-L. Lions, Problemes aus limites non homogenes a donees irregulieres: Une methode
d’approximation, in Numerical Analysis of Partial Differential Equations (C.I.M.E. 2 Ciclo,
Ispra, 1967), Edizioni Cremonese, Rome, 1968, pp. 283–292.

[18] R. Lazarov, I. Michev, and P. Vassilevski, Finite volume methods for convection-diffusion
problems, SIAM J. Numer. Anal., 33 (1996), pp. 31–55.

[19] C. Liu and S. McCormick, The finite volume element method (FVE) for planar cavity flow,
in Proceedings of the 11th International Conference on CFD, Williamsburg, VA, 1988.

[20] R. A. Nicolaides, T. A. Porsching, and C. A. Hall, Covolume methods in computational
fluid dynamics, in Computational Fluid Dynamics Review, M. Hafez and K. Oshima, eds.,
Wiley, New York, 1995, pp. 279–299.

[21] J. A. Nitsche, Uber ein Variationsprinzip zur Losung Dirichlet-Problemen bei Verwendung
von Teilraumen, die keinen Randbedingungen unteworfen sind, Abh. Math. Sem. Univ.
Hamburg, 36 (1971), pp. 9–15.

[22] W. H. Reed and T. R. Hill, Triangular Mesh Methods for the Neutron Transport Equation,
Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.

[23] B. Riviere, M. F. Wheeler, and V. Girault, Improved Energy Estimates for Interior
Penalty, Constrained and Discontinuous Galerkin Methods for Elliptic Problems, Part
I, Tech. Report 99-09, TICAM, 1999.
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Abstract. Much attention has been paid in the literature to total-variation-diminishing (TVD)
numerical processes in the solution of nonlinear hyperbolic differential equations. For special Runge–
Kutta methods, conditions on the stepsize were derived that are sufficient for the TVD property; see,
e.g., Shu and Osher [J. Comput. Phys., 77 (1988), pp. 439–471] and Gottlieb and Shu [Math. Comp.,
67 (1998), pp. 73–85]. Various basic questions are still open regarding the following issues: 1. the
extension of the above conditions to more general Runge–Kutta methods; 2. simple restrictions on
the stepsize which are not only sufficient but at the same time necessary for the TVD property; and
3. the determination of optimal Runge–Kutta methods with the TVD property.

In this paper we propose a theory by means of which we are able to clarify the above questions.
Moreover, by applying our theory, we settle analogous questions regarding the related strong-stability-
preserving (SSP) property (see, e.g., Gottlieb, Shu, and Tadmor [SIAM Rev., 43 (2001), pp. 89–112]
and Shu [Collected Lectures on the Preservation of Stability under Discretization, D. Estep and
S. Tavener, eds., SIAM, Philadelphia, 2002]). Our theory can be viewed as a variant to a theory of
Kraaijevanger [BIT, 31 (1991), pp. 482–528] on the contractivity of Runge–Kutta methods.

Key words. initial value problem, conservation law, method of lines, Runge–Kutta formula,
total-variation-diminishing (TVD), strong-stability-preserving (SSP), monotonicity
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1. Introduction.

1.1. The purpose of the paper. In this paper we shall address some natural
questions arising in the numerical solution of certain partial differential equations
(PDEs). In order to formulate these questions, we consider an initial value problem
for a system of ordinary differential equations (ODEs) of the form

d

dt
U(t) = F (U(t)) (t ≥ 0), U(0) = u0.(1.1)

We assume that (1.1) results from an application of the method of lines to a Cauchy
problem for a PDE of the form

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0 (t ≥ 0, −∞ < x <∞).

Here f stands for a given (possibly nonlinear) scalar function, so that the PDE is a
simple instance of a conservation law; cf., e.g., Kröner (1997) and LeVeque (2002).

The solution U(t) to (1.1) stands for a (time dependent) vector in R
∞ = {y :

y = (. . . , η−1, η0, η1, . . .) with ηj ∈ R for j = 0,±1,±2, . . .}. The components Uj(t) of
U(t) are to approximate the desired true solution values u(j∆x, t) (or cell averages

∗Received by the editors October 4, 2002; accepted for publication (in revised form) September 26,
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thereof); here ∆x denotes a (positive) mesh-width. Furthermore, F stands for a
function from R

∞ into R
∞; it depends on the given function f as well as on the

process of semidiscretization being used. Finally, u0 ∈ R
∞ depends on the initial

data of the original Cauchy problem.
Any Runge–Kutta method, when applied to problem (1.1), yields approximations

un to U(n∆t), where ∆t > 0 denotes the time step and n = 1, 2, 3, . . . . Since d
dtU(t) =

F (U(t)) stands for a semidiscrete version of a conservation law, it is desirable that
the (fully discrete) process be total-variation-diminishing (TVD) in the sense that

‖un‖TV ≤ ‖un−1‖TV ;(1.2)

here the function ‖.‖TV is defined by

‖y‖TV =

+∞∑
j=−∞

|ηj − ηj−1| (for y ∈ R
∞ with components ηj).

For an explanation of the importance of the TVD property, particularly in the numer-
ical solution of nonlinear conservation laws, see, e.g., Harten (1983), Laney (1998),
Toro (1999), LeVeque (2002), and Hundsdorfer and Verwer (2003).

By Shu and Osher (1988) (see also, e.g., Gottlieb, Shu, and Tadmor (2001) and
Shu (2002)) a simple but very useful approach was described for obtaining (high order)
Runge–Kutta methods leading to TVD numerical processes. They considered explicit
m-stage Runge–Kutta methods, written in the special form

y1 = un−1,

yi =

i−1∑
j=1

[λij yj + ∆t · µijF (yj)] (2 ≤ i ≤ m+ 1),(1.3)

un = ym+1.

Here λij , µij are real coefficients specifying the Runge–Kutta method, and yi are
intermediate vectors in R

∞, depending on un−1, used for computing un (for n =
1, 2, 3, . . .). Theorem 1.1 will state one of the conclusions formulated in the three
papers just mentioned. It applies to the situation where the semidiscretization of
the conservation law has been carried out in such a manner that the forward Euler
method, applied to d

dtU(t) = F (U(t)), yields a fully discrete process which is TVD,
when the stepsize ∆t is suitably restricted, i.e.,

‖v + ∆t F (v)‖TV ≤ ‖v‖TV (whenever 0 < ∆t ≤ τ0 and v ∈ R
∞).(1.4)

Furthermore, in the theorem it is assumed that

λi1 + λi2 + · · · + λi,i−1 = 1 (2 ≤ i ≤ m+ 1),(1.5a)

λij ≥ 0, µij ≥ 0 (1 ≤ j < i ≤ m+ 1),(1.5b)

and the following notation is used:

cij = λij/µij (for µij �= 0), cij = ∞ (for µij = 0),(1.6a)

c = min
i,j

cij .(1.6b)

Theorem 1.1 (Shu and Osher). Assume (1.5), and let c be defined by (1.6).
Suppose (1.4) holds, and

0 < ∆t ≤ c · τ0.(1.7)
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Then process (1.3) is TVD; i.e., (1.2) holds whenever un is computed from un−1

according to (1.3).
It was remarked, notably in Shu and Osher (1988) and Gottlieb, Shu, and Tadmor

(2001), that, under the assumptions (1.5), (1.6), the above theorem can be generalized.
Let V be an arbitrary linear subspace of R

∞ and let ‖.‖ denote any corresponding
seminorm (i.e., ‖u+ v‖ ≤ ‖u‖ + ‖v‖ and ‖λv‖ = |λ| · ‖v‖ for all λ ∈ R and u, v ∈ V).
A straightforward generalized version of Theorem 1.1 says that if F : V → V and

‖v + ∆tF (v)‖ ≤ ‖v‖ (whenever 0 < ∆t ≤ τ0 and v ∈ V),(1.8)

then (1.7) still implies that

‖un‖ ≤ ‖un−1‖,(1.9)

when un is computed from un−1 ∈ V according to (1.3). In the last mentioned paper,
time discretization methods for which a positive constant c exists such that (1.7),
(1.8) always imply (1.9) were called strong-stability-preserving (SSP). Property (1.9)
is important, also with seminorms different from ‖.‖TV , and also when solving certain
differential equations different from conservation laws—see, e.g., Dekker and Verwer
(1984), LeVeque (2002), and Hundsdorfer and Verwer (2003).

Clearly, it would be awkward if the factor c, defined in (1.6), would be so small
that (1.7) would reduce to a stepsize restriction which is too severe for any practical
purposes—in fact, the less restrictions on ∆t, the better. One might thus be tempted
to take the magnitude of c into account when comparing the effectiveness of different
Runge–Kutta processes (1.3), (1.5) to each other. However, it is evident that such a
use of c, defined by (1.6), could be quite misleading if, for a given process (1.3), (1.5),
the conclusion in Theorem 1.1 would also be valid with some factor c which is (much)
larger than the one given by (1.6).

For any given method (1.3) satisfying (1.5), the question thus arises what is
the largest factor c, not necessarily defined via (1.6), such that the conclusion in
Theorem 1.1 is still valid. Moreover, a second question is of whether there exists a
positive constant c such that (1.4), (1.7) imply (1.2), also for methods (1.3) satisfying
(1.5a) but violating (1.5b). Two analogous questions arise in connection with the
generalized version of Theorem 1.1, related to the SSP property, mentioned above.

The purpose of this paper is to propose a general theory which allows us to answer
the above questions, as well as related ones.

1.2. Outline of the rest of the paper. In section 2 we present our general
theory, just mentioned at the end of section 1.1. Section 2.1 contains notations and
definitions which are basic for the rest of our paper. We review here the concept of
monotonicity, which generalizes the TVD-property (1.2) in the context of arbitrary
vector spaces V, with seminorms ‖.‖, and of general Runge–Kutta schemes (A, b).
Furthermore, we introduce the notion of a stepsize-coefficient for monotonicity, which
formalizes and generalizes the property of the coefficient c as stated in Theorem 1.1.
In section 2.2 we recall the concept of irreducibility for general Runge–Kutta schemes
(A, b), and we review the crucial quantityR(A, b), introduced by Kraaijevanger (1991).
In section 2.3 we present (without proof) our main result, Theorem 2.5. This theorem
can be regarded as a variant to a theorem, on contractivity of Runge–Kutta methods,
of Kraaijevanger (1991). Theorem 2.5 is relevant to arbitrary irreducible Runge–
Kutta schemes (A, b); it tell us that, in the important situations specified by (2.9),
(2.10), (2.11), respectively, the largest stepsize-coefficient for monotonicity is equal to
R(A, b).
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In section 3 we apply Theorem 2.5 to a generalized version of process (1.3). After
the introductory section 3.1, we clarify in the sections 3.2 and 3.3, respectively, the
questions raised at the end of section 1.1 regarding the TVD and SSP properties
of process (1.3). Section 3.4 gives two examples illustrating the superiority of the
quantity R(A, b) (to the factor c, given by (1.6)) as a guide to stepsize restrictions for
the TVD and SSP properties.

Section 4 is mainly devoted to explicit Runge–Kutta schemes which are optimal,
in the sense of their stepsize-coefficients for monotonicity. After the introductory
section 4.1, we review, in section 4.2, conclusions of Kraaijevanger (1991) regarding
the optimization of R(A, b), in various classes of explicit Runge–Kutta schemes (A, b).
Combining these conclusions and our Theorem 2.5, we are able to extend and shed
new light on (recent) results in the literature about the optimization of c defined by
(1.6). In section 4.3 we describe an algorithm for computing R(A, b), which may be
useful in determining further optimal Runge–Kutta methods. Section 4.4 contains a
brief discussion of a few important related issues.

In order to look at our main result in the right theoretical perspective, we give in
the final section, section 5, not only the formal proof of Theorem 2.5, but we present
a short account of related material from Kraaijevanger (1991) as well. In section 5.1
we review Kraaijevanger’s theorem mentioned above, and we compare it with our
Theorem 2.5. In section 5.2 we give the proof of our main result.

We have framed our paper purposefully in the way just described: the reader
who is primarily interested in our Theorem 2.5 and its applications (rather than in
the underlying theory) will not be hampered by unnecessary digressions when reading
sections 2, 3, and 4.

2. A general theory for monotonic Runge–Kutta processes.

2.1. Stepsize-coefficients for monotonicity in a general context. We want
to study properties like (1.2) and (1.9) in a general setting. For that reason, we assume
that V is an arbitrary real vector space, and that F (v) is a given function, defined for
all v ∈ V, with values in V. We consider a formal generalization of (1.1),

d

dt
U(t) = F (U(t)) (t ≥ 0), U(0) = u0,(2.1)

where u0 and U(t) stand for vectors in V.
The general Runge–Kutta method with m stages, (formally) applied to the ab-

stract problem (2.1), provides us with vectors u1, u2, u3, . . . in V (see, e.g., Dekker and
Verwer (1984), Butcher (1987), and Hairer and Wanner (1996)). Here un is related
to un−1 by the formula

un = un−1 + ∆t

m∑
j=1

bjF (yj),(2.2a)

where the vectors yj in V satisfy

yi = un−1 + ∆t

m∑
j=1

aijF (yj) (1 ≤ i ≤ m).(2.2b)

In these formulas, ∆t > 0 denotes the stepsize and bj , aij are real parameters, spec-
ifying the Runge–Kutta method. We always assume that b1 + b2 + · · · + bm = 1. If
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aij = 0 (for j ≥ i), the Runge–Kutta method is called explicit. Defining the m ×m
matrix A by A = (aij) and the column vector b ∈ R

m by b = (b1, b2, b3, . . . , bm)T , we
can identify the Runge–Kutta method with the coefficient scheme (A, b).

Let ‖.‖ denote an arbitrary seminorm on V (i.e., ‖u+v‖ ≤ ‖u‖+‖v‖ and ‖λv‖ =
|λ| · ‖v‖ for all real λ and u, v ∈ V). The following inequality generalizes (1.2) and
(1.9):

‖un‖ ≤ ‖un−1‖.(2.3)

We shall say that the Runge–Kutta method is monotonic (for the stepsize ∆t, func-
tion F , and seminorm ‖.‖) if (2.3) holds whenever the vectors un−1 and un in V

are related to each other as in (2.2). Our use of the term “monotonic” is nicely in
agreement with earlier use of this term, e.g., by Burrage and Butcher (1980), Dekker
and Verwer (1984, p. 263), Spijker (1986), Butcher (1987, p. 392), and Hundsdor-
fer, Ruuth, and Spiteri (2003). Property (2.3) is related to what sometimes is called
practical stability or strong stability ; see, e.g., Morton (1980) and Gottlieb, Shu, and
Tadmor (2001).

In order to study stepsize restrictions for monotonicity, we start from a given
stepsize τ0 ∈ (0,∞). We shall deal with the situation where F is a function from
V into V, satisfying

‖v + τ0F (v)‖ ≤ ‖v‖ (for all v ∈ V).(2.4)

The last inequality implies, for 0 < ∆t ≤ τ0, that ‖v + ∆tF (v)‖ = ‖(1 − ∆t/τ0)v +
(∆t/τ0)(v+ τ0F (v))‖ ≤ ‖v‖. Consequently, (2.4) is equivalent to the following gener-
alized version of (1.4) and (1.8):

‖v + ∆tF (v)‖ ≤ ‖v‖ (whenever 0 < ∆t ≤ τ0 and v ∈ V).

Let a Runge–Kutta method (A, b) be given. We shall study monotonicity of the
method under arbitrary stepsize restrictions of the form

0 < ∆t ≤ c · τ0.(2.5)

Definition 2.1 (stepsize-coefficient for monotonicity). A value c ∈ (0,∞] is
called a stepsize-coefficient for monotonicity (with respect to V and ‖.‖) if the Runge–
Kutta method is monotonic, as in (2.3), whenever F is a function from V to V

satisfying (2.4), and ∆t is a (finite) stepsize satisfying (2.5).
It is easily verified that this definition is independent of the above value τ0: if c is

a stepsize-coefficient for monotonicity, with respect to V and ‖.‖, using one particular
value τ0 > 0, then c will have the same property when using any other value, say
τ ′0 > 0.

The concept of a stepsize-coefficient as introduced in the above definition, corre-
sponds to what is sometimes called a CFL coefficient in the context of discretizations
for hyperbolic problems; see, e.g., Gottlieb and Shu (1998) and Shu (2002).

In subsection 2.3 we shall give maximal stepsize-coefficients for monotonicity with
respect to various spaces V and seminorms ‖.‖.

2.2. Irreducible Runge–Kutta schemes and the quantity R(A, b). In
this subsection we give some definitions which will be needed when we formulate our
results, in subsection 2.3, about maximal stepsize-coefficients c. We start with the
fundamental concepts of reducibility and irreducibility.
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Definition 2.2 (reducibility and irreducibility). An m-stage Runge–Kutta
scheme (A, b) is called reducible if (at least) one of the following two statements (i), (ii)
is true; it is called irreducible if neither (i) nor (ii) is true.

(i) There exist nonempty, disjoint index sets M,N with M ∪N = {1, 2, . . . ,m}
such that bj = 0 (for j ∈ N) and aij = 0 (for i ∈M , j ∈ N);

(ii) there exist nonempty, pairwise disjoint index sets M1,M2, . . . ,Mr, with 1 ≤
r < m and M1 ∪ M2 ∪ · · · ∪ Mr = {1, 2, . . . ,m}, such that

∑
k∈Mq

aik =∑
k∈Mq

ajk whenever 1 ≤ p ≤ r, 1 ≤ q ≤ r, and i, j ∈Mp.

In case the above statement (i) is true, the vectors yj in (2.2) with j ∈ N have
no influence on un, and the Runge–Kutta method is equivalent to a method with
less than m stages. Also in case of (ii), the Runge–Kutta method essentially reduces
to a method with less then m stages; see, e.g., Dekker and Verwer (1984) or Hairer
and Wanner (1996). Clearly, for all practical purposes, it is enough to consider only
Runge–Kutta schemes which are irreducible.

Next, we turn to a very useful characteristic quantity for Runge–Kutta schemes
introduced by Kraaijevanger (1991). Following this author, we shall denote his quan-
tity by R(A, b), and in defining it, we shall use, for real ξ, the notations

A(ξ) = A(I − ξA)−1, b(ξ) = (I − ξA)−T b,
e(ξ) = (I − ξA)−1e, ϕ(ξ) = 1 + ξbT (I − ξA)−1e.

Here −T stands for transposition after inversion, I denotes the identity matrix
of order m, and e stands for the column vector in R

m, all of whose components are
equal to 1. We shall focus on values ξ ≤ 0 for which

I − ξA is invertible, A(ξ) ≥ 0, b(ξ) ≥ 0, e(ξ) ≥ 0, and ϕ(ξ) ≥ 0.(2.6)

The first inequality in (2.6) should be interpreted entrywise, the second and the third
ones componentwise. Similarly, all inequalities for matrices and vectors occurring
below are to be interpreted entrywise and componentwise, respectively.

Definition 2.3 (the quantity R(A, b)). Let (A, b) be a given coefficient scheme.
In case A ≥ 0 and b ≥ 0, we define

R(A, b) = sup{r : r ≥ 0 and (2.6) holds for all ξ with −r ≤ ξ ≤ 0}.
In case (at least) one of the inequalities A ≥ 0, b ≥ 0 is violated, we define R(A, b) = 0.

Definition 2.3 suggests that it may be difficult to determine R(A, b) for given
coefficient schemes (A, b). However, in section 4 we shall see that (for explicit Runge–
Kutta methods) a simple algorithm exists for computing R(A, b). Moreover, Kraaije-
vanger (1991, p. 497) gave the following simple criterion (2.7) for determining whether
R(A, b) = 0 or R(A, b) > 0. For any given k × l matrix B = (bij), we define the cor-
responding k × l incidence matrix by

Inc(B) = (cij), with cij = 1 (if bij �= 0) and cij = 0 (if bij = 0).

Theorem 2.4 (about positivity of R(A, b)). Let (A, b) be a given irreducible
coefficient scheme. Then R(A, b) > 0 if and only if

A ≥ 0, b > 0, and Inc(A2) ≤ Inc(A).(2.7)

Proof. For ξ sufficiently close to zero, the matrix I−ξA is invertible and e(ξ) ≥ 0,
ϕ(ξ) ≥ 0. Therefore, it is sufficient to analyze the inequalities A(ξ) ≥ 0 and b(ξ) ≥ 0.
With no loss of generality, we assume A ≥ 0, b ≥ 0.
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For ξ close to zero, we have

A(ξ) = (A+ ξA2)

∞∑
k=0

(ξA)2k and b(ξ)T = (bT + ξbTA)

∞∑
k=0

(ξA)2k.

From these two expressions, one easily sees that there exists a positive r, with

A(ξ) ≥ 0 and b(ξ)T ≥ 0 (for −r ≤ ξ ≤ 0)

if and only if Inc(A2) ≤ Inc(A) and Inc(bTA) ≤ Inc(bT ). Since statement (i) in Defi-
nition 2.2 is not true, we conclude that the last inequality is equivalent to b > 0.

We note that, in Kraaijevanger (1991), one can find various other interesting prop-
erties related to R(A, b), among them characterizations different from Definition 2.3.

2.3. Formulation of our main theorem. In this subsection we shall determine
maximal stepsize-coefficients (Definition 2.1) with respect to general spaces V and
seminorms ‖.‖. Moreover, we shall pay special attention to the particular (semi)norms

‖y‖∞ = sup
−∞<j<∞

|ηj |, ‖y‖1 =

∞∑
−∞

|ηj |, ‖y‖TV =

∞∑
−∞

|ηj − ηj−1|

for y = (. . . , η−1, η0, η1, . . .) ∈ R
∞. Furthermore, for integers s ≥ 1 and vectors y ∈ R

s

with components ηj (1 ≤ j ≤ s), we shall focus on the (semi)norms

‖y‖∞ = max
1≤j≤s

|ηj |, ‖y‖1 =

s∑
j=1

|ηj |, ‖y‖TV =

s∑
j=2

|ηj − ηj−1|

(where
∑s
j=2 |ηj − ηj−1| = 0 for s = 1). In our Theorem 2.5, the following inequality

will play a prominent part:

c ≤ R(A, b).(2.8)

Here is our main theorem, about stepsize-coefficients of irreducible Runge–Kutta
schemes (Definitions 2.1 and 2.2).

Theorem 2.5 (relating monotonicity to R(A, b)). Consider an arbitrary irre-
ducible Runge–Kutta scheme (A, b). Let c be a given value with 0 < c ≤ ∞. Choose
one of the three (semi)norms ‖.‖∞, ‖.‖1, or ‖.‖TV , and denote it by . . Then each
of the following three statements is equivalent to (2.8).

c is a stepsize-coefficient for monotonicity, with respect to all vector spaces(2.9)

V and seminorms ‖.‖ on V;

c is a stepsize-coefficient for monotonicity, with respect to the special space(2.10)

V = {y : y ∈ R
∞ and y <∞} and seminorm ‖.‖ = . ;

c is a stepsize-coefficient for monotonicity, with respect to the finite(2.11)

dimensional space V = R
s and seminorm ‖.‖ = . for s = 1, 2, 3, . . . .

Clearly, (2.9) is a priori a stronger statement than (2.10) or (2.11). Accordingly,
the essence of Theorem 2.5 is that the (algebraic) property (2.8) implies the (strong)
statement (2.9), whereas already either of the (weaker) statements (2.10) or (2.11)
implies (2.8).



1080 L. FERRACINA AND M. N. SPIJKER

The above theorem highlights the importance of Kraaijevanger’s quantity R(A, b).
Theorem 2.5 shows that, with respect to each of the three situations specified in
(2.9), (2.10), and (2.11), the maximal stepsize-coefficient for monotonicity is equal to
R(A, b).

The above theorem will be compared with a theorem on nonlinear contractivity
of Kraaijevanger (1991) in section 5.1, and it will be proved in section 5.2.

3. The application of our main theorem to the questions raised in sub-
section 1.1.

3.1. The equivalence of (a generalized version of) process (1.3) to
method (2.2). In section 3 we study time stepping processes producing numeri-
cal approximations un ∈ R

∞ to U(n∆t) (for n ≥ 1), where U(t) ∈ R
∞ satisfies (1.1).

We focus on processes of the form

y1 = un−1,(3.1a)

yi =

m∑
j=1

[λijyj + ∆t · µijF (yj)] (2 ≤ i ≤ m),(3.1b)

un =

m∑
j=1

[λm+1,jyj + ∆t · µm+1,jF (yj)].(3.1c)

Here λij , µij are arbitrary real coefficients with

λi1 + λi2 + · · · + λim = 1 (2 ≤ i ≤ m+ 1).(3.2a)

Clearly, if λij = µij = 0 (for j ≥ i), the above process reduces to algorithm (1.3).
Moreover, process (3.1) is sufficiently general to also cover other algorithms, such as
the one in Gottlieb, Shu, and Tadmor (2001, p. 109), which was considered recently
for solving (1.1).

In order to relate (3.1) to a Runge–Kutta method in the standard form (2.2), we
define λij = µij = 0 (for i = 1 and 1 ≤ j ≤ m), and we introduce the (m + 1) ×m
matrices L = (λij), M = (µij). The m×m submatrices composed of the first m rows
of L and M , respectively, will be denoted by L0 and M0. Furthermore, the last rows
of L and M—that is, (λm+1,1, . . . , λm+1,m) and (µm+1,1, . . . , µm+1,m), respectively—
will be denoted by L1 and M1, so that

L =

(
L0

L1

)
and M =

(
M0

M1

)
.(3.2b)

We assume that

the m×m matrix I − L0 is invertible.(3.2c)

We shall now show that the relations (3.1) imply (2.2), with matrix A = (aij)
and column vector b = (bi) specified by

A = (I − L0)
−1M0 and bT = M1 + L1A.(3.3)

We denote the entries of the matrix (I−L0)
−1 by γij , and note that the relations

(3.1a), (3.1b) can be rewritten as

m∑
k=1

(δjk − λjk)yk = δj,1un−1 +

m∑
k=1

µjkFk (for 1 ≤ j ≤ m),(3.4)
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where δjk is the Kronecker index and Fk = ∆t · F (yk). Multiplying (3.4) by γij
and summing over j = 1, 2, . . . ,m, we obtain, for 1 ≤ i ≤ m, the equality yi =
(
∑m
j=1 γijδj,1)un−1 +

∑m
k=1(

∑m
j=1 γijµjk)Fk. In view of (3.2a), the first sum in

the right-hand member of the last equality is equal to 1; hence (2.2b) holds with
(aij) = (I − L0)

−1M0. Furthermore, in view of (3.1c), we easily arrive at (2.2a) with
(b1, b2, . . . , bm) = M1 + L1A.

Similarly to the above, the relations (2.2), (3.3) can be proved to imply (3.1), so
that the following conclusion is valid.

Lemma 3.1. Let λij and µij be given coefficients satisfying (3.2a), (3.2b), (3.2c).
Define the Runge–Kutta scheme (A, b) by (3.3). Then the relations (3.1) are equiva-
lent to (2.2).

In the following subsections, we shall use this lemma for relating the monotonicity
properties of process (3.1) to those of the corresponding Runge–Kutta scheme (A, b)
given by (3.3).

3.2. The total-variation-diminishing property of process (3.1). Our fol-
lowing Theorem 3.2 gives a stepsize restriction guaranteeing the TVD-property for
the general process (3.1). Since (3.1) is more general than process (1.3), our theorem
is highly relevant to (1.3). In the theorem, we shall use the notation

R
∞
TV = {y : y ∈ R

∞ with ‖y‖TV <∞},
where ‖.‖TV has the same meaning as in subsection 1.1. We shall deal with functions F
from R

∞
TV into R

∞
TV , satisfying

‖v + τ0F (v)‖TV ≤ ‖v‖TV (whenever v ∈ R
∞
TV ),(3.5)

and with stepsize restrictions of the form

0 < ∆t ≤ R(A, b) · τ0(3.6)

(see Definition 2.3).
Theorem 3.2 (optimal stepsize restriction for the TVD-property in process

(3.1)). Let λij and µij be given coefficients satisfying (3.2a), (3.2b), (3.2c). Define
the matrix A and the vector b by (3.3), and suppose that the coefficient scheme (A, b)
is irreducible (Definition 2.2). Let F be a function from R

∞
TV into R

∞
TV satisfying

(3.5), and let ∆t be a (finite) stepsize satisfying (3.6).
Then, process (3.1) is TVD; i.e., the inequality (1.2) holds whenever un−1, un ∈

R
∞
TV are related to each other as in (3.1).

Proof. We apply Lemma 3.1, and consider the Runge–Kutta scheme (A, b) speci-
fied by the lemma. Next, we apply Theorem 2.5: choosing c = R(A, b), we have (2.8)
so that (2.10) must be fulfilled with . = ‖.‖TV . An application of Definition 2.1
completes the proof of the theorem.

Remark 3.3. The above theorem has a wider scope than Theorem 1.1. The class
of numerical methods (3.1) satisfying (3.2a), (3.2b), (3.2c) encompasses all processes
(1.3) satisfying (1.5a), as well as other (implicit) procedures. Specifically, unlike
Theorem 1.1, the above Theorem 3.2 is relevant to processes (1.3) satisfying (1.5a)
but violating (1.5b)—see Example 3.7 in subsection 3.4 for an illustration.

Remark 3.4. The above theorem, when applied to any process (1.3) satisfying
(1.5a), (1.5b), gives a stronger conclusion than Theorem 1.1. By Theorem 2.5, prop-
erty (2.10) with . = ‖.‖TV implies inequality (2.8). Therefore the coefficient c, given
by Theorem 1.1, satisfies c ≤ R(A, b); this means that the stepsize restriction (3.6) of
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Theorem 3.2 is, in general, less severe than the restriction (1.7) of Theorem 1.1—see
Example 3.8 in subsection 3.4 for an illustration.

Remark 3.5. Theorem 3.2 gives a stepsize restriction which is optimal in that
the conclusion of the theorem would no longer be valid if the factor R(A, b) in (3.6)
would be replaced by any factor c > R(A, b). This follows again from Theorem 2.5.

3.3. The strong-stability-preserving property of process (3.1). Let V be
an arbitrary linear subspace of R

∞, and let ‖.‖ denote any seminorm on V. For
functions F : V −→ V satisfying

‖v + τ0F (v)‖ ≤ ‖v‖ (whenever v ∈ V),(3.7)

we shall consider process (3.1) under a stepsize restriction of the form

0 < ∆t ≤ c · τ0.(3.8)

Following the terminology of Gottlieb, Shu, and Tadmor (2001), already reviewed in
subsection 1.1, we shall say that process (3.1) is strong-stability-preserving (SSP) if
a positive constant c exists (only depending on λij and µij) such that (1.9) holds
whenever (3.1), (3.7), (3.8) are fulfilled.

Theorem 3.6 (criterion for the SSP property of process (3.1)). Let λij and µij
be given coefficients satisfying (3.2a), (3.2b), (3.2c). Define the matrix A and vector b
by (3.3), and suppose that the coefficient scheme (A, b) is irreducible (Definition 2.2).
Then process (3.1) is SSP if and only if (2.7) holds.

Proof. By Lemma 3.1 and Theorem 2.5, process (3.1) is SSP if and only if
R(A, b) > 0. According to Theorem 2.4, the last inequality is equivalent to (2.7).

It is clear that the above Theorem 3.6, similarly as Theorem 3.2, is highly relevant
to all numerical processes (1.3) satisfying (1.5a); see Examples 3.7 and 3.8 below for
illustrations.

3.4. Illustrations to Theorems 3.2 and 3.6. We give two examples illustrat-
ing Theorems 3.2 and 3.6.

Example 3.7. Consider process (1.3), with m = 3 and coefficients λij , µij given
by the relations⎛⎜⎝ λ21

λ31 λ32

λ41 λ42 λ43

⎞⎟⎠ =

⎛⎜⎝ 1
1
4

3
4

1 0 0

⎞⎟⎠ ,

⎛⎜⎝ µ21

µ31 µ32

µ41 µ42 µ43

⎞⎟⎠ =

⎛⎜⎝ 1

− 1
2

1
4

1
6

1
6

2
3

⎞⎟⎠ .

Since µ31 < 0, condition (1.5b) is violated; therefore Theorem 1.1 does not apply.
For the corresponding matrix A = (aij) and vector b = (bi) (see (3.3)), we have

aij = 0 (j ≥ i), a21 = 1, a31 = a32 = 1/4 and b1 = b2 = 1/6, b3 = 2/3, respectively. It
is very easy to see that (2.7) holds; by virtue of Theorem 3.6, the numerical process is
thus SSP. Moreover, according to Kraaijevanger (1991, Theorem 9.4), for this process
we have R(A, b) = 1. By Theorem 3.2 we conclude that the process is TVD, under
the assumption (3.5) if 0 < ∆t ≤ τ0. We note that essentially the same numerical
process was presented earlier by Shu and Osher (1988); we shall come back to it in
section 4.2 (Remark 4.4; m = p = 3).

Example 3.8. Consider process (1.3), with m = 2 and(
λ21

λ31 λ32

)
=

(
1
1 0

)
,

(
µ21

µ31 µ32

)
=

(
1/2
1/2 1/2

)
.
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The conditions (1.5a), (1.5b) are neatly fulfilled, but the coefficient c, defined by (1.6),
is equal to 0.

For the corresponding Runge–Kutta scheme (A, b), defined by (3.3), we have
aij = 0 (j ≥ i), a21 = 1/2 and b1 = b2 = 1/2. Clearly, (2.7) is fulfilled, guaranteeing
the SSP property (see Theorem 3.6). Moreover, according to Kraaijevanger (1991,
Theorem 9.2), we have R(A, b) = 2. Therefore, by Theorem 3.2, the numerical process
is TVD, under assumption (3.5), if 0 < ∆t ≤ 2 · τ0. We note that the same method
was presented by Spiteri and Ruuth (2002); we shall come back to it in section 4.2
(Remark 4.4; m = 2, p = 1).

4. Optimal Runge–Kutta methods.

4.1. Preliminaries. For integer values m ≥ 1 and p ≥ 1, we shall denote by
Em,p the class of all explicit m-stage Runge–Kutta methods (A, b) with (classical)
order of accuracy at least p. Considerable attention has been paid, in the literature, to
identifying methods of class Em,p of the special form (1.3), (1.5) which are optimal in
the sense of the coefficient c given by (1.6); see notably Shu and Osher (1988), Gottlieb
and Shu (1998), Ruuth and Spiteri (2002), Shu (2002), and Spiteri and Ruuth (2002).
Independently of this work, Kraaijevanger (1991) dealt with the optimization, in the
full class Em,p, of his quantity R(A, b). Our theory (section 2) can be used to relate
his conclusions to the work just mentioned about optimization of c defined in (1.6).

In section 4.2 we shall briefly review some of Kraaijevanger’s conclusions so as to
arrive at extensions and completions of the material, referred to above, on optimality
in the sense of c (1.6). Furthermore, we shall consider scaled stepsize-coefficients
which reflect the efficiency of the methods better than the unscaled coefficients; in
Table 4.1 we shall display optimal scaled stepsize-coefficients. Next, in section 4.3,
we shall focus on an algorithm for computing R(A, b); the authors feel that it can
be useful in (future) calculations for determining, numerically, optimal Runge–Kutta
methods. Finally, in section 4.4 we touch upon a few important related issues.

4.2. Optimal methods in the class Em,p. We start with the following fun-
damental lemma, which gives a simple upper bound for R(A, b) in the class Em,p.

Lemma 4.1 (Kraaijevanger (1991, p. 517)). Let 1 ≤ p ≤ m, and consider an
arbitrary Runge–Kutta method (A, b) of class Em,p. Then R(A, b) ≤ m− p+ 1.

Remark 4.2. Ruuth and Spiteri (2002, Theorem 3.1) showed that, for Runge–
Kutta methods in class Em,p of the special form (1.3), (1.5), the coefficient c defined by
(1.6) satisfies c ≤ m−p+1. Clearly, a combination of the above lemma and our theory
(section 2) yields an extension and improvement over the last bound on c: for any
Runge–Kutta method of class Em,p, any stepsize-coefficient for monotonicity, say c′,
and any of the situations covered by (2.9), (2.10), or (2.11), we have c′ ≤ m− p+ 1.

The following theorem specifies methods (A, b) for which the upper bound
R(A, b) ≤ m− p+ 1 of Lemma 4.1 becomes an equality.

Theorem 4.3 (Kraaijevanger (1991, pp. 518–520)).
(a) Let p = 1 ≤ m. Then there is a unique method (A, b) of class Em,p with

R(A, b) = m; it is given by aij = 1/m ( 1 ≤ j < i ≤ m) and bi = 1/m
( 1 ≤ i ≤ m).

(b) Let p = 2 ≤ m. Then there is a unique method (A, b) of class Em,p with
R(A, b) = m − 1; it is given by aij = 1/(m − 1) ( 1 ≤ j < i ≤ m) and
bi = 1/m ( 1 ≤ i ≤ m).

(c) Let p = 3, m = 3. Then there is a unique method (A, b) of class Em,p with
R(A, b) = 1; it is given by a21 = 1, a31 = a32 = 1/4, b1 = b2 = 1/6, and
b3 = 2/3.
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(d) Let p = 3, m = 4. Then there is a unique method (A, b) of class Em,p with
R(A, b) = 2; it is given by a21 = a31 = a32 = b4 = 1/2 and a4,i = bi = 1/6
( 1 ≤ i ≤ 3).

Remark 4.4. Essentially the same methods as specified in the above theorem,
for m = p = 2 and m = p = 3, were already found by Shu and Osher (1988)
in a search for methods in Em,p, of the special type (1.3), (1.5), with maximal c
(defined in (1.6)); Gottlieb and Shu (1998) proved optimality for these two methods
with respect to c, (1.6). In an analogous search, Spiteri and Ruuth (2002) arrived
at all other methods specified by the theorem, and proved optimality in the sense
of c, (1.6). Similarly as in Remark 4.2, our theory (section 2) can be used here to
conclude that all methods given in Theorem 4.3 are optimal (with respect to their
stepsize-coefficients for monotonicity) in a stronger sense, and over a larger class of
Runge–Kutta methods, than can be concluded from the three papers just mentioned.

Kraaijevanger (1991) did not specify analytically any methods (A, b) in Em,p
with maximal R(A, b), for pairs p,m different from those in Theorem 4.3. However,
he arrived at interesting (negative) conclusions: if method (A, b) is of class Em,p and
p = 3, m ≥ 5, then R(A, b) < m−p+1; and if (A, b) belongs to Em,p with p = m = 4 or
p ≥ 5, then R(A, b) = 0. Moreover, by combining Kraaijevanger (1986, Theorem 5.1),
Spijker (1983), and our Theorem 2.5, one can conclude that R(A, b) < m− p+ 1 also
for all (A, b) in Em,p with p = 4, m ≥ 6. A combination of these conclusions and our
theory (section 2) amounts to a far-reaching extension of related results obtained in
Ruuth and Spiteri (2002).

Kraaijevanger (1991, pp. 522–523) constructed numerically an explicit 5-stage
method (A, b) of order 4, with R(A, b) ≈ 1.508. It is interesting to note that the same
method was found by Spiteri and Ruuth (2002) in a numerical search within the class
of methods (1.3) satisfying (1.5). By a similar search, the last authors also found a
5-stage method of order 3 with c ≈ 2.651 (given by (1.6)). In view of Kraaijevanger
(1986, Theorem 5.3), Spijker (1983), and our Theorem 2.5, we can conclude that this
method has a value R(A, b) ≈ 2.651, and is optimal in a stronger sense and over a
larger class of methods than follows from Spiteri and Ruuth (2002).

Clearly, when comparing two explicit Runge–Kutta methods to each other, one
cannot simply say that the one with the largest value R(A, b) is the most efficient
one. However, assuming that the stepsize ∆t, used for solving (1.1) over some interval
[0, T ], is governed by monotonicity (TVD) demands, it seems reasonable to use the
quantity m·T/R(A, b) as a measure of the amount of computational labor of a Runge–
Kutta method (A, b) with m stages—cf. Jeltsch and Nevanlinna (1981), Kraaijevanger
(1986), and Spiteri and Ruuth (2002) for related considerations. In line with the
terminology in the first two of these papers, we shall refer to the ratio R(A, b)/m
as a scaled stepsize-coefficient. The above mentioned measure, for the amount of
computational labor, is inversely proportional to R(A, b)/m, so the scaled stepsize-
coefficient is a more realistic guide thanR(A, b) for comparing the efficiency of different
methods to each other.

In Table 4.1 we display scaled stepsize-coefficients of Runge–Kutta methods (A, b),
which were reviewed above and are optimal in Em,p with respect to R(A, b).

From the table, one may conclude that, for given p, it is advantageous to use
optimal methods with relatively large m. Clearly, this conclusion is (only) justifiable
under the above assumption about ∆t being determined by monotonicity demands.
For related numerical experiments, see, e.g., Gottlieb and Shu (1998) and Spiteri and
Ruuth (2002).
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Table 4.1

Scaled stepsize-coefficients R(A, b)/m for optimal Runge–Kutta methods in Em,p.

m = 1 m = 2 m = 3 m = 4 m = 5
p = 1 1 1 1 1 1
p = 2 0.500 0.667 0.750 0.800
p = 3 0.333 0.500 0.530
p = 4 0.302

4.3. An algorithm for computing R(A, b), for methods of class Em,p.
Below we will describe a simple algorithm for computing R(A, b) whenever (A, b)
is an irreducible Runge–Kutta scheme of class Em,p. The following lemma plays a
fundamental role in the algorithm.

Lemma 4.5 (Kraaijevanger (1991, pp. 497–498)). Let (A, b) be an irreducible
coefficient scheme and r a positive real number. Then R(A, b) ≥ r if and only if
A ≥ 0 and the conditions (2.6) are fulfilled at ξ = −r.

It was noted by Kraaijevanger (1991) that the above lemma simplifies calculating
R(A, b) if A ≥ 0: for checking the conditions (2.6) on the whole of an interval [−r, 0],
it is sufficient to consider only the left endpoint ξ = −r.

Let Test1 and Test2(x) be boolean functions defined by

Test1 =

{
true if (2.7) holds,
false otherwise;

Test2(x) =

{
true if (2.6) holds at ξ = x,
false otherwise.

From Lemma 4.1 we know that if (A, b) is a coefficient scheme of class Em,p, then
R(A, b) ≤ m − p + 1. In view of the last inequality, Theorem 2.4, and Lemma 4.5,
we can calculate R(A, b) with the wanted precision Tol, by using the above boolean
functions as well as two pointers LeftExtr and RightExtr. The following algorithm finds
R(A, b) with error ≤ Tol.

x=0
if Test1

LeftExtr=-(m-p+1), RightExtr=0, x=LeftExtr
while (RightExtr-LeftExtr ≥ 2·Tol)

if Test2(x)
RightExtr=x, x=(LeftExtr+RightExtr)/2

else
LeftExt=x, x=(LeftExtr+RightExtr)/2

end
end

end
R(A,b)=−x.

4.4. Final remarks. For completeness, we note that Gottlieb and Shu (1998),
Shu (2002), and Spiteri and Ruuth (2002) gave useful results regarding the optimiza-
tion of c, (1.6), over classes of low-storage schemes of the (special) form (1.3), (1.5).
Furthermore, Kennedy, Carpenter, and Lewis (2000) obtained interesting related re-
sults regarding the optimization of R(A, b) over general classes of low-storage schemes
(A, b). Clearly, our theory (section 2) is fit to put also this work in a wider perspective.

Above, in section 4, we dealt exclusively with explicit Runge–Kutta schemes.
However, in Kraaijevanger (1991) also (a few) results were obtained, regarding the size
of R(A, b), relevant to implicit schemes—see below. A combination of these results
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with our Theorem 2.5 immediately leads to interesting conclusions about stepsize-
coefficients for monotonicity.

For arbitrary (possibly implicit) schemes (A, b) of order p, the following general re-
sults were obtained in Kraaijevanger (1991, pp. 514, 516): if p ≥ 2, then R(A, b) <∞;
and if p ≥ 7, then R(A, b) = 0. Moreover (on p. 516 of that article), a notable im-
plicit method (A, b) was given, with a value R(A, b) exceeding the upper bound of
Lemma 4.1: the method with m = 2, a1,1 = a1,2 = 0, a2,1 = a2,2 = 3/8, b1 = 1/3,
b2 = 2/3 is of order p = 2 and has a value R(A, b) = 8/3. The last value is con-
siderably larger than the optimal value m − p + 1 = 1, which can be achieved in
E2,2 (cf. section 4.2); but this advantage should of course be balanced against the
additional amount of work per step due to the implicitness of the method.

We think that it would be very useful to perform a systematic search for implicit
methods which are optimal, for given m and p, in the sense of R(A, b). Because such a
search is beyond the scope of our present work, we do not go further into this matter
here.

Finally, we note that our algorithm in section 4.3 can easily be adapted so as to
compute R(A, b) also for methods (A, b), of order at least 2, which are implicit: we
still base the algorithm on Lemma 4.5, and (instead of using Lemma 4.1) we start
with LeftExtr = ξ, where ξ is a negative value at which (2.6) is violated; in view of
the bound R(A, b) <∞, such a ξ can be found, e.g., by a simple doubling process.

5. Kraaijevanger’s theory and our proof of Theorem 2.5.

5.1. A theorem of Kraaijevanger on contractivity. Kraaijevanger (1991)
presented an interesting theory, relevant to method (2.2) in the situation where F is
a function from R

s into R
s, and ‖.‖ is a norm on R

s. The focus in his paper is on
numerical processes which, for given F , ‖.‖, and ∆t, are contractive in the sense that

‖ũn − un‖ ≤ ‖ũn−1 − un−1‖(5.1)

whenever both the vectors un−1, un and the vectors ũn−1, ũn are related to each other
as in (2.2). Kraaijevanger studied property (5.1) for functions F satisfying

‖F (ṽ) − F (v) + ρ(ṽ − v)‖ ≤ ρ‖ṽ − v‖ (for all v, ṽ ∈ R
s).(5.2)

Here ρ is a positive constant; in the literature on numerical ODEs one often refers
to (5.2) as a circle condition (with radius ρ) on the function F—cf. Kraaijevanger
(1991).

In order to be able to reformulate one of Kraaijevanger’s main results in such a way
that it can easily be compared to our Theorem 2.5, we consider stepsize-restrictions
of the form

0 < ∆t ≤ c/ρ.(5.3)

Furthermore, adapting our Definition 2.1 to the situation at hand, we arrive at the
following definition.

Definition 5.1 (stepsize-coefficient for contractivity). A value c ∈ (0,∞] is a
stepsize-coefficient for contractivity (with respect to R

s and ‖.‖) if the Runge–Kutta
method is contractive, as in (5.1), whenever F : R

s → R
s satisfies (5.2) and ∆t is a

(finite) stepsize satisfying (5.3).
The subsequent theorem is an easy consequence of Kraaijevanger (1991, Theo-

rem 5.4); it relates stepsize-coefficients for contractivity to the inequality

c ≤ R(A, b).(5.4)
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Theorem 5.2 (relating contractivity to R(A, b)). Consider an arbitrary irre-
ducible Runge–Kutta scheme (A, b). Let c be a given value with 0 < c ≤ ∞. Then
both of the following statements are equivalent to (5.4):

c is a stepsize-coefficient for contractivity, with respect to R
s and(5.5)

‖.‖ for each s ≥ 1 and each norm ‖.‖ on R
s;

c is a stepsize-coefficient for contractivity, with respect to R
s and(5.6)

the special norm ‖.‖∞ for each s ≥ 1.

Since condition (5.2) is equivalent to requiring that the forward Euler method
with stepsize τ0 = 1/ρ is contractive, there is a close resemblance between (5.2) and
(2.4) (with V = R

s). Accordingly, one might think that (part of) our Theorem 2.5 is
a simple consequence of Theorem 5.2. However, the following three remarks indicate
that the relation between the two theorems is far from being that simple.

Remark 5.3. Let c be as in statement (2.11), with seminorm ‖.‖ = ‖.‖1 or
‖.‖ = ‖.‖TV . Theorem 2.5 claims that this coefficient c must satisfy c ≤ R(A, b). This
claim cannot be expected to follow from the above Theorem 5.2; at best, it might
follow from a version of that theorem in which the norm ‖.‖∞ (in (5.6)) would simply
be replaced by ‖.‖1 or ‖.‖TV . However, it is not known whether such a version is
actually valid—Kraaijevanger’s proof, underlying Theorem 5.2 as formulated above,
makes an essential use of a specific (geometric) property of the norm ‖.‖∞ which is
not valid for ‖.‖1 or ‖.‖TV ; cf. Kraaijevanger (1991, p. 505) and Schönbeck (1967,
Theorem 2.4) for more details.

Remark 5.4. Let c be as in (2.11), with ‖.‖ = ‖.‖∞. Even in this more convenient
situation, it is not evident how the inequality c ≤ R(A, b), claimed by Theorem 2.5,
could follow from Theorem 5.2. The fact is that (2.11) (with ‖.‖ = ‖.‖∞) does not
imply (5.6), because, in general, monotonicity does not imply contractivity.

Remark 5.5. Suppose c ≤ R(A, b). Then Theorem 2.5 claims that (2.9) is valid
so that c would certainly be a stepsize-coefficient for monotonicity, with respect to
R
s and any norm on R

s. Even this last property of c does not follow from a simple
application of Theorem 5.2, because it is no obvious consequence of (5.5)—note that
(2.4) (with V = R

s) does not imply (5.2) (with ρ = 1/τ0).
The above three remarks make clear that our Theorem 2.5 can be viewed as a

variant of Theorem 5.2 covering essentially new situations.

5.2. The proof of Theorem 2.5.

5.2.1. Preliminaries. Throughout this section 5.2 we assume, unless specified
otherwise, that (A, b), c, and . are as explained at the beginning of Theorem 2.5.
With no loss of generality, we assume that c is finite. Below we shall prove the
theorem by showing that the following five implications are valid: (2.8) =⇒ (2.9),
(2.9) =⇒ (2.10), (2.10) =⇒ (2.11), [(2.11) with . = ‖.‖TV ] =⇒ [(2.11) with
. = ‖.‖1], and finally [(2.11) with . = ‖.‖1 or ‖.‖∞] =⇒ (2.8).

The first implication will be proved in section 5.2.2, using arguments which are
analogous to arguments for proving that (5.4) implies (5.5) (see Kraaijevanger (1991,
pp. 502–504)).

The second implication is trivial, whereas the third and fourth implication will be
proved in section 5.2.3. The proofs, in this section, are not related to arguments used
in Kraaijevanger (1991), but are based on Lemma 5.6. This lemma gives a general
framework in which the property of c being a stepsize-coefficient for monotonicity



1088 L. FERRACINA AND M. N. SPIJKER

can be carried over from a space Y with seminorm ‖.‖Y to another space X with
seminorm ‖.‖X.

The proof of the fifth implication will be given in section 5.2.4.
In that section we shall first deal with a linear variant of process (2.2). Lemma 5.7

tells us that a monotonicity property of that variant implies (2.8); the lemma is
relevant to the norms ‖.‖p, with p = 1 and p = ∞. This lemma, with value p = ∞,
was used implicitly by Kraaijevanger (1991, pp. 507–508) in a proof related to the
implication (5.6) =⇒ (5.4) (cf. Theorem 5.2).

Next, we shall give Lemma 5.8, which states that property (2.11), with . = ‖.‖p
and p = 1 or p = ∞, implies the monotonicity property of the linear variant considered
in Lemma 5.7. A combination of Lemmas 5.7 and 5.8 proves the fifth implication.
Our proof of Lemma 5.8 has no relation to arguments in Kraaijevanger (1991); it
makes use, among other things, of arguments employed earlier in Spijker (1986).

For completeness we mention that no counterpart of Lemma 5.8 is known to the
authors which is relevant to contractivity with respect to R

s and ‖.‖1—cf. Remark 5.3
and Kraaijevanger (1991, p. 505).

5.2.2. Statement (2.8) =⇒ statement (2.9). We start this subsection by in-
troducing some notation relevant to the vector space V. For any vectors v1, v2, . . . , vm
in V, we shall denote the vector in V

m with components vj by

v = [vj ] =

⎛⎜⎝ v1
...
vm

⎞⎟⎠ ∈ V
m.

Furthermore, for any (real) l ×m matrix B = (bij), we define a corresponding linear
operator BV, from V

m to V
l, by BV(v) = w, for v = [vj ] ∈ V

m, where w = [wi] ∈ V
l

with wi =
∑m
j=1 bijvj (1 ≤ i ≤ l). Clearly, if B and C are l × m matrices and

D is an m × k matrix, then (B + C)V = BV + CV, (λB)V = λ · BV, and (BD)V =
BV ·DV. Here, the addition and multiplications occurring in the last three left-hand
members stand for the usual algebraic operations for matrices, whereas the addition
and multiplications in the right-hand members apply to linear operators. The last
three equalities will underlie part of our subsequent calculations.

Assume (2.8), and let F be a function from V to V satisfying (2.4). We have to
prove that c is a stepsize-coefficient for monotonicity; i.e., 0 < ∆t ≤ c · τ0 implies
‖un‖ ≤ ‖un−1‖ whenever un and un−1 are related to each other by (2.2).

Assuming (2.2), with 0 < ∆t ≤ c · τ0, we obtain

un = un−1 +

m∑
j=1

bjwj ,(5.7a)

yi = un−1 +

m∑
j=1

aijwj (1 ≤ i ≤ m),(5.7b)

where wj = ∆tF (yj). Putting γ = ∆t/τ0, we have ‖wi+cyi‖ = γ‖(c/γ)yi+τ0F (yi)‖ ≤
γ{(c/γ − 1)‖y‖ + ‖yi + τ0F (yi)‖}. Therefore, in view of (2.4),

‖wi + cyi‖ ≤ c‖yi‖.(5.8)

Defining y = [yi] ∈ V
m, w = [wi] ∈ V

m, and e = (1, . . . , 1)T ∈ R
m, we can rewrite

(5.7) as



TVD RUNGE–KUTTA METHODS 1089

un = un−1 + bTw,(5.9a)

y = eun−1 + Aw,(5.9b)

where bT = (bT )V, e = (e)V, and A = AV. Denoting the identity in V
m by I, we

see from (5.9b) that (I + cA)y = eun−1 + Aw + cAy = eun−1 + A(w + cy). From
Lemma 4.5, we conclude that (2.6) holds with ξ = −c and that A ≥ 0. Therefore,
I + cA is invertible and

y = (I + cA)−1eun−1 + A(I + cA)−1(w + cy).(5.10)

Since (I + cA)−1e = e(−c) ≥ 0 and A(I + cA)−1 = A(−c) ≥ 0 we arrive at the
inequality [‖yi‖] ≤ ‖un−1‖(I + cA)−1e + A(I + cA)−1[‖wi + cyi‖]. In view of (5.8),
there follows [‖yi‖] ≤ ‖un−1‖(I + cA)−1e+ cA(I + cA)−1[‖yi‖], which is the same as
(I + cA)−1[‖yi‖] ≤ ‖un−1‖(I + cA)−1e. Multiplying the last inequality by the matrix
I + cA ≥ 0, we can conclude that

‖yi‖ ≤ ‖un−1‖ (1 ≤ i ≤ m).(5.11)

Using (5.9a), (5.10), we obtain

un = un−1 + bTw = un−1 − cbT y + bT (w + cy)

= un−1 − cbT {(I + cA)−1eun−1 + A(I + cA)−1(w + cy)} + bT (w + cy)

= {1 − cbT (I + cA)−1e}un−1 + bT (I + cA)−1(w + cy).

Since ϕ(−c) ≥ 0, b(−c) ≥ 0, and (5.8), (5.11) are valid, we see from the last expression
for un that

‖un‖ ≤ {1 − cbT (I + cA)−1e}‖un−1‖ + bT (I + cA)−1[‖wi + cyi‖]
≤ {1 − cbT (I + cA)−1e}‖un−1‖ + (cbT (I + cA)−1e)‖un−1‖ = ‖un−1‖.

This completes the proof of (2.9).

5.2.3. Statement (2.10) =⇒ statement(2.11); and statement (2.11)
with . = ‖.‖T V =⇒ statement (2.11) with . = ‖.‖1. We start this subsec-
tion by giving Lemma 5.6. The lemma deals with a general situation where

X and Y are vector spaces, with seminorms ‖.‖X and ‖.‖Y, respectively,(5.12a)

S : X → Y is a linear operator,(5.12b)

Sx = 0 only for x = 0, and(5.12c)

‖x‖X = ‖Sx‖Y (for all x ∈ X).(5.12d)

Lemma 5.6. Assume (5.12) and let c be a stepsize-coefficient for monotonicity,
with respect to Y and ‖.‖Y. Then c is also a stepsize-coefficient for monotonicity,
with respect to X and ‖.‖X.

Proof. Let ∆t be a stepsize with 0 < ∆t ≤ c · τ0, and let F : X → X with

‖x+ τ0F (x)‖X ≤ ‖x‖X (on X).(5.13a)

Suppose the relations (2.2) are fulfilled. We have to prove that

‖un‖X ≤ ‖un−1‖X.(5.13b)
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We define the subspace Y0 = {y : y = Sx for some x ∈ X} and we introduce a
linear transformation T , from Y0 onto X, by Ty = x (for y = Sx ∈ Y0).

In view of (2.2), the vector vn = Sun is generated from vn−1 = Sun−1 by applying
the Runge–Kutta method to the function G0 : Y0 → Y0, defined by G0(y) = SFT (y)
(for y ∈ Y0). Using (5.12d) and (5.13a), one easily sees that ‖y + τ0G0(y)‖Y ≤ ‖y‖Y

(for all y ∈ Y0).
We define G : Y → Y by G(y) = G0(y) (for y ∈ Y0) and G(y) = 0 (for y ∈ Y\Y0).

Clearly ‖y+ τ0G(y)‖Y ≤ ‖y‖Y (for all y ∈ Y). Moreover, the vector vn can be viewed
as being generated from vn−1 by applying the Runge–Kutta method, with stepsize ∆t,
to the function G. Consequently, ‖vn‖Y ≤ ‖vn−1‖Y. Combining this inequality and
(5.12d), we arrive at (5.13b).

Now assume (2.10). We shall prove (2.11) by applying Lemma 5.6.
We define X = R

s, Y = {y : y ∈ R
∞, and y <∞}, and ‖x‖X = x , ‖y‖Y = y

(for x ∈ X and y ∈ Y, respectively). Furthermore, we introduce the operator S by

Sx =

{
(. . . , 0, 0, x1, x2, .., xs, 0, 0 . . .) if . = ‖.‖∞ or ‖.‖1,
(. . . , x1, x1, x1, x2, . . . , xs, xs, xs . . .) if . = ‖.‖TV

for x = (x1, x2, . . . , xs) ∈ X.
With these definitions, the conditions (5.12) are fulfilled. In view of (2.10), we

can apply Lemma 5.6 so as to conclude that (2.11) holds.
Finally assume (2.11) with . = ‖.‖TV . Let s ≥ 1 and X = R

s, ‖x‖X = ‖x‖1

(for x ∈ X). We want to prove that c is a stepsize-coefficient for monotonicity with
respect to X and ‖.‖X.

In order to be able to apply Lemma 5.6 to the situation at hand, we define
Y = R

s+1, ‖y‖Y = ‖y‖TV (for y ∈ Y). Furthermore, for x = (x1, x2, . . . , xs) ∈ X we
define Sx = (y1, . . . , ys+1) with y1 = 0 and yi = x1+x2+ · · ·+xi−1 (for 2 ≤ i ≤ s+1).

One easily sees that, with the above definitions, all assumptions of Lemma 5.6
are fulfilled. Hence, c has the required property.

5.2.4. (2.11) with . = ‖.‖1 or ‖.‖∞ =⇒ (2.8). Throughout this sub-
section we shall use, for p = 1,∞ and s × s matrices G, the notation ‖G‖p =
max ‖Gv‖p/‖v‖p, where the maximum is over all nonzero vectors v in R

s. Further-
more, we shall denote the s× s identity matrix by I.

Let G1, G2, . . . , Gm be given s× s matrices. We consider a linear variant of (2.2)
(with n = 1, u0 ∈ V = R

s) in which all vectors F (yj) are replaced by Gj yj . Fur-
thermore, we consider the following linear variant of condition (2.4): ‖I + τ0Gi‖p ≤ 1
(1 ≤ i ≤ m).

Choose ∆t = c τ0 and write Zi = ∆tGi. Then the above linear variants of (2.2)
and (2.4), respectively, can be written in the form

u1 = u0 +

m∑
j=1

bjZjyj ,(5.14a)

yi = u0 +

m∑
j=1

aijZjyj (1 ≤ i ≤ m),(5.14b)

and

‖cI + Zi‖p ≤ c (1 ≤ i ≤ m).(5.15)
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In the following we shall focus on orderedm-tuples Z = (Z1, Z2, . . . , Zm), where the Zi
are s × s matrices, such that (5.15) holds and the system of equations (5.14b) has a
unique solution y1, y2, . . . , ym. The set consisting of all of these Z will be denoted by
Dp(c, s).

For any Z in Dp(c, s), the vector u1 in (5.14) depends uniquely and linearly on u0;
we denote the s× s matrix transforming u0 into u1 by K(Z). We thus have

u1 = K(Z)u0 whenever Z ∈ Dp(c, s) and u0, u1 ∈ R
s satisfy (5.14).(5.16)

The inequality

‖K(Z)‖p ≤ 1 (for all Z ∈ Dp(c, s) and s ≥ 1)(5.17)

amounts to a monotonicity condition on process (5.14). It will be related to (2.8) and
to (2.11) in Lemmas 5.7 and 5.8, respectively.

Lemma 5.7. Consider an arbitrary irreducible Runge–Kutta scheme (A, b), and
let p = 1 or p = ∞. Let 0 < c <∞, and assume condition (5.17) is fulfilled. Then c
satisfies (2.8).

Proof. In Kraaijevanger (1991) this lemma was proved (implicitly) for p = ∞. The
proof in that paper is long and technical but is presented in a very clear way. There-
fore, we do not repeat it here but note that the actual proof (given on pp. 507–508 of
the paper) consists in a combination of conclusions regarding absolute monotonicity
(on pp. 485–496) with Lemma 5.10 (on p. 505). The conclusions stated on pp. 485–496
are independent of the norm in R

s, whereas Lemma 5.10 is tuned to the special
norm ‖.‖∞. It is not difficult to adapt the proof of the last mentioned lemma to the
norm ‖.‖1 so as to conclude that Lemma 5.10 is verbatim valid for ‖.‖1 as well. As a
result, the arguments in Kraaijevanger (1991, pp. 507–508) prove our Lemma 5.7 also
for p = 1.

A combination of the following lemma and Lemma 5.7 immediately leads to the
desired implication ((2.11) with . = ‖.‖1 or ‖.‖∞ =⇒ (2.8)).

Lemma 5.8. Consider an arbitrary irreducible Runge–Kutta schema (A, b), and
let p = 1 or p = ∞. Let 0 < c < ∞, and assume (2.11) with . = ‖.‖p. Then
condition (5.17) is fulfilled.

Proof. The proof will be given in three steps.
Step 1. Let

s ≥ 1, u0 ∈ R
s, Z = (Z1, . . . , Zm) ∈ Dp(c, s),(5.18)

and assume that the corresponding vectors yi, defined by (5.14b), satisfy

yi �= yj (for i �= j).(5.19)

We shall prove that

‖K(Z)u0‖p ≤ ‖u0‖p.(5.20)

Choose any τ0 > 0, and define F : R
s → R

s by F (v) = (cτ0)
−1Ziyi (for v = yi)

and F (v) = 0 (for all other v ∈ R
s). In view of (5.15), the function F satisfies (2.4)

with V = R
s, ‖.‖ = ‖.‖p. Furthermore, we see from (5.14), (5.16) that the vector

K(Z)u0 is generated from u0 by applying the Runge–Kutta method with stepsize
∆t = cτ0 to the function F . By virtue of (2.11) (with . = ‖.‖p), we conclude that
(5.20) holds.
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Step 2. Due to the restriction (5.19) in Step 1, the proof of (5.17) is not yet
complete. Below, in Step 3, we shall get rid of this restriction by using (real) values
γi, ηi (for 1 ≤ i ≤ m) with the following properties:

0 < γi < c (1 ≤ i ≤ m);(5.21a)

the m×m matrix I +A · diag(γi) is invertible;(5.21b)

ηi = 1 −
m∑
j=1

aijγjηj (1 ≤ i ≤ m);(5.21c)

ηi �= ηj (whenever i �= j).(5.21d)

In this (second) step we shall prove the existence of γi, ηi satisfying (5.21).
Since (A, b) is irreducible, statement (ii) (of Definition 2.2) is not true. It follows

that the polynomials pi(t) =
∑m
j=1 aijt

j are different from each other. Therefore,

there is a positive t0 with pi(t0) �= pj(t0) (for all i �= j). Writing ti = (t0)
i, we thus

have

m∑
k=1

aiktk �=
m∑
k=1

ajktk (whenever i �= j).

Let γi = λti, with λ > 0. We choose λ sufficiently small to guarantee (5.21a) and
(5.21b). The corresponding values ηi = ηi(λ), solving (5.21c), satisfy

ηi(λ) = 1 − λ

m∑
k=1

aiktk +O(λ2) (for λ ↓ 0).

Choosing λ sufficiently small, we conclude that γi, ηi exist satisfying (5.21).
Step 3. Assume (5.18). We shall prove (5.20).
Let yi satisfy (5.14b), and choose any γi, ηi as in (5.21). We choose ε > 0 and

define

u∗0 =

(
u0

ε

)
, Z∗

i =

(
Zi 0
0 −γi

)
, y∗i =

(
yi
εηi

)
.

Since Z ∈ Dp(c, s) and (5.21a), (5.21b) hold, the m-tuple Z∗ = (Z∗
1 , Z

∗
2 , . . . , Z

∗
m)

belongs to Dp(c, s + 1). Furthermore, y∗i = u∗0 +
∑m
j=1 aijZ

∗
j y

∗
j (1 ≤ i ≤ m) and

y∗i �= y∗j (for i �= j). Consequently, the conclusion of the above Step 1 can be applied

(to u∗0 ∈ R
s+1 and Z∗ ∈ Dp(c, s+ 1)) so as to obtain ‖K(Z∗)u∗0‖p ≤ ‖u∗0‖p.

Since ‖K(Z)u0‖p ≤ ‖K(Z∗)u∗0‖p and ‖u∗0‖p ≤ ‖u0‖p + ε, we arrive at (5.20) by
letting ε→ 0.
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D. Kröner (1997), Numerical Schemes for Conservation Laws, Wiley, Chichester, UK, and Teubner,

Stuttgart, Germany.
C. B. Laney (1998), Computational Gasdynamics, Cambridge University Press, Cambridge, UK.
R. J. LeVeque (2002), Finite Volume Methods for Hyperbolic Problems, Cambridge University Press,

Cambridge, UK.
K. W. Morton (1980), Stability of difference approximations to a diffusion-convection equation,

Internat. J. Numer. Methods Engrg., 15, pp. 677–683.
S. Ruuth and R. Spiteri (2002), Two barriers on strong-stability-preserving time discretization

methods, J. Sci. Comput., 17, pp. 211–220.
S. O. Schönbeck (1967), On the extension of Lipschitz maps, Ark. Mat., 7, pp. 201–209.
C.-W. Shu (2002), A survey of strong stability preserving high-order time discretizations, in Collected

Lectures on the Preservation of Stability Under Discretization, D. Estep and S. Tavener, eds.,
SIAM, Philadelphia, pp. 51–65.

C.-W. Shu and S. Osher (1988), Efficient implementation of essentially non-oscillatory shock-
capturing schemes, J. Comput. Phys., 77, pp. 439–471.

M. N. Spijker (1983), Contractivity in the numerical solution of initial value problems, Numer.
Math., 42, pp. 271–290.

M. N. Spijker (1986), Monotonicity and boundedness in implicit Runge-Kutta methods, Numer.
Math., 50, pp. 97–109.

R. Spiteri and S. Ruuth (2002), A new class of optimal high-order strong-stability-preserving time
discretization methods, SIAM J. Numer. Anal., 40, pp. 469–491.

E. F. Toro (1999), Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd ed., Springer-
Verlag, Berlin.



CONVERGENCE OF BINOMIAL TREE METHODS FOR
EUROPEAN/AMERICAN PATH-DEPENDENT OPTIONS∗

LISHANG JIANG† AND MIN DAI‡

SIAM J. NUMER. ANAL. c© 2004 Society for Industrial and Applied Mathematics
Vol. 42, No. 3, pp. 1094–1109

Abstract. The binomial tree method, first proposed by Cox, Ross, and Rubinstein [Journal
of Financial Economics, 7 (1979), pp. 229–263], is one of the most popular approaches to pricing
options. By introducing an additional path-dependent variable, such methods can be readily extended
to the valuation of path-dependent options. In this paper, using numerical analysis and the notion of
viscosity solutions, we present a unifying theoretical framework to show the uniform convergence of
binomial tree methods for European/American path-dependent options, including arithmetic average
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1. Introduction. Path-dependent options are options whose payoffs depend on
historical values of the underlying asset over a given time period as well as its cur-
rent price. Well-known examples are Asian arithmetic/geometric average options,
lookback options, etc. The binomial tree method (BTM), first proposed by Cox,
Ross, and Rubinstein [6], has become one of the most popular approaches to pric-
ing vanilla options due to its simplicity and flexibility. By introducing an additional
path-dependent variable at each node, BTM can be readily extended to the valuation
of path-dependent options.

Many authors have shown that the prices of European vanilla options computed
from BTM converge to their corresponding continuous-time model values (see [12]
and references therein). Amin and Khanna [1] and Jiang and Dai [14] produce the
convergence proofs for American vanilla options by using the probabilistic approach
and the partial differential equation (PDE) approach, respectively. In this paper, us-
ing the PDE approach, a unifying framework is given to show uniform convergence
of BTMs for both European and American path-dependent options, including Asian
arithmetic/geometric average options and lookback options. The basic idea stems
from the result of Barles and Souganidis [4], which essentially says that any sta-
ble, monotone, and consistent numerical scheme converges, provided that one has a
strong comparison principle in the sense of viscosity solution for the limiting equa-
tion. For Asian options and lookback options, the BTMs are clearly monotone and the
needed strong comparison principles can be deduced from Crandall, Ishii, and Lions
[8] and Barles, Daher, and Romano [2]. Hence, in addition to showing consistency,
the key point of the proof is to prove stability, namely, to obtain uniform estimates
of bounds of the approximate solutions sequences computed by BTMs. We arrive
at this by two steps: first, it is shown that values of lookback options (computed
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from BTMs) are the most expensive among those path-dependent options; second, by
constructing a suitable auxiliary function, we give a uniform estimate of bounds for
the price functions of lookback options. On the basis of the estimates, we then make
use of the notion of viscosity solutions and numerical analysis to prove the uniform
convergence.

Throughout this paper we only consider continuously monitored path-dependent
options. Actually, all results can be generalized to the case of discrete monitoring
because the key proof of boundedness follows from the fact that all prices of the options
with discrete monitoring are not greater than that of the corresponding continuously
monitored lookback option.

The outline for this paper is as follows. In the next section we recall algorithms of
BTMs for arithmetic average, geometric average, and lookback options, respectively.
Section 3 is devoted to the consistency of BTMs and PDEs in each case. In section 4 we
establish the relationship of BTMs and finite difference methods. In sections 5 and 6
we compare prices of the above three path-dependent options and present bounds of
solutions of BTMs. We prove the convergence of BTMs in section 7.

2. Algorithms. As is common in the risk neutral world, the underlying asset
price S is assumed to follow the lognormal diffusion process

dS = rSdt+ σSdW,(2.1)

where dW is a Wiener process and r and σ represent the interest rate and volatil-
ity, respectively. Consider a path-dependent option with the lifetime [0, T ] and the
payoff

Λ(S,A) =

⎧⎪⎪⎨⎪⎪⎩
(S −A)+ for floating strike call,
(A− S)+ for floating strike put,
(A−X)+ for fixed strike call,
(X −A)+ for fixed strike put,

where A is the path-dependent variable and X is the strike price.
If N is the number of discrete time points, we have time points tn = n∆t,

n = 0, 1, . . . , N , with ∆t = T/N. Let V n(S,A) be the option price at time tn
with underlying asset value S and path-dependent variable A. Here we might as
well assume

A =

⎧⎪⎪⎨⎪⎪⎩
1
nΣni=1Sti for arithmetic average,
(Πn

i=1Sti)
1/n for geometric average,

max0≤i≤n Sti for floating (fixed) strike lookback put (call) and S ≤ A,
min0≤i≤n Sti for floating (fixed) strike lookback call (put) and S ≥ A.

(2.2)
Sti stands for the underlying asset value of such path at time ti, i = 0, 1, . . . , n (note
Stn = S). It is assumed that S will either jump up to Su with probability p or down
to Sd with probability 1 − p at time tn+1. Consequently, A will become either Au or
Ad, where

Au =

⎧⎪⎪⎨⎪⎪⎩
nA+Su
n+1 for arithmetic average,

(AnSu)1/(n+1) for geometric average,
max(A,Su) for floating (fixed) strike lookback put (call) and S ≤ A,
A for floating (fixed) strike lookback call (put) and S ≥ A

(2.3)
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and

Ad =

⎧⎪⎪⎨⎪⎪⎩
nA+Sd
n+1 for arithmetic average,

(AnSd)1/(n+1) for geometric average,
A for floating (fixed) strike lookback put (call) and S ≤ A,
min(A,Sd) for floating (fixed) strike lookback call (put) and S ≥ A.

(2.4)
By no-arbitrage argument, one has for European path-dependent options

V n(S,A) = e−r∆t[pV n+1(Su,Au) + (1 − p)V n+1(Sd,Ad)],(2.5)

where p = er∆t−d
u−d . Setting ud = 1 and combining with stochastic differential equation

(2.1), we get

u = eσ
√

∆t, d = e−σ
√

∆t

and thus

p =
er∆t − eσ

√
∆t

eσ
√

∆t − e−σ
√

∆t
.

At expiration time T = N∆t, we have

V N (S,A) = Λ(S,A).(2.6)

Using the backward induction (2.5)–(2.6), option prices can be calculated. This is the
so-called binomial tree model.

For American path-dependent options, (2.5) is replaced by

V n(S,A) = max{e−r∆t[pV n+1(Su,Au) + (1 − p)V n+1(Sd,Ad)],Λ(S,A)}.(2.7)

3. Consistency. For the continuous model, the path-dependent variable is given
as follows:

At =

⎧⎪⎪⎨⎪⎪⎩
1
t

∫ t
0
S(τ)dτ for arithmetic average,

exp( 1
t

∫ t
0

lnS(τ)dτ) for geometric average,
max0≤τ≤t S(τ) for floating (fixed) strike lookback put (call),
min0≤τ≤t S(τ) for floating (fixed) strike lookback call (put).

Let V (S,A, t) be the path-dependent option value. Note that S, A, and t are mutually
independent from the view point of PDEs. The pricing model of European path-
dependent options is (see Kwok [16] or Wilmott, Dewynne, and Howison [17])

∂V

∂t
+ LV = 0, t ∈ (0, T ), (S,A) ∈ D,(3.1)

with the final value condition

V (S,A, T ) = Λ(S,A),(3.2)

where

LV =

⎧⎪⎨⎪⎩
1
t (S −A)∂V∂A + 1

2σ
2S2 ∂2V

∂S2 + rS ∂V∂S − rV for arithmetic average,
A
t (lnS − lnA)∂V∂A + 1

2σ
2S2 ∂2V

∂S2 + rS ∂V∂S − rV for geometric average,
1
2σ

2S2 ∂2V
∂S2 + rS ∂V∂S − rV for lookback
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and

D =

⎧⎨⎩
(0,∞) × (0,∞) for arithmetic or geometric average,
{(S,A) : 0 < S < A <∞} for floating (fixed) strike lookback put (call),
{(S,A) : 0 < A < S <∞} for floating (fixed) strike lookback call (put).

In addition, for lookback options, one has an additional boundary condition

∂V

∂A
(S, S, t) = 0.(3.3)

Remark 1. Note that LV is not well defined at t = 0 for Asian options. To
remove the singularity, we can take the transformation

I =

{
tA for arithmetic average,
t lnA for geometric average

(3.4)

to get

LV =

{
S ∂V∂I + 1

2σ
2S2 ∂2V

∂S2 + rS ∂V∂S − rV for arithmetic average,

lnS ∂V∂I + 1
2σ

2S2 ∂2V
∂S2 + rS ∂V∂S − rV for geometric average,

(3.5)

where I ∈ (0,∞) for the arithmetic average and I ∈ (−∞,∞) for the geometric
average.

Remark 2. One does not need to give boundary conditions at S = 0 that reduce
to x = −∞ by the transformation x = lnS. Similarly, noting (3.5) and the directions
of the characteristic lines, we do not impose boundary conditions at A = 0 (i.e., I = 0
or −∞) for Asian options. We always assume that option values do not grow too fast
at S = ∞ and A = ∞.

For American options, (3.1) is replaced by a variational inequality

min

{
−∂V
∂t

− LV, V − Λ

}
= 0, t ∈ (0, T ), (S,A) ∈ D.(3.6)

with the final condition (3.2) (and boundary condition (3.3) for lookback options).
Remark 3. For American Asian options, even if the transformation (3.4) is

employed, one cannot remove the singularity of (3.6) at t = 0 because Λ = (S−A)+ =
(S − I

t )
+ (floating strike call, for example) is, as of yet, not well defined at t = 0.

The financial background gives S = A (i.e. I = 0) at t = 0. However, S and A
are mutually independent variables in (3.6) and the behavior of the solution at the
point (S, S, 0) remains to be studied further. Throughout this paper we always confine
ourselves to the interval (0, T ] instead of [0, T ], except for special claim options.

In what follows, we will show the consistency of binomial tree methods and PDEs.
Theorem 3.1. The binomial tree methods (2.5) (resp., (2.7)) are consistent with

the corresponding PDE (3.1) (resp., (3.6)).
Proof. We only take the European type arithmetic average option as an example

since it is similar for other cases. We need to show that for sufficiently smooth function
φ(S,A, t) and (S0, A0, t0) ∈ D × (0, T ),

lim
∆t→0

(S,A,t)→(S0,A0,t0)

1

∆t
(φ− F∆tφ)(S,A, t) = −∂V

∂t
− LV

∣∣∣∣
(S0,A0,t0)

,
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where

F∆tφ(S,A, t) = e−r∆t[pφ(Su,Au, t) + (1 − p)φ(Sd,Ad, t)],(3.7)

Au =
(t− ∆t)A+ Su∆t

t
and Ad =

(t− ∆t)A+ Sd∆t

t
.

By Taylor expansions and the identities

e−r∆t[p(u− 1) + (1 − p)(d− 1)] = r∆t+O(∆t2),

e−r∆t[p(u− 1)2 + (1 − p)(d− 1)2] = σ2∆t+O
(
∆t2

)
,

e−r∆t[p(u− 1)3 + (1 − p)(d− 1)3] = O
(
∆t2

)
,

(3.7) reduces to

(φ− F∆tφ)(S,A, t)

= −
[
∂φ

∂t
(S,A, t) + rS

∂φ

∂S
(S,A, t) +

1

2
σ2S2 ∂

2φ

∂S2
(S,A, t) − rφ(S,A, t)

]
∆t

−e−r∆t[p(Au −A) + (1 − p)(Ad −A)]
∂φ

∂A
(S,A, t)

−e−r∆t[p(u− 1)(Au −A) + (1 − p)(d− 1)(Ad −A)]S
∂2φ

∂S∂A
(S,A, t)

+O(∆t2) +O((Au −A)∆t) +O((Ad −A)∆t) +O((Au −A)2) +O((Ad −A)2).(3.8)

Noting that Au −A = Su−A
t ∆t and Ad −A = Sd−A

t ∆t, we have

e−r∆t[p(Au −A) + (1 − p)(Ad −A)] =
S −A

t
∆t+O(∆t2),

e−r∆t[ p(u− 1)(Au −A) + (1 − p)(d− 1)(Ad −A)] = O(∆t2).

Then we get

1

∆t
(φ− F∆tφ)(S,A, t) = − ∂φ

∂t
− 1

t
(S −A)

∂φ

∂A
− 1

2
σ2S2 ∂

2φ

∂S2
− rS

∂φ

∂S
+ rφ

∣∣∣∣
(S,A,t)

+O(∆t).(3.9)

The proof is complete.
Remark 4. For lookback options, the consistency of BTMs and the boundary

condition (3.3) in the sense of the viscosity solution will be shown implicitly in the
convergence proof of section 7.

4. Relationship between BTM and finite difference method. It has been
pointed out by many authors that, for vanilla options, the BTM is equivalent to certain
explicit difference schemes. In this section we establish the relationship between BTMs
and finite difference methods for path-dependent options.

To illustrate the basic idea, we confine ourselves to European arithmetic average
options. The governing equation is

∂V

∂t
+

1

t
(S −A)

∂V

∂A
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.
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Consider the characteristic line of ∂V
∂t + 1

t (S −A)∂V∂A = 0 in [tn, tn+1]{
dt
1 = dA

1
t (S−A)

, tn ≤ t ≤ tn+1,

A(tn) = An,

whose solution is

A(t) = S − tn
t

(S −An).

The governing equation is thereby rewritten as

dV

dt

(
S, S − tn

t
(S −An), t

)
+

(
σ2

2
S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV

)∣∣∣∣
A=S+ tn

t (S−An)

= 0,

tn ≤ t ≤ tn+1.

By adding the following three small terms to the above equation at (S, S + tn
t (S −

An), t),

σ2

2

[
t− tn
t

S

]2
∂2V

∂A2
+ σ2S

t− tn
t

S
∂2V

∂A∂S
+

(
r − σ2

2

)
S
t− tn
t

∂V

∂A
(tn ≤ t ≤ tn+1),

we have

d

dt
V

(
S, S − tn

t
(S −An), t

)
+
σ2

2
S
d

dS

(
S
d

dS
V

(
S, S − tn

t
(S −An), t

))
+

(
r − σ2

2

)
S
d

dS
V

(
S, S − tn

t
(S −An), t

)
− rV

(
S, S − tn

t
(S −An), t

)
= 0,

tn ≤ t ≤ tn+1.(4.1)

Noting that d
dS is a total differential operator, (4.1) can be regarded as a Black–

Scholes equation in [tn, tn+1]. By taking the explicit difference scheme for (4.1), we
can get

V (S,An, tn) =
1

1 + r∆t
[aV (Su,Aun, tn+1) + (1 − a)V (Sd,Adn, tn+1)],

where

a =
1

2
+

√
∆t

2σ

(
r − σ2

2

)
.

Since er∆t = 1 + r∆t+O(∆t2) and

p = a+O(∆t3/2),

we conclude that by neglecting a high order of ∆t, BTM is equivalent to the above
explicit difference scheme with method of characteristic line.

Remark 5. For geometric average options and lookback options, we have similar
results.
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5. Comparison of path-dependent options prices. In this section we will
compare prices of arithmetic average options, geometric average options, and lookback
options computed from the binomial tree approximation (2.6)–(2.7). To illustrate this
method, we will consider the American floating strike put option and the fixed strike
call option.

For ∆t given and 0 ≤ n ≤ N = T/∆t, we can compute V n(S,A) for all (S,A) ∈ D
by (2.6)–(2.7). In the following, V n(S,A) is regarded as a function defined by (2.6)–
(2.7) in D. In addition, we always suppose

0 < p < 1,(5.1)

which is a fact for sufficiently small ∆t. Under the assumption (5.1), BTMs are mono-
tone schemes.

Lemma 5.1. Let V n(S,A) be the function defined by (2.6)–(2.7) in D for the
American floating strike put option (or fixed strike call option) with payoff (A− S)+

(or (A−X)+). If A1 ≤ A2, then

V n(S,A1) ≤ V n(S,A2)

for all 0 ≤ n ≤ N.
Proof. The proof is obvious.
Lemma 5.2. Let V nG (S,A), V nA (S,A), and V nL (S,A) be the functions defined by

(2.6)–(2.7) in D for American floating strike geometric average, arithmetic average,
and lookback put options (or corresponding fixed strike call options) with payoffs (A−
S)+ (or (A−X)+).

(1) For all 0 ≤ n ≤ N, we have

V nG (S,A) ≤ V nA (S,A) ≤ V nL (S,max(S,A)).(5.2)

(2) Let Ag, Aa, and Al be values of the path-dependent variable for an identical
path. Then for all 0 ≤ n ≤ N

V nG (S,Ag) ≤ V nA (S,Aa) ≤ V nL (S,max(S,Al)).(5.3)

Proof. We take floating strike put options for example.
(1) Suppose (5.2) is true for n+ 1:

V nA (S,A) = max{e−r∆t[pV n+1
A (Su,AuA) + (1 − p)V n+1

A (Sd,AdA)], (A− S)+}
≥ max{e−r∆t[pV n+1

G (Su,AuA) + (1 − p)V n+1
G (Sd,AdA)], (A− S)+}.

Here

AuA =
nA+ Su

n+ 1
≥ (AnSu)1/(n+1) = AuG,

and similarly

AdA ≥ AdG;

it follows from Lemma 5.1 that

V nA (S,A) ≥ max{e−r∆t[pV n+1
G (Su,AuG) + (1 − p)V n+1

G (Sd,AdG)], (A− S)+}
= V n+1

G (S,A),
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which is the desired result. Combining with Lemma 5.1 and noticing that V nL (S,A)
is defined for S ≤ A, the right inequality follows similarly.

(2) For an identical path, by the definition (2.2), one has

Ag ≤ Aa ≤ Al,

which yields (5.3) due to (5.2) and Lemma 5.1.
Remark 6. Lemmas 5.1 and 5.2 remain valid for European path-dependent op-

tions. Similar results also hold for floating strike call and fixed strike put options.

6. Boundedness. In this section we will present bounds of solutions of BTMs,
which is crucial in the proof of convergence.

Lemma 6.1. Let V n(S,A) be the function defined by (2.6)–(2.7) in D for an
American fixed strike put option with payoff (X −A)+. Then

V n(S,A) ≤ X

for all 0 ≤ n ≤ N.
Proof. By induction, the result is obvious.
Lemma 6.2. Let V n(S,A) be the function defined by (2.6)–(2.7) in D for an

American floating strike call option with payoff (S −A)+. Then

V n(S,A) ≤ S

for all 0 ≤ n ≤ N.
Proof. Let V n(S,A) = SV

n
(S,A) for all 0 ≤ n ≤ N. It suffices to show that for

all 0 ≤ n ≤ N

V
n
(S,A) ≤ 1.(6.1)

Clearly for n < N ,

V
n
(S,A) = max

{
e−r∆t[puV

n+1
(Su,Au) + (1 − p)dV

n+1
(Sd,Ad)],

(
1 − A

S

)+
}
.

Since V
N

(S,A) = (1 − A
S )+ ≤ 1, one might as well assume that (6.1) holds for n+ 1

and hence

V
n
(S,A) ≤ max

{
e−r∆t[pu+ (1 − p)d],

(
1 − A

S

)+
}

= max

{
1,

(
1 − A

S

)+
}

≤ 1,

which arrives at the conclusion.
Lemma 6.3. Let V nL (S,A) be the function defined by (2.6)–(2.7) in D for an

American floating strike lookback put option (or fixed strike call option) with payoff
(A − S)+ (or (A − X)+). Let α > 0 and Wn(S,A) be the solution to the following
problem:⎧⎨⎩
Wn(S,A)
=max{e−r∆t[pWn+1(Su,max(Su,A))+(1−p)Wn+1(Sd,A)], eα(N−n)∆tA}, S≤A,
WN (S,A) = A.

(6.2)
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Then for all 0 ≤ n ≤ N and S ≤ A

V nL (S,A) ≤Wn(S,A).(6.3)

Proof. We take floating strike put options for example. Since WN (S,A) = A ≥
V NL (S,A), we may suppose (6.3) holds for n+ 1. Because α > 0,

Wn(S,A)=max{e−r∆t[pWn+1(Su,max(Su,A))+(1−p)Wn+1(Sd,A)], eα(N−n)∆tA}
≥max{e−r∆t[pV n+1

L (Su,max(Su,A))+(1−p)V n+1
L (Sd,A)], (A− S)+}

=V n+1
L (S,A).

The proof is complete.

7. Convergence. In this section, we will employ the notion of viscosity solutions
to show the convergence of binomial tree method. Let us first recall the notion of
viscosity solutions. For convenience, we use the following notations:

H(V, S,A, t) =

{ −∂V
∂t − LV for European options,

min{−∂V
∂t − LV, V − Λ} for American options,

B(V, S,A, t) =

{
−∂V
∂A for floating (fixed) strike lookback put (call),

∂V
∂A for floating (fixed) strike lookback call (put),

(7.1)

and

D = D ∪ ∂D, ∂D =

{ ∅ for Asian options,
{(S,A) : 0 < S = A <∞} for lookback options.

Remark 7. In (7.1), the sign before ∂V
∂A is determined by the outward unit normal

to ∂D × (0, T ) (see [8]).
Definition 7.1. A function V ∈ USC(D × (0, T ]) (resp., LSC(D × (0, T ])) is

a viscosity subsolution (resp., supersolution) of the problem (3.6), (3.2) (and (3.3)
for lookback options) if V (S,A, T ) ≤ Λ(x) (resp., V (S,A, T ) ≥ Λ(x)), and whenever
φ ∈ C2,1(D × (0, T )), V − φ attains its local maximum (resp., local minimum) at
(S0, A0, t0) ∈ D × (0, T ) and (V − φ)(S0, A0, t0) = 0, we have

H(φ, S0, A0, t0) ≤ 0 for (S0, A0, t0) ∈ D × (0, T )

(resp.,

H(φ, S0, A0, t0) ≥ 0 for (S0, A0, t0) ∈ D × (0, T )),

and (only for lookback option)

min{H(φ, S0, A0, t0), B(φ, S0, A0, t0)} ≤ 0 for (S0, A0, t0) ∈ ∂D × (0, T )

(resp.,

max{H(φ, S0, A0, t0), B(φ, S0, A0, t0)} ≥ 0 for (S0, A0, t0) ∈ ∂D × (0, T )).

We call V ∈ C(D × (0, T ]) a viscosity solution of (3.6), (3.2) (and (3.3) for lookback
options) if it is both a viscosity subsolution and a supersolution.
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The convergence proof needs the strong comparison principle that holds for Asian
options (see Remark 1 and [8], [9], and [11] and references therein). For lookback
options where the oblique derivative boundary condition is involved, Barles, Daher,
and Romano have shown that the strong comparison principle still remains valid (see
[2] and [3]). Then we get the following.

Lemma 7.2. The strong comparison principle holds for problem (3.6), (3.2) (and
(3.3) for lookback options); namely, if u and v are the viscosity subsolution and su-
persolution of the problem, respectively, then u ≤ v.

Let V n(S,A) be the function defined by (2.6)–(2.7) in D for American path-
dependent option. We now define the extension function V∆t (S,A, t) as follows: for
t ∈ [n∆t, (n+ 1)∆t], n = 0, 1, . . . , N − 1,

V∆t(S,A, t) =
(n+ 1)∆t− t

∆t
V n(S,A) +

t− n∆t

∆t
V n+1(S,A).

Theorem 7.3. Suppose that V (S,A, t) is the viscosity solution to the problem
(3.6), (3.2) (and (3.3) for lookback options). Then, as ∆t → 0, we have V∆t(S,A, t)
converges uniformly to V (S,A, t) in any bounded closed subdomain of D × (0, T ).

In order to prove this theorem, we have to show V ∗(S,A, t) and V∗(S,A, t) are
well defined at first, where

V ∗(S,A, t) = lim sup
∆t→0,(x,y,z)→(S,A,t)

V∆t(x, y, z),

V∗(S,A, t) = lim inf
∆t→0,(x,y,z)→(S,A,t)

V∆t(x, y, z).

In fact, due to Lemmas 6.1 and 6.2, it is true for fixed strike put options and floating
strike call options. As for fixed strike call options and floating strike put options, by
Lemma 6.3, it suffices to show the following.

Lemma 7.4. Let Wn(S,A) be the solution to (6.2) with α > 0. Then we have

Wn(S,A) ≤ eαT

(
max

(
A,

(
λ−(λ+ − 1)

λ+(λ− − 1)

)1/(λ−−λ+)

S

)
+ 1

)
(7.2)

for sufficiently small ∆t, where

λ± =
r

σ2
+

1

2
±
√(

r

σ2
+

1

2

)2

+
2α

σ2
.(7.3)

Remark 8. In Lemma 7.4, α > 0 guarantees (λ−(λ+−1)
λ+(λ−−1) )

1/(λ−−λ+) <∞.

Before proving Lemma 7.4 we inquire into some properties of the solution to the
problem (6.2). By transformations

x = ln
A

S
and W

n
(x) = e−α(N−n)∆tW

n(S,A)

S
,(7.4)

the numerical scheme (6.2) is reduced to⎧⎪⎨⎪⎩
W

n
(x) = max{e−(r+α)∆t[puW

n+1
((x−σ√∆t)+)+(1−p)dWn+1

(x+σ
√

∆t)], ex},
x ≥ 0,

W
N

(x) = ex.
(7.5)
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Lemma 7.5. Let W
n
(x) be the solution to (7.5). Then we have

(a) W
n+1

(x) ≤W
n
(x),

(b) W
n
(x1) ≤W

n
(x2) if x1 ≤ x2,

(c) for each n ≤ N,

W
n
(x) = ex if x ≥ (N − n)σ

√
∆t.(7.6)

Proof. (a) and (b) are obvious. In order to prove (c), we use induction. Suppose

(7.6) holds for n = k + 1, namely W
k+1

(x) = ex for x ≥ (N − k − 1)σ
√

∆t. If
x ≥ (N − k)σ

√
∆t, then

W
k
(x) = max{e−(r+α)∆t[puW

k+1
((x− σ

√
∆t)+) + (1 − p)dW

k+1
(x+ σ

√
∆t)], ex}

= max{e−(r+α)∆t[puex−σ
√

∆t + (1 − p)dex+σ
√

∆t], ex}
= max{e−(r+α)∆tex, ex} = ex,

which is the desired result.
To simplify notation, (7.5) will also be written as

W
n
(x) = F (∆t)W

n+1
(x).(7.7)

Lemma 7.6. For ∆t given, there exists unique element W∆t(x) satisfying W∆t(x)−
ex ∈ L∞(R+) such that

W∆t(x) = F (∆t)W∆t(x).(7.8)

In addition, W∆t(x) is a monotone function of x and

W
n
(x) ≤W∆t(x).(7.9)

Proof. Let W̃n(x) = W
n
(x) − ex. Then W̃n(x) satisfies

W̃n(x) = F (∆t)(W̃n+1(x) + ex) − ex=̂G(∆t)W̃n+1(x).

By (7.6), W̃n(x) ∈ L∞(R+). Hence G(∆t) can be regarded as a mapping from
L∞(R+) to L∞ (R+). Next we will show G(∆t) is a contraction mapping. Let U(x),
V (x) ∈ L∞(R+). Then

‖G(∆t)U(x) −G(∆t)V (x)‖∞
= ‖F (∆t)(U(x) + ex) − F (∆t)(V (x) + ex)‖∞
≤ e−(r+α)∆t[pu+ (1 − p)d] ‖U(x) − V (x)‖∞
= e−α∆t ‖U(x) − V (x)‖∞ .

Therefore, there exists a unique element W̃∆t(x) ∈ L∞(R+) such that W̃∆t(x) =

G(∆t)W̃∆t(x). Owing to Lemma 7.5, W̃∆t(x) is a monotone function of x and

W̃n(x) ≤ W̃∆t(x).

This completes the proof by denoting W∆t(x) = W̃∆t(x) + ex.
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Proof of Lemma 7.4. The idea of the proof stems from Dai [10]. Let ∆x = σ
√

∆t,
xj = j∆x, and uj = exj , j = 0, 1, . . . . It is not hard to see that W∆t(xj) satisfies{

W∆t(xj) = max{e−(r+α)∆t[puW∆t(xj−1) + (1 − p)dW∆t(xj+1)], u
j}, j ≥ 1,

W∆t(x0) = e−(r+α)∆t[puW∆t(x0) + (1 − p)dW∆t(x1)],

which is equivalent to a free boundary problem of a difference equation as follows:

W∆t(xj) = e−(r+α)∆t[puW∆t(xj−1) + (1 − p)dW∆t(xj+1)] for 1 ≤ j < j∞,

W∆t(x0) = e−(r+α)∆t[puW∆t(x0) + (1 − p)dW∆t(x1)],(7.10)

W∆t(xj∞) = uj∞ , W∆t(xj∞+1) = uj∞+1.(7.11)

Here j∞ is the point of free boundary to be determined. We claim

W∆t(xj) = C1ξ
j
1 + C2ξ

j
2 for 0 ≤ j ≤ j∞ + 1,(7.12)

where ξ1, ξ2 are two real roots of the equation ξ = e−(r+α)∆t(pu+(1−p)dξ2), namely,

ξ1,2 =
e(r+α)∆t ±

√
e2(r+α)∆t − 4p(1 − p)

2(1 − p)d
.(7.13)

To determine constants C1, C2, and j∞, we make use of boundary condition (7.10)
and free boundary condition (7.11); we have

C1

C2
=

(e(r+α)∆t − pu) − (1 − p)dξ2
(1 − p)dξ1 − (e(r+α)∆t − pu)

,(7.14)

W∆t(xj∞) = C1ξ
j∞
1 + C2ξ

j∞
2 = uj∞ ,(7.15)

W∆t(xj∞+1) = C1ξ
j∞+1
1 + C2ξ

j∞+1
2 = uj∞+1.(7.16)

By solving (7.14)–(7.16), we get

C1 =
ξ2u

j∞ − uj∞+1

ξj∞1 (ξ2 − ξ1)
, C2 =

ξ1u
j∞ − uj∞+1

ξj∞2 (ξ1 − ξ2)
,(7.17)

and

j∞ =
1

ln ξ2 − ln ξ1
ln

(
− (e(r+α)∆t − pu) − (1 − p)dξ2

(1 − p)dξ1 − (e(r+α)∆t − pu)

ξ1 − u

ξ2 − u

)
(7.18)

Noticing that W∆t(x) is monotone with respect to x and combining with (7.12), we
have

W∆t(x) ≤ max(ex+∆x, ej∞∆x).

By symbol operation, one gets

lim
∆t→0

j∞∆x =
1

λ− − λ+
ln
λ−(λ+ − 1)

λ+(λ− − 1)
<∞,

where λ± are given by (7.3). Then for sufficiently small ∆t,

W∆t(x) ≤ max

(
ex,

(
λ−(λ+ − 1)

λ+(λ− − 1)

)1/(λ−−λ+)
)

+ 1.
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Together with (7.4) and (7.9), this implies (7.2), which completes the proof of
Lemma 7.4.

We now prove Theorem 7.3. The idea is based on [4] and [14].
Proof of Theorem 7.3. Since V ∗ and V∗ are well defined, it is obvious that V ∗ ∈

USC and V∗ ∈ LSC, and V∗(S,A, t) ≤ V ∗(S,A, t). If we show that V ∗ and V∗ are
the viscosity subsolution and supersolution of (3.6), respectively, then in terms of
the comparison principle (Lemma 7.2), we deduce V ∗(S,A, t) ≤ V∗(S,A, t) and thus
V ∗(S,A, t) = V∗(S,A, t) = V (S,A, t), which is the desired conclusion.

We need only to show that V ∗ is a subsolution of (3.6), (3.2) (and (3.3) for
lookback options). It can be shown that V ∗(S,A, T ) ≤ Λ(S,A) (see [11]). Suppose
that for φ ∈ C2,1(D × (0, T ]), V ∗ − φ attains a local maximum at (S0, A0, t0) ∈
D × (0, T ) and (V ∗ − φ)(S0, A0, t0) = 0. We might as well assume that (S0, A0, t0)
is a strict local maximum on Br = {t0 ≤ t ≤ t0 + r, |S − S0| ≤ r, |A−A0| ≤ r},
r > 0. By the definition of V ∗, there exists a sequence u∆tk(Sk, Ak, tk) such that
∆tk → 0, (Sk, Ak, tk) → (S0, A0, t0), V∆tk(Sk, Ak, tk) → V ∗(S0, A0, t0) when k → ∞.

Assuming that (Ŝk, Âk, t̂k) is a global maximum point of V∆tk − φ on Br, we can

deduce that there is a subsequence V∆tki
(Ŝki , Âki , t̂ki) such that

∆tki → 0, (Ŝki , Âki , t̂ki) → (S0, A0, t0),

(V∆tki
− φ)(Ŝki , Âki , t̂ki) → (V ∗ − φ)(S0, A0, t0)

as ki → ∞.

(7.19)

Indeed, suppose (Ŝki , Âki , t̂ki) → (Ŝ, Â, t̂); then

(V ∗ − φ)(S0, A0, t0) = lim
ki→∞

(V∆tki
− φ)(Ski , Aki , tki)

≤ lim
ki→∞

(V∆tki
− φ)(Ŝki , Âki , t̂ki) ≤ (V ∗ − φ)(Ŝ, Â, t̂),

which forces (Ŝ, Â, t̂) = (S0, A0, t0) since (S0, A0, t0) is a local strict maximum point
of V ∗ − φ. Therefore

(V∆tki
− φ)(·, ·, t̂ki + ∆tki) ≤ (V∆tki

− φ)(Ŝki , Âki , t̂ki) in Br;

that is,

V∆tki
(·, ·, t̂ki + ∆tki) ≤ φ(·, ·, t̂ki + ∆tki) + (V∆tki

− φ)(Ŝki , Âki , t̂ki) in Br.

Then

V∆tki
(Ŝki , Âki , t̂ki)

= max{F∆tki
V∆tki

(Ŝki , Âki , t̂ki),Λ(Ŝki , Âki)}
≤ max{F∆tki

φ(Ŝki , Âki , t̂ki) + e−r∆tki (V∆tki
− φ)(Ŝki , Âki , t̂ki),Λ(Ŝki , Âki)},

namely,

min{(φ− F∆tki
φ)(Ŝki , Âki , t̂ki) + (1 − e−r∆tki )(V∆tki

− φ)(Ŝki , Âki , t̂ki),

V (Ŝki , Âki , t̂ki) − Λ(Ŝki , Âki)} ≤ 0.(7.20)

Here the operator F∆tki
is given by (3.7). Dividing the first argument in the min by
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∆te−r∆tki , letting ki → ∞, and noticing that

1 − e−r∆tki

∆te−r∆tki

(V∆tki
− φ)(Ŝki , Âki , t̂ki) → (V ∗ − φ)(S0, A0, t0) = 0,(7.21)

we get by consistency and (7.19) that

min

{
−∂φ
∂t

− Lφ, V ∗ − Λ

}
(S0,A0,t0)

≤ 0,

which yields the desired result because of V ∗(S0, A0, t0) = φ(S0, A0, t0).
For lookback options (fixed strike call, for example), if (S0, A0, t0) ∈ ∂D ×

(0, T ) and (7.19) holds, we might as well assume either (Ŝki , Âki) ∈ D for all ki
or (Ŝki , Âki) ∈ ∂D for all ki. If it is the former, we can use the same argument as

before to get min{−∂φ
∂t − Lφ, φ− Λ}(S0,A0,t0) ≤ 0. If (Ŝki , Âki) ∈ ∂D, i.e., Ŝki = Âki ,

then

Âuki = Ŝkiu and Âdki = Ŝki(7.22)

Using (7.22) and (3.8), we get

(φ− F∆tki
φ)(Ŝki , Âki , t̂ki) =

(
−∂φ
∂t

− Lφ
)

∆tki −
σŜki

2

∂φ

∂A
∆t

1/2
ki

+O(∆t2ki)

= −σŜki
2

∂φ

∂A
∆t

1/2
ki

+O(∆tki).

Combining with (7.20), which can also be similarly obtained in this case, we deduce

min

{
−σŜki

2

∂φ

∂A
∆t

1/2
ki

+O(∆tki) + (1 − e−r∆tki )(V∆tki
− φ)(Ŝki , Âki , t̂ki),

V (Ŝki , Âki , t̂ki) − Λ(Ŝki , Âki)

}
≤ 0.

Dividing the first argument in the min by
σŜki

2 ∆t1/2e−r∆tki , letting ki → ∞, and
noticing (7.21), we then get by (7.19)

min

{
− ∂φ

∂A
, φ− Λ

}
(S0,A0,t0)

≤ 0.

Hence, in either case, we have

min

{
min

{
−∂φ
∂t

− Lφ, φ− Λ

}
,− ∂φ

∂A

}
(S0,A0,t0)

≤ 0.

The proof is complete.
Theorem 7.3 indicates that BTMs for American path-dependent options are lo-

cally uniformly convergent. It is clear that V ∗ and V∗ are well defined for European
path-dependent options because the prices of European options computing by BTMs
are always less than those of the corresponding American options. Similar arguments
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also give the convergence of BTMs for European path-dependent options. As a result,
we assert the following.

Theorem 7.7. Binomial tree methods for European/American path-dependent
options are uniformly convergent in any bounded closed domain of D × (0, T ).

Remark 9. Clearly the convergence proof of BTMs remains valid at t = 0 for
lookback options. By virtue of Remark 1, the convergence result at t = 0 for European
Asian options is not too difficult an extension. However, for American Asian options,
the convergence at t = 0 is currently not available because we cannot prove the strong
comparison principle in D × [0, T ) (see also Remark 3).

Due to Lemma 5.2 and Theorems 7.3 and 7.7, we have the following.

Corollary 7.8. Let VG(S,A, t), VA(S,A, t), and VL(S,A, t) be the solutions of
the continuous models for floating strike geometric average, arithmetic average, and
lookback put options (or corresponding fixed strike call options); then we have

VG(S,A, t) ≤ VA(S,A, t) ≤ VL(S,max(S,A), t).

We conclude the paper with the following remark.

Remark 10. It is well known that the BTM is not feasible for pricing arithmetic
average options because the number of possible arithmetic average values increases
exponentially with the number of timesteps. Barraquand and Pudet [5] and Hull and
White [13] present modified BTMs that restrict the possible average values to a set of
predetermined values. Our technique can also be applied to prove the convergence of
their methods. We refer interested readers to [15] for details.
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theory of nonlinear waves.

Abstract. We analyze a heuristic numerical method suggested by V.I. Petviashvili in 1976 for
approximation of stationary solutions of nonlinear wave equations. The method is used to construct
numerically the solitary wave solutions, such as solitons, lumps, and vortices, in a space of one
and higher dimensions. Assuming that the stationary solution exists, we find conditions when the
iteration method converges to the stationary solution and when the rate of convergence is the fastest.
The theory is illustrated with examples of physical interest such as generalized Korteweg–de Vries,
Benjamin–Ono, Zakharov–Kuznetsov, Kadomtsev–Petviashvili, and Klein–Gordon equations.

Key words. nonlinear evolution equations, solitary waves, numerical approximations, iteration
methods, convergence and stability, linearized operators
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1. Introduction. Nonlinear waves and vortices are often described by partial
differential equations, whose solutions cannot be found analytically even in a space of
one dimension. Numerical computations are used to approximate various solutions,
including stationary solutions. An effective numerical method for computing solitary
wave solutions in a space of two dimensions was proposed by V. I. Petviashvili in
the context of the Kadomtsev–Petviashvili equation with positive dispersion (KPI
equation) [P76]. The numerical method was shown to converge to a stationary solu-
tion, but no analysis or proof was given. One year later, the very same solution was
found analytically [MZ77], referred to as the two-dimensional soliton or lump. After
the pioneering work [P76], Petviashili’s numerical method was applied to numerous
nonlinear problems in modern mathematical physics [PP92].

In this paper, we prove the convergence theorem for Petviashvili’s numerical
method in a context of a nonlinear scalar wave equation with power nonlinearity.
We assume that the stationary solution exists in a suitable function space, when the
method is well defined. The method clearly diverges in the cases when no stationary
solution exists in such spaces. We derive conditions on parameters of the numerical
method and on the spectrum of a linearized operator associated with the stationary
solution, when the method converges to the stationary solution.

We start with a nonlinear scalar wave equation with power nonlinearity in one
dimension:

ut − (Lu)x + pup−1ux = 0,(1.1)

where u : R×R+ �→ R, p > 1, and L is a linear self-adjoint nonnegative pseudodiffer-
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ential operator in x with constant coefficients, such that

〈u,Lu〉 = 〈Lu, u〉 ≥ 0, 〈f, g〉 =

∫ ∞

−∞
f̄(x)g(x) dx.(1.2)

Stationary solutions of (1.1) are of the form u(x, t) = Φ(x − ct), where c is an
eigenvalue and Φ(x) is a bound state of the boundary-value problem on x ∈ R,

cΦ + LΦ = Φp,(1.3)

such that lim|x|→∞ Φ(x) = 0. The paramater c, which is typically continuous, has a
physical meaning of a speed of the stationary wave. The bound state Φ(x) belongs to
the function space X(R), defined in Assumption 1.1.

We employ the Fourier transform,

u(x) =
1

2π

∫ ∞

−∞
û(k)eikxdk, û(k) =

∫ ∞

−∞
u(x)e−ikx dx(1.4)

and rewrite the boundary–value problem (1.3) in the form

[c+ v(k)] Φ̂(k) = Φ̂p(k),(1.5)

where v(k) is the range of L in the Fourier space. If L is a nonnegative pseudodif-
ferential operator of order m, the function v(k) is an mth order polynomial of |k|,
such that v(k) ≥ 0. The function v(k) has meaning of phase velocity of linear waves
(infinitesimal perturbations) of the scalar wave equation (1.1). Resonance between
nonlinear bound states and linear waves is excluded if c+v(k) �= 0 for any k ∈ R. For
the nonnegative operator L with v(k) ≥ 0, the resonance is excluded for c > 0.

Assumption 1.1. Let m be the order of a linear pseudodifferential operator L,
p > 1, v(k) ≥ 0, and c > 0. There exists a real analytical solution of the boundary-
value problem (1.5) in the function space

X = L2(R) ∩ Lp+1(R) ∩Hm/2(R).(1.6)

A naive iterative algorithm for numerical approximation of Φ̂(k) in the problem
(1.5) can be proposed in the form

ûn+1(k) =
ûpn(k)

c+ v(k)
,(1.7)

where ûn(k) is the Fourier transform of un(x) and un(x) is the nth iteration of the
numerical solution. However, this algorithm usually diverges, even if a fixed point Φ̂(k)
exists in the nonlinear problem (1.5). A modified iterative procedure is proposed by
introducing the stabilizing factor Mn [P76],

ûn+1(k) = Mγ
n

ûpn(k)

c+ v(k)
,(1.8)

where the stabilizing factor Mn is computed as

Mn = Mn[ûn] =

∫∞
−∞ [c+ v(k)] [ûn(k)]

2
dk∫∞

−∞ ûn(k)û
p
n(k) dk

,(1.9)
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and γ is a free parameter, which must be chosen for convergence of the sequence
{un(x)}∞n=0. The fixed points of the iterative map (1.8)–(1.9) are the same as the
bound states Φ̂(k) of the nonlinear boundary-value problem (1.5).

Lemma 1.2. A set of fixed points of the iteration map (1.8)–(1.9) coincides with a
set of bound states Φ̂(k) of the boundary-value problem (1.5), provided that γ �= 1+2n,
n ∈ Z.

Proof. If ûn(k) = Φ̂(k) is a solution of the boundary-value problem (1.5), then
Mn = 1 from (1.9) and ûn+1(k) = Φ̂(k) from (1.8). Therefore, the solution Φ̂(k) is
a fixed point of the iteration map (1.8)–(1.9). In the other direction, let û∗(k) be a
fixed point of the iteration map (1.8)–(1.9). Multiplying (1.8) by [c+ v(k)]û∗(k) and
integrating over k, we find M∗ = Mγ

∗ . When γ �= 1 + 2n, n ∈ Z, there exist only two
solutions: M∗ = 0 or M∗ = 1. Since c+ v(k) > 0 for any k ∈ R, the former solution
is equivalent to a trivial zero fixed point: û∗(k) = 0. The fixed point of (1.8) with
M∗ = 1 satisfies the boundary-value problem (1.5), such that û∗(k) = Φ̂(k).

When γ = 0, the iterative method (1.8) is the same as in (1.7) and it diverges
in most cases as was mentioned above. Nevertheless, a nonempty range for γ can be
found empirically, when the method converges to the bound state Φ(x), starting with
u0 ∈ X(R) such that un ∈ X(R), limn→∞ un(x) = Φ(x), and limn→∞Mn = 1. For
p = 2 (quadratic nonlinearity), Petviashvili has found empirically that the iteration
method (1.8)–(1.9) converges for 1 < γ < 3, with the fastest rate of convergence at
γ = 2 [PP92]. He also noticed that the fastest rate of convergence occurs when the
degree of the uniformity of the right-hand side of (1.8) is zero with respect to ûn(k).
The convergence results do not depend on the actual dependence v(k), provided that
c+ v(k) > 0 [PP92].

In this paper, we prove that the iteration method (1.8)–(1.9) converges for 1 <
γ < (p+1)/(p−1) under some additional assumptions on the spectrum of a linearized
operator associated with the bound state Φ(x). The fastest rate of convergence occurs
for γ = γ∗ = p/(p− 1).

From a practical point, the iteration procedure can be stopped when |Mn−1| ≤ ε
for any given small ε > 0. Therefore, parameter ε defines the distance between un(x)
and Φ(x) that measures the numerical error in the sense of the integrals in (1.9). Two
additional sources of numerical errors come from the use of spectral methods, such as
(i) the truncation of the integration domain k ∈ R by a finite interval k ∈ [−K,K]
and (ii) the discretization of the integrals at a finite number of grid points.

The paper is organized as follows. Section 2 describes properties of the linearized
operator associated with the scalar wave equation (1.1) and also formulates the main
convergence theorem. Section 3 presents the proof of the convergence theorem. Con-
vergence of the special sequences, which are self-similar to the bound states, is con-
sidered in section 4. Examples of the iteration method (1.8)–(1.9) in one and two
dimensions are studied in sections 5 and 6.

2. Spectral properties of the linearized operator. Here we study properties
of the linearized operator associated with the nonlinear wave equation (1.1) at u =
Φ(x− ct),

H = c+ L − pΦp−1(x),(2.1)

such that H : L2(R) → L2(R) and 〈f,Hg〉 = 〈Hf, g〉. Since the operator H is self-
adjoint in L2(R), its spectrum is real, eigenvalues of the discrete spectrum have equal
geometric and algebraic multiplicities, and the spectral decomposition of L2(R) is
orthogonal.
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The continuous spectrum of H is positive and bounded away from zero under
Assumption 1.1. The null-space of H is not empty and includes at least one eigen-
function: HΦ′(x) = 0, since the nonlinear equation (1.1) has the translation sym-
metry: u(x, t) → u(x − x0, t). The negative spectrum of H is not empty, since
HΦ(x) = (1 − p)Φp(x) and

〈HΦ,Φ〉 = −(p− 1)〈Φp,Φ〉 = − (p− 1)

2π

∫ ∞

−∞
Φ̂(k)Φ̂p(k)dk

= − (p− 1)

2π

∫ ∞

−∞
[c+ v(k)]

[
Φ̂(k)

]2
dk < 0.(2.2)

The analysis does not depend on the number and type of positive eigenvalues of H.
We summarize the main properties of the spectrum of H in the following assumption.

Assumption 2.1. The spectrum of H in L2(R) consists of eigenvalues µ of the
discrete spectrum for µ < c and the continuous spectrum for µ ≥ c. The null-space
of H is one dimensional with the eigenfunction Φ′(x). The negative space of H has
dimension n(H) ≥ 1.

Two linear eigenvalue problems are associated with the linearized operator H on
x ∈ R:

Problem I: ∂xHU = λU(2.3)

and

Problem II: HU = λ(c+ L)U.(2.4)

Problem I occurs in the linearization of the nonlinear wave equation (1.1) with a small
perturbation to the bound state: u = Φ(x−ct)+U(x−ct)eλt. The nonzero spectrum
of ∂xH is defined in the constrained function space Xc(R),

Xc = {U ∈ L2(R) : 〈Φ, U〉 = 0},(2.5)

since λ〈Φ, U〉 = 〈Φ, ∂xHU〉 = −〈HΦ′, U〉 = 0. The spectrum of ∂xH in Xc(R) gives
stability or instability of the bound state Φ(x) in the time evolution of the nonlinear
wave equation (1.1). If there exists λ ∈ C such that Re(λ) > 0, the bound state is
spectrally unstable and the perturbations grow exponentially in time. If the spectrum
is located at the axis Re(λ) = 0, the bound state is weakly spectrally stable and the
perturbation may grow at most as powers of time. The spectral stability-instability
theorem for the scalar wave equation (1.1) can be formulated as follows.

Theorem 2.2 ([BSS87, PW92]). . Let Ps(c) = 〈Φ,Φ〉 be a C1 function of c
for c > 0 and Assumptions 1.1 and 2.1 be satisfied. The bound state Φ(x) is weakly
spectrally stable with respect to the time evolution problem (2.3) if n(H) = 1 and
P ′
s(c) > 0. The bound state Φ(x) is spectrally unstable if n(H) = 1 and P ′

s(c) < 0.
The negative space of the operator H in the constrained function space Xc(R) has the
dimension n(H) − 1 if P ′

s(c) > 0 and the dimension n(H) if P ′
s(c) < 0.

Spectral stability of the bound state Φ(x) occurs if the negative space of H is
empty in the constrained function space Xc(R) and the spectral instability occurs if
the negative space of H is one dimensional in Xc(R). On the contrary, the convergence
of the iteration method (1.8)–(1.9) does not depend on spectral stability or instability
of bound states. Convergence of the iteration method is related to the spectrum of
Problem II, which occurs in the linearization of the iteration method (1.8)–(1.9); see
(3.5) below.
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We consider the spectrum of the operator (c + L)−1H in a different constrained
space Xp(R),

Xp = {U ∈ L2(R) : 〈Φp, U〉 = 0}.(2.6)

The spectrum of (c+L)−1H diagonalizes simultaneously two linear operators: H and
(c+L). Since (c+L) is positive, all eigenvalues λ are real and the algebraic multiplicity
of eigenvalues equals to their geometric multiplicity. Therefore, the spectral decom-
position of L2(R) is orthogonal with respect to the positive weighted inner product
〈U, (c + L)U〉. In particular, due to the constraint (2.6), the eigenfunction U(x) is
orthogonal with respect to (c+ L) to Φ(x), which is the eigenfunction of Problem II
for λ = 1 − p < 0.

Before formulating our main result (Theorem 2.8), we study the spectrum of
(c + L)−1H in Xp(R) under Assumption 2.1. Our analysis appears similar to the
Birman–Schwinger principle for Schrödinger operators in quantum mechanics [BS87].

Lemma 2.3. The negative space of H in Xp(R) has the dimension n(H) − 1.
Proof. The number of eigenvalues of H in the constrained function space Xp(R)

can be found from the constrained eigenvalue problem

Hψ = µψ − νΦp(x),(2.7)

where (µ, ψ) is the eigenvalue-eigenfunction pair of H in Xp(R) and ν is the Lagrange
multiplier defined from the constraint 〈Φp, ψ〉 = 0. The operator H − µ is invertible
for any µ not in the spectrum of H, where the spectral decomposition for ψ(x) takes
the form

ψ(x) = ν

[ ∑
µk < 0

〈uk,Φp〉
µ− µk

uk(x) +
∑
µk > 0

〈uk,Φp〉
µ− µk

uk(x)

]
.(2.8)

Here (µk, uk) is the eigenvalue-eigenfunction pair of H in L2(R) and the formal sum∑
µk > 0 includes also the integral over the positive continuous spectrum of H. The

set of eigenfunctions {uk(x)}k is assumed to be orthogonal and normalized. The set
of eigenvalues µ of H in Xp(R) consists of two subsets. The first subset is given by
eigenvalues µk, whose eigenfunctions uk(x) belong to Xp(R). The other subset is
defined by zeros of the function

F (µ) =
1

ν
〈Φp, ψ〉 =

∑
µk < 0

|〈Φp, uk〉|2
µ− µk

+
∑
µk > 0

|〈Φp, uk〉|2
µ− µk

.(2.9)

We study zeros of F (µ) by direct application of the theory of constrained variational
problems [P04]. The function F (µ) is monotonically decreasing for µ ≤ 0 and µ �= µk.
Assume for simplicity that µ = µk is a single eigenvalue. The function F (µ) has a
jump from negative infinity at µ = µk − 0 to positive infinity at µ = µk + 0, if the
eigenfunction uk(x) at µ = µk does not belong to constrained function space Xp(R).
Otherwise, i.e., if uk(x) lies in Xp(R), the function F (µ) is continuous at µ = µk. The
function F (µ) approaches −0 in the limit µ→ −∞ and it approaches a positive value
in the limit µ→ 0,

F (0) = −〈Φp,H−1Φp〉 =
1

p− 1
〈Φp,Φ〉 > 0,(2.10)

where we have used the Parseval identity (2.2). The number of negative eigenvalues µ
of operator H in Xp(R) equals the number of zeros of the function F (µ) for µ < 0 and



CONVERGENCE OF PETVIASHVILI’S METHOD 1115

the number of eigenfunctions uk(x) of operator H that belongs to the space Xp(R)
for µk < 0. By continuity of the decreasing function F (µ) between µ ∈ [µk, µk+1] and
by counting the jump discontinuity of F (µ) at µ = µk [P04], we conclude that the
number of negative eigenvalues µ of H in Xp(R) equals n(H) − 1.

Lemma 2.4. The spectrum of (c+L)−1H in Xp(R) has n(H)− 1 negative eigen-
values λ.

Proof. By Sylvester’s inertial theorem [M88, P04], the dimension of the negative
space of the quadratic form 〈U,HU〉 is invariant in any orthogonal basis of Xp(R)
that diagonalizes 〈U,HU〉 with respect to a positive weighted inner product. One
orthogonal basis for Xp(R) is given by the eigenfunctions ψ(x) of the constrained
problem (2.7). The other orthogonal basis with respect to (c + L) is defined by the
eigenvalue problem (2.4). By invariance of the negative index of H in Xp(R), we have
n(H) − 1 negative eigenvalues λ in Problem II.

Lemma 2.5. The positive spectrum of (c+L)−1H in Xp(R) consists of infinitely
many discrete eigenvalues λ in the interval 0 < λ < 1, accumulating to λ → 1−. If
Φp−1(x) ≥ 0 for x ∈ R, no eigenvalues λ exists for λ > 1. If there exists x0 ∈ R such
that Φp−1(x0) < 0, the spectrum of (c+ L)−1H also includes infinitely many discrete
eigenvalues in the interval 1 < λ ≤ λmax, accumulating to λ→ 1+, where

λmax < 1 +
p

c

∣∣∣min
x∈R

Φp−1(x)
∣∣∣ <∞.(2.11)

Proof. Positive eigenvalues λ can be estimated from (2.4) rewritten in the form

(c+ L)U − p

1 − λ
Φp−1(x)U = 0.(2.12)

Since (c+L) is positive, no continuous spectrum of the problem (2.12) exists. It was
proved in [CM99] for a similar spectral problem that the spectrum of the problem
(2.12) is discrete since trM2 <∞, whereM = (c+L)−1/2Φp−1(c+L)−1/2 is a bounded
operator. Since the spectrum of Φp−1(x) is infinite-dimensional, the spectrum of the
bounded operator M cannot be a finite rank [C01]. The potential term in (2.12)
becomes singular in the limit λ→ 1 and therefore the point λ = 1 is an accumulation
point of the discrete eigenvalues. If Φp−1(x) ≥ 0 for any x ∈ R, the positive part
of M and the spectrum of the problem (2.12) in the interval 0 < λ < 1 are infinite-
dimensional, with eigenvalues accumulating to λ → 1−. In this case, no eigenvalues
exist for λ > 1, since

λ = 1 − p
〈U,Φp−1U〉
〈U, (c+ L)U〉 < 1.(2.13)

If Φp−1(x) changes sign on x ∈ R, the negative part of M and the spectrum of the
problem (2.12) for λ > 1 are infinite-dimensional, with eigenvalues accumulating to
λ→ 1+ [C01]. Since 〈U,LU〉 ≥ 0 and

〈U,Φp−1U〉 > −
(

min
x∈R

|Φp−1(x)|
)

〈U,U〉,

the largest positive eigenvalue λ = λmax is bounded from above by (2.11). The
spectrum of (c+ L)−1H is shown schematically on Figure 1.

Corollary 2.6. The spectrum of (c+L)−1H is located below λ < 1 if and only
if p is odd or the bound state of the nonlinear problem (1.3) is nonnegative, Φ(x) ≥ 0
on x ∈ R.



1116 DMITRY E. PELINOVSKY AND YURY A. STEPANYANTS

2 1 0 1 2

n(H) 1 

λ
 max

 λ 

∞ 0 or ∞ 

Fig. 1. Schematical representation of the spectrum of the operator (c+ L)−1H.

Assumption 2.7. Either Φp−1(x) ≥ 0 on x ∈ R or λmax < 2.
Our main theorem prescribes convergence or divergence of the iteration method

(1.8)–(1.9).
Theorem 2.8. Let Φ̂(k) be a solution of the boundary-value problem (1.5) and

Assumptions 1.1 and 2.1 be satisfied. The iteration method (1.8)–(1.9) converges to
Φ̂(k) in a small open neighborhood of Φ̂(k) if (i) 1 < γ < (p+1)/(p−1), (ii) n(H) = 1,
and (iii) Assumption 2.7 is met. The fastest rate of convergence occurs for γ = γ∗ ≡
p/(p− 1). If any of the three conditions are not met, the iteration method (1.8)–(1.9)
diverges from Φ̂(k).

3. Contraction of the iterative method near the fixed point. Our proof
of Theorem 2.8 is based on the spectral analysis of the iteration operator (1.8)–(1.9),
linearized at Φ̂(k), and on the application of the contraction mapping principle for
nonlinear operators [HP80].

Proposition 3.1. The iteration operator (1.8)–(1.9), linearized at Φ̂(k), has a
spectral radius smaller than one if and only if (i) 1 < γ < (p+1)/(p−1), (ii) n(H) = 1,
and (iii) Assumption 2.7 is met.

Proof. Consider ŵ0(k) = û0(k) − Φ̂(k) be a small perturbation to Φ̂(k), such
that 〈Φ′, w0〉 = 0. The sequence ŵn(k) = ûn(k) − Φ̂(k) is generated by the iteration
operator (1.8), linearized at Φ̂(k),

ŵn+1(k) = γmnΦ̂(k) + p
Φ̂p−1 ∗ ŵn(k)
c+ v(k)

,(3.1)

where ∗ is the convolution operator and mn = Mn−1. The correction mn is generated
by the stabilizing factor (1.9), linearized at Φ̂(k),

mn = (1 − p)

∫∞
−∞ Φ̂p(k)ŵn(k) dk∫∞
−∞ Φ̂p(k)Φ̂(k) dk

.(3.2)

The correction term wn(x) can be decomposed explicitly as

wn = anΦ(x) + qn(x), qn ∈ Xp(R),(3.3)

where Xp(R) is defined by (2.6). It follows from (3.1) and (3.2) that mn = (1 − p)an
and mn solves the linear map

mn+1 = [p− γ(p− 1)]mn.(3.4)
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On the other hand, the correction term qn(x) solves the homogeneous part of the
problem (3.1), which is equivalently rewritten on x ∈ R as

qn+1(x) = qn(x) − (c+ L)−1Hqn(x).(3.5)

If 1 < γ < (p + 1)/(p − 1), then limn→∞mn = 0, such that limn→∞Mn = 1 for the
stabilizing factor Mn = 1 +mn. Therefore, the first term in the decomposition (3.3)
vanishes as n→ ∞. The second term qn(x) may, however, remain finite or even grow
with the number of iterations. We derive the conditions when qn(x) converges to zero
as n→ ∞.

If w0(x) is orthogonal to Φ′, then 〈Φ′, q0〉 = 0. It follows from (3.5) that 〈Φ′, qn〉 =
0, ∀n. We apply, therefore, the spectral decomposition ofXp(R), described in Lemmas
2.4 and 2.5. The sequence {qn(x)}∞n=0 is decomposed through eigenfunctions Uk(x)
of the operator (c+ L)−1H as follows:

qn(x) =

n(H)−1∑
k=1

α
(n)
k Uk(x) +

∑
0<λk<1

β
(n)
k Uk(x) +

∑
1<λk≤λmax

γ
(n)
k Uk(x),(3.6)

where the first sum represents the finite-dimensional negative space of Xp(R), the
second sum represents the infinite-dimensional positive space of Xp(R) for 0 < λ < 1,
and the third sum represents the infinite-dimensional positive space of Xp(R) for
1 < λ ≤ λmax, if the latter exists. The linear maps for coefficients of expansions are

α
(n+1)
k = (1 + |λk|)α(n)

k , λk < 0,(3.7)

β
(n+1)
k = (1 − λk)β

(n)
k , 0 < λk < 1,(3.8)

and

γ
(n+1)
k = (1 − λk)γ

(n)
k , 1 < λk ≤ λmax.(3.9)

Iterations for coefficients α
(n)
k diverge for any λk < 0. Iterations for coefficients β

(n)
k

converges for any 0 < λk < 1. Iterations for coefficients γ
(n)
k diverge for any λk ≥ 2

and converge for 1 < λk < 2. In the limit n → ∞, the correction qn(x) uniformly
converges to zero if the negative space of Xp(R) is empty, i.e., n(H) = 1, and the
positive space of Xp(R) is empty for λk ≥ 2. The latter condition is satisfied under
Assumption 2.7, i.e., when either the third sum in (3.6) is absent (p is odd or Φ(x) ≥ 0
on x ∈ R) or λmax < 2. We note that λmax is bounded from above by (2.11).

Remark 3.2. In the proof of Proposition 3.1, we have assumed that 〈Φ′, w0〉 = 0.
If w0(x) does not satisfy the constraint, iterations of the linearized operator (3.1)–
(3.2) converge to the eigenfunction Φ′(x) of the kernel of H, which simply translates
the bound state Φ(x) in x.

When the kernel of H has dimension greater than one, the corresponding eigen-
functions translate the bound state Φ(x) to some other solutions, which typically
implies bifurcations of the bound states. It is expected that the iteration method
(1.8)–(1.9) selects only one branch of solutions beyond the bifurcation, i.e., the other
branches of solutions have the negative index n(H) > 1. We eliminate the bifurcation
cases by Assumption 2.1, which ensures that the kernel of H is one dimensional.

Remark 3.3. The rate of convergence of the stabilizing factor Mn = 1 + mn

becomes superlinear if γ = γ∗ = p/(p − 1), see (3.4). However, the corrections qn(x)
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still converge with the linear rate at γ = γ∗; see (3.5). Thus, the fastest but linear
rate of convergence occurs at γ = γ∗. This conclusion confirms the Petviashvili’s
conjecture on the fastest rate of convergence [PP92].

Proposition 3.4. The iteration operator (1.8)–(1.9), linearized at the sequence

{φ̂n(k)}∞n=0, is continuous in a small open neighborhood of Φ̂(k).

Proof. Consider a difference δûn(k) = ûn(k) − φ̂n(k) between any two sequences

{ûn(k)}∞n=0 and {φ̂n(k)}∞n=0 generated by the iteration operator (1.8)–(1.9). The

sequence δûn(k) is defined by the iteration operator (1.8), linearized at φ̂n(k),

δûn+1(k) = γ
δMn

Mn
φ̂n+1(k) + pMγ

n

̂φp−1
n ∗ δûn(k)
c+ v(k)

,(3.10)

where Mn = Mn[φ̂n] and δMn = Mn[φ̂n + δûn] −Mn[φ̂n]. The correction δMn is

generated by the stabilizing factor (1.9), linearized at φ̂n(k),

δMn =
2
∫∞
−∞ [c+ v(k)] φ̂n(k)δûn(k) dk − (1 + p)Mn

∫∞
−∞ φ̂pn(k)δûn(k) dk∫∞

−∞ φ̂pn(k)φ̂n(k) dk
.(3.11)

The linearized iteration operator (3.10)–(3.11) is continuous with respect to φn ∈
X(R), where X(R) is defined by (1.6).

Proof of Theorem 2.8. The iteration method (1.8)–(1.9) represents a nonlinear
operator ûn+1 = A(ûn) in function space X(R). The operator A(ûn) has a continuous
Frechet derivative A′(ûn) in small open neighborhood of Φ̂ in X(R). Under the three
conditions of Proposition 3.1, the spectral radius of A′(Φ̂) is smaller than one, i.e.,
||A′(Φ̂)|| < 1. By continuity of the Frechet derivative, for any ε with 0 < ε <
1 − ||A′(Φ̂)||, there is a small open ball S(Φ̂, δ) ∈ X(R) centered at Φ̂(k) with the
radius δ = δ(ε), such that

q = sup
ûn∈S(Φ̂,δ)

||A′(ûn)|| < 1.(3.12)

It follows from [HP80, Lemma 4.4.7] that

||A(f̂) −A(ĝ)|| ≤ q||f̂ − ĝ||(3.13)

for any f̂ , ĝ ∈ S(Φ̂, δ). Then, the contraction mapping theorem [HP80, Theorem 4.3.4]
applies and the nonlinear operator A(ûn) has a unique asymptotically stable fixed
point for ûn ∈ S(Φ̂, δ). Moreover, the asymptotic rate of convergence is determined
by the Frechet derivative at Φ̂ as follows:

||ûn − Φ̂|| ≤
(
||A′(Φ̂)|| + ε

)n
||û0 − Φ̂||.(3.14)

See [HP80, Lemma 4.4.8] for further details.

4. Convergence of self-similar sequences. Here we derive conditions for con-
vergence of a special sequence {xnΦ̂(k)}∞n=0, which is self-similar to Φ̂(k) module to
amplitude scaling. We also consider convergence of a general sequence in the small
open neighborhood of {xnΦ̂(k)}∞n=0.

Proposition 4.1. Let Φ̂(k) be a solution of the boundary-value problem (1.5)
and Assumption 1.1 be satisfied. There exists a sequence {xnΦ̂(k)}∞n=0 in the iteration
map (1.8)–(1.9), which converges to Φ̂(k) for any x0 > 0 if 1 < γ < (p+ 1)/(p− 1).
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Proof. Define û0(k) = x0Φ̂(k) for any x0 > 0. Then, it follows from (1.5), (1.8),
and (1.9) that ûn(k) = xnΦ̂(k) for any n ≥ 0, where xn is defined by the power
iteration map

xn+1 = Mγ
nx

p
n = xp−γ(p−1)

n ,(4.1)

where Mn = x1−p
n . The iteration map converges for 1 < γ < (p+ 1)/(p− 1) with the

limit limn→∞ xn = 1. As a result, limn→∞ ûn(k) = Φ̂(k).
Remark 4.2. The rate of convergence of the power iteration map (4.1) is linear

for γ �= γ∗, where γ∗ = p/(p − 1). When γ = γ∗, the convergence occurs in a single
iteration: û1(k) = Φ̂(k) for any x0 > 0. The starting value û0(k) is self-similar to
the bound state Φ̂(k) module to amplitude scaling. The special sequence {ûn(k)}∞n=0

exists in the iteration map (1.8)–(1.9) due to the power nonlinearity. The special
sequence does not exist for general nonlinear functions.

Proposition 4.3. Let Φ̂(k) be a solution of the boundary-value problem (1.5)
and Assumptions 1.1 and 2.1 be satisfied. Let {xnΦ̂(k)}∞n=0 be a self-similar sequence,
where xn is generated by the power iteration map (4.1) with any x0 > 0. The iteration
operator (1.8)–(1.9), linearized at {xnΦ̂(k)}∞n=0, has a spectral radius smaller than one
if and only if (i) 1 < γ < (p + 1)/(p − 1), (ii) n(H) = 1, and (iii) Assumption 2.7 is
met.

Proof. We use the linear map (3.10)–(3.11) with φ̂n(k) = xnΦ̂(k), where xn solves
the power iteration map (4.1). As a result, we find that Mn = x1−p

n . The linear map
(3.10)–(3.11) is then equivalent to the linear map (3.1)–(3.2) with the relations

ŵn(k) =
δûn(k)

xn
, mn =

δMn

xpn
.

Thus, Proposition 4.3 is equivalent to Proposition 3.1.

5. Examples in one dimension. Here we discuss two examples of the scalar
wave equation (1.1), where the iteration method (1.8)–(1.9) can be used for finding
stationary solutions such as solitary waves.

Example 5.1 (generalized Korteweg–de Vries (KdV) equations). A family of
generalized KdV equations is defined for L = −∂2

x, such that v(k) = k2 ≥ 0 and
m = 2. The bound state solutions of the boundary-value problem (1.3) exist for p > 1
in the analytical form (see, e.g., [PW92])

Φ(x) =

[√
(p+ 1)c

2
sech

(
p− 1

2

√
cx

)] 2
p−1

.(5.1)

It follows from (5.1) that the bound state Φ(x) decays exponentially as

lim
|x|→∞

Φ(x)e
√
c|x| = a∞, a∞ = [2(p+ 1)c]

1
p−1 .(5.2)

The function Φ(x) belongs to X(R) of Assumption 1.1. Since Φ(x) ≥ 0 on x ∈ R,
it also satisfies Assumption 2.7. The linearized operator H becomes a Schrödinger
operator with a solvable potential,

H = c− ∂2
x −

p(p+ 1)c

2
sech2

(
p− 1

2

√
cx

)
.(5.3)
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The Schrödinger operator (5.3) satisfies Assumption 2.1. Since HΦ′(x) = 0 and Φ(x)
has no nodes on x ∈ R, the Sturm oscillation theorem predicts only one negative
eigenvalue of H, i.e., n(H) = 1. As a result, Theorem 2.8 applies and the iteration
method (1.8)–(1.9) converges to the bound state Φ̂(k) in the generalized KdV equation
for any value of p > 1 if 1 < γ < (p+ 1)/(p− 1).

Remark 5.2. In accordance with Theorem 2.2, the bound state Φ(x) is weakly
spectrally stable with respect to the time evolution problem for p < 5 and spectrally
unstable for p ≥ 5 (see also [BSS87, PW92]). On the other hand, the iteration method
(1.8)–(1.9) converges for any p > 1, irrelevantly to the stability of bound states in
the time evolution problem. For instance, the interval of convergence with p = 5 is
1 < γ < 3/2 and the interval shrinks to zero when p→ ∞.

Example 5.3 (generalized Benjamin–Ono (BO) equations). A family of general-
ized BO equations is defined for L = −∂xH, where H(u) is the Hilbert transform of
u(x),

H(u) =
1

π
℘

∫ ∞

−∞

u(z)dz

z − x
,(5.4)

and the symbol ℘ denotes the principal value of the integral. In this case, v(k) =
|k| ≥ 0 and m = 1. The bound state solutions of the nonlinear problem (1.3) are
unknown in the analytical form except for the case p = 2, when

Φ(x) =
2c

1 + c2x2
.(5.5)

Using the asymptotic representation for Φ(x) ∈ L1(R),

H(Φ) = − 1

πx

∫ ∞

−∞
Φ(z)dz + O

(
1

x2

)
,

and the balance of inverse powers of x in the problem (1.3), we derive the algebraic
decay of Φ(x) at infinity,

lim
|x|→∞

x2 Φ(x) = a−2, a−2 =
1

πc

∫ ∞

−∞
Φ(x)dx.(5.6)

The function Φ(x) has sufficient decay at infinity to belong to X(R) of Assumption
1.1, if it exists for p > 1. Since Φ(x) ≥ 0 on x ∈ R as follows from our numerical
approximations (see Figure 2), Assumption 2.7 is satisfied. The linearized operator
H becomes a nonlocal operator,

H = c− ∂xH − pΦp−1(x).(5.7)

It was proved in [CK80] for p = 2 that the nonlocal linearized operator (5.7) satisfies
Assumption 2.1 and has only one negative eigenvalue, i.e., n(H) = 1. As a result,
Theorem 2.8 states that the iteration method (1.8)–(1.9) converges to the bound state
Φ̂(k) for the case p = 2 if 1 < γ < 3.

We have computed the bound states Φ(x) for p = 2, 3, 4, 5 from the iteration
method (1.8)–(1.9) starting with the Gaussian approximation u0(x) = exp(−x2) for
c = 1 (see also [AS87]). The numerical approximations are plotted on Figure 2, where
dots for p = 2 show the exact values from (5.5). Figure 3 shows convergence of
the stabilizing factor Mn in the iteration method (1.8)–(1.9) with p = 2, for three
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Fig. 2. Numerical approximations of the bound states Φ(x) of the generalized BO equation for
p = 2, 3, 4, 5. Dots on curve 2 show exact values from the analytical solution (5.5).

different values of γ: γ = 2 (dots), when the rate of convergence is the fastest; γ = 1.1
(triangles), near the left boundary of the convergence interval; and γ = 2.9 (crosses),
near the right boundary of the convergence interval. We conclude that the iteration
method (1.8)–(1.9) converges to the bound state of the generalized BO equation for
p = 2, 3, 4, 5 if 1 < γ < (p + 1)/(p − 1). Moreover, numerical computations show
convergence of the method to a positive-definite bound state Φ(x) for any p > 1,
including noninteger values of p.
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Fig. 3. Stabilizing factor Mn versus n for the iteration method (1.8)–(1.9) with p = 2 for γ = 2
(dots), γ = 1.1 (triangles), and γ = 2.9 (crosses).
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Remark 5.4. The bound state Φ(x) is spectrally stable with respect to the time
evolution problem for p = 2 and spectrally unstable for p ≥ 3 [BSS87, CK80]. Under
assumption that n(H) = 1 and Φ(x) ≥ 0 on x ∈ R for any p > 1, the iteration method
(1.8)–(1.9) converges to the bound state for any p > 1, irrelevantly to the stability of
bound states in the time evolution problem. Therefore, the method becomes useful
for numerical approximations of the bound states in the generalized BO equation,
when exact analytical expressions are not available. In fact, the iteration method
(1.8)–(1.9) was successfully used for numerical approximations of soliton solutions
in the generalized BO and KdV equations in [AS87]. Another numerical method is
developed with the help of Newton iteration algorithms but the Newton iterations
have convergence problems as pointed out in [BK03]. We notice that Petviashvili’s
iteration method (1.8)–(1.9) is not sensitive to the choice of a starting function, which
is its great advantage compared to the Newton’s iteration method.

6. Examples in two dimensions. We finish the article with generalizations of
the iteration method (1.8)–(1.9) for the scalar wave equation in space of two dimen-
sions,

ut − (Lu)x + pup−1ux = 0,(6.1)

where u : R
2 × R+ �→ R, p > 1, and L is a linear self-adjoint nonnegative pseudo-

differential operator in x and y with constant coefficients. If the Fourier transform
(1.4) is replaced by the double Fourier transform in L2(R2), the iteration method
(1.8)–(1.9) can be applied to the scalar wave equation (6.1) in two dimensions. The
only modification is required for Assumption 2.1, since the kernel of H = c + L −
pΦp−1(x, y) has at least two eigenfunctions ∂xΦ(x, y) and ∂yΦ(x, y).

Assumption 6.1. The spectrum of H in L2(R2) consists of eigenvalues µ of the
discrete spectrum for µ < c and the continuous spectrum for µ ≥ c. The null-space of
H is two dimensional with the eigenfunctions ∂xΦ(x, y) and ∂yΦ(x, y). The negative
space of H has dimension n(H) ≥ 1.

With this modification, we formulate the results of sections 2 and 3 as the following
theorem.

Theorem 6.2. Let Φ̂(k) be a solution of the boundary-value problem (1.5) and
Assumptions 1.1 and 6.1 be satisfied. The iteration method (1.8)–(1.9) converges to
Φ̂(k) in a small open neighborhood of Φ̂(k) if (i) 1 < γ < (p+1)/(p−1), (ii) n(H) = 1,
and (iii) Assumption 2.7 is met. The fastest rate of convergence occurs for γ = γ∗ ≡
p/(p− 1). If any of the three conditions are not met, the iteration method (1.8)–(1.9)
diverges from Φ̂(k).

Here we discuss three examples of the scalar wave equation (6.1) in two dimen-
sions, where the iteration method (1.8)–(1.9) can be used for finding stationary solu-
tions such as solitary waves.

Example 6.3 (generalized Zakharov–Kuznetsov (ZK) equations). The generalized
KdV equations of Example 5.1 are extended to the two-dimensional ZK equations,
when L is an isotropic operator,

L = −(∂2
x + ∂2

y),(6.2)

such that v(k) = k2
x+k2

y ≥ 0. The bound state u = Φ(x− ct, y) satisfies the nonlinear
problem

cΦ − ∆Φ = Φp.(6.3)
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Existence and uniqueness of positive solutions of the nonlinear elliptic problem (6.3)
was proved for any p > 1 [GNN81, K89] such that Φ(x, y) = Φ(r) is radially symmet-

ric, where r =
√
x2 + y2, and satisfies the limiting decay

lim
r→∞ e

√
crr1/2Φ(r) = a∞ > 0.(6.4)

The positive solutions Φ(r) satisfy Assumptions 1.1 and 2.7. The linearized operator
H becomes the Schrödinger operator with the radially symmetric potential

H = c− ∂2
x − ∂2

y + pΦp−1(r).(6.5)

Assumption 6.1 is satisfied for the Schrödinger operator (6.5) and the negative index
of H for the positive ground state Φ(r) is one, i.e., n(H) = 1 [S9, p. 63]. Therefore,
iterations of the numerical method (1.8)–(1.9) converge for 1 < γ < (p + 1)/(p − 1),
according to Theorem 6.2 for any p > 1. This result justifies the use of the iteration
method (1.8)–(1.9) for numerical approximation of bound states of the generalized
ZK equations.

Example 6.4 (generalized Kadomtsev–Petviashvili (KP) equations). The general-
ized KdV equations of Example 5.1 are extended to the two-dimensional KP equations,
when L is an anisotropic operator,

L = −∂2
x + ∂−2

x ∂2
y ,(6.6)

such that v(k) = k2
x + k−2

x k2
y ≥ 0. The linear operator L in (6.6) corresponds to the

KPI equation with two-dimensional solitons, called lumps. The nonlocal ∂−1
x operator

is well posed subject to the constraint on u(x, y, t)∫ ∞

−∞
u(x, y, t) dx = 0.(6.7)

The bound state u = Φ(x− ct, y) satisfies the nonlinear problem

cΦ − Φxx + ∂−2
x Φyy = Φp.(6.8)

The exact analytical solution for Φ(x, y) exists for p = 2 [MZ77],

Φ(x, y) = 12c
3 + c2y2 − cx2

(3 + c2y2 + cx2)2
.(6.9)

The bound state Φ(x, y) is sign-indefinite due to the constraint (6.7). Existence of
sign-indefinite bound states in the nonlinear problem (6.8) was proved for p = 3, 4
by using constrained minimization [BS97]. It was also shown that the solution exists
only for p < 5 and p = p1/p2, where p1 is any even integer and p2 is any odd integer
[LW97]. Bound states Φ(x, y) satisfy Assumption 1.1.

It can be shown with the Riemann–Hilbert inverse scattering method [PS00] that
the spectrum of H for p = 2 satisfies Assumption 6.1 with n(H) = 1. Since the bound
states Φ(x, y) are nonpositive, they satisfy Assumption 2.7 only if λmax < 2. It follows
from (6.9) for p = 2 that
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Fig. 4. A numerical approximation of the bound state Φ(x, y) of the generalized KPI equation
with p = 3.

min
(x,y)∈R

2
Φ(x, y) = Φ

(
± 3√

c
, 0

)
= − c

2
.

Therefore, the upper bound (2.11) applies with λmax < 1 + 1 = 2, i.e., As-
sumption 2.7 is also satisfied. Theorem 6.2 states that the iteration method (1.8)–
(1.9) converges to Φ(x, y) for p = 2 if 1 < γ < 3. This analysis justifies the use
of the numerical iteration method (1.8)–(1.9), proposed originally by Petviashvili
[P76].

We have computed the bound states Φ(x, y) for p = 2, 3, 4 from the iteration
method (1.8)–(1.9) starting with the lump solution (6.9) with c = 1. The constraint
(6.7) is built into the algorithm as zero Fourier mode with kx = 0. The final solution
Φ(x, y) is shown on Figure 4 for p = 3 (see also [AS87]). Cross-sections Φ(x, 0) and
Φ(0, y) are shown on Figure 5(a,b) for p = 2, 3, 4, where dots for p = 2 show exact
values from (6.9). Figure 6 shows convergence of the stabilizing factor Mn in the
iteration method (1.8)–(1.9) with the fastest rate γ = p/(p − 1) for p = 2, 3, 4. We
conclude that the iteration method (1.8)–(1.9) converges to the bound state of the
generalized KP equation for p = 2, 3, 4 if 1 < γ < (p+ 1)/(p− 1).

Remark 6.5. Nonpositive bound states of the generalized KP equations may
consist of several individual lumps. Multilump solutions of the KPI equation with
p = 2 were discovered both numerically [AS85] and analytically [PS93]. However, a
discrepancy occurs between the numerical and analytical solutions for a double-lump;
the analytical solution is unique for the double-lump [PS93], while the numerical
solution represents a continuous family with a free parameter of the distance between
the two lumps [AS85]. This discrepancy is likely to be explained by low accuracy
of the numerical procedure in [AS85], i.e., low resolution of the numerical mesh and
small grid size. Since the negative index of H for multilump solutions typically exceeds
one, the iteration method (1.8)–(1.9) must diverge in the neighborhood of multilump
solutions, according to Theorem 6.2. Numerical approximations obtained in [AS85]
are likely supported by the truncation of the domain on R

2 and the discretization
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Fig. 5. Cross sections Φ(x, 0) and Φ(0, y) of numerical approximations of the bound states
Φ(x, y) of the generalized KPI equation with p = 2, 3, 4. Dots on curves 2 show exact values from
the analytical solution (6.9).

of the numerical grid (x, y). This example shows a danger of the direct use of the
iteration method (1.8)–(1.9) without analysis of the three conditions of convergence
in Theorems 2.8 and 6.2.

Example 6.6 (generalized Klein–Gordon (KG) equations). Our last example
shows that the iteration method (1.8)–(1.9) can be used for other nonlinear
problems, such as the generalized KG equation,

utt − c20(uxx + uyy) + u = up.(6.10)

Travelling wave solutions of (6.10) are of the form u(x, y, t) = Φ(x − ct, y), where
Φ(x, y) satisfies the boundary–value problem

Φ − (c20 − c2)Φxx − c20Φyy = Φp.(6.11)

If |c| < c0, the boundary–value problem (6.11) can be reduced to the form (6.3) of
Example 6.3 with a simple rescaling of variables x and y.
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Fig. 6. Stabilizing factor Mn versus n in the iteration method (1.8)–(1.9) with the fastest rate
γ = p/(p− 1) for p = 2, 3, 4.
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Γ-CONVERGENCE OF DISCRETE FUNCTIONALS WITH
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Abstract. The purpose of this paper is to show the theoretical soundness of a variational method
proposed in image processing for supervised classification. Based on works developed for phase
transitions in fluid mechanics, the classification is obtained by minimizing a sequence of functionals.
The method provides an image composed of homogeneous regions with regular boundaries, a region
being defined as a set of pixels belonging to the same class. In this paper, we show the Γ-convergence
of the sequence of functionals which differ from the ones proposed in fluid mechanics in the sense
that the perturbation term is not quadratic but has a finite asymptote at infinity, corresponding to
an edge-preserving regularization term in image processing.

Key words. Γ-convergence, finite elements, image processing, phase transitions
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1. Introduction. Image classification consists of assigning a label to each site
of an image to produce a partition of the image into homogeneous labelled areas. The
classification problem concerns many applications as, for instance, land use manage-
ment in remote sensing.

Based on results conducted in the Van der Waals–Cahn–Hilliard theory frame-
work for phase transitions in fluid mechanics [2, 4, 13, 18, 20], we have recently pro-
posed a sequence of functionals for image classification [19]. The soundness of such a
method relies upon Γ-convergence theory. The purpose of this paper is to prove the
Γ-convergence of the sequence of functionals we use, which differs from the one used
in fluid mechanics in the sense that the perturbation term is not quadratic, but it is
an edge-preserving regularization term as defined in image processing.

Let Ω be an open bounded subset of R2, I : Ω → R the observed data to classify,
I ∈ L∞(Ω). A class is characterized by parameters of the spatial distribution of
intensity, i.e., the mean and standard deviation for Gaussian hypothesis. This work
takes place in the general framework of supervised classification, which means that
the number n of classes and the parameters of the Gaussian distribution of the classes
(ai, σi) are known a priori. These values either are given by an expert or are pre-
computed by using a fuzzy C means algorithm with an entropy term (see [16], for
instance). Knowing (ai, σi), i = 1, . . . , n, the question is now to find a partition of Ω
based on the observed image, where a component is the set of pixels in class i. We
also add a regularity constraint on the partition. In order to assign a class i to each
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W

u0

ba

Fig. 1.1. Example of double-well potential W , in the case of two classes with a1 = a, a2 = b.

pixel x, we have proposed in [19] the sequence of functionals

Fε(u) =

∫
Ω

|u(x) − I(x)|2 dx︸ ︷︷ ︸
data term

+ε

∫
Ω

ϕ(|∇u(x)|)dx︸ ︷︷ ︸
restoration term

+
1

ε

∫
Ω

W (u(x))dx︸ ︷︷ ︸
classification

,(1.1)

and the associated problem consists of finding u0 such that

u0 = lim
ε→0+

[
arg min

u
Fε(u)

]
.(1.2)

Let us first consider the functional with a fixed ε. The first two terms of (1.1) are
standard for noisy image restoration by nonquadratic regularization [10, 3]. Function
ϕ is a smoothing function that will be defined later.

The third term of (1.1) is a level constraint such that W : R → R+ attracts
the values of u(x) towards the mean ai of class i, taking into account the standard
deviation σi. W has n minima at ai such that W (ai) = 0 ∀ i = 1, . . . , n. W is
quadratic around each minimum (from the Gaussian distribution hypothesis), i.e.,
around the ai, W (t) = ( t−aiσi

)2, and is piecewise parabolic between the wells (see
Figure 1.1).

Considering a sequence of energies Fε when ε → 0 is inspired from works con-
ducted in the Van der Waals–Cahn–Hilliard theory framework for phase transitions
in fluid mechanics [2, 4, 13, 18, 20] using Γ-convergence.

We recall the definition and some properties of Γ-convergence (see [12]). Let X
be a metric space, and let fε : X → [0,+∞] be a family of functions indexed by ε > 0.
We say that fε Γ-converge as ε→ 0+ to f : X → [0,+∞] if the two conditions

∀xε → x, lim inf
ε→0+

fε(xε) ≥ f(x)(1.3)

and

∃xε → x, lim sup
ε→0+

fε(xε) ≤ f(x)(1.4)

are fulfilled for every x ∈ X. The Γ-limit, if it exists, is unique and lower semicon-
tinuous. The Γ-convergence is stable under continuou perturbations, that is, (fε + v)
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original noisy (SNR=10 dB)

Fig. 1.2. Synthetic “check” image.

Γ-converge to (f + v) if fε Γ-converge to f and v is continuous. The most important
property of Γ-convergence is the following: if {xε}ε is asymptotically minimizing, i.e.,

lim
ε→0+

(
fε(xε) − inf

X
fε

)
= 0,(1.5)

and if {xεh}h converge to x for some sequence εh → 0, then x minimizes f .
The minimization problem (1.2) relies upon Γ-convergence arguments. If ϕ(t) =

t2, then it can be shown from [4] that the sequence of functionals (1.1) Γ-converges to

F0(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
i=1

∫
Ai

|ai − I|2dx +

n∑
i,l=1

|κi,l|H1(∂∗Ai ∩ ∂∗Al ∩ Ω)

if u ∈ BV (Ω; {a1, . . . , an}),

+∞ elsewhere inL2(Ω),

(1.6)

where BV (Ω) is the space of functions of bounded variation [1], H1 is the one-
dimensional Hausdorff measure, and ∂∗Ai is the essential boundary of the subset
Ai. For u ∈ BV (Ω; {a1, . . . , an}), Ai = {x ∈ Ω : u(x) = ai} for any i = 1, . . . , n.
Then the sets A1, . . . , An define a partition of Ω into sets with finite perimeter. This
partition is the classification result. The weight κi,l is defined by

κi,l =

∫ al

ai

√
W (t)dt.(1.7)

From Γ-convergence and compactness results, we know that the sequence of minimiz-
ers uε of Fε(u) converges (up to a subsequence) to a minimizer of F0. So u0 defines
a partition of Ω according to the predefined classes, with minimal interfaces with
respect to the weighted length (1.6), (1.7).

From the numerical point of view, when ε decreases, the functional turns from a
restoration process (the third term in (1.1) is negligible) into a classification process.

We do not use the quadratic function for ϕ but an edge-preserving regularizing

function ϕ(t) = t2

1+µt2 because, numerically, it gives better results by preserving high

gradients which represent edges [10]. This is illustrated on a synthetic image of size
128 × 128 pixels (“check” image), containing four classes.

The white Gaussian noise introduced is such that the signal-to-noise ratio (SNR)
given by SNR = 10 log10

nonnoisy signal variance
noise variance is 10 dB. Figure 1.2 presents the
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synthetic image (nonnoisy and noisy). From the noisy one, we compute the clas-
sification as in (1.2) for different ϕ-functions (see [19] for the detailed algorithm).
The results are presented in Figure 1.3. For a Tikhonov regularization (ϕ(t) = t2),
edges are oversmoothed. With a convex ϕ, there are still many misclassified pixels
on the boundaries. Best results are provided with the use of the nonconvex function

ϕ(t) = t2

1+µt2 , with µ > 0.

ϕ(t) = t2: convex (Tikhonov)

ϕ(t) = log(cosh(t)): convex (Green)

ϕ(t) = t2

1+µt2 : nonconvex (Geman & McClure)

Fig. 1.3. Classification of “check” image with different functions ϕ. Nonconvex functions
provide better results than convex functions which lead to oversmooth results: we get damaged edges.

Before stating the result shown in this paper, we observe that the family of func-

tionals Fε in (1.1) does not Γ-converge to the limit F0 given in (1.6) if ϕ(t) = t2

1+µt2

as it does when ϕ(t) = t2.
Let, for instance, n = 2 and u0 ∈ BV (Ω; {a1, a2}) with a1 < a2. Let Aε be

the tubular neighborhood of Su0 , the set of jumps of u0, defined by Aε = {x ∈ Ω :
dist(x, Su0

) < λε}, with λε > 0. Then let uε ∈W 1,2(Ω) be a function which makes a
sharp transition between the values a1 and a2 in the set Aε and takes the values a1

and a2 outside of Aε.
If we neglect the term

∫
Ω
|uε(x) − I(x)|2 dx, since it is a continuous perturbation,
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it is easy to check that the remaining part of the energy, denoted by Eε(uε), is bounded
by const. |Aε| /ε, where | · | denotes the Lebesgue measure. As λε can be chosen in
such a way that |Aε| → 0 as fast as we want with ε, then Eε(uε) converges to 0
as ε → 0. So uε is a counterexample to the lower inequality of the Γ-convergence.
This example shows that too-sharp transitions make the proof of the Γ-convergence
fail. In order to obtain the Γ-convergence with the nonconvex function ϕ, we have to
consider the subspace of W 1,2(Ω) of finite elements and to use a method introduced
by Chambolle and Dal Maso in [9]. The meshsize of the discretization will limit the
sharpness of the transitions.

The paper is organized as follows. In section 2 we define the sequence of func-
tionals and we state the Γ-convergence result. The proof of Γ-convergence is given
in sections 3 and 4. Section 5 is devoted to the compactness of the minimizers for
the sequence of functionals. In section 6 we show that the evaluation of the dis-
crete functionals via the vertex quadrature rule does not affect the Γ-convergence and
compactness results.

2. Mathematical preliminaries and statement of the result. In the fol-
lowing, |A| denotes the two-dimensional Lebesgue measure of a set A ⊂ R2, and
H1(∂A) denotes the one-dimensional Hausdorff measure of ∂A.

Let Ω ⊂ R2 be a bounded open set. We will use standard notation for the
Lebesgue and Sobolev spaces Lp(Ω) and W 1,p(Ω). We say that u ∈ L1(Ω) is a
function of bounded variation in Ω, and we write u ∈ BV (Ω), if the distributional
derivative Du of u is a vector-valued Radon measure with finite total variation in Ω.
We denote by |Du| the total variation of Du and by ∇u the density of the absolutely
continuous part of Du with respect to the Lebesgue measure. It can be proved [1] that
∇u coincides almost everywhere with the approximate differential of u. We denote
by u−(x), u+(x) the approximate lower and upper limit of u at the point x, and we
denote by Su the discontinuity set of u in an approximate sense, defined as

Su = {x ∈ Ω : u−(x) < u+(x)}.

We say that a Borel set A ⊂ R2 is a set with finite perimeter in Ω if χA ∈ BV (Ω),
where χA denotes the characteristic function of A. We denote by ∂∗A the essential
boundary of A, i.e., the set of points where A does not have density 0 or 1. The
perimeter of A in Ω is then given by |DχA|(Ω) = H1(∂∗A ∩ Ω).

In the following, Ω ⊂ R2 will denote an open polygonal domain. Let θ0 be an
angle such that 0 < θ0 ≤ π/3, and let ν(h) be a function such that ν(h) ≥ h for any
h > 0 and ν(h) = O(h) as h→ 0+. Let us denote by {Th}h a family of triangulations
of Ω made of triangles whose edges, for any h > 0, have length between h and ν(h),
and whose angles are all greater than or equal to θ0.

We denote by Vh(Ω) ⊂W 1,2(Ω) ∩ C0(Ω) the linear finite element space

Vh(Ω) = {u : Ω → R : u continuous, u|T ∈ P1(T ) ∀T ∈ Th},

where T denotes a triangle of Th, u|T denotes the restriction of u to T , and P1(T )
denotes the space of polynomials of degree 1 on T . We denote by πh : C0(Ω) → Vh(Ω)
the Lagrange interpolation operator.

Let {a1, . . . , an} ⊂ R with a1 < a2 < · · · < an. Let W : R → R be a function
with the following properties:

(i) W is C1(R) with Lipschitz continuous derivative;
(ii) W is C2 in a neighborhood of ai for any i ∈ {1, . . . , n};
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(iii) W (t) > 0 for any t /∈ {a1, . . . , an} and

W (ai) = 0, W ′(ai) = 0, W ′′(ai) > 0 ∀i ∈ {1, . . . , n};(2.1)

(iv) W (t) is monotone increasing for t ≥ an, and monotone decreasing for t ≤ a1.
For any i, l ∈ {1, . . . , n} we set

κi,l =

∫ al

ai

√
W (t)dt.

For any I ∈ L∞(Ω) such that ‖I‖L∞(Ω) ≤ K < +∞, we set

+∞ > M > max{|a1|, |an|,K}.(2.2)

For any h > 0 and any ε > 0 we define the functional Eε,h : L2(Ω) → [0,+∞] by

Eε,h(u) =

⎧⎪⎪⎨⎪⎪⎩
ε

∫
Ω

|∇u|2
1 + µε,h|∇u|2 dx+

1

ε

∫
Ω

W (u)dx if u ∈ D(Eε,h),

+∞ elsewhere in L2(Ω),

where µε,h > 0 and D(Eε,h) = {u ∈ Vh(Ω) : ‖u‖L∞(Ω) ≤M}.
We say that n Borel sets A1, . . . , An define a partition of Ω if

Ai ∩Al = ∅ ∀i, l ∈ {1, . . . , n}, i = l, |Ω \ ∪ni=1Ai| = 0.

Let u ∈ BV (Ω; {a1, . . . , an}) and let Ai = {x ∈ Ω : u(x) = ai} for any i = 1, . . . , n.
Then the sets A1, . . . , An define a partition of Ω into sets with finite perimeter.

Then we define the functional E0 : L2(Ω) → [0,+∞] by

E0(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

n∑
i,l=1

i<l

κi,lH1(∂∗Ai ∩ ∂∗Al ∩ Ω) if u ∈ BV (Ω; {a1, . . . , an}),

+∞ elsewhere in L2(Ω).

Finally we state the main result of the paper. We define

Fε,h(u) =

∫
Ω

(u− I)2dx+ Eε,h(u),

and we will prove the following theorems.
Theorem 2.1. Assume that h = o(ε| log ε|−1) and that µε,h = o(εh). Then the

family {Fε,h}ε Γ-converges to the functional∫
Ω

(u− I)2dx+ E0(u)

in the L2(Ω)-topology as ε→ 0+.
Since the term

∫
Ω
(u − I)2dx is a continuous perturbation with respect to the

strong-L2(Ω) topology, in order to prove the theorem it will be enough to prove that
the family of functionals {Eε,h}ε Γ-converges to the functional E0.

Theorem 2.2. Assume that h = o(ε| log ε|−1) and that µε,h = o(εh). Then any
family {uε,h}ε of absolute minimizers of Fε,h is relatively compact in L2(Ω), and each
of its limit points minimizes the functional∫

Ω

(u− I)2dx+ E0(u).
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3. Lower inequality. In this section we investigate the Γ-convergence lower
inequality (1.3) with fε = Eε,h and f = E0.

Theorem 3.1. Let µε,h = o(εh) and h = h(ε) with limε→0+ h(ε) = 0. Then, for
every function u0 ∈ L2(Ω) and for every sequence {uε,h}ε ⊂ L2(Ω) converging to u0

in L2(Ω) as ε→ 0+, we have

lim inf
ε→0+

Eε,h(uε,h) ≥ E0(u0).

We need the following lemma.
Lemma 3.2. Assume that µε,h = o(εh). Then, for every ε > 0 and for every

u ∈ Vh(Ω) (0 < h < 1), there exists v ∈ BV (Ω) such that

Eε,h(u) ≥ (1 − δh)ε

∫
Ω

|∇v|2dx+
1

ε

∫
Ω

W (v)dx+ 2κ1,nH1(Sv),(3.1)

h

c
Eε,h(u) ≥ |{x ∈ Ω : v(x) = u(x)}|,(3.2)

where v(x) = a1 for any x ∈ Ω such that v(x) = u(x), {δh}h is a sequence of positive
numbers converging to zero, and c is a constant independent of h.

The proof of the lemma is essentially the same of Proposition 3.3 in [9], with some
slight modifications which can be found in the appendix.

Proof of Theorem 3.1. Up to the extraction of a subsequence, we may assume
that {uε,h}ε ⊂ D(Eε,h), and

+∞ > lim inf
ε→0+

Eε,h(uε,h) = lim
ε→0+

Eε,h(uε,h);(3.3)

otherwise the result is trivial. To simplify the notation we set uε = uε,h(ε) and we
assume that uε converges a.e. to u0 as ε→ 0+.

Using (3.3) and Fatou’s lemma, we deduce that
∫
Ω
W (u0)dx = 0; thusW (u0(x)) =

0 a.e. in Ω. Then, using (2.1), there exists a partition {Ai}i=1,...,n of Ω into measur-
able subsets such that u0(x) =

∑n
i=1 aiχAi

(x).
For any ε > 0, Lemma 3.2 provides a function vε ∈ BV (Ω) which satisfies (3.1)

and (3.2). Since ‖vε‖L∞(Ω) ≤ M , we have |vε − u0| ≤ 2M a.e. in Ω. Then, using
(3.2) and (3.3), we have |{vε = uε}| → 0 as ε → 0+, from which we deduce that vε
converges to u0 in L2(Ω) as ε→ 0+.

Let v̂ε, with a1 ≤ v̂ε ≤ an, denote the truncated function

v̂ε = max{a1,min{vε, an}}.

We have that v̂ε converges to u0 in L2(Ω) as ε→ 0+. Now we define the two functions

g(y) =

∫ y

a1

√
W (t)dt(3.4)

and ψε(x) = g(v̂ε(x)). Since g is Lipschitz continuous, we have ψε → g(u0) in L2(Ω)
and

g(u0(x)) = κ1,l if u0(x) = al ∀l ∈ {1, . . . , n}.(3.5)
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For any ε we have ψε ∈ BV (Ω), Sψε ⊆ Svε = Svε , and the approximate differential is
given by

∇ψε(x) =
√
W (v̂ε(x))∇v̂ε(x).

The following estimate then holds for the total variation:

|Dψε|(Ω) =

∫
Ω

|∇ψε|dx+

∫
Sψε

|ψ+
ε − ψ−

ε |dH1 ≤
∫

Ω

|∇ψε|dx+ κ1,nH1(Svε).

Using (3.1) and the above estimate we have

Eε,h(uε) ≥ (1 − δh)ε

∫
Ω

|∇vε|2dx+
1

ε

∫
Ω

W (vε)dx+ 2κ1,nH1(Svε)

≥ (1 − δh)ε

∫
Ω

|∇v̂ε|2dx+
1

ε

∫
Ω

W (v̂ε)dx+ 2κ1,nH1(Svε)

≥ 2(1 − δh)
1/2

∫
Ω

√
W (v̂ε)|∇v̂ε|dx+ 2κ1,nH1(Svε)

≥ 2(1 − δh)
1/2|Dψε|(Ω),(3.6)

from which, using (3.3) and the compactness theorem in BV [14], it follows that
g(u0) ∈ BV (Ω). Then the setsAi have finite perimeter, so that u0 ∈ BV (Ω; {a1, . . . , an})
and E0(u0) < +∞.

Using (3.6) and the lower semicontinuity of the total variation, we find

lim inf
ε→0+

Eε,h(uε) ≥ 2 lim
ε→0+

(1 − δh)
1/2 lim inf

ε→0+
|Dψε|(Ω) ≥ 2|Dg(u0)|(Ω).

Then, using (3.5), we have

|Dg(u0)|(Ω) =

∫
Sg(u0)

|g(u0)
+ − g(u0)

−|dH1 =

n∑
i,l=1

i<l

κi,lH1(∂∗Ai ∩ ∂∗Al ∩ Ω),(3.7)

which concludes the proof.

4. Upper inequality. In this section we investigate the Γ-convergence upper
inequality (1.4) with fε = Eε,h and f = E0.

Theorem 4.1. Assume that h = o(ε| log ε|−1). Then, for every function u0 ∈
L2(Ω) there exists a sequence {uε,h}ε ⊂ L2(Ω) converging to u0 in L2(Ω) as ε → 0+

such that

lim sup
ε→0+

Eε,h(uε,h) ≤ E0(u0).

First we need the following lemma.
Lemma 4.2. For any i, l ∈ {1, . . . , n} with i < l, there exists a sequence of

functions {γ(i,l)
ε }ε ⊂ C1(R) with the following properties:

(i) γ
(i,l)
ε (t) = al for t ≥ ρε, γ

(i,l)
ε (t) = ai for t ≤ −ρε, with ρε > 0 independent

of the pair (i, l) and ρε = O(ε| log ε|);
(ii)

‖dγ(i,l)
ε /dt‖L∞(−ρε,ρε) = O

(
1

ε

)
, ‖d2γ(i,l)

ε /dt2‖L∞(−ρε,ρε) = O

(
1

ε2

)
;
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(iii)

lim
ε→0+

∫ +∞

−∞

⎡⎣ε(dγ(i,l)
ε

dt

)2

+
1

ε
W (γ(i,l)

ε )

⎤⎦ dt = 2κi,l.

In the proof of this lemma a standard construction of Γ-convergence theory, used
for a double-well potential (see, for instance, [20]), is extended to the case when the
potential W has multiple wells on the real axis. The resulting construction of the

functions γ
(i,l)
ε is sketched in the appendix.

In order to prove Theorem 4.1 we need the following density result.
Lemma 4.3. Let u0 ∈ BV (Ω; {a1, . . . , an}); then there exists a sequence {uε}ε ⊂

BV (Ω; {a1, . . . , an}) such that
(i) the set Aεi = {x ∈ Ω : uε(x) = ai} is polygonal and H1(∂Aεi ∩ ∂Ω) = 0 for

any i = 1, . . . n and for any ε > 0;
(ii) uε → u0 in L2(Ω) as ε→ 0+;
(iii)

lim
ε→0+

E0(uε) = E0(u0).

Proof. This approximation lemma is due to Baldo [4, Lemma 3.1]. Parts (i) and
(ii) are stated exactly as above in Baldo [4]. Part (iii) needs some developments. We
first set out Baldo’s result and then we explain how we can use it in our context.

Let W be given as in (2.1) and let us define on R the metric

d(ξ1, ξ2) = inf

{∫ 1

0

√
W (γ(t))|γ′(t)|dt ; γ(0) = ξ1, γ(1) = ξ2, γ ∈ C1 ([0, 1];R)

}
.

Then let us set gi(ξ) = d(ai, ξ), and let us define the Borel measures

µi(B) =

∫
B

|Dgi(u0)|, µεi (B) =

∫
B

|Dgi(uε)|,

where B is a Borel set. In [4], Baldo proved the following result:

lim
ε→0+

(
n∨
i=1

µεi

)
(Ω) =

(
n∨
i=1

µi

)
(Ω) =

1

2

n∑
i,j=1

d(ai, aj)H1(∂∗Ai ∩ ∂∗Aj ∩ Ω),(4.1)

where the symbol
∨

denotes the supremum of a family of measures. In what follows
we show that (4.1) is nothing else than part (iii) of Lemma 4.3.

First, one can prove that for any i, j = 1, . . . , n, i < j, we have

d(ai, aj) = κi,j =

∫ aj

ai

√
W (y)dy.

Hence, if {µα}α∈A is a family of regular positive Borel measures, the supremum of
{µα}α∈A is defined as follows: let E be any subset of Ω; then(∨

α∈A
µα

)
(E) = sup

{∑
α∈A′

µα(Eα); Eα disjoint open sets in Ω, E =
⋃
α∈A′

Eα

}
,
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where A′ is any finite or countable subfamily of A. For any open subset Ω′ ⊂ Ω we
have (

n∨
i=1

µεi

)
(Ω′) = sup

{∑
i

µεi (Ωi); Ωi open disjoint, Ω′ =
⋃

Ωi

}
.

But with the same computations used in (3.7) we get∑
i

µεi (Ωi) =
∑
i

∑
j<k

κjkH1(∂Aεk ∩ ∂Aεj ∩ Ωi) =
∑
j<k

κjk
∑
i

H1(∂Aεk ∩ ∂Aεj ∩ Ωi)

≤
∑
j<k

κjkH1(∂Aεk ∩ ∂Aεj ∩ Ω′).

Since the sets Aεi are polygonal, there exists a partition of Ω′ into open subsets Ωi
such that H1(∂Aεk ∩ ∂Aεj ∩ ∂Ωi) = 0 for any i, j, k ∈ {1, . . . , n}, so that the above
inequality becomes an equality. Thus for all Ω′ ⊂ Ω and for any ε > 0, we obtain(

n∨
i=1

µεi

)
(Ω′) =

∑
j<k

κjkH1(∂Aεk ∩ ∂Aεj ∩ Ω′);

i.e., the supremum with respect to i “disappears.” In particular for Ω′ = Ω Baldo’s
result (4.1) reads as

lim
ε→0+

∑
j<k

κjkH1(∂Aεk ∩ ∂Aεj) =
∑
j<k

κjkH1(∂∗Ak ∩ ∂∗Aj ∩ Ω),

which exactly means that

lim
ε→0+

E0(uε) = E0(u0),

i.e., part (iii) of Lemma 4.3.
We can now prove the upper inequality.
Proof of Theorem 4.1. In the following we use a method developed by Bellettini,

Paolini, and Verdi in [6]. Since most of the estimates we need can be proved in the
same way as in [6, proof of Theorem 2.1], we will omit the details.

We assume u0 ∈ BV (Ω; {a1, . . . , an}); otherwise the inequality is trivial. Using
Lemma 4.3 and a diagonal argument, we can suppose that the set Ai = {x ∈ Ω :
u0(x) = ai} is a polygonal domain with H1(∂Ai ∩ ∂Ω) = 0 for any i = 1, . . . , n. We
have

Su0
=

n⋃
i,l=1

i<l

(∂Ai ∩ ∂Al ∩ Ω).

We denote by Pi the set of the vertices of the polygon Ai, and we set P = ∪ni=1Pi;
hence P is a finite set of points. We denote by ω the minimum angle between the
edges of Su0 .

Following [6], we introduce the following notations. We set

(Su0
)ρε = {x ∈ Ω : dist(x, Su0

) ≤ ρε};
ΠSu0

(x) = {y ∈ Su0 : |y − x| = dist(x, Su0)};
Qε =

{
x ∈ (Su0)ρε : dist(ΠSu0

(x),P) ≤ cot
(ω

2

)
ρε

}
;

Qε,h =
⋃

{T ∈ Th : T ∩Qε = ∅}.
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We denote by M the set of all the pairs of integers (i, l) such that i, l ∈ {1, . . . , n},
i < l, and H1(∂Ai ∩ ∂Al) > 0. Then for any (i, l) ∈ M we set

di,l(x) =

{
dist(x, ∂Ai ∩ ∂Al) if x ∈ Al,
−dist(x, ∂Ai ∩ ∂Al) if x ∈ Ai;

L(i,l)
ε = {x ∈ Ω : |di,l(x)| ≤ ρε};

L
(i,l)
ε,h =

⋃
{T ∈ Th : T ∩ L(i,l)

ε = ∅}.

Using the above definitions, we have for any (i, l) ∈ M

|Qε| = O
(
ε2| log ε|2) , |L(i,l)

ε | = O (ε| log ε|) .(4.2)

Then we define the following function uε on Ω \Qε:

uε(x) =

⎧⎨⎩
u0(x) if x ∈ Ω \ (Su0

)ρε ,

γ
(i,l)
ε (di,l(x)) if x ∈ L

(i,l)
ε \Qε ∀ (i, l) ∈ M.

(4.3)

Using the properties (i) and (ii) of Lemma 4.2, we have that uε is Lipschitz continuous
in Ω \Qε with Lip(uε) = O(ε−1). Then uε can be extended [6] on the whole Ω as a
Lipschitz continuous function with Lip(uε) = O(ε−1). Moreover, we have uε → u0 in
L2(Ω) as ε→ 0+.

Now we define uε,h = πh(uε). Using (2.2), we have uε,h ∈ D(Eε,h) for any ε small
enough. Then, using the properties of the Lagrange interpolation operator [11] and
the condition h = o(ε| log ε|−1), we have uε,h → u0 in L2(Ω) (see [6, proof of Theorem
2.1]). Now we observe that

Eε,h(uε,h) = ε

∫
Ω

|∇uε,h|2
1 + µε,h|∇uε,h|2 dx+

1

ε

∫
Ω

W (uε,h)dx

≤ ε

∫
Ω

|∇uε,h|2dx+
1

ε

∫
Ω

W (uε,h)dx,

and, following the method of [6], we split the functional on the right-hand side as
follows:

Eε,h(uε,h) ≤ ε

∫
Ω

|∇uε|2dx+
1

ε

∫
Ω

W (uε)dx+ ε

∫
Ω

(|∇uε,h|2 − |∇uε|2
)
dx

+
1

ε

∫
Ω

(W (uε,h) −W (uε)) dx = Iε,h + IIε,h + IIIε,h.

First we prove that lim supε→0+ Iε,h ≤ E0(u0). Using (4.3), we have that the contribu-
tion of the integrals on the set Ω \ (Su0)ρε is zero. Moreover, since Lip(uε) = O(ε−1),
using (4.2), we have

ε

∫
Qε

|∇uε|2dx+
1

ε

∫
Qε

W (uε)dx = O
(
ε| log ε|2) .(4.4)

For any (i, l) ∈ M we set

J (i,l)
ε = ε

∫
L

(i,l)
ε \Qε

|∇uε|2dx+
1

ε

∫
L

(i,l)
ε \Qε

W (uε)dx.
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A standard computation in Γ-convergence theory [6, 17, 20] yields

lim sup
ε→0+

J (i,l)
ε ≤ H1(∂Ai ∩ ∂Al ∩ Ω) lim

ε→0+

∫ +∞

−∞

⎡⎣ε(dγ(i,l)
ε

dt

)2

+
1

ε
W (γ(i,l)

ε )

⎤⎦ dt,
from which, using (4.4) and the property (iii) of Lemma 4.2, we obtain

lim sup
ε→0+

Iε,h = lim sup
ε→0+

∑
(i,l)∈M

J (i,l)
ε ≤ 2

n∑
i,l=1

i<l

κi,lH1(∂Ai ∩ ∂Al ∩ Ω) = E0(u0).

Now we prove that the terms IIε,h and IIIε,h vanish as ε → 0+. In [6, proof of
Theorem 2.1], the following estimate has been proved:

IIε,h ≤ C1

ε
|Qε,h| + C2h

∑
(i,l)∈M

|L(i,l)
ε,h \Qε,h| ‖∇2uε‖L∞(L

(i,l)
ε \Qε)

.(4.5)

Since di,l is a distance function from polygonal boundaries, we have ∇2di,l = 0 on

L
(i,l)
ε \Qε, so that, using (4.3) and the property (ii) of Lemma 4.2, it follows

‖∇2uε‖L∞(L
(i,l)
ε \Qε)

≤ ‖d2γ(i,l)
ε /dt2‖L∞(−ρε,ρε) = O

(
1

ε2

)
.

Then, using (4.2), (4.5), and the condition h = o(ε| log ε|−1), we obtain that the term
IIε,h vanishes.

Using again the results obtained in the proof of Theorem 2.1 of [6], the following
estimate holds:

IIIε,h ≤ C
h

ε
‖∇uε‖L∞(Ω)

∑
(i,l)∈M

|L(i,l)
ε,h |.(4.6)

Since ‖∇uε‖L∞(Ω) = O(1/ε), using (4.2), (4.6), and the condition h = o(ε| log ε|−1),
we obtain that also the term IIIε,h vanishes, concluding the proof.

Theorem 2.1 then follows from Theorem 3.1, Theorem 4.1, and the fact that the
term

∫
Ω
|u(x) − I(x)|2 dx is a continuous perturbation.

5. Convergence of minimizers. In this section we prove Theorem 2.2 stated
in section 2.

Proof of Theorem 2.2. The existence of a minimizer uε of Fε,h(ε) is obtained easily
since in fact we search for a minimizer in a compact subset of the space Vh which is
of finite dimension. Moreover, there exists a constant C > 0 such that

Fε,h(ε)(uε) ≤ C.(5.1)

For any ε > 0, Lemma 3.2 provides a function vε ∈ BV (Ω) which satisfies (3.1)
and (3.2). Let ψε(x) = g(vε(x)), where g is the function defined by (3.4). We have
ψε ∈ BV (Ω) and Sψε

⊆ Svε .

Set cM =
∫M
−M
√
W (t)dt. Since ‖vε‖L∞(Ω) ≤M , the following estimates hold for

any ε > 0:

‖ψε‖L∞(Ω) < cM , |Dψε|(Ω) ≤
∫

Ω

|∇ψε|dx+ cMH1(Svε).(5.2)
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Arguing as in the proof of Theorem 3.1, see (3.6), and using (5.1) and (3.1), we find

C ≥ Eε,h(uε) ≥ (1 − δh)ε

∫
Ω

|∇vε|2dx+
1

ε

∫
Ω

W (vε)dx+ 2κ1,nH1(Svε)

≥ 2(1 − δh)
1/2

[∫
Ω

|∇ψε|dx+ κ1,nH1(Svε)

]
≥ 2

κ1,n

cM
(1 − δh)

1/2

[∫
Ω

|∇ψε|dx+ cMH1(Svε)

]
,

where we have used cM ≥ κ1,n; see (2.2). Using (5.2), it follows that ψε is uniformly
bounded in BV (Ω) with respect to ε, for ε small enough. Then, using the compactness
theorem in BV [14], there exists a subsequence {ψεj}j converging in L2(Ω) to a
function ψ0.

Set u0 = g−1(ψ0). Since the function g is monotone increasing, using the prop-
erties of the potential W , it follows that the inverse function g−1 is bounded and
uniformly continuous on compact subsets of R. Then

vεj = g−1 ◦ ψεj → u0 in L2(Ω) as εj → 0+;

see also [18, proof of Proposition 3]. Reasoning as in the proof of Theorem 3.1 and
using Lemma 3.2, we find that uεj → u0 in L2(Ω) as εj → 0+.

Hence, the statement of Theorem 2.2 follows from Theorem 2.1 and the property
(1.5) of Γ-convergence.

The condition h = o(ε| log ε|−1) deserves a discussion about the numerical im-
plementation of the Γ-convergent approximation. According to such a condition in
practical computations, h should be much smaller than ε, so that a very fine mesh
has to be used. Nevertheless, this criterion is required only close to the discontinuity
curves, so that fine meshing is necessary only across the boundaries of the classifica-
tion.

For small ε, a minimizer uε of Fε,h(ε) is essentially constant, with values ai in large
regions corresponding to the sets Ai, whereas it exhibits sharp transitions in narrow
strips across the jump set Su0 . Hence an accurate reconstruction of the boundaries can
be achieved by resorting to adaptive mesh generation, i.e., refining the mesh locally
within the strips surrounding the transitions of the function uε. Such an approach
has been numerically implemented for functionals with convex perturbation in [7].
In the application to image processing, the input image I has to be opportunely
regularized (see next section), the parameter ε should be set equal to the width of the
pixel, and the mesh locally refined at the subpixel level by taking h� ε. A different
approach based on adaptive mesh optimization can be found in [8] for the numerical
approximation of the Mumford–Shah functional.

The problem of numerical implementation that arises in the Γ-convergent approx-
imation is related to a crucial problem of image processing: the computation of the
length of curves in digitized images. This problem has been addressed in [15], where it
has been shown that the computations must become nonlocal as the digitization gets
finer and finer. The mesh refined across the discontinuity curves yields asymptotically
a nonlocal computation in order to recover the length of such curves in the continuum
limit.

6. Numerical integration. In this section we show that the numerical approx-
imation of the lower order terms in the energy via the vertex quadrature rule does
not change the results previously obtained (see [5, 6]). More precisely, for any ε > 0
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let Iε ∈ C∞
0 (Ω) approximate the function I ∈ L∞(Ω) so that [5] Iε → I in L2(Ω),

‖Iε‖L∞(Ω) ≤ ‖I‖L∞(Ω), and ‖∇Iε‖L∞(Ω) ≤ C/ε.

For any h > 0 and any ε > 0 we define the functional Êε,h by

Êε,h(u) = ε

∫
Ω

|∇u|2
1 + µε,h|∇u|2 dx+

1

ε

∫
Ω

πh(W (u))dx

and the functional F̂ε,h : L2(Ω) → [0,+∞] by

F̂ε,h(u) =

⎧⎪⎪⎨⎪⎪⎩
Êε,h(u) +

∫
Ω

πh((u− Iε)
2)dx if u ∈ D(F̂ε,h),

+∞ elsewhere in L2(Ω),

where D(F̂ε,h) = {u ∈ Vh(Ω) : ‖u‖L∞(Ω) ≤M}. The integrals in F̂ε,h can be evaluated
via the vertex quadrature rule, which is exact for piecewise linear functions.

Let u ∈ Vh(Ω) and let Nh denote the set of all nodes of the triangulation Th.
Define the function ũ ∈ Vh(Ω) in the following way: for any q ∈ Nh set ũ(q) = u(q)
if |u(q)| ≤ M , ũ(q) = M if u(q) > M , and ũ(q) = −M if u(q) < −M . Since the

function ϕ(t) = t2

1+µt2 is monotone increasing for t ≥ 0, by using the property (iv) of
the potential W , we have

Êε,h(ũ) +

∫
Ω

πh((ũ− Iε)
2)dx ≤ Êε,h(u) +

∫
Ω

πh((u− Iε)
2)dx.

It follows that any absolute minimizer uε,h of the above energy belongs to the domain

D(F̂ε,h).
We prove the following proposition.
Proposition 6.1. Assume that h = o(ε| log ε|−1) and that µε,h = o(εh). Then

the family {F̂ε,h}ε Γ-converges to the functional

F0(u) =

∫
Ω

(u− I)2dx+ E0(u)

in the L2(Ω)-topology as ε→ 0+.

Moreover, any family {uε,h}ε of absolute minimizers of F̂ε,h is relatively compact
in L2(Ω), and each of its limit points minimizes F0.

The proof of the proposition, which is based on Lemma 3.2 and on the estimates
obtained in [5, 6], is given in the appendix.

For instance, let be Ω = [0, 1]2, and let Th consist of a uniform mesh of triangles
formed by dividing Ω into uniform squares of size h×h and dividing each square into
two triangles by cutting along the (1,–1) direction. The resulting discrete scheme is
then equivalent to the finite difference method used in [19] for the classification of real
images.

Appendix. First we prove Lemma 3.2. Since the proof is essentially the same as
that of Proposition 3.3 in [9], we omit the details and underline the slight modifications
which are useful in proving Theorem 3.1.

Proof of Lemma 3.2. For any δh ∈ (0, 1) we have

t2

1 + µε,ht2
≥ min

{
(1 − δh)t

2,
δh
µε,h

}
∀t ≥ 0.(A.1)
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Let ∇uT denote the constant value of the gradient of u on each triangle T ∈ Th, and
let T1

h = {T ∈ Th : (1− δh)|∇uT |2 > δh
µε,h

}. We define the function v in the following
way:

v(x) =

{
a1 on every T ∈ T1

h,
u(x) on every T ∈ Th \ T1

h.

Clearly we have v ∈ BV (Ω). Using inequality (A.1), the definition of v, and the same
method of proof of Proposition 3.3 of [9], we find

Eε,h(u) ≥ (1 − δh)ε

∫
Ω

|∇v|2dx+
1

ε

∫
Ω

W (v)dx+
δhε

µε,h

∑
T∈T1

h

|T |.(A.2)

By the assumptions on the triangulation, the following inequality has been proved in
[9]: ∑

T∈T1
h

|T | ≥ 1

6
· h sin θ0 · H1(Sv).(A.3)

We now set

δh = c
µε,h
εh

, c =
12κ1,n

sin θ0
.

The estimate (3.1) then follows by using (A.2) and (A.3). The inequality (A.2) implies

Eε,h(u) ≥ c

h

∑
T∈T1

h

|T |,

from which the estimate (3.2) follows.
Now we prove Lemma 4.2. The extension of the standard construction method for

a double-well potential [20] to the case of the potential W does not create particular
difficulties, because the wells lie on the real axis. Hence we give the main steps of the
construction omitting the details.

Proof of Lemma 4.2. Fix m ∈ {i, . . . , l− 1} and consider the solution η(m,m+1) of
the ordinary differential equation:

dη(m,m+1)

dt
=
√
W (η(m,m+1)), η(m,m+1)(0) =

1

2
(am + am+1).(A.4)

Using the properties of the function W and arguing as in section 1-B of [20], the
solution can be defined on all of R, and it is a monotone increasing function such that
am < η(m,m+1)(t) < am+1 for any t, and having the following asymptotic behavior:

lim
t→+∞

am+1 − η(m,m+1)(t)

exp(−√
αm+1t)

= Bm,m+1, lim
t→−∞

η(m,m+1)(t) − am
exp(

√
αmt)

= Cm,m+1,

(A.5)

where 2αm = W ′′(am), 2αm+1 = W ′′(am+1), and Bm,m+1, Cm,m+1 are positive

constants. Now we set tm,ε = ε| log ε|/√αm and we define η
(m,m+1)
ε : R → R in the
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following way:

η(m,m+1)
ε (t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

η(m,m+1)

(
t

ε

)
if − tm,ε ≤ t ≤ tm+1,ε,

qm,ε(t) if − 2tm,ε ≤ t ≤ −tm,ε,
am if t ≤ −2tm,ε,
pm+1,ε(t) if tm+1,ε ≤ t ≤ 2tm+1,ε,
am+1 ift ≥ 2tm+1,ε,

where qm,ε, pm+1,ε are cubic polynomials chosen in such a way that η
(m,m+1)
ε ∈ C1(R)

for any ε > 0. One can verify that

‖dη(m,m+1)
ε /dt‖L∞(−2tm,ε,2tm+1,ε) = O

(
1

ε

)
,(A.6)

‖d2η(m,m+1)
ε /dt2‖L∞(−2tm,ε,2tm+1,ε) = O

(
1

ε2

)
.(A.7)

Now we set

I(m,m+1)
ε =

∫ +∞

−∞

⎡⎣ε(dη(m,m+1)
ε

dt

)2

+
1

ε
W (η(m,m+1)

ε )

⎤⎦ dt.
By using (A.4) and (A.5), a standard computation of Γ-convergence applied to phase
transition problems [20] yields

lim
ε→0+

I(m,m+1)
ε = 2κm,m+1.(A.8)

The function γ
(i,l)
ε : R → R is then constructed by means of translations of the

functions η
(m,m+1)
ε in such a way that the smooth transitions between the values am,

am+1 do not overlap. We set

ρε = ε| log ε|
n−1∑
m=1

(
1√
αm

+
1√
αm+1

)
,

and we define a partition of the interval [−ρε, ρε] into closed subintervals with disjoint
interiors:

[−ρε, ρε] =

l−1⋃
m=i

[ξm,ε, ξm+1,ε], ξm+1,ε − ξm,ε = 2(tm,ε + tm+1,ε) fori ≤ m < l − 1,

with ξi,ε = −ρε and ξl,ε = ρε. In each subinterval [ξm,ε, ξm+1,ε] we set γ
(i,l)
ε equal to

η
(m,m+1)
ε translated in such a way that γ

(i,l)
ε (ξm,ε) = am and γ

(i,l)
ε (ξm+1,ε) = am+1.

It is easy to check that such a function γ
(i,l)
ε satisfies the property (i) of the statement

of the lemma. The property (ii) then follows from (A.6) and (A.7).

By the construction of γ
(i,l)
ε , using (A.8), we obtain

lim
ε→0+

∫ +∞

−∞

⎡⎣ε(dγ(i,l)
ε

dt

)2

+
1

ε
W (γ(i,l)

ε )

⎤⎦ dt = lim
ε→0+

l−1∑
m=i

I(m,m+1)
ε

=

l−1∑
m=i

lim
ε→0+

I(m,m+1)
ε =

l−1∑
m=i

2κm,m+1 = 2κi,l,
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and we have proved the property (iii).
Proof of Proposition 6.1. We prove first the lower inequality: for every function

u0 ∈ L2(Ω) and for every sequence {uε,h}ε ⊂ L2(Ω) converging to u0 in L2(Ω) we
have

lim inf
ε→0+

F̂ε,h(uε,h) ≥
∫

Ω

(u0 − I)2dx+ E0(u0).(A.9)

We can suppose, possibly extracting a subsequence, that {uε,h}ε ⊂ D(F̂ε,h) and

lim infε→0+ F̂ε,h(uε,h) = limε→0+ F̂ε,h(uε,h) = L < +∞; otherwise (A.9) is obvious.

Following the method of [5, 6], we split F̂ε,h(uε,h) as follows:

F̂ε,h(uε,h) = Fε,h(uε,h) +
1

ε

∫
Ω

[πh(W (uε,h)) −W (uε,h)]dx

+

∫
Ω

[πh((uε,h − Iε)
2) − (uε,h − I)2]dx = Fε,h(uε,h) + Iε,h + IIε,h.

(A.10)

In view of Theorem 2.1, in order to show (A.9) it will be enough to prove that
limε→0+ Iε,h = limε→0+ IIε,h = 0. Arguing as in the proof of (A.2), we have for a
fixed δ ∈ (0, 1) and ε small enough

L+ 1 ≥ (1 − δ)ε

∫
Aε,h

|∇uε,h|2dx+
δε

µε,h
|Ω \ Aε,h|,(A.11)

where Aε,h =
⋃
T∈Th\T1

h
T . Using the estimates obtained in the proof of Theorem

2.1 of [6] and the properties of the potential W , we have

|Iε,h| ≤ C1Lip(W ′)
h2

ε

∫
Aε,h

|∇uε,h|2dx+
C2

ε
|Ω \ Aε,h|.(A.12)

Hence, using (A.11), (A.12), and the conditions h = o(ε| log ε|−1) and µε,h = o(εh),
we find that the term Iε,h vanishes. Analogously we have

|IIε,h| ≤
∫
Aε,h

|πh((uε,h − Iε)
2) − (uε,h − I)2|dx+ C2|Ω \ Aε,h|.(A.13)

Arguing as in the proof of Theorem 4.1 of [5], it follows that the first term in the
right-hand side of (A.13) converges to zero. Hence, using (A.11), we find that also
the term IIε,h vanishes. This concludes the proof of (A.9).

We now prove the upper inequality. Let u0 ∈ BV (Ω; {a1, . . . , an}), and let {uε,h}ε
be the sequence converging to u0 constructed in the proof of Theorem 4.1 and such
that lim supε→0+ Eε,h(uε,h) ≤ E0(u0). The proof of Theorem 4.1 shows that the
following estimate holds: ∫

Ω

|∇uε,h|2dx ≤ C

ε
.(A.14)

Let us split F̂ε,h(uε,h) as in (A.10). Then the results obtained in the proof of the
lower inequality and the estimate (A.14) guarantee that the terms Iε,h and IIε,h
again vanish as ε→ 0+. Hence

lim sup
ε→0+

F̂ε,h(uε,h) = lim sup
ε→0+

Fε,h(uε,h) ≤
∫

Ω

(u0 − I)2dx+ E0(u0),
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which yields the upper inequality and concludes the proof of Γ-convergence.
Finally, the convergence of the minimizers follows by splitting again the functional

F̂ε,h(uε,h) as in (A.10) and arguing as in the proof of Theorem 2.2.
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Abstract. In this paper discontinuous Galerkin methods with penalty for solving second-order
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1. Introduction. Considerable attention has been recently paid to the develop-
ment and analysis of discontinuous Galerkin (DG) methods for second-order elliptic
problems. The DG methods with penalty are nowadays widely used in many prob-
lems and applications [11]. In a DG method the approximation space typically consists
of discontinuous piecewise polynomials, with boundary conditions and continuity on
interelement boundaries weakly imposed through a bilinear form. For second-order
elliptic problems these methods trace back originally to the work of Nitsche [15],
which was further developed and analyzed by Douglas and Dupont [12], Baker [4],
Wheeler [23], and Arnold [2]. More recent developments of the DG methods for el-
liptic problems can be found in Oden, Babus̃ka, and Baumann [16], Brezzi et al. [5],
Castillo et al. [6], Rivière, Wheeler, and Girault [18], Chen and Chen [7], and Chen,
Chen, and Li [8] (also see Cockburn, Karniadakis, and Shu [11]). We refer to Chen
[9] and Arnold et al. [3] for a review on the relationships and properties of different
DG methods. Optimal error estimates for the DG methods with penalty have been
obtained in [2, 18] in energy and L2 norms.

The aim of this paper is to derive localized pointwise error estimates for the DG
methods. The results in this paper represent an improvement and extension to those
obtained by Kanschat and Rannacher [14]. Our analysis is based on the technique
developed by Schatz [19, 20] for the standard continuous finite element methods for
second-order elliptic problems. Therefore, the new pointwise error estimates obtained
in this paper indicate a more localized dependence of the error on the derivatives of
the true solution. We will give a more detailed description on our results and on the
difference between our results and those of [14]. The error estimate of optimal order
for the DG methods with penalty takes the form

‖u− uh‖L2(Ω) + h‖|u− uh|‖H1
h
(Ω) ≤ Ch1+r‖u‖H1+r(Ω),

where u and uh are the true and approximate solutions, respectively; r is the order
of polynomials used in the finite element space; and ‖| · |‖H1

h
(Ω) is a special energy
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norm involving measures on the jumps of discontinuous functions on the boundaries
of interelements. In [14] the local pointwise error estimate was obtained:

|(u− uh)(z)| ≤ Ch2 lnh−1‖D2u‖L∞(Ba) + Ch2‖D2u‖L2(Ω),(1.1)

where Ba is a ball centered at z ∈ Ω and with a fixed radius a = O(1). Estimate (1.1)
was proved for the model Laplacian equation in a two-dimensional domain and for the
space of (discontinuous) piecewise linear functions. The proof of (1.1) in [14] relies
on the technique of the discrete Green’s function developed by Frehse and Rannacher
[13] and Rannacher and Scott [17]. In this paper we derive pointwise error estimates
for general second-order elliptic problems defined in a domain of RN and for general
finite element spaces. Moreover, our analysis is based on the technique developed by
Schatz [19, 20] and Schatz and Wahlbin [21] for the standard conforming (continuous)
finite element methods. Therefore, more localized and sharper results are obtained in
this paper. In fact, the new pointwise error estimates obtained in this paper, which
are for the symmetric DG method, are the following:

|(u− uh)(z)| ≤ Ch1+r
(
lnh−1

)s̄ ‖u‖W 1+r,∞(Ω),z,s, 0 ≤ s ≤ r − 1,

|∇(u− uh)(z)| ≤ Chr
(
lnh−1

)¯̄s ‖u‖W 1+r,∞(Ω),z,s, 0 ≤ s ≤ r,
(1.2)

where s̄ = 0 if 0 ≤ s < r − 1 and s̄ = 1 if s = r − 1; ¯̄s = 0 if 0 ≤ s < r and
¯̄s = 1 if s = r. The norm ‖ · ‖W 1+r,∞(Ω),z,s is a weighted Sobolev norm with the
weight function σsz,h = (h/(|z−x|+h))s. The gradient operator in (1.2) is understood
elementwise. According to the estimates in (1.2), the higher order of the finite element
approximation, the more localized dependence of the errors on the true solution. As
special consequences of (1.2), we have

‖u− uh‖L∞(Ω) ≤ Ch1+r
(
lnh−1

)r̄ ‖u‖W 1+r,∞(Ω),

‖∇(u− uh)‖L∞(Ω) ≤ Chr‖u‖W 1+r,∞(Ω),

where r̄ = 0 if r > 1 and r̄ = 1 if r = 1. The pointwise error estimates obtained in
this paper will be bounded by global estimates. Local bounds will be studied in a
forthcoming paper.

2. Preliminaries. We consider the following homogeneous Dirichlet boundary
value problem:

Lu ≡ −
N∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

N∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x) in Ω,

u = 0 on ∂Ω,

(2.1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary ∂Ω and f is a
given function. For the sake of simplicity, we assume that the coefficients aij , bi, and
c are in C∞(Ω) and the operator L is uniformly elliptic in the sense that there exists
a constant CL > 0 such that

CL

N∑
i=1

ζ2
i ≤

N∑
i,j=1

aij(x)ζiζj ∀ ζ ∈ RN and x ∈ Ω.(2.2)

We will use the standard notation for the Sobolev spaces and their norms. For
any open subset D ⊂ Ω, nonnegative integer �, and real number 1 ≤ p ≤ ∞, denote
the Sobolev spaces by W �,p(D) = {v : ‖v‖W �,p(D) <∞}, with
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‖v‖p
W �,p(D)

=

�∑
i=0

|v|pW i,p(D), |v|pW i,p(D) =
∑
|α|=i

∫
D

∣∣∣∣∂αv(x)∂xα

∣∣∣∣p dx.

(When p = ∞, a standard modification applies to these norms [1].) Let W �,p
0 (D) be

the completion of C∞
0 (D) according to the norm ‖·‖W �,p(D), where C∞

0 (D) represents
the space of functions with continuous derivatives of arbitrary order and compact
support in D. We also adopt the usual notation for the Hilbert H� and Lp spaces:

H�(D) = W �,2(D), H�
0(D) = W �,2

0 (D), Lp(D) = W 0,p(D).

Denote by (·, ·) the inner product in L2(Ω): (u, v) =
∫
Ω
u(x)v(x) dx. For � ≥ 0, the

negative norm ‖ · ‖H−�(D) is defined as follows:

‖v‖H−�(D) = sup
ϕ∈C∞

0 (D), ‖ϕ‖
H�(D)

=1

(v, ϕ).

To introduce the DG methods, let Jh denote a partition of the domain Ω into a
finite number Nh of open subdomains Kj , j = 1, 2, . . . , Nh, such that

Ω̄ =
⋃

Kj∈Jh

K̄j and Ki ∩Kj = ∅ if i �= j.

We assume that the partition Jh is shape-regular. To be more precise, let Bθ(z)
denote the ball centered at z ∈ RN and with radius θ. We set

hK = diam(K), θK = max{θ : Bθ(z) ⊂ K, z ∈ K}, h = max
K∈Jh

hK .

There are constants C1 > 0 and C2 > 0 independent of h and K ∈ Jh such that

hK/θK ≤ C1, h ≤ C2hK , ∀ K ∈ Jh.

Note that the mesh Jh is not required to be conforming; i.e., a vertex of an element
may lie on the boundary of another element and there may be hanging nodes.

Furthermore, let Γh denote the set of (N − 1)-dimensional open subsets ej , j =
1, 2, . . . , Ne

h, such that

Nh⋃
j=1

∂Kj =

Ne
h⋃

j=1

ēj and ei ∩ ej = ∅ if i �= j,

and let

Γ0
h = {e ∈ Γh : e ∩ ∂Ω = ∅} .

We assume that for each e ∈ Γ0
h, e ⊂ ∂K ∩ ∂K ′ for some K, K ′ ∈ Jh. For each

e ∈ Γh, we define he = (hK + hK′)/2 if e ⊂ ∂K ∩ ∂K ′ and he = hK if e ∈ ∂K ∩ ∂Ω,
and for K ∈ Jh, let nK ∈ RN denote the unit outward normal vector to ∂K.

Define the discontinuous Sobolev space

W �,p
h (D) = {v : v ∈W �,p(K ∩D) for each K ∈ Jh and ‖v‖W �,p

h
(D) <∞},
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equipped with the norm

‖v‖p
W �,p

h
(D)

=

�∑
i=0

|v|p
W i,p

h
(D)

, |v|p
W i,p

h
(D)

=
∑
K∈Jh

|v|pW i,p(K∩D).

When p = 2, we set H�
h(D) = W �,2

h (D).
For any v ∈ H�

h(Ω) (� > 1/2), we define its average and jump on an intersection
of any two elements as follows: For any e ∈ Γh, we define

{|v|}|e =

⎧⎨⎩
1

2
(v|K + v|K′) if e ∈ Γ0

h and e ⊂ ∂K ∩ ∂K ′,

v|K if e ∈ Γh\Γ0
h and e ∈ ∂K,

[|v|]|e =

{
v|K nK + v|K′ nK′ if e ∈ Γ0

h and e ⊂ ∂K ∩ ∂K ′,

v|K nK if e ∈ Γh\Γ0
h and e ∈ ∂K.

It is clear that [|v|] ∈ RN is a vector with components [|v|]i = v|K nK,i + v|K′ nK′,i if
e ⊂ ∂K ∩ ∂K ′ and [|v|]i = v|K nK,i if e ∈ ∂K ∩ (Γh\Γ0

h) for 1 ≤ i ≤ N .
Multiplying (2.1) by v ∈ H2

h(Ω), integrating over K ∈ Jh, using the continuity of
u and its fluxes across each e ∈ Γ0

h, and adding on all K ∈ Jh, it follows that

a(u, v) − b(u, v) = (f, v),(2.3)

where

a(u, v) =
∑
K∈Jh

∫
K

⎛⎝ N∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
+

N∑
i=1

bi
∂u

∂xi
v + cuv

⎞⎠dx,
b(u, v) =

∑
e∈Γh

∫
e

N∑
i,j=1

{∣∣∣∣aij ∂u∂xi
∣∣∣∣} [|v|]j ds.

Here and throughout this paper, a differential operator is defined elementwise when it
is not valid globally. To enforce stability of the DG methods, a term b(v, u) involving
continuity of the true solution at interelement interfaces and a penalty term λ(u, v)
are added to the left-hand side of (2.3) to obtain the bilinear form A(·, ·):

A(u, v) = a(u, v) − b(u, v) − τb(v, u) + λ(u, v),(2.4)

where τ = 1 or −1 and

λ(u, v) =
∑
e∈Γh

λe
he

∫
e

[|u|][|v|] ds.(2.5)

Here, for each e ∈ Γh, λe is a real number satisfying

Cλ ≤ λe <∞ ∀ e ∈ Jh.(2.6)

The constant Cλ in (2.6) will be determined later and should be large enough to
enforce the stability of the DG methods.
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Let Sh ⊂ W 2,∞
h (Ω) be a finite dimensional subspace. For simplicity, we assume

that Sh consists of piecewise polynomials of degree r ≥ 1:

Sh = {v ∈ L∞(Ω) : v|K ∈ S(K), K ∈ Jh},
where Pr(K) ⊂ S(K) ⊂ Pr1(K) for some integers 1 ≤ r ≤ r1 and Pr(K) denotes the
set on K of all polynomials of degree less than or equal to r. We define the finite
element approximation uh ∈ Sh of u ∈ H1

0 (Ω) to be the solution of

A(uh, v) = (f, v) ∀ v ∈ Sh.(2.7)

Noting that the bilinear form A(·, ·) is consistent with (2.1) in the sense that

A(u, v) = (f, v) ∀ v ∈ H2
h(Ω),(2.8)

we have the following error equation:

A(u− uh, v) = 0 ∀ v ∈ Sh.(2.9)

The cases τ = 1 and τ = −1 correspond to the symmetric and nonsymmetric
interior penalty DG methods, respectively.

For any D ⊂ Ω, we will need a special norm ‖| · |‖W 1,p
h

(D) defined by

‖|v|‖W 1,p
h

(D) = ‖v‖W 1,p
h

(D) +

(∑
e∈Γh

h1−p
e

∫
e∩D

|[|v|]|p ds

)1/p

(2.10)

+

(∑
e∈Γh

he

∫
e∩D

N∑
i=1

∣∣∣∣{∣∣∣∣ ∂v∂xi
∣∣∣∣}∣∣∣∣p ds

)1/p

,

where 1 ≤ p <∞. For p = ∞, we have the modification

‖|v|‖W 1,∞
h

(D) = ‖v‖W 1,∞
h

(D) + max
e∈Γh

h−1
e ‖[|v|]‖L∞(e∩D)(2.11)

+ max
e∈Γh

‖{|∇v|}‖L∞(e∩D).

When p = 2, we use ‖|v|‖H1
h
(D) = ‖|v|‖W 1,2

h
(D). We also need a weighted analogue of

‖| · |‖W 1,p
h

(D). To this end, following Schatz [19] we introduce the weight function

σsz,h(x) =

(
h

|x− z| + h

)s
.(2.12)

Clearly, σsz,h(x) = O(1) if s > 0 and |x− z| = O(h), and σsz,h(x) = O(hs) if |x− z| =
O(1). For 1 ≤ p <∞ and fixed z, we define the following weighted norm:

‖|v|‖p
W 1,p

h
(D),z,s

= ‖v‖p
W 1,p

h
(D),z,s

+
∑
e∈Γh

h1−p
e

∫
e∩D

|σsz,h[|v|]|p ds(2.13)

+
∑
e∈Γh

he

∫
e∩D

N∑
i=1

∣∣∣∣σsz,h{∣∣∣∣ ∂v∂xi
∣∣∣∣}∣∣∣∣p ds,

where ‖v‖p
W 1,p

h
(D),z,s

= ‖σsz,hv‖pLp(D) + ‖σsz,h∇v‖pLp(D). For p = ∞, a modification

similar to (2.11) can be made.
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Next, we will collect some well-known results about approximation properties,
inverse properties, and superapproximation properties. For the proof of Propositions
2.1 and 2.2 below, refer to [10]. The proof of Proposition 2.4 can be found in Schatz
and Wahlbin [21]. Below we assume that κ > 0 is a fixed constant.

Proposition 2.1. Let 1 ≤ p ≤ ∞ and 0 ≤ i ≤ 1 ≤ j ≤ 1 + r.
(i) If v ∈W j,p(K), then there exists a χ ∈ Sh such that for any K ∈ Jh,

‖v − χ‖W i,p(K) ≤ Chj−i‖v‖W j,p(K),

where the constant C is independent of v, h, and K.
(ii) If D1 ⊂ D2 satisfies dist(D1, ∂D2\∂Ω) ≥ κh and v ∈ W j,p

h (D2), then there
exists a χ ∈ Sh(D2) such that

‖v − χ‖W i,p
h

(D1)
≤ Chj−i‖v‖W j,p

h
(D2)

,

where the constant C is independent of v, h, D1, and D2.
Proposition 2.2. Let 1 ≤ q ≤ p ≤ ∞ and 0 ≤ i ≤ j ≤ 1 + r.
(i) If v ∈ Sh, then

‖v‖W i,p(K) ≤ Chi−j+N(1/q−1/p)‖v‖W j,q(K), K ∈ Jh,
where the constant C is independent of v, h, and K.

(ii) If D1 ⊂ D2 with dist(D1, ∂D2\∂Ω) ≥ κh and v ∈ Sh(D2), then

‖v‖W i,p
h

(D1)
≤ Chi−j+N(1/q−1/p)‖v‖W j,q

h
(D2)

and

‖|v|‖H1
h
(D1) ≤ Ch−1‖v‖L2(D2),

where the constant C is independent of v, h, D1, and D2.
A superapproximation property in ‖| · |‖H1

h
is needed in the proof of interior error

estimates. To state it, we need additional notation. For any subsets D1 ⊂ Ω and
D2 ⊂ Ω, by D1 <))D2 we mean D1 ⊂ D2 and dist(D1, ∂D2\∂Ω) > 0. Moreover, for
any D ⊂ Ω, C∞

< (D) denotes the subspace of C∞(D) defined by

C∞
< (D) = {v ∈ C∞(D) : supp(v) <))D}.

Proposition 2.3. Let D0 ⊂ D1 ⊂ D2 ⊂ Ω, with the conditions dist(D0, ∂D1\∂Ω)
≥ κh, dist(D1, ∂D2\∂Ω) ≥ κh, and ω ∈ C∞

< (D1). Then, for any v ∈ Sh(D2) there
exists a χ ∈ Sh(D2) such that supp(χ) <))D2 and

‖|ωv − χ|‖H1
h
(D2) ≤ Ch‖|v|‖H1

h
(D2).

Proof. It suffices to show this property on each element K ∈ Jh:
‖|ωv − χ|‖H1(K) ≤ Ch‖|v|‖H1(K̂),

which is apparently true (see Ciarlet [10] and Schatz and Wahlbin [21]). Here K̂
denotes the union of elements whose boundary intersects with ∂K.

The last proposition is about a scaling property. This property is used to obtain
an explicit dependence on the distance between two subdomains in the local error
estimates, which is crucial for the proof of pointwise error estimates.

Proposition 2.4. Let x0 ∈ Ω̄ and d ≥ kh. The linear transformation y =
(x − x0)/d maps the set Bd(x0) = {x ∈ Ω : |x − x0| < d} into a new set B̂1(x0)
and the space Sh(Bd(x0)) into a new space Ŝh/d(B̂1(x0)). Moreover, Ŝh/d(B̂1(x0))
satisfies Propositions 2.1–2.3 with h replaced by h/d. The constants occurring in these
propositions remain unchanged, in particular independent of d.



1152 ZHANGXIN CHEN AND HONGSEN CHEN

3. Stability and boundedness. In this section we discuss the stability and
boundedness of A(·, ·). By stability we mean the coercivity of A(·, ·) in H1

h(Ω) (see
(3.5) in Lemma 3.2). This coercivity is essential to guarantee existence and uniqueness
of the finite element solution uh of (2.7). The boundedness of A(·, ·) in ‖| · |‖W 1,p

h
(Ω)

is proved in Lemma 3.3. These results will be used in the proofs in the fourth and
fifth sections. It is well known that for any v ∈ H1

0 (Ω), ‖v‖L2(Ω) ≤ C‖∇v‖L2(Ω). The
result in the next lemma is a discontinuous version of this inequality.

Lemma 3.1. There is a constant C > 0 such that for any v ∈ Sh we have

‖v‖2
L2(Ω) ≤ C

∑
e∈Γh

h−1
e

∫
e

|[|v|]|2 ds+ C|v|2H1
h
(Ω).(3.1)

Proof. For any K ∈ Jh and x ∈ K, choose

{K1,K2, . . . ,KiK} ⊂ Jh and {e1, e2, . . . , eiK} ⊂ Γh

such that K1 = K, ik ≤ Ch−1, ei ⊂ ∂Ki ∩ ∂Ki+1 for 1 ≤ i ≤ iK − 1, and eiK ⊂
∂KiK ∩ ∂Ω. Then, for any s ∈ e1 and y ∈ K2,

v(x) = (v|K1
(s) − v|K2

(s)) + (v(x) − v|K1
(s)) + (v|K2

(s) − v(y)) + v(y),

which implies

|v(x)| ≤ |[|v|](s)| + Ch‖∇v‖L∞(K1∪K2) + |v(y)|(3.2)

≤ |[|v|](s)| + Ch1−N/2‖∇v‖L2(K1∪K2) + |v(y)|.
Integrating on e1 with respect to s, it follows from (3.2) that

|v(x)| ≤ Ch1−N
∫
e1

|[|v|]| ds+ Ch1−N/2‖∇v‖L2(K1∪K2) + |v(y)|

≤ Ch(1−N)/2

(∫
e1

|[|v|]|2 ds
)1/2

+ Ch1−N/2‖∇v‖L2(K1∪K2) + |v(y)|.

Reasoning in the same way, we have for each 1 ≤ i ≤ iK − 1, x ∈ Ki, and y ∈ Ki+1,

|v(x)| ≤ Ch(1−N)/2

(∫
ei

|[|v|]|2 ds
)1/2

+ Ch1−N/2‖∇v‖L2(Ki∪Ki+1) + |v(y)|.

Using the fact that [|v|] = v on eiK ⊂ ∂Ω, for any y ∈ Ki+1 we have

|v(y)| ≤ Ch(1−N)/2

(∫
eiK

|[|v|]|2 ds
)1/2

+ Ch1−N/2‖∇v‖L2(KiK
).

Thus we conclude that for x ∈ K,

|v(x)| ≤ Ch1−N/2
iK∑
i=1

(
h−1
e

∫
ei

|[|v|]|2 ds
)1/2

+ Ch1−N/2
iK∑
i=1

‖∇v‖L2(Ki),

which further yields

|v(x)|2 ≤ Ch1−N
iK∑
i=1

h−1
e

∫
ei

|[|v|]|2 ds+ Ch1−N
iK∑
i=1

‖∇v‖2
L2(Ki)

.(3.3)
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Integrating (3.3) on K with respect to x, we obtain

‖v‖2
L2(K) ≤ Ch

iK∑
i=1

h−1
e

∫
ei

|[|v|]|2 ds+ Ch

iK∑
i=1

‖∇v‖2
L2(Ki)

.(3.4)

Taking summation over K ∈ Jh in (3.4) and noting that the integrals on the right-
hand side of (3.4) may repeat at most Ch−1 times, the result (3.1) follows.

Lemma 3.2. For sufficiently large constants CL and Cλ defined in (2.2) and (2.6),
there is a constant C > 0 such that

C‖|v|‖2
H1

h
(Ω) ≤ A(v, v) ∀ v ∈ Sh.(3.5)

Proof. For any v ∈ Sh, by the definition of the bilinear form A(·, ·), we have

A(v, v) = a(v, v) − (τ + 1)b(v, v) + λ(v, v)(3.6)

≥ CL|v|2H1
h
(Ω) + Cλ

∑
e∈Jh

h−1
e

∫
e

|[|v|]|2 ds

+

∫
Ω

N∑
i=1

bi
∂v

∂xi
v dx− (τ + 1)b(v, v).

In virtue of (3.1) and Hölder’s inequality, we see that∫
Ω

N∑
i=1

bi
∂v

∂xi
v dx ≤ C|v|H1

h
(Ω)‖v‖L2(Ω) ≤ C|v|2H1

h
(Ω) + C

∑
e∈Γh

h−1
e

∫
e

|[|v|]|2 ds.(3.7)

By the definition of b(·, ·), we have

b(v, v) ≤ C
∑
e∈Γh

he

∫
e

N∑
i=1

∣∣∣∣{∣∣∣∣ ∂v∂xi
∣∣∣∣}∣∣∣∣2 ds+ C

∑
e∈Γh

h−1
e

∫
e

|[|v|]|2 ds.(3.8)

We recall the trace inequality∫
e

N∑
i=1

∣∣∣∣{∣∣∣∣ ∂v∂xi
∣∣∣∣}∣∣∣∣2 ds ≤ Ch−1

e |v|2H1(K) + Che|v|2H2(K),(3.9)

where K ∈ Jh and e ⊂ ∂K. Inserting (3.9) into (3.8) and using an inverse inequality,
we have

b(v, v) ≤ C|v|2H1
h
(Ω) + C

∑
e∈Γh

h−1
e

∫
e

|[|v|]|2 ds.(3.10)

Applying (3.7) and (3.10) in (3.6) and choosing CL and Cλ sufficiently large, we obtain

A(v, v) ≥ C

(
|v|2H1

h
(Ω) +

∑
e∈Γh

h−1
e

∫
e

|[|v|]|2 ds
)
.(3.11)

Using the trace inequality (3.9), an inverse inequality, and (3.1), we can easily see that

‖|v|‖2
H1

h
(Ω) ≤ C

(
|v|2H1

h
(Ω) +

∑
e∈Γh

h−1
e

∫
e

|[|v|]|2 ds
)
,

which, along with (3.11), shows the desired result (3.5).



1154 ZHANGXIN CHEN AND HONGSEN CHEN

From now on, we assume that the constants CL and Cλ are sufficiently large so
that inequality (3.5) of Lemma 3.2 holds. Using the result in Lemma 3.2, we obtain
the unique solvability of problem (2.7). To obtain error estimates, we further need
the following boundedness of the bilinear form A(·, ·):

Lemma 3.3. For 1 ≤ p ≤ ∞, there is a constant C > 0 such that for any

v ∈W 2,p
h (Ω) and w ∈W 2,p′

h (Ω), it holds that

A(v, w) ≤ C‖|v|‖W 1,p
h

(Ω)‖|w|‖W 1,p′
h

(Ω)
,(3.12)

where p′ is the conjugate of p, i.e., 1/p+ 1/p′ = 1.
Proof. From the definition (2.4) of A(·, ·), we see that it suffices to bound each

of a(v, w), b(v, w), b(w, v), and λ(v, w) by the right-hand side of (3.12). In fact, by
Hölder’s inequality, we have

a(v, w) ≤ C‖v‖W 1,p
h

(Ω)‖w‖W 1,p′
h

(Ω)
,

b(v, w) ≤ C

(∑
e∈Γh

he

∫
e

N∑
i=1

∣∣∣∣{∣∣∣∣ ∂v∂xi
∣∣∣∣}∣∣∣∣p ds

)1/p(∑
e∈Γh

h1−p′
e

∫
e

|[|w|]|p′ ds
)1/p′

,

b(w, v) ≤ C

(∑
e∈Γh

h1−p
e

∫
e

|[|v|]|p ds
)1/p(∑

e∈Γh

he

∫
e

N∑
i=1

∣∣∣∣{∣∣∣∣ ∂w∂xi
∣∣∣∣}∣∣∣∣p

′

ds

)1/p′

,

λ(v, w) ≤ C

(∑
e∈Γh

h1−p
e

∫
e

|[|v|]|p ds
)1/p(∑

e∈Γh

h1−p′
e

∫
e

|[|w|]|p′ ds
)1/p′

.

Substituting the above four inequalities into (2.4) and recalling the definition of the
norm (2.10) completes the proof of this lemma.

Lemma 3.4. Suppose that u ∈ H1
0 (Ω) and uh ∈ Sh satisfy (2.9). Then

‖|u− uh|‖H1
h
(Ω) ≤ C inf

χ∈Sh
‖|u− χ|‖H1

h
(Ω).(3.13)

Proof. Inequality (3.13) follows immediately from the error equation (2.9), the
stability estimate (3.5), the boundedness result (3.12), and Hölder’s inequality.

4. Interior error estimates. To prepare for the proof of pointwise error es-
timates, we show local error estimates in the energy and L2 norms for the error of
the finite element approximation and local a priori estimates for the solution of the
elliptic problem (2.1). The result in Lemma 4.1 indicates that the local error of the
finite element solution measured in the H1

h norm is bounded by the local approxima-
tion property of the finite element space in this norm plus the error measured in the
weaker L2 norm.

Lemma 4.1. Let Ω0 ⊂ Ω1 ⊂ Ω with d = dist(Ω0, ∂Ω1\∂Ω) ≥ 4κh. If u ∈ H1
0 (Ω)

and uh ∈ Sh satisfy (2.9), then

‖|u− uh|‖H1
h
(Ω0) ≤ C inf

χ∈Sh(Ω1)
‖|u− χ|‖H1

h
(Ω1) + C‖u− uh‖L2(Ω1),(4.1)

where the constant C > 0 depends on d but is independent of h and u.
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Proof. Let Ω0 ⊂ Ω2 ⊂ Ω3 ⊂ Ω4 ⊂ Ω1 satisfy

dist(Ω0, ∂Ω2\∂Ω) = dist(Ω2, ∂Ω3\∂Ω) = dist(Ω3, ∂Ω4\∂Ω) = dist(Ω4, ∂Ω1\∂Ω) = d/4.

Also, let ω ∈ C∞
< (Ω2) satisfy ω ≡ 1 on Ω0. Then, by Proposition 2.3, we choose

η ∈ Sh(Ω3) such that supp(η) <))Ω3 and

‖|ω(χ− uh) − η|‖H1
h
(Ω3) ≤ Ch‖|χ− uh|‖H1

h
(Ω3).(4.2)

Using the triangle inequality, (3.5), and (4.2), we have

‖|χ− uh|‖H1
h
(Ω0) ≤ ‖|ω(χ− uh)|‖H1

h
(Ω)(4.3)

≤ ‖|η|‖H1
h
(Ω) + ‖|ω(χ− uh) − η|‖H1

h
(Ω3)

≤ C
(√

A(η, η) + h‖|χ− uh|‖H1
h
(Ω2)

)
.

With some straightforward manipulations, we have the identity

A(η, η) = A(ω(χ− uh), ω(χ− uh)) +A(η − ω(χ− uh), η − ω(χ− uh))(4.4)

+A(ω(χ− uh), η − ω(χ− uh)) +A(η − ω(χ− uh), ω(χ− uh)).

From (3.12), (4.2), and (4.4), it follows that

A(η, η) ≤ A(ω(χ− uh), ω(χ− uh)) + Ch2‖|χ− uh|‖2
H1

h
(Ω3)

(4.5)

+ε‖|ω(χ− uh)|‖2
H1

h
(Ω),

where ε > 0 is an arbitrary but fixed real number, which will be determined later in
this proof. We will now estimate the first term on the right-hand side of (4.5). Some
simple calculations lead to the following equation:

A(ω(χ− uh), ω(χ− uh)) = A(χ− uh, ω
2(χ− uh)) + Iω(χ− uh)(4.6)

− (τ + 1)
∑
e∈Γh

∫
e

N∑
i,j=1

aij
∂ω

∂xi
{|χ− uh|}[|ω(χ− uh)|]j ds,

where

Iω(v) =

∫
Ω

N∑
i,j=1

aij

(
v
∂ω

∂xi

∂(ωv)

∂xj
− v

∂ω

∂xj

∂(ωv)

∂xi
+ v2 ∂ω

∂xi

∂ω

∂xj

)
dx(4.7)

+

∫
Ω

ωv2
N∑
i=1

bi
∂ω

∂xi
dx.

By (4.7) and Hölder’s inequality, Iω(χ− uh) can be estimated as follows:

Iω(χ− uh) ≤ C‖χ− uh‖2
L2(Ω2)

+ ε‖ω(χ− uh)‖2
H1

h
(Ω).(4.8)

To estimate the first term in the right-hand side of (4.6), we use the superapprox-
imation property in Proposition 2.3 and choose a function η1 ∈ Sh(Ω3) such that
supp(η1) <))Ω3 and

‖|ω2(χ− uh) − η1|‖H1
h
(Ω3) ≤ Ch‖|χ− uh|‖H1

h
(Ω3).(4.9)
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Then, from (2.9), inequality (3.12), and estimate (4.9), it follows that

A(χ− uh, ω
2(χ− uh))(4.10)

= A(χ− u, ω2(χ− uh)) +A(u− uh, ω
2(χ− uh) − η1)

≤ C‖|u− χ|‖H1
h
(Ω2)‖|ω(χ− uh)|‖H1

h
(Ω)

+Ch‖|u− uh|‖H1
h
(Ω3)‖|χ− uh|‖H1

h
(Ω3)

≤ C‖|u− χ|‖2
H1

h
(Ω3)

+ ε‖|ω(χ− uh)|‖2
H1

h
(Ω) + Ch‖|χ− uh|‖2

H1
h
(Ω3)

.

For the last term in the right-hand side of (4.6), applying Hölder’s inequality, a trace
theorem, and an inverse inequality, we have

∑
e∈Γh

∫
e

N∑
i,j=1

aij
∂ω

∂xi
{|χ− uh|}[|ω(χ− uh)|]j ds(4.11)

≤ C

(∑
e∈Γh

h−1
e

∫
e

|[|ω(χ− uh)|]|2 ds
)1/2(∑

e∈Γh

he

∫
e

|{|χ− uh|}|2 ds
)1/2

≤ ε‖|ω(χ− uh)|‖2
H1

h
(Ω) + C‖χ− uh‖2

L2(Ω3)
.

Now, using estimates (4.3), (4.5), (4.6), (4.8), (4.10), and (4.11), we obtain

‖|ω(χ− uh)|‖2
H1

h
(Ω) ≤ Cε‖|ω(χ− uh)|‖2

H1
h
(Ω) + Ch‖|χ− uh|‖2

H1
h
(Ω3)

(4.12)

+C‖|u− χ|‖2
H1

h
(Ω3)

+ C‖u− uh‖2
L2(Ω3)

.

Next, choosing ε sufficiently small so that the term ε‖|ω(χ−uh)|‖2
H1

h
(Ω)

can be kicked

back to the left-hand side of (4.12) and then using (4.3), we get

‖|χ− uh|‖2
H1

h
(Ω0)

(4.13)

≤ C
(
h‖|χ− uh|‖2

H1
h
(Ω3)

+ ‖|u− χ|‖2
H1

h
(Ω3)

+ ‖u− uh‖2
L2(Ω3)

)
.

Using (4.13) with Ω0 replaced by Ω3, we also have

‖|χ− uh|‖2
H1

h
(Ω3)

(4.14)

≤ C
(
h‖|χ− uh|‖2

H1
h
(Ω4)

+ ‖|u− χ|‖2
H1

h
(Ω4)

+ ‖u− uh‖2
L2(Ω4)

)
.

Inserting (4.14) into (4.13) and applying an inverse inequality, we obtain

‖|χ− uh|‖2
H1

h
(Ω0)

(4.15)

≤ C
(
h2‖|χ− uh|‖2

H1
h
(Ω4)

+ ‖|u− χ|‖2
H1

h
(Ω4)

+ ‖u− uh‖2
L2(Ω4)

)
≤ C‖|u− χ|‖2

H1
h
(Ω1)

+ C‖u− uh‖2
L2(Ω1)

.

Estimate (4.15) and the triangle inequality imply (4.1).
An explicit dependence of the bound in (4.1) on the distance d between Ω0 and

Ω1 can be determined through Proposition 2.4 and a scaling argument.
Lemma 4.2. Let Ω0 ⊂ Ω1 ⊂ Ω with d = dist(Ω0, ∂Ω1\∂Ω) ≥ κh. If u ∈ H1

0 (Ω)
and uh ∈ Sh satisfy (2.9), then

‖|u− uh|‖H1
h
(Ω0) ≤ Chr‖u‖H1+r(Ω1) + Cd−1‖u− uh‖L2(Ω1).(4.16)
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Proof. Without loss of generality, we assume that Ω is the unit ball in RN . It suf-
fices to show (4.16) with Ω0 and Ω1 being the spheres of radii d/2 and d, respectively,
with centers at x0. Assume that x0 = 0 and x denotes the variable on Ω. Let x̃ = x/d
be the new variable on the transferred regions Ω̃0 and Ω̃1. Then dist(Ω̃0, ∂Ω̃1) = 1/2.
Set ũ(x̃) = u(x̃d) and ũh = uh(x̃d). Then we see that

Ã(ũ− ũh, χ̃) = 0 ∀ χ̃ ∈ S̃h,

where S̃h is the transferred space of Sh,

Ã(ṽ, w̃) = ã(ṽ, w̃) − b̃(ṽ, w̃) − τ b̃(w̃, ṽ) + λ̃(ṽ, w̃),

and

ã(ṽ, w̃) =
∑
K̃∈J̃h

∫
K̃

⎛⎝ N∑
i,j=1

ãij(x̃)
∂ṽ

∂x̃i

∂w̃

∂x̃j
+ d

N∑
i

b̃(x̃)
∂ṽ

∂x̃i
w̃ + d2c̃(x̃)ṽw̃

⎞⎠ dx̃,

b̃(ṽ, w̃) =
∑
ẽ∈Γ̃h

∫
ẽ

N∑
i,j=1

{∣∣∣∣ãij ∂ṽ∂x̃i
∣∣∣∣} [|w̃|]j ds̃,

λ̃(ṽ, w̃) =
∑
ẽ∈Γ̃h

λe
he/d

∫
ẽ

[|ṽ|][|w̃|] ds̃.

Since the coefficients ãij in the bilinear form Ã(·, ·) satisfy inequality (2.2) with the
same constant CL, and the upper bounds of the derivatives of the transferred coeffi-
cients in this form are reduced compared to those of the original coefficients in A(·, ·),
using Proposition 2.4 and estimate (4.1) for the error ũ− ũh we deduce that

‖|ũ− ũh|‖H1
h
(Ω̃0)

≤ C inf
χ̃∈S̃h

‖|ũ− χ̃|‖H1
h
(Ω̃1)

+ C‖ũ− ũh‖L2(Ω̃1)
.(4.17)

Using (4.17) and the approximation properties in space S̃h, we see that

‖|ũ− ũh|‖H1
h
(Ω̃0)

≤ C(h/d)r|ũ|H1+r(Ω̃1)
+ C‖ũ− ũh‖L2(Ω̃1)

(4.18)

≤ Chrd1−N/2|u|H1+r(Ω1) + Cd−N/2‖u− uh‖L2(Ω1).

From (4.18) and the inequality

‖|u− uh|‖H1
h
(Ω0) ≤ CdN/2−1‖|ũ− ũh|‖H1

h
(Ω̃0)

,

we obtain the desired result (4.16).
Without loss of generality we assume in the rest of the paper that diam(Ω) ≤ 1

and define

dj = 2−j for j = 0, 1, 2, . . . ,

and for any fixed x ∈ Ω̄, set

Ωj = {x ∈ Ω : dj+1 < |x− z| < dj},
Ω

(1)
j = {x ∈ Ω : dj+2 < |x− z| < dj−1},

Ω
(2)
j = {x ∈ Ω : dj+3 < |x− z| < dj−2}.

(4.19)
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Lemma 4.3. For ρ ∈ L∞(Ω), let g ∈ H1
0 (Ω) be the solution of

Lg = ρ in Ω

and gh ∈ Sh be the finite element approximation of g:

A(g − gh, v) = 0 ∀ v ∈ Sh.

If ρ has compact support in BMh(z) for some M > 1 and ‖ρ‖L2(BMh(z)) ≤ Ch−N/2,

‖|g − gh|‖H1
h
(Ωj) ≤ Chrd

1−r−N/2
j + d−1

j ‖g − gh‖L2(Ω
(1)
j

)
.(4.20)

Proof. Using (4.16), we have

‖|g − gh|‖H1
h
(Ωj) ≤ Chr‖g‖

H1+r(Ω
(1)
j

)
+ d−1

j ‖g − gh‖L2(Ω
(1)
j

)
.(4.21)

For any x ∈ Ω
(1)
j , let Gx be Green’s function for problem (2.1) with singularity at x.

Then we have (see Solonnikov [22])

g(x) =

∫
Ω

Gx(y)ρ(y) dy(4.22)

and ∣∣∣∣∂α+βGx(y)

∂xα∂yβ

∣∣∣∣ ≤ C|x− y|2−N−|α|−|β| for |α| + |β| > 0.(4.23)

Differentiating (4.22) with respect to x, for x ∈ Ω
(1)
j and |α| ≤ 1 + r we have∣∣∣∣∂αg(x)∂xα

∣∣∣∣ = ∣∣∣∣∫
Ω

∂αGx(y)

∂xα
ρ(y) dy

∣∣∣∣(4.24)

≤ C

∫
BMh(z)

|x− y|2−N−|α| |ρ(y)| dy

≤ Cd1−N−r
j hN/2‖ρ‖L2(BMh(z)) ≤ Cd1−N−r

j .

Integrating (4.24) over Ω
(1)
j gives

‖g‖
H1+r(Ω

(1)
j

)
≤ Cd

1−N/2−r
j .

Substituting this into (4.21) implies the desired result (4.20).
Lemma 4.4. For ϕ ∈ C∞

0 (BMh(z)) satisfying ‖ϕ‖H1(BMh(z)) = 1, let g ∈ H1
0 (Ω)

be the solution of

Lg = −h−N/2−1 ∂ϕ

∂xi
in Ω

and gh ∈ Sh be the finite element approximation of g:

A(g − gh, v) = 0 ∀ v ∈ Sh.
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Then it holds that

‖|g − gh|‖H1
h
(Ωj) ≤ Chrd

−r−N/2
j + d−1

j ‖g − gh‖L2(Ω
(1)
j

)
.(4.25)

Proof. The proof is the same as that of Lemma 4.3. The only difference is that
instead of (4.22), for x ∈ Ωj and |α| = 1 + r we have∣∣∣∣∂αg(x)∂xα

∣∣∣∣ = h−N/2−1

∣∣∣∣∫
Ω

∂αGx(y)

∂xα
∂ϕ(y)

∂yi
dy

∣∣∣∣(4.26)

= h−N/2−1

∣∣∣∣∣
∫
BMh(z)

∂

∂yi

∂αGx(y)

∂xα
ϕ(y) dy

∣∣∣∣∣
≤ Cd−N−r

j h−1‖ϕ‖L2(BMh(z)).

Using the fact that ϕ ∈ C∞
0 (BMh(z)), we have

‖ϕ‖L2(BMh(z)) ≤ Ch‖∇ϕ‖L2(BMh(z)) ≤ Ch.

Inserting this into (4.26) and integrating over Ωj , we conclude that

‖g‖H1+r(Ωj) ≤ Cd
−N/2−r
j ,(4.27)

which completes the proof.

Lemma 4.5. For ϕ ∈ C∞
0 (Ω

(1)
j ) satisfying ‖ϕ‖L2(Ω) = 1, let Φ ∈ H1

0 (Ω) be the
solution of LΦ = ϕ in Ω. Then it holds that

‖Φ‖
W 1+r,∞(Ω\Ω(2)

j
)
≤ Cd

1−r−N/2
j .(4.28)

Proof. Estimate (4.28) follows immediately from differentiating the representation

Φ(x) =

∫
Ω)

Gx(y)ϕ(y) dy

and using inequality (4.23).

5. Pointwise error estimates. In this section we prove our main results: the
optimal localized pointwise error estimates. These results are stated in Theorems
5.1 and 5.3. We concentrate on the case τ = 1, i.e., the symmetric interior penalty
DG method. The technique used here (see (5.5) and (5.6) below) cannot be easily
extended to the nonsymmetric case. Pointwise error estimates for this case will be
investigated in the future.

Theorem 5.1. Let u ∈ W 1,∞
0 (Ω) and uh ∈ Sh satisfy (2.9) and 0 ≤ s ≤ r − 1.

Then there is a constant C > 0 such that for any z ∈ Ω̄,

|(u− uh)(z)| ≤ Ch
(
lnh−1

)s̄
inf
χ∈Sh

‖|u− χ|‖W 1,∞
h

(Ω),z,s,(5.1)

where s̄ = 0 if 0 ≤ s < r − 1 and s̄ = 1 if s = r − 1.
Proof. Let Kz ∈ Jh be such that z ∈ K̄z. By choosing appropriately a ψ ∈ Sh

according to Proposition 2.1, the triangle inequality and Proposition 2.2 yield

|(u− uh)(z)| ≤ |(u− ψ)(z)| + Ch−N/2‖ψ − uh‖L2(Kz)(5.2)

≤ C‖u− ψ‖L∞(Kz) + Ch−N/2‖u− uh‖L2(Kz)

≤ Ch‖u‖W 1,∞
h

(Ω),z,s + Ch−N/2‖u− uh‖L2(Kz).
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Obviously, (5.2) holds also for u replaced by u− χ for any χ ∈ Sh. Therefore, noting
that u− χ− (u− χ)h = u− uh, (5.2) implies

|(u− uh)(z)| ≤ Ch‖u− χ‖W 1,∞
h

(Ω),z,s + Ch−N/2‖u− uh‖L2(K).(5.3)

Define

ρ(x) = h−N/2(u− uh)(x)/‖u− uh‖L2(Kz)(5.4)

and let gz ∈ H1
0 (Ω) be the solution of

L∗gz = ρ,(5.5)

where L∗ is the adjoint operator of L. Furthermore, let gz,h be the finite element
approximation of gz satisfying

A(v, gz − gz,h) = 0 ∀ v ∈ Sh.(5.6)

Then, from (2.9), (3.12), and (5.6), for any χ ∈ Sh it follows that

h−N/2‖u− uh‖L2(Kz) = (ρ, u− uh) = A(u− χ, gz − gz,h)(5.7)

≤ C‖|u− χ|‖W 1,∞
h

(Ω),z,s‖|gz − gz,h|‖W 1,1
h

(Ω),z,−s,

which, along with (5.8) in Lemma 5.2 below, deduces the desired result (5.1).
Lemma 5.2. Let gz ∈ H1

0 (Ω) and gz,h ∈ Sh satisfy (5.5) and (5.6). Then it holds
that for 0 ≤ s ≤ r − 1,

‖|gz − gz,h|‖W 1,1
h

(Ω),z,−s ≤ Ch
(
lnh−1

)s̄
,(5.8)

where s̄ = 0 if 0 ≤ s < r − 1 and s̄ = 1 if s = r − 1.
Proof. LetM > 1 be a real number to be determined later and J be an integer such

that Mh = 2−J . Then J ≤ C ln(1/h). For notational convenience, set E = gz − gz,h.
In view of Ω = BMh(z) ∪ (∪Jj=0Ωj), it follows that

‖|E|‖W 1,1
h

(Ω),z,−s ≤ ‖|E|‖W 1,1
h

(BMh(z)),z,−s +

J∑
j=0

‖|E|‖W 1,1
h

(Ωj),z,−s.(5.9)

Recall the definition of ‖|E|‖W 1,1
h

(Ωj),z,−s:

‖|E|‖W 1,1
h

(Ωj),z,−s = ‖E‖W 1,1
h

(Ωj),z,−s +
∑
e∈Γh

∫
e∩Ωj

|σsz,h[|E|]| ds(5.10)

+
∑
e∈Γh

he

∫
e∩Ωj

N∑
i=1

∣∣∣∣σsz,h{∣∣∣∣ ∂E∂xi
∣∣∣∣}∣∣∣∣ ds.

We will handle each of the three terms on the right-hand side of (5.10) separately. By
Hölder’s inequality, we see that

‖E‖W 1,1
h

(Ωj),z,−s ≤ Cd
N/2+s
j h−s‖E‖H1

h
(Ωj),(5.11)
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∑
e∈Γh

∫
e∩Ωj

|σsz,h[|E|]| ds ≤ dsjh
(N−1)/2−s ∑

e∈Γh

(∫
e∩Ωj

|[|E|]|2 ds
)1/2

(5.12)

≤ Cd
N/2+s
j h−s

(∑
e∈Γh

h−1
e

∫
e∩Ωj

|[|E|]|2 ds
)1/2

,

∑
e∈Γh

he

∫
e∩Ωj

N∑
i=1

σsz,h

∣∣∣∣{∣∣∣∣ ∂E∂xi
∣∣∣∣}∣∣∣∣ ds(5.13)

≤ Cd
N/2+s
j h−s

(∑
e∈Γh

he

∫
e∩Ωj

N∑
i=1

∣∣∣∣{∣∣∣∣ ∂E∂xi
∣∣∣∣}∣∣∣∣2 ds

)1/2

.

Inserting (5.11)–(5.13) into (5.10) gives

‖|E|‖W 1,1
h

(Ωj),z,−s ≤ Cd
N/2+s
j h−s‖|E|‖H1

h
(Ωj).(5.14)

Similar to (5.14) (with Ωj replaced by BMh(z)), it can easily be seen that

‖|E|‖W 1,1
h

(BMh(z)),z,−s ≤ CMN/2+shN/2‖|E|‖H1
h
(BMh(z)).(5.15)

Using Lemma 3.4, the approximation properties in Proposition 2.1, and an elliptic
regularity on gz, we have

‖|E|‖H1
h
(BMh(z)) ≤ Ch‖gz‖H2(Ω) ≤ Ch‖ρ‖L2(Kz) ≤ Ch1−N/2,

which, along with (5.15), yields

‖|E|‖W 1,1
h

(BMh(z)),z,−s ≤ CMN/2+sh.(5.16)

Inserting (5.14) and (5.16) into (5.9), we have

‖|E|‖W 1,1
h

(Ω),z,−s ≤ CMN/2+sh+ CL,(5.17)

where

L =

J∑
j=0

d
N/2+s
j h−s‖|E|‖H1

h
(Ωj).

To estimate L, we use (4.20) to obtain

L ≤ C
J∑
j=0

hr−sd1+s−r
j + C

J∑
j=0

d
s+N/2−1
j h−s‖E‖

L2(Ω
(1)
j

)
(5.18)

= ChΘ(r − 1 − s) +

J∑
j=0

d
s+N/2−1
j h−s‖E‖

L2(Ω
(1)
j

)
,

where Θ(γ) is the following function:

Θ(γ) =
J∑
j=0

(h/dj)
γ .
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We note that since dj = 2−j and J ≤ C ln 1/h, it holds that

Θ(γ) =

J∑
j=0

(
h

dj

)γ
≤ C

⎧⎨⎩lnh−1 if γ = 0,
1

Mγ(1 − 2−γ)
if γ > 0.

(5.19)

To estimate L, we now estimate ‖E‖
L2(Ω

(1)
j

)
for each 0 ≤ j ≤ J . By duality, we have

‖E‖
L2(Ω

(1)
j

)
= sup
ϕ∈C∞

0 (Ω
(1)
j

), ‖ϕ‖L2(Ω)=1

(E,ϕ).(5.20)

For each ϕ ∈ C∞
0 (Ω

(1)
j ), let Φ ∈ H1

0 (Ω) be the solution of LΦ = ϕ. Then

(E,ϕ) = A(Φ, E) = A(Φ − η,E) = I1 + I2,(5.21)

where

I1 = A
Ω\Ω(2)

j

(Φ − η,E), I2 = A
Ω

(2)
j

(Φ − η,E).

We will now estimate I1 and I2 separately. For I1, by inequality (3.12), the approxi-
mation properties in Proposition 2.1, and (4.28) in Lemma 4.5, we see that

I1 ≤ C‖|Φ − η|‖
W 1,∞

h
(Ω\Ω(2)

j
)
‖|E|‖

W 1,1
h

(Ω\Ω(2)
j

)
(5.22)

≤ Chr‖Φ‖
W 1+r,∞(Ω\Ω(2)

j
)
‖|E|‖

W 1,1
h

(Ω\Ω(2)
j

)
≤ Chrd

1−r−N/2
j ‖|E|‖W 1,1

h
(Ω).

For I2, from (3.12) and Proposition 2.1, we have

I2 ≤ C‖|Φ − η|‖
H1

h
(Ω

(2)
j

)
‖|E|‖

H1
h
(Ω

(2)
j

)
≤ Ch‖Φ‖H2(Ω)‖|E|‖

H1
h
(Ω

(2)
j

)
(5.23)

≤ Ch‖|E|‖
H1

h
(Ω

(2)
j

)
.

Using (5.20)–(5.23), we obtain

‖E‖
L2(Ω

(1)
j

)
≤ Chrd

1−r−N/2
j ‖|E|‖W 1,1

h
(Ω) + Ch‖|E|‖

H1
h
(Ω

(2)
j

)
,(5.24)

which leads to

J∑
j=0

d
s+N/2−1
j h−s‖E‖

L2(Ω
(1)
j

)

≤ C

J∑
j=0

(h/dj)
r−s ‖|E|‖W 1,1

h
(Ω) + C

J∑
j=0

d
s+N/2−1
j h1−s‖|E|‖

H1
h
(Ω

(2)
j

)

≤ CΘ(r − s)‖|E|‖W 1,1
h

(Ω) + CMN/2+sh+ CL/M.

Hence, according to inequality (5.18) and choosing M sufficiently large, we have

L ≤ CMN/2+sh+ ChΘ(r − 1 − s) + CΘ(r − s)‖|E|‖W 1,1
h

(Ω).(5.25)

Substituting this into (5.17), we get

‖|E|‖W 1,1
h

(Ω),z,−s ≤ CMN/2+sh+ ChΘ(r − 1 − s) + CΘ(r − s)‖|E|‖W 1,1
h

(Ω).(5.26)
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The particular case where s = 0 in inequality (5.26) implies

‖|E|‖W 1,1
h

(Ω) ≤ CMN/2h+ ChΘ(r − 1) + CΘ(r)‖|E|‖W 1,1
h

(Ω).(5.27)

By choosing M large enough such that CΘ(r) < 1/2, it follows from (5.27) that

‖|E|‖W 1,1
h

(Ω) ≤ CMN/2h+ ChΘ(r − 1) ≤ ChΘ(r − 1).(5.28)

Inserting (5.28) into (5.26), we obtain

‖|E|‖W 1,1
h

(Ω),z,−s ≤ CMN/2+sh+ ChΘ(r − 1 − s) + ChΘ(r − 1)Θ(r − s)

≤ Ch (ln 1/h))
s̄
,

which proves the desired result (5.8).
Theorem 5.3. Let u ∈W 1,∞

0 (Ω) and uh ∈ Sh satisfy (2.9) and 0 ≤ s ≤ r. Then
there is a constant C > 0 such that for any z ∈ Ω̄,

|∇(u− uh)(z)| ≤ C
(
lnh−1

)¯̄s
inf
χ∈Sh

‖|u− χ|‖W 1,∞
h

(Ω),z,s,(5.29)

where ¯̄s = 0 if 0 ≤ s < r and ¯̄s = 1 if s = r.
Proof. For any x ∈ Ω̄, let z ∈ Kz for some Kz ∈ Jh. Following a similar procedure

as in the derivation of (5.2), we have∣∣∣∣ ∂∂xi (u− uh)(z)

∣∣∣∣ ≤ ∥∥∥∥ ∂

∂xi
(u− χ)

∥∥∥∥
L∞(Kz)

(5.30)

+Ch−N/2−1

∥∥∥∥ ∂

∂xi
(u− uh)

∥∥∥∥
H−1(Kz)

,

where χ ∈ Sh is any function. Using integration by parts, it follows that

h−N/2−1

∥∥∥∥ ∂

∂xi
(u− uh)

∥∥∥∥
H−1(Kz)

(5.31)

= sup
ϕ∈C∞

0 (Kz), ‖ϕ‖H1(Kz)=1

(
h−N/2−1 ∂

∂xi
(u− uh), ϕ

)
= sup
ϕ∈C∞

0 (Kz), ‖ϕ‖H1(Kz)=1

(
u− uh,−h−N/2−1 ∂ϕ

∂xi

)
.

For any ϕ ∈ C∞
0 (Kz) satisfying ‖ϕ‖H1(Kz) = 1, let ĝz ∈ H1

0 (Ω) be the solution of

L∗ĝz = −h−N/2−1 ∂ϕ

∂xi
.(5.32)

Then, in view of (2.9) and (5.32), we have(
u− uh,−h−N/2−1 ∂ϕ

∂xi

)
= A(u− uh, ĝz) = A(u− χ, ĝz − ĝz,h),(5.33)

where ĝz,h ∈ Sh is the finite element solution of ĝz

A(χ, ĝz − ĝz,h) = 0 ∀ χ ∈ Sh.(5.34)
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Using (5.33), inequality (3.12), and the result in Lemma 5.4, we have(
u− uh,−h−N/2−1 ∂ϕ

∂xi

)
(5.35)

≤ C‖|u− χ|‖W 1,∞
h

(Ω),z,s‖|ĝz − ĝz,h|‖W 1,1
h

(Ω),z,s

≤ C
(
lnh−1

)¯̄s ‖|u− χ|‖W 1,∞
h

(Ω),z,s.

From (5.30), (5.31), (5.35), and (5.36), the desired estimate (5.29) follows.
Lemma 5.4. Let ĝz ∈ H1

0 (Ω) and ĝz,h ∈ Sh satisfy (5.32) and (5.34). Then, for
0 ≤ s ≤ r it holds that

‖|ĝz − ĝz,h|‖W 1,1
h

(Ω),z−s ≤ C
(
lnh−1

)¯̄s
,(5.36)

where ¯̄s = 0 if 0 ≤ s < r and ¯̄s = 1 if s = r.
Proof. Let M > 1 and J be as before. Again, for notational convenience, set

Ê = ĝz − ĝz,h. Similar to (5.17), we have

‖|Ê|‖W 1,1
h

(Ω),z,−s ≤ CMN/2+s + CL̂,(5.37)

where

L̂ =
J∑
j=0

d
N/2+s
j h−s‖|Ê|‖H1

h
(Ωj).

Using (4.16), we obtain

L̂ ≤ CΘ(r − s) + C
J∑
j=0

d
s+N/2−1
j h−s‖Ê‖

L2(Ω
(1)
j

)
.(5.38)

The norm ‖Ê‖
L2(Ω

(1)
j

)
can be estimated in the same way as for ‖E‖

L2(Ω
(1)
j

)
in (5.24).

Thus we have

‖Ê‖
L2(Ω

(1)
j

)
≤ Chrd

1−r−N/2
j ‖|Ê|‖W 1,1

h
(Ω) + Ch‖|Ê|‖

H1
h
(Ω

(2)
j

)
,(5.39)

which implies

J∑
j=0

d
s+N/2−1
j h−s‖Ê‖

L2(Ω
(1)
j

)

≤ C

J∑
j=0

(h/dj)
r−s ‖|Ê|‖W 1,1

h
(Ω) + C

J∑
j=0

d
s+N/2−1
j h1−s‖|Ê|‖

H1
h
(Ω

(2)
j

)

≤ CΘ(r − s)‖|Ê|‖W 1,1
h

(Ω) + CMN/2+s + CL/M.

Hence, using the definition of L̂ and choosing M sufficiently large, we see that

L̂ ≤ CMN/2+s + CΘ(r − s) + CΘ(r − s)‖|Ê|‖W 1,1
h

(Ω).

Substituting this into (5.37), we get

‖|Ê|‖W 1,1
h

(Ω),z,−s ≤ CMN/2+s + CΘ(r − s) + CΘ(r − s)‖|Ê|‖W 1,1
h

(Ω).(5.40)
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Inequality (5.40) with s = 0 implies

‖|Ê|‖W 1,1
h

(Ω) ≤ CMN/2 + CΘ(r) + CΘ(r)‖|E|‖W 1,1
h

(Ω).(5.41)

By choosing M large enough such that CΘ(r) < 1/2, it follows from (5.41) that

‖|Ê|‖W 1,1
h

(Ω) ≤ CMN/2 + CΘ(r) ≤ C.(5.42)

Inserting (5.42) into (5.40), we obtain

‖|Ê|‖W 1,1
h

(Ω),z,−s ≤ CMN/2+s + CΘ(r − s) + CΘ(r − s) ≤ C (ln 1/h))
¯̄s
,

which proves the desired result (5.36).
Using the results in Theorems 5.1 and 5.3, we have the following corollaries.
Corollary 5.5. Let u ∈ W 1,∞

0 (Ω) ∩ W 1+r(Ω), uh ∈ Sh satisfy (2.9), and
0 ≤ s ≤ r. Then there is a constant C > 0 such that for any z ∈ Ω̄,

|(u− uh)(z)| ≤ Ch1+r
(
lnh−1

)s̄ ‖u‖W 1+r,∞(Ω),z,s,(5.43)

where s̄ is the same as in Theorem 5.1.
Proof. Estimate (5.43) follows immediately from (5.1) and the property

inf
χ∈Sh

‖|u− χ|‖W 1+r,∞
h

(Ω),z,s ≤ Chr‖u‖W 1+r,∞(Ω),z,s,(5.44)

which can be easily obtained from Proposition 2.1.
Corollary 5.6. Let u ∈ W 1,∞

0 (Ω) ∩W 1+r,∞(Ω), uh ∈ Sh satisfy (2.9), and
0 ≤ s ≤ r. Then there is a constant C > 0 such that for any z ∈ Ω̄,

|∇(u− uh)(z)| ≤ Chr
(
lnh−1

)¯̄s ‖u‖W 1+r,∞(Ω),z,s,(5.45)

where ¯̄s is the same is in Theorem 5.3.
Proof. Estimate (5.45) follows immediately from (5.29) and (5.44).
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[15] J. A. Nitsche, Über ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung
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Abstract. Time domain boundary integral formulations of transient scattering problems involve
retarded potential integral equations. Solving such equations numerically is both complicated and
computationally intensive, and numerical methods often prove to be unstable. Collocation schemes
are easier to implement than full finite element formulations, but little appears to be known about
their stability and convergence. Here we derive and analyze some new stable collocation schemes for
the single layer equation for transient acoustic scattering, and use (spatial) Fourier and (temporal)
Laplace transform techniques to demonstrate that such stable schemes are second order convergent.
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1. Introduction. The scalar integral equation for u(x, t) on Γ × (0, T )∫
Γ

u(x′, t−|x′−x|)
|x′−x| dx′ = a(x, t)(1.1)

is the single layer potential equation for transient acoustic scattering from the two-
dimensional surface Γ ⊂ R

3 [27, sect. 2.3]. Here a is given on Γ × (0, T ) for fixed
T > 0, and u and a satisfy the causality condition

u ≡ 0, a ≡ 0 for all t ≤ 0.(1.2)

Once the potential u has been calculated on Γ, the scattered field can be com-
puted anywhere in R

3. The time argument of the integrand in (1.1) is delayed or
retarded, and such equations are commonly called retarded potential integral equa-
tions (RPIEs). They also arise in boundary integral formulations of electromagnetic
scattering problems [2, 21, 28, 29, 30, 31].

Existence, uniqueness, and well-posedness results for (1.1) are given in [3, 19, 20,
27]. A similar argument to that used by Lubich [27, sect. 2.3] in the case that Γ is
a smooth, closed surface (based on results of Bamberger and Ha-Duong [3, Prop. 3])
can be used to deduce the following result from [19] when Γ is a flat plate. We use
the notation

Hm
∗ (0, T ) =

{
f
∣∣
(0,T ) : f ∈ Hm(R) with f ≡ 0 on (−∞, 0)

}
,

(this space is called Hm
0 in [27, Chap. 2]), where Hm(R) denotes the usual Sobolev

space of order m [1, Chap. 6].
Proposition 1.1 (Ha-Duong [19, Thm. 3], Lubich [27, sect. 2.3]). For tem-

porally smooth data a(·, t) ∈ H1/2(Γ) which vanish near t = 0, the RPIE (1.1) has
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a unique smooth solution u(·, t) ∈ H−1/2(Γ). Moreover there exists a constant C
depending only on T and Γ such that

‖u‖Hm∗ (0,T ;H−1/2(Γ)) ≤ C ‖a‖Hm+1
∗ (0,T ;H1/2(Γ)) (m ∈ R) .

The spaces Hm
∗ (0, T ;X) and their norms are as defined by Lions and Magenes

[25, Chaps. 1.1, 4.2]; namely

‖f‖2
Hm∗ (0,T ;X) =

m∑
k=0

‖f (k)‖2
L2(0,T ;X),(1.3)

where f (k) = ∂kf/∂tk and

‖f‖L2(0,T ;X) =

(∫ T

0

‖f‖2
X dt

)1/2

.

Various numerical methods for computing u have been reported in the literature.
Bamberger and Ha-Duong [3] describe a variational method for the problem when Γ is
closed and smooth, one that is based on the coercivity of a bilinear form corresponding
to a full Galerkin approximation in time and space. This approach has been extended
to deal with the case when Γ is a flat surface by Ha-Duong [19], who also gives a
comprehensive survey of the numerical analysis of such schemes in [20]. However, the
variational method is complicated (and costly) to implement since it involves calculat-
ing five-dimensional integrals over Γ×Γ×(0, T ), and collocation schemes are frequently
used for RPIEs in electromagnetic scattering problems [28, 29, 31]. In both approaches
it takes O(NT N

2
S) flops to compute the solution up to time T = NT ∆t, where NS

is the number of spatial degrees of freedom used in the approximation, so RPIE al-
gorithms are highly computationally intensive. Recently Michielssen and co-workers
[15, 16, 26] have introduced “fast methods” for time-dependent boundary integral

equations (BIEs) such as (1.1) that reduce the operation count to O(NT N
3/2
S logNS)

(for a two-level scheme), or O(NT NS log2NS) (multilevel). Although complicated
to implement, these make the BIE approach for time-dependent scattering problems
viable compared to methods based on solving PDEs in three-dimensional space.

The usefulness of collocation methods is often limited by the fact that they tend
to exhibit numerical instabilities (see, e.g., [22, sect. 5]). Fourier analysis [6, 7, 10]
indicates that the most likely cause of instability is the inaccurate approximation of
(1.1). Here we present two new stable collocation methods for the problem (1.1)–
(1.2). Our other main result is a proof that these schemes converge. The proof relies
on the spatial Fourier transform of (1.1) being a convolution equation in time, and
we use the Laplace and Z transform techniques of Lubich [27] to bound the Fourier
transform of the approximation error. We then use classical estimates derived by
Bramble and Hilbert [4] and Thomée [33] to bound the discrete norm of the error as
the mesh-size tends to zero. We believe that this is the first convergence proof for an
actual collocation RPIE scheme.

2. Preliminaries. We now describe the notation and some basic results used
in the manuscript. The stability and convergence analysis in sections 4–5 is for the
scalar RPIE (1.1) posed on an infinite flat surface, i.e., for∫

R
2

u(x′, t−|x′−x|)
|x′−x| dx′ = a(x, t) on R

2 × (0, T ) ,(2.1)

where u and a satisfy (1.2).



STABILITY AND CONVERGENCE OF RPIE COLLOCATION SCHEMES 1169

The singularity in the integrand can be removed by the polar coordinate trans-
formation x′ = x + R eθ, where eθ = (cos θ, sin θ) (see also [5, 9]). When Γ = R

2

causality (1.2) results in the RPIE∫ t

0

∫ 2π

0

u(x+R eθ, t−R) dθ dR = a(x, t).(2.2)

If Γ is finite, then the integral is over the appropriate region of (R, θ)-space (which
depends on x).

2.1. Continuous and discrete spatial Fourier transforms. The continuous
Fourier transform (CFT) of a function g ∈ L2(R2) is ĝ ∈ L2(R2) defined by

ĝ(ω) ≡
∫

R
2

g(x) e−ix·ω dx,

and the inverse transform is

g(x) =
1

4π2

∫
R

2

ĝ(ω) eix·ω dω.

Note that this definition of the CFT is that used by Bramble and Hilbert [4] and
differs from that of [1] by a factor of 2π. The CFT can be used to define the norm in
Hr(R2) when r ≥ 0:

‖g‖r = ‖(1 + ω)r ĝ‖F ≡ 1

2π

(∫
R

2

|(1 + ω)r ĝ(ω)|2 dω
)1/2

,(2.3)

where ω = |ω| (see [27, sect. 2.1]). When r = 0 this is the Parseval–Plancherel
identity. The discrete Fourier transform (DFT) of a function g evaluated at the nodes
of a uniform h× h space mesh in R

2 is denoted by g̃ and defined by

g̃(ω) = h2
∞∑

j,k=−∞
g(xj,k)e

−iω·xj,k(2.4)

for ω ∈ Sh = {(ω1, ω2) : |ω1|, |ω2| ≤ π/h}, where (j, k) ∈ Z
2 and xj,k = (jh, kh).

The function g̃ is 2π/h periodic in each component of ω. The DFT is defined for
g ∈ Hr(R2) with r > 1 [4, sect. 4] and satisfies the discrete analogue of Parseval’s
identity:

‖g̃‖Fh
= ‖g‖h,(2.5)

where

‖g̃‖Fh
=

(
1

4π2

∫
Sh

|g̃(ω)|2 dω
)1/2

is the discrete Fourier norm and

‖g‖h =

⎛⎝h2
∑
j,k

|g(xj,k)|2
⎞⎠1/2

is the discrete L2 norm.
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The following results due to Bramble and Hilbert [4] link the discrete and contin-
uous Fourier transforms of a function.

Proposition 2.1 (see [4, Theorem 5]). Let g ∈ Hr(R2) for r > 1. Then there
exists a constant C independent of h and g such that

‖g̃ − ĝ‖Fh
≤ Chr‖g‖r.(2.6)

Proposition 2.2 (Poisson sum formula [4, Theorem 6]). Let g ∈ Hr(R2) for
r > 1. Then

g̃(ω) =
∑
j,k

ĝ(ω + 2π(j, k)/h) a.e.(2.7)

2.2. Laplace and Z transforms in time. The Laplace transform of the causal
function f(t) (i.e., f(t) ≡ 0, t < 0) is

f̄(s) =

∫ ∞

0

f(t)e−st dt,

where s = σ + iη with σ > 0 and η ∈ R. Throughout the paper σ is always assumed
to be the same fixed positive constant. The Parseval Laplace identity is

‖e−σtf(t)‖L2(R+) =
1√
2π

(∫ ∞

−∞
|f̄(σ + iη)|2 dη

)1/2

.(2.8)

This is equivalent to the one-dimensional version of (2.3) applied to the causal function
e−σtf(t) with r = 0. It follows that if f ∈ Hm

∗ (R+), then

C

∫ ∞

−∞
(1+|s|)2m |f̄ |2 dη ≤ 2π

m∑
k=0

∥∥∥∥ ∂k∂tk (e−σt f(t))

∥∥∥∥2

L2(R+)

≤
∫ ∞

−∞
(1+|s|)2m |f̄ |2 dη,

(2.9)
where the constant C depends only on σ and m.

The Z transform is the discrete version of the Laplace transform defined by

Zf(s) =

∞∑
n=0

f(n∆t)e−sn∆t,(2.10)

where again s = σ + iη, but now η ∈ [−π/∆t, π/∆t]. The inversion formula is

f(n∆t) =
∆t

2πi

∫ π/∆t

−π/∆t
en∆t(σ+iη)Zf(σ + iη) dη(2.11)

for n ∈ N. The Z and Laplace transforms are related by the Poisson sum formula

∆t Zf(s) =
∞∑

k=−∞
f̄

(
s+ i

2πk

∆t

)
,(2.12)

a one-dimensional version of (2.7), valid for e−σtf(t) ∈ Hr(R+) with r > 1/2.
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2.3. Fourier transformed RPIE. We suppose that a(·, t), u(·, t) ∈ L2(R2) for
t ∈ (0, T ) and take the CFT of the RPIE (2.2). This gives the first kind convolution
Volterra integral equation

2π

∫ t

0

û(ω, t−R) J0(ωR) dR = â(ω, t) for ω ∈ R
2, t ∈ (0, T ),(2.13)

where J0 is the first kind Bessel function of order zero. We use the identity [18,
sect. 8.41]

J0(z) =
1

2π

∫ 2π

0

eiz sin θ dθ(2.14)

to obtain the integral equation.
The results of [27, sect. 2.1] apply to give the following result for the infinite flat

surface, analogous to Proposition 1.1 for the finite surface.
Lemma 2.3. Suppose that a ∈ Hm+1

∗
(
0, T ;Hr+1(R2)

)
for integer m ≥ 0 and r ∈

[0,∞). Then the solution u(x, t) defined by (2.17) satisfies u ∈ Hm
∗
(
0, T ;Hr(R2)

)
.

Proof. We essentially use the operator version of [27, Lemma 2.1] to obtain this
result. We first extend the range of definition of a in time from (0, T ) to (0,∞) so
that

‖a‖Hm+1
∗ (R+;Hr+1(R2)) ≤ C‖a‖Hm+1

∗ (0,T ;Hr+1(R2))(2.15)

(see, e.g., [1, Thm. 6.3.5]). Then extending the definition of the convolution (2.13) to
R

+ and taking the Laplace transform in time gives

2π√
ω2 + s2

¯̂u(ω, s) = ¯̂a(ω, s),(2.16)

where the overbar denotes Laplace transform in t, and s is the Laplace transform
parameter. Hence

¯̂u(ω, s) =

√
ω2 + s2

2π
¯̂a(ω, s)(2.17)

and so

|¯̂u(ω, s)|2 ≤ ω2 + |s|2
4π2

|¯̂a(ω, s)|2 ≤ (1 + ω)2(1 + |s|)2
4π2

|¯̂a(ω, s)|2.(2.18)

It follows from definition (1.3) that

‖u‖2
Hm∗ (0,T ;Hr(R2)) ≤ e2σT

m∑
k=0

∫ ∞

0

e−2σt‖u(k)(·, t)‖2
Hr(R2) dt ≡ I1.

The characterization (2.3) of Hr(R2) in terms of Fourier transforms gives

I1 =
e2σT

4π2

m∑
k=0

∫ ∞

0

∫
R

2

e−2σt(1 + ω)2r|û(k)(ω, t)|2 dω dt

and reversing the order of integration and using the Laplace Parseval equality (2.8)
result in

I1 =
e2σT

8π3

m∑
k=0

∫
R

2

∫
R

(1 + ω)2r|s|2k|¯̂u(ω, s)|2 dη dω.
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Now using the inequality (2.18) and reversing the steps above we get

I1 ≤ e2σT

8π5

m+1∑
k=0

∫
R

2

∫
R

(1 + ω)2r+2|s|2k|¯̂a(ω, s)|2 dη dω

=
e2σT

π2

m+1∑
k=0

∫ ∞

0

e−2σt‖a(k)(·, t)‖2
Hr+1(R2) dt ≤

e2σT

π2
‖a‖2

Hm+1
∗ (R+;Hr+1(R2))

.

Finally we use the extension result (2.15) to get

‖u‖Hm∗ (0,T ;Hr(R2)) ≤
√
I1 ≤ C ‖a‖Hm+1

∗ (0,T ;Hr+1(R2)),

where C depends only on m, r, σ, and T , and the result follows.
We also require the following pointwise bound on û.
Lemma 2.4. Under the conditions of the previous lemma, there exists a constant

C such that

|û(ω, t)| ≤ eσT√
2π

‖e−σtû(ω, ·)‖H1(R+) ≤ C (1 + ω) ‖â(ω, ·)‖H2(R+)

for t ∈ (0, T ).
Proof. The first inequality follows from the standard result

|f(t)| ≤ 1√
2π

‖f‖H1(R+)(2.19)

[1, Ex. 6.4.5] applied with f(t) = e−σtû(ω, t). Multiplying (2.18) by (1 + |s|)2, where
s = σ + iη, and using the norm equivalence (2.9), gives

‖e−σtû(ω, t)‖H1(R+) ≤ C1 (1 + ω)‖e−σtâ(ω, t)‖H2(R+) ≤ C2 (1 + ω)‖â(ω, ·)‖H2(R+)

for constants C1 and C2, which results in the second inequality.

3. Algorithms. Because we are primarily interested in the analysis of RPIE
algorithms here, we concentrate on the case Γ = R

2. The restriction to finite Γ
should be obvious. The RPIE (2.1) is approximated on a square space grid of side h
and uniformly spaced time levels tn = n∆t for n ∈ Z

+ in terms of piecewise constant
or linear space and time basis functions, i.e., the approximate solution is expanded as

u(x, t) ≈ U(x, t) =
∑
m≥1

∑
j,k

Umj,k φ
[α]
j (x)φ

[α]
k (y)ψ[β]

m (t)

for x = (x, y) ∈ R
2, where α, β ∈ {0, 1} indicate the orders of the space and time

basis functions respectively. The spatial basis functions are defined by

φ
[α]
j (x) = φ[α](x/h− j),

where

φ[0](z) =

{
1 if |z| < 1/2,
0 otherwise

and φ[1](z) =

{
1 − |z| if |z| < 1,
0 otherwise

are the standard constant “pulse” and linear “hat” basis functions. The basis func-
tions in time are

ψ[0]
m (t) = φ[0](t/∆t−m+ 1/2) and ψ[1]

m (t) = φ[1](t/∆t−m).
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When the temporal basis functions are piecewise linear (resp., constant) the approx-
imate solution U(x, t) is evaluated at time t = tn (resp., t = tn−1/2), where n is an
integer. Hence the coefficients Unj,k correspond to the approximate solution at time
t = (n− (1 − β)/2)∆t and

U(x, tn−(1−β)/2) =
∑
j,k

Unj,k φ
[α]
j (x)φ

[α]
k (y) .

Note that the approximate solution automatically satisfies the causality condition
U(x, t) = 0 for t ≤ 0.

We shall consider the four schemes denoted by SαTβ, for α, β ∈ {0, 1} to indicate
the degree of the basis functions in space (“S”) and time (“T”). They are obtained by
substituting U for u in the RPIE (2.1), evaluating (collocating) at each space mesh
node x = xp,q and time level t = tn, and carrying out all the required integrations
exactly. This can be written as

a(xp,q, t
n) =

∫
R

2

U(x′ + xp,q, t
n − |x′|)

|x′| dx′ =

n−1∑
m=0

∑
j,k

Cmj,k U
n−m
p+j,q+k,(3.1)

where the coefficients

Cmj,k =

∫
R

2

φ
[α]
j (x′)φ[α]

k (y′)ψ[β]
m (|x′|)

|x′| dx′(3.2)

are evaluated exactly. Because of the finite support of the spatial and temporal basis
functions, Cmj,k is zero unless

∣∣|xj,k| − tm−(1−β)/2
∣∣ ≤ (1+β)∆t/2+(1+α)h/

√
2. Also,

it follows from the definition of the basis functions that

Cmj,k = Cmk,j = Cm−j,k = Cmj,−k.

The approximation scheme can hence be written as

n−1∑
m=0

Q
mUn−mp,q = a(xp,q, t

n),(3.3)

where Q
m =

∑
j,k C

m
j,k S

j
x S

k
y for m ≥ 0 are discrete operators written in terms of unit

shift operators Sx and Sy defined by Sjx Up,q = Up+j,q, S
k
y Up,q = Up,q+k.

The sum can be rearranged to give

Q
0Unp,q = a(xp,q, t

n) −
n−1∑
m=1

Q
n−mUmp,q for n ≥ 1

and solved at successive time-levels, provided the difference operator Q
0 is invertible.

We examine this and other aspects of these schemes in the next section.

4. Stability. We use Fourier methods developed in [6, 7, 10] to analyze the
stability of each of the schemes of the previous section. The analysis is for the RPIE
(2.1) on an infinite uniform space mesh with uniform time steps, and is analogous
to a von Neumann stability analysis for a PDE approximation. Results for the more
general RPIE (1.1) approximated on nonuniform grids cannot be obtained this way.
However it is clear that infinite mesh stability is necessary for a scheme to be stable
in more general circumstances as the mesh is refined [6, sect. 4].
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4.1. DFT of the schemes. Using definition (2.4), the DFT of the difference
equation (3.3) over the space mesh node points is

n−1∑
m=0

qm(ω) Ũn−m(ω) = ã(ω, tn)(4.1)

for all ω ∈ Sh and n ≥ 1, where the functions qm(ω) are the discrete transforms of
the difference operators Q

m and are given by

qm(ω) =
∑
j,k

Cmj,k e
ih(jω1+kω2) for m ≥ 0,(4.2)

where the Cmj,k are defined in (3.2). If q0(ω) 
= 0 then the solution of the scalar
convolution sum equation (4.1) is

Ũn(ω) =
1

q0(ω)

n∑
m=1

pm(ω) ã(ω, tn−m+1),(4.3)

where the coefficients pn are defined recursively for all ω ∈ Sh by

p1(ω) = 1 , pn(ω) =
−1

q0(ω)

n−1∑
m=1

qm(ω) pn−m(ω) for n ≥ 2.(4.4)

The assumption that q0(ω) 
= 0 for all ω ∈ Sh is equivalent to the invertibility of
the difference operator Q

0 [8, 14]. The following two lemmas provide more information
about q0 and the other qm.

Lemma 4.1. The coefficients qm for scheme SαTβ defined in (4.2) satisfy

qm(ω) = 2π
∑
j,k

Φ[α](hω1 + 2πj) Φ[α](hω2 + 2πk) Imj,k(ω),(4.5)

where

Φ[0](z) = 2 sin(z/2)/z , Φ[1](z) = 2(1 − cos z)/z2(4.6)

are the Fourier transforms of the basis functions φ[α](x) defined in section 3 and

Imj,k(ω) =

∫ ∞

0

ψ
[β]
m∗(R) J0 (R |ω + 2π(j, k)/h|) dR for m ≥ 0,(4.7)

where m∗ = m+ 1 − β.
Proof. Recall the labelling of the schemes used in section 3: α, β ∈ {0, 1} indicate

the order of the space and time basis functions respectively. We first substitute the
approximate solution U for u in the left-hand side of the RPIE (2.2) at time t = tn

and use this to define

A(x, tn) =

n−1∑
m=0

∑
j,k

Un−mj,k

∫ ∞

0

ψ
[β]
m∗(R)

∫ 2π

0

φ
[α]
j (x+R cos θ)φ

[α]
k (y+R sin θ) dθ dR.

Note that it follows from the numerical scheme (3.1) that A(xp,q, t
n) = a(xp,q, t

n) on
the grid, resulting in

Ã = ã.(4.8)
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Taking the CFT of A with respect to x gives

n−1∑
m=0

∑
j,k

Un−mj,k

∫ ∞

0

ψ
[β]
m∗(R)

∫ 2π

0

Φ[α](hω1) Φ[α](hω2) e
iω·(h(j,k)+Reθ) dθ dR = Â(ω, tn),

which can be rearranged as

2π
n−1∑
m=0

Ũn−m(ω)Φ[α](hω1) Φ[α](hω2)

∫ ∞

0

ψ
[β]
m∗(R)J0(ωR)dR = Â(ω, tn)

using the definition (2.4) and the Bessel function identity (2.14). Finally we apply
the Poisson sum formula (2.7) to both sides of this equation and use (4.8) and the
periodicity of the DFT Ũm(ω + 2π(j, k)/h) = Ũm(ω) to obtain

2π
∑
j,k

n−1∑
m=0

Ũn−m(ω)Φ[α](hω1 + 2πj) Φ[α](hω2 + 2πk)Imj,k(ω) = ã(ω, tn).

The result follows by comparing this with (4.1).
Lemma 4.2. The coefficient q0(ω) ≥ C∆t for all ω ∈ Sh where C > 0 depends

only on the mesh ratio ∆t/h (which is a fixed number in the scheme).
Proof. We first show that each term in the summation (4.5) for q0 is nonnegative

for each of the four schemes under consideration. Clearly Φ[α](hω1 + 2πj) ≥ 0 for
all j ∈ Z, ω ∈ Sh by definition (4.6). Also, (4.7) with m = 0 can be written as
I0
j,k = ω−1

j,kF
[β](∆tωj,k), where ωj,k = |ω + 2π(j, k)/h|,

F [0](t) =

∫ t

0

J0(s) ds and F [1](t) =

∫ t

0

(1 − s/t)J0(s)ds =

∫ t

0

s−1J1(s) ds.

It follows from results in [32, sect. 5] that F [β](t) > 0 for β ∈ {0, 1} and all t > 0, and
hence each term in the summation (4.5) for q0 is nonnegative.

Pulling out the term with j = k = 0 and using the definition (4.6) then gives

q0(ω) ≥ 2πΦ[α](hω1) Φ[α](hω2) I
0
0,0(ω) ≥ 2π(2/π)2(α+1) I0

0,0(ω)

for ω ∈ Sh, β ∈ {0, 1} where I0
0,0(ω) = ω−1F [β](ω∆t). The turning points of the

functions F [β] occur at the zeros zβ,l of the Bessel function Jβ , and following [32,
sect. 5], it can be shown that F [β](t) ≥ F [β](zβ,2) for all t ≥ zβ,1. After a little
manipulation we have I0

0,0(ω) ≥ ∆tF [β](zβ,2)/max(zβ,1,
√

2π∆t/h) where ∆tω ≤√
2π∆t/h for all ω ∈ Sh.

4.2. Stability results. To define stability we follow [6] and investigate the
growth of perturbations in the solution of the homogeneous problem for which a ≡ 0.
Because of linearity, it is enough to consider the propagation of nonzero initial data
U1 
= 0. The homogeneous stability problem is thus (3.3) with a ≡ 0 and U1 a given,
nonzero mesh function, i.e.,

Q
0Unp,q = −

n−1∑
m=1

Q
mUn−mp,q(4.9)

for n ≥ 2 with U1
p,q 
≡ 0.
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Fig. 4.1. Stability plot for each of the four schemes SαTβ. The graph shows
min(maxn,j,k{|pn(ωj,k)|}, 1e10) plotted against the mesh ratio ρ = ∆t/h, where the maximum is
taken over timesteps n ≤ min(1000, 1000/ρ) and frequencies ωj,k = 0.1π (j, k)/h for 0 ≤ j, k ≤ 10.

Definition 4.3. The numerical scheme (4.9) is said to be stable on (0, T ) if
there exists a constant C independent of n and h such that

‖Un‖h ≤ C ‖U1‖h

whenever tn < T , for all functions U1 for which ‖U1‖h <∞.
It is straightforward to show that stability corresponds to the existence of a con-

stant C such that |pn(ω)| ≤ C for all n and all ω ∈ Sh (details are given in [6]).
Unfortunately there appears to be no obvious way to check this condition by analysis,
and we resort to testing it numerically for many individual frequencies ω ∈ Sh to de-
termine the stability of the four schemes. Results are shown in Figure 4.1 and indicate
that the two schemes based on piecewise constant spatial basis functions (S0T0 and
S0T1) are unstable for many values of mesh ratio, whereas the two schemes based on
piecewise linear spatial basis functions (S1T0 and S1T1) appear stable over the range
of mesh ratios tested. Stability over a wide range of mesh ratios is very important,
since practical calculations over general surfaces may involve space mesh elements of
vastly different sizes. Hence we do not consider schemes S0T0 and S0T1 further here.

It is shown in [11] that removing the singularity in the RPIE integrals (1.1) by us-
ing local polar coordinates (see also [5, 9]) can also lead to stable collocation schemes.
The polar approximation based on the trapezoidal rule in R and arbitrarily accurate
integration in θ for which the temporal and spatial basis functions are piecewise linear
also appears stable over all values of mesh ratio considered [11]. The disadvantage
of this scheme is that the transformed region of integration has a complicated shape
that depends on x when Γ is finite and so the scheme is not straightforward to imple-
ment in practice. We note also that the collocation RPIE scheme due to Rynne and
Smith [31] (which uses piecewise constant basis functions in space, piecewise linears in
time, and the midpoint quadrature rule to evaluate the coefficients Cmj,k) can be made
stable at any value of mesh ratio by averaging in time [7, 10, 31] (which filters out
high frequency instabilities). However, this is not entirely satisfactory because, for
example, electromagnetic scattering problems involve more complicated RPIEs and
hence are harder to stabilize [8]. We believe that a minimum requirement for a scalar
RPIE scheme to be generally useful is that it should be stable over a wide range of
mesh ratio when applied on an infinite flat plate without recourse to any filtering.
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4.3. Further properties of the Fourier transformed schemes. This sub-
section lays the groundwork for the convergence analysis of S1T0 and S1T1, which
appear stable for a wide range of mesh ratio values. We make precise the relation-
ship between the stability coefficients qm for the schemes and appropriate quadrature
approximations of the Fourier transformed RPIE (2.13). The connection between qm
for piecewise linear in time RPIE schemes (like S1T1) and the trapezoidal rule ap-
proximation of (2.13) was first described in [10]. The qm for the piecewise constant
in time scheme S1T0 are similarly connected to the midpoint rule approximation of
(2.13).

Letting û
m+1/2
∆t (ω) denote the approximation of û(ω, tm+1/2) obtained by using

the composite midpoint rule for (2.13) with spacing ∆t, we have

2π∆t
n−1∑
m=0

J0(ωt
n−m−1/2) û

m+1/2
∆t (ω) = â(ω, tn).

Comparing this with the DFT equation (4.1) and matching the qm and Bessel func-
tion terms gives qm(ω) ∼ 2π∆tJ0(ωt

m+1/2) for m ≥ 0. Similarly, comparing the
coefficients for S1T1 with the trapezoidal rule approximation of (2.13) gives q0(ω) ∼
π∆tJ0(0) and qm(ω) ∼ 2π∆tJ0(ωt

m) for m ≥ 1 [10]. To see just how close this match
is we define αm(ω) for each scheme by

α0(ω) ≡ J0(ω t
(1−β)/2)/(β + 1) − q0(ω)/(2π∆t),(4.10a)

αm(ω) ≡ J0(ω t
m+(1−β)/2) − qm(ω)/(2π∆t) for m ≥ 1,(4.10b)

where we recall that β = 0 for S1T0 and β = 1 for S1T1. The following result states
the small hω behavior of the αm.

Lemma 4.4. There exists a constant C independent of h, ω, and m such that the
coefficients αm for S1T0 and S1T1 satisfy

|αm(ω)| ≤ C(hω)2(4.11)

for all m ≥ 0 and ω ∈ Sh.
Proof. We prove the result for scheme S1T0 and note that the details for S1T1

are similar. Substituting the qm equation (4.5) for S1T0 into the definition (4.10) of
αm gives

αm(ω) = J0(ω t
m+1/2) − 1

∆t

∑
j,k

Φ[1](hω1 + 2πj) Φ[1](hω2 + 2πk) Imj,k(ω)

= (T1 − T2 − T3 − T4)/∆t,

where, using the definition (4.6) of Φ[1],

T1 = (1 − Φ[1](hω1) Φ[1](hω2)) I
m
0,0(ω) + 2∆tJ0(t

m+1/2ω) − Im0,0(ω),

T2 = 2 Φ[1](hω1) (1 − cos(hω2))
∑
k �=0

Im0,k(ω)

(hω2 + 2πk)2
,

T3 = 2 Φ[1](hω2) (1 − cos(hω1))
∑
j �=0

Imj,0(ω)

(hω1 + 2πj)2
, and

T4 = 4 (1 − cos(hω1)) (1 − cos(hω2))
∑
j,k �=0

Imj,k(ω)

(hω1 + 2πj)2(hω2 + 2πk)2
.
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Since |ψ[0]
m (z)| ≤ 1 and |J0(z)| ≤ 1 for all z ∈ R it follows from definition (4.7) that

|Imj,k(ω)| ≤ ∆t for all (j, k) ∈ Z
2 and m ≥ 0. It then follows from the inequalities

|1 − cos z| ≤ z2/2 and |Φ[1](z)| ≤ 1, and the boundedness of the sum
∑
k �=0 k

−2 that

|T2|, |T3| ≤ C h2ω2∆t and |T4| ≤ C (hω1)
2(hω2)

2∆t, and hence is also bounded by
C h2ω2∆t for ω ∈ Sh.

Using standard results for the midpoint quadrature rule [12] gives

Im0,0(ω) = ∆tJ0(t
m+1/2ω) + ω2∆t3J ′′

0 (ωRm)/24

for some Rm ∈ (tm, tm+1), and hence∣∣∣Im0,0(ω) − ∆tJ0(t
m+1/2ω)

∣∣∣ ≤ C∆t(hω)2

since |J ′′
0 (z)| is bounded for all z ∈ R. It thus follows from the triangle inequality and

the additional bound |1 − Φ[1](z)| ≤ z2/12 that |T1| ≤ C h2ω2∆t.
This result means that the scaled coefficients qm(ω) (which are DFTs of the differ-

ence operators Q
m) are second order accurate approximations of the Bessel functions

in the Fourier transformed RPIE (2.13). We use this to establish convergence of the
schemes S1T0 and S1T1 in the next section.

The midpoint and trapezoidal quadrature rules are both known to give stable
schemes for Volterra equations like (2.13), although the leading error term for the
trapezoidal rule solution is oscillatory [17, 23, 24]. It is also known [17, 24] that all
higher order Newton–Cotes quadrature rules give rise to unstable approximations of
(2.13). Hence one would need to be careful in constructing approximations of (2.1)
that use temporal basis functions of higher degree, in case they give rise to the same
instabilities.

5. Convergence. In this section we demonstrate that the schemes S1T0 and
S1T1 for the infinite flat plate problem (2.1) are convergent for values of the mesh
ratio ∆t/h at which they are stable. We work with spatially Fourier transformed
quantities and also use Laplace and Z transforms in time to obtain the results. The
proof relies on the Fourier transformed RPIE (2.13) being a convolution equation
in time and we use techniques due originally to Lubich [27] to obtain bounds for the
Fourier transform of the approximation error. We then use arguments similar to those
used to prove convergence of approximation schemes for a linear PDE by Thomée [33]
(similar techniques are used for hyperbolic equations in [13]). This type of convergence
analysis relies crucially on estimates given by Bramble and Hilbert [4] and Thomée
[33]. The analysis of schemes for retarded potential integrals is much more complicated
than those for PDEs, and much of this section is devoted to formulating the problem
in such a way so as to use these estimates.

Throughout this section, C will denote a generic constant that can depend upon
the mesh ratio, σ, T , and the norm exponents m and r but is independent of u, a,
and h.

5.1. Hypotheses and definitions. We make the following assumptions on the
problem and numerical solution.

Hypotheses. Suppose that
(H1) the incident field a ∈ H5+β

∗ (0, T ;H6+β(R2));
(H2) numerical scheme S1Tβ for (2.1) is stable at the mesh ratio ρ = ∆t/h ∈

(0,∞), and the mesh ratio remains fixed as ∆t and h go to zero.
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As in section 3, the approximate solution corresponding to S1Tβ for β ∈ {0, 1}
is denoted by U(x, t). We explicitly need to make assumption (H2) because stability
for these schemes has only been verified numerically and not proved rigorously. Note
that it follows from (H1) and Lemma 2.3 that u ∈ H4+β

∗ (0, T ;H5+β(R2)).
We now define convergence for an RPIE scheme, and in the subsequent lemma we

show what quantities need to be bounded in order to prove that the schemes converge.
Definition 5.1. A scheme for the RPIE (2.1) is convergent on (0, T ) if the

difference between the exact and approximate solutions ‖u(·, t) − U(·, t)‖h → 0 as
h→ 0 whenever t < T .

Lemma 5.2. For RPIE (2.1) with a(x, t) satisfying (H1), schemes S1Tβ for
β ∈ {0, 1} satisfy

‖u(·, tn∗) − U(·, tn∗)‖h ≤ Chr‖a‖H2∗(0,T ;Hr+2(R2)) + ‖εn‖Fh

for 1 < r ≤ 4 + β, where tn∗ = tn−(1−β)/2 and εn satisfies the convolution equation

n∑
m=1

qn−m(ω) εm(ω) = En(ω)(5.1)

with

En(ω) = 2π

∫ tn

0

J0(ω(tn−R)) û(ω, R) dR−
n∑

m=1

qn−m(ω) û(ω, tm−(1−β)/2)(5.2)

and the qm given by (4.5). Hence they are convergent if ‖εn‖Fh
→ 0 as h→ 0.

Proof. It follows from the discrete Parseval identity (2.5) and the triangle inequal-
ity that

‖u(·, tn∗) − U(·, tn∗)‖h ≤ ‖ũ(·, tn∗) − û(·, tn∗)‖Fh
+ ‖Ũn − û(·, tn∗)‖Fh

.

The first term on the right-hand side above can be bounded using Proposition 2.1.
When r > 1 this gives

‖û(·, t) − ũ(·, t)‖Fh
≤ Chr‖u(·, t)‖Hr(R2)

≤ Chr‖u‖H1∗(0,T ;Hr(R2))

≤ Chr‖a‖H2∗(0,T ;Hr+1(R2))(5.3)

from Lemma 2.3.
We now examine the second term. Comparing the Fourier transformed RPIE

(2.13) at t = tn with the DFT of the numerical scheme (4.1) gives

n∑
m=1

qn−m(ω) (Ũm(ω) − û(ω, tm∗)) = ãn(ω) − ân(ω) + En(ω) .

Setting

βm(ω) = Ũm(ω) − û(ω, tm∗) − εm(ω) ,

it follows from the definition (5.1) of εm that

n∑
m=1

qn−m(ω)βm(ω) = ãn(ω) − ân(ω) .(5.4)
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The triangle inequality gives

‖Ũn − û(·, tn∗)‖Fh
≤ ‖εn‖Fh

+ ‖βn‖Fh

and so it remains only to show that ‖βn‖Fh
→ 0 as h→ 0.

Inverting the convolution sum (5.4) using the formula (4.3) gives

βn = q−1
0

n∑
m=1

pn+1−m (ãm − âm) ,

where the pm are defined by (4.4). The scheme is stable by hypothesis (H2), which
means that the pn are bounded, and hence it follows from the triangle inequality and
the lower bound on q0 given in Lemma 4.2 that

‖βn‖Fh
≤ C h−1

n∑
m=1

‖ãm − âm‖Fh

for some constant C. Hypothesis (H1) and Proposition 2.1 together give

‖ã(·, t) − â(·, t)‖Fh
≤ C hr+2 ‖a(·, t)‖Hr+2(R2) ≤ C hr+2 ‖a‖H1∗(0,T ;Hr+2(R2))

when t < T , for any r > −1. Thus

‖βn‖Fh
≤ C h−1

n∑
m=1

‖ãm − âm‖Fh
≤ C hr ‖a‖H1∗(0,T ;Hr+2(R2))

since n ≤ T/(ρh) (where ρ is the mesh ratio). Combining this with inequality (5.3)
completes the proof.

The rest of this section is devoted to deriving two different bounds on εn; the first
bound is valid for all ω in Sh and the second when hω is small. These bounds are
then combined to show that ‖εn‖Fh

= O(h2) as h→ 0, and hence that we can use the
previous lemma with r = 2 to prove second order convergence for the schemes S1Tβ.

5.2. Bound on εn for all ω ∈ Sh. Here we combine a bound on the size of
the error term En(ω) defined in (5.2) with the stability hypothesis (H2) in order to
bound εn.

Lemma 5.3. Under hypotheses (H1) and (H2), there exists ζ with (1+ω)2ζ(ω) ∈
L2(R2) such that

|εn(ω)| ≤ ζ(ω) when tn < T .(5.5)

Proof. Using (4.10) to replace the qm terms in (5.2) gives

En
2π

=

∫ tn

0

J0(ω(tn−R)) û(ω, R) dR− ∆t

n∑
m=1

[
J0(ωt

n−m∗) − αn−m(ω)
]
û(ω, tm∗) .

This is the error in the midpoint (resp., trapezoidal) rule approximation of the integral
when β = 0 (resp., 1), with additional terms involving the α’s. It follows from standard
results for these quadrature rules that if tn < T then∣∣∣∣En2π

∣∣∣∣ ≤ Ch2

∣∣∣∣ ∂2

∂R2
J0(ω(tn−R)) û(ω, R)

∣∣∣∣
R=µ

+ ∆t

n∑
m=1

|αn−m(ω) û(ω,m∗ )|
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for some µ ∈ (0, tn). Hence, using the bound (4.11) on the size of the |αm|, and the
fact that J0(z), J

′
0(z), and J ′′

0 (z) are all bounded it follows that

|En| ≤ Ch2(ω2|û(ω, µ)| + ω|û(1)(ω, µ)| + |û(2)(ω, µ)|)

and the pointwise bound from Lemma 2.4 then gives

|En| ≤ Ch2(1 + ω)3‖â(ω, ·)‖H4(0,T ).(5.6)

Now inverting the convolution sum (5.1) and using an identical argument to Lemma 5.2,
we get

|εn| ≤ C h−1
n∑

m=1

|Em| ≤ C (1 + ω)3‖â(ω, ·)‖H4(0,T ) ≡ ζ(ω)

for tn ≤ T . Hypothesis (H1) guarantees that (1 + ω)2ζ(ω) ∈ L2(R2) as
required.

5.3. Bound on εn for small hω. This is the most technical part of the conver-
gence proof. We need to get an O(h2) bound on ‖εn‖ when hω is sufficiently small.
Taking the Z transform (2.10) of the convolution sum (5.1) gives

Zq(ω, s)Zε(ω, s) = ZE(ω, s)

and hence

|Zε(ω, s)| = |Zq(ω, s)|−1|ZE(ω, s)|

(for Zq 
= 0) where s = σ+ iη and η ∈ [−π/∆t, π/∆t]. Ideally, we would obtain upper
bounds on 1/|Zq| and |ZE|, use them to bound |Zε|, and use the inverse Z transform
to bound |εn|. Unfortunately this is not straightforward, but we can make progress
by a less direct route. We first use (4.10) and Lemma 4.4 to obtain the following
information on the Z transform of the qm.

Lemma 5.4. We can write qm = qam + qbm for all 0 ≤ m∆t ≤ T , where

|qbm| ≤ C∆t(hω)2

and the sequence qam is defined through its Z transform

Zqa(ω, s) = 2π

⎧⎪⎪⎨⎪⎪⎩
es∆t/2

(
1√

s2 + ω2
− 1

s
+

∆t

es∆t/2 − e−s∆t/2

)
, β = 0,

1√
s2 + ω2

− 1

s
+

∆t

2

(
es∆t + 1

es∆t − 1

)
, β = 1.

Proof. The two cases are very similar so we just consider β = 0. From Lemma 4.4
we have qm = 2π∆tJ0(ωt

m+1/2)−2π∆tαm with |αm| ≤ C(hω)2. We write the Bessel
function term as J0(ωt) = f(t) + 1, where f(t) ≡ J0(ωt)− 1 and take its Z transform
to get

∞∑
m=0

J0(ωt
m+1/2) e−sm∆t =

∞∑
m=0

f(tm+1/2) e−sm∆t +
1

1 − e−s∆t
.(5.7)
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(The reason for working with f rather than directly with J0(ωt) is that f(0) = 0.)
Splitting the sum

∑∞
m=0 fm/2 e

−sm∆t/2 into odd and even terms and rearranging give

∞∑
m=0

f(ωtm+1/2) e−sm∆t = es∆t/2

( ∞∑
m=0

f(ωtm/2) e−sm∆t/2 −
∞∑
m=0

f(ωtm) e−sm∆t

)
.

The Laplace Poisson sum formula (2.12) with spacing ∆t is

∆t

∞∑
m=0

f(ωtm)e−sm∆t =
1√

s2 + ω2
− 1

s
+
∑
l �=0

θl(s, ω,∆t),

where

θl(s, ω,∆t) =
1√

s2l + ω2
− 1

sl
for sl = s+ i

2πl

∆t
.

Substituting this and the similar Poisson sum formula with spacing ∆t/2 into the
above identity for f gives

∆t

∞∑
m=0

f(ωtm+1/2) e−sm∆t = es∆t/2
(

1√
s2 + ω2

− 1

s
+ Θ

)
,

where

Θ =
∑
l �=0

{2θl(s, ω,∆t/2) − θl(s, ω,∆t)}.

It then follows from (5.7) that

2π∆t

∞∑
m=0

J0(ωt
m+1/2)e−sm∆t = Zqa(ω, s) + Zκ,(5.8)

where {κm} is the inverse Z transform of 2πes∆t/2Θ.
It can be shown that if hw < 1/(ρ

√
2) and h is sufficiently small, then |Θ| ≤

C∆t (hω)2. Hence it follows from the inverse transform formula (2.11) that

|κn| ≤ ∆t eσ(n+1/2)∆t

∫ π/∆t

−π/∆t
|Θ|dη ≤ CeTσ∆t(hω)2

for n∆t ≤ T . The result then follows upon comparing (5.8) with (4.10) and using the
bound on |αm| given in Lemma 4.4.

We next obtain upper bounds on 1/|Zqa|.
Lemma 5.5. If ω∆t ≤ π/

√
2 and ∆t is small enough, then the Z transforms

defined in the previous lemma satisfy

1

|Zqa| ≤
{

2
π |√s2 + ω2| , β = 0,

(2πσ)−1|s2 + ω2| , β = 1,

where s = σ + iη and η ∈ [−π/∆t, π/∆t].
Proof. The two cases work quite differently, and a great deal of algebraic manip-

ulation (the details are omitted) is required to obtain the results.
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Case β = 0. Set

P =
1√

s2 + ω2
and Q =

∆t

(es∆t/2 − e−s∆t/2)
− 1

s
.

Then

|Zqa| = 2π eσ∆t/2 {|P +Q|} ≥ 2π eσ∆t/2 {|P | − |Q|}.
It can be shown that |Q| is monotonic increasing in η∆t for η∆t ∈ [0, π], and hence

|Q| ≤ |Q|η∆t=π =
∆t

π

√
1 − π + π2/4 +O(∆t2).

So if ∆t is sufficiently small, then |Q| ≤ 3∆t/(5π). It can also be shown that |P | ≥
4∆t/(5π) if ∆t is sufficiently small and ω∆t ≤ π/

√
2. Hence under these conditions

we have |Q| ≤ 3|P |/4 and so

|Zqa| ≥ π eσ∆t/2 |P |/2 ≥ π|P |/2,
and the result follows from the definition of P .

Case β = 1. We use P as above and define

R =
∆t

2

(es∆t + 1)

(es∆t − 1)
− 1

s
.

Then

|Zqa| = 2π |P +R| ≥ 2π(P +R) = 2π {(P ) + (R)}.
It can be shown that

(P ) ≥ σ

|s2 + ω2| > 0 and (R) ≥ 0,

from which the result follows immediately.
We split the error from (5.1) into two parts, εn = εan + εbn, satisfying

n∑
m=0

qan−m(ω)εam(ω) = En(ω) and

n∑
m=0

qn−m(ω)εbm(ω) = −
n∑

m=0

qbn−m(ω)εam(ω),

where qm = qam + qbm as defined in Lemma 5.4, and we have taken all sums to start
from m = 0 rather than m = 1 for ease of manipulation (the m = 0 terms are zero
by causality). We first bound |εbm| in terms of |εam|, so that the problem reduces to
finding a bound on |εam|. Inverting the second convolution sum gives

εbn =
−1

q0

n∑
m=0

pn−m
m∑
k=0

qbm−kε
a
m,

where |pm| ≤ C by the stability hypothesis (H2), and q0 ≥ C∆t from Lemma 4.2. If
n∆t ≤ T , then it follows from Lemma 5.4 that

|εbn| ≤
C

∆t

n∑
m=0

m∑
k=0

|qbm−k| |εam| ≤ CT 2h2ω2

∆t2
max
m≤n

|εam| ≤ Cω2 max
m≤n

|εam| .(5.9)
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It remains to bound |εan(ω)|. To do this we embed the time-discrete convolution∑n
m=0 q

a
mε

a
n−m = En into a time-continuous problem

∞∑
m=0

qam(ω)εa(ω, t− tm) = E(ω, t),(5.10)

where E(ω, t) and εa(ω, t) interpolate En and εan at time levels t = tn. The aim is to
obtain a bound on ‖εa(ω, ·)‖H1(R+) and hence on the point values |εan(ω)| = |εa(ω, tn)|
via (2.19). We generalize the formula (5.2) for En to obtain the interpolant

E(ω, t) = 2π

∫ ∞

0

J0(ωR) û(ω, t−R)dR−
∞∑
m=0

qm(ω) û(ω, t− tm+(1−β)/2),(5.11)

and note that it follows from causality of u that E(ω, tn) = En(ω).
We bound ‖εa(ω, ·)‖H1(R+) via the Laplace transform of the time-continuous prob-

lem (5.10):

ε̄a(ω, s)Zqa(ω, s) = Ē(ω, s).

This implies

|ε̄a(ω, s)| ≤ |Zqa(ω, s)|−1 |Ē(ω, s)|,
with the upper bound on |Zqa|−1 given in Lemma 5.5. Using this bound, multiplying
by 1 + |s| and applying the equivalence inequality (2.9), then gives

‖e−σtεa(ω, t)‖H1(R+) ≤
{
C(1 + ω)‖e−σtE(ω, t)‖H2(R+), β = 0

C(1 + ω)2‖e−σtE(ω, t)‖H3(R+), β = 1.
(5.12)

The pointwise result

|εa(ω, t)| ≤ eσT√
2π

‖e−σtεa(ω, t)‖H1(R+)(5.13)

for t ∈ (0, T ), then follows from (2.19), and the next lemma provides the crucial O(h2)
term that leads to the second order convergence result.

Lemma 5.6. The error term E(ω, t) defined by (5.11) satisfies

‖e−σtE(ω, t)‖Hm(0,T ) ≤ Ch2(1 + ω)3‖â(ω, ·)‖Hm+3(0,T )

for 1 ≤ m ≤ 2 + β.
Proof. The Laplace transform of (5.11) is

Ē(ω, s) = E(ω, s) ¯̂u(ω, s),(5.14)

where

E(ω, s)
def
=

(
2π√

ω2 + s2
− Zq(ω, s)es∆t(β−1)/2

)
.

Multiplying by (1 + |s|)m, square integrating over R, and using (2.9) give

‖e−σt E(ω, t)‖2
Hm(R+) ≤ C

∫ ∞

−∞
(1 + |s|)2m|E(ω, s)|2|¯̂u(ω, s)|2dη,
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where s = σ + iη. We obtain two different bounds for |E(ω, s)|, valid for “high” and
“low” values of |η|.

When |η∆t| > π, the triangle inequality implies that

|E(ω, s)| ≤ 2π

|√ω2 + s2| + e(β−1)σ∆t/2 |Zq(ω, s)|

and we consider each term separately. If |η∆t| > π, then

1

|ω2 + s2|2 ≤ ∆t2

2σ2π2
≤ C

when ∆t is small. The second term can also be bounded by a constant: by definition

|Zq(ω, s)| ≤
∞∑
n=0

|qn e−sn∆t| ≤ C∆t

∞∑
n=0

e−σn∆t

since (4.10) and (4.11) imply that each |qn| < C∆t. Hence

|Zq(ω, s)| ≤ C∆t

1 − e−σ∆t
≤ C

if ∆t is sufficiently small.
Thus we have shown that if |η∆t| > π then |E(ω, s)| ≤ C. In this region |s| >

|η| > π/∆t, and so |s|∆t/π > 1, which means that

|E(ω, s)| ≤ C < C (|s|∆t/π)2 = C |s|2 h2

since ∆t/h is fixed.
When |η∆t| ≤ π we use Lemma 5.4 and consider the cases β = 0 and β = 1

separately. Define

E0 =
1

s
− ∆t

es∆t/2 − e−s∆t/2
, E1 =

1

s
− ∆t

2

(
es∆t + 1

es∆t − 1

)
so that E = Eβ −Zqb e(β−1)s∆t/2. Lemma 5.4 implies that |qbn| ≤ C∆t(hω)2 in either
case, and so it follows from an identical argument to that used above to bound |Zq|
that |Zqb e(β−1)s∆t/2| ≤ e(β−1)σ∆t/2 C (hω)2 ≤ C (hω)2 if ∆t is sufficiently small. It
can be shown (again by considerable algebraic manipulation) that |Eβ | ≤ ∆t2 |s| for
β = 0, 1 when |η∆t| ≤ π. Hence if |η∆t| ≤ π and ∆t is sufficiently small, we get
|E| ≤ C

(
∆t2 |s| + h2ω2

)
.

We thus have the bound

|E(ω, s)| ≤ Ch2(1 + ω)2(1 + |s|)2 ∀η ∈ R .

Inserting this into the integral in (5.14) gives

‖e−σtE(ω, t)‖Hm(R+) ≤ Ch2(1 + ω)2‖e−σtû(ω, t)‖Hm+2(R+)

and the result follows from Lemma 2.4.
We now use this result to bound |εn|: (5.9) implies that

|εn(ω)| ≤ C(1 + ω)2 max
n≤T/∆t

|εan(ω)|

for n∆t ≤ T , and using bounds (5.12) and (5.13) gives

|εn(ω)| ≤ Ch2(1 + ω)6+β‖â(ω, ·)‖H5+β(0,T ) ≡ h2ζβ(ω)(5.15)

for β = 0, 1. Hypothesis (H1) guarantees that ζβ(ω) ∈ L2(R
2), which completes the

small hω bound calculation.
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5.4. A bound for ‖εn‖Fh . We split the range of integration of the Fourier
norm ‖εn‖Fh

into a “low” frequency section ω ∈ Lh ≡ {ω : hω < γ}, where inequality
(5.15) is used (where the constant γ is chosen to be less than 1/(ρ

√
2) so that all the

small hω bounds hold), and a “high” frequency section ω ∈ Sh\Lh, where inequality
(5.5) is used. The result is

‖εn‖Fh
≤ Ch2

(∫
Lh

|ζβ(ω)|2 dω
)1/2

+ C

(∫
Sh\Lh

|ζ(ω)|2 dω

)1/2

,

where ζ was introduced in section 5.2. The integral over low frequencies satisfies∫
Lh

|ζβ(ω)|2 dω ≤
∫

R
2

|ζβ(ω)|2 dω ≤ ‖a‖2
H5+β

∗ (0,T ;H6+β(R2))
.

Following the arguments used by Thomeé [33], the high frequency integral satisfies∫
Sh\Lh

|ζ(ω)|2 dω ≤
∫
Sh\Lh

∣∣∣∣∣
(
ωh

γ

)2

ζ(ω)

∣∣∣∣∣
2

dω ≤ Ch4,

since ω2ζ(ω) ∈ L2(R2) by Lemma 5.3.
Combining the low and high frequency bounds above and using Lemma 5.2 with

r = 2 yield the final result.
Theorem 5.7. Under hypotheses (H1) and (H2) for β = 0, 1, the global error for

schemes S1Tβ satisfies the bound

‖u(·, tn−(1−β)/2) − U(·, tn−(1−β)/2)‖h ≤ Ch2

as h→ 0 whenever tn ≤ T , where C is a constant.

6. Conclusions. We have presented two new schemes for the RPIE (2.1) that
appear stable over a wide range of mesh ratio values, and are hence likely to be useful
and reliable in practice. We have also given what we believe is the first rigorous con-
vergence proof with reasonable, checkable hypotheses that RPIE collocation schemes
converge at the optimal O(h2) rate one would expect from the underlying approx-
imation methods. This is a great improvement on our earlier work [11], where we
obtained proof of covergence at the rate O(1/| lnh|) for all but extremely smooth in-
cident fields, whose spatial Fourier transforms decay faster than e−γ0ω for a constant
γ0.

This improved result is mostly due to a change in approach to the error analysis
for low spatial frequencies (section 5.3) from a Volterra integral equation analysis in
the style of [17, 23, 24], to an approach using Z and Laplace transforms in the style
of Lubich [27]. We believe that our new smoothness requirements may be relaxed
further by more refined or alternative methods of proof, and we conjecture that this
convergence rate will be achieved for a wider class of excitations.
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Abstract. The pressure-Poisson stabilized Galerkin method for the Stokes equation requires
the choice of a positive parameter. Existing theoretical predictions for the range of parameter values
that yield stable discretizations seem to be very pessimistic when compared to the computational
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norms. The new method differs from the standard pressure-Poisson stabilized method in several
important aspects. First, its definition does not degrade to a penalty formulation for the lowest
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1. Introduction. The stable and accurate finite element solution of the Stokes
problem requires pairs of velocity and pressure spaces that satisfy the inf-sup (or LBB)
compatibility condition; see, e.g., [7, 15, 16]. In the past two decades, the formulation
of finite element methods that either circumvent or ameliorate this restrictive con-
dition has attracted significant attention. Examples include augmented Lagrangian
methods [12], least-squares finite element methods [4], and a group of methods col-
lectively known as consistently stabilized Galerkin methods; see [1, 3, 8, 11, 13, 14,
17, 18, 19]. In what follows, we will refer to the members of the latter group as the
standard stabilized methods.

In this paper, we develop and analyze a new stabilized formulation that can be
related to one of the standard methods originally proposed in [18] and widely known
as the pressure-Poisson stabilized Galerkin method. To demonstrate the connection
between the new and the standard methods, we introduce the notion of continuous
stabilized prototypes. Continuous prototypes are idealized finite element methods
that are not necessarily practical. Their role is to provide a template that reveals
the proper functional settings and guides the development of practical schemes. In
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addition, prototypes serve as a gauge to measure the deviation of practical methods
from the idealized mathematical setting. All practical methods associated with a
particular prototype form a class of methods. Here, we will derive the prototypes that
engender the three most commonly used stabilized methods for the Stokes problem.
For reasons that will be explained later, we call the three classes the GLS, SGLS, and
RGLS method classes.

Consistently stabilized methods contain a positive parameter that must be set to
define the method. It is well known that standard stabilized methods can be divided
into those that are conditionally stable and those that are absolutely stable, i.e., those
that are stable only for a set of restricted values of the parameter and those that are
stable for all values of the parameter, respectively. According to previous theoretical
analyses, the standard Galerkin least-squares [17] and pressure-Poisson [18] methods
fall into the first category while the method of [11] is an example of an absolutely
stable method. Stability classifications of stabilized methods are based on sufficient
(weak or strong) coercivity conditions for the corresponding forms. Thus, in principle,
they represent the worst case scenario and, in practice, there may be a gap between
the theoretically predicted stability range of a method and the stability range observed
in computational implementations. For the GLS method this gap is very narrow if
it exists at all; see [13] or [2]. In other words, for this method, the stability range
predicted by existing theory agrees with great accuracy with its practical stability
range.

The main focus of this paper will be on the SGLS class which contains the stan-
dard pressure-Poisson stabilized method. Our interest in this class is not incidental.
In [2], we reported an unusually large discrepancy between the well-known theoretical
stability analysis of [8] and the actual, computationally observed stability range of
the standard pressure-Poisson Galerkin method. In fact, what was observed compu-
tationally indicates that this method is actually absolutely stable. In this paper, we
show that there are indeed grounds for such a stability pattern. Most notably, we
prove that the continuous SGLS prototype is absolutely stable. Then we define a new
discrete member of this class which also turns out to be absolutely stable.

Our new method differs from the standard pressure-Poisson Galerkin formulation
in several important aspects. First, its definition does not degrade to a penalty
formulation for the lowest-order nodal spaces. Second, we show that our method is
absolutely stable with respect to the natural norm on H1(Ω)×L2

0(Ω), while stability
of the standard method is with respect to a mesh-dependent norm. Last, while the
new method is not fully consistent, it is weakly inconsistent in the sense that finite
element approximations converge to all smooth solutions at the best possible rate.

Our analysis suggests that the new, implementable SGLS method is a potentially
strong contender in the field of stabilized formulations for the Stokes problem. The
absolute stability makes it an attractive alternative to GLS methods that, both the-
oretically and practically, are known to be only conditionally stable. Compared with
the absolutely stable RGLS methods, the new formulation avoids the appearance of
local biharmonic terms that in principle should lead to better conditioned matrices.
This conjecture is supported by our studies in [2] which suggest that Krylov subspace
solvers generally tend to perform better for members of the SGLS family of stabilized
methods. Nevertheless, further numerical studies will be needed to reach a defini-
tive conclusion about the practical performance of our new method. These will be
reported in a forthcoming paper.

We have organized the paper as follows. In section 2, we summarize notations
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and quote technical results that are used throughout the paper. Section 3 develops
the notion of continuous stabilized prototypes starting from a penalized Lagrangian
formulation of the Stokes problem. Sections 4 and 5 are the core of this paper.
Their focus is on the SGLS class of stabilized methods. In section 4, we consider
the continuous prototype of this class and show that it is absolutely stable. Then, in
section 5, we proceed to define a new discrete member of the SGLS class and establish
its absolute stability and optimal convergence. In section 6, we conclude the paper
with several remarks concerning implementation of the new method.

2. Quotation of results. Let Ω denote a bounded region in R
n, n = 2, 3, with a

Lipschitz continuous boundary Γ = ∂Ω. For p > 0, Hp(Ω) denotes a Sobolev space of
order p with norm and inner product denoted by ‖ · ‖p and (·, ·)p, respectively. When
p = 0 we use the standard notation L2(Ω). The symbol | · |k, 0 ≤ k ≤ p, denotes
the kth seminorm on Hp(Ω). We recall the subspace L2

0(Ω) of all square integrable
functions with vanishing mean and the subspace H1

0 (Ω) of all H1(Ω) functions with
vanishing trace. The Poincaré’s inequality

CP ‖φ‖0 ≤ ‖∇φ‖0 ∀φ ∈ Hp(Ω) ∩H1
0 (Ω)(2.1)

implies that the seminorm |φ|1 = ‖∇φ‖0 is an equivalent norm on H1
0 (Ω). Vector

analogues of the Sobolev spaces along with vector-valued functions are denoted by
upper and lower case bold face font, respectively, e.g., H1(Ω), L2(Ω), and u. For
vectors in Euclidean spaces, we use vector notation, e.g., �x and �y. Matrices are
denoted by block letters, e.g., A and B.

Vh and Sh will denote a pair of finite element subspaces of H1
0(Ω) and L2

0(Ω),
respectively. We assume that these spaces are defined with respect to the same reg-
ular triangulation Th of the domain Ω into finite elements K, where h denotes some
measure of the grid size. For example, K can be hexahedrons or tetrahedrons in three
dimensions or triangles or quadrilaterals in two dimensions. We will use C to denote
a generic constant that is independent of h but whose value may change from place
to place. Let r > 0 and s > 0 be two integers. It is further assumed that for every
u ∈ Hr+1(Ω) and p ∈ Hs+1(Ω), there exist functions uhI ∈ Vh and phI ∈ Sh such that

‖u − uhI ‖0 + h‖u − uhI ‖1 ≤ Chr+1‖u‖r+1(2.2)

and

‖p− phI ‖0 + h‖p− phI ‖1 ≤ Chs+1‖p‖s+1,(2.3)

respectively. We recall the inverse inequalities

‖uh‖1 ≤ CIh
−1‖uh‖0 and ‖ph‖1 ≤ CIh

−1‖ph‖0(2.4)

that hold for finite element spaces on regular triangulations; see [10] or [15].

2.1. Negative norm and inner product. Let H−1(Ω) denote the dual of
H1

0(Ω). Using the equivalence of | · |1 and ‖ · ‖1 on H1
0(Ω), we equip H−1(Ω) with the

norm

‖f‖−1 = sup
φ∈H1

0(Ω)

(f ,φ)0
|φ|1 ∀ f ∈ H−1(Ω).(2.5)
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The following representation results hold (cf. [5, 6]).
Lemma 2.1. For all f ∈ H−1(Ω), we have

‖f‖2
−1 = (Sf , f)0,

where S : H−1(Ω) �→ H1
0(Ω) is the solution operator for the vector Poisson equation

−	u = f in Ω and u = 0 on Γ,

i.e., u = Sf if and only if

(∇u,∇v)0 = (f ,v)0 ∀v ∈ H1
0(Ω).

If (·, ·)−1 is the inner product associated with ‖ · ‖−1, then

(f ,g)−1 = (Sf ,g)0 = (f ,Sg)0 ∀ f ,g ∈ H−1(Ω).(2.6)

Using (2.6), it is not difficult to show that

(−	u,v)−1 = (u,v)0 ∀u ∈ H1
0(Ω), v ∈ H−1(Ω).(2.7)

We also recall the well-known result (cf. [15, p. 20]) that for any connected Ω there
exists a CN > 0 such that

CN‖p‖0 ≤ ‖∇p‖−1 ∀ p ∈ L2
0(Ω).(2.8)

3. Stabilization of mixed methods for the Stokes problem. We consider
the Stokes equations

−	u + ∇p = f in Ω,(3.1)

∇ · u = 0 in Ω,

u = 0 on Γ.

A weak formulation of the Stokes problem is to seek (u, p) ∈ H1
0(Ω)×L2

0(Ω) such that

A(u,v) +B(v, p) = F (v) ∀v ∈ H1
0(Ω),(3.2)

B(u, q) = 0 ∀ q ∈ L2
0(Ω),(3.3)

where A(·, ·), B(·, ·), and F (·) are defined by

A(u,v) =

∫
Ω

∇u : ∇v dΩ, B(v, p) = −
∫

Ω

p∇ · v dΩ, and F (v) =

∫
Ω

f · v dΩ,

respectively. We recall that (3.2)–(3.3) is the optimality system for the saddle-point
(u, p) of the Lagrangian functional

L(v, q) =
1

2
A(v,v) − F (v) +B(v, q).(3.4)

Therefore, the pressure p is the Lagrange multiplier that is introduced into (3.4) to
enforce the (weak) incompressibility constraint (3.3). The restriction of (3.2)–(3.3) to
a pair of finite element subspaces Vh ⊂ H1

0(Ω) and Sh ⊂ L2
0(Ω) yields the Galerkin

mixed method: seek (uh, ph) ∈ Vh × Sh such that
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A(uh,vh) +B(vh, ph) = F (vh) ∀vh ∈ Vh,(3.5)

B(uh, qh) = 0 ∀ qh ∈ Sh.(3.6)

For continuous pressure approximations and for velocity fields that vanish on the
boundary, B(·, ·) can be replaced by the equivalent bilinear form

B∗(v, p) =

∫
Ω

v · ∇p dΩ.

It is easy to see that (3.5)–(3.6) is equivalent to the symmetric, indefinite linear
algebraic system (

A B
T

B 0

)(
�u
�p

)
=

(
�f
�0

)
,(3.7)

where the elements of �u and �p are the coefficients in the representation in terms of
bases of the finite element pair (uh, ph); the matrices A and B are deduced in the usual
manner, using the bases for Vh and Sh, from the bilinear forms A(·, ·) and B(·, ·) (or
B∗(·, ·)), respectively.

The problems (3.5)–(3.6) and (3.7) are equivalent representations of the optimal-
ity system for the saddle-point (uh, ph) of (3.4) out of Vh × Sh; i.e., they represent a
discrete saddle-point problem. As a result, they lead to stable and accurate approx-
imations of (u, p) if and only if the pair (Vh, Sh) satisfies the following conditions:
first, the inf-sup condition (see [7, 15, 16]) there exists C > 0, independent of h, such
that

sup
vh∈Vh

B(vh, qh)

‖vh‖1
≥ C‖qh‖0 ∀ qh ∈ Sh,

and second, A(·, ·) is coercive on Zh×Zh, where Zh = {vh ∈ Vh | B(qh,vh) = 0 ∀ q ∈
Sh} is the subspace of discretely solenoidal functions belonging to Vh. Examples of
unstable pairs include all equal order interpolation spaces defined with respect to
the same triangulation of Ω into finite elements, as well as such combinations as the
bilinear-constant pair; see [15, 16].

3.1. Continuous stabilized prototypes. In the literature, the term finite el-
ement stabilization is commonly applied to describe the application of various regu-
larization techniques either to (3.4) or directly to (3.5)–(3.6) in order to circumvent
the inf-sup condition. Stabilization leads to finite element methods that allow for an
unrestricted choice of velocity and pressure spaces, including the choice of equal order
interpolation. Consistent stabilization is one of the most popular types of regulariza-
tion because it avoids penalty errors and can, in principle, be extended to achieve an
arbitrarily high order of accuracy. Typically, consistently stabilized methods are de-
fined at the discrete level and employ mesh-dependent norms and inner products. In
this section, we formulate continuous prototypes for these methods. The prototypes
represent idealized variational problems that can be used to derive practical finite
element schemes. The origin of the continuous prototypes can be best understood
by considering first the regularization of (3.4) by penalty. The relevant penalized
Lagrangian functional is

L(v, q) =
1

2
A(v,v) − F (v) +B(v, q) − δ‖q‖2

0.(3.8)
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The optimality system for (3.8) is to seek (u, p) ∈ H1
0(Ω) × L2

0(Ω) such that

A(u,v) +B(v, p) = F (v) ∀v ∈ H1
0(Ω),(3.9)

B(u, q) − δM(p, q) = 0 ∀ q ∈ L2
0(Ω),(3.10)

where M(p, q) = (p, q)0. Thus, the effect emanating from the penalty term in (3.8)
is to relax the constraint in (3.3). In terms of algebraic problems, this means that
instead of the indefinite problem (3.7), now finite element discretization yields a linear
system of the form (

A B

B
T −δM

)(
�u
�p

)
=

(
�f
�0

)
,(3.11)

having a “definite” coefficient matrix.1 As a result, one can show that a finite element
method based on (3.8) is stable for any conforming choice of Vh and Sh. The trouble
with (3.8) is the penalty error that limits the order of approximation to O(

√
δ),

regardless of the interpolation order of the pair (Vh, Sh).
The idea of consistent stabilization is to modify (3.2) and (3.3) to a problem like

(3.9) and (3.10) but without incurring a penalty error. This requires a term that will
generate the desired stabilizing contribution but will vanish on all sufficiently smooth
exact solutions. To construct such a term, note that thanks to (2.8)

CP ‖p‖0 ≤ ‖∇p‖−1 ≤ C‖p‖0,

i.e., ‖∇p‖−1 is an equivalent norm on L2
0(Ω). As a result, ‖∇p‖2

−1 will have the same
stabilization effect as ‖p‖2

0. However, unlike the latter, ‖∇p‖2
−1 can be included via

the residual of (3.1) and so, when added to (3.2)–(3.3), the term

δ(−	u + ∇p− f ,−α	v + ∇q)−1

will generate the appropriate stabilizing contribution but without the penalty error.
This leads to a family of continuous stabilized prototypes: seek (uh, ph) ∈ Vh × Sh

such that

Qβα(uh, ph;vh, qh) = F βα (vh, qh)(3.12)

for all (vh, qh) ∈ Vh × Sh, where

Qβα(u, p;v, q) = A(u,v) +B(v, p) + βB(u, q)
(3.13) −δ(−	u + ∇p,−α	v + β∇q)−1

and

F βα (v, q) = F (v) − δ(f ,−α	v + β∇q)−1(3.14)

1The matrix in (3.11) is definite in the sense that(
A B

−B
T +δM

)
,

which is obtained from the coefficient matrix in (3.11) by multiplying the lower block of equations
by −1, is real, positive definite.
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are a bilinear form [H1
0(Ω)×L2(Ω)]2 �→ R and a linear functional H1

0(Ω)×L2(Ω) �→ R

parametrized by α, β, and δ. In (3.13) and (3.14), α and β take on the values {−1, 0, 1}
and {−1, 1}, respectively, and δ is a positive, real valued parameter. A method is
called absolutely stable if the form Qαβ is weakly or strongly coercive for all values of
δ. If this is true only for selected values of δ, the method is called conditionally stable.
In what follows, we will work exclusively with continuous pressure approximations, in
which case we can write

Qβα(uh, ph;vh, qh) ≡ A(uh,vh) +B∗(vh, ph) + βB∗(uh, qh)
(3.15) −δ(−	uh + ∇ph,−α	vh + β∇qh)−1.

We call (3.12) prototypes because the H−1(Ω) inner product is not computable so
that (3.13) or (3.15) and (3.14) cannot be used directly in a finite element method.
However, if the H−1(Ω) inner product appearing in (3.13) or (3.15) and (3.14) is
replaced by a discrete approximation, each prototype will give rise to a practical
method. All methods that can be associated with a particular prototype by virtue of
such a substitution form the stabilized class generated by this prototype.

Remark 3.1. While the stabilized problem (3.12) is a modification of an equation
that represents an optimality system, it is not necessarily itself an optimality system
of some modified Lagrangian. Many of the methods defined by (3.12) can only be
derived as modifications of (3.5) and (3.6); i.e., they cannot be formulated starting
from a modification of (3.4) and then deriving the associated optimality system.

Remark 3.2. If u is approximated by piecewise linear or bilinear finite element
functions, the second order derivative terms in (3.13) vanish and the prototypes (3.12)
reduce to a penalized formulation in which the Lagrangian functional (3.4) is penalized
by −δ‖∇q‖2

−1.
Introducing the bilinear forms

D(u,v) = δ(−	u,−	v)−1, C(v, q) = δ(	v,∇q)−1,

and

K(p, q) = δ(∇p,∇q)−1

defined on H1
0(Ω)×H1

0(Ω), H1
0(Ω)×L2(Ω), and L2(Ω)×L2(Ω), respectively, we can

write (3.15) in the form

Qβα(uh, ph;vh, qh) = A(uh,vh) +B∗(vh, ph) + βB∗(uh, qh)
−αD(uh,vh) + αC(vh, ph) + βC(uh, qh) − βK(ph, qh).

It is then easy to see that the discrete system (3.12) is equivalent to a family of linear
algebraic systems of the form(

A − αD B + αC

β(B + C)T −βK

)(
�u
�p

)
=

(
�f1
�f2

)
,(3.16)

where the matrices C, D, and K are respectively deduced in the usual manner from
the bilinear forms C(·, ·), D(·, ·), and K(·, ·).

Choosing different α and β gives rise to different bilinear forms in (3.13) and to
different matrices in (3.16). It is easy to see that the choices {α, β} and {α,−β}
define variational problems that can be derived from one another by simply changing
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the pressure test function in (3.12) from qh to −qh. Likewise, the linear system (3.16)
generated by the choice {α,−β} can be derived from that for the choice {α, β} by
simply scaling the second row of blocks by −1. Therefore, the linear systems produced
by the two choices {α, β} and {α,−β} are equivalent in the sense that they have
exactly the same solution. 2 We will call these variational problems, along with their
associated bilinear forms and linear algebraic systems, complementary. The choice of
α determines the class of complementary forms while the two forms within each class
are generated by selecting β equal to either 1 or −1.

For consistency with the established terminology, we call the prototype corre-
sponding to α = 1 Galerkin least-squares, or GLS. Since taking α = 0 “simplifies” the
weighting function, we call this class of methods simplified Galerkin least-squares, or
SGLS. Finally, choosing α = −1 “reflects” the sign of the second order term and so
we refer to this prototype as reflected Galerkin least-squares, or RGLS.

The standard members of the GLS, SGLS, and RGLS classes of methods are ob-
tained when the H−1(Ω) inner product appearing in (3.15) and (3.14) is approximated
by a weighted L2 inner product in the following manner:

Qβα,h(u
h, ph;vh, qh) = A(uh,vh) +B∗(vh, ph) + βB∗(uh, qh)

(3.17)
−
∑
K∈Th

δh2
K(−	uh + ∇ph,−α	vh + β∇qh)0,K

and

F βα,h(v
h, qh) = F (vh) −

∑
K∈Th

δh2
K(f ,−α	vh + β∇qh)0,K,(3.18)

respectively. When α = 1 and β = 1, we recover from (3.17) and (3.18) the original
GLS method of [17]. For α = 0 and β = −1, they give the original pressure-Poisson
stabilized mixed method of [18]. The case α = −1 and β = 1 gives the method of
[11].

The weighted L2 norm is not a particularly accurate approximation of the negative
norm. Its main defect is that

C1(h‖uh‖0) ≤ ‖uh‖−1 ≤ C2h
−1(h‖uh‖0).

This equivalence relation, including the factor h−1 in the upper bound, is sharp,
and means that (3.17) is stable with respect to a mesh-dependent norm that is not
uniformly (in h) equivalent to the norm on H1(Ω)×L2(Ω). A more sophisticated but
also more complicated approximation is to use a discrete equivalent proposed in [6]
in the context of least-squares finite element methods. For stabilized methods based
on this norm, we refer to [9].

Analyses of the standard GLS and RGLS methods in [17] and [11], respectively,
classify the first one as a conditionally stable scheme and the second one as an abso-
lutely stable scheme. This means that for α = 1, the choice of δ in (3.17) and (3.18)
is restricted to some finite interval 0 < δ0 ≤ δ ≤ δmax, while for α = −1, the form
in (3.17) is stable for any positive δ. In both cases, theoretical classifications agree
well with the practical stability of the respective finite element methods; see [13] and

2Although the choices {α, β} and {α,−β} yield the same solution, the algebraic properties of the
corresponding coefficient matrices can be vastly different. As a result, the performance of iterative
solution techniques can also be vastly different; cf. [2].
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[2]. However, this is not so for the standard SGLS method. The formal analysis of
[8] classified this method as conditionally stable, with a stability range estimate very
close to that of the standard GLS method. In practice, after extensive numerical ex-
periments, we found that the standard SGLS behaves much more like the absolutely
stabilized RGLS method; see [2]. This unexpected practical stability prompted us
to reexamine the SGLS class starting from its continuous prototype. Thus, for the
remainder of this paper, our focus will be on SGLS methods.

4. Continuous SGLS. In this section, we show that the continuous SGLS pro-
totype

Q±
0 (u, p;v, q) = A(u,v) +B∗(v, p) ±B∗(u, q) − δ(−	u + ∇p,±∇q)−1

is absolutely stable.
Theorem 4.1. Let Vh ⊂ H1

0(Ω) and Sh ⊂ L2
0(Ω) ∩ H1(Ω). Then Q−

0 (·; ·) is
coercive for 0 < δ < 4 and Q±

0 (·; ·) are weakly coercive for any δ ≥ 4; i.e., there exists
C > 0, independent of h, such that

Q−
0 (uh, ph;uh, ph) ≥ C

(‖uh‖2
1 + ‖ph‖2

0

) ∀ 0 < δ < 4

and

sup
(vh,qh)∈Vh×Sh

Q±
0 (uh, ph;vh, qh)

‖uh‖1 + ‖ph‖0
≥ C(‖uh‖1 + ‖ph‖0)

sup
(vh,qh)∈Vh×Sh

Q±
0 (vh, qh;uh, ph)

‖vh‖1 + ‖qh‖0
> 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∀δ ≥ 4

for any (uh, ph) ∈ Vh × Sh.
Proof. Since complementary forms can be obtained from one another by changing

the sign of the pressure test functions, it suffices to carry out the proofs for only one
of the forms. Here, we choose to work with the minus form Q−

0 . Using (2.7), the
stabilizing term in Q−

0 simplifies to

δ(−	uh + ∇ph,∇qh)−1 = δ((uh,∇qh)0 + (∇ph,∇qh)−1).

As a result,

Q−
0 (uh, ph;vh, qh) = A(uh,vh) + (∇ph,vh)0 + (δ − 1)(∇qh,uh)0 + δ(∇ph,∇qh)−1.

To prove strong the coercivity result, let δ be a number between 0 and 4 and
consider Q−

0 (uh, ph;uh, ph). Using Cauchy’s inequality and the ε inequality,

Q−
0 (uh, ph;uh, ph) = A(uh,uh) + δ(∇ph,uh)0 + δ(∇ph,∇ph)−1

≥ |uh|21 + δ‖∇ph‖2
−1 − δ‖∇ph‖−1|uh|1

≥
(

1 − δ

2ε

)
|uh|21 + δ

(
1 − ε

2

)
‖∇ph‖2

−1.

To ensure coercivity, both coefficients above must be positive. Therefore, δ and ε
must satisfy the inequalities

0 < δ < 2ε and ε < 2.
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This is always possible when 0 < δ < 4. Since ph ∈ L2
0(Ω) and uh ∈ H1

0(Ω), the final
bound

Q−
0 (uh, ph;uh, ph) ≥ C(δ, CP , CN )

(‖uh‖2
1 + ‖p‖2

0

)
follows from (2.8) and (2.1).

To show that Q−
0 is weakly coercive for δ ≥ 4, let (ṽh, q̃h) = (uh, γph) for some

positive γ. Then

Q−
0 (uh, ph; ṽh, q̃h) = |uh|21 + γδ‖∇ph‖2

−1 + (1 + γ(δ − 1))(∇ph,uh)0.
Letting γ = 1/(δ − 1), the Cauchy and ε inequalities further give

Q−
0 (uh, ph; ṽh, q̃h) ≥ |uh|21 +

δ

δ − 1
‖∇ph‖2

−1 − 2‖∇ph‖−1|uh|1

≥ (1 − ε)|uh|21 +

(
δ

δ − 1
− 1

ε

)
‖∇ph‖2

−1.

Since δ ≥ 4, we can always choose a positive ε such that

δ − 1

δ
< ε < 1.

This makes both coefficients in the lower bound positive and we can conclude that
there exists C(δ, CP , CN ), independent of h, such that

Q−
0 (uh, ph; ṽh, q̃h) ≥ C(δ, CP , CN )

(‖uh‖2
1 + ‖ph‖2

0

)
.

To complete the proof of the first weak coercivity condition, we note that ‖ṽh‖1 +
‖q̃h‖0 = ‖uh‖1 + 1

δ−1‖ph‖0 so that the last inequality can be recast into

Q−
0 (uh, ph; ṽh, q̃h) ≥ C(δ, CP , CN )

(‖uh‖1 + ‖ph‖0

) (‖ṽh‖1 + ‖q̃h‖0

)
.

To prove the second weak coercivity condition, we choose vh = −S(∇ph) and qh ≡ ph.
Using Lemma 2.1

A(−S(∇ph),uh) = −(∇ph,uh) and −	(−S(∇ph)) = −∇ph.
It is now easy to see that

Q−
0 (−S(∇ph), ph;uh, ph) = (S(∇ph),∇ph)0 = ‖∇ph‖2

−1 > 0,

where the last identity follows again from Lemma 2.1.
It is a straightforward matter to demonstrate that Q±

0 is continuous. Then stan-
dard finite element arguments can be used to show that the method is optimally
accurate.

Theorem 4.2. Let (u, p) ∈ H1
0(Ω) ∩ Hr+1(Ω) × L2

0(Ω) ∩ Hs+1(Ω) denote a
solution of the Stokes problem and let (uh, ph) solve (3.12) for α = 0. Then there
exists a constant C > 0 independent of h such that

‖u − uh‖1 + ‖p− ph‖0 ≤ C(hr‖u‖r+1 + hs+1‖p‖s+1).

We note for future reference that the stability and error estimates of the SGLS
prototype are given in terms of the natural mesh-independent norm of H1(Ω)×L2(Ω).
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5. Discrete SGLS. While the continuous SGLS prototype is not a practical
method, its analysis hints at a possibility that members of the SGLS family of methods
may have far better stability properties than previously thought. In this section we
will define a new member of this family that not only is practical but also inherits the
absolute stability of its continuous prototype in terms of the same mesh-independent
norms. In addition, the new method is also optimally accurate and converges at the
same rate as the continuous prototype. To formulate and analyze the new method,
we will make use of several discrete operators along with their relevant properties.
These are reviewed next.

5.1. Discrete operators. Given a finite element subspace Vh ⊂ H1
0(Ω), we

define the discrete Laplace operator −	h as the mapping −	h : H1
0(Ω) �→ Vh such

that −	hu = zh if and only if

(zh,vh)0 = (∇u,∇vh)0 ∀vh ∈ Vh.(5.1)

The discrete inverse Laplace operator Sh is the mapping Sh : H−1(Ω) �→ Vh such
that Shu = zh if and only if

(∇zh,∇vh)0 = (u,vh)0 ∀vh ∈ Vh.(5.2)

The last operator that we will need is the L2 projection operator onto Vh. This
operator is the mapping Qh : L2(Ω) �→ Vh such that Qhu = zh if and only if

(zh,vh)0 = (u,vh)0 ∀vh ∈ Vh.(5.3)

If the supremum in (2.5) is restricted to the subspace Vh ⊂ H1
0(Ω), we obtain the

discrete negative seminorm

‖f‖−h = sup
φh∈Vh

(f ,φh)0

|φh|1
∀ f ∈ H−1(Ω).(5.4)

The next theorem summarizes the properties of the discrete operators and norms that
are relevant to our analysis; for part 3, note that

‖(I − Qh)u‖−k = sup
φ∈Hk

0 (Ω)

((I − Qh)u,φ)0
‖φ‖k ,

where Hk
0(Ω) ≡ Hk(Ω) ∩ H1

0(Ω).
Theorem 5.1. 1. For any f ,g ∈ H−1(Ω), define (f ,g)−h = (Shf ,g)0 = (f ,

Shg)0. Then

‖f‖2
−h = (f , f)−h.(5.5)

2. For any u ∈ L2(Ω)

‖Qhu‖0 ≤ CIh
−1‖u‖−h,(5.6)

‖u‖2
−1 ≤ C

(
h2‖u‖2

0 + ‖u‖2
−h
)
,(5.7)

−	h · Shu = Qhu.(5.8)
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3. For any u ∈ L2(Ω) and 0 < k ≤ r + 1

‖(I − Qh)u‖−k ≤ Chk‖u‖0.(5.9)

Proof. For the proof of the characterization (5.5) and the lower equivalence bound
(5.7), we refer to [5] or [6]. Here, we will only demonstrate the proofs for the inverse
inequality (5.6), the identity (5.8), and the duality estimate (5.9).

Let u ∈ L2(Ω). Using the definition (5.3) of Qh in (5.4),

‖u‖−h = sup
φh∈Vh

(u,φh)0

|φh|1
= sup
φh∈Vh

(Qhu,φh)0

|φh|1
≥ (Qhu,Qhu)0

|Qhu|1 .

Using the first inequality in (2.4) for Qhu gives that

|Qhu|1 ≤ CIh
−1‖Qhu‖0.

As a result,

‖u‖−h ≥ ‖Qhu‖2
0

|Qhu|1 ≥ h‖Qhu‖2
0

CI‖Qhu‖0
= hC−1

I ‖Qhu‖0,

which proves (5.6). A straightforward application of (5.1)–(5.3) shows that

(−	h Shu,vh) = (∇(Shu),∇vh) = (u,vh),

which proves (5.8). To prove (5.9), we use the definition (5.3) of Qh and Cauchy’s
inequality to show that

((I − Qh)u,φ)0 = (u, (I − Qh)φ)0 ≤ ‖u‖0‖(I − Qh)φ‖0

and then use (2.2) to obtain

‖(I − Qh)φ‖0 ≤ Chk‖φ‖k.
Combining these bounds shows that

‖(I − Qh)u‖−k ≤ sup
φ∈Hk

0 (Ω)

hkC‖u‖0‖φ‖k
‖φ‖k = Chk‖u‖0.

5.2. An absolutely stable discrete SGLS method. We introduce the bilin-
ear form

Q±
0,h(u

h, ph;vh, qh) = A(uh,vh) +B∗(vh, ph) ±B∗(uh, qh)
(5.10) −δh2(−	huh + ∇ph,±∇qh)0
and the linear functional

F±
0,h(v

h, qh) = F (vh) − δh2(f ,±∇qh)0.

The new member of the SGLS family of methods is to seek (uh, ph) ∈ Vh × Sh such
that

Q±
0,h(u

h, ph;vh, qh) = F±
0,h(v

h, qh) ∀ (vh, qh) ∈ Vh × Sh.(5.11)
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Before we continue with the stability and error analysis of the new method, let us
point out that thanks to definition (5.1)

A(uh,vh) ≡ (∇uh,∇vh)0 = (−	huh,vh)0.

As a result,

Q±
0,h(u

h, ph;vh, qh) = (−	huh + ∇ph,vh)0 ±B∗(uh, qh)

−δh2
(−	huh + ∇ph,±∇qh)

0
(5.12)

=
(−	huh + ∇ph,vh ∓ δh2∇qh)

0
±B∗(uh, qh)

is an equivalent representation of (5.10) and

(−	huh + ∇ph,vh ∓ δh2∇qh)0 ±B∗(uh, qh) = (f ,vh ∓ δh2∇qh)0(5.13)

is an equivalent form of (5.11). Problem (5.13) leads to an interesting interpretation
for the new method: it can be viewed as a Petrov–Galerkin-like scheme obtained by
modification of the velocity weight function to vh ∓ δh2∇qh.

Because we have replaced −	uh with −	huh in the definition of the method,
the term

(−	hu + ∇p− f ,∓δh2∇qh)0 �= 0;

i.e., the new method, is not, strictly speaking, a consistent formulation. However, as
we will see in the next lemma, the inconsistency is very weak. In particular, we will
prove that it does not degrade the optimal convergence rate of the method.

Lemma 5.2. Let (u, p) ∈ H1
0(Ω)∩Hr+1(Ω)×L2

0(Ω)∩Hs+1(Ω) denote a solution
of the Stokes problem and let (uh, ph) be a solution of (5.11). Then

Q±
0,h(u − uh, p− ph;vh, qh) = δh2(−	u, (Qh − I)∇qh)0

(5.14) ≤ δChr‖u‖r+1‖qh‖0

for all (vh, qh) ∈ Vh × Sh.
Proof. Consider the minus form. It is easy to see that

Q−
0,h(u − uh, p− ph;vh, qh) = δh2(−	hu + ∇p− f ,∇qh)0

= δh2(−(	h −	)u,∇qh)0.
From the fact that −	hu ∈ Vh, the definition (5.3) of the L2 projection, and the
definition (5.1) of −	h, it follows that

(−	hu,∇qh)0 = (−	hu,Qh∇qh)0 = (∇u,∇Qh∇qh)0 = (−	u,Qh∇qh)0
and so

(−(	h −	)u,∇qh)0 = (−	u, (Qh − I)∇qh)0
so that the equality in (5.14) is proved. Next, with the help of (5.9) and the inverse
inequality (2.4), we have

(−	u, (Qh − I)∇qh)0 ≤ ‖	u‖r−1 ‖(Qh − I)∇qh‖1−r
≤ Chr−1‖u‖r+1‖∇qh‖0

≤ Chr−2‖u‖r+1‖qh‖0,

from which the inequality in (5.14) follows.
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5.3. Stability and convergence. The main results of this section are to show
that the method (5.11) is absolutely stable and that finite element solutions of (5.11)
converge at optimal rates. We begin by establishing the absolute stability of the
method, i.e., that the bilinear form (5.10) is weakly coercive for all values of the
parameter δ. The proof relies upon a technical result presented in the next lemma.

Lemma 5.3. For any qh ∈ Sh

‖∇qh‖2
−1 ≤ C

(
h2‖(I − Qh)∇qh‖2

0 + ‖∇qh‖2
−h
)
.(5.15)

Proof. Since we restrict attention to continuous pressure approximations, ∇qh ∈
L2(Ω). Therefore, (5.7) from Theorem 5.1 implies that

‖∇qh‖2
−1 ≤ C

(
h2‖∇qh‖2

0 + ‖∇qh‖2
−h
)
.

Adding and subtracting Qh∇qh to the first term and using the triangle inequality
give the upper bound

‖∇qh‖2
−1 ≤ C

(
h2‖(I − Qh)∇qh‖2

0 + h2‖Qh∇qh‖2
0 + ‖∇qh‖2

−h
)
.

The lemma follows by using the inverse inequality (5.6) to bound h2‖Qh∇qh‖2
0 by

CI‖∇qh‖2
−h.

Theorem 5.4. Assume that Vh ⊂ H1
0(Ω) and Sh ⊂ L2

0(Ω) ∩H1(Ω). Then, for
any δ > 0, there exists a positive constant C(δ), independent of h, such that

sup
(vh,qh)∈Vh×Sh

Q±
0,h(u

h, ph;vh, qh)

‖vh‖1 + ‖qh‖0
≥ C(δ)(‖uh‖1 + ‖ph‖0),

(5.16)

sup
(vh,qh)∈Vh×Sh

Q±
0,h(v

h, qh;uh, ph)

‖vh‖1 + ‖qh‖0
> 0

for all (uh, ph) ∈ Vh × Sh.
Proof. We recall that the complementary plus and minus forms define equivalent

problems, and so it suffices to carry the proof for just one of the forms. Here, we
choose again to work with the minus form. Given a positive δ, we will construct a
test function (ṽh, q̃h) such that

Q−
0,h(u

h, ph; ṽh, q̃h) ≥ C(‖uh‖1 + ‖ph‖0)
(‖ṽh‖1 + ‖q̃h‖0

)
.

To find such a function, note that definition (5.2) implies the identity

(∇uh,∇Sh(∇qh))0 = (uh,∇qh)0.
Thus, if qh ∈ Sh is arbitrary and vh1 = Sh(∇qh),

Q−
0,h(u

h, ph;vh1 , q
h) = (∇ph,Sh∇qh)0 + δh2(−	huh + ∇ph,∇qh)0.

Adding and subtracting Qh∇ph from the last term give

Q−
0,h(u

h, ph;vh1 , q
h) = (∇ph,Sh∇qh)0 + δh2((I − Qh)∇ph,∇qh)0

+δh2(−	huh + Qh∇ph,∇qh)0
while the orthogonality

((I − Qh)∇ph,Qh∇qh) = 0
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and the fact that −	huh + Qh∇ph ∈ Vh allow us to rewrite the last identity as

Q−
0,h(u

h, ph;vh1 , q
h) = (∇ph,Sh∇qh)0 + δh2((I − Qh)∇ph, (I − Qh)∇qh)0

(5.17)
+δh2

(−	huh + Qh∇ph,Qh∇qh)
0
.

Next, (5.12) implies that

Q−
0,h(u

h, ph;vh, 0) = (−	huh + Qh∇ph,vh)0.

Choosing vh2 = −δh2Qh∇qh then gives the identity

Q−
0,h(u

h, ph;vh2 , 0) = −δh2(−	huh + Qh∇ph,Qh∇qh)0.(5.18)

Therefore, if qh = ph, (5.17), (5.18), and (5.15) together with the discrete negative
norm characterization in (5.5) imply that

Q−
0,h(u

h, ph;vh1 + vh2 , p
h) = (∇ph,Sh∇ph)0 + δh2((I − Qh)∇ph, (I − Qh)∇ph)0

= ‖∇ph‖2
−h + δh2‖(I − Qh)∇ph‖2

0 ≥ C(δ)‖∇ph‖2
−1.

Since ph ∈ L2
0(Ω), the last inequality in combination with (2.8) gives a bound in terms

of L2 pressure norm:

Q−
0,h(u

h, ph;vh1 + vh2 , p
h) ≥ C1(δ)‖ph‖2

0.(5.19)

To complete the proof of the first weak coercivity condition, note that

Q−
0,h(u

h, ph;uh, 0) = |uh|21 + (∇ph,uh)0 = |uh|21 − (ph,∇ · uh)0

≥ C2
P ‖uh‖2

1 −
√
n‖ph‖0‖uh‖1 ≥ C2

P

2
‖uh‖2

1 −
n

2C2
P

‖ph‖2
0.

Therefore, letting vh3 = n−1C1(δ)C
2
Puh gives

Q−
0,h(u

h, ph;vh3 , 0) ≥ C1(δ)C
4
P

2n
‖uh‖2

1 −
C1(δ)

2
‖ph‖2

0,

where C1(δ) is the constant from (5.19). As a result,

Q−
0,h(u

h, ph;vh1 + vh2 + vh3 , p
h) ≥ C1(δ)C

4
P

2n
‖uh‖2

1 +
C1(δ)

2
‖ph‖2

0(5.20)

and the association

(ṽh, q̃h) = (vh1 + vh2 + vh3 , p
h)

will fit our purpose if we can show that ‖ṽh‖1 + ‖q̃h‖0 is bounded by ‖uh‖1 + ‖ph‖0.
Using Poincaré’s inequality (2.1), we have

‖ṽh‖1 ≤ C‖∇ṽh‖0

≤ C(‖∇vh1‖0 + ‖∇vh2‖0 + ‖∇vh3‖0)

≤ C(‖∇(Sh∇ph)‖0 + δh2‖∇(Qh∇ph)‖0 + ‖∇uh‖0).
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To estimate the first term, we use the definition of Sh and Poincaré’s inequality to
find that

‖∇(Sh∇ph)‖2
0 = (∇Sh∇ph,∇Sh∇ph)0

= (∇ph,Sh∇ph)0 = −(ph,∇ · Sh∇ph)0
≤ √

n‖ph‖0‖Sh∇ph‖1 ≤ C‖ph‖0‖∇Sh∇ph‖0

and, as a result,

‖∇(Sh∇ph)‖0 ≤ C‖ph‖0.

For the second term, application of the inverse inequality (2.4) twice and the fact that
Qh is bounded gives

δh2‖∇(Qh∇ph)‖0 ≤ δhCI‖Qh∇ph‖0 ≤ δhCI‖∇ph‖0 ≤ δC2
I ‖ph‖0.

Combining all bounds shows that

‖ṽh‖1 ≤ C(‖ph‖0 + ‖uh‖1)

and so we can rewrite (5.20) as

Q−
0,h(u

h, ph; ṽh, q̃h) ≥ C(‖uh‖1 + ‖ph‖0)(‖ṽh‖1 + ‖q̃h‖0),

which proves the first part of (5.16). To prove the second weak coercivity condition
we proceed as in the proof of Theorem 4.1 and set vh = −Sh∇ph and qh ≡ ph. Using
definitions (5.1)–(5.3) and Lemma 5.3, we find that

Q−
0,h(−Sh∇ph, ph;uh, ph)=(Sh∇ph,∇ph) + δh2((I − Qh)∇ph,∇ph)

=‖∇ph‖2
−h + δh2‖(I − Qh)∇ph‖2

0 ≥ C(δ)‖∇ph‖2
0 > 0.

This theorem shows that the new discrete method is stable with respect to the
same norms as its continuous prototype, i.e., the natural norm on H1(Ω) × L2(Ω).
This valuable feature of the new method distinguishes it from the standard discrete
SGLS of [18], which is stable with respect to a mesh-dependent norm.

Let us now consider the convergence of finite element solutions. The next theo-
rem shows that the new method yields the same convergence rates as its continuous
prototype with respect to the same mesh-independent norms.

Theorem 5.5. Let (u, p) ∈ H1
0(Ω)∩Hr+1(Ω)×L2

0(Ω)∩Hs+1(Ω) denote a solution
of the Stokes problem and let (uh, ph) solve (5.11). Then

‖u − uh‖1 + ‖p− ph‖0 ≤ C(hr‖u‖r+1 + hs+1‖p‖s+1).(5.21)

Proof. We begin by splitting the error into discrete and approximation theoretic
parts:

‖u − uh‖1 + ‖p− ph‖0 ≤ (‖uhI − uh‖1 + ‖phI − ph‖0) + (‖u − uhI ‖1 + ‖p− phI ‖0).

Since the interpolation error is of optimal order, to prove the theorem it suffices to
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estimate the discrete error. Using (5.16),

C(δ)(‖uhI − uh‖1 + ‖phI − ph‖0) ≤ sup
(vh,qh)∈Vh×Sh

Q±
0,h(u

h
I − uh, phI − ph;vh, qh)

‖vh‖1 + ‖qh‖0

≤ sup
(vh,qh)∈Vh×Sh

Q±
0,h(u − uh, p− ph;vh, qh) +Q±

0,h(u
h
I − u, phI − p;vh, qh)

‖vh‖1 + ‖qh‖0

≤ sup
(vh,qh)∈Vh×Sh

Q±
0,h(u − uh, p− ph;vh, qh)

‖vh‖1 + ‖qh‖0
+ C(‖u − uhI ‖1 + ‖p− phI ‖0)

≤ sup
qh∈Sh

δh2(−	u, (Qh − I)∇qh)0
‖qh‖0

+ C(hr‖u‖r+1 + hs+1‖p‖s+1),

where to obtain the last bound we have used (5.14) in Lemma 5.2 and (2.2) and (2.3).
From (5.14), it easily follows that

sup
qh∈Sh

δh2(−	u, (Qh − I)∇qh)0
‖qh‖0

≤ Chr‖u‖r+1.

This means that the discrete error is of optimal order, i.e.,

‖uhI − uh‖1 + ‖phI − ph‖0 ≤ C(hr‖u‖r+1 + hs+1‖p‖s+1)

and since the interpolation error is of the same order, (5.21) immediately follows.

6. Concluding remarks. Using the notion of continuous prototypes, we for-
mulated a new absolutely stable method for the Stokes problem. The new method is
a close relative of the standard pressure-Poisson stabilized method of [18] in the sense
that they share the same continuous prototype.

However, the two methods differ in several important aspects. The new formu-
lation is weakly inconsistent in the sense that, although being strictly speaking not
consistent, it still leads to optimal error estimates for all C0 finite element subspaces,
including the lowest order piecewise linear case. In contrast, the standard method
not only is not consistent for piecewise linear approximations (because the Laplace
operator annihilates the linear velocity field in (3.17) and (3.18)) but also results in
errors that do not vanish with vanishing grid sizes; i.e., there remains an error pro-
portional to the parameter δ. Furthermore, the new method is stable with respect to
the norm on H1(Ω) × L2(Ω), while the standard method is stable with respect to a
mesh-dependent norm that is not equivalent to the norm on H1(Ω) × L2(Ω).

Implementation of the new method requires evaluation of the discrete operator
−	h. Given a finite element function uh ∈ Vh, the coefficients �z of zh = −	huh can
be determined from definition (5.1) by solving the linear system

M�z = �r.

M is a mass matrix that can be assembled in the usual manner and �r is a vector with
components

�ri = (∇uh,∇φhi )0,
where {φhk}Nk=1 is a nodal basis for Vh. In practical computations, M can be replaced
by a lumped mass matrix or local projection.
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While computation of −	h may seem as an additional overhead compared to
the implementation of the standard method, it is well worth the effort thanks to the
improved accuracy, especially when piecewise linear finite elements are used, and the
guaranteed absolute, mesh-independent stability of the new method. It should be
mentioned that essentially the same auxiliary problem, involving the inversion of a
mass matrix, arises in standard stabilized methods with improved consistency; see
[19]. These methods aim to restore the loss of consistency caused by the annihilation
of all second order derivatives in the element residual when piecewise linear elements
are used. The idea of [19] is to apply an L2 projection to the first derivative of the
finite element solution before the application of the second derivative so as to avoid
its annihilation. Specialized to our context, this method can be viewed as providing
an alternative definition for the discrete Laplace operator. Instead of the operator
−	h : H1

0(Ω) �→ Vh used in our method, they use the operator −	h
A : Vh �→ L2(Ω)

defined by

−	h
A = −∇ · (Qh∇uh).(6.1)

Let us conclude by noting that an important open question that remains to be
answered is whether or not the absolute stability of the continuous SGLS prototype is
inherited by other members of this class. It seems particularly worthwhile to exploit
extensions of our analysis to an SGLS method defined using the alternative discrete
operator (6.1) and to the original pressure-Poisson method of [18] which, as we recall,
behaves numerically just like an absolutely stable formulation. Extending our results
to discontinuous pressure spaces would also be valuable.
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Abstract. In this paper we propose and analyze a finite element scheme for a class of variational
nonlinear and nondifferentiable mixed inequalities including balance equations governing incompress-
ible creeping flows of Bingham fluids. For numerical efficiency reasons, equal-order piecewise linear
approximations are used for both velocity and pressure, and the numerical scheme is stabilized by a
Brezzi–Pitkäranta perturbation term. We obtain error estimates of the same order as for stable dis-

cretizations, namely h1/2 for velocity and pressure solutions in
[
H2(Ω)

]d
and H1(Ω), respectively. A

decomposition-coordination algorithm to solve the discrete nonlinear algebraic system is presented,
together with its convergence properties. Finally, numerical tests are performed. The solution of
the problem under consideration presents particular regularity properties that are shown to permit
convergence order improvement to h| log(h)|1/2. This estimate is confirmed by numerical results.

Key words. variational inequality, finite element method, Brezzi–Pitkäranta stabilization, error
bound, Bingham fluid, creeping flow, decomposition- coordination method, augmented Lagrangian,
algorithm convergence
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1. Introduction. Balance equations governing Bingham fluid flows take the
form of nonlinear and nondifferentiable variational inequality problems, and their
numerical solution is still a challenging task.

Steady one-directional flow in a pipe was the first of this type of flows to be
the subject of an in-depth study. In the early 1980s, Fortin and Glowinski devel-
oped the so-called decomposition-coordination method for this particular situation;
see [8], [10] and references therein. The principle of this numerical method is to isolate
the nonlinear and nondifferentiable terms in the variational problem by introducing
an auxiliary variable, the strain rate tensor, to enforce the consistency of this new
variable and the velocity field by a duality method, and to solve the mixed problem
by Uzawa algorithm variants. If the approximation space for the strain rate tensor
is chosen so that no interelement continuity is required, it appears that the global
nonlinear minimization problem degenerates in the Uzawa algorithm into a family of
element-related subproblems which then can be solved efficiently, and even explicitly
for a piecewise constant approximation. This aspect represents the main interest of
the decomposition-coordination technique. In addition, the use of the constitutive
relation is localized to the subproblems, which allows effortless changes. This numer-
ical method was first used by Begis [10, Chapter VI] in the stream-function-vorticity
formulation framework and then applied by several authors to pipe flows; see [13],
[17].

The extension of this method to multidimensional incompressible flows was tested
by Fortin, Côté, and Tanguy [7] and Roquet and Saramito [16]. To our knowledge,
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the first analysis of this scheme is due to Han and Reddy [11], who dealt with the
same mathematical problem for elastoplasticity applications (see [3] for a formulation
for Bingham fluid flows and in the frame of the decomposition-coordination method).
Convergence is proven and the error is found to be bounded by the square root of
the so-called interpolation error, the latter depending on the discretization spaces and
solution regularity. This analysis is based on the usual discrete Babuska–Brezzi stabil-
ity condition for velocity/pressure approximation. Unfortunately, in our applications
to Bingham fluid flows this limitation appeared to be somewhat restrictive, because
it leads us to employ high degree approximations for the velocity that are not well
suited to the poor regularity which can be expected from the solution. Moreover, the
construction of strain rate approximation spaces which preserve the scheme accuracy
and efficiency for high degree velocity approximations did not appear straightforward.

This explains the attractiveness of using piecewise linear equal-order approxima-
tion for the velocity and the pressure. This finite element is known to be cost-effective,
and the discretization of the strain rate by piecewise constants would allow us to match
the coherence constraint between velocity and strain rate perfectly. Of course, a sta-
bilizing procedure must be applied with this approximation. The usual derivation of
consistently stabilized schemes (e.g., [12], [9]) requires making the numerical residuals
explicit which, in turn, needs a “strong differential formulation” of the problem. The
latter can be obtained by regularizing the constitutive law. A numerical method built
following these lines is presented in [14]. Conversely, if one chooses to deal with the
problem without regularization, the natural choice then seems to be to implement a
Brezzi–Pitkäranta stabilization [4]. The main purpose of this paper is to analyze such
a scheme, combining ideas from [11] and from the analysis of stabilized schemes for
Newtonian flows [9].

In section 2, we present the error analysis of a stabilized approximation of an
abstract mixed nonlinear variational inequality. The application of this result to
Bingham creeping flows problems is performed in section 3. Section 4 is devoted to
the extension of the decomposition-coordination method to the stabilized scheme and
the presentation of the solution algorithm and of its convergence properties. In section
5, we present numerical tests. As the solution of the considered problem presents extra
regularity properties, the analysis of sections 2 and 3 yields an improved error bound,
which is established.

Throughout this paper, Ω stands for an open and bounded subset of R
d, d ≤ 3,

with Lipschitz domain boundary ∂Ω, and we use standard notation for Sobolev spaces
L2(Ω), H1(Ω), H1

0(Ω), H2(Ω), (see [1]). ‖.‖0 and ‖.‖1 stand for the norms of L2(Ω)
and H1(Ω), and |.|1 and |.|2 are the usual seminorms of H1(Ω) and H2(Ω), respectively.

2. An abstract convergence result. The aim of this section is to analyze a
numerical scheme to solve the following abstract variational inequality:

Find u and p in
[
H1

0(Ω)
]d

and L2(Ω), respectively, such that∣∣∣∣∣ a(u, v − u) + j(v) − j(u) + b(v − u, p) ≥ 〈f, v − u〉 ∀v ∈ [H1
0(Ω)

]d
,

b(u, q) = 〈g, q〉 ∀q ∈ L2(Ω),

(2.1)

where a(., .) and b(., .) are two continuous bilinear forms defined on
[
H1

0(Ω)
]d ×[

H1
0(Ω)

]d
and

[
H1

0(Ω)
]d × L2(Ω), respectively, and j(.) is a real convex Lipschitz-

continuous function defined on
[
H1

0(Ω)
]d

. f and g belong to the dual space of
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H1

0(Ω)
]d

and L2(Ω), respectively, and 〈., .〉 stands for the duality product. Finally,

we suppose that the bilinear form a(., .) is coercive over
[
H1

0(Ω)
]d

, and we note |a|,
δ, |b|, and, β four positive real usual constants such that

a(u, v) ≤ |a| ‖u‖1 ‖v‖1 ∀ u, v ∈ [H1
0(Ω)

]d
,

a(u, u) ≥ δ ‖u‖2
1 ∀ u ∈ [H1

0(Ω)
]d
,

b(v, q) ≤ |b| ‖v‖1 ‖q‖0 ∀ v ∈ [H1
0(Ω)

]d
, ∀q ∈ L2(Ω),

j(u) − j(v) ≤ β ‖u− v‖1 ∀ u, v ∈ [H1
0(Ω)

]d
.

We suppose, in addition, that the Babuska–Brezzi condition is satisfied:

∃c > 0 such that ∀q ∈ L2(Ω), sup
v∈[H1

0(Ω)]
d

b(v, q)

‖v‖1
≥ c‖q‖0.

Under the preceding assumptions, the existence of solutions and the uniqueness
of u are proven in [11].

Let Uh and Qh be two finite element spaces such that Uh ⊂ [
H1

0(Ω)
]d

, Qh ⊂
H1(Ω), and the following interpolation results are satisfied:

∃c independent of the discretization step, h, such that ∀ u ∈ [H2(Ω)
]d
,

∃ rhu ∈ Uh satisfying

∣∣∣∣ ‖u− rhu‖1 ≤ ch |u|2,
‖u− rhu‖0 ≤ ch2 |u|2,

∃c independent of h such that ∀p ∈ H1(Ω),

∃ rhp ∈ Qh satisfying

∣∣∣∣ ‖p− rhp‖0 ≤ ch |p|1,
‖p− rhp‖1 ≤ c |p|1,

where h stands for the discretization step, with the standard definition.
The numerical scheme considered here reads as follows:

Find uh ∈ Uh and ph ∈ Qh such that∣∣∣∣∣ a(uh, vh − uh) + j(vh) − j(uh) + b(vh − uh, ph) ≥ 〈f, vh − uh〉 ∀vh ∈ Vh,

−b(uh, qh) + α ch(ph, qh) = −〈g, qh〉 ∀qh ∈ Qh,

(2.2)

where α is a positive parameter and ch(., .) is a mesh-dependent bilinear form such
that the following assumptions hold:

(H1) ch(p, q) is defined for any couple of functions p, q ∈ H1(Ω).

(H2) [.]h defined by [qh]
2
h = ch(qh, qh) is a mesh-dependent norm.

(H3) ∀ph, qh ∈ Qh, ch(ph, qh) ≤ [ph]h [qh]h.

(H4) ∃γ, a positive constant independent of h, and k > 0 such that

∀vh ∈ Uh,∀qh ∈ Qh, b(vh, qh) ≤ γ
1

hk
‖vh‖0 [qh]h

(in further practical applications, k = 1
2 or 1).

(H5) ∃c, a positive constant independent of h, such that

∀q ∈ H1(Ω), [q]h ≤ chk ‖q‖1.
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We define as B(., .) and Bh(., .), the bilinear forms defined on (Vh×Qh)× (Vh×
Qh), by

B(uh, ph; vh, qh) = a(uh, vh) + b(vh, ph) − b(uh, qh),

Bh(uh, ph; vh, qh) = B(uh, ph; vh, qh) + α ch(ph, qh).

The following stability lemma holds.
Lemma 2.1. For any vh ∈ Uh and qh ∈ Qh, we have

Bh(uh, ph;uh, ph) ≥ δ‖uh‖2
1 + α[ph]

2
h.

Proof. This result is a straightforward consequence of the coercivity of the bi-

linear form a(., .) in
[
H1

0(Ω)
]d

, combined with the fact that we use a conforming

discretization (Uh ⊂ [H1
0(Ω)

]d
).

Corollary 2.2. There exists a unique solution to problem (2.2).
Proof. Let Xh be the product space Vh×Qh, provided with the norms inherited

from
[
H1

0(Ω)
]d

and L2(Ω), respectively. Let J(.) be the convex Lipschitz-continuous
functional defined from Xh to R by

J(vh, qh) = j(vh)

and F be the element of the dual of Xh such that

〈F ; (vh, qh)〉 = 〈f, vh〉 − 〈g, qh〉.
With these notations, problem (2.2) reads as follows.

Find (uh, ph) ∈ Xhsuch that,∀(vh , qh) ∈ Xh ,

Bh(uh, ph; (vh, qh) − (uh, ph)) + J(vh, qh) − J(uh, ph) ≥ 〈F ; (vh, qh) − (uh, ph)〉.
As on finite dimensional spaces all norms are equivalent, the preceding lemma shows
the coercivity of the bilinear form Bh(., .), and the existence and uniqueness of the
solution follow by standard optimization results [8].

We are now in position to prove the following convergence result.
Theorem 2.3. Let u and p be a solution of problem (2.1) and uh and ph be the

solution of (2.2). We suppose, in addition, that u ∈ [H2(Ω)
]d

and p ∈ H1(Ω). Then
the following error bound holds:

‖u− uh‖1 ≤ c h
1
2 (|u|2 + |p|1).

Proof. Let vh and qh be generic elements of Vh and Qh, respectively. We suppose
that p ∈ H1(Ω), and consequently, [p]h is well defined. By the triangular inequality,

δ ‖u− uh‖2
1 + α [p− ph]

2
h

≤ δ (‖u− vh‖1 + ‖uh − vh‖1)
2 + α ([p− qh]h + [ph − qh]h)

2

≤ 2 [ δ‖u− vh‖2
1 + α[p− qh]

2
h + δ‖uh − vh‖2

1 + α[ph − qh]
2
h︸ ︷︷ ︸

(i)

].
(2.3)

By the stability Lemma 2.1, we obtain the following bound of the last term of
this relation:

(i) ≤ Bh(uh − vh, ph − qh;uh − vh, ph − qh)

= Bh(uh, ph;uh − vh, ph − qh)︸ ︷︷ ︸
(ii)

−Bh(vh, qh;uh − vh, ph − qh).(2.4)
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Developing term (ii) of this inequality yields

(ii) = a(uh, uh − vh) + b(uh − vh, ph)︸ ︷︷ ︸
(iii)

− b(uh, ph − qh) + α ch(ph, ph − qh)︸ ︷︷ ︸
(iv)

.(2.5)

By the second relation of (2.2) then the second one of (2.1), we get for (iv) the
following expression:

(iv) = −〈g,ph − qh〉 = −b(u,ph − qh).(2.6)

Taking v = uh and then v = 2u − vh as test functions in the first relation of (2.1)
yields

a(u, uh − u) + j(uh) − j(u) + b(uh − u, p) ≥ 〈f, uh − u〉,
a(u, u− vh) + j(2u− vh) − j(u) + b(u− vh, p) ≥ 〈f, u− vh〉.

Summing up these inequalities, we obtain

〈f, uh − vh〉 ≤ a(u, uh − vh) + j(uh) − j(u) + j(2u− vh) − j(u) + b(uh − vh, p)

and, by the first relation of (2.2),

(iii) ≤ 〈f, uh − vh〉 − j(uh) + j(vh)

≤ a(u, uh − vh) + j(vh) + j(2u− vh) − 2j(u) + b(uh − vh, p).
(2.7)

Using (2.6) and (2.7) in (2.5), we get

(ii) ≤ a(u, uh − vh) + b(uh − vh, p) − b(u, ph − qh) + j(vh) + j(2u− vh) − 2j(u).

And, finally, using this estimate for (ii) in (2.4) and developing the termBh(vh, qh;uh−
vh, ph − qh), we obtain

(i) ≤ a(u, uh − vh) + b(uh − vh, p) − b(u, ph − qh) + j(vh) + j(2u− vh) − 2j(u)

− [a(vh, uh − vh) + b(uh − vh, qh) − b(vh, ph − qh) + α ch(qh, ph − qh)]

= a(u− vh, uh − vh)︸ ︷︷ ︸
(v)

+ b(uh − vh, p− qh)︸ ︷︷ ︸
(vi)

− b(u− vh, ph − qh)︸ ︷︷ ︸
(vii)

+ j(vh) + j(2u− vh) − 2j(u)︸ ︷︷ ︸
(viii)

+α ch(p− qh, ph − qh)︸ ︷︷ ︸
(ix)

−α ch(p, ph − qh)︸ ︷︷ ︸
(x)

.

(2.8)

Tracing back the origin of the last term (x) of the preceding relation, it may be checked
that it appears because Bh(uh, ph;uh−vh, ph−qh) is used as a discrete counterpart of
B(u, p;uh− vh, ph− qh), which cannot be identified, under regularity assumptions on
u and p, to Bh(u, p;uh−vh, ph−qh), as would be the case for a consistently stabilized
scheme. It thus can be viewed as the consistency error of the scheme.
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The next step consists of bounding each of the terms of the relation (2.8):

(v) ≤ |a| ‖u− vh‖1 ‖uh − vh‖1 ≤ |a|2
2δc1

‖u− vh‖2
1 +

c1δ

2
‖uh − vh‖2

1,

(vi) ≤ |b| ‖uh − vh‖1 ‖p− qh‖0 ≤ |b|2
2δc2

‖p− qh‖2
0 +

c2δ

2
‖uh − vh‖2

1,

(vii) ≤ γ

hk
‖u− vh‖0 [ph − qh]h (by assumption (H4))

≤ γ2

2αc3h2k
‖u− vh‖2

0 +
c3α

2
[ph − qh]

2
h,

(viii) = (j(2u− vh) − j(u)) − (j(u) − j(vh))

≤ 2β‖u− vh‖1 (by the Lipschitz continuity of j(.)),

(ix) ≤ α [qh − p]h [ph − qh]h (by assumption (H3))

≤ α

2c4
[qh − p]2h +

αc4
2

[ph − qh]
2
h,

(x) ≤ α

2c5
[p]2h +

αc5
2

[ph − qh]
2
h (idem).

Choosing c1 = c2 = 1/2, c3 = c4 = c5 = 1/3, substituting these expressions for
(v)–(x) in 2.8, and combining terms on the left-hand side, we get

1

2

[
δ ‖uh − vh‖2

1 + α[ph − qh]
2
h

]
≤ |a|2

δ
‖u− vh‖2

1 +
3γ2

2αh2k
‖u− vh‖2

0 + 2β ‖u− vh‖1 +
|b|2
δ

‖p− qh‖2
0

+
3α

2
[p− qh]

2
h +

3α

2
[p]2h.

Combined with the initial triangular inequality (2.3), this last relation yields

δ ‖u− uh‖2
1 + α[p− ph]

2
h

≤ inf
vh∈Vh

[(
4|a|2
δ

+ 2δ

)
‖u− vh‖2

1 +
6γ2

αh2k
‖u− vh‖2

0 + 8β ‖u− vh‖1

]
+ inf

qh∈Qh

[
4|b|2
δ

‖p− qh‖2
0 + 7α [p− qh]

2
h

]
+ 6α [p]2h.

(2.9)

Associated with the assumed approximation properties of the spaces Vh and Qh and
hypothesis (H5), this last inequality completes the proof.

Remark. Due to the fact that the seminorm [.]h behaves like hk ‖.‖1, the presence
of the term [p − qh]h on the left-hand side of inequality (2.9) does not provide any
convergence result for the approximation of p. This was expected: p is not even
guaranteed to be unique. However, we obtain the following weaker result: as soon as
k ≤ 1

2 , the solution of the numerical scheme ph remains bounded independently of
the discretization step.

The sharpest result for the convergence of uh toward the solution u is obtained
with k ≥ 1. In this case, the leading-order term on the right-hand side of inequality
2.9 is β ‖u− vh‖1 and stems from the nonlinearity of the problem.
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3. A numerical scheme for Bingham fluid creeping flows. The so-called
Bingham fluids belong to the category of fluids exhibiting a yield stress, i.e., which
behave as a solid in regions of the flow where the shear stress magnitude falls under
a threshold value. Their constitutive law reads as⎧⎪⎨⎪⎩

if ‖τ‖ ≤ τYS, ε̇(v) = 0,

if ‖τ‖ ≥ τYS, τ =

(
τYS

‖ε̇‖ + 2µ

)
ε̇(v),

where v stands for the fluid velocity, ε̇(.) for the usual strain rate tensor, τ for the
shear stress tensor, µ for the dynamic viscosity, τYS for the fluid yield stress, and ‖.‖
is the Euclidean norm in R

d×d.
The creeping flow of a Bingham fluid in a domain Ω of R

d with adherence con-
ditions at the boundaries is governed by a set of balance equations that admit a
variational formulation of general form (2.1) [6, Chapter 6], with the following spe-
cific expressions for each bilinear and linear form of the problem,

a(u, v) =

∫
Ω

2µ ε̇(u) : ε̇(v), b(v, p) = −
∫

Ω

p ∇ · u, 〈f, v〉 =

∫
Ω

f.v,

and for the Lipschitz-continuous functional,

j(v) =

∫
Ω

τYS ‖ε̇(v)‖,

where f stands for the volume forces. The assumptions of continuity and coercivity
of a(., .), continuity of b(., .), and the Babuska–Brezzi condition are standard results
of theoretical computational fluid dynamics. The Lipschitz–continuity of j(.) is a
consequence of the Lipschitz–continuity of the Euclidean norm.

We suppose a given family of triangulations of the domain, and we choose as
approximation space the standard Lagrange linear continuous finite element space for
both the velocity and the pressure. For a particular triangulation Th of n d-simplexes
(Ki)i≤n, the finite element subspaces are given by

Uh = {vh ∈ [C1(Ω̄)]d, vh|Ki
∈ [P1(Ki)]

d, 1 ≤ i ≤ n, and vh = 0 on ∂Ω},
Qh = {qh ∈ C1(Ω̄), qh|Ki ∈ P1(Ki), 1 ≤ i ≤ n},

where P1(Ki) stands for the space of degree ≤ 1 polynomials over the polyhedron Ki.
These finite element spaces verify the regularity and approximation properties

used in the preceding section, provided that the meshing is regular (i.e., the ratio
between the diameter of the largest inscribed ball and the mesh diameter is bounded
away from zero for each element of the family of triangulations [5]).

The numerical scheme considered here uses the following stabilization bilinear
form:

ch(ph, qh) = cb

n∑
i=1

h2
Ki

∫
Ki

∇ ph.∇ qh.

With this definition, the assumptions (H1), (H2), (H3), and (H5) are easily
checked (with the usual restriction to zero mean value functions for the pressure
space). The following lemma means that the hypothesis (H4) stands, under an addi-
tional constraint for the family of triangulations.
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Lemma 3.1. We assume that the family of triangulations is quasi-uniform, i.e.,
that the ratio of the smallest element diameter to the largest one is bounded away
from zero. Then there exists a positive constant c independent of h such that, for any
vh ∈ Uh and qh ∈ Qh, we have

|b(vh, qh)| ≤ c
1

h
‖vh‖0 [qh]h.

Proof. From one part, we have

[qh]
2
h = cb

n∑
i=1

h2
Ki

∫
Ki

∇ qh.∇ qh ≥ cb

(
min

0≤i≤n
hKi

)2 n∑
i=1

∫
Ki

∇ qh.∇ qh

≥ cb

(
min0≤i≤n hKi

h

)2

h2 |qh|21.

The first factor of this last expression is bounded away from zero if the family of
triangulations is quasi-uniform.

On the other hand, as Qh ⊂ H1(Ω) and Vh ⊂ [H1
0(Ω)

]d
, the following integration

by parts is valid:

b(vh, qh) = −
∫

Ω

qh∇ · vh =

∫
Ω

∇ qh.vh

and, by the Cauchy–Schwarz inequality,

b(vh, qh) ≤ ‖vh‖0|qh|1.

The result is obtained by combining both inequalities.

As a consequence, we obtain the following error estimate for the numerical scheme
under consideration.

Theorem 3.2. Let u be the solution of the problem. Let uh be the generic element
of a family of approximate solutions obtained with the present scheme using a family

of regular and quasi-uniform triangulations. If we assume that u ∈ [H2(Ω)
]d

, the
following error bound holds:

‖u− uh‖1 ≤ c h1/2 |u|2,

where the positive constant c is independent of h.

Remark. The extension of this analysis to problems with nonhomogeneous Dirich-
let boundary conditions can be performed as for the Newtonian Stokes problem, with-
out any additional difficulty (e.g., [15]).

4. Practical implementation: The decomposition-coordination method.
The object of this section is first to adapt the decomposition-coordination method of
Fortin and Glowinski [8] to the numerical scheme under consideration, then to describe
an algorithm for solving the discrete problem and to analyze its convergence. The
difficulty of the first task lies in the fact that, due to the presence of the stabilization
term, the standard theory does not apply to the problem under consideration, and
the equivalence (in a sense to be defined) between the final discrete system and the
initial one has to be proven.
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Our starting point is the approximate problem:

Find uh ∈ Uh and ph ∈ Qh such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω

2µ ε̇(uh) : ε̇(vh − uh) −
∫

Ω

ph ∇ · (vh − uh)

+

∫
Ω

τYS ‖ε̇(vh)‖ −
∫

Ω

τYS ‖ε̇(uh)‖ ≥
∫

Ω

f.(vh − uh) ∀vh ∈ Uh,∫
Ω

ph ∇ · uh + cb

n∑
i=1

h2
Ki

∫
Ki

∇ ph.∇ qh = 0 ∀qh ∈ Qh.

(4.1)

Let Wh be the following finite element space:

Wh = {zh ∈ [L2(Ω)]d×d, zh|Ki
∈ [P0(Ki)]

d×d, 1 ≤ i ≤ n},

where P0(Ki) stands for the space of constant functions over polyhedron Ki.

We introduce the following discrete variational problem:

Find uh ∈ Uh, ph ∈ Qh, wh ∈ Wh, and sh ∈ Wh such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω

2µ wh : (zh − wh) −
∫

Ω

(zh − wh) : sh

+

∫
Ω

τYS ‖zh‖ −
∫

Ω

τYS ‖wh‖

+

n∑
i=1

ri

∫
Ki

[wh − ε̇(uh)] : [zh − wh] ≥ 0 ∀zh ∈ Wh,

n∑
i=1

ri

∫
Ki

[ε̇(uh) − wh] : ε̇(vh) −
∫

Ω

ph ∇ · vh

+

∫
Ω

ε̇(vh) : sh =

∫
Ω

f.vh ∀vh ∈ Uh,∫
Ω

qh ∇ · uh + cb

n∑
i=1

h2
Ki

∫
Ki

∇ ph.∇ qh = 0 ∀qh ∈ Qh,∫
Ω

(ε̇(uh) − wh) : th = 0 ∀th ∈ Wh.

(4.2)

The family of parameters ri is chosen such that 0 < ri for each 1 ≥ i ≥ n.

We then have the following result.
Proposition 4.1. Problem (4.2) has at least one solution; in addition, the first

three components uh, wh, ph are the same for any solution of the problem.
Moreover, if uh and ph are (part of) one solution of (4.2), uh and ph are solutions

of (4.1).
Proof. Let A(., .) be the bilinear form defined over (Uh × Wh × Qh) × (Uh ×

Wh×Qh), B(., .) be the bilinear form defined over (Uh×Wh×Qh)×Wh, and J(.)
and F (.) be, respectively, the form and the nonlinear convex functional defined over
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Uh × Wh × Qh as follows:

A((uh, wh, ph); (vh, zh, qh)) =

∫
Ω

2µ wh : zh +

n∑
i=1

ri

∫
Ki

[wh − ε̇(uh)] : zh

+

n∑
i=1

ri

∫
Ki

[ε̇(uh) − wh] : ε̇(vh) −
∫

Ω

ph ∇ · vh +

∫
Ω

qh ∇ · uh

+cb

n∑
i=1

h2
Ki

∫
Ki

∇ ph.∇ qh,

B((vh, zh, qh); th) =

∫
Ω

(ε̇(uh) − wh) : th,

J(vh, zh, qh) = j(zh),

F (vh, zh, qh) =

∫
Ω

f.vh.

With these notations, problem (4.2) can be recast under the form of the following
nonlinear mixed variational inequality:

Find (uh, wh, ph) ∈ (Uh × Wh × Qh) and sh ∈ Wh such that∣∣∣∣∣∣∣∣∣∣
A((uh, wh, ph); (vh, zh, qh) − (uh, wh, ph)) + J(vh, zh, qh) − J(uh, wh, ph)

+B((vh, zh, qh); sh) ≥ F ((vh, zh, qh) − (uh, wh, ph))

∀(vh, zh, qh) ∈ (Uh × Wh × Qh),

B((uh, wh, ph); th) = 0 ∀th ∈ Wh.

We find the following result in [11]: assuming thatA(., .) is coercive, the LBB condition
holds for B(., .), and J(.) is Lipschitz-continuous and convex, this variational problem
has solutions; moreover, the primal component of the solution (uh, wh, ph) is unique.

Checking the LBB condition is straightforward here. We are going to prove the
coercivity of the bilinear form A(., .):

A((uh, wh, ph); (uh, wh, ph)) =

∫
Ω

2µ wh : wh + cb

n∑
i=1

h2
Ki

∫
Ki

∇ ph.∇ ph

+

n∑
i=1

ri

∫
Ki

[wh − ε̇(uh)] : [wh − ε̇(uh)].

Developing and using the Cauchy–Schwarz inequality yields, for any strictly positive
constant α,

A((uh, wh, ph); (uh, wh, ph))

= 2µ‖wh‖2
0 + cb[ph]

2
h +

n∑
i=1

ri

[
‖wh‖2

0,K + ‖ε̇(uh)‖2
0,K +

∫
Ki

wh : ε̇(uh)

]

≥ 2µ‖wh‖2
0 + cb[ph]

2
h +

n∑
i=1

ri

[
(1 − α) ‖wh‖2

0,K +

(
1 − 1

α

)
‖ε̇(uh)‖2

0,K

]
.

In finite dimensional spaces, all norms are equivalent; the coercivity of A(., .) then
follows by choosing α > 1 such that (α− 1)ri ≤ µ for all 1 ≤ i ≤ n.
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Due to the choice of the discrete spaces, the constraint ε̇(uh) = wh holds exactly.
As a consequence, the first equation of (4.1) is recovered by summing up the first two
equations of (4.2) and choosing zh = ε̇(vh) as a test function. As the second equation
of (4.1) remains valid, the solution of (4.1) and the first and third components of the
solution of (4.2) are the same.

Replacing the last third relations with their algebraic counterpart, problem (4.2)
reads as follows:

(i) Find wh ∈ Wh such that∫
Ω

2µ wh : (zh − wh) −
∫

Ω

(zh − wh) : sh +

∫
Ω

τYS ‖zh‖ −
∫

Ω

τYS ‖wh‖

+

n∑
i=1

ri

∫
Ki

[wh − ε̇(uh)] : [zh − wh] ≥ 0 ∀zh ∈ Wh,

(ii) Auh − Dwh − B tph + D sh = f ,

(iii) Buh + Cph = 0,

(iv) Duh − Ewwh = 0,

where, in the last three relations, the expressions typed in boldface stand for usual
finite element vectors of degrees of freedom and the discrete operators are obtained
by using the standard finite element process. With the particular discrete spaces used
here, a suitable choice of the parameters ri leads to A = r1D E−1

w D , where r1 is a
positive augmentation parameter and Ew is the strain rates mass matrix.

Finally, we simulate an augmentation relative to the divergence constraint by
premultiplying the equation (iii) by r2B

tE−1
p , with E p the lumped pressure mass

matrix, and adding the obtained relation to equation (ii). The final system reads as
follows:

(i) Find wh ∈ Wh such that∫
Ω

2µ wh : (zh − wh) −
∫

Ω

(zh − wh) : sh +

∫
Ω

τYS ‖zh‖ −
∫

Ω

τYS ‖wh‖

+

n∑
i=1

ri

∫
Ki

[wh − ε̇(uh)] : [zh − wh] ≥ 0 ∀zh ∈ Wh,

(ii) (r1D E−1
w D + r2B

tE−1
p B )uh − Cwh + (r2B

tE−1
p C − B t)ph + D sh = f ,

(iii) Buh + Cph = 0,

(iv) Duh − Ewwh = 0.

(4.3)

This last algebraic manipulation does not change the properties of the system.

Thanks to the particular structure of the approximation space Wh, the variational
inequality (i) of (4.3) degenerates to a family of scalar minimization problems that
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admit an explicit solution for wh as a function of the other unknowns uh and sh:

For 1 ≤ i ≤ n∣∣∣∣∣∣
if ‖σi‖ < τYS, whi = 0,

if ‖σi‖ < τYS, whi =
1 − τYS/‖σi‖
2(µ+ r1/2)

σi,

where σi = shi +
r1

meas(Ki)

∫
Ki

ε̇(uh).

(4.4)

The nonlinear system is solved by an Uzawa-like algorithm that reads as follows:

un−1
h ,wn−1

h ,pn−1
h , sn−1

h being known,

(1) compute unh as a function of wn−1
h ,pn−1

h , sn−1
h by (ii),

(2) compute wn
h as a function of unh, s

n−1
h by (4.4),

(3) compute pnh and snh by∣∣∣∣∣∣∣∣
(

1

ρ2
E p + C

)
pnh =

1

ρ2
E p pn−1

h − Bunh,

1

ρ1
Ew snh =

1

ρ1
Ew sn−1

h − (Dunh − Ewwn
h).

(4.5)

We have the following convergence results.

Theorem 4.2. Algorithm (4.5) converges to a solution of the system (4.3), pro-
vided the following condition holds:

ρ1 <
1 +

√
5

2
r1 and ρ2 < 2r2.

Proof. The proof of this theorem is obtained by minor modifications of the con-
vergence study of the standard algorithm (i.e., without regularization term) that can
be found in [3]. This development closely follows the seminal work of Fortin and
Glowinski [8], [10].

5. Numerical experiment. In this section we are interested in the numerical
validation of the proven error estimates against a particular problem that admits an
explicit solution. We will see that, under particular regularity assumptions verified
by the problem being considered, the convergence proof of section 2 can yield an im-
provement of the convergence rate to h| log(h)|1/2; this error bound is then confirmed
by numerical experiments.

5.1. Position of the test problem. To our knowledge, no problem admitting
an analytic solution and set on a general multidimensional polygonal domain is found
in the literature. As an alternative, we consider an axisymmetrical problem, treated
in the following as a fully bidimensional one: the tangential flow of a Bingham fluid in
a viscosimeter made of two coaxial cylinders. The inner cylinder of radius rinn = 0.5
is kept fixed, whereas a constant angular velocity W = 1 is imposed on the outer
cylinder (radius rout = 1). Finally, the fluid is assumed to stick to the apparatus
boundaries, and we recall here the problem solution [2, section 4.5]. As the plasticity
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Fig. 5.1. Tangential velocity at (x = 0, y ∈ [0.5; 1]), analytical solution.

threshold increases, a rigid zone appears near the outer cylinder. The transition radius
rtra between the “flow” region and the “rigid” zone obeys the nonlinear equation

(2rtra)
2 − 2 ln (2rtra) − 2

√
2
µ

τYS

= 1,(5.1)

and the following tangential velocity and pressure are solution to the problem:

if r ≥ rtra, vθ(r) = r;

if r < rtra, vθ(r) = r

[
1 +

√
2τ

2µ

(
1

2
− 1

2

(rtra
r

)2

+ ln
(rtra
r

))]
;

rinn ≤ r ≤ rout, p = 0.

This analytical solution has been plotted for various plasticity threshold values in
Figure 5.1.

5.2. An improved error estimate for the particular problem at hand.
We begin with a technical lemma.

Lemma 5.1. Let u and v be two nonzero vectors of R
d. The following relation

holds:

‖v‖ − ‖u‖ =
u

‖u‖ .(v − u) +

‖v − u‖2 −
[
u

‖u‖ .(v − u)

]2
‖v‖ +

u

‖u‖ .v
.

The solution u of the problem under consideration is continuous and belongs to
the Sobolev space [W2,∞(Ω)]d of fields whose components’ first and second derivatives
are essentially bounded. As a consequence, the Lagrangian interpolate of u, rhu is
well defined and the following estimates hold:

‖u− rhu‖1,∞ ≤ c h |u|2,∞,(5.2)
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where ca is a positive constant independent of the discretization step h.
For the particular problem at hand, we will prove the following improved error

estimate.
Proposition 5.2. For a sufficiently small discretization step h, the numerical

solution of the problem is such that

‖u− uh‖1 ≤ c τ
1/2
YS h | log(h)|1/2,

where c is a positive constant dependent on the solution u but independent of h.
Proof. To obtain the preceding estimate, it is sufficient to prove that, for h small

enough, the following relation holds:

j(2u− rhu) + j(rhu) − 2j(u) ≤ c τYS h
2 | log(h)|.

By definition, the left-hand member of this inequality reads as

(j(2u− rhu) − j(u)) − (j(u) − j(rhu)) = τYS

∫
Ω

‖ε̇(2u− rhu)‖ + ‖ε̇(rhu)‖ − 2 ‖ε̇(u)‖.

We split this integral into three parts:

2π

∫ rtra−γh

rinn

[ ‖ε̇(2u− rhu)‖ + ‖ε̇(rhu)‖ − 2 ‖ε̇(u)‖ ] r dr︸ ︷︷ ︸
(i)

+ 2π

∫ rtra+h

rtra−γh
[ ‖ε̇(2u− rhu)‖ + ‖ε̇(rhu)‖ − 2 ‖ε̇(u)‖ ] r dr︸ ︷︷ ︸

(ii)

+ 2π

∫ rout

rtra+h

[ ‖ε̇(2u− rhu)‖ + ‖ε̇(rhu)‖ − 2 ‖ε̇(u)‖ ] r dr︸ ︷︷ ︸
(iii)

,

where γ is a positive parameter independent of h to be chosen later.
The three vertices of each element that intersects the integration domain of (iii)

lie in the rigid zone. As the solution in this zone is linear, u and rhu are equal and
ε̇(rhu) also vanishes with ε̇(u). As a consequence, (iii) = 0.

By the triangular inequality for the norm in R
d×d,

‖ε̇(2u− rhu)‖ + ‖ε̇(rhu)‖ − 2 ‖ε̇(u)‖
= (‖ε̇(2u− rhu)‖ − ‖ε̇(u)‖) − (‖ε̇(u)‖ − ‖ε̇(rhu)‖)
≤ ‖ε̇(2u− rhu) − ε̇(u)‖ + ‖ε̇(u) − ε̇(rhu)‖
= 2 ‖ε̇(u) − ε̇(rhu)‖.

As a consequence of the approximation inequality (5.2), the following pointwise esti-
mate holds:

‖ε̇(u) − ε̇(rhu)‖0,∞ ≤ ca h |u|2,∞
and

(ii) ≤ c h|u|2,∞
∫ rtra+h

rtra−γh
rdr ≤ c |u|2,∞ (rtra + h) (γ + 1) h2.



1222 J.-C. LATCHÉ AND D. VOLA

For r ≤ rtra, the solution u is such that

‖ε̇(u)‖ ≥ ce (rtra − r) with ce = max

(
1,

√
2 τYS

µ

)
rtra + rinn

r2tra
.(5.3)

As a consequence of the approximation inequality (5.2) and the triangular in-
equality for the Euclidean norm of R

d×d, for a value of the parameter γ such that
ceγ > ca |u|2,∞,

‖ε̇(rhu)‖ > 0

‖ε̇(2u− rhu)‖ > 0

∣∣∣∣∣ ∀r ∈ [rinn, rtra].

We choose the following value for γ:

γ = 2
ca |u|2,∞

ce
.(5.4)

This choice is possible for a value of h such that γh < rtra − rinn. Lemma 5.1 then
applies, and

(i) =

∫ rtra−γh

rinn

[(‖ε̇(2u− rhu)‖ − ‖ε̇(u)‖) − (‖ε̇(u)‖ − ‖ε̇(rhu)‖)] r dr

=

∫ rtra−γh

rinn

[(
ε̇(u)

‖ε̇(u)‖ : ε̇(u− rhu) +
N(u, rhu)

D1(u, rhu)

)
−
(

ε̇(u)

‖ε̇(u)‖ : ε̇(u− rhu) +
N(u, rhu)

D2(u, rhu)

)]
r dr,

where

N(u, rhu) = ‖ε̇(u) − ε̇(rhu)‖2 +

[
ε̇(u)

‖ε̇(u)‖ : (ε̇(u) − ε̇(rhu))

]2
,

D1(u, rhu) = ‖ε̇(2u) − ε̇(rhu)‖ +

[
ε̇(u)

‖ε̇(u)‖ : [ε̇(2u) − ε̇(rhu)

]
,

D2(u, rhu) = ‖ε̇(rhu)‖ +
ε̇(u)

‖ε̇(u)‖ : ε̇(rhu).

By the approximation inequality (5.2), we then get

|N(u, rhu)| ≤ c h2 |u|2,∞ ∀r ∈ [rinn, rtra − γh]

and, by the triangular inequality for the Euclidean norm of R
d×d,

|D1(u, rhu) − 2 ‖ε̇(u)‖| ≤ 2 ‖ε̇(u) − ε̇(rhu)‖.
Inequality (5.3) then implies, with the particular choice for γ given by (5.4),

|D1(u, rhu)| < 2ce

((
rtra − γ

2
h
)
− r
)

∀r ∈ [rinn, rtra − γh].

Consequently,∫ rtra−γh

rinn

N(u, rhu)

D1(u, rhu)
r dr ≤ c h2 |u|2,∞

∫ rtra−γh

rinn

1

(rtra − γ
2 h) − r

r dr

≤ c h2 log
(γ

2
h
)
.
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A similar estimate of the second part of (i) follows, applying the same arguments.

Remark. The regularity of the solution of the problem under consideration is far
beyond what can be expected in the general case. However, arguments similar to
those employed in the preceding proof may extend to a wide range of practical situ-
ations, where, in particular, regularity of the rigid zones boundaries, often suggested
a posteriori by numerical results, can be conjectured.

5.3. Numerical tests. The whole domain has been meshed with triangles; see,
for example, a coarse mesh in Figure 5.2. Each mesh is used to build a finer one by
cutting each of its right triangles into four right triangles of equal size. In Figure
5.3, we present the velocity cuts for various values of the meshing parameter. h0

corresponds to a coarser mesh than the mesh presented in Figure 5.2, as it has only
two layers of triangles in the radial direction.

Fig. 5.2. Coarse mesh.
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Fig. 5.3. Velocity cuts for various meshing parameters, τYS = 10Mpa.
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The H1 estimates for the velocity are drawn on Figure 5.4 as a function of the
meshing parameter for various values of the plasticity threshold. One can observe
that in this specific case the estimate is of order O(h), thus confirming the preceding
analysis.
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Fig. 5.4. Error bound versus meshing parameter for various plasticity thresholds, H1-norm.

6. Conclusion. We have proposed and analyzed in this paper a stabilized finite
element scheme for the computation of incompressible creeping flows of Bingham flu-
ids, using equal-order piecewise linear approximations for both velocity and pressure.
This numerical scheme has shown several advantages due to the low degree of the
velocity approximation: its convergence rate is the same as equivalent stable schemes,
with an improved efficiency; in addition, the decomposition-coordination method can
be used with a perfect matching of the consistency constraint between the auxiliary
variable, namely the strain rate tensor, and the velocity field.

This numerical method can be extended straightforwardly to noncreeping Bing-
ham flows using a characteristic-Galerkin strategy. Some results obtained in this way
have been published in [18].
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1. Introduction.

1.1. Locally conservative and finite volume methods. Let Ω = (xL, xR)
be a bounded interval and consider the following two-point boundary value problem:
seek u : Ω → R satisfying

Lu ≡ −(a(x)u′)′ + β(x)u′ + γ(x)u = f(x) ∀x ∈ Ω,(1.1a)

u(xL) = u′(xR) = 0,(1.1b)

where a, β, γ, f are smooth, real-valued functions defined on Ω, and

0 < a∗ ≤ a(x) ∀x ∈ Ω.(1.1c)

We assume that (1.1) has a unique solution which is sufficiently smooth. In what
follows, we shall operate under the assumptions that f ∈ Hm(Ω), a ∈ Cm+1(Ω), and
β, γ ∈ Cm(Ω) for some m ∈ N, which ensure that u ∈ Hm+2(Ω) (see, e.g., [1], [22]).
The assumption (1.1c) ensures the strict ellipticity of L in the sense of [1] or [22].

Integrating (1.1a) over a subinterval ω = (ωL, ωR) of Ω we obtain

F(u, ω) ≡ −[(au′)(ω−
R ) − (au′)(ω+

L )
]
+

∫
ω

(βu′ + γu) dx−
∫
ω

f dx = 0,(1.2a)

which, when ωR = xR, is written as

G(u, ω) ≡ (au′)(ω+
L ) +

∫
ω

(βu′ + γu) dx−
∫
ω

f dx = 0,(1.2b)
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due to the Neumann boundary condition (1.1b). When β = γ = 0 the relations (1.2a)–
(1.2b) express a local conservation property for the solution of (1.1a)–(1.1b). The
physical interpretation of this property depends on the situation where the equation
is used as a model. For example, considering (1.1) as the steady state of a heat flow
problem in a rod Ω, the property (1.2a) expresses the conservation of the thermal
energy in a part ω of the rod.

A locally conservative finite volume-type method (or simply, locally conservative
method) approximates the solution u of (1.1a)–(1.1b) by a function uh, in a given fi-
nite element space Xh, that satisfies (1.2a) or (1.2b) on the subintervals of a covering
{Ωj}Mh

j=1 of Ω, where Mh depends on the dimension of Xh. We shall say that a locally
conservative method for (1.1) is a finite volume method if the approximation uh ∈ Xh

is entirely determined by the fulfillment of (1.2a) and/or (1.2b) on the subintervals
{Ωj}Mh

j=1. In the context of finite volume methods, the subintervals {Ωj}Mh
j=1 are known

as control volumes and we shall use the same terminology even in the case of locally
conservative methods. If uh satisfies (1.2a) (resp., (1.2b)) on a boundary subinterval
ω = (ωL, xR), then we shall say that ω is a boundary control volume of type I (resp.,
type II). A consequence of the above definition is that a locally conservative method
requires less computational effort to assemble the matrix of the resulting linear sys-
tem and the right-hand side, compared to the standard finite element method. In
particular, the stiffness matrix (i.e., the part of the system matrix related to a) in the
finite volume method does not require numerical quadrature.

The finite volume method has wide applicability in the approximation of solu-
tions of hyperbolic equations of conservation laws (see, e.g., [30], [23], [26] and the
references therein). These equations contain a term in space-divergence form and
therefore a local conservation property, analogous to (1.2a), holds. The interest in
extending the finite volume method to elliptic problems arises from the need to treat
a second-order, regularizing viscosity term (e.g., a Laplacian), which is also written
in space-divergence form. However, the finite volume method has also had early ap-
plications in the approximation of solutions of elliptic equations (see, e.g., [32]). In
the bibliography, the proposed locally conservative methods for the approximation of
solutions of elliptic problems are, mainly, of the finite volume type, and Xh consists
of either piecewise constant functions (see, e.g., [21]), piecewise linear functions (see,
e.g., [5], [24], [11], [10]), or piecewise quadratic functions [31]. The piecewise constant
finite volume approach has a well developed theoretical background and wide applica-
bility, and for some applications (e.g., digital image processing) is probably the most
natural (see, e.g., [21], [34]). Variants of the finite volume method on piecewise linear
functions, where (1.2a) is not satisfied, have also been proposed (see, e.g., [8], [24],
[14]). Similar in spirit are the generalized finite difference schemes analyzed in, e.g.,
[29] or [39], which are based on Steklov averaging operators. Recently, the locally
discontinuous Galerkin method (LDG) has been introduced (see, e.g., [12], [4]) with
the aim of constructing approximations of solutions of elliptic problems in one or two
space dimensions that have local conservation properties. The main idea in these
methods is to rewrite the elliptic problem as a first-order system for the unknowns u
and u′ (or ∇u). Then the method constructs approximations uh ∈ Xh and qh ∈ Xh

(or qh ∈ (Xh)
2) of u and u′ (or ∇u) in a finite element space Xh consisting of dis-

continuous functions. From the corresponding variational formulation follows that
qh has a local conservation property resembling (1.2a). In contrast, in the locally
conservative methods investigated in this paper, the finite element space Xh consists
of continuous functions and an approximation uh ∈ Xh is sought which, along with
its derivative, satisfies the balance equation (1.2a).
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As the references cited above indicate, a great deal of attention has been given
to the construction and analysis of finite volume methods for elliptic problems in two
space dimensions. The main tool in that analysis is the early idea (cf. [33]) to connect
(1.2a) with a variational formulation similar to that of the finite element method (cf.,
e.g., [5], [24], [15], [14], [20]). In the piecewise linear case, and for self-adjoint or non-
self-adjoint elliptic operators in two space dimensions, optimal first-order H1 error
estimates have been obtained by several authors under the regularity assumption
u ∈ H2 (cf., e.g., [5], [24], [25], [13], [35], [20]). Also, the authors of [9], [10], and
[11] prove some second-order error estimates in a discrete H1 norm. An optimal L2

second-order error estimate for the Poisson equation is obtained by Hackbusch in [24]
by assuming u ∈ H2 and f ∈ H1. Later, Jianguo and Shitong in [25], and Ewing,
T. Lin, and Y. Lin in [20], show by examples in one and two dimensions that, in
general, it is not possible to obtain optimal second-order L2 convergence by assuming
u ∈ H2 and f ∈ L2. Optimal order L2 error estimates for general self-adjoint elliptic
problems have been obtained by Chatzipantelidis in [13], for a nonconforming finite
volume method, and by Chou and Li in [15] for a conforming one. The result in
[13] relies on the assumption u ∈ H2 and f ∈ H1, while in [15] it is assumed that
u ∈ H3; here the second assumption is stronger because, in general, the regularity of
the solution of an elliptic problem in the two-dimensional case also depends on the
regularity of the boundary of the domain and not only on the regularity of the data.
Analogous results are obtained in [27] for the Stokes problem and in [18], [19] for
one-dimensional integro-differential equations. Recently in [20], Ewing, T. Lin, and
Y. Lin show that if f ∈ Hα and u ∈ H1+α for α ∈ (0, 1], then the order of the L2

convergence of the finite volume method considered in [15] is equal to 2α. For the
piecewise quadratic case, a finite volume method proposed by Liebau in [31] attains
optimal, second-order convergence in the H1 norm assuming u ∈ H3. To the best of
our knowledge, this is the only finite volume method based on piecewise polynomial
functions of degree greater than one. The absence of a general theory for finite volume
methods based on piecewise polynomial approximation spaces, analogous to that of
the finite element method (cf., e.g., [7], [16]), is apparent.

An interesting step forward could be to find a systematic way of deriving finite
volume methods for elliptic problems, based on finite element spaces Xh consisting
of functions which are piecewise polynomials of degree greater than one. The main
difficulty in achieving this goal arises from the fact that the definition of a finite
volume method requires (except from the finite element space Xh) a set of control
volumes with cardinal number proportional to the dimension of Xh. Hence, the
control volume quest seems to be a very complicated procedure when the degree
of the piecewise polynomial functions of Xh increases. It is worthwhile to notice
that the choice of the control volumes may influence, apart from the well-posedness,
the order of convergence of the obtained finite volume method. This phenomenon
has been observed in the piecewise linear case where only special families of control
volumes lead to a finite volume method which has the same order of convergence
with that of the corresponding finite element method (cf. [24], [13], [15]). In the
recent work of Liebau [31] the finite volume method has been extended on quadratics
over a triangular mesh, but still we do not know if a finite volume method based on
quadratics can attain optimal order of convergence in the L2 norm.

1.2. Description of the results of the paper. In this paper we derive general
classes of new optimal order, locally conservative, finite volume-type methods for the
problem (1.1a)–(1.1b), based on continuous piecewise polynomial spaces of degree



HIGH ORDER LOCALLY CONSERVATIVE FV-TYPE METHODS 1229

r ≥ 2. For these methods, we provide a general error estimation theory in the H1,
L2, and L∞ norms, analogous to that of the finite element method. Also, we discuss
some pointwise error estimates for r ≥ 2 and some a posteriori error estimates for
r = 2.

Even though the “battlefield” of the current research in the area of the finite vol-
ume methods is the two-dimensional case, we restrict ourselves to the one-dimensional
case so as to fix the ideas and gain insight into the structure of such methods. This
choice came after preliminary work on the two-dimensional case. In particular, we
arrived at the conclusion that, using integration rules, we may construct finite volume
methods based on quadratic finite elements over a triangular mesh which are different
from that of [31] and have optimal order of convergence in the H1 norm. However,
the existence of such a finite volume method with optimal order of convergence in
the L2 norm seems to be unsure. Then, we thought that we might find an answer
to this question if we knew how to construct systematically finite volume methods,
based on high order finite element spaces, in the one-dimensional case where the
finite element geometry is simpler. The extension of the work at hand to the two-
dimensional case, which is the our next step, is not straightforward because of the
greater variety of the geometry of the relevant finite element spaces. However, the
ideas and methods developed here may be used in two-dimensional problems when
the discretization of the computational domain is achieved by rectangular elements
(cf. Remark 2.2).

Before presenting a summary of the present paper, we list the basic results of our
work:

• For every r ≥ 2, we construct locally conservative methods for (1.1a)–(1.1b)
where part of the degrees of freedoms are determined by finite element equa-
tions and the rest by equations concerning local conservativity in the mean
of (1.2) (cf. Propositions 3.1–3.2). The interesting fact is that these methods
have optimal order of convergence in the H1, L2, and L∞ norm assuming the
same regularity as in the finite element method.

• If r = 2, 4, or 6, we construct finite volume methods for (1.1a)–(1.1b) which
have optimal order of convergence in the H1, L2, and L∞ norm (cf. Propo-
sition 3.7). Their control volumes are related to a dual mesh based on the
roots of the well-known Legendre polynomial with degree r. Our opinion is
that the technique used in deriving these finite volume methods works only
for all even r but we are not able to provide a general proof for this fact.

• For every r ≥ 3 we construct a general family of finite volume methods for
(1.1a)–(1.1b) which have optimal order of convergence in the H1 norm (cf.
Proposition 3.6). Their control volumes are related to a dual mesh based on
r − 2 arbitrary internal nodes of [0, 1].

Let us present briefly the contents of the work at hand. Here, we extend and
modify the framework proposed in [14] for the analysis of finite volume methods for
elliptic problems in two space dimensions based on piecewise linear finite element
spaces, in order to construct locally conservative methods for problem (1.1a)–(1.1b).
Hence, we consider a general class of numerical methods based on continuous piecewise
polynomial spaces which have a common variational formulation of the form

Bh(uh, χ) = (f,Λhχ) for χ ∈ Xh,(1.3)

where Λh is a linear operator defined on piecewise P
r functions into a finite-dimensional

space consisting of piecewise polynomial functions, and Bh is a bilinear form that de-
pends on Λh. The exact description of Bh is given in (2.9). We assume throughout
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that the operator Λh satisfies (2.7), a local L2 approximation property of order α ≥ 1,
i.e.,

‖ Λhv − v ‖L2(x1,x2) ≤ C (x2 − x1)
s ‖v‖Hs(x1,x2), s = 1, . . . , α,(1.4)

and (2.8), a local error orthogonality property on P
r−2+σ with σ = 0 or 1, i.e.,

(Λhv − v, q)L2(x1,x2) = 0 ∀q ∈ P
r−2+σ(x1, x2),(1.5)

where x1, x2 are consecutive nodes of a partition of Ω.
In section 3, we construct two large families of methods based on specific operators

Λh satisfying(1.4)–(1.5), and yielding conservative equations of the form (1.2a), i.e.,
producing locally conservative methods. For the first family of the methods (see
section 3.1) the operator Λh is defined as a local L2-projection from P

r to P
r−1 or P

r−2,
while for the second family of methods (see section 3.2) the operator Λh is defined
via a special projection (see Proposition 3.5) from P

r to a space of piecewise constant
functions. Both families of methods are infinite, with respect to the degree r of the
underlying polynomial space. The methods of section 3.1 are locally conservative with
α ≥ 2 and σ = 0 (see Proposition 3.1) or σ = 1 (see Proposition 3.2), while those
of section 3.2 are of the finite volume type or locally conservative with α = 1 and
σ = 0 (see Proposition 3.6) or σ = 1 (see Proposition 3.7, Remark 3.5). In particular,
for the methods of Proposition 3.1 and Proposition 3.6 we show that the discrete
approximation uh belongs to C1(Ω) and satisfies the Neumann boundary condition
at xR. We note that the generality of the variational formulation (1.3) allows us to
include as particular members, finite volume methods based on piecewise quadratic
functions, where α = 1, σ takes only the value 0, and the control volumes are related
to the nodes of a quadrature rule (e.g., Simpson, Radau). The latter methods were
introduced in [36] but cannot be generalized to r ≥ 3 so that (2.8) is satisfied, and
this is the reason we keep them out of our presentation. Hence, the connection of a
finite volume method to a quadrature rule has a limited usefulness when r ≥ 2.

The main result of the a priori error analysis in the L2 and H1 norms, for the
general methods (1.3) introduced in section 2, is contained in Theorem 4.6 of section 4.
There it is shown that convergence in the H1 norm is always of optimal order r, while
the optimal rate of convergence r + 1 in the L2 norm is attained when α ≥ 2 or
σ = 1. The latter result holds for the methods of Proposition 3.1 with r ≥ 3, where
α = r − 1, the methods of Proposition 3.2 where α = r = 2m, the methods of
Remark 3.5 where α = 1 and σ = 1, and finally for the new finite volume methods
derived in Proposition 3.7 where also α = 1 and σ = 1. The exact solution u is
assumed to be in Hs0(Ω), where for the H1 estimate s0 = r + 1 and for the L2

estimate s0 = r + 1 if α ≥ 2 and s0 = r + 1 + σ if α = 1.
The a priori error analysis in L∞ is carried out in section 5. We show that the

methods with optimal order of L2 convergence also attain optimal order of convergence
in the L∞ norm. Theorem 5.5 covers the case α ≥ 2 under the additional condition
that Λh preserves piecewise linear functions which holds for the optimal order methods
of section 3.1 (cf. Proposition 3.1, Proposition 3.2), while Theorem 5.7 covers the case
α = 1 and σ = 1 (cf. Proposition 3.7, Remark 3.5).

In section 6 we prove a pointwise error estimate of order r+α+σ−1 at the nodes
of the finite element partition (cf. Proposition 6.1). This is a superconvergence result
when α ≥ 3 and σ = 0, or α ≥ 2 and σ = 1, which is the case of the locally conservative
methods in Proposition 3.1 for r ≥ 4 (σ = 0, α = r − 1) and in Proposition 3.2
(σ = 1, α = r = 2m). In addition, if a locally conservative approximation is C1 at
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the boundary points of a set of nonoverlapping control volumes and the boundary
control volume is of type II, then we prove a general error estimate for the derivative
of the error at these points (cf. Proposition 6.2, Remark 6.4). This result holds for
the methods of Propositions 3.1, 3.6, and 3.7 and Remark 3.5.

The a posteriori error analysis for the case of quadratic finite element spaces is
elaborated in section 7. We develop a residual-based a posteriori error analysis by
extending the corresponding framework of the finite element method. In section 8
we verify numerically the convergence rates of some of the methods of section 3 and
compare with the finite element method. In addition, we use the a posteriori error
bounds of section 7 to construct an adaptive algorithm and test its performance by
applying it to an appropriate test-problem.

2. Preliminaries and the formulation of the numerical method.

2.1. Notation and preliminaries. For I ⊂ R an open and bounded interval,
s ∈ N0 and 1 ≤ p ≤ ∞, we let W s,p(I) denote the Sobolev space of functions having
generalized derivatives up to order s in the space Lp(I). The norm of v ∈ W s,p(I)

will be denoted by ‖v‖s,p,I = (
∑s
j=0

∫
I
|Djv|p dx) 1

p for 1 ≤ p < ∞ and ‖v‖s,∞,I =

max0≤j≤s (ess supI |Djv|) for p = ∞. We shall write Hs(I) = W s,2(I) and omit the
index 2 from the symbol of its norm, i.e., ‖ · ‖s,I = ‖ · ‖s,2,I . H1

0 (I) will denote the
subspace of H1(I) consisting of functions which vanish at the endpoints of I in the
sense of trace. The inner product and norm of L2(I) will be denoted by (·, ·)I and
‖ · ‖0,I , respectively, and the norm of L∞(I) by | · |∞,I . We shall also omit the index
I from the norm and inner product symbols when I = Ω. CsB(I) will denote the
space of Cs(I)-functions which, along with their classical derivatives up to order s,
are continuously extensible to I. Finally, we denote the restriction of L on H2(I) by
LI , so that L ≡ LΩ, and the characteristic function of I by XI .

The length of the interval I will be denoted by hI . Further, if I = (yL, yR) and
v ∈ L2(I) is such that there exists δ > 0 for which v|(yL,yL+δ) ∈ C0

B(yL, yL + δ) and
v|(yR−δ,yR) ∈ C0

B(yR − δ, yR), we shall write [[v]]∂I = v(yR − 0) − v(yL + 0). Here,
and in what follows, v(x ± 0) = limε→0+ v(x ± ε). We also let H(I) = {v ∈ H1(I) :
v(yL) = 0}.

For h ∈ (0, 1), let Ph denote a (nonuniform) partition of Ω with Jh+1 nodes, xL =
xh0 < xh1 < · · · < xhJh = xR, such that max1≤j≤Jh(xhj −xhj−1) ≤ C h for some positive
constant C independent of h. We stress that this weak mesh assumption is sufficient
for the error estimates of sections 4–7, and thus, a stronger mesh assumption such
as quasi uniformity is not required. We shall write Ihj = (xhj−1, x

h
j ) for j = 1, . . . , Jh

and xhj+z = xhj + zhIh
j+1

for j = 0, . . . , Jh − 1 and z ∈ [0, 1]; furthermore, we let

xhj−z = xhj−1+(1−z) for j = 1, . . . , Jh and z ∈ [0, 1]. Also, for j = 1, . . . , Jh, we define

ξhj : Ihj → [0, 1] by ξhj (x) := (x− xhj−1)/hIhj for x ∈ Ihj .

For m ∈ N0, we denote by P
m(I) the space of polynomials of degree less than or

equal to m, restricted on I, and let P
m
h = {v ∈ L2(Ω) : v|I ∈ P

m(I) ∀ I ∈ Ph}. Letting
Lm ∈ P

m(−1, 1) be the well-known Legendre polynomial of degree m corresponding
to the weight function w ≡ 1 (cf., e.g., [38]), we denote by Wm its shift to (0, 1),
i.e., Wm ∈ P

m(0, 1) and Wm(x) = Lm(2x − 1) for x ∈ (0, 1). Then Wm has m
discrete roots in (0, 1) and satisfies Wm(0) = (−1)m and Wm(1) = 1. We shall also
make use of the space Cmh = {v ∈ L2(Ω) : v|I ∈ CmB (I) ∀ I ∈ Ph}. In addition, we
introduce the space Hm

h = {v ∈ L2(Ω) : v|I ∈ Hm(I) ∀ I ∈ Ph} and equip it with

the mesh-dependent norm ‖v‖m,h =
{∑

I∈Ph
‖v‖2

m,I

} 1
2 for v ∈ Hm

h .
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We shall seek approximations of the solution u of (1.1a)–(1.1b) in the space Srh,
r ≥ 2, of continuous functions which vanish at xL and reduce to polynomials of degree
less than or equal to r on each I ∈ Ph, i.e., Srh = P

r
h ∩ H(Ω). Since the polynomial

spaces, restricted to I, have finite dimension, all the norms are equivalent but the
constants depend on hI . In particular, the following local inverse property holds (see,
e.g., [7, section 4.5]): there exists a constant C = C(r), independent of h, such that
for 0 ≤ m ≤ 
 ≤ r

‖χ‖�,I ≤ C hm−�
I ‖χ‖m,I ∀ I ∈ Ph, ∀χ ∈ P

r
h.(2.1)

For v ∈ C0
h and m ∈ N, we denote by Imh v the Lagrange interpolant of v, i.e., the

unique function of P
m
h which, for j = 0, . . . , Jh − 1, satisfies (Imh v − v)(xh

j+ k
m

) = 0,

k = 1, . . . ,m−1, (Imh v−v)(xhj +0) = 0, and (Imh v−v)(xhj+1−0) = 0. It is well known
(cf., e.g., [7, section 4.4]) that Imh possesses the following approximation properties:

m∑
s=0

hsI ‖Imh v − v‖s,I ≤ C̃m hm+1
I ‖v‖m+1,I ∀ v ∈ Hm+1(I), ∀ I ∈ Ph,(2.2)

|Imh v − v|∞,I ≤ C̃∞,m hm+1
I ‖v‖m+1,∞,I ∀ v ∈Wm+1,∞(I), ∀ I ∈ Ph,(2.3)

‖I1
hv − v‖0,I ≤ hI ‖v‖1,I ∀ v ∈ H1(I), ∀ I ∈ Ph.(2.4)

We shall also make use of the L2-projection operator Πh on P
0
h, defined by

(Πhv, q) = (v, q) ∀ q ∈ P
0
h, ∀ v ∈ L2(Ω).

It is easy to show that Πhv|I = 1
hI

∫
I
v dx ∀ I ∈ Ph, ∀ v ∈ L2(Ω), and

‖v − Πhv‖0,I ≤ hI ‖v′‖0,I ∀ I ∈ Ph, ∀ v ∈ H1
h,(2.5)

|v − Πhv|∞,I ≤ hI |v′|∞,I ∀ I ∈ Ph, ∀ v ∈ C1
h.(2.6)

2.2. A variational formulation of the method: The parameters α and
σ. In this section we formulate a family of numerical methods for the approximation
of the solution of (1.1a)–(1.1b) from the finite element space Srh, r ≥ 2, which are
generalizations of the standard Galerkin method. As we shall see later in section 3,
we can define finite volume and general locally conservative methods as particular
members of this family. A similar approach has been introduced in [14] for the analysis
of finite volume element methods based on piecewise linear functions and applied to
two-dimensional linear elliptic problems.

The basic ingredient in the definition of our numerical methods is a linear operator
Λh: P

r
h → L2(Ω), satisfying the following stability- and consistency-like assumptions:

∃ α ∈ N : ‖Λhv − v‖0,I ≤ Ĉr,s h
s
I ‖v‖s,I ∀ I ∈ Ph, s = 1, . . . , α, ∀ v ∈ P

r
h,(2.7)

∃ σ ∈ {0, 1} : (Λhv − v, q)I = 0 ∀ q ∈ P
r−2+σ(I), ∀ I ∈ Ph, ∀ v ∈ P

r
h.(2.8)

A discrete variational formulation of (1.1a)–(1.1b) is then defined as follows: for
h ∈ (0, 1) we seek uh ∈ Srh such that

Bh(uh, χ) = (f,Λhχ) ∀χ ∈ Srh,(2.9)

where the bilinear form Bh : H2
h × P

r
h → R is defined as

Bh(v, χ) =
∑
I∈Ph

{
[[av′χ]]∂I + (LIv,Λhχ)I

} ∀ v ∈ H2
h, ∀χ ∈ P

r
h.
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That the method (2.9) is well defined is discussed later, in Proposition 4.4. However,
the consistency of the method (2.9) is straightforward. Indeed, the solution u ∈ H2(Ω)
of (1.1) satisfies Bh(u, χ) = (f,Λhχ) for χ ∈ Srh, since u′, χ ∈ H1(Ω) ⊂ C(Ω). Thus
we arrive at

Bh(u− uh, χ) = 0 ∀ χ ∈ Srh,(2.10)

which is analogous to the orthogonality property of the finite element method. Note
also that in the standard Galerkin finite element method we seek ũh ∈ Srh such that
B(ũh, χ) = (f, χ) ∀χ ∈ Srh, where

B(v, χ) =
∑
I∈Ph

{
(av′, χ′)I + (βv′, χ)I + (γv, χ)I

} ∀ v, χ ∈ H1
h.

Using integration by parts we obtain the fundamental, for the error estimation, iden-
tity

Bh(v, χ) = B(v, χ) +
∑
I∈Ph

(LIv,Λhχ− χ)I ∀ v ∈ H2
h, ∀χ ∈ P

r
h,(2.11)

relating the bilinear forms of the finite element and the locally conservative methods.
Thus, the standard Galerkin finite element method and (2.9) coincide when we choose
Λhχ = χ, for χ ∈ P

r
h.

Remark 2.1. Let us consider the two-point boundary value problem

−(â(x) û′ − β̂(x) û)′ + γ̂(x) û = f̂(x) ∀x ∈ Ω, û(xL) = û′(xR) = 0,(2.12)

where infΩ â > 0, â, β̂ ∈ C1(Ω), γ̂ ∈ C0(Ω), and f̂ ∈ L2(Ω). We can construct an
approximation ûh ∈ Srh of the solution û by writing (2.12) in the equivalent form

(1.1a) with a = â, β = β̂, γ = γ̂ + β̂′ and applying method (2.9). Next, let us
also assume that (2.9) is locally conservative with control volumes ω ∈ V. Then

−[[â û′h]]∂ω +
∫
ω
(β̂ û′h + γ ûh) dx =

∫
ω
f̂ dx for ω ∈ V. Since β̂ ûh ∈ H1(Ω) we obtain

−[[â û′h− β̂ ûh]]∂ω +
∫
ω
γ̂ ûh dx =

∫
ω
f̂ dx for ω ∈ V. If ω is a boundary control volume

of type II we have (â û′h)(ω
+
L ) + [[β̂ ûh]]∂ω +

∫
ω
γ̂ ûh dx =

∫
ω
f̂ dx, where ωL is the

left endpoint of ω. Hence, if the method (2.9) is locally conservative for the problem
(1.1a)–(1.1b), then we can use it to derive locally conservative approximations of
problem (2.12), which is the conservative form of (1.1a)–(1.1b).

Remark 2.2. In a two-dimensional setting, the derivation of a high order, locally
conservative method requires that the term [[av′χ]]∂I in the definition of Bh(v, χ) be
replaced by

∫
τ
A∇v ·nQhχdS, where A is the diffusion matrix of the elliptic problem,

τ is an element of a partition of the domain Ω, and Qh is some appropriate operator
with properties analogous to those of Λh (cf. [14] for finite volume methods based
on piecewise linear functions). In the case of triangular elements it is not obvious
how to construct an operator Qh yielding locally conservative methods with optimal
order convergence properties. In the case where the discretization of the computational
domain is achieved by rectangular elements, it seems possible to construct such an
operator Qh using the techniques of the present work.

3. Examples of locally conservative methods. In this section, for r ≥ 2, we
provide examples of operators Λh : P

r
h → L2(Ω) satisfying the assumptions (2.7)–(2.8)

and yielding locally conservative methods based on Srh. We note that for r = 2 we can
construct locally conservative and finite volume methods using quadrature rules exact
for polynomials of degree at least two (cf. [36] for details). These methods, however,
cannot be generalized to r ≥ 3 so that (2.8) is satisfied.
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3.1. Methods based on local L2 projections. We present here some locally
conservative methods on Srh based on a local L2 projection of P

r onto P
r−2 for r ≥ 2

(cf. Proposition 3.1), or a local L2 projection of P
r onto P

r−1 for even r ≥ 2 (cf.
Proposition 3.2). The basic characteristic of these methods is that (2.7) holds with
α ≥ 2, and thus, as we shall show later in sections 4 and 5, we may obtain optimal
order of convergence in the H1, L2, and L∞ norm, assuming for u the same regularity
as in the standard finite element method. These methods can be considered as a
bridge between the finite element and the finite volume method.

Proposition 3.1. Let r ≥ 2 and Λh : P
r
h → P

r−2
h be defined by

(Λhp− p, q) = 0 ∀ q ∈ P
r−2
h , ∀ p ∈ P

r
h.

Then (2.7) holds with α = r − 1 and (2.8) is satisfied with σ = 0. Also, the method
(2.9) is a locally conservative method on Srh with overlapping control volumes {Ihj }Jhj=1

and {(xhj−1, x
h
j+1)}Jh−1

j=1 , where the interval IhJh is a boundary control volume of both

types I and II. Moreover, the corresponding approximation uh belongs to Srh ∩ C1(Ω)
and satisfies a homogeneous Neumann boundary condition at xR.

Proof. The definition of Λh immediately implies (2.8) for σ = 0. Let I ∈ Ph and
v ∈ P

r(I). Since ‖Λhv − v‖0,I = infχ∈P
r−2(I) ‖χ − v‖0,I , using (2.2), (2.5), and (2.4)

we conclude that (2.7) holds with α = r − 1.
Let θ1, θ2 ∈ {0, 1} and θ = (θ1, θ2). We can find a polynomial pθ ∈ P

r(0, 1) such
that pθ(0) = θ1, p(1) = θ2 and whose L2-projection on P

r−2(0, 1) is the constant 1.

Indeed, if pθ is such a polynomial, then pθ(x) = wθ(x)
(∑r−1

j=1 a
θ
j x

j−1
)
, where wθ(x) =

|x−θ1| |x−θ2|. Requiring
∫ 1

0
x�−1 pθ(x) dx = 1

� , 
 = 1, . . . , r−1, we get
∑r−1
j=1 a

θ
j A

θ
�j =

1
� for 
 = 1, . . . , r − 1, where Aθ�j =

∫ 1

0
wθ(x)x

�−1xj−1 dx. Aθ is invertible being the

Gram matrix of the linearly independent vectors {√wθ(x)xk−1}r−1
k=1 of L2(0, 1). Thus,

pθ is fully determined.
Set now p = p(0,0) and p̃ = p(0,1), and consider the linearly independent functions{

φj , φ̃j
}Jh
j=1

of Srh defined by φj = (p ◦ ξhj )XIh
j

for j = 1, . . . , Jh, φ̃j = (p̃ ◦ ξhj )XIh
j

+

(p̃ ◦ (1 − ξhj+1))XIhj+1
for j = 1, . . . , Jh − 1, and φ̃Jh = (p̃ ◦ ξhJh)XIh

Jh

. Then we

have Λhφj = XIh
j

for j = 1, . . . , Jh, Λhφ̃j = XIh
j
∪Ih

j+1
for j = 1, . . . , Jh − 1, and

Λhφ̃Jh = XIh
Jh

. Setting χ = φj in (2.9) we obtain∫
Ih
j

LIh
j
uh dx =

∫
Ih
j

f dx, j = 1, . . . , Jh.(3.1)

With χ = φ̃j in (2.9) we get

(au′h)(x
h
j − 0) − (au′h)(x

h
j + 0) +

∑
�∈{j,j+1}

∫
Ih
�

(
LIh

�
uh − f

)
dx = 0(3.2)

for j = 1, . . . , Jh − 1 and

(au′h)(x
h
Jh

− 0) +

∫
Ih
Jh

(
LIh

Jh

uh − f
)
dx = 0.(3.3)

Using integration by parts, we arrive at

F(uh, (x
h
j−1, x

h
j+1)) = 0, j = 1, . . . , Jh − 1, G(uh, I

h
Jh

) = 0,(3.4)

F(uh, I
h
j ) = 0, j = 1, . . . , Jh.(3.5)
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The relations in (3.4) and (3.5) show that the method (2.9) is a locally conservative
method with control volumes {Ihj }Jhj=1 and {(xhj−1, x

h
j+1)}Jh−1

j=1 . The interval IhJh is
a boundary control volume of type I due to (3.5) and of type II due to the second
equation in (3.4). Also, (3.2), (3.3), and (3.1) imply u′h(xR − 0) = 0 and u′h(x

h
j − 0) =

u′h(x
h
j + 0) for j = 1, . . . , Jh − 1, which completes the proof.
Remark 3.1. We note that the method of Proposition 3.1 with r = 2 is a finite

volume method.
Proposition 3.2. Let m ∈ N, r = 2m, and Λh : P

r
h → P

r−1
h be defined by

(Λhp− p, q) = 0 ∀ q ∈ P
r−1
h , ∀ p ∈ P

r
h.(3.6)

Then (2.7) holds with α = r and (2.8) is satisfied with σ = 1. Also, the method
(2.9) is a locally conservative method on Srh with control volumes {Ihj }Jhj=1, where the

interval IhJh is a boundary control volume of type I.
Proof. The definition of Λh immediately yields that (2.8) holds for σ = 1. Let

I ∈ Ph and v ∈ P
r(I). Since ‖Λhv − v‖0,I ≤ ‖Ir−1

h v − v‖0,I , the use of (2.2) and
(2.4), implies that (2.7) holds with α = r.

We define p̂ ∈ P
r(0, 1) by p̂(x) = 1 −Wr(x) for x ∈ (0, 1) (cf. section 2.1). Then

we have p̂(0) = 0, p̂(1) = 0 and
∫ 1

0
(p̂(x) − 1) q̂(x)dx = 0 ∀q̂ ∈ P

r−1(0, 1), because of

the orthogonality property of the Legendre polynomials, i.e.,
∫ 1

−1
Lr(x) q(x)dx = 0

∀q ∈ P
r−1(−1, 1). Consider the linearly independent functions {φ̂j}Jhj=1 ⊂ Srh defined

by φ̂j = (p̂ ◦ ξhj )XIh
j
, j = 1, . . . , Jh. By construction we have that Λhφ̂j = XIh

j
,

j = 1, . . . , Jh. Setting χ = φ̂j in (2.9) we arrive at F(uh, I
h
j ) = 0, j = 1, . . . , Jh, which

completes the proof of the proposition.
Remark 3.2. Let m ∈ N, r = 2m, Λh be defined by (3.6) and B̂ = {φ̂j}Jhj=1 be

the set of linearly independent functions of Srh defined in the proof of Proposition 3.2.

If B̃ is a basis of Sr−1
h , then the set B̃∪B̂ is a basis of Srh because card(B̃) = (r−1)Jh

and φ̂j |Ih
j
∈ P

r(Ihj )\Pr−1(Ihj ) for j = 1, . . . , Jh. Since Λhφ̃ = φ̃, for φ̃ ∈ B̃, the rest

degrees of freedom of the approximation uh are specified by the finite element-type
equations: B(uh, φ̃) = (f, φ̃) for φ̃ ∈ B̃.

Remark 3.3. Let m ∈ N, r = 2m + 1 and Λh be defined by (3.6). Proceeding
as in the proof of Proposition 3.1, we conclude that there is a unique polynomial
p∗ ∈ P

r(0, 1) such that p∗(0) = 0 and whose L2 projection on P
r−1(0, 1) is equal to 1,

i.e.,
∫ 1

0
(p∗(x) − 1) q(x)dx = 0 ∀q ∈ P

r−1(0, 1). Setting q = p′∗ ∈ P
r−1(0, 1) we obtain

p∗(1)(p∗(1)− 2) = 0, so that either p∗(1) = 0 or p∗(1) = 2. Since r is odd, it is easily
seen that p∗ = Wr + 1, which yields p∗(1) = 2. This means that it is not possible
to have p∗(1) = 0 or p∗(1) = 1, and hence we cannot employ the technique used in
Propositions 3.1 and 3.2 to show that the method is locally conservative.

3.2. Methods based on a special projection of C0
h onto piecewise con-

stants. In this subsection we define a special projection of the piecewise continuous
functions of C0

h onto a space consisting of piecewise constant functions and use it to
derive finite volume methods on Srh, for r ≥ 2. For these finite volume methods, (2.7)
holds with α = 1 and (2.8) is satisfied with σ = 0 or 1. The convergence analysis of
sections 4 and 5 shows that the order of convergence is optimal in the H1 norm when
σ = 0 and in the H1, L2, and L∞ norm when σ = 1.

Let s ≥ 2 and � = {�j}sj=0 ⊂ R be the nodes of a partition of [0, 1], i.e., �0 = 0,
�s = 1, and �j−1 < �j for j = 1, . . . , s. The next lemma shows that there is a unique
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polynomial of degree less than or equal to s − 1 with prescribed integral over each
subinterval of the partition.

Lemma 3.3. Let s ≥ 2 and � = {�j}sj=0 be the nodes of a partition of [0, 1].

Then, for given E = {εj}sj=1 ⊂ R there exists a unique pE ∈ P
s−1[0, 1] such that∫ �j

�j−1

pE(x) dx = εj , j = 1, . . . , s.(3.7)

Proof. Observing that every p ∈ P
s−1[0, 1] has a unique representation as p(x) =∑s

i=1 i ai x
i−1, it is easily seen that (3.7) is equivalent to

∑s
i=1 ai (�ij − �ij−1) = εj ,

j = 1, . . . , s. Since �0 = 0, the last relation and a simple induction argument yields
that (3.7) is, finally, equivalent to

∑s
i=1 ai Âji =

εj+εj−1

�j
j = 1, . . . , s, where Âji =

(�j)
i−1 and ε0 = 0. Since Â ∈ R

s×s is a Vandermonde matrix, the coefficients {ai}si=1

are uniquely determined and this proves the assertion of the lemma.
The result of Lemma 3.3 allows us to construct a basis of P

s−1 for s ≥ 2 that is
useful for our purposes.

Lemma 3.4. Let s ≥ 2 and � = {�j}sj=0 be the nodes of a partition of [0, 1]. The

polynomials
{
z�,s−1
�

}s
�=1

⊂ P
s−1[0, 1] satisfying∫ �j

�j−1

z�,s−1
� (x) dx = δ�j , j, 
 = 1, . . . , s,(3.8)

form a basis of P
s−1[0, 1].

Proof. Lemma 3.3 ensures that
{
z�,s−1
�

}s
�=1

are well-defined elements of P
s−1[0, 1].

To show that they are linearly independent, we assume that there exist real numbers
{λj}sj=1 such that

∑s
j=1 λj z

�,s−1
j = 0. Then, for j0 = 1, . . . , s, integrate the last

relation over [�j0−1, �j0 ] and use (3.8) to obtain
∑s
j=1 λj δjj0 = 0, or λj0 = 0.

Remark 3.4. Let {w�,s� }s�=1 ⊂ P
s(0, 1) be such that w�,s� (�j) = 0 for j = 0, . . . , 
−

1 and w�,s� (�j) = 1 for j = 
, . . . , s. Then we have z�,s−1
� = (w�,s� )′ for 
 = 1, . . . , s.

We define now a linear operator that maps the piecewise continuous functions C0
h

onto piecewise constant functions and has properties analogous to (2.7) and (2.8).
Proposition 3.5. Let s ≥ 2, � = {�j}sj=0 be the nodes of a partition of [0, 1],{

z�,s−1
�

}s
�=1

be the basis of P
s−1[0, 1] described in Lemma 3.4 and Λ̃�,sh : C0

h → L2(Ω)
be a linear operator defined by

Λ̃�,sh v|Ih
j

=
1

hIh
j

s∑
�=1

(
v, (z�,s−1

� ◦ ξhj )
)
Ih
j

XI�,h
j,�
, j = 1, . . . , Jh,(3.9)

where I�,hj,� = (xhj−1+��−1
, xhj−1+��

). Then, it holds that(
Λ̃�,sh v − v, q

)
I

= 0 ∀ q ∈ P
s−1(I), ∀ I ∈ Ph, ∀ v ∈ C0

h,(3.10) ∥∥Λ̃�,sh ṽ − ṽ
∥∥

0,I
≤ C hI ‖ṽ‖1,I ∀ I ∈ Ph, ∀ ṽ ∈ H1

h.(3.11)

Proof. Let v ∈ C0
h, ṽ ∈ H1

h, and j ∈ {1, . . . , Jh}. Using (3.8) and (3.9), we obtain

(
Λ̃�,sh v, (z�,s−1

i ◦ ξhj )
)
Ih
j

=

s∑
�=1

(
v, (z�,s−1

� ◦ ξhj )
)
Ih
j

∫ ��

��−1

z�,s−1
i (x) dx

=
(
v, (z�,s−1

i ◦ ξhj )
)
Ih
j

, i = 1, . . . , s,
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which proves (3.10) since {z�,s−1
i ◦ ξhj }si=1 is a basis of P

s−1(Ihj ). By (3.8) and (3.9)
we have∫

Ih
j

|Λ̃�,sh ṽ − ṽ|2 dx =

s∑
�=1

∫
I�,h
j,�

∣∣∣∣∫ 1

0

(
ṽ(xhj−1 + zhIh

j
) − ṽ(x)

)
z�,s−1
� (z) dz

∣∣∣∣2 dx
≤

s∑
�=1

|I�,hj,� |
(∫

Ih
j

|ṽ′| dx
)2(∫ 1

0

|z�,s−1
� | dz

)2

.

Using Cauchy–Schwarz’s inequality and the equality |I�,hj,� | = (��−��−1)hIh
j

we obtain

∫
Ih
j

|Λ̃�,sh ṽ − ṽ|2 dx ≤ h2
Ih
j
‖ṽ‖2

1,Ih
j

{
s∑
�=1

(�� − ��−1)

(∫ 1

0

|z�,s−1
� | dz

)2
}
,

which yields (3.11).
Next, we show that it is possible to construct arbitrarily high order finite volume

methods based on the projection on piecewise constants introduced in Proposition 3.5.
Proposition 3.6. Let r ≥ 3, � = {�i}r−1

i=0 be the nodes of a partition of [0, 1], and

Λh = Λ̃�,r−1
h |Pr

h
.(3.12)

Then Λh satisfies (2.7) with α = 1 and (2.8) with σ = 0. Also, the method (2.9)

is a finite volume method with control volumes
{{(xhj−1+�i−1

, xhj−1+�i
)}r−1
i=1

}Jh
j=1

and

{(xhj−1+�r−2
, xhj+�1)}Jh−1

j=1 , where the interval (xhJh−1+�r−2
, xhJh) is a boundary control

volume of both types I and II. Moreover, the corresponding approximation uh belongs
to Srh ∩ C1(Ω) and satisfies a homogeneous Neumann boundary condition at xR.

Proof. Proposition 3.5, for s = r− 1, yields that (2.7) holds with α = 1 and (2.8)
is satisfied with σ = 0. We shall show that the method (2.9) (under the choice (3.12)
for Λh) is a finite volume method by constructing an appropriate basis of Srh.

Let θ1, θ2 ∈ {0, 1}, and θ = (θ1, θ2). We consider the problem of finding a

polynomial pθ ∈ P
r[0, 1] such that pθ(0) = θ1, pθ(1) = θ2 and

∫ 1

0
pθ(x) z

�,r−2
� (x) dx =

εθ� for 
 = 1, . . . , r − 1, where {εθ�}r−1
�=1 are given real numbers. Using Lemma 3.4, the

first two conditions for pθ are equivalent to pθ = wθ (
∑r−1
i=1 a

θ
i z

�,r−2
i ), where wθ(x) =

|x−θ1| |x−θ2|. Hence, the conditions for pθ are equivalent to
∑r−1
i=1 a

θ
i A

θ
�i = εθ� for 
 =

1, . . . , r− 1, where Aθ�i =
∫ 1

0
wθ(x) z

�,r−2
� (x) z�,r−2

i (x) dx. Since Aθ is invertible being

the Gram matrix corresponding to the linearly independent vectors
{√

wθ z�,r−2
k

}r−1

k=1

of L2(0, 1), there exists a unique pθ ∈ P
r[0, 1] with the aforementioned properties.

For i = 1, . . . , r − 1, we denote by p̃i the polynomial p(0,0) when ε
(0,0)
� = δi� for


 = 1, . . . , r−1. By p∗ we denote the polynomial p(1,0), when ε
(1,0)
1 = 1 and ε

(1,0)
� = 0

for 
 = 2, . . . , r − 1. In addition, we shall denote by p̂∗ the polynomial p(0,1), when

ε
(0,1)
� = 0 for 
 = 1, . . . , r − 2, and ε

(0,1)
r−1 = 1.

Now, we define Ψ =
{{ψi,j}Jhj=1

}r
i=1

⊂ Srh by ψi,j = (p̃i◦ξhj ) XIh
j

for i = 1, . . . , r−1

and j = 1, . . . , Jh, ψr,j = (p̂∗ ◦ ξhj ) XIh
j

+ (p∗ ◦ ξhj+1) XIhj+1
for j = 1, . . . , Jh − 1, and

ψr,Jh = (p̂∗◦ξhJh) XIh
Jh

. The definition of Λh, p̂∗, p∗, and {p̃i}r−1
i=1 yields Λhψi,j = XI�,h

j,i

for i = 1, . . . , r − 1 and j = 1, . . . , Jh, Λhψr,j = XI�,h
j,r−1

∪I�,h
j+1,1

for j = 1, . . . , Jh − 1,

and Λhψr,Jh = XI�,h
Jh,r−1

. To prove that the elements of Ψ are linearly independent we
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assume that there exist
{{λi,j}Jhj=1

}r
i=1

⊂ R such that ψ ≡ ∑r
i=1

∑Jh
j=1 λi,j ψi,j = 0.

Evaluating ψ at {xhj }Jhj=1, we obtain λr,j = 0 for j = 1, . . . , Jh. Since Λhψ = 0,

we conclude that
∑r−1
i=1

∑Jh
j=1 λi,jXI�,h

j,i
= 0, which obviously yields λi,j = 0 for i =

1, . . . , r − 1 and j = 1, . . . , Jh. Since dim(Srh) = rJh, Ψ is a basis of Srh.
Setting χ = ψi,j in (2.9), we obtain∫

I�,h
j,i

LIh
j
uh dx =

∫
I�,h
j,i

f dx, i = 1, . . . , r − 1, j = 1, . . . , Jh,(3.13)

(au′h)(x
h
j − 0) − (au′h)(x

h
j + 0) +

∫
I�,h
j,r−1

(LIh
j
uh − f) dx

+

∫
I�,h
j+1,1

(LIh
j+1
uh − f) dx = 0, j = 1, . . . , Jh − 1,

(3.14)

(au′h)(x
h
Jh

− 0) +

∫
I�,h
Jh,r−1

(LIh
Jh

uh − f) dx = 0.(3.15)

Integration by parts, (3.14), and (3.15) yield

F(uh, (xhj−1+�r−2
, xhj+�1)

)
= 0, j = 1, . . . , Jh − 1, G(uh, I�,hJh,r−1

)
= 0.(3.16)

The relations (3.13) and (3.16) show that the method (2.9) with Λh given by (3.12)
is a finite volume method, the control volumes of which are {(xhj−1+�r−2

, xhj+�1)}Jh−1
j=1

and
{{I�,hj,i }Jhj=1

}r−1

i=1
. We note that the interval I�,hJh,r−1 is a boundary control volume

both of types I and II. Also, we combine (3.13), (3.14), and (3.15) to get u′h(xR−0) = 0
and u′h(x

h
j − 0) = u′h(x

h
j + 0) for j = 1, . . . , Jh − 1, which completes the proof.

We close this subsection by discussing the possibility of constructing finite volume
methods of the form (2.9) with α = 1, σ = 1.

Proposition 3.7. Let m ∈ N, r = 2m, � = {�i}ri=0 be the nodes of a partition
of [0, 1], and

Λh = Λ̃�,rh |Pr
h
.(3.17)

Then Λh satisfies (2.7) with α = 1 and (2.8) with σ = 1. Also, the method (2.9) is
a locally conservative method with control volumes {Ihj }Jhj=1, where IhJh is a boundary
control volume of type I. Moreover, if r ∈ {2, 4, 6} and

{�j}r−1
j=1 ⊂ {z ∈ (0, 1) : Wr(z) = 0},(3.18)

then the method (2.9) is a finite volume method with rJh overlapping control volumes:

{Ihj }Jhj=1,
{{(xhj−1+�r−i

, xhj+�i)}r−1
i=1

}Jh−1

j=1
, {(xhJh−1+�r−i

, xhJh)}r−1
i=1 ,(3.19)

where the latter intervals are boundary control volumes of type II and IhJh is a boundary
control volume of type I.

Proof. Proposition 3.5, for s = r, yields (2.7) with α = 1 and (2.8) is satisfied
with σ = 1. Proceeding as in the proof of Proposition 3.6, we conclude that for
θ0 ∈ {0, 1} there is only one polynomial pθ0 ∈ P

r(0, 1) such that pθ0(θ0) = 0 and
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0
pθ0(x) z�,r−1

� (x) dx = ε�, 
 = 1, . . . , r, where {ε�}r�=1 are given real numbers.
For i = 1, . . . , r − 1, we set p̃i = p0 when ε� = 0 for 
 = 1, . . . , r − i and ε� = 1
for 
 = r − i + 1, . . . , r, and q̃i = p1 when ε� = 1 for 
 = 1, . . . , i and ε� = 0 for

 = i+ 1, . . . , r. We also set p̃r = p0 when ε� = 1 for 
 = 1, . . . , r.

Since r is even, using the orthogonality property of the Legendre polynomials
and (3.8) we conclude that p̃r = 1 −Wr, so we have, in addition, that p̃r(1) = 0.
Now we consider the linearly independent functions {ψrj}Jhj=1 ⊂ Srh defined by ψrj =

(p̃r ◦ ξhj ) XIh
j

for j = 1, . . . , Jh. By construction we get Λhψ
r
j = XIh

j
for j = 1, . . . , Jh.

For χ = ψrj , (2.9) yields (3.5), so the method is locally conservative with control

volumes {Ihj }Jhj=1, and the interval IhJh is a boundary control volume of type I.
Let r ∈ {2, 4, 6} and i ∈ {1, . . . , r − 1}. A long but straightforward calculation

reveals that

p̃i(1) = 1 −Wr(�r−i) and q̃i(0) = 1 −Wr(�i).(3.20)

Since (3.18) holds we finally obtain that p̃i(1) = q̃i(0) = 1. Now, we define {ψij}Jhj=1 ⊂
Srh by ψij = (p̃i ◦ ξhj ) XIh

j
+ (q̃i ◦ ξhj+1) XIh

j+1
for j = 1, . . . , Jh − 1 and ψiJh = (p̃i ◦

ξhJh) XIh
Jh

. Then, we have Λhψ
i
j = X(xh

j−1+�r−i
, xh

j+�i
) for j = 1, . . . , Jh − 1, and

Λhψ
i
Jh

= X(xh
Jh−1+�r−i

, xh
Jh

). Setting χ = ψij in (2.9) we get

F(uh, (xhj−1+�r−i
, xhj+�i)

)
= 0, j = 1, . . . , Jh − 1,

G(uh, (xhJh−1+�r−i
, xhJh)

)
= 0.

(3.21)

The last step in our proof is to show that the set Ψ =
{{ψij}ri=1

}Jh
j=1

⊂ Srh

consists of linearly independent functions. Let
{{λij}ri=1

}Jh
j=1

⊂ R such that ψ ≡∑r
i=1

∑Jh
j=1 λ

i
j ψ

i
j = 0. Evaluating ψ at {xhj }Jhj=1 we get

r−1∑
i=1

λij = 0, j = 1, . . . , Jh.(3.22)

Since Λhψ
∣∣
I�,h1,1

= λr1 and Λhψ
∣∣
I�,h
j,1

= λrj +
∑r−1
i=1 λ

i
j−1 for j = 2, . . . , Jh, using that

Λhψ = 0 and the result (3.22), we obtain

λrj = 0, j = 1, . . . , Jh.(3.23)

Using (3.23), we have

Λhψ
∣∣
I�,h
1,i+1

=

r−1∑
m=r−i

λm1 and Λhψ
∣∣
I�,h
j,i+1

=

r−1∑
m=r−i

λmj +

r−1∑
m′=i+1

λm
′

j−1(3.24)

for i = 1, . . . , r−1 and j = 2, . . . , Jh. Since Λhψ = 0, applying an induction argument
on (3.24) we conclude that

λij = 0, i = 1, . . . , r − 1, j = 1, . . . , Jh.(3.25)

The relations (3.25) and (3.23) complete the independence proof. Hence, Ψ is a basis
of Srh. Finally, (3.5) and (3.21) yield that (2.9) (under the choice (3.17) for Λh) is a
finite volume method with the control volumes defined in (3.19).
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Remark 3.5. Let r ∈ {3, 5} and Λh be defined by (3.17). Then, by Proposi-
tion 3.5, we have α = 1 and σ = 1. Since r is odd, we have p̃r = 1 +Wr and hence
p̃r(1) = 2 /∈ {0, 1}. Moreover, we get

p̃i(1) = 1 −Wr(�r−i) and q̃i(0) = 1 +Wr(�i), i = 1, . . . , r − 1.(3.26)

Assuming that (3.18) holds, (3.26) yields p̃i(1) = q̃i(0) = 1 for i = 1, . . . , r − 1.
Therefore, proceeding as in the proof of Proposition 3.7 we conclude that in the
case above the method (2.9) is a locally conservative method with control volumes{{(xhj−1+�r−i

, xhj+�i)}r−1
i=1

}Jh−1

j=1
and {(xhJh−1+�r−i

, xhJh)}r−1
i=1 , which are boundary con-

trol volumes of type II.
Remark 3.6. It is our opinion that (3.20) is true for all even r and that (3.26)

is true for all odd r, but we are not able to provide a general proof of this fact.

4. A priori estimates in the L2 and H1 norm. Our aim in this section is
to derive a priori error estimates, in the usual Sobolev norms, for the method (2.9)
under the assumptions (2.7) and (2.8). In particular, in Theorem 4.6 we shall show
that (i) in the H1 norm the order of convergence is always optimal and (ii) in the L2

norm the order of convergence is optimal when α ≥ 2, or α = 1 and σ = 1.
The following lemmata will be used throughout the remainder of this paper.
Lemma 4.1. Let r ≥ 2, j ∈ {0, σ}, and assume that Λh satisfies (2.7) and (2.8).

Then ∀h ∈ (0, 1), v ∈ Hr+1+j
h and p ∈ P

r
h, we have∣∣Bh(v − I�hv, p) −B(v − I�hv, p)
∣∣ ≤ C hs+�−1+j ‖v‖�+1+j,h ‖p‖s,h

for s = 1, . . . , α and 
 = 1, . . . , r.
Proof. Let h ∈ (0, 1), v ∈ Hr+1+j

h , p ∈ P
r
h, s ∈ {1, . . . , α} and 
 ∈ {1, . . . , r}.

Also, for simplicity we set g = v − I�hv. From (2.11) we have

Bh(g, p) −B(g, p) = GA +GB,(4.1)

where GA = −∑I∈Ph
(ag′′,Λhp − p)I and GB =

∑
I∈Ph

(
(β − a′)g′ + γg,Λhp − p

)
I
.

Using (2.8), (2.6), (2.2), and (2.7) it follows that

|GA| =

∣∣∣∣∣ ∑
I∈Ph

∫
I

g′′ (a− Πha) (Λhp− p) dx

−
∑
I∈Ph

∫
I

Πha (v′′ − I�−2+j
h v′′) (Λhp− p) dx

∣∣∣∣∣
≤ C

∑
I∈Ph

hsI
(
hI ‖g′′‖0,I + h�−1+j

I ‖v′′‖�−1+j,I

) ‖p‖s,I
≤ C

∑
I∈Ph

hsI
(
h�I ‖v‖�+1,I + h�−1+j

I ‖v‖�+1+j,I

) ‖p‖s,I
≤ C

∑
I∈Ph

hs+�−1+j
I ‖v‖�+1+j,I ‖p‖s,I

≤ C hs+�−1+j ‖v‖�+1+j,h ‖p‖s,h.
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To estimate GB we use (2.7) and (2.2) to obtain

|GB| ≤ C
∑
I∈Ph

hsI ‖g‖1,I ‖p‖s,I

≤ C
∑
I∈Ph

h�+sI ‖v‖�+1,I ‖p‖s,I

≤ C h�+s ‖v‖�+1,h ‖p‖s,h.
The lemma now follows from (4.1) and the estimates for GA and GB above.

Lemma 4.2. Let r ≥ 2 and assume that Λh satisfies (2.7) and (2.8). Then
∀h ∈ (0, 1) we have∣∣Bh(φ, p) −B(φ, p)

∣∣ ≤ C hs+σ ‖φ‖1,h ‖p‖s,h, s = 1, . . . , α, ∀ φ, p ∈ P
r
h.

Proof. Let h ∈ (0, 1), s ∈ {1, . . . , α} and φ, p ∈ P
r
h. From (2.11) we have

Bh(φ, p) −B(φ, p) = EA + EB + EC ,(4.2)

where EA =
∑
I∈Ph

(
(β − a′)φ′,Λhp − p

)
I
, EB =

∑
I∈Ph

(
γφ,Λhp − p

)
I

and EC =
−∑I∈Ph

(aφ′′,Λhp− p)I . If σ = 0 in (2.8), then using (2.7) it follows that

|EA| + |EB| ≤ C
∑
I∈Ph

hsI ‖φ‖1,I ‖p‖s,I

≤ C hs ‖φ‖1,h ‖p‖s,h.
If σ = 1 in (2.8), then using (2.8), (2.6), (2.5), and (2.7), it follows that

|EA| =

∣∣∣∣∣ ∑
I∈Ph

∫
I

φ′
(
(β − a′) − Πh(β − a′)

)
(Λhp− p) dx

∣∣∣∣∣
≤ C

∑
I∈Ph

hs+1
I ‖φ‖1,I ‖p‖s,I

≤ C hs+1 ‖φ‖1,h ‖p‖s,h
and

|EB| =

∣∣∣∣∣ ∑
I∈Ph

∫
I

φ
(
γ − Πhγ

)
(Λhp− p) dx+

∑
I∈Ph

∫
I

Πhγ (φ− Πhφ) (Λhp− p) dx

∣∣∣∣∣
≤ C

∑
I∈Ph

hs+1
I ‖φ‖1,I ‖p‖s,I

≤ C hs+1 ‖φ‖1,h ‖p‖s,h.
To estimate EC we use (2.8), (2.2) or (2.3), (2.1), and (2.7) to obtain

|EC | =

∣∣∣∣∣ ∑
I∈Ph

∫
I

φ′′(a− I∗
ha)(Λhp− p) dx

∣∣∣∣∣
≤ C

∑
I∈Ph

hσ+1
I ‖φ′′‖0,I ‖Λhp− p‖0,I

≤ C
∑
I∈Ph

hσI ‖φ‖1,I ‖Λhp− p‖0,I

≤ C hs+σ ‖φ‖1,h ‖p‖s,h,
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where I∗
h = Πh when σ = 0, and I∗

h = I1
h when σ = 1. The lemma now follows from

(4.2) and the estimates for EA, EB, and EC above.
Next we show that Bh, like B, satisfies a G̊arding-type inequality.
Lemma 4.3. Let r ≥ 2 and assume that Λh satisfies (2.7) and (2.8). Then, there

exists h̃0 ∈ (0, 1) and constants CG ≥ 0, CE > 0, such that

Bh(φ, φ) + CG ‖φ‖2
0 ≥ CE ‖φ‖2

1 ∀φ ∈ Srh, ∀h ∈ (0, h̃0).(4.3)

In particular, if β = γ = 0, then CG = 0.
Proof. Let h ∈ (0, 1) and φ ∈ Srh. It is well known that there exist constants

CΓ ≥ 0 and C∆ > 0, independent of φ, such that

B(φ, φ) + CΓ ‖φ‖2
0 ≥ C∆ ‖φ‖2

1.(4.4)

Lemma 4.2 now gives
∣∣Bh(φ, φ) − B(φ, φ)

∣∣ ≤ CZ h
σ+1 ‖φ‖2

1, which along with (4.4)
yields

Bh(φ, φ) + CΓ ‖φ‖2
0 ≥ (C∆ − hσ+1 CZ) ‖φ‖2

1.

If CZ = 0, then (4.3) holds with h̃0 = 1, CG = CΓ CE = C∆. If CZ > 0, then (4.3)

holds, for example, with h̃0 = min{1, ( C∆

2CZ
)

1
σ+1 }, CG = CΓ, CE = C∆

2 . If β = γ = 0,
then CΓ = 0 from the Poincaré–Friedrichs inequality. Consequently, CG = 0.

Remark 4.1. For later use we note that if β = γ = 0, then

Bh(φ, φ) + CZ h
σ+1 ‖φ‖2

1 ≥ a∗ ‖φ′‖2
0 ∀φ ∈ P

r
h, ∀ h ∈ (0, 1).

As in the finite element analysis (cf. [40]), we relate the approximation error in
the L2 norm to that in the H1 norm.

Proposition 4.4. Let r ≥ 2, m ∈ {0, σ}, and assume that Λh satisfies (2.7)

and (2.8). If u ∈ Hr+1+m(Ω) ∩ H(Ω), then there exists ĥ0 ∈ (0, h̃0) such that for

h ∈ (0, ĥ0) the method (2.9) is well defined and

‖u− uh‖0 ≤ C h ‖u− uh‖1 + C hr+m+α∗−1 ‖u‖r+1+m,(4.5)

where α∗ = min{α, 2} and h̃0 is the constant specified in Lemma 4.3.

Proof. Let h ∈ (0, h̃0) and w ∈ H2(Ω) be the solution of the dual problem

L∗w ≡ −(a(x)w′)′ − β(x)w′ + (γ(x) − β′(x))w = ψ(x) ∀x ∈ Ω,(4.6a)

w(xL) = 0, a(xR)w′(xR) + β(xR)w(xR) = 0,(4.6b)

with ψ ∈ L2(Ω), [28]. We let T ∗ denote the solution operator of (4.6), so that
w = T ∗ψ. Under the assumptions on the data of (1.1) stated in section 1.1, w ∈ H2(Ω)
and elliptic regularity yields

‖w‖2 ≤ CR ‖ψ‖0(4.7)

for some constant CR which depends only on the domain Ω and the coefficients of L∗.
Taking the L2(Ω)-inner product of (4.6a) with ψ ∈ H(Ω) and using (2.2) we have

‖ψ‖2
0 = B(ψ,w − I1

hw) +B(ψ, I1
hw)

≤ C h ‖ψ‖1‖w‖2 +B(ψ, I1
hw),

which, along with (4.7), yields

‖ψ‖2
0 ≤ C h ‖ψ‖1‖ψ‖0 +B(ψ, I1

hw).(4.8)
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We shall first show that the method (2.9) is well defined. Obviously, (2.9) is equiv-
alent to a linear system of algebraic equations with matrix M with Mij = Bh(φj , φi),

i, j = 1, . . . , Nh, where Nh = dim(Srh) and {φj}Nh
j=1 is a basis of Srh. If M were not

invertible there would exist a nonzero φ∗ ∈ Srh such that

Bh(φ∗, χ) = 0 ∀ χ ∈ Srh.(4.9)

Then, from (4.3) we have

‖φ∗‖1 ≤ C ‖φ∗‖0.(4.10)

Choosing ψ = φ∗ in (4.6) and using (4.8) and (4.10) it follows that

(1 − Ch)‖φ∗‖2
0 ≤ B(φ∗, I1

hw),(4.11)

where w = T ∗φ∗. Also, (4.9) yields B(φ∗, I1
hw) = B(φ∗, I1

hw) − Bh(φ∗, I1
hw). Thus,

from Lemma 4.2 with s = 1, (2.2), and (4.7) we have

B(φ∗, I1
hw) ≤ C h1+σ ‖φ∗‖1 ‖I1

hw‖1

≤ C h1+σ ‖φ∗‖1 ‖w‖2

≤ C h1+σ ‖φ∗‖1 ‖φ∗‖0,

which along with (4.10) yields

B(φ∗, I1
hw) ≤ C h1+σ ‖φ∗‖2

0.(4.12)

From (4.11) and (4.12) we now have (1 − C∗h)‖φ∗‖2
0 ≤ 0. We set ĥ0 = h̃0 when

C∗ = 0 and ĥ0 = min{h̃0,
1

2C∗
} otherwise. If h ∈ (0, ĥ0), then φ∗ = 0, which is a

contradiction; consequently, M is invertible and (2.9) is well defined.

To prove (4.5), let h ∈ (0, ĥ0) and write e = uh−u = (uh−Irhu)+(Irhu−u) = θh+η.
From (2.10) and (4.6a) with ψ = e, so that w = T ∗e, we have

B(e, I1
hw) = B(e, I1

hw) −Bh(e, I1
hw)

= DA +DB,
(4.13)

where DA = B(η, I1
hw) − Bh(η, I1

hw) and DB = B(θh, I1
hw) − Bh(θh, I1

hw). Using
Lemma 4.1 (with s = α∗, 
 = r, and j = m), (2.2), and (4.7) it follows that

|DA| ≤ C hr+m+α∗−1 ‖u‖r+1+m ‖I1
hw‖1

≤ C hr+m+α∗−1 ‖u‖r+1+m ‖w‖2

≤ C hr+m+α∗−1 ‖u‖r+1+m ‖e‖0.

(4.14)

To estimate DB we note that Lemma 4.2 with s = α∗ yields

|DB| ≤ C hα
∗+σ ‖θh‖1 ‖I1

hw‖1,

so again using (2.2) and (4.7) we obtain

|DB| ≤ C hα
∗+σ (hr‖u‖r+1 + ‖e‖1) ‖e‖0.(4.15)

The estimate (4.5) follows by combining (4.8) with ψ = e, (4.13), (4.14), and
(4.15).
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Proposition 4.5. Let r ≥ 2, ĥ0 be the constant specified in Proposition 4.4, and
assume that Λh satisfies (2.7) and (2.8). If u ∈ Hr+1(Ω) ∩H(Ω), then

‖uh − Irhu‖2
1 ≤ C hr ‖u‖r+1 ‖uh − Irhu‖1 + CG

CE
‖uh − Irhu‖2

0 ∀h ∈ (0, ĥ0).(4.16)

Proof. Let h ∈ (0, ĥ0) and, as before, θh = uh − Irhu, η = Irhu − u. Using (2.10)
and Lemma 4.1 with 
 = r, s = 1, and j = 0, we obtain

Bh(θh, θh) = −Bh(η, θh)
=
[
B(η, θh) −Bh(η, θh)

]−B(η, θh)

≤ C
(
hr ‖u‖r+1 + ‖η‖1

) ‖θh‖1.

The interpolation estimate (2.2) and the above relation imply

Bh(θh, θh) ≤ C hr ‖u‖r+1 ‖θh‖1.(4.17)

The proposition now follows by combining (4.3) and (4.17).
We are now ready to prove the main error estimate of this section.
Theorem 4.6. Let r ≥ 2, ĥ0 be the constant specified in Proposition 4.4, and

assume that Λh satisfies (2.7) and (2.8). Also, let mα = 0 when α ≥ 2, and mα = σ

when α = 1. If u ∈ Hr+1+mα(Ω) ∩ H(Ω), then there exists h0 ∈ (0, ĥ0) such that
∀h ∈ (0, h0),

‖u− uh‖1 ≤ C hr‖u‖r+1,(4.18)

‖u− uh‖0 ≤ C hr+min{mα+α−1,1} ‖u‖r+1+mα
.(4.19)

Proof. Let h ∈ (0, ĥ0) and e = u − uh. Combining (4.16), (4.5), and (2.2) we
obtain ‖e‖2

1 ≤ C1 h
2r ‖u‖2

r+1 + C2 h
2 ‖e‖2

1 + 1
2‖e‖2

1, or equivalently(
1

2
− C2 h

2

)
‖e‖2

1 ≤ C1 h
2r ‖u‖2

r+1.

The estimate (4.18) follows from the above relation for h sufficiently small. The
estimate (4.19) follows from (4.18) and (4.5).

5. A priori estimates in the L∞ norm. This section is devoted to the deriva-
tion of a priori error estimates in the L∞ norm for the method (2.9), under the as-
sumptions (2.7) and (2.8). Since we work in one space dimension, the L∞ norm is
dominated by the H1 norm. Hence, when α = 1 and σ = 0, using Theorem 4.6 we
obtain the error estimate |u − uh|∞ ≤ C hr ‖u‖r+1, the suboptimal order of which
has been observed numerically for the method of Proposition 3.1 with r = 2 (see
Table 8.4 in section 8). For this reason, in the rest of this section we shall examine
the following two cases: (i) α ≥ 2 and Λh is identity on P

1
h, and (ii) α = 1 and σ = 1,

where, according to Theorem 4.6, the order of convergence in the L2 norm is optimal.

5.1. Maximum norm estimates when α ≥ 2. In this subsection we shall
assume that (2.7) holds with α ≥ 2. Moreover, we shall make the hypothesis that the
operator Λh : P

r
h → L2(Ω) has the property

Λhp = p ∀ p ∈ P
1
h,(5.1)

which is obviously satisfied for the methods of Proposition 3.1 for r ≥ 3, and the
methods of Proposition 3.2. In the analysis below, we follow the steps of the L∞

estimate of [44] for the standard Galerkin finite element method.
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For an open interval I ⊂ Ω and v ∈ H2(I) we let LIv = −(av′)′, where a is the
diffusion coefficient of the problem (1.1). For h ∈ (0, 1) and r ≥ 2, we define the

bilinear form B̃h : H2
h × P

r
h → R by

B̃h(v, χ) =
∑
I∈Ph

{
[[av′χ]]∂I + (LIv,Λhχ)I

} ∀ v ∈ H2
h, ∀ χ ∈ P

r
h.(5.2)

From Lemma 4.3 there exists h0 ∈ (0, 1) such that

B̃h(φ, φ) ≥ C∗
E ‖φ‖2

1 ∀ φ ∈ Srh, ∀ h ∈ (0, h0).(5.3)

For h ∈ (0, h0), we introduce a Ritz projection operator Rrh : H2
h → Srh by

B̃h(R
r
hv − v, χ) = 0 ∀ χ ∈ Srh, ∀ v ∈ H2

h,(5.4)

which in view of (5.3) is well defined. Moreover, when Λh satisfies (2.8) and (2.7)
with α ≥ 2, the orthogonality property (5.4) and the analysis of section 4 yield

‖Rrhv − v‖0 + h ‖Rrhv − v‖1 ≤ C hr+1 ‖v‖r+1(5.5)

∀h ∈ (0, h0) and v ∈ Hr+1(Ω) ∩H(Ω).
The first step towards obtaining a maximum norm error estimate is the estimation

of the difference Rrhu− u at the nodes of the partition Ph.
Lemma 5.1. Let r ≥ 2 and assume that Λh satisfies (2.8), (5.1), and (2.7) with

α ≥ 2. If u ∈ Hr+1(Ω) ∩H(Ω), then we have

max
1≤j≤Jh

∣∣(Rrhu− u)(xhj )
∣∣ ≤ C hr+1 ‖u‖r+1 ∀ h ∈ (0, h0).(5.6)

Proof. Let h ∈ (0, h0). For j ∈ {1, . . . , Jh}, we define the function

gxh
j
(z) =

{
z − xL, z ≤ xhj ,

xhj − xL, z ≥ xhj ,
∀ z ∈ Ω,(5.7)

which clearly belongs to Srh ∩ P
1
h. So with ζ = Rrhu − u, using the definition of Rrh

and (5.1), we obtain

0 = B̃h(ζ, gxh
j
) =

∑
I∈Ph

{
[[aζ ′gxh

j
]]∂I + (LIζ, gxh

j
)I
}

= (aζ ′, g′xh
j
)

= (aζ)(xhj ) −
∫ xh

j

xL

a′ ζ dx, j = 1, . . . , Jh,

and consequently, max1≤j≤Jh
∣∣ζ(xhj )∣∣ ≤ ‖a′‖0

a∗
‖ζ‖0. The proof of the lemma now

follows from the latter relation and (5.5).
Our next step is the estimation of the error uh− u at the right endpoint xR of Ω.
Lemma 5.2. Let r ≥ 2, h0 be the constant specified in Theorem 4.6, and assume

that Λh satisfies (2.8) and (2.7) with α ≥ 2. If u ∈ Hr+1(Ω) ∩H(Ω), then∣∣(u− uh)(xR)
∣∣ ≤ C hr+1 ‖u‖r+1 ∀ h ∈ (0, h0).
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Proof. Consider the dual elliptic problem

−(a w′)′ − β w′ + (γ0 + γ − β′) w = 0 on Ω,(5.8a)

w(xL) = 0, a(xR) w′(xR) + β(xR) w(xR) = 1,(5.8b)

where γ0 is a positive real number, sufficiently large to ensure the existence of an
H2(Ω)-solution of the problem (cf. [1]). Note that this problem, in contrast with
the dual problem (4.6) when ψ = uh − u, is independent of h. Now taking the inner
product of (5.8a) with the error, e = uh−u, and using integration by parts we obtain

e(xR) = B(e, w) + γ0 (e, w)

= B(e, w − I1
hw) +B(e, I1

hw) + γ0 (e, w).
(5.9)

First, using Theorem 4.6 and (2.2) we have∣∣B(e, w − I1
hw)

∣∣ ≤ C hr+1 ‖u‖r+1 ‖w‖2,(5.10) ∣∣γ0 (e, w)
∣∣ ≤ C hr+1 ‖u‖r+1 ‖w‖0.(5.11)

The term B(e, I1
hw) may be estimated as the corresponding term in (4.13) using (2.10)

and Lemmas 4.1 and 4.2, so that∣∣B(e, I1
hw)

∣∣ ≤ C
(
hr+1 ‖u‖r+1 + h ‖uh − Irhu‖1

) ‖I1
hw‖1.

Using again Theorem 4.6 and (2.2) in the relation above we obtain∣∣B(e, I1
hw)

∣∣ ≤ C hr+1 ‖u‖r+1 ‖w‖2.(5.12)

The lemma now follows by combining (5.10), (5.11), and (5.12) with (5.9).
Next we present an H1-superconvergent estimate for the difference Rrhu− uh.
Proposition 5.3. Let r ≥ 2. Assume that Λh satisfies (2.8) and (2.7) with

α ≥ 2. If u belongs to Hr+1(Ω) ∩H(Ω), then, for h sufficiently small, we have

‖Rrhu− uh‖1 ≤ C hr+1 ‖u‖r+1.(5.13)

Proof. Let e = uh − u and νh = Rrhu− uh. From (5.4) and (2.10) it follows that

B̃h(νh, νh) = D1 +D2,(5.14)

where D1 = −(βe′ + γe,Λhνh − νh) and D2 = −(βe′ + γe, νh). From (2.7) and
Theorem 4.6 we have ∣∣D1

∣∣ ≤ C
∑
I∈Ph

hI ‖e‖1,I ‖νh‖1,I

≤ C hr+1 ‖u‖r+1 ‖νh‖1.

(5.15)

Using integration by parts, Lemma 5.2, and the Sobolev inequality, we obtain∣∣D2

∣∣ ≤ C ‖e‖0 ‖νh‖0 +
∣∣(β e νh)(xR) − (e, β′ νh + β ν′h)

∣∣
≤ C

( ‖e‖0 ‖νh‖1 + |e(xR)| |νh(xR)| )
≤ C hr+1 ‖u‖r+1 ‖νh‖1.

(5.16)

The claim of the proposition now follows by (5.14), (5.15), (5.16), and (5.3).
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For h ∈ (0, 1) and I ∈ Ph, we define the local bilinear forms B̃I : H2(I)×P
r(I) →

R and BI : H1(I) ×H1(I) → R by

B̃I(v, p) = [[av′p]]∂I + (LIv,Λhp)I ∀ v ∈ H2(I), ∀ p ∈ P
r(I),

BI(v, p) = (av′, p′)I ∀ v, p ∈ H1(I).

Following the proof of Lemma 4.2 we have∣∣B̃I(φ, p) −BI(φ, p)
∣∣ ≤ C hI ‖φ‖1,I ‖p‖1,I ∀ φ, p ∈ P

r(I).

Moreover, proceeding as in the proof of Lemma 4.3 we conclude that there exists
h∞ ∈ (0, 1) such that

B̃I(φ, φ) ≥ C ‖φ‖2
1,I ∀ φ ∈ P

r
0(I), ∀ h ∈ (0, h∞),(5.17)

where P
r
0(I) is the subset of P

r(I) consisting of functions which vanish at the endpoints
of I. Next, for h ∈ (0, h∞) we define the operator YI : H1

0 (I) → P
r
0(I) by

B̃I(YIv, p) = B̃I(v, p) ∀ p ∈ P
r
0(I), ∀ v ∈ H1

0 (I).

In view of (5.17), the operator YI is well defined. We shall also make use of the
operator µI : H1(I) → P

r(I), defined by µIv := YI(v−I1
hv)+ I1

hv ∀ v ∈ H1(I). The
next proposition establishes an approximation property of µI in the L∞ norm.

Proposition 5.4. Let r ≥ 2 and assume that Λh satisfies (2.7) and (2.8). If
v ∈W r+1,∞(Ω), then we have

|µIv − v|∞,I ≤ C hr+1
I ‖v‖r+1,∞ ∀ I ∈ Ph, ∀h ∈ (0, h∞).(5.18)

Proof. Let h ∈ (0, h∞). It is enough to prove (5.18) for v ∈ Cr+1(Ω). Indeed, if
I = (xA, xB) ∈ Ph, Taylor’s theorem implies that

v(x) =
r∑
�=0

(x− xA)�


!
v(�)(xA) + Φ(x) ∀ x ∈ I,

where Φ(x) = 1
r!

∫ x
xA

(x − z)r v(r+1)(z) dz ∀ x ∈ I. From the fact that µIp = p, for

p ∈ P
r(I), it follows that

|µIv − v|∞,I = |µIΦ − Φ|∞,I

≤ |µIΦ − I1
hΦ|∞,I + |I1

hΦ − Φ|∞,I .
(5.19)

Since E := µIΦ − I1
hΦ ∈ P

r
0(I), the definition of µI implies that

B̃I(E,E) = B̃I(YI(Φ − I1
hΦ), E)

= B̃I(Φ − I1
hΦ, E)

= D1 +D2 +D3,

(5.20)

where D1 =
(
a(Φ − I1

hΦ)′′,ΛhE − E
)
I
, D2 =

(
a′(Φ − I1

hΦ)′,ΛhE − E
)
I
, D3 =(

a(Φ − I1
hΦ)′, E′)

I
. Using (2.7) and the fact that ‖Φ′′‖0,I ≤ 1

(r−2)! h
r− 1

2

I ‖v‖r+1,∞,

we obtain

|D1| ≤ C h
r+ 1

2

I ‖v‖r+1,∞ ‖E‖1,I .
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The identity (I1
hΦ)′ = ΠhΦ

′, the estimate for ‖Φ′′‖0,I above, and (2.7), (2.5) yield

|D2| ≤ C hI ‖Φ′ − ΠhΦ
′‖0,I ‖E‖1,I

≤ C h2
I ‖Φ′′‖0,I ‖E‖1,I

≤ C h
r+ 3

2

I ‖v‖r+1,∞ ‖E‖1,I ,

and similarly,

|D3| ≤ C h
r+ 1

2

I ‖v‖r+1,∞ ‖E‖1,I .

Using (5.17) in (5.20) and the estimates for D1, D2, D3 above we conclude that

|E|∞,I ≤ C
√
hI ‖E‖1,I

≤ C hr+1 ‖v‖r+1,∞.
(5.21)

Finally, (5.19), (5.21), and the estimate

|I1
hΦ − Φ|∞,I ≤ |Φ|∞,I

≤ C hr+1
I ‖v‖r+1,∞,

complete the proof of the proposition.
We are now ready to prove the main result of this section.
Theorem 5.5. Let r ≥ 2 and assume that Λh satisfies (5.1), (2.8), and (2.7)

with α ≥ 2. If u ∈W r+1,∞(Ω) ∩H(Ω), then, for h sufficiently small, we have

|u− uh|∞ ≤ C hr+1 ‖u‖r+1,∞.(5.22)

Proof. Let I ∈ Ph. Since α ≥ 2, in view of Propositions 5.3 and 5.4, we have

|e|∞,I ≤ |uh −Rrhu|∞,I + |Rrhu− µIu|∞,I + |µIu− u|∞,I

≤ C hr+1 ‖u‖r+1,∞ + |Rrhu− µIu|∞,I .
(5.23)

Hence, it remains for us to estimate ξI := Rrhu|I−µIu ∈ P
r(I). From the definitions of

the operators Rrh and µI we obtain B̃I(ξI , p) = 0 ∀ p ∈ P
r
0(I). Setting p = ξI −I1

hξI
in the latter relation and using Remark 4.1 and (5.1), we obtain

a∗ ‖ξ′I‖2
0,I ≤ B̃I(ξI , ξI) + C h ‖ξI‖2

1,I

= BI(ξI , I1
hξI) + C h ‖ξI‖2

1,I

≤ C h
− 1

2

I max
1≤j≤Jh

∣∣(Rrhu− u)(xhj )
∣∣ ‖ξ′I‖0,I + C h (‖ξI‖2

0,I + ‖ξ′I‖2
0,I),

(5.24)

where we have used the fact that ξI and Rrhu−u coincide at the nodes of the partition.
Also, using (5.5) and (5.18) we have

‖ξI‖0,I ≤ C hr+1‖u‖r+1,∞.(5.25)

Combining (5.24), (5.25), and Lemma 5.1 we conclude that

‖ξ′I‖0,I ≤ C hr+
1
2 ‖u‖r+1,∞(5.26)

for h sufficiently small. Since |ξI |∞,I ≤ max1≤j≤Jh |ξI(xhj )|+
√
hI ‖ξ′I‖0,I , from (5.26)

and Lemma 5.1 we obtain

|ξI |∞,I ≤ C hr+1 ‖u‖r+1,∞.(5.27)

The theorem now follows by combining (5.27) and (5.23).
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5.2. Maximum norm estimates when α = 1 and σ = 1. Here, we shall
assume that α = 1 and σ = 1, which covers the methods in Proposition 3.7 and
Remark 3.5. Also, the assumption (5.1) for Λh, which was fundamental in the analysis
of the previous subsection, is not needed now.

For r ≥ 2 and h ∈ (0, 1), we define the bilinear form B : H1
h × H1

h → R by
B(v, χ) = (a v′, χ′) for v, χ ∈ H1

h and introduce the standard elliptic projection

operator R
r

h : H1(Ω) → Srh by

B(R
r

hv − v, χ) = 0 ∀ χ ∈ Srh, ∀ v ∈ H1(Ω).(5.28)

Using (1.1c) and the Poincaré–Friedrichs inequality we obtain B(ṽ, ṽ) ≥ CE,∗ ‖ṽ‖2
1

for ṽ ∈ H(Ω), where CE,∗ is a positive constant. Thus, the projection R
r

h is well

defined. Also, it is well known (cf. [41]) that R
r

h has the following approximation
property:

‖Rrhv − v‖0 + h ‖Rrhv − v‖1 ≤ C hr+1 ‖v‖r+1(5.29)

∀h ∈ (0, 1) and v ∈ Hr+1(Ω) ∩H(Ω).
We start by estimating the difference R

r

hu− u at the nodes of the partition Ph.
Lemma 5.6. Let r ≥ 2. If u ∈ Hr+1(Ω) ∩H(Ω), then we have

max
1≤j≤Jh

∣∣(Rrhu− u)(xhj )
∣∣ ≤ C hr+1 ‖u‖r+1 ∀ h ∈ (0, 1).(5.30)

Proof. Let h ∈ (0, 1) and ζ = R
r

hu−u. Also, we consider the functions {gxh
j
}Jhj=1 ⊂

Srh defined in (5.7). Using (5.28) we obtain (a ζ
′
, g′
xh
j

) = 0 for j = 1, . . . , Jh. Proceed-

ing now as in the proof of Lemma 5.1, we get max1≤j≤Jh |ζ(xhj )| ≤ ‖a′‖0

a∗
‖ζ‖0. The

estimate (5.30) follows by combining the last estimate and (5.29).
The next theorem is the maximum norm error estimate when α = 1 and σ = 1.
Theorem 5.7. Let r ≥ 2 and assume that Λh satisfies (2.7) with α = 1 and (2.8)

with σ = 1. If u ∈ Hr+2(Ω) ∩H(Ω), then, for h sufficiently small, we have

|u− uh|∞ ≤ C hr+1 ‖u‖r+2.(5.31)

Proof. Let h ∈ (0, h0), νh = R
r

hu− uh ∈ Srh, ζ = R
r

hu− u, and e = u− uh, where
h0 is the constant specified in Theorem 4.6. Thus, we have νh = ζ + e. Now using
(2.10) and (5.28), we obtain

Bh(νh, νh) = DA +DB +DC ,(5.32)

where DA = Bh(R
r

hu−Irhu, νh)−B(R
r

hu−Irhu, νh), DB = Bh(Irhu−u, νh)−B(Irhu−
u, νh), and DC = (β ζ

′
+ γ ζ, νh). Using Lemma 4.2, (5.29), and (2.2), we have∣∣DA

∣∣ ≤ C h2 ‖Rrhu− Irhu‖1 ‖νh‖1

≤ C hr+2 ‖u‖r+1 ‖νh‖1.
(5.33)

Lemma 4.1 directly yields ∣∣DB

∣∣ ≤ C hr+1 ‖u‖r+2 ‖νh‖1.(5.34)
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Using integration by parts, the Sobolev inequality, (5.29), and Lemma 5.6, we get∣∣DC

∣∣ ≤ C ‖ζ‖0 ‖νh‖0 +
∣∣(β ζ νh)(xR) − (ζ, β′ νh + β ν′h)

∣∣
≤ C

( ‖ζ‖0 + |ζ(xR)| ) ‖νh‖1

≤ C hr+1 ‖u‖r+1 ‖νh‖1.

(5.35)

Combining (5.32), (5.33), (5.34), (5.35), and Lemma 4.3, we have

‖νh‖2
1 ≤ C hr+1 ‖u‖r+2 ‖νh‖1 + C ‖νh‖2

0.

The inequality above, along with (5.29) and Theorem 4.6, yields

‖νh‖1 ≤ C hr+1 ‖u‖r+2,(5.36)

which is an H1-superconvergent estimate analogous to that of Proposition 5.3.
When Λhp = p for p ∈ P

r
h in (5.2), then from (5.4) and (5.28) we have Rrhu = R

r

hu.
Thus the analysis of the previous subsection (cf. Theorem 5.5) yields

|ζ|∞ ≤ C hr+1 ‖u‖r+1,∞.(5.37)

The estimate (5.31) follows, combining (5.36) and (5.37).

6. Some pointwise estimates. In the first proposition of this section we pre-
sent a pointwise estimate for the error uh−u at the nodes of the partition, generalizing
the well-known superconvergence results from the finite element case (see, e.g., [43]
and the references therein).

Proposition 6.1. Let r ≥ 2, h0 be the constant defined in Theorem 4.6, and
assume that Λh satisfies (2.7) and (2.8). If u ∈ Hr+1+σ(Ω) ∩H(Ω), then we have

max
1≤j≤Jh

∣∣(u− uh)(x
h
j )
∣∣ ≤ C hr+α+σ−1 ‖u‖r+1+σ ∀ h ∈ (0, h0).(6.1)

Proof. Let h ∈ (0, h0). For ξ a node of the partition Ph, denote by Gξ ∈ H1(Ω)
the Green’s function of problem (1.1a)–(1.1b) (cf., e.g., [37]), which satisfies

B(v,Gξ) = v(ξ) ∀ v ∈ H1(Ω).(6.2)

In addition, we have Gξ ∈ Hr+1(xL, ξ) ∩Hr+1(ξ, xR) and

‖Gξ‖r+1,(xL,ξ) + ‖Gξ‖r+1,(ξ,xR) ≤ C(6.3)

for some constant C depending only on Ω and the coefficients of L. Hence, from (2.2)
we obtain

‖Gξ − IrhGξ‖1 ≤ C hr.(6.4)

With v = e = uh − u, (6.2) yields the error representation

e(ξ) = B(e,Gξ − IrhGξ) +B(e, IrhGξ).(6.5)

Using Theorem 4.6 and (6.4) we conclude that∣∣B(e,Gξ − IrhGξ)
∣∣ ≤ C h2r ‖u‖r+1.(6.6)
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To estimate B(e, IrhGξ) we use the orthogonality property (2.10) to write it as

B(e, IrhGξ) = B(e, IrhGξ) −Bh(e, IrhGξ)
= EA + EB,

(6.7)

where EA = B(η, IrhGξ) −Bh(η, IrhGξ), EB = B(θh, IrhGξ) −Bh(θh, IrhGξ), and θh =
uh − Irhu, η = Irhu− u. First, from Lemma 4.1 (with 
 = r, s = α, and j = σ), (2.2),
and the bound (6.3), we have∣∣EA

∣∣ ≤ C hα+r−1+σ ‖u‖r+1+σ ‖IrhGξ‖α,I
≤ C hα+r−1+σ ‖u‖r+1+σ.

(6.8)

To estimate EB we note that from Lemma 4.2 (with s = α), Theorem 4.6, (2.2), and
(6.3), we have ∣∣EB

∣∣ ≤ C hα+σ ‖θh‖1 ‖IrhGξ‖α,h
≤ C hα+r+σ ‖u‖r+1.

(6.9)

The estimate (6.1) now follows by combining (6.5)–(6.9).
Remark 6.1. The result of Proposition 6.1 is a superconvergence estimate for

the error e, when the order of convergence r + α + σ − 1 is greater than the order
of convergence in the L∞ norm. This happens when α + σ − 1 ≥ 2, which means
α ≥ 3 when σ = 0 and α ≥ 2 when σ = 1. For r ≥ 4 and for the locally conservative
methods of Proposition 3.1, the order of convergence in (6.1) is equal to 2(r − 1),
since σ = 0 and α = r − 1. For r = 2m and for the methods of Proposition 3.2, the
order of convergence in (6.1) is equal to 2r since α = r and σ = 1 (cf. Table 8.5
in section 8 for r = 2), which is the same as that of the finite element method. For
r ∈ {2, 4, 6} and for the finite volume methods in Proposition 3.7 we do not have a
superconvergence result. Indeed the order of convergence in (6.1) is equal to r + 1
(since α = 1 and σ = 1) and has been observed numerically (cf. Table 8.6 in section 8
for r = 2).

The next proposition presents a pointwise bound for the derivative of the error
uh − u. This is interesting because it is related to the characteristic property (1.2a)
of the locally conservative methods and the Neumann boundary condition in (1.1b).

Proposition 6.2. Let r ≥ 2. Assume that uh ∈ Srh satisfies

F(uh, (ωhj−1, ω
h
j )
)

= 0, j = 1, . . . ,Mh − 1,(6.10a)

G(uh, (ωhMh−1, ω
h
Mh

)
)
= 0, u′h(ω

h
j − 0) =u′h(ω

h
j + 0), j= 1, . . . ,Mh − 1,(6.10b)

where {(ωhj−1, ω
h
j )}Mh

j=1 ⊂ Ω are open intervals with xL ≤ ωh0 , ωhMh
= xR and ωhj−1 <

ωhj , j = 1, . . . ,Mh, i.e., (ωhMh−1, ω
h
Mh

) is a boundary control volume of type II. Then
we have

max
0≤m≤Mh−1

∣∣(u− uh)
′(ωhm)

∣∣ ≤ C

{
max

0≤m≤Mh

∣∣(u− uh)(ω
h
m)
∣∣+ ‖u− uh‖0

}
.(6.11)

Proof. Let e = uh − u. From (6.10) and (1.2) we obtain

a(ωhj )e′(ωhj ) − a(ωhj−1)e
′(ωhj−1) =

∫ ωh
j

ωh
j−1

(βe′ + γe) dx, j = 1, . . . ,Mh − 1,

−a(ωhMh−1) e
′(ωhMh−1) =

∫ xR

ωh
Mh−1

(βe′ + γe) dx.
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Adding the above equalities with respect to j we arrive at

a(ωhm) e′(ωhm) = −
∫ xR

ωh
m

(β e′ + γ e) dx, m = 0, . . . ,Mh − 1.

Using integration by parts we obtain

a(ωhm)e′(ωhm) = β(ωhm) e(ωhm) − β(xR) e(xR) +

∫ xR

ωh
m

(β′ − γ) e dx(6.12)

for m = 0, . . . ,Mh − 1, which yields (6.11).
Remark 6.2. A final error estimate follows by combining (6.11) with the es-

timates in Theorems 4.6, 5.5, and 5.7. We also note that when β = γ = 0 then
u′h(ω

h
j ) = u′(ωhj ), for j = 0, . . . ,Mh − 1, which is not the case for the finite element

method.
Remark 6.3. The methods in Proposition 3.2 satisfy the assumptions (6.10a)

with Mh = Jh and ωhj = xhj , j = 0, . . . , Jh, but not (6.10b). The result (6.11) also
applies to the methods of Propositions 3.6–3.7 and Remark 3.5.

Remark 6.4. For the locally conservative methods of Proposition 3.1 with r ≥ 4
we have Mh = Jh and ωhj = xhj for j = 0, . . . , Jh. From (6.12) and Remark 6.1 we
obtain

max
0≤m≤Jh−1

|e′(xhm)| ≤ C

{
h2(r−1) ‖u‖r+1 + max

0≤m≤Jh−1

∣∣∣∣∣
∫ xR

xh
m

(β′ − γ)e dx

∣∣∣∣∣
}
.(6.13)

Let ξ ∈ [xL, xR) and g = X(ξ,xR). For δ ∈ (0, 1) there exists gδ ∈ Cr−3(Ω) such that∫
Ω

|gδ − g| dx ≤ C δ and ‖gδ‖r−3 ≤ C δ−(r−3)+ 1
2 ,(6.14)

where the constant C is independent of ξ and δ. Using g and gδ, we introduce the
following splitting:∫ xR

ξ

(β′ − γ) e dx =

∫ xR

xL

(β′ − γ) e (g − gδ) dx+

∫ xR

xL

(β′ − γ) e gδ dx.

From Theorem 5.5 and (6.14), we have∣∣∣∣∫ xR

xL

(β′ − γ) e (g − gδ) dx

∣∣∣∣ ≤ C δ hr+1 ‖u‖r+1,∞.(6.15)

For wδ = T ∗((β′ − γ)gδ
)
, where T ∗ is the solution operator of (4.6), we obtain the

identity ∫ xR

xL

e (β′ − γ) gδ dx = B(e, wδ − Ir−2
h wδ) +B(e, Ir−2

h wδ).

From the definition of Λh in Proposition 3.1, (2.10), and (2.11), we conclude that
B(e, Ir−2

h wδ) = 0. Hence, using (2.2), (4.18), the fact that ‖wδ‖r−1 ≤ C ‖gδ‖r−3,
and (6.14), it follows that∣∣∣∣∫ xR

xL

e (β′ − γ) gδ dx

∣∣∣∣ ≤ C h2(r−1) ‖gδ‖r−3 ‖u‖r+1

≤ C h2(r−1) δ−(r−3)+ 1
2 ‖u‖r+1.

(6.16)

With δ = hν , where ν = 2(r−3)
2(r−3)+1 , the estimates (6.13), (6.15), and (6.16) yield

max0≤m≤Jh−1

∣∣e′(xhm)
∣∣ ≤ C hr+1+ν ‖u‖r+1,∞.
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7. A posteriori estimates. In this section we derive explicit residual-based a
posteriori error estimates in the energy and L2 norm for the methods of section 2
with r = 2, following the approach of [17] for the standard Galerkin finite element
method. Our estimates are based on the general formulation (2.9) and make use of
the orthogonality properties (2.8) and (2.10). We refer to [2] and [6] for a posteriori
error estimates in the L2 norm for finite volume methods based on piecewise linear
polynomial spaces and applied to linear and nonlinear elliptic problems in two space
dimensions.

Proposition 7.1. Let r = 2 and assume that Λh satisfies (2.7) and (2.8). For

h ∈ (0, ĥ0), we define the residual RhE ∈ L2(Ω) of (2.9) by RhE|I = f − LIuh for

I ∈ Ph, where ĥ0 is the constant specified in Proposition 4.4. If σ = 0 in (2.8), then
there exists a constant CP

α∗,0, independent of the solution u and the right-hand side
function f , such that

‖u− uh‖0 ≤ CP

α∗,0

{∑
I∈Ph

h2α∗
I λ2

α∗(hI) ‖RhE‖2
0,I

} 1
2

∀ h ∈ (0, ĥ0),(7.1)

where α∗ = min{2, α}, λα∗(hI) = 1 + Ĉ2,1(1 + hI) when α∗ = 1, and λα∗(hI) =

C̃1 + Ĉ2,2(1 + hI) when α∗ = 2. If α = 1 in (2.7) and σ = 1 in (2.8), then there
exists a constant CP

1,1, independent of the solution u and the right-hand side function
f , such that

‖u− uh‖0 ≤ CP

1,1

{∑
I∈Ph

h2
I

(
C̃1 hI ‖RhE‖0,I + Ĉ2,1 (1 + hI) ‖RhE − I1

hR
h
E‖0,I

)2} 1
2

(7.2)

∀h ∈ (0, ĥ0). In the estimates above, Ĉ2,1 and Ĉ2,2 are the constants in (2.7), and

C̃1 is the constant in (2.2).

Proof. Let h ∈ (0, ĥ0), e = u − uh, and w = T ∗e ∈ H2(Ω) ∩ H(Ω). Using
integration by parts and (2.9) we have

‖e‖2
0 = B(e, w)

= (f, w) −B(uh, w)

=
∑
I∈Ph

(RhE, w − ΛhI1
hw)I

=
∑
I∈Ph

[
(RhE, w − I1

hw)I + (RhE, I1
hw − ΛhI1

hw)I
]
.

When α = 1 and σ = 0, using the identity (I1
hw)′ = Πhw

′, (2.4), and (2.7), we have

‖e‖2
0 ≤

∑
I∈Ph

hI ‖RhE‖0,I

(‖w‖1,I + Ĉ2,1 ‖I1
hw‖1,I

)
≤
∑
I∈Ph

hI λ1(hI) ‖RhE‖0,I ‖w‖1,I

≤ CQ

{∑
I∈Ph

h2
I λ

2
1(hI) ‖RhE‖2

0,I

} 1
2

‖e‖0,
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where CQ = sup
{‖T ∗g‖1 : g ∈ L2(Ω) with ‖g‖0 = 1

}
. When α ≥ 2 and σ = 0,

using (2.2), (2.4), and (2.7), we have

‖e‖2
0 ≤

∑
I∈Ph

h2
I ‖RhE‖0,I (C̃1 ‖w‖2,I + Ĉ2,2 ‖I1

hw‖2,I)

≤
∑
I∈Ph

h2
I λ2(hI) ‖RhE‖0,I ‖w‖2,I

≤ CR

{∑
I∈Ph

h4
I λ

2
2(hI) ‖RhE‖2

0,I

} 1
2

‖e‖0,

where CR is the constant of the elliptic regularity estimate (4.7). The estimates above
yield (7.1) with CP

1,0 = CQ and CP
2,0 = CR. When α = 1 and σ = 1, we use the

orthogonality property (2.8) and the estimates (2.2), (2.7), (2.4) to get

‖e‖2
0 ≤

∑
I∈Ph

hI
(
C̃1 hI ‖RhE‖0,I + Ĉ2,1 (1 + hI) ‖RhE − I1

hR
h
E‖0,I

) ‖w‖2,I

which along with (4.7) yields (7.2) with CP
1,1 = CR.

Remark 7.1. When (5.1) holds, we have ΛhI1
hw = I1

hw, so, instead of (7.1) we

obtain ‖u−uh‖0 ≤ C̃1 CR {∑I∈Ph
h2
I ‖RhE‖2

0,I}1/2 for h ∈ (0, ĥ0), which has the form
of a finite element a posteriori error estimator.

Remark 7.2. If we assume that CΓ = 0 in (4.4), then we also have CG = 0 in
(4.3). Proceeding as in Proposition 7.1, we conclude that

B(e, e) =
∑
I∈Ph

(RhE, e− ΛhI1
he)I ≤

{∑
I∈Ph

h2
I λ

2
1(hI) ‖RhE‖2

0,I

} 1
2 ‖e‖1.

Using (4.4) we obtain
[
B(e, e)

]1/2 ≤ (C∆)−1/2
{∑

I∈Ph
h2
I λ

2
1(hI) ‖RhE‖2

0,I

} 1
2 , which

is an a posteriori error bound in the energy norm.
Remark 7.3. We note that in the a posteriori error bounds of Proposition 7.1

and Remarks 7.1 and 7.2 the jump of the derivative at the interval boundaries is
absent. This is due to the use of the interpolation operator I1

h and this also applies
in the finite element case in one space dimension (see, e.g., [17]).

Remark 7.4. Assume that f ∈ H1(Ω) or f ∈ H2(Ω). Observing that

B(u− uh, v) =
∑
I∈Ph

{
(RhE, v)I − [[au′hv]]∂I

} ∀ v ∈ H1(Ω),

and moving along the lines of [42] or section 3.4 in [3], we can show that

‖RhE‖0,I ≤ C
{‖RhE − I1

hR
h
E‖0,I + 1

hI
‖e‖1,I

} ∀ I ∈ Ph.

Since LIuh ∈ C2
B(I), using (2.4), (2.2), and (2.1), we obtain

‖RhE − I1
hR

h
E‖0,I ≤ C

(‖f − I1
hf‖0,I + h2

I ‖LIuh‖2,I

)
≤ C

(
hsI ‖f‖s,I + h2

I ‖uh‖2,I

)
≤ C hsI

(‖f‖s,I + ‖uh‖1,I

)
, s = 1, 2, ∀ I ∈ Ph.
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We conclude from the two relations above that

‖RhE‖0,I ≤ C
{
hsI (‖f‖1,I + ‖uh‖1,I) + 1

hI
‖e‖1,I

}
∀ I ∈ Ph, s = 1, 2.(7.3)

The estimates above yield{∑
I∈Ph

h2α
I ‖RhE‖2

0,I

} 1
2

≤ C {hα+1 (‖f‖1 + ‖uh‖1) + hα−1 ‖e‖1} ∀α ∈ N,

{∑
I∈Ph

h2
I ‖RhE − I1

hR
h
E‖2

0,I

} 1
2

≤ C h3 (‖f‖2 + ‖uh‖1).

Hence, the a posteriori error estimators of Proposition 7.1 and Remarks 7.1 and 7.2
and the corresponding approximation errors are of the same order, and we expect them
to be useful in the construction of an adaptive algorithm. In addition, using (7.3) we
obtain the following lower bound of the H1 error (cf. Theorem 3.7 in [3]):

∑
I∈Ph

h2
I‖RhE‖2

0,I ≤ C

{∑
I∈Ph

h2s+2
I (‖f‖s,I + ‖uh‖1,I)

2 + ‖e‖2
1

}
, s = 1, 2.

For the purpose of describing later in section 8 an algorithm for the control of the
L2 approximation error, we shall write our error estimators in the form

Eh = CM

{ ∑
I∈Ph

η2
I

} 1
2

,(7.4)

where ηI is a nonnegative, computable error indicator for the interval I ∈ Ph. Indeed,
for the error estimator (7.1) of Proposition 7.1 we have

CM = CP

α∗,0, ηI = hα
∗
I λα∗(hI) ‖RhE‖0,I ,(7.5)

while for the error estimator (7.2)

CM = CP

1,1, ηI = hI
(
C̃1 hI ‖RhE‖0,I + Ĉ2,1 (1 + hI) ‖RhE − I1

hR
h
E‖0,I

)
.(7.6)

8. Numerical experiments. In this section we present the results of numerical
experiments performed with some of the methods of section 3, based on piecewise
quadratic functions. We shall refer to the method of Proposition 3.2 with r = 2
as Method 3.1 and to the method of Proposition 3.6 with r = 2 and �1 = 1

2 −√
3

6 as Method 3.2. All numerical schemes were implemented in a FORTRAN program
using double precision arithmetic. The resulting linear systems were solved using the
LINPACK subroutines DGBFA and DGBSL. All runs were performed on a Sun UltraSparc
5 running SunOS 5.6, using the native version of the FORTRAN compiler.

8.1. Experimental order of convergence. Our first task is to verify numeri-
cally the convergence rate of Methods 3.1 and 3.2 and compare them with the standard
Galerkin finite element method based on S2

h. To do this we consider the problem

− ((2 + cos(π2x))u
′)′ + u′ + u = f(x) ∀x ∈ (0, 1), u(0) = u′(1) = 0,(8.1)
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Table 8.1

Rates of convergence of Method 3.1 for the problem (8.1).

Jh ‖u− uh‖0 Rate ‖u− uh‖1 Rate |u− uh|∞ Rate

20 1.97047(-6) 2.55364(-4) 3.84016(-6)

40 2.46264(-7) 3.0003 6.38364(-5) 2.0001 4.79942(-7) 3.0002

80 3.07815(-8) 3.0000 1.59588(-5) 2.0000 5.99904(-8) 3.0001

160 3.84765(-9) 3.0000 3.98969(-6) 2.0000 7.49872(-9) 3.0000

Table 8.2

Rates of convergence of Method 3.2 for the problem (8.1).

Jh ‖u− uh‖0 Rate ‖u− uh‖1 Rate |u− uh|∞ Rate

20 3.19946(-6) 2.55434(-4) 5.22213(-6)

40 4.04199(-7) 2.9847 6.38407(-5) 2.0004 6.55057(-7) 2.9949

80 5.07905(-8) 2.9924 1.59591(-5) 2.0000 8.20274(-8) 2.9974

160 6.36727(-9) 2.9958 3.98971(-6) 2.0000 1.02662(-8) 2.9982

Table 8.3

Rates of convergence of the finite element method on S2
h for the problem (8.1).

Jh ‖u− uh‖0 Rate ‖u− uh‖1 Rate |u− uh|∞ Rate

20 1.96957(-6) 2.55318(-4) 3.84727(-6)

40 2.46236(-7) 2.9998 6.38336(-5) 1.9999 4.80545(-7) 3.0011

80 3.07808(-8) 2.9999 1.59586(-5) 2.0000 6.00330(-8) 3.0008

160 3.84762(-9) 3.0000 3.98968(-6) 2.0000 7.50155(-9) 3.0005

where f is chosen so that the problem admits the C∞–solution u(x) = sin(π2x). This
problem was solved numerically on a uniform grid consisting of Jh = 20, 40, 80, or
160 intervals. The L2 and H1 norms of the error e = u − uh were computed using
an eight-point Gauss quadrature rule, and the L∞ norm of the error was estimated
by a finite sampling at the abscissae of the aforementioned quadrature rule. The
results of these computations are summarized in Tables 8.1–8.2 and clearly confirm
the convergence estimates of sections 4 and 5. The experimental rate of convergence
and the discretization error for the standard Galerkin finite element method based
on S2

h are shown in Table 8.3. The close agreement between the discretization errors
of Method 3.1 and the finite element method is easily explained by the fact that uh
satisfies the finite element equations in addition to the finite volume equations (cf.
Remark 3.2). Moreover, it is worth noting that the H1 norm of the discretization
error is approximately the same for all three methods.

For the sake of completeness we performed similar experiments with the first
member of the infinite family of the methods constructed in Proposition 3.1 (cf. Re-
mark 3.1) and listed the results in Table 8.4. Recall that for this method (referred to in
Table 8.4 as the “Πh-method”) we have Λh = Πh and α = 1, σ = 0. The experimental
rates of convergence clearly agree with the rates predicted in Theorem 4.6.

To confirm the results of Proposition 6.1 (see also Remark 6.1) we determined the
rate of convergence of the quantities |e(1/4)|, |e(4/5)|, and |e(1)| for Methods 3.1–3.2,
applied to the test problem (8.1). The results are shown in Tables 8.5–8.6.

8.2. Adaptive computations. As our next task we undertake the development
and testing of an adaptive algorithm based on Methods 3.1 and 3.2, which uses the
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Table 8.4

Rates of convergence of the Πh-method for the problem (8.1).

Jh ‖u− uh‖0 Rate ‖u− uh‖1 Rate |u− uh|∞ Rate

20 2.82391(-4) 5.12046(-4) 4.03168(-4)

40 7.06080(-5) 1.9998 1.28019(-4) 1.9999 1.00779(-4) 2.0002

80 1.76526(-5) 2.0000 3.20053(-5) 2.0000 2.51941(-5) 2.0000

160 4.41320(-6) 2.0000 8.00136(-6) 2.0000 6.29848(-6) 2.0000

Table 8.5

Rates of convergence of |e(1/4)|, |e(4/5)|, and |e(1)| (Method 3.1).

Jh |e(1/4)| Rate |e(4/5)| Rate |e(1)| Rate

20 9.64734(-9) 2.73913(-8) 3.17698(-8)

40 6.03302(-10) 3.9992 1.71231(-9) 3.9997 1.98573(-9) 3.9999

80 3.77473(-11) 3.9984 1.07111(-10) 3.9987 1.24206(-10) 3.9989

160 2.33780(-12) 4.0130 6.62781(-12) 4.0144 7.69784(-12) 4.0121

Table 8.6

Rates of convergence of |e(1/4)|, |e(4/5)|, and |e(1)| (Method 3.2).

Jh |e(1/4)| Rate |e(4/5)| Rate |e(1)| Rate

20 3.00789(-7) 3.87146(-6) 5.28432(-6)

40 3.75175(-8) 3.0031 4.82915(-7) 3.0030 6.58883(-7) 3.0036

80 4.68532(-8) 3.0013 6.03067(-8) 3.0014 8.22646(-8) 3.0017

160 5.86658(-10) 2.9976 7.53832(-9) 3.0000 1.02810(-8) 3.0003

a posteriori error bounds derived in section 7 to control the L2 norm of the error.
The goal is to compute an approximation uh of the exact solution u of (1.1a)–(1.1b)
such that ‖u − uh‖0 ≤ TOL, for a given tolerance TOL > 0. In what follows,
for m ∈ N0, we shall denote by P(m) a partition of Ω with J (m) intervals and by
S(m) ⊂ H(Ω) the finite element space consisting of functions which vanish at xL and
reduce to polynomials of degree less than or equal to two on each interval I of the
partition P(m). The adaptive algorithm starts with an initial partition P(0) and an
initial approximation u(0) ∈ S(0) of u. Then it computes successive approximations
u(k) ∈ S(k), k ≥ 1, where S(k−1) ⊂ S(k), by means of the following iterative procedure.

Step 1. Given an approximate solution u(k−1) ∈ S(k−1), compute the error indi-

cators η
(k−1)
I for I ∈ P(k−1) and the corresponding error estimator E(k−1)

h from (7.4).

Step 2. If E(k−1)
h ≤ TOL stop. Otherwise, construct a new partition P(k) of Ω by

bisecting the intervals I of P(k−1) for which η
(k−1)
I > TOL

CM

√
J(k−1)

.

Step 3. Compute a new approximate solution u(k) ∈ S(k), increment k, and go to
Step 1.

We shall apply this adaptive algorithm on the test problem

−((x+ ε)u′)′ = 1 ∀x ∈ (0, 1), u(0) = u′(1) = 0,(8.2)

where ε > 0 is a parameter. The exact solution of (8.2) is u(x) = (1+ε) ln
(
1+ x

ε

)−x.
We note that, for small ε, u and u′ change rapidly near x = 0 and thus a locally
fine grid is required to approximate u accurately. The constant CM needed in the
adaptive algorithm depends on the constants CR, C̃1, and CP

1,1 of the a posteriori
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Fig. 8.1. The mesh-size function for problem (8.2) with ε = 0.01 and TOL = 0.0001.

error estimates; cf. (7.4), (7.5), (7.6), and Remark 7.1. For Method 3.1 we have

CM = C̃1 CR = 1
8 CR (cf. [17]), while for Method 3.2 we have CM = CR. The constant

Ĉ2,1, needed in the computation of the error indicators for Method 3.2, may be esti-

mated as in the proof of Proposition 3.5, and we have Ĉ2,1 = 17
8 − �1. To find upper

bounds for the constants CQ and CR we observe that if g ∈ L2(Ω) and w = T ∗g, then

for (8.2) we have w′(x) = 1
x+ε

∫ 1

x
g(s) dx for x ∈ [0, 1]. It follows that CQ ≤ C̃Q =

√
A

and CR ≤ C̃R = {( 1
ε + B)2 + 3

2 C̃Q} 1
2 , where A =

∫ 1

0
1−x

(x+ε)2 dx and B =
∫ 1

0
1−x

(x+ε)4 dx.

In the numerical experiments we used the upper bounds C̃Q and C̃R instead of CQ

and CR, respectively. Figure 8.1 shows the local mesh-size function (i.e., the piece-
wise constant function whose restriction on each interval of the partition equals the
length of the interval) after our adaptive algorithm terminated. We used ε = 0.01,
TOL = 0.0001, and an initial uniform partition of [0, 1] with 20 intervals. The final
number of subintervals and the L2 norm of the exact error for Method 3.1 were 47 and
2.33017(−5), respectively, and for Method 3.2 they were 55 and 3.19060(−5), respec-
tively. The corresponding errors on uniform grids with the same number of intervals,
0.78595(−3) and 0.634621(−3), are both greater than TOL. We also note that for
both methods the length of the smallest interval is the same, but for Method 3.2 the
size of the finest grid region is approximately twice as large as that of Method 3.1.
This is in good agreement with the discretization errors of Tables 8.1–8.2.
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CONVERGENCE ANALYSIS OF A MULTIGRID METHOD FOR A
CONVECTION-DOMINATED MODEL PROBLEM∗
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Abstract. The paper presents a convergence analysis of a multigrid solver for a system of
linear algebraic equations resulting from the discretization of a convection-diffusion problem using a
finite element method. We consider piecewise linear finite elements in combination with a streamline
diffusion stabilization. We analyze a multigrid method that is based on canonical intergrid transfer
operators, a “direct discretization” approach for the coarse-grid operators and a smoother of line-
Jacobi type. A robust (diffusion and h-independent) bound for the contraction number of the two-grid
method and the multigrid W-cycle are proved for a special class of convection-diffusion problems,
namely with Neumann conditions on the outflow boundary, Dirichlet conditions on the rest of the
boundary, and a flow direction that is constant and aligned with gridlines. Our convergence analysis
is based on modified smoothing and approximation properties. The arithmetic complexity of one
multigrid iteration is optimal up to a logarithmic term.
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1. Introduction. Concerning the theoretical analysis of multigrid methods, dif-
ferent fields of application have to be distinguished. For linear self-adjoint elliptic
boundary value problems the convergence theory is well developed (cf. [5, 9, 35, 36]).
In other areas the state of the art is (far) less advanced. For example, for convection-
diffusion problems the development of a multigrid convergence analysis is still in its
infancy. In this paper we present a convergence analysis of a multilevel method for a
special class of two-dimensional convection-diffusion problems.

An interesting class of problems for the analysis of multigrid convergence is given
by {−ε∆u+ b · ∇u = f in Ω = (0, 1)2,

u = g on ∂Ω,
(1.1)

with ε > 0 and b = (cosφ, sinφ), φ ∈ [0, 2π). The application of a discretization
method results in a large sparse linear system which depends on a mesh size parameter
hk. For a discussion of discretization methods for this problem we refer to [28, 1, 2]
and the references therein. Note that in the discrete problem we have three interesting
parameters: hk (mesh size), ε (convection-diffusion ratio), and φ (flow direction). For
the approximate solution of this type of problems robust multigrid methods have
been developed which are efficient solvers for a large range of relevant values for
the parameters hk, ε, φ. To obtain good robustness properties the components in
the multigrid method have to be chosen in a special way because, in general, the
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“standard” multigrid approach used for a diffusion problem does not yield satisfactory
results when applied to a convection-dominated problem. To improve robustness
several modifications have been proposed in the literature, such as “robust” smoothers,
matrix-dependent prolongations, and restrictions and semicoarsening techniques. For
an explanation of these methods we refer to [9, 33, 4, 13, 14, 18, 19, 37]. These
modifications are based on heuristic arguments and empirical studies and rigorous
convergence analysis proving robustness is still missing for most of these modifications.

Related to the theoretical analysis of multigrid applied to convection-diffusion
problems we note the following. In the literature one finds convergence analyses
of multigrid methods for nonsymmetric elliptic boundary value problems which are
based on perturbation arguments [6, 9, 17, 32]. If these analyses are applied to the
problem in (1.1) the constants in the estimates depend on ε and the results are not
satisfactory for the case ε� 1. In [11, 25] multigrid convergence for a one-dimensional
convection-diffusion problem is analyzed. These analyses, however, are restricted to
the one-dimensional case. In [23, 26] convection-diffusion equations as in (1.1) with
periodic boundary conditions are considered. A Fourier analysis is applied to analyze
the convergence of two- or multigrid methods. In [23] the problem (1.1) with periodic
boundary conditions and φ = 0 is studied. For the discretization the streamline dif-
fusion finite element method on a uniform grid is used. A bound for the contraction
number of a multigrid V-cycle with point Jacobi smoother is proved which is uniform
in ε and hk provided ε ∼ hk is satisfied. Note that due to the fact that a point Jacobi
smoother is used one can not expect robustness of this method for hk � ε ↓ 0. In [26]
a two-grid method for solving a first order upwinding finite difference discretization of
the problem (1.1) with periodic boundary conditions is analyzed, and it is proved that
the two-grid contraction number is bounded by a constant smaller than one which does
not depend on any of the parameters ε, hk, φ. In [3] the application of the hierarchical
basis multigrid method to a finite element discretization of problems as in (1.1) is stud-
ied. The analysis there shows how the convergence rate depends on ε and on the flow
direction, but the estimates are not uniform with respect to the mesh size parameter
hk. In [27] the convergence of a multigrid method applied to a standard finite differ-
ence discretization of the problem (1.1) with φ = 0 is analyzed. This method is based
on semicoarsening and a matrix-dependent prolongation and restriction. It is proved
that the multigrid W-cycle has a contraction number smaller than one independent
of hk and ε. The analysis in [27] is based on linear algebra arguments only and is not
applicable in a finite element setting. Moreover, the case with standard coarsening,
which will be treated in the present paper, is not covered by the analysis in [27].

In the present paper we consider the convection-diffusion problem

−ε∆u+ ux = f in Ω := (0, 1)2,

∂u

∂x
= 0 on ΓE := { (x, y) ∈ Ω | x = 1 },

u = 0 on ∂Ω \ ΓE .

(1.2)

In this problem we have Neumann boundary conditions on the outflow boundary and
Dirichlet boundary conditions on the remaining part of the boundary. Hence, the
solution may have parabolic layers but exponential boundary layers at the outflow
boundary do not occur. For this case an a priori regularity estimate of the form
‖u‖H2 ≤ c ε−1‖f‖L2 holds, whereas for the case with an exponential boundary layer

one only has ‖u‖H2 ≤ c ε−
3
2 ‖f‖L2 . Due to the Dirichlet boundary conditions a Fourier

analysis is not applicable.
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For the discretization we use conforming linear finite elements. As far as we know
there is no multigrid convergence analysis for convection-dominated problems known
in the literature that can be applied in a finite element setting with nonperiodic
boundary conditions and yields robustness for the parameter range 0 ≤ ε ≤ hk ≤ 1.
In this paper we present an analysis which partly fills this gap. We use the streamline
diffusion finite element method (SDFEM). The SDFEM ensures a higher order of
accuracy than a first order upwind finite difference method (cf. [28, 38]). In SDFEM
a mesh-dependent anisotropic diffusion, which acts only in the streamline direction,
is added to the discrete problem. Such anisotropy is important for the high order of
convergence of this method and also plays a crucial role in our convergence analysis of
the multigrid method. In this paper we only treat the case of a uniform triangulation
which is taken such that the streamlines are aligned with gridlines. Whether our
analysis can be generalized to the situation of an unstructured triangulation is an
open question.

We briefly discuss the different components of the multigrid solver.
• For the prolongation and restriction we use the canonical intergrid transfer

operators that are induced by the nesting of the finite element spaces.
• The hierarchy of coarse grid discretization operators is constructed by ap-

plying the SDFEM on each grid level. Note that due to the level-dependent
stabilization term we have level-dependent bilinear forms and the Galerkin
property Ak−1 = rkAkpk does not hold.

• Related to the smoother we note the following. First we emphasize that due
to a certain crosswind smearing effect in the finite element discretization the
x-line Jacobi or Gauss–Seidel methods do not yield robust smoothers (i.e.,
they do not result in a direct solver in the limit case ε = 0; cf. [9]). This is
explained in more detail in Remark 6.1 in section 6. In the present paper we
use a smoother of x-line-Jacobi type.

These components are combined in a standard W-cycle algorithm.
The convergence analysis of the multigrid method is based on the framework

of the smoothing- and approximation property as introduced by Hackbusch [9, 10].
However, the splitting of the two-grid iteration matrix that we use in our analysis is
not the standard one. This splitting is given in (6.8). It turns out to be essential to
keep the preconditioner corresponding to the smoother (Wk in (6.8)) as part of the
approximation property. Moreover, in the analysis we have to distinguish between
residuals which after presmoothing are zero close to the inflow boundary and those
that are nonzero. This is done by using a cut-off operator (Φk in (6.8)). The main
reason for this distinction is the following. As is usually done in the analysis of the
approximation property we use finite element error bounds combined with regularity
results. In the derivation of a L2 bound for the finite element discretization error
we use a duality argument. However, the formal dual problem has poor regularity
properties, since the inflow boundary of the original problem is the outflow boundary
of the dual problem. Thus Dirichlet outflow boundary conditions would appear and
we obtain poor estimates due to the poor regularity. To avoid this, we consider a
dual problem with Neumann outflow and Dirichlet inflow conditions. To be able to
deal with the inconsistency caused by these “wrong” boundary conditions we assume
the input residuals for the coarse grid correction to be zero near the inflow boundary.
Numerical experiments from section 11 related to the approximation property show
that such analysis is sharp.

In our estimates there are terms that grow logarithmically if the mesh size pa-
rameter hk tends to zero. To compensate this the number of presmoothings has to
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be taken level dependent. This then results in a two-grid method with a contraction
number ‖Tk‖ATA ≤ c < 1 and a complexity O(Nk(lnNk)

4), with Nk = h−2
k . Using

standard arguments we obtain a similar convergence result for the multigrid W-cycle.
The remainder of this paper is organized as follows. In section 2 we give the weak

formulation of the problem (1.2) and describe the SDFEM. In section 3 some useful
properties of the stiffness matrix are derived. In section 4 we prove some a priori esti-
mates for the continuous and the discrete solution. In section 5 we derive quantitative
results concerning the upstream influence of a right-hand side on the solution. These
results are needed in the proof of the modified approximation property. Section 6
contains the main results of this paper . In this section we describe the multigrid algo-
rithm and present the convergence analysis. In sections 7–10 we give proofs of some
important results that are used in the analysis in section 6. In section 11 we present
results of a few numerical experiments.

2. The continuous problem and its discretization. For the weak formu-
lation of the problem (1.2) we use the L2(Ω) scalar product which is denoted by
(·, ·). For the corresponding norm we use the notation ‖ · ‖. With the Sobolev space
V := { v ∈ H1(Ω) | v = 0 on ∂Ω \ ΓE } the weak formulation is as follows: find
u ∈ V such that

a(u, v) := ε(ux, vx) + ε(uy, vy) + (ux, v) = (f, v) for all v ∈ V.(2.1)

From the Lax–Milgram lemma it follows that a unique solution of this problem exists.
For the discretization we use linear finite elements on a uniform triangulation. For
this we use a mesh size hk := 2−k and grid points xi,j = (ihk, jhk), 0 ≤ i, j ≤ h−1

k .
A uniform triangulation is obtained by inserting diagonals that are oriented from
southwest to northeast. Let Vk ⊂ V be the space of continuous functions that are
piecewise linear on this triangulation and have zero values on ∂Ω \ ΓE . For the
discretization of (2.1) we consider the SDFEM: find uk ∈ Vk satisfying

(ε+ δkhk)((uk)x, vx) + ε((uk)y, vy) + ((uk)x, v) = (f, v + δkhkvx) for all v ∈ Vk

(2.2)

with

δk =

{
δ̄ if hk

2 ε ≥ 1,
0 otherwise.

(2.3)

The stabilization parameter δ̄ is a given constant of order 1. For an analysis of the
SDFEM we refer to [28, 15]. In this paper we assume

δ̄ ∈
[
1

3
, 1

]
.(2.4)

The value 1
3 for the lower bound is important for our analysis. The choice of 1 for

the upper bound is made for technical reasons and this value is rather arbitrary. The
finite element formulation (2.2) gives rise to the (stabilized) bilinear form

ak(u, v) := (ε+ δkhk)(ux, vx) + ε(uy, vy) + (ux, v), u, v ∈ V.(2.5)

Note the following relation for the bilinear form ak(·, ·):

ak(v, v) = ε‖vy‖2 + (ε+ δkhk)‖vx‖2 +
1

2

∫
ΓE

v2 dy for v ∈ V.(2.6)
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The main topic of this paper is a convergence analysis of a multigrid solver for the
algebraic system of equations that corresponds to (2.2). In this convergence analysis
the particular form of the right-hand side in (2.2), which is essential for consistency
in the SDFEM, does not play a role. Therefore for an arbitrary f ∈ L2(Ω) we will
consider the problems

u ∈ V such that ak(u, v) = (f, v) for all v ∈ V,(2.7)

uk ∈ Vk such that ak(uk, vk) = (f, vk) for all vk ∈ Vk.(2.8)

Note that u and uk depend on the stabilization term in the bilinear form and that
these solutions differ from those in (2.1) and (2.2).

3. Representation of the stiffness matrix. We now derive a representation
of the stiffness matrix corresponding to the bilinear form ak(·, ·) that will be used
in the analysis below. The standard nodal basis in Vk is denoted by {φ�}1≤�≤Nk

with Nk the dimension of the finite element space, Nk := h−1
k (h−1

k − 1). Define the
isomorphism:

Pk : Xk := R
Nk → Vk, Pkx =

Nk∑
i=1

xiφi.

On Xk we use a scaled Euclidean scalar product 〈x, y〉k = h2
k

∑Nk

i=1 xiyi and corre-
sponding norm denoted by ‖ · ‖ (note that this notation is also used to denote the
L2(Ω) norm). The adjoint P ∗

k : Vk → Xk satisfies (Pkx, v) = 〈x, P ∗
k v〉k for all

x ∈ Xk, v ∈ Vk. The following norm equivalence holds:

C−1‖x‖ ≤ ‖Pkx‖ ≤ C‖x‖ for all x ∈ Xk,(3.1)

with a constant C independent of k. The stiffness matrix Ak on level k is defined by

〈Akx, y〉k = ak(Pkx, Pky) for all x, y ∈ Xk.(3.2)

In an interior grid point the discrete problem has the stencil

1

h2
k

⎡⎣ 0 −ε 0
−εk 2(εk + ε) −εk
0 −ε 0

⎤⎦+
1

hk

⎡⎢⎣ 0 − 1
6

1
6

− 1
3 0 1

3

− 1
6

1
6 0

⎤⎥⎦ , εk := ε+ δkhk .(3.3)

For a matrix representation of the discrete operator we first introduce some notation
and auxiliary matrices. Let nk := h−1

k and

D̂x :=
1

hk
tridiag(−1, 1, 0) ∈ R

nk×nk ,

Âx := D̂T
x D̂x =

1

h2
k

⎛⎜⎜⎝
2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎞⎟⎟⎠ ∈ R
nk×nk ,

Ây :=
1

h2
k

tridiag(−1, 2,−1) ∈ R
(nk−1)×(nk−1) ,

Ĵ :=

⎛⎜⎝
1

. . .

1
1
2

⎞⎟⎠ ∈ R
nk×nk , T̂ := tridiag(0, 0, 1) ∈ R

nk×nk .
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Furthermore, let Im be the m×m identity matrix. We finally introduce the following
Nk ×Nk matrices

Dx := Ink−1 ⊗ D̂x , Ax := Ink−1 ⊗ Âx = DT
xDx , Ay := Ây ⊗ Ĵ

and the Nk ×Nk blocktridiagonal matrix

B := blocktridiag(Ink
, 4Ink

, T̂ ) .

Using all this notation we consider the following representation for the stiffness matrix
Ak in (3.2):

Ak =

(
ε+

(
δk − 1

3

)
hk

)
Ax + εAy +

1

6
BDx.(3.4)

The latter decomposition can be written in stencil notation as

ε̄k
h2
k

⎡⎣ 0 0 0
−1 2 −1

0 0 0

⎤⎦+
ε

h2
k

⎡⎣ 0 −1 0
0 2 0
0 −1 0

⎤⎦+
1

6hk

⎡⎣ 0 −1 1
−4 4 0
−1 1 0

⎤⎦(3.5)

with ε̄k = ε+ (δk − 1
3 )hk > 0.

Some properties of the matrices used in the decomposition (3.4) are collected in
the following lemma.

For B,C ∈ R
n×n we write B ≥ C iff xTBx ≥ xTCx for all x ∈ R

n.
Lemma 3.1. The following inequalities hold:

AxD
−1
x ≥ 0,(3.6)

AyD
−1
x ≥ 0,(3.7)

B ≥ 2I,(3.8)

AkD
−1
x ≥ 1

3
I,(3.9)

‖DxA
−1
k ‖ ≤ 3.(3.10)

Proof. To check (3.6) observe AxD
−1
x = DT

xDxD
−1
x = DT

x . Now note that
DT
x +Dx is symmetric positive definite.

To prove (3.7) it suffices to show that DT
xAy ≥ 0 holds. We have

K := DT
xAy = (Ink−1 ⊗ D̂T

x )(Ây ⊗ Ĵ) = Ây ⊗ D̃T
x ,

with the matrix

D̃T
x =

1

hk

⎛⎜⎝
1 −1

. . .
. . .

1 − 1
2

1
2

⎞⎟⎠.
Hence in the matrix K +KT = Ây ⊗ (D̃T

x + D̃x) both factors Ây and D̃T
x + D̃x are

symmetric positive definite. From this the result follows.
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To prove (3.8) we define R := B − 4I and note that ‖R‖2 ≤ ‖R‖∞‖R‖1 ≤ 4.
Using this we get

〈Bx, x〉k = 4‖x‖2 + 〈Rx, x〉k ≥ 4‖x‖2 − ‖R‖‖x‖2 ≥ 2‖x‖2

which proves the desired result. Inequality (3.9) follows immediately from the repre-
sentation of Ak in (3.4) and inequalities (3.6)–(3.8). From the result in (3.9) it follows
that DT

xAk ≥ 1
3D

T
xDx. This implies ‖Dxx‖2 ≤ 3〈Akx,Dxx〉k ≤ 3‖Akx‖‖Dxx‖ for all

x ∈ Xk and thus estimate (3.10) is also proved.

4. A priori estimates. In this paper we study the convergence of a multigrid
method for solving the system of equations

Akxk = b,(4.1)

with Ak the stiffness matrix from the previous section. As already noted in the
introduction, our analysis relies on smoothing and approximation properties. For
establishing a suitable approximation property we will use regularity results and a
priori estimates for solutions of the continuous and the discrete problems. Such results
are collected in this section. In the remainder of the paper we restrict ourselves to
the convection-dominated case.

Assumption 4.1. We consider only values of k and ε such that ε ≤ 1
2 hk.

If instead of the factor 1
2 in this assumption we take another constant C, our anal-

ysis can still be applied but some technical modifications are needed (to distinguish
between δk = δ̄ and δk = 0) which make the presentation less transparent.

We consider this convection-dominated case to be the most interesting one. Many
results that will be presented also hold for the case of an arbitrary positive ε but the
proofs for the diffusion-dominated case often differ from those for the convection-
dominated case. In view of the presentation we decided to treat only the convection-
dominated case. Note that then

δk = δ̄ ∈
[
1

3
, 1

]
and

1

3
hk ≤ εk = ε+ δ̄hk ≤ 3

2
hk.(4.2)

For the inflow boundary we use the notation ΓW := {(x, y) ∈ Ω | x = 0}. For the
continuous solution u the following a priori estimates hold.

Theorem 4.1. For f ∈ L2(Ω) let u be the solution of (2.7). There is a constant
c independent of k and ε such that

‖u‖ + ‖ux‖ ≤ c‖f‖,(4.3)
√
ε‖uy‖ ≤ c‖f‖,(4.4)

hk‖uxx‖ +
√
εhk‖uxy‖ + ε‖uyy‖ ≤ c‖f‖,(4.5) ∫

ΓE

u2 dy + hk

∫
ΓW

u2
x dy + ε

∫
ΓE

u2
y dy ≤ c‖f‖2.(4.6)

Proof. Since f ∈ L2(Ω), the regularity theory from [8] ensures that the solution
u of (2.7) belongs to H2(Ω). Hence we can consider the strong formulation of (2.7),

−εuyy − εkuxx + ux = f,(4.7)
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with boundary conditions as in (1.2). Now we multiply (4.7) with ux and integrate
by parts. Taking boundary conditions into account, we get the following terms:

−ε(uyy, ux) =
ε

2
((u2

y)x, 1) =
ε

2

∫
ΓE

u2
y dy,

−εk(uxx, ux) = −εk
2

((u2
x)x, 1) =

εk
2

∫
ΓW

u2
x dy ≥ c hk

∫
ΓW

u2
x dy (we use (4.2)),

(ux, ux) = ‖ux‖2 ≥ ‖u‖2,

(f, ux) ≤ 1

2
‖f‖2 +

1

2
‖ux‖2.

From these relations the results (4.3) and (4.6), except the bound for
∫
ΓE
u2 dy, easily

follow. Next we multiply (4.7) with u and integrate by parts to obtain

ε‖uy‖2 + εk‖ux‖2 +
1

2

∫
ΓE

u2 dy = (f, u) ≤ ‖f‖‖u‖ ≤ c ‖f‖2 (we use (4.3)).

Estimate (4.4) and the remainder of (4.6) now follow. To prove (4.5) we introduce
F = f − ux. Due to (4.3) we have ‖F‖ ≤ c ‖f‖. Moreover −εuyy − εkuxx = F holds.
If we square both sides of this equality and integrate over Ω we obtain

ε2‖uyy‖2 + 2εεk(uyy, uxx) + ε2k‖uxx‖2 = ‖F‖2 ≤ c ‖f‖2.(4.8)

Further note that for any sufficiently smooth function v, satisfying the boundary
conditions in (1.2), the relations

vxx(x, 0) = vxx(x, 1) = 0, x ∈ (0, 1), vy(0, y) = vxy(1, y) = 0, y ∈ (0, 1),

hold, and thus

(vyy, vxx) = −(vy, vxxy) = (vxy, vxy).

Using a standard density argument we conclude that for the solution u ∈ H2(Ω) of
(2.7) the relation (uyy, uxx) = (uxy, uxy) holds. Now (4.8) gives

ε2‖uyy‖2 + 2εεk‖uxy‖2 + ε2k‖uxx‖2 ≤ c ‖f‖2.

In combination with (4.2) this yields (4.5).
The next lemma states that the x-derivative of the discrete solution is also uni-

formly bounded if the right-hand side is from Vk.
Lemma 4.2. For fk ∈ Vk let uk ∈ Vk be a solution to (2.8); then

‖(uk)x‖ ≤ c ‖fk‖.(4.9)

Proof. The result in (4.9) follows from the estimate (3.10) in Lemma 3.1. To
show this we need some technical considerations.

First we show how the size of the x-derivative of a finite element function v ∈ Vk

can be determined from its corresponding coefficient vector P−1
k v ∈ Xk. Let I be the

index set {(i, j) | 0 ≤ i ≤ nk − 1, 1 ≤ j ≤ nk − 1 }. For (i, j) ∈ I let T l(i,j) and

Tu(i,j) be the two triangles in the triangulation which have the line between the grid



MULTIGRID FOR A CONVECTION-DOMINATED PROBLEM 1269

points xi,j and xi+1,j as a common edge. Let v ∈ Vk be given. For 1 ≤ j ≤ nk − 1
we introduce the vector vj = (v(x1,j), . . . , v(xnk,j))

T . We then obtain

‖vx‖2 =
∑

(i,j)∈I

(∫
T l

(i,j)

v2
x dxdy +

∫
Tu

(i,j)

v2
x dxdy

)

=
∑

(i,j)∈I

(
v(xi+1,j) − v(xi,j)

hk

)2

h2
k = h2

k

∑
1≤j≤nk−1

(
Dxvj)

T (Dxvj)

= h2
k

(
DxP

−1
k v

)T (
DxP

−1
k v

)
= ‖DxP

−1
k v‖2.

Therefore

‖vx‖ = ‖DxP
−1
k v‖ for any v ∈ Vk.(4.10)

For the discrete solution of (2.8) with f = fk we have the representation uk =
PkA

−1
k P ∗

k fk. Now from (3.10) and (4.10) it follows that

‖(uk)x‖ = ‖DxA
−1
k P ∗

k fk‖ ≤ 3 ‖P ∗
k fk‖ ≤ c ‖fk‖

with a constant c independent of k and ε.
The next lemma gives some bounds on the difference between discrete and con-

tinuous solutions
Lemma 4.3. Define the error ek = u − uk, where u and uk are solutions of

the problems (2.7) and (2.8) with right-hand side f = fk ∈ Vk. Then the following
estimates hold:

‖(ek)x‖ ≤ c‖fk‖(4.11)

ε‖(ek)y‖2 +
1

2

∫
ΓE

e2k dy ≤ c
h2
k

ε
‖fk‖2.(4.12)

Proof. Estimate (4.11) directly follows from (4.3) and (4.9) by a triangle inequal-
ity. The proof of (4.12) is based on standard arguments: the Galerkin orthogonality,
approximation properties of Vk, and a priori estimates from (4.5). Indeed

ε‖(ek)y‖2 + (ε+ δ̄hk)‖(ek)x‖2 +
1

2

∫
ΓE

e2k dy = ak(ek, ek) = inf
vk∈Vk

ak(ek, u− vk)

≤ inf
vk∈Vk

(
ε‖(ek)y‖‖(u− vk)y‖ + (ε+ δ̄hk)‖(ek)x‖‖(u− vk)x‖ + ‖(ek)x‖‖u− vk‖

)
≤ c (ε hk‖(ek)y‖‖u‖H2 + h2

k‖(ek)x‖‖u‖H2)

≤ c

(
hk‖(ek)y‖‖fk‖ +

h2
k

ε
‖fk‖2

)
≤ ε

2
‖(ek)y‖2 + c

h2
k

ε
‖fk‖2.

The estimate (4.12) follows.

5. Upstream influence of the streamline diffusion method. Consider the
continuous problem (2.7). The goal of this section is to estimate the upstream in-
fluence of the right-hand side function f on the solution u. The same will be done
for the corresponding discrete problem. In the literature, results of such type are
known for the problem with Dirichlet boundary conditions and typically formulated
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in the form of estimates on the (discrete) Greens function (see, e.g., [31, 20, 16]). A
typical result is that the value of the solution at a point x is essentially determined
by the values of the right-hand side in a “small” strip that contains x. This strip has
a crosswind width of size O(ε∗| lnh|), where ε∗ = max{ε, h 3

2 }, and in the streamline
direction it ranges from the inflow boundary to a O(h| lnh|) upstream distance from
x. In our analysis we need precise quantitative results for the case with Neumann
outflow boundary conditions. In the literature we did not find such results. Hence we
present proofs of the results that are needed for the multigrid convergence analysis
further on. Our analysis uses the known technique of cut-off functions (e.g., [7, 16]),
it avoids the use of an adjoint problem and is based on the following lemma.

Lemma 5.1. For εk = ε + δ̄hk assume a function φ ∈ H1
∞(0, 1), such that

0 ≤ −εkφx ≤ φ. Denote by ‖ · ‖φ a semi-norm induced by the scalar product (φ·, ·).
Then the solution u of (2.7) satisfies

‖ux‖φ ≤ 2‖f‖φ,(5.1)

εk φ(0)

∫
ΓW

u2
x dy ≤ ‖f‖2

φ,(5.2)

1

4
‖u‖2

−φx
+ ε‖uy‖2

φ ≤ (φ f, u).(5.3)

Proof. We consider the strong formulation (4.7) and multiply it with φux and
integrate by parts. We then get the following terms:

−ε(uyy, φux) =
ε

2
‖uy‖2

−φx
+
ε

2
φ(1)

∫
ΓE

u2
y dy ≥ 0,

−εk(uxx, φux) = −εk
2
‖ux‖2

−φx
+
εk
2
φ(0)

∫
ΓW

u2
x dy ≥ −1

2
‖ux‖2

φ +
εk
2
φ(0)

∫
ΓW

u2
x dy,

(ux, φux) = ‖ux‖2
φ,

(f, φux) ≤ ‖f‖φ‖ux‖φ ≤ ‖f‖2
φ +

1

4
‖ux‖2

φ.

Now (5.1) and (5.2) immediately follow. To obtain the estimate (5.3) we multiply
(4.7) with φu and integrate by parts. We get the following terms:

−ε(uyy, φ u) = ε‖uy‖2
φ,

−εk(uxx, φ u) = εk‖ux‖2
φ + εk(ux, φx u)

≥ εk‖ux‖2
φ − ε2k‖ux‖2

−φx
− 1

4
‖u‖2

−φx
≥ −1

4
‖u‖2

−φx
,

(ux, φ u) =
1

2
‖u‖2

−φx
+
φ(1)

2

∫
ΓE

u2 dy.

Thus (5.3) follows.
For arbitrary ξ ∈ [0, 1] consider the function

φξ(x) =

{
1 for x ∈ [0, ξ],

exp
(
−x−ξ

εk

)
for x ∈ (ξ, 1].

For any ξ the function φξ(x) satisfies the assumptions of Lemma 5.1. For 0 < ξ <
η < 1 we define the domains

Ωξ = {(x, y) ∈ Ω : x < ξ} , Ωη = {(x, y) ∈ Ω : x > η} .
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Direct application of Lemma 5.1 with φ = φξ gives the following corollary.
Corollary 5.2. Consider f ∈ L2(Ω) such that supp(f) ∈ Ωη and let u be the

corresponding solution of problem (2.7). Assume η − ξ ≥ 2 εk p | lnhk|, p > 0. Then
we have

‖ux‖L2(Ωξ) ≤ hpk‖f‖,(5.4)

εk

∫
ΓW

u2
x dy ≤ h2p

k ‖f‖2,(5.5)

√
ε‖uy‖L2(Ωξ) ≤

√
εk h

p
k‖f‖.(5.6)

Proof. The estimate ‖f‖2
φ = (φf, f)Ωη

≤ φ(η)‖f‖2
Ωη

= h2p
k ‖f‖2 and (5.1), (5.2)

imply the results (5.4) and (5.5). We also have

(φf, u) = (φf, u)Ωη ≤ εk‖f‖2
φ +

1

4εk
(φu, u)Ωη = εk‖f‖2

φ +
1

4
(−φxu, u)Ωη

≤ εk‖f‖2
φ +

1

4
‖u‖2

−φx
.

Together with (5.3) this yields (5.6).
We need an analogue of estimate (5.1) for the finite element solution uk of (2.8).

To this end consider a vector φ = (φ0, . . . , φnk
), such that φi > 0 for all i and

0 ≤ −εk φi − φi−1

hk
≤ c0φi, i = 1, . . . , nk,(5.7)

with a constant c0 ∈ (0, 4
9 ) and εk = ε+ δ̄hk.

Define Φ̂k := diag(φi)1≤i≤nk
, Φk := Ink−1 ⊗ Φ̂k with φi satisfying (5.7). Let

〈·, ·〉Φ = 〈Φk·, ·〉k.
Lemma 5.3. There exists a constant c > 0 independent of k and ε such that

〈Akx,Dxx〉Φ ≥ c ‖Dxx‖2
Φ for all x ∈ Xk.

Proof. We use similar arguments as in the proof of (3.10). We use the represen-
tation (3.4) of the stiffness matrix: Ak = ε̄kAx + εAy + 1

6BDx . Note that

DT
xΦkAy = (Ink−1 ⊗ D̂T

x )(Ink−1 ⊗ Φ̂k)(Ây ⊗ Ĵ) = Ây ⊗ D̂T
x Φ̂kĴ .

The matrix Ây is symmetric positive definite. Using φi ≤ φi−1 and a Gershgorin

theorem it follows that D̂T
x Φ̂kĴ + ĴΦ̂kD̂x is symmetric positive definite, too. Hence,

DT
xΦkAy ≥ 0 holds, i.e.,

〈Ayx,Dxx〉Φ ≥ 0 for all x ∈ Xk.(5.8)

From the assumption on φ it follows that φi−1 ≤ (1+ c0hk

εk
)φi for all i. Using this and

the relation

1

2
(Φ̂

1
2

k D̂
T
x Φ̂

− 1
2

k + Φ̂
− 1

2

k D̂xΦ̂
1
2

k ) =
1

2hk
tridiag

(√
φi−1

φi
, 2 ,

√
φi
φi+1

)

it follows that
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Φ
1
2

kD
T
xΦ

− 1
2

k ≥ 1

2hk

(
2 − 2

√
1 +

c0hk
εk

)
I ≥ − c0

2εk
I ≥ − c0

2ε̄k
I

holds. And thus

ε̄k〈Axx,Dxx〉Φ = ε̄k〈ΦkDT
xDxx,Dxx〉 ≥ −1

2
c0〈Dxx,Dxx〉Φ for all x ∈ Xk.(5.9)

We decompose B as B = 4I −R. A simple computation yields

‖Φ 1
2

kRΦ
− 1

2

k ‖1 ≤ 1 +

√
1 +

c0hk
εk

≤ 1 +
√

1 + 3c0 ≤ 2 +
3

2
c0.

Similarly we get ‖Φ 1
2

kRΦ
− 1

2

k ‖∞ ≤ 2 + 3
2c0 and thus ‖Φ 1

2

kRΦ
− 1

2

k ‖ ≤ 2 + 3
2c0. Hence

Φ
1
2

kBΦ
− 1

2

k ≥
(

4 −
(

2 +
3

2
c0

))
I =

(
2 − 3

2
c0

)
I

and thus

1

6
〈BDxx,Dxx〉Φ ≥

(
1

3
− 1

4
c0

)
〈Dxx,Dxx〉Φ for all x ∈ Xk.(5.10)

Combination of the results in (5.8), (5.9), and (5.10) yields

〈Akx,Dxx〉Φ ≥
(

1

3
− 3

4
c0

)
〈Dxx,Dxx〉Φ ≥ c〈Dxx,Dxx〉Φ for all x ∈ Xk

with a constant c > 0 (use that c0 ∈ (0, 4
9 )).

Lemma 5.4. For f = fk ∈ Vk let uk be the solution of the problem (2.8). Then

nk∑
i=1

nk−1∑
j=1

h2
kφi

(
ui,j − ui−1,j

hk

)2

≤ C

nk∑
i=1

nk−1∑
j=1

h2
kφi(Mkf̂)2i,j(5.11)

holds. Here uij is the nodal value of uk at the grid point xi,j, f̂ is the vector of nodal
values of fk, Mk is the mass matrix, and φi satisfies (5.7).

Proof. Let ûk = P−1
k uk ∈ Xk be the vector of nodal values of uk; then

Akûk = Mkf̂ =: b̂k.(5.12)

The diagonal matrices Φk and Φ̂k are as in Lemma 5.3. The statement of the lemma is
equivalent to 〈ΦkDxûk, Dxûk〉k ≤ c 〈Φk b̂k, b̂k〉k, with a constant c that is independent

of b̂k. This is the same as

‖DxA
−1
k ‖Φ ≤ c.(5.13)

Note that (5.13) is a generalization of the result in (3.10). From Lemma 5.3 we obtain

‖Dxx‖2
Φ̂
<

1

c
〈Akx,Dxx〉Φ̂ ≤ 1

c
‖Akx‖Φ‖Dxx‖Φ for all x ∈ Xk;

thus ‖Dxx‖Φ ≤ c̃‖Akx‖Φ for all x. Hence we have proved the result in (5.13).
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For the discrete case we consider

φξi =

{
1 for ihk ∈ [0, ξ],

exp
(
− ihk−ξ

4hk

)
for ihk > ξ.

(5.14)

It is straightforward to check that −(φξi − φξi−1) = (exp(1
4 ) − 1)φξi if ihk > ξ.

Therefore, using εk ≤ 3
2hk,

0 ≤ −εk
φξi − φξi−1

hk
≤ 3

2

(
exp

(
1

4

)
− 1

)
φξi , i = 1, 2, . . . .(5.15)

For any ξ the vector φξi , 1 ≤ i ≤ nk, satisfies the condition (5.7) with c0 = 3
2 (exp( 1

4 )−
1). This constant is less than 4

9 . As a consequence of Lemma 5.4 we obtain discrete
versions of the results in Corollary 5.2.

Corollary 5.5. Consider fk ∈ Vk such that supp(fk) ∈ Ωη and let uk be a the
corresponding solution of problem (2.8). Assume η − ξ ≥ 8hk p | lnhk|, p > 0; then

‖(uk)x‖L2(Ωξ) ≤ c hpk‖fk‖,(5.16)

‖(uk)y‖L2(Ωξ) ≤ c ξ hp−1
k ‖fk‖.(5.17)

Proof. Estimate (5.16) is a consequence of (5.11). Indeed, observe the following
inequalities:

‖(uk)x‖L2(Ωξ) ≤ c
∑
i: ih≤ξ

nk−1∑
j=1

h2
k

(
ui,j − ui−1,j

hk

)2

= c
∑
i: ih≤ξ

nk−1∑
j=1

h2
kφi

(
ui,j − ui−1,j

hk

)2

≤ c

nk∑
i=1

nk−1∑
j=1

h2
kφi(Mkf̂)2i,j

≤ c

(
max
ih≥η

φi

) nk∑
i=1

nk−1∑
j=1

h2
k(Mhf̂)2i,j ≤ c

(
max
ih≥η

φi

)
‖fk‖2 ≤ c h2p

k ‖fk‖2.

Estimate (5.17) follows from an inverse inequality, the Friedrichs inequality, and
(5.16):

‖(uk)y‖L2(Ωξ) ≤ c h−1
k ‖uk‖L2(Ωξ) ≤ c ξ h−1

k ‖(uk)x‖L2(Ωξ) ≤ c ξhp−1
k ‖f‖.

Corollary 5.6. Consider fk ∈ Vk such that supp(fk) ∈ Ωη. Let u and uk be
the solutions (2.7) and (2.8), respectively. Assume η− ξ ≥ 8hk p | lnhk|, p > 0. Then
for ek = u− uk we have

‖(ek)x‖L2(Ωξ) ≤ c hpk‖fk‖,

‖(ek)y‖L2(Ωξ) ≤ c max

{√
εk
ε

;
ξ

hk

}
hpk‖fk‖.

Proof. The proof is made by direct superposition of estimates in Corollaries 5.2
and 5.5.

The result in Corollary 5.6 shows that the H1-norm of errors close to the inflow
boundary can be made arbitrarily small if the right-hand side is zero on a sufficiently
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large subdomain (Ω \ Ωη) that is adjacent to this inflow boundary. In the proof of
the approximation property in section 10 we will need these estimates for the case
ξ = hk and p = 1

2 . Hence we take η = 4hk| lnhk| + hk. Note that for the results in
the previous corollaries to be applicable we need right-hand side functions fk which
are zero in Ω \ Ωη. For technical reasons we take Ωη such that the right boundary
of the domain Ω \ Ωη coincides with a grid line. We use | lnhk| = k ln 2 and thus
4hk| lnhk| + hk ≤ (3k + 1)hk and introduce the following auxiliary domains for each
grid level:

Ωink := { (x, y) ∈ Ω | x < (3k + 1)hk }.(5.18)

As a direct consequence of the previous corollary we then obtain the following.
Corollary 5.7. Consider fk ∈ Vk such that fk is zero on the subdomain Ωink .

Let u and uk be the solutions of (2.7) and (2.8), respectively. Then for ek = u − uk
we have

‖(ek)x‖L2(Ωhk
) ≤ c h

1
2

k ‖fk‖,(5.19)

‖(ek)y‖L2(Ωhk
) ≤ c

hk√
ε
‖fk‖.(5.20)

6. Multigrid method and convergence analysis. In this section we describe
the multigrid method for solving a problem of the form Akx = b̂ with the stiffness
matrix Ak from section 2 and present a convergence analysis.

For the prolongation and restriction in the multigrid algorithm we use the canon-
ical choice:

pk : Xk−1 → Xk, pk = P−1
k Pk−1, rk =

1

4
pTk .(6.1)

Let Wk : Xk → Xk be a nonsingular matrix. We consider a smoother of the form

xnew = Sk(xold, b̂) = xold − ωkW
−1
k (Akx

old − b̂) for xold, b̂ ∈ Xk,(6.2)

with corresponding iteration matrix denoted by

Sk = I − ωkW
−1
k Ak.(6.3)

The preconditioner Wk we use is of line-Jacobi type:

Wk =
4ε

h2
k

I +Dx .(6.4)

Note that Wk is a blockdiagonal matrix with diagonal blocks that are nk × nk bidi-
agonal matrices. A suitable choice for the parameter ωk follows from the analysis
below.

Remark 6.1. In the literature it is often recommended to apply a so-called robust
smoother for solving singularly perturbed elliptic problem using multigrid. Such a
smoother should have the property that it becomes a direct solver if the singular
perturbation parameter tends to zero (cf. [9], chapter 10). In the formulation (6.2)
one then must have a splitting such that Ak −Wk = O(ε) (the constant in O may
depend on k). Such robust smoothers are well known for some anisotropic problems.
For anisotropic problems in which the anisotropy is aligned with the gridlines one
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can use a line (Jacobi or Gauss–Seidel) method or an ILU factorization as a robust
smoother. Theoretical analyses of these methods can be found in [29, 30, 34].

If the convection-diffusion problem (1.2) is discretized using standard finite differ-
ences it is easy to see that an appropriate line solver yields a robust smoother. How-
ever, in the finite element setting such line methods do not yield a robust smoother .
This is clear from the stencil in (3.3). For ε → 0 the diffusion part yields an x-line
difference operator which can be represented exactly by an x-line smoother, but in
the convection stencil the [0 − 1

6
1
6 ] and [− 1

6
1
6 0] parts of the difference operator

are not captured by such a smoother. It is not clear to us how for the finite element
discretization, with a stencil as in (3.3), a robust smoother can be constructed.

In multigrid analyses for reaction-diffusion or anisotropic diffusion problems one
usually observes a ε−1 dependence in the standard approximation property that is
then compensated by an ε factor from the smoothing property (cf. [21, 22, 29, 30,
34]). However, we cannot apply a similar technique, due to the fact that for our
problem class a robust smoother is not available. Instead, we use another splitting
of the iteration matrix of the two-grid method, leading to modified (ε-independent)
smoothing and approximation properties.

We consider a standard multigrid method with pre- and postsmoothers of the
form as in (6.2), (6.4). In the analysis we will need different damping parameters for
the pre- and postsmoother. Thus we introduce

Sk,pr := I − ωk,prW
−1
k Ak, Sk,po := I − ωk,poW

−1
k Ak.

We also define the transformed iteration matrices

S̃k,pr := AkSk,prA
−1
k , S̃k,po := AkSk,poA

−1
k .

We will analyze a standard two-grid method with iteration matrix

Tk = Sνkk,po
(
I − pkA

−1
k−1rkAk

)
Sµk

k,pr.(6.5)

For the corresponding multigrid W-cycle the iteration matrix (cf. [10]) is given by

Mmgm
0 := 0, Mmgm

k = Tk + Sνkk,popk(M
mgm
k−1 )2A−1

k−1rkAkS
µk

k,pr, k > 1.(6.6)

In the convergence analysis of this method the auxiliary inflow domain Ωink defined in
(5.18) plays a crucial role. As in the analysis of the upstream influence in section 5
we will use a cut-off function in the x-direction. We define diagonal matrices Φ̂k, Φk
as follows:

ξ := (3k + 1)hk, Φ̂k := diag(φξ1, . . . , φ
ξ
nk

), Φk := Ink−1 ⊗ Φ̂k;(6.7)

here φξi is the cut-off function defined in (5.14) with ξ = (3k + 1)hk. For notational

simplicity we drop the superscript ξ in φξi in the remainder. Note that the diagonal
matrix Φk is positive definite.

For any symmetric positive definite matrix C ∈ R
m×m we define

〈x, y〉C := xTCy, ‖x‖2
C := 〈x, x〉C , ‖B‖C := ‖C 1

2BC− 1
2 ‖

with x, y ∈ R
m, B ∈ R

m×m. Note that if C = ETE for some nonsingular matrix E
then ‖B‖C = ‖EBE−1‖.
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The convergence analysis is based on the following splitting, with A := Ak:

‖Tk‖ATA = ‖Sνkk,po(I − pkA
−1
k−1rkAk)S

µk

k,pr‖ATA

= ‖Sνkk,po(A−1
k − pkA

−1
k−1rk)

(
(I − Φ

1
2

k ) + Φ
1
2

k

)
AkS

µk

k,pr‖ATA

≤ ‖Sνkk,po(A−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )AkS
µk

k,pr‖ATA

+‖Sνkk,po(A−1
k − pkA

−1
k−1rk)Φ

1
2

kAkS
µk

k,pr‖ATA

≤ ‖S̃νkk,poAkW−1
k ‖‖Wk(A

−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )‖‖S̃µk

k,pr‖(6.8)

+‖S̃νkk,po‖‖I −AkpkA
−1
k−1rk‖‖Φ

1
2

k S̃
µk

k,pr‖.

Remark 6.2. Note that the splitting in (6.8) differs from the usual splitting that
is used in the theory based on the smoothing and approximation property introduced
by Hackbusch (cf. [10]). In this theory the approximation property of the form
‖A−1

k − pkA
−1
k−1rk‖ ≤ CA g(hk, ε) is combined with a smoothing property of the form

‖AkSµk

k,po‖ ≤ η(µk) g(hk, ε)
−1 with some η(µk) such that η(µk) → 0, µk → ∞ uni-

formly with respect to hk and ε. In numerical experiments we observed that bounds
of this type are not likely to be valid. Due to the fact that the smoother is not an
exact solver for ε ↓ 0 (cf. Remark 6.1), it is essential to have the preconditioner Wk

as part of the approximation property. Furthermore, it turns out that for obtaining
an appropriate bound for ‖Wk(A

−1
k − pkA

−1
k−1rk)fk‖ the right-hand side function fk

must vanish near the inflow boundary. We illustrate this by numerical experiments
in section 11. This motivates the introduction of the “cut-off” matrix Φk in the
decomposition.

We now formulate the main results on which the convergence analysis will be
based. The proofs of these results will be given further on.

Theorem 6.1. The following holds:

WkA
−1
k ≥ 1

8
I for k = 1, 2, . . . .(6.9)

Proof. The proof is given in section 7.
Lemma 6.2. From (6.9) it follows that

‖I − ωAkW
−1
k ‖ ≤ 1 for all ω ∈

[
0,

1

4

]
.

Proof. The proof is elementary.
Assumption 6.1. In the postsmoother Sk,po we take ωk,po := 1

8 .
We note that the analysis below applies for any fixed ωk,po ∈ (0, 1

8 ]. We obtain
the following smoothing property.

Corollary 6.1. There exists a constant c1 independent of k and ε such that

‖S̃νkk,poAkW−1
k ‖ ≤ c1√

νk
.(6.10)

Proof. Follows from Lemma 6.2 and Theorem 10.6.8 in [10] (or results in [12, 24]).
The result holds with c1 = 32√

2π
.

We now turn to the presmoother.
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Theorem 6.3. There exist constants d1 > 0, d2 > 0 independent of k and ε such
that ∥∥∥∥Φ 1

2

k

(
I − d1

k2
AkW

−1
k

)
Φ

− 1
2

k

∥∥∥∥ ≤ 1 − d2

k4
.(6.11)

Proof. The proof is given in section 8.
Assumption 6.2. In the presmoother Sk,pr we take ωk,pr := min{ 1

4 ,
d1
k2 }.

Remark 6.3. The result in (6.11) can be written as ‖I − d1
k2AkW

−1
k ‖Φk

≤ 1− d2
k4 .

Hence, we have a contraction result in the almost degenerated norm ‖ · ‖Φk
. This

norm, however, coincides with the Euclidean one for the vectors that have a support
only in Ωink . Hence the result in (6.11) indicates that the presmoother is a fast solver
near the inflow boundary (cf. section 11).

Concerning the approximation property the following result holds.
Theorem 6.4. There exists a constant c2 independent of k and ε such that

‖Wk(A
−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )‖ ≤ c2 for k = 2, 3, . . . .(6.12)

Proof. The proof is given in section 10.
Finally, we present two results related to stability of the coarse-grid correction.

It is well known that for the canonical restriction operator the inequality

‖rk‖ ≤ cr

holds with a constant cr independent of k. The second stability result is the following.
Theorem 6.5. There exists a constant c3 independent of k and ε such that

‖AkpkA−1
k−1‖ ≤ c3 for k = 2, 3, . . . .(6.13)

Proof. The proof is given in section 9.
We now obtain a two-grid convergence result.
Theorem 6.6. For the two-grid method we then have

‖Tk‖ATA ≤ c1c2√
νk

+ (1 + crc3)

(
1 − d2

k4

)µk

.

Proof. The proof is based on results from (6.9), (6.11), (6.12), and (6.13). We use
the splitting in (6.8). From the Assumptions 6.1 and 6.2 and Lemma 6.2 it follows
that ‖S̃k,pr‖ ≤ 1 and ‖S̃k,po‖ ≤ 1. From Assumption 6.2, Theorem 6.3, and ‖Φk‖ ≤ 1
we obtain

‖Φ 1
2

k S̃
µk

k,pr‖ ≤ ‖(Φ 1
2

k S̃k,prΦ
− 1

2

k )µk‖‖Φ 1
2

k ‖ ≤
(

1 − d2

k4

)µk

Combine these bounds with the results in Corollary 6.1 and Theorems 6.4
and 6.5.

Using the two-grid result of Theorem 6.6 we derive a multigrid W-cycle conver-
gence result based on standard arguments.

Theorem 6.7. In addition to the assumptions of Theorem 6.6 we assume that
the number of smoothing steps on every grid level is sufficiently large:

νk ≥ cpo, µk ≥ cpr k
4
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with suitable constants cpo, cpr. Then for the contraction number of the multigrid
W-cycle the inequality

‖Mmgm
k ‖ATA ≤ ξ∗(6.14)

holds, with a constant ξ∗ < 1 independent of k and ε.
Proof. Define ξk := ‖Mmgm

k ‖AT
k
Ak

. Using the recursion relation (6.6) for Mmgm
k

it follows that

ξk ≤ ‖Tk‖AT
k
Ak

+ ‖S̃k,po‖νk‖AkpkA−1
k−1‖ξ2k−1‖rk‖‖S̃k,pr‖µk

≤ ‖Tk‖AT
k
Ak

+ c3crξ
2
k−1.

Now use the two-grid bound given in Theorem 6.6 and a fixed point argument.
Remark 6.4. We briefly discuss the arithmetic work needed in one W-cycle iter-

ation. The arithmetic work for a matrix vector multiplication on level k is of order
O(Nk) = O(n2

k). The work needed in one smoothing iteration is of order O(Nk).
The number of smoothings behaves like νk + µk ∼ k4. Using a standard recursive
argument it follows that for a multigrid W-cycle iteration the arithmetic complexity
is of the order Nk(lnNk)

4. Hence this multigrid method has suboptimal complexity.

7. Proof of Theorem 6.1. We recall the representation of the stiffness matrix
in (3.4)

Ak =

(
ε+

(
δ̄ − 1

3

)
hk

)
Ax + εAy +

1

6
BDx.

We will need the following lemma:
Lemma 7.1. The inequality BDx ≥ 0 holds.
Proof. The matrix 1

6BDx − 1
3hkAx is the stiffness matrix corresponding to the

bilinear form (u, v) → ∫
Ω
uxv dxdy. For any x ∈ Xk we get

1

6
〈BDxx, x〉k − 1

3
〈hkAxx, x〉k =

∫
Ω

(Pkx)x(Pkx) dxdy =
1

2

∫
ΓE

(Pkx)
2 dxdy ≥ 0.

Since the matrix Ax is symmetric positive definite the result now follows.
We now consider the preconditioner Wk = 4ε

h2
k

I +Dx, as in (6.4).

Theorem 7.2 (=Theorem 6.1). The inequality WkA
−1
k ≥ 1

8I holds.
Proof. First note that

hkD̂xD̂
T
x = D̂x + D̂T

x − 1

hk
(1, 0, . . . , 0)T (1, 0, . . . , 0) ≤ D̂x + D̂T

x

and thus hkD̂
T
x D̂xD̂

T
x D̂x ≤ D̂T

x (D̂x + D̂T
x )D̂x holds. Using Âx = D̂T

x D̂x this results
in hkÂ

2
x ≤ 2D̂T

x Âx and thus

1

2
hkA

2
x ≤ DT

xAx.(7.1)

Note that the following inequality holds for any a, b, c ∈ R and σ1, σ2, σ3 > 0:

(a+ b+ c)2 ≤ (1 + σ2 + σ−1
3 )a2 + (1 + σ3 + σ−1

1 )b2 + (1 + σ1 + σ−1
2 )c2.
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We apply this inequality with σ2 = 2, σ1 = σ3 = 1. Also using ‖Ay‖ ≤ 4h−2
k and

‖B‖ ≤ 6 we get for any x ∈ Xk

‖Akx‖2 ≤ 4ε2‖Ayx‖2 + 3ε̄2k‖Axx‖2 +
5

2

∥∥∥∥1

6
BDxx

∥∥∥∥2

≤ 16

(
ε

hk

)2

〈Ayx, x〉k + 3ε̄2k‖Axx‖2 +
5

2
‖Dxx‖2.

(7.2)

We recall that ε̄k = εk − δ̄hk ≤ 7
6hk. Now apply the result (7.1) and the estimates in

Lemmas 3.1 and Lemma 7.1 to obtain

〈Wkx,Akx〉k =

〈
4ε

h2
k

x+Dxx , εAyx+ ε̄kAxx+
1

6
BDxx

〉
k

≥ 4

(
ε

hk

)2

〈Ayx, x〉k + ε̄k〈Dxx,Axx〉k +

〈
Dxx,

1

6
BDxx

〉
k

≥ 4

(
ε

hk

)2

〈Ayx, x〉k +
3

7
ε̄2k‖Axx‖2 +

1

3
‖Dxx‖2

=
1

8

(
32

(
ε

hk

)2

〈Ayx, x〉k +
24

7
ε̄2k‖Axx‖2 +

8

3
‖Dxx‖2

)
≥ 1

8

(
16

(
ε

hk

)2

〈Ayx, x〉k + 3ε̄2k‖Axx‖2 +
5

2
‖Dxx‖2

)
.

Combination of this with the inequality in (7.2) proves the theorem.

8. Proof of Theorem 6.3. We start with an elementary known result on the
convergence of basic iterative methods.

Lemma 8.1. Assume C,A,W ∈ R
n×n with C symmetric positive definite. If

there are constants c0 > 0, c1 such that

c0〈Ay,Ay〉C ≤ 〈Wy,Wy〉C ≤ c1〈Wy,Ay〉C for all y ∈ R
n(8.1)

then for arbitrary d ∈ [0, 1] we have

‖I − α
c0
c1
AW−1‖C ≤

√
1 − d

c0
c21

if 1 −√
1 − d ≤ α ≤ 1 +

√
1 − d.

Proof. Let D := AW−1. From (8.1) we get

〈Dy, y〉C ≥ c−1
1 〈y, y〉C , 〈Dy,Dy〉C ≤ c−1

0 〈y, y〉C for all y.

Note that∥∥∥∥(I − α
c0
c1
AW−1

)
y

∥∥∥∥2

C

= 〈y, y〉C − 2α
c0
c1

〈Dy, y〉C + α2 c
2
0

c21
〈Dy,Dy〉C

≤
(

1 − 2α
c0
c21

+ α2 c0
c21

)
‖y‖2

C =

(
1 − (2α− α2)

c0
c21

)
‖y‖2

C

and 2α− α2 ≥ d if 1 −√
1 − d ≤ α ≤ 1 +

√
1 − d.
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Below we use the scalar product 〈·, ·〉Φ := 〈Φk·, ·〉k with Φk defined in (6.7). We
recall the result proved in Lemma 5.3,

〈Akx,Dxx〉Φ ≥ c ‖Dxx‖2
Φ for all x ∈ Xk(8.2)

with c > 0 independent of k and of ε.
We introduce the diagonal projection matrix Jk := Ink−1⊗ Ĵk with Ĵk the nk×nk

diagonal matrix with (Ĵk)i,i = 1 if (Φ̂k)i,i = 1 and (Ĵk)i,i = 0 otherwise.
Lemma 8.2. There exists a constant c > 0 independent of k and ε such that

‖Wkx‖2
Φ ≤ ck2

(
ε

h3
k

‖(I − Jk)x‖2
Φ + ‖Dxx‖2

Φ

)
for all x ∈ Xk.

Proof. Note that

‖Jkx‖Φ = ‖JkD−1
x JkDxx‖Φ ≤ ‖JkD−1

x Jk‖Φ‖Dxx‖Φ

= ‖JkD−1
x Jk‖‖Dxx‖Φ ≤ (3k + 1)hk‖Dxx‖Φ.

And thus, using ε ≤ 1
2hk we get

‖Wkx‖Φ =

∥∥∥∥ 4ε

h2
k

x+Dxx

∥∥∥∥
Φ

≤ 4ε

h2
k

‖(I − Jk)x‖Φ +
4ε

h2
k

‖Jkx‖Φ + ‖Dxx‖Φ

≤ 4ε

h2
k

‖(I − Jk)x‖Φ + ck‖Dxx‖Φ ≤ ck

(
4ε

h2
k

‖(I − Jk)x‖Φ + ‖Dxx‖Φ

)
.

Squaring this result and using ( ε
h2
k

)2 ≤ 1
2
ε
h3
k

completes the proof.

We define Φ̂x := 1
hk

diag(φi − φi+1)1≤i≤nk
with φi = φξi as in (6.7). Consider the

diagonal matrix Φx := Ink−1 ⊗ Φ̂x. Note that Φx ≥ 0.
Lemma 8.3. The following estimate holds:

〈Akx, x〉Φ ≥ 1

30
‖Φ 1

2
x x‖2 for all x ∈ Xk.

Proof. Recall

Ak = ε̄kAx + εAy +
1

6
BDx.(8.3)

Note that

ΦkAy = (Ink−1 ⊗ Φ̂k)(Ây ⊗ Ĵ) = Ây ⊗ Φ̂kĴ ≥ 0.(8.4)

We consider the term ε̄kΦkAx = ε̄k(Ink−1 ⊗ Φ̂kÂx). Note that Φ̂kÂx = Φ̂kD̂
T
x D̂x. A

simple computation yields Φ̂kD̂
T
x − D̂T

x Φ̂k = −Φ̂xT̂ , with T̂ := tridiag(0, 0, 1), and
thus

ε̄kΦ̂kÂx = ε̄kD̂
T
x Φ̂kD̂x − ε̄kΦ̂xT̂ D̂x.(8.5)

From the Cauchy–Schwarz inequality it follows that

ε̄k〈Φ̂xT̂ D̂xy, y〉 ≤ ε̄2k
9

4
‖Φ̂ 1

2
x T̂ D̂xy‖2 +

1

9
‖Φ̂ 1

2
x y‖2 for all y ∈ R

nk .(8.6)
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Using the property (5.15) we get

T̂T Φ̂xT̂ ≤ ε̄−1
k c0Φ̂k.(8.7)

Combination of the results in (8.5), (8.6), (8.7) and using c0 ≤ 4
9 yields

ε̄k〈Φ̂kÂxy, y〉 ≥ ε̄k‖D̂xy‖2
Φ̂k

− ε̄k
9

4
c0‖D̂xy‖2

Φ̂k
− 1

9
‖Φ̂ 1

2
x y‖2

≥ −1

9
‖Φ̂ 1

2
x y‖2 for all y ∈ R

nk .

And thus

ε̄kΦkAx ≥ −1

9
Φx(8.8)

holds. Finally we consider the term 1
6 〈BDxx, x〉Φ. First we note

BDx = blocktridiag(D̂x, 4D̂x, Ŝx), Ŝx :=
1

hk

⎛⎜⎜⎜⎝
−1 1

. . .
. . .

−1 1
0

⎞⎟⎟⎟⎠ ∈ R
nk×nk

and thus K := 1
6ΦkBDx = 1

6blocktridiag(Φ̂kD̂x, 4Φ̂kD̂x, Φ̂kŜx). Hence

1

2
(K +KT ) =

1

12
blocktridiag

(
Φ̂kD̂x + ŜTx Φ̂k, 4(Φ̂kD̂x + D̂T

x Φ̂k), Φ̂kŜx + D̂T
x Φ̂k

)
.

A simple computation yields

Φ̂kD̂x + D̂T
x Φ̂k = Φ̂x +

1

hk
tridiag(−φi, φi + φi+1,−φi+1)1≤i≤nk

=: Φ̂x +R(8.9)

and Φ̂kŜx + D̂T
x Φ̂k = Φ̂xT̂ + 1

hk
φnene

T
n , with n := nk and en the nth basis vector in

R
n. Thus we obtain

1

2
(K +KT ) =

1

12
blocktridiag

(
T̂T Φ̂x, 4Φ̂x, Φ̂xT̂

)
+

1

12
blocktridiag

(
1

hk
φnene

T
n , 4R,

1

hk
φnene

T
n

)
≥ 1

12
blocktridiag

(
T̂T Φ̂x, 4Φ̂x, Φ̂xT̂

)
.

By Φ̂−1
x (Φ−1

x ) we denote the pseudoinverse of Φ̂x (Φx). We then have

1

2
Φ

− 1
2

x (K +KT )Φ
− 1

2
x ≥ 1

12
blocktridiag

(
Φ̂

− 1
2

x T̂T Φ̂
1
2
x , 4I, Φ̂

1
2
x T̂ Φ̂

− 1
2

x

)
.

Note that

‖Φ̂− 1
2

x T̂T Φ̂
1
2
x ‖∞ = ‖Φ̂ 1

2
x T̂ Φ̂

− 1
2

x ‖∞ = max
i≥3k+2

(
φi−1 − φi
φi − φi+1

) 1
2

= e
1
8 .

And thus we get 1
2Φ

− 1
2

x (K +KT )Φ
− 1

2
x ≥ 1

12 (4 − 2e
1
8 )I. Hence

1

6
ΦkBDx = K ≥ 1

6
(2 − e

1
8 )Φx.(8.10)
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Combination of the results in (8.3), (8.4), (8.8), and (8.10) yields

ΦkAk ≥
(
−1

9
+

1

6
(2 − e

1
8 )

)
Φx >

1

30
Φx.

Using the previous two lemmas we can show a result as in the second inequality
in (8.1).

Theorem 8.4. There exists a constant c1 independent of k and ε such that

〈Wkx,Wkx〉Φ ≤ c1k
2〈Wkx,Akx〉Φ for all x ∈ Xk.

Proof. From Lemma 8.3 and (8.2) we get

〈Wkx,Akx〉Φ =
4ε

h2
k

〈x,Akx〉Φ + 〈Dxx,Akx〉Φ

≥ c

(
ε

h2
k

〈Φxx, x〉k + ‖Dxx‖2
Φ

)(8.11)

with c > 0 independent of k and ε. Using φi−φi+1 = (1−e− 1
4 )φi ≥ 1

5φi for i ≥ 3k+1
we get

〈Φxx, x〉k ≥ 1

5
h−1
k 〈(I − Jk)Φkx, x〉k =

1

5
h−1
k ‖(I − Jk)x‖2

Φ.(8.12)

From (8.11) and (8.12) we obtain

〈Wkx,Akx〉Φ ≥ c

(
ε

h3
k

‖(I − Jk)x‖2
Φ + ‖Dxx‖2

Φ

)
Now combine this with the result in Lemma 8.2.

We now consider the first inequality in (8.1).
Theorem 8.5. There exists a constant c0 > 0 independent of k and ε such that

c0〈Akx,Akx〉Φ ≤ 〈Wkx,Wkx〉Φ for all x ∈ Xk.

Proof. The constants c that appear in the proof are all strictly positive and
independent of k and ε. First note that ‖Akx‖Φ ≤ ε̄k‖Axx‖Φ+ε‖Ayx‖Φ+ 1

6‖BDxx‖Φ.
We have

‖Ay‖Φ = ‖(Ink−1 ⊗ Φ̂
1
2

k )(Ây ⊗ Ĵ)(Ink−1 ⊗ Φ̂
− 1

2

k )‖ = ‖Ây ⊗ Ĵ‖ ≤ 4

h2
k

.

Note that |φiφ−1
i+1| ≤ e

1
4 and thus ‖Φ̂ 1

2

k D̂
T
x Φ̂

− 1
2

k ‖ ≤ ch−1
k holds. From this it follows

that ‖DT
x ‖Φ ≤ ch−1

k holds. With a similar argument we get ‖B‖Φ ≤ c. Thus we
obtain, using ε̄k ≤ 3

2hk,

‖Akx‖Φ ≤ ε̄k‖DT
x ‖Φ‖Dxx‖Φ +

4ε

h2
k

‖x‖Φ + c‖Dxx‖Φ

≤ c

(
ε

h2
k

‖x‖Φ + ‖Dxx‖Φ

)
.

(8.13)
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From (8.9) it follows that 〈Dxx, x〉Φ ≥ 0 holds. Using this we get

‖Wkx‖2
Φ =

16ε2

h4
k

‖x‖2
Φ +

16ε

h2
k

〈Dxx, x〉Φ + ‖Dxx‖2
Φ

≥ c

(
ε2

h4
k

‖x‖2
Φ + ‖Dxx‖2

Φ

)
.

(8.14)

Now combine (8.13) with (8.14).
Combination of the results of Theorems 8.4 and 8.5 with the second result in

Lemma 8.1 shows that Theorem 6.3 holds.

9. Proof of Theorem 6.5. Let gk−1 ∈ Xk−1 be given and define gk−1 :=
(P ∗
k−1)

−1gk−1 ∈ Vk−1. Let uk−1 ∈ Vk−1 be such that

ak−1(uk−1, vk−1) = (gk−1, vk−1) for all vk−1 ∈ Vk−1.

Then A−1
k−1gk−1 = P−1

k−1uk−1 holds. The corresponding continuous solution u ∈ V
satisfies ak−1(u, v) = (gk−1, v) for all v ∈ V. Now note that

‖AkpkA−1
k−1gk−1‖ = max

y∈Xk

〈AkpkP−1
k−1uk−1, y〉k
‖y‖ ≤ c max

vk∈Vk

ak(uk−1, vk)

‖vk‖
≤ c max

vk∈Vk

ak−1(uk−1, vk)

‖vk‖ + c max
vk∈Vk

ak(uk−1, vk) − ak−1(uk−1, vk)

‖vk‖ .(9.1)

Define ek−1 := u − uk−1. For the first term in (9.1) we get, using the results of
Lemma 4.3,

ak−1(uk−1, vk) ≤ |ak−1(ek−1, vk)| + |ak−1(u, vk)|
≤ chk‖(ek−1)x‖‖(vk)x‖ + ε‖(ek−1)y‖‖(vk)y‖ + ‖(ek−1)x‖‖vk‖ + |(gk−1, vk)|
≤ c

(
‖(ek−1)x‖ +

ε

hk
‖(ek−1)y‖

)
‖vk‖ + ‖gk−1‖‖vk‖

≤ c‖gk−1‖‖vk‖ ≤ c‖gk−1‖‖vk‖.(9.2)

For the second term in (9.1) we have, using Lemma 4.2,

|ak(uk−1, vk) − ak−1(uk−1, vk)| = δ̄hk|((uk−1)x, (vk)x)|
≤ c‖(uk−1)x‖‖vk‖
≤ c‖gk−1‖‖vk‖ ≤ c‖gk−1‖‖vk‖.

(9.3)

Combination of the results in (9.1), (9.2), and (9.3) yields ‖AkpkA−1
k−1gk−1‖ ≤ c‖gk−1‖

and thus the result in Theorem 6.5 holds.

10. Proof of Theorem 6.4. We briefly comment on the idea of the proof. As
usual to prove an estimate for the error in the L2-norm we use a duality argument.
However, the formal dual problem has poor regularity properties, since in this dual
problem ΓE is the “inflow” boundary and ΓW is the “outflow” boundary. Thus
Dirichlet outflow boundary conditions would appear and we obtain poor estimates
due to the poor regularity. To avoid this, we consider a dual problem with Neumann
outflow and Dirichlet inflow conditions. To be able to deal with the inconsistency
caused by these “wrong” boundary conditions we assume the right-hand side is zero
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near the boundary ΓW . In order to satisfy this assumption we use the cut-off operator
with matrix Φk.

A further problem we have to deal with is the fact that due to the level dependent
stabilization term we have to treat k-dependent bilinear forms.

We introduce the space

V
0
k := {vk ∈ Vk | vk(x) = 0 for all x ∈ Ωink }.

Let b̂k ∈ Xk be given. In view of Theorem 6.4 we must prove an estimate ‖Wk(A
−1
k −

pkA
−1
k−1rk)(I − Φk)b̂k‖ ≤ c‖b̂k‖ with a constant c that is independent of k, ε, and

b̂k. Note that (P ∗
k )−1(I − Φ

1
2

k )b̂k =: fk ∈ V
0
k holds. For this fk ∈ V

0
k we define

corresponding discrete solutions and continuous solutions as follows:

uk ∈ Vk : ak(uk, vk) = (fk, vk) for all vk ∈ Vk,

u ∈ V : ak(u, v) = (fk, v) for all v ∈ V,

uk−1 ∈ Vk−1 : ak−1(uk−1, vk−1) = (fk, vk−1) for all vk−1 ∈ Vk−1,

ũ ∈ V : ak−1(ũ, v) = (fk, v) for all v ∈ V.

(10.1)

In the proof of Lemma 4.2 we showed that ‖vx‖ = ‖DxP
−1
k v‖ holds for all v ∈ Vk.

We use that Wk = 4ε
h2
k

I +Dx and obtain

‖Wk(A
−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )b̂k‖ ≤ 4ε

h2
k

‖(A−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )b̂k‖

+ ‖DxA
−1
k (I − Φ

1
2

k )b̂k‖ + ‖DxpkA
−1
k−1rk(I − Φ

1
2

k )b̂k‖

≤ c

(
ε

h2
k

‖uk − uk−1‖ + ‖(uk)x‖ + ‖(uk−1)x‖
)

≤ c

(
ε

h2
k

(‖u− uk‖ + ‖ũ− uk−1‖ + ‖u− ũ‖)+ ‖(uk)x‖ + ‖(uk−1)x‖
)
.(10.2)

From Lemma 4.2 we get

‖(uk)x‖ + ‖(uk−1)x‖ ≤ c‖fk‖.(10.3)

From the result in Theorem 10.1 below it follows that

‖uk − u‖ + ‖uk−1 − ũ‖ ≤ c
h2
k

ε
‖fk‖.(10.4)

Finally, from Theorem 10.4 we have

‖u− ũ‖ ≤ c hk‖fk‖.(10.5)

If we insert the results (10.3),(10.4), and (10.5) in (10.2) we get

‖Wk(A
−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )b̂k‖ ≤ c‖fk‖ ≤ c‖(P ∗
k )−1‖‖I − Φ

1
2

k ‖‖b̂k‖ ≤ c‖b̂k‖
and thus the result of Theorem 6.4 is proved. It remains to prove the results in
Theorems 10.1 and 10.4.

Theorem 10.1. For fk ∈ V
0
k let u and uk be as defined in (10.1). Then

‖u− uk‖ ≤ c
h2
k

ε
‖fk‖(10.6)

holds.
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Proof. Define ek := u− uk. Let w ∈ H2(Ω) be such that

−εwyy − εkwxx − wx = ek(10.7)

with

wx = 0 on ΓW , w = 0 on Γ \ ΓW .(10.8)

Note that for this problem ΓE is the “inflow” boundary and ΓW is the “outflow”
boundary. We multiply (10.7) with ek and integrate by parts to get

‖ek‖2 = ε((ek)y, wy) + εk((ek)x, wx) − εk

∫
ΓE

wxek dy + ((ek)x, w)

= ak(ek, w) − εk

∫
ΓE

wxek dy.

We use (4.6) with w and ek instead of u and f , respectively, and (4.12) to estimate∣∣∣∣εk ∫
ΓE

wxek dy

∣∣∣∣ ≤ ε
1
2

k

(
εk

∫
ΓE

w2
x dy

) 1
2
(∫

ΓE

e2k dy

) 1
2

≤ c h
1
2

k ‖ek‖
hk√
ε
‖fk‖.(10.9)

From this estimate and the Galerkin orthogonality for the error it follows that for any
vk ∈ Vk

‖ek‖2 ≤ ε ((ek)y, (w − vk)y) + εk ((ek)x, (w − vk)x)

+ ((ek)x, w − vk) + c ‖ek‖h
3
2

k√
ε
‖fk‖.

(10.10)

Let Ωh := Ωhk
be as defined in (5), i.e., Ωh is the set of triangles with at least one

vertex on ΓW . In the remainder of the domain, ω = Ω\Ωh, we take vk as a nodal
interpolant to w and we put vk = 0 on ΓW to ensure vk ∈ Vk. Note that vk is a
proper interpolant of w everywhere in Ω except in Ωh. Therefore we will estimate
scalar products in (10.10) over ω and Ωh, separately. We continue (10.10) with

‖ek‖2 ≤ c ε hk‖(ek)y‖ω‖w‖H2(ω) + c εk hk‖(ek)x‖ω‖w‖H2(ω)

+c h2
k‖(ek)x‖ω‖w‖H2(ω) + c ‖ek‖h

3
2

k√
ε
‖fk‖ + IΩh

≤ c h2
k‖fk‖

1

ε
‖ek‖ + IΩh

.(10.11)

The term IΩh
collects integrals over Ωh:

IΩh
= ε ((ek)y, (w − vk)y)Ωh

+ εk ((ek)x, (w − vk)x)Ωh
+ ((ek)x, w − vk)Ωh

.

To estimate IΩh
we use Corollary 5.7 and the following auxiliary estimate for the

interpolant vk ∈ Vk of w, with ωh = {(x, y) ∈ Ω : x ∈ (hk, 2hk)}:
‖vk‖Ωh

≤ c‖vk‖ωh
≤ c(‖w‖ωh

+ ‖vk − w‖ω)

= c

( (∫ 1

0

∫ 2hk

hk

[
w(0, y) +

∫ x

0

wη(η, y) dη

]2

dx dy

) 1
2

+ ‖vk − w‖ω
)

≤ c

(
h

1
2

k

(∫
ΓW

w2 dy

) 1
2

+ hk‖wx‖ + h2
k‖w‖H2(ω)

)
≤ c

(
h

1
2

k +
h2
k

ε

)
‖ek‖.
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We proceed estimating terms from IΩh
, where we use the previous result:

ε ((ek)y, (w − vk)y)Ωh
≤ ε‖(ek)y‖Ωh

(‖wy‖ + ‖(vk)y‖Ωh
)

≤ c ε
1
2hk‖fk‖ (ε−

1
2 ‖ek‖ + h−1

k ‖vk‖Ωh
)

≤ c ε
1
2hk‖fk‖

(
ε−

1
2 + h

− 1
2

k +
hk
ε

)
‖ek‖≤ c

(
hk +

h2
k√
ε

)
‖fk‖‖ek‖,

εk ((ek)x, (w − vk)x)Ωh
≤ εk‖(ek)x‖Ωh

(‖wx‖ + ‖(vk)x‖Ωh
)

≤ c h
1
2

k εk‖fk‖ (‖ek‖ + h−1
k ‖vk‖Ωh

) ≤ c

(
hk +

h
5
2

k

ε

)
‖fk‖‖ek‖,

((ek)x, w − vk)Ωh
≤ ‖(ek)x‖Ωh

(‖w‖Ωh
+ ‖vk‖Ωh

)

≤ c h
1
2

k ‖fk‖
(
h

1
2

k

(∫
ΓW

w2 dy

) 1
2

+ hk‖wx‖Ωh
+ ‖vk‖Ωh

)

≤ c

(
hk +

h
5
2

k

ε

)
‖fk‖‖ek‖.

Inserting these estimates into (10.11) and using ε ≤ 1
2hk we obtain

‖ek‖2 ≤ c
h2
k

ε
‖fk‖‖ek‖ + c

(
hk +

h2
k√
ε

+
h

5
2

k

ε

)
‖fk‖‖ek‖ ≤ c

h2
k

ε
‖fk‖‖ek‖.

and thus the theorem is proved.
For the proof of Theorem 10.4 we first formulate two lemmas.
Lemma 10.2. Consider a function g ∈ H1(Ω). The solution of

−εkuxx − εuyy + ux = gx(10.12)

with boundary conditions as in (1.2) satisfies∫
ΓE

u2 dy ≤ c

(
h−1
k ‖g‖2 +

∫
ΓE

g2 dy + hk ‖gx‖2

)
.(10.13)

Proof. We multiply (10.12) with u and integrate by parts to get

εk‖ux‖2 + ε‖uy‖2 +
1

2

∫
ΓE

u2 dy = −(g, ux) +

∫
ΓE

g u dy.(10.14)

For the right-hand side in (10.14) we have

|(g, ux)| ≤ ‖g‖‖ux‖ ≤ c ‖g‖‖gx‖ ≤ c
(
h−1
k ‖g‖2 + hk‖gx‖2

)
and ∫

ΓE

g u dy ≤
∫

ΓE

g2 dy +
1

4

∫
ΓE

u2 dy.

Combining these estimates and (10.14) the lemma is proved.
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Lemma 10.3. Assume g ∈ H1 and g|ΓE
= 0, let u be the corresponding solution

of (10.12). Then the following holds:

‖u‖ ≤ c

(
‖g‖ + hk‖gx‖ +

(∫
ΓW

g2 dy

) 1
2

+ hk

(∫
ΓW

u2
x dy

) 1
2

)
.(10.15)

(Note that the standard a priori estimates would give only ‖u‖ ≤ c ‖gx‖.)
Proof. Consider the auxiliary function v(x, y) :=

∫ x
0
u(ξ, y) dξ. It satisfies

−εkvxx − εvyy + vx = g + εk uin + gin,(10.16)

with uin(x, y) = ux(0, y) and gin = g(0, y). The corresponding boundary conditions
are

vx = u(1, y) on ΓE , v = 0 on ∂Ω \ ΓE .(10.17)

Then the estimate (10.15) is equivalent to

‖vx‖ ≤ c

(
‖g‖ + hk‖gx‖ +

(∫
ΓW

g2 dy

) 1
2

+ hk

(∫
ΓW

u2
x dy

) 1
2

)
.(10.18)

The estimate (10.18) is proved by the following arguments. We multiply (10.16) with
vx and integrate by parts to obtain

‖vx‖2 +
ε

2

∫
ΓE

(vy)
2 dy +

εk
2

∫
ΓW

(vx)
2
dy

= (g, vx) + εk(uin, vx) + (gin, vx) +
εk
2

∫
ΓE

(vx)
2
dy.(10.19)

Since g|ΓE
= 0 the estimate (10.13) yields∫

ΓE

(vx)
2
dy =

∫
ΓE

u2 dy ≤ c
(
h−1
k ‖g‖2 + hk ‖gx‖2

)
.(10.20)

Now (10.18) follows from (10.19) by applying the Cauchy inequality and estimate
(10.20).

Using these lemmas we can prove the final result we need.
Theorem 10.4. For f ∈ V

0
k let u and ũ be the continuous solutions defined in

(10.1). Then the following holds:

‖u− ũ‖ ≤ c hk‖fk‖.(10.21)

Proof. The difference e := u− ũ solves the equation

−εkexx − εeyy + ex = gx,(10.22)

with g = −δ̄hkũx and boundary conditions as in (1.2). Now the result of Lemma 10.3
can be applied. We obtain

‖e‖ ≤ c

(
‖g‖ + hk‖gx‖ +

(∫
ΓW

g2 dy

) 1
2

+ hk

(∫
ΓW

e2x dy

) 1
2

)

≤ c hk

(
‖ũx‖ + hk‖ũxx‖ +

(∫
ΓW

u2
x dy

) 1
2

+

(∫
ΓW

ũ2
x dy

) 1
2

)
.
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To estimate the norms ‖ũx‖ and ‖ũxx‖ we use a priori bounds from Theorem 4.1.
Further we use the fact that fk = 0 in Ωink . Due to the choice of Ωink (cf. (5.18)) we
can apply Corollary 5.2 with ξ = hk, η = εk| lnhk| + hk, and p = 1

2 . Using (5.5) and
εk ≥ 1

3hk we get
∫
ΓW

u2
x dy ≤ c ‖fk‖2. The same estimate holds for

∫
ΓW

ũ2
x dy. Thus

we obtain ‖e‖ ≤ c hk‖fk‖.
11. Numerical experiments. In this section we present results of a few nu-

merical experiments to illustrate that in a certain sense our analysis is sharp. In
particular it will be shown that the nonstandard splitting in (6.8) which forms the
basis of our convergence analysis reflects some important phenomena.

In the experiments we use the following parameters. For δ̄ in (2.4) we take δ̄ = 1
2 .

The pre- and postsmoother are as in (6.2), (6.4) with ωk = 1. We take a random
right-hand side vector and a starting vector equal to zero. For the stopping criterion
we take a reduction of the relative residual by a factor 109 . Thus in the tables below
convergence is measured in the norm ‖ · ‖ATA. We use the notation Peh := h

2ε .
First we present results for a standard V-cycle with µk = νk = 2. In Table 11.1

we give the number of iterations needed to satisfy the stopping criterion and (between
brackets) the average residual reduction per iteration. These results clearly show ro-
bustness of the multigrid solver. For a W-cycle we also observed robust results.

Table 11.1

Multigrid convergence: V-cycle with νk = νk = 2.

h

Peh 1/8 1/32 1/128 1/512

1 8(0.06) 10(0.12) 11(0.13) 11(0.13)
10 7(0.04) 8(0.07) 8(0.07) 8(0.07)
1e+3 8(0.05) 11(0.14) 11(0.14) 11(0.14)
1e+5 7(0.04) 11(0.14) 11(0.14) 11(0.14)

Number of iterations and average reduction factor.

If we consider only the smoother and do not use a coarse grid correction, then for
ε ≈ h this method has an h-dependent convergence rate. This is illustrated in Ta-
ble 11.2.

We consider the standard splitting in the convergence analysis based on the
smoothing and approximation property. For ε = h2 some results are presented in
Table 11.3. The estimates that are given in this table result from the computation of

‖(A−1
h − pA−1

2h r)f̂‖
‖f̂‖ and

‖(AhS2
h)f̂‖

‖f̂‖

Table 11.2

h-dependence of convergence of the smoothing iterations.

h

Peh 1/8 1/32 1/128 1/512

1 119(0.83) 244(0.91) 533(0.94) 1495(0.986)
10 26(0.44) 51(0.61) 66(0.72) 173(0.88)

Number of iterations and average reduction factor.
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with f̂ ∈ Vh a discrete point source in the grid point (1
2 ,

1
2 ). These results indicate

O(h−1) behavior for the smoothing property (as expected) and O(
√
h) behavior for

the approximation property. Hence this splitting is not satisfactory for proving a
robustness result.

Table 11.3

Standard splitting for approximation and smoothing properties.

h

Estimates for 1/8 1/32 1/128 1/512

‖A−1
h

− pA−1
2h
r‖ 8.4e-2 5.0e-2 2.7e-2 1.4e-2

‖AhS
2
h‖ 1.25 4.48 17.7 70.8

The proof of the modified approximation property is based on the result in Theo-

rem 10.1. In that theorem a
h2
k

ε bound is proved provided the right-hand side function
fk is zero close to the inflow boundary. We performed an experiment with a function
fk which has values equal to one in all grid points (hk, jhk), j = 1, . . . , nk, and zero

elsewhere. Results are given in Table 11.4. We observe an h
− 1

2

k effect. This justifies
the splitting using the cut-off operator Φk.

Table 11.4

Approximation property if fk has support near inflow.

h

Peh 1/8 1/32 1/128 1/512

1 0.31 0.60 1.23 2.53
10 0.07 0.17 0.23 0.46

Values of ε
h2 ‖(A−1

h
− pA−1

2h
r)f‖/‖f‖.

Finally we performed a numerical experiment related to the result in Theorem 6.3.
For the smoother we computed residual reduction factors in the almost degenerated

norm ‖Φ 1
2

k · ‖ with Φk := Ink−1
⊗ diag(φ) and

φi =

{
1 for 1 ≤ i < 5,
exp (4 − i) for 5 ≤ i ≤ nk.

For the relaxation parameter ω in the smoother we take the value ω = 1.2. The
results in Table 11.5 show h-independent and “fast” convergence of the smoother in
this norm.

Table 11.5

Residual reduction of the smoother in the ‖Φ 1
2 · ‖-norm.

h

Peh 1/8 1/32 1/128 1/512

1 93(0.8) 131(0.85) 133(0.85) 133(0.85)
10 23(0.40) 28(0.47) 28(0.47) 28(0.47)

Number of iterations and average reduction factor.
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Abstract. Stability theory and numerical experiments are presented for a finite difference
method that directly discretizes the Neumann problem for the second order wave equation. Complex
geometries are discretized using a Cartesian embedded boundary technique. Both second and third
order accurate approximations of the boundary conditions are presented. Away from the boundary,
the basic second order method can be corrected to achieve fourth order spatial accuracy. To integrate
in time, we present both a second order and a fourth order accurate explicit method. The stability
of the method is ensured by adding a small fourth order dissipation operator, locally modified near
the boundary to allow its application at all grid points inside the computational domain. Numerical
experiments demonstrate the accuracy and long-time stability of the proposed method.
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1. Introduction. There are many methods to solve the wave equation numeri-
cally. Methods based on variational principles [1] have the advantage that the energy
is conserved, but they are not as efficient as difference methods. On the other hand,
difference methods are prone to instabilities. To avoid these one often has to add
dissipative terms, and the energy is not conserved. Luckily, the instabilities are often
weak and caused by high frequency waves which are not accurately represented any-
way. Therefore, one constructs the dissipation in such a way that it acts mainly only
on these frequencies. We feel that the fixation on energy conservation often goes too
far. Large phase-errors can destroy the solution as well.

In this paper we continue the development of numerical methods that directly
discretize the second order wave equation without first rewriting it as a system of
first order equations. In particular, we want to discuss the kind of instabilities that
can arise and how to control them. Since we treated the Dirichlet problem in [9], we
consider here only the Neumann problem

utt = ∆u+ F (x, t), x ∈ Ω, t > 0,

∂u

∂n
(x, t) = f(x, t), x ∈ Γ, t > 0,(1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω is a bounded one- or two-dimensional domain with boundary Γ.
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Fig. 1. The points used for discretizing the Neumann boundary condition.

We will discretize (1.1) on a Cartesian embedded boundary grid. The embed-
ded boundary technique for discretizing partial differential equations dates back to
the first order technique by Weller and Shortley [15] and the higher order generaliza-
tions of Collatz [3]. More recently, several embedded boundary methods have been
presented for various types of partial differential equations. For example, Pember et
al. [12] used a Cartesian grid method for solving the time-dependent equations of gas
dynamics. Zhang and LeVeque [16] solved the acoustic wave equation with discon-
tinuous coefficients written as a first order system. They derived special difference
stencils that satisfy the jump conditions at the interior interfaces, where the coeffi-
cients are discontinuous. A staggered grid method was used by Ditkowski, Dridi, and
Hesthaven [4] for solving Maxwell’s equations on a Cartesian grid. The methods de-
scribed in these papers all solve first order systems (in time). For Poisson’s equation
with Dirichlet boundary conditions, Johansen and Colella [6] derived an embedded
boundary technique based on the finite volume method combined with multigrid.

We proceed by presenting the highlights of our proposed method. The domain
Ω is covered by a Cartesian grid with step size h where the grid points are located
at xi,j = (xi, yj)

T = (ih, jh)T , and the boundary Γ is allowed to cut through the
grid in an arbitrary manner; see Figure 1. Let tn = nk, k = 0, 1, 2, . . . , denote the
time-discretization with step size k, and let vni,j be the difference approximation of
u(xi, yj , tn). A second order accurate approximation of the Laplacian of u is given by

∆hv
n
i,j =:

1

h2
(vni+1,j + vni−1,j + vni,j+1 + vni,j−1 − 4vni,j).(1.2)

To be able to evaluate ∆hv
n
i,j at all grid points inside Ω, we use ghost points just

outside the domain. Consider the case in Figure 1 where the grid point xi,j is outside
of Ω, but xi,j+1 is inside. To aid in the approximation of the Neumann boundary
condition, we construct a third order accurate interpolant between three points along
the normal: (0, vni,j), (ξI , v

n
I ), (ξII , v

n
II). Here ξI and ξII = 2ξI are the distances

between xi,j , along the normal going through that point, and the horizontal grid lines
yj+1 and yj+2, respectively. After differentiating the interpolant, we get a second
order accurate approximation of the (outward) normal derivative

D(2)
n vni,j =: g0v

n
i,j + gIv

n
I + gIIv

n
II =

∂v

∂n
(xΓ
i,j , tn) +O(h2),(1.3)
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where xΓ
i,j is the intersection point between the boundary and the normal going

through xi,j . The coefficients gj are given by

g0 =
3ξI − 2ξΓ

2ξ2I
, gI =

2ξΓ − 2ξI
ξ2I

, gII =
ξI − 2ξΓ

2ξ2I
,(1.4)

where ξΓ is the distance between xi,j and the boundary. Since the coefficients gj =
O(1/h), we need to use third order accurate approximations for vnI and vnII . Here we
use Lagrangian interpolation along the grid lines yj+1 and yj+2:

vnI = c0v
n
i,j+1 + c1v

n
i+1,j+1 + c2v

n
i+2,j+1,

vnII = c3v
n
i,j+2 + c4v

n
i+1,j+2 + c5v

n
i+2,j+2.

The resulting formula for D
(2)
n vi,j holds when the angle θ between the x-axis and the

normal satisfies π/4 ≤ θ ≤ π/2. When 0 ≤ θ ≤ π/4, the horizontal interpolations
to obtain vI and vII are replaced by corresponding interpolations in the vertical
direction. The expressions in the remaining three quadrants are simply obtained by
reflections in index space, leading to a total of eight different cases to treat all possible
directions of the boundary.

The second order boundary condition formula results in an overall second order
scheme, but since the boundary condition is discretized using one-sided differences,
the truncation error will be larger at the boundary than in the interior, where a
centered scheme is used. We can easily modify the above technique to construct a

third order accurate formula D
(3)
n vi,j to make the coefficient in front of the leading

second order truncation error term smaller. In this case, three interior values vI ,
vII , and vIII are interpolated using fourth order Lagrangian interpolation along three
contiguous grid lines. Hence this stencil involves 12 interior points. The third order
boundary condition formula works nicely for well-resolved geometries where there are
enough interior points. For less resolved geometries, or for very thin regions where two
parts of the boundary are close to each other, we will use the second order boundary
condition formula.

All ghost point values in (1.2) can be eliminated using formulas of the type (1.3).
The discrete approximation of the Laplacian of u (for functions subject to the bound-
ary condition ∂u/∂n = f(xΓ, t)) can then be written in matrix form:

∆u = Av + b(t) +O(h2).(1.5)

Here the array v contains the solution at all grid points inside Ω, and b(t) is the
discrete counterpart of the boundary forcing f(xΓ, t).

Because of the discretized form of the Neumann boundary condition, the matrix
A will not be symmetric. As a result, the basic scheme proposed in [9],

vn+1 − 2vn + vn−1

k2
= Avn + b(tn) + F (tn),

suffers from a weak instability (here F (tn) is the discretized version of the internal
forcing F (x, tn)). The definition of a weak instability will be given in section 4. To
understand the loss of stability, we analyze a number of model problems. We start
with the one-dimensional half-plane (section 2) and strip (section 3) problems, proving
that the difference approximation is stable in these cases, without damping. The
two-dimensional case is analyzed in sections 4–6, where we show that the tangential
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derivatives that occur in the truncation error of the boundary condition can lead
to instabilities, both for the half-plane and strip problems. We also show that our
scheme can be stabilized by a small fourth order artificial dissipation of the type
h3∆2vt. However, a centered finite difference stencil such as ∆2

hvt is wider than the
discretized Laplacian, so it is not possible to use this damping term all the way up
to the boundary (without adding extra numerical boundary conditions). Instead, we
suggest using the discrete operator h3AT (A(vn−vn−1)/k) which can be applied all the
way up to the boundary. Away from the boundary, it is equivalent to ∆2

h(v
n−vn−1)/k.

For the general case with inhomogeneous boundary conditions and internal forcing,
the proposed scheme becomes

vn+1 − 2vn + vn−1

k2
= Avn + b(tn) + F (tn)(1.6)

− αh3AT
(
A(vn − vn−1)/k +

db

dt
(tn)

)
.

We note that the sparse structure of A can be used to efficiently evaluate both Av
and ATv, without the need to store the matrix explicitly; see Appendix A.

In section 7.1, we will demonstrate that this discretization does not suffer from the
“small cell” stiffness problem that commonly is encountered when the finite volume
method is used on a Cartesian grid with an embedded boundary; cf. [2]. We will also
show that the damping term inflicts an O(h2) perturbation of the undamped scheme
(section 7.2), and by numerical experiments in section 8 we will demonstrate that it
suffices to take α very small (of the order O(10−3)). Hence, the resulting numerical
solution will be second order accurate, and the scheme is well suited for long-time
calculations where it is important to keep damping to a minimum. In section 7.3, we
also present correction terms that optionally can be added to make the scheme fourth
order accurate in time and space (away from the boundary). A number of numerical
examples are presented in section 8 to assess the accuracy and long-time stability of
the method with and without fourth order corrections, both for smooth boundaries
and in the presence of corners. The proposed method is finally used for a resonance
analysis of wave propagation in a harbor.

2. The one-dimensional half-plane problem. We start with the half-plane
problem

utt = uxx, 0 ≤ x <∞, t ≥ 0,
(2.1)

u(x, 0) = f(x),

with boundary conditions

ux(0, t) = 0, lim
x→∞u(x, t) = 0.(2.2)

Let xν=νh, h > 0, denote the grid points, v(xν , t) be a grid function, andD+v(xν , t)=
(v(xν+1, t) − v(xν , t))/h represent the usual forward difference operator. We want to
solve (2.1), (2.2) by the simplest central difference approximation

vtt(xν , t) = D+D−v(xν , t), ν = 1, 2, . . . ,
(2.3)

v(xν , 0) = f(xν),

with boundary conditions

D+v(0, t) + αhD2
+v(0, t) + βh2D3

+v(0, t) = 0, lim
xν→∞ v(xν , t) = 0.(2.4)
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If we set α = β = 0 or α = − 1
2 , β = 0, we obtain a first order or second order accurate

approximation, respectively. In these cases we can prove stability by energy estimates;
see [9]. If α = − 1

2 and β = 1
3 , we obtain the third order accurate approximation

D+v(0, t) − 1

2
hD2

+v(0, t) +
1

3
h2D3

+v(0, t) = 0.(2.5)

In this case, we do not know how to prove stability by energy estimates. Instead, we
will use mode analysis.

For simplicity, we keep time continuous. In actual calculations we use the method
of lines. In [10] we have shown that the stability of the semidiscrete approximation
implies the stability of the totally discretized method for most standard methods of
lines.

By stability we mean here that there are no exponentially growing solutions.
Therefore, a test for stability is that (2.3), (2.4) has no solutions of type

v(xν , t) = estϕ(xν), |ϕ(xν)| ≤ const(2.6)

for Re s > 0, satisfying the boundary condition (2.4). Introducing (2.6) into (2.3)
gives us

h2s2ϕ(xν) = h2D+D−ϕ(xν) = ϕ(xν + h) − 2ϕ(xν) + ϕ(xν − h).(2.7)

Since (2.7) is a difference equation with constant coefficients, its general solution is of
the form

ϕ(xν) = σ1κ
ν
1 + σ2κ

ν
2 ,(2.8)

where κ1, κ2 are solutions of the characteristic equation

(κ− 1)2 − h2s2κ = 0.(2.9)

We have κ2 = κ−1
1 , and we simplify the notation by removing the index of the roots

and set κ1 = κ, κ2 = κ−1.
Lemma 2.1. For |hs| � 1, the roots of (2.9) are of the form

κ = 1 − hs+
h2s2

2
+ O(h3s3) = e−hs(1+O(h2s2)),

(2.10)

κ−1 = 1 + hs+
h2s2

2
+ O(h3s3) = ehs(1+O(h2s2)).

Also, for Re s > 0, (2.9) has no root with |κ| = 1 and exactly one root κ with |κ| < 1.
Proof. Equation (2.10) follows by asymptotic expansion of the roots. (It is not

surprising: The corresponding solutions of (2.1) are e−sx, esx, and (2.3) is second
order accurate.)

Assume that (2.9) has a solution

|κ| = 1, i.e., κ = eiτ , τ real,

for some s with Re s > 0. Then (2.9) becomes

−4 sin2(τ/2) = h2s2.

Therefore, Re s = 0, which is a contradiction.
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For hs→ ∞, s > 0 real, the solutions of (2.9) satisfy

lim
hs→∞

κ = 0, lim
hs→∞

κ−1 = ∞.

Since the roots are smooth functions of s and |κ| �= 1 for Re s > 0, we always have
|κ| < 1, |κ−1| > 1. This proves the lemma.

The lemma shows that the solution can only stay bounded in space if σ2 = 0, so

ϕ(xν) = σ1κ
ν , |κ| < 1.(2.11)

Introducing (2.11) into the boundary condition (2.4) gives us

(κ− 1)(1 + α(κ− 1) + β(κ− 1)2) = 0.(2.12)

The cubic equation (2.12) has three roots κ = κj , j = 1, 2, 3, which lead to
possible solutions of (2.6). We obtain the corresponding s from the characteristic
equation (2.9), i.e.,

hs = ±
√

(κ− 1)2

κ
= ±(κ1/2 − κ−1/2).(2.13)

The first root, κ1 = 1, does not generate a growing solution. In fact, any root with
|κ| = 1 has this property, since inserting κ = eiξ into (2.13) yields

hs = ±2i sin
ξ

2
, i.e., Re s = 0.(2.14)

Roots with |κ| > 1 are not permissible because ϕ(xν) = σκν becomes unbounded as
ν → ∞ and violates the boundary condition (2.4). However, solutions of the type
κ = eiξ−η, ξ, η real, η > 0, correspond to

hRe s = ±(e−η/2 − eη/2) cos
ξ

2
,

which grows rapidly in time if ξ �= π + 2nπ, n = 0, 1, 2, . . . . These solutions decay
rapidly away from the boundary, and we therefore denote these solutions as boundary
layer instabilities.

Often one tries to stabilize numerical methods by adding a dissipative term to
the difference equation. Instead of (2.3), we then consider

vtt = D+D−v + σhD+D−vt.

For boundary layer instabilities, this does not work. If the boundary layer is oscilla-
tory, then one can stabilize the method, but the amount of necessary dissipation is, in
general, too large for accuracy reasons. Therefore, the only useful boundary condition
approximations are those where |κ2| > 1, |κ3| > 1. While this condition is violated
for general coefficients α, β, it is easy to see that the third order approximation (2.5)
satisfies the requirement. That approximation has α = − 1

2 , β = 1
3 , and (2.12) has

the solutions

κ1 = 1, κ2,3 =
7

4
± i

√
3 − 9

16
, |κ2,3| =

√
88

4
>

9

4
.(2.15)
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3. The one-dimensional strip problem. We consider now the wave equation
(2.1) for 0 ≤ x ≤ 1, t ≥ 0. As boundary conditions we use

ux(0, t) = 0, u(1, t) = 0.(3.1)

We approximate the continuous problem by

vtt(xν , t) = D+D−v(xν , t), ν = 1, 2, . . . , N − 1, Nh = 1,

v(xν , 0) = f(xν),
(3.2)

with boundary conditions

Lhv =: D+v(0, t) − 1

2
hD2

+v(0, t) +
1

3
h2D3

+v(0, t) = 0,
(3.3)

v(1, t) = 0.

For the analytic problem (2.1), (3.1) there is an energy estimate. Also, we can repre-
sent the solution by an eigenfunction expansion

u(x, t) =

∞∑
j=0

eλjtψj(x).

The eigenvalues λj are purely imaginary and are solutions of the eigenvalue problem

λ2ψ = ψxx, ψx(0) = ψ(1) = 0.(3.4)

Again we want to investigate whether (3.2), (3.3) has exponentially growing solutions.
We make the ansatz (2.6) and obtain

h2s2ϕ(xν) =h2D+D−ϕ(xν),

Lhϕ= 0, ϕ(1) = 0,
(3.5)

and start our discussion with the case that |sh| � 1. The discretized eigenvalue
problem (3.5) is an approximation of the continuous problem (3.4), and since the
difference stencil is compact, solutions of (3.5) with |sh| � 1 are close to solutions of
the continuous problem; see Kreiss [7]. The question is whether the eigenvalues also
are purely imaginary.

The general solution of (3.5) is

ϕ(xν) = σ1κ
ν
1 + σ2κ

ν
2 ,(3.6)

where κj , j = 1, 2, are the solutions of the characteristic equation (2.9)

κ2 − (2 + h2s2)κ+ 1 = 0.

Therefore, κ1κ2 = 1, i.e., κ2 = κ−1
1 . By (2.10) we can write

κ1 = ehs̃, κ2 = e−hs̃, s̃ =: s(1 + O(h2s2)),

and

ϕ(x) = σ1e
s̃x + σ2e

−s̃x, x = xν , ν = 0, 1, 2, . . . , N, Nh = 1.
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For smooth functions w(x),

Lhw = wx(0) + γ4h
3wxxxx(0) + γ5h

4wxxxxx(0) + O(h5).

Therefore, introducing (3.6) into the boundary conditions gives us

σ1(1 + γ̃4h
3s̃3 + γ̃5h

4s̃4) − σ2(1 − γ̃4h
3s̃3 + γ̃5h

4s̃4) = 0,(3.7)

σ1e
s̃ + σ2e

−s̃ = 0.(3.8)

Here

γ̃4 = γ4 + γ41s̃
2h2 + · · · , γ̃5 = γ5 + γ51s̃

2h2 + · · ·
account for the higher order terms.

There is a nontrivial solution of (3.7), (3.8) if and only if

σ2

σ1
= −e2s̃ =

1 + γ̃5h
4s̃4 + γ̃4h

3s̃3

1 + γ̃5h4s̃4 − γ̃4h3s̃3
.

If |sh| � 1, then the eigenvalues of (3.5) converge to the eigenvalues λn = i(π2 + nπ)
of (3.4) where |hλn| � 1. Thus we make the ansatz

hs̃ = hλn + ihτ = ihµn + ihτ, µn =
π

2
+ nπ,

and obtain

e2iτ =
1 + γ̃5((µn + τ)h)4 − iγ̃4((µn + τ)h)3

1 + γ̃5((µn + τ)h)4 + iγ̃4((µn + τ)h)3
=: S.(3.9)

Since γ̃4, γ̃5 are real and bounded and µn is real, an asymptotic expansion of |S| in h
yields

|S| = 1 + O(|τ |3h3) = e2iτ .

Hence, τ must be real-valued; that is, s̃ must be purely imaginary. By the above
expansion, it follows that there is a unique solution close to λn with

iτ = iγ̃4(µnh)
3 + O((µnh)

4), τ real.

Thus the eigenvalues of the discrete problem are purely imaginary, provided |sh| � 1.
Now we consider the case that |sh| ≥ δ̃ > 0. The characteristic equation (2.9)

implies

|κ− 1|2 = |sh|2|κ| ≥ δ̃2|κ|.
Hence, when |κ| ≥ 1/2,

|κ− 1| ≥ δ̃/
√

2 = δ > 0.

Furthermore, when |κ| ≤ 1/2, the triangle inequality gives |1 − κ| ≥ 1 − |κ| ≥ 1/2.
Thus κ cannot be arbitrarily close to 1 when |sh| ≥ δ̃ > 0.

In the following, we use the representation

ϕ(xν) = σ1κ
+ν + σ2κ

−ν , |κ| ≥ 1.
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The discrete eigenvalue problem (3.5) has a nontrivial solution if and only if

σ1Ph(κ− 1) + σ2Ph(κ
−1 − 1) = 0, σ1κ

N + σ2κ
−N = 0,

i.e.,

κNPh(κ
−1 − 1) − κ−NPh(κ− 1) = 0,(3.10)

has a nontrivial solution. Here

Ph(y) = y − 1

2
y2 +

1

3
y3 ≡ y(y − y2)(y − y3), y2,3 =

3

4
± i

√
3 − 9

16
.(3.11)

Lemma 3.1. There is a constant C > 0 such that (3.10) has no solution for

|κ| ≥ eCh.

Proof. Assume that |κ| = eCh. By (3.11), the zeros of Ph(y) are y = 0 and
y = y2,3 with Re y2,3 = 3/4. For |κ− 1| ≥ δ and |κ| ≥ 1, κ−1 is inside the unit circle
but bounded away from 1. Therefore, κ−1 − 1 is inside a unit circle centered at −1
but bounded away from zero. There are no zeros of Ph in this region, and we have

min
|κ|≥1, |κ−1|≥δ

|Ph(κ−1 − 1)| ≥ d > 0.

Since |κ|N = eC , and κ−3Ph(κ− 1) ≤ const for |κ| ≥ 1,

|κ−NPh(κ− 1)| = |κ−N+3| |κ−3Ph(κ− 1)| ≤ const e−C ,
|κNPh(κ−1 − 1)| ≥ deC .

Hence, (3.10) has no solution if C is sufficiently large, and the lemma follows.
We can now prove the following theorem.
Theorem 3.2. For sufficiently small h, all eigenvalues s of (3.5) are purely

imaginary and the discrete problem (3.2), (3.3) is stable.
Proof. We have already shown that all eigenvalues with |sh| � 1 are purely

imaginary. For |sh| ≥ δ̃, the eigenvalue problem (3.5) has a solution if and only if
(3.10) has a solution with |κ| ≥ 1 and |κ− 1| ≥ δ. We can write (3.10) in the form

Q(κ) =:
Ph(κ

−1 − 1)

Ph(κ− 1)
= κ−2N .(3.12)

By noting that Ph(y) = Ph(y) and that eiξ − 1 = e−iξ − 1, it is easy to see that

|Q(eiξ)| = 1, |(eiξ)−2N | = 1.

Now consider κ = eiξ+ηh, 0 ≤ η ≤ C. Then,

|Q(eiξ+ηh)| = 1 + O(ηh), but |(eiξ+ηh)−2N | = e−2η.(3.13)

For sufficiently small h, (3.12) can only have solutions for η = 0 since only the left-
hand side of (3.13) scales with h. Lemma 3.1 tells us that (3.10) has no solution for
|κ| ≥ eCh, and we conclude that all solutions of (3.10) must have |κ| = 1. By solving
the characteristic equation (2.9) for s and setting κ = eiξ, we get (2.14) which shows
that all eigenvalues are purely imaginary.

Since we can represent the solution of the discrete problem (3.2), (3.3) in an
eigenfunction expansion where all eigenvalues are purely imaginary, there can be
no exponentially growing solutions, and we conclude that the discrete problem is
stable.
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4. A continuous two-dimensional model problem. We now start our dis-
cussion of two-dimensional problems. The results from the one-dimensional model
seem to indicate that we need only to avoid boundary instabilities. However, there
are also highly oscillatory instabilities which can be controlled by small amounts of
dissipation. As will be demonstrated in section 5, our embedded boundary approx-
imation of the Neumann condition in general two-dimensional domains introduces
truncation errors in both the tangential and normal directions. To illustrate the type
of instabilities that the tangential terms can give, we study the solutions of the wave
equation with perturbed Neumann conditions. We start with the half-plane problem

utt = uxx + uyy, 0 ≤ x <∞, −∞ < y <∞, t ≥ 0,

ux(0, y, t) = εuy(0, y, t),
(4.1)

where ε is a real parameter. It turns out the size of ε is of minor importance, and we
will for simplicity consider the case ε = 1. Corresponding to section 2, the problem is
unstable if we can find exponentially growing solutions of the type

u = est+iωyϕ(x), Re s > 0, |ϕ(x)| ≤ const, ω real.(4.2)

Introducing (4.2) into (4.1) gives us the eigenvalue problem for s:

ϕxx = (s2 + ω2)ϕ,

ϕx(0) = iωϕ(0), |ϕ(x)| ≤ const.
(4.3)

Since (4.3) is a differential equation with constant coefficients, its general solution is

ϕ(x) = σ1e
λx + σ2e

−λx, λ =
√
s2 + ω2, Reλ ≥ 0.(4.4)

Clearly, Reλ > 0 for Re s > 0. Therefore, |ϕ(x)| ≤ const if and only if σ1 = 0, i.e.,

ϕ(x) = σ2e
−λx, Reλ > 0.(4.5)

Introducing (4.5) into the boundary condition gives us

−λ = iω.

Since Reλ > 0, there are no solutions of type (4.2). However, let s = i
√

2ω + η,
η > 0. Solving (4.4) for λ gives

lim
η→0

λ = i|ω|.

Thus, for ω < 0, there is a solution of type (4.2) but with Re s = 0,

u = ei
√

2ωt−i|ω|(x+y).(4.6)

There is no exponential growth in time and, for large ω, the solutions are highly
oscillatory in space. Furthermore, there is no decay in the x-direction. Hence, s =
i
√

2ω is a generalized eigenvalue (see [5] for a definition) which forecasts instabilities
for the corresponding problem on a bounded domain.
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To demonstrate these instabilities, we next consider the strip problem,

utt = uxx + uyy, 0 ≤ x ≤ 1, −∞ < y <∞, t ≥ 0,

ux(0, y, t) = uy(0, y, t), ux(1, t) = 0.
(4.7)

Again, we construct solutions of the type (4.2). Instead of (4.3), we now obtain the
eigenvalue problem

ϕxx = (s2 + ω2)ϕ,

ϕx(0) = iωϕ(0), ϕx(1) = 0.
(4.8)

Introducing the general solution (4.4) into the boundary conditions shows that (4.8)
has a solution if

λ− iω

λ+ iω
= e2λ.(4.9)

Theorem 4.1. The strip problem (4.7) is unstable. For large |ω| there are
solutions of the type (4.2) with

Re s ≈ 1√
8

log(2|ω|), i.e., e(Re s)t = (2|ω|)t/
√

8.(4.10)

Proof. Let

λ = λr + iλi,

and assume that

λi = −ω, |ω| � 1.

By (4.9),

λr − 2iω

λr
= e2λre−2iω.(4.11)

Take |ω| large and argω such that the arguments of the left- and right-hand sides of
(4.11) match. The modulus matches if

λ2
r + 4ω2

λ2
r

= e4λr ,

i.e., to the highest order in ω,

λr ≈ 1

2
log(2|ω|).

Thus,

s = ±
√
−ω2 + λ2 ≈ ±

√
−2ω2 − iω log(2|ω|),

and (4.10) follows.
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The above example shows that the stability of the left and right half-plane prob-
lems is not enough to ensure stability for the strip problem. The reason is that the
generalized eigenfunctions (4.6) do not decay in space but are reflected back and
forth between the boundaries at x = 0, 1, respectively. Every time they hit the left
boundary they are amplified. These are highly oscillatory instabilities, and we will
see that they can easily be controlled by small amounts of dissipation. This example
also illustrates that nondissipative difference methods of our type are prone to weak
instabilities, i.e., instabilities that grow only algebraically in time (see (4.10)). Note
that a weak instability also occurs if the tangential derivative in (4.1) is replaced by
a higher order, odd, tangential derivative.

To demonstrate a strong instability, we study the half-plane problem where the
boundary condition in (4.1) is replaced by

ux = βuyy, x = 0,(4.12)

where β is a constant. As before, we look for solutions of the type (4.2), and using the
same arguments as above, we know the solution must have the form (4.5). Inserting
this ansatz into the boundary condition (4.12) gives

−λ = −βω2.(4.13)

Since Reλ > 0, there are no solutions with Re s > 0 when β < 0. Next we investigate
if there are any generalized eigenvalues. Setting s = iτ yields λ =

√−τ2 + ω2, so −λ
is either real and negative or purely imaginary. When β < 0, the right-hand side of
(4.13) is always real and positive, and we conclude that there are not any generalized
eigenvalues either. Hence, the case β < 0 is stable.

When β > 0 and ω is large, (4.13) is solved by

s ≈ βω2,

and inserting (4.13) into (4.5) gives

u = eβω
2t−βω2x+iωy, ω large, β > 0.

Hence, these solutions have a thin boundary layer in space and grow exponentially in
time. This is a strong instability. As we shall see in section 5, this type of instability
can only be controlled by dissipation when the coefficient β is small. Perturbing the
Neumann condition by a higher order, even, tangential derivative results in the same
behavior; i.e., the stability depends on the sign of the coefficient.

5. The discrete half-plane problem in two dimensions. We consider next
the two-dimensional half-plane problem for

utt = uxx + uyy, 0 ≤ x <∞, −∞ < y <∞, t ≥ 0,(5.1)

with the boundary condition

ux(0, y, t) = 0, |u(x, y, t)| ≤ const,(5.2)

and approximate it by

vtt = (D+xD−x +D+yD−y)v,(5.3)
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with the third order accurate boundary condition (2.5)

Lhv(0, y, t) = 0, |v(x, y, t)| ≤ const.(5.4)

Here v is a discrete function varying on a grid

{xν = νh, yµ = µh}, ν = 0, 1, 2, . . . , µ = 0,±1,±2, . . . .

We Fourier-transform the difference equation with respect to y and obtain

v̂tt =

(
D+xD−x − 4

h2
sin2(ωh/2)

)
v̂,

(5.5)
Lhv̂(0, ω, t) = 0, |v̂(x, ω, t)| ≤ const.

Thus, we obtain a one-dimensional problem for every fixed ω and can apply mode
analysis as before. Then

v̂(xν , t) = estϕ(xν), Re s > 0,

is a solution of (5.5) if there are solutions ϕ(xν) of the eigenvalue problem(
s2 +

4

h2
sin2(ωh/2)

)
ϕ = D+xD−xϕ,(5.6)

Lhϕ = 0, |ϕ(x)| ≤ const,(5.7)

with Re s > 0. The eigenvalue problem (5.6), (5.7) is of the same type as for the
one-dimensional half-plane problem in section 2. In particular, the general solution
has the form (2.8), where κ now is a solution of the two-dimensional characteristic
equation

(κ− 1)2 − (s2h2 + 4 sin2(ωh/2))κ = 0.(5.8)

It is straightforward to show that this characteristic equation has the same essential
properties as in the one-dimensional case. To be precise, we have the following lemma.

Lemma 5.1. For |hs| � 1 and |hω| � 1, the roots of (5.8) are of the form

κ = 1 − hλ+
h2λ2

2
+ O(h3λ3) = e−hλ(1+O(h2λ2)),

κ−1 = 1 + hλ+
h2λ2

2
+ O(h3λ3) = ehλ(1+O(h2λ2)),

where λ =
√
s2 + ω2, Reλ > 0, for Re s > 0. Also, for each fixed ω and for Re s > 0,

(5.8) has no root with |κ| = 1 and exactly one root κ with |κ| < 1.
Proof. The proof follows by straightforward generalization of Lemma 2.1.
Since the boundary conditions are the same as in the one-dimensional case, we

can use the same arguments as in section 2 to show that there are no solutions of (5.6),
(5.7) for Re s > 0, which implies that there are no exponentially growing solutions
of (5.5). Note that for the Neumann boundary condition approximation (5.4), the
boundary normal is aligned with the x-direction.

Our goal is to construct stable difference approximations for general domains. In
this case the boundary condition for the differential equation is

∂u/∂n = 0, ∂/∂n : derivative normal to the boundary,(5.9)
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and in general the normal is not aligned with the mesh. In the following, we will
study the continuous boundary conditions perturbed by the leading truncation error
terms. In the literature this technique is often used for the Cauchy or spatially pe-
riodic problems, and the truncation terms appear only in the differential equation.
The obtained equation is often called the “modified equation”; see, for example, [14]
or [11]. Here we use the technique to analyze the influence of truncation errors in
the boundary conditions. The modified equation is a more accurate description of
the discretized problem than the continuous problem. Or rephrased, the numerical
solution approximates the modified equation to a higher order of accuracy than the
continuous problem. However, the modified equation can only model low and inter-
mediate frequencies in the discrete solution, and we rely on the dissipation to control
the highest frequencies.

In section 4 we have discussed half-plane and strip problems. The reason is
this: For analytic initial boundary value problems where there are no direct energy
estimates, the study of wellposedness can be reduced to the study of half-plane and
strip problems. This is done in the following way. In the neighborhood of every
boundary point P with tangent Tg we use a locally smooth map to transform the
curved boundary locally onto Tg. Then we study the half-plane problem with Tg
as the boundary. After freezing the variable coefficients we can solve the problem by
Fourier–Laplace transform. If for all these half-plane problems there are no eigenvalues
or generalized eigenvalues s with Re s ≥ 0, then the original problem is well posed;
see Kreiss and Lorenz [8].

We shall now apply this technique to analyze the stability of the discrete problem.
Let the angle θ between the outward normal and the x-axis be defined as in Figure 1.
We consider the differential equation on the half-plane n · x ≤ 0, i.e.,

x cos θ + y sin θ ≥ 0.(5.10)

To be able to calculate the truncation error of the discrete boundary condition we
assume that the solution u of the differential equation is smooth and decays rapidly
to zero for x2 +y2 → ∞, in the half-plane (5.10). Also, we extend it smoothly beyond
the boundary such that the extended u decays rapidly to zero for x2 + y2 → ∞ in the
whole plane.

The truncation error in the third order Neumann boundary condition satisfies
(π/4 ≤ θ ≤ π/2)

D(3)
n u(xi, yj) =

∂u

∂n
(xΓ
i,j) + C1h

4 ∂
5u

∂n5
(xΓ
i,j) + C2h

3 ∂
4u

∂n4
(xΓ
i,j) + h4R1 + h3R2 +O(h5).

Here,

R1 =

3∑
ν=1

C1ν
∂5u(x̃ν , yj+ν)

∂x5
, R2 =

3∑
ν=1

C2ν
∂4u(x̃ν , yj+ν)

∂x4
.

The terms in R1, R2 originate from interpolation errors in vI , vII , and vIII , respec-
tively.

Derivatives with respect to x and y can be related to normal (∂/∂n) and tangential
(∂/∂σ) derivatives. We have

∂

∂x
= − sin θ

∂

∂σ
− cos θ

∂

∂n
,

∂

∂y
= cos θ

∂

∂σ
− sin θ

∂

∂n
.
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We can also use Taylor expansions to express derivatives at (x̃ν , yj+ν) in terms of
derivatives at the boundary point xΓ

ij . After some calculations we obtain

D(3)
n u(xi, yj) = (1 +R)

∂u

∂n
−
(
h4β1

∂5u

∂σ5
+ h3β2

∂4u

∂σ4

)
+ O

(
h5 ∂6u

∂n6−j∂σj

)
.

Here R is an operator of the form

R =
∑
p+q≥3

βpqh
p+q ∂p+q

∂np∂σq
.

We can write the half-plane problem for the differential equation in the form

∂2u

∂t2
=
∂2u

∂n2
+
∂2u

∂σ2
, n ≥ 0, −∞ < σ <∞,

∂u

∂n
= 0 for n = 0.

After Fourier-transforming with respect to σ and Laplace-transforming with respect
to t, we obtain

∂2û

∂n2
= (s2 + ω2)û.

Thus,

û = e−
√
s2+ω2 nu0(s, ω),

∂û

∂n
= −

√
s2 + ω2û,

and the Fourier–Laplace transform of ∂/∂n is −√
s2 + ω2. After freezing the coeffi-

cients, we Fourier–Laplace-transform the truncation error and obtain

D̂(3)
n = −(1 + R̂)

√
s2 + ω2 − (iβ1h

4ω5 + β2h
3ω4) + O((|ω| + |s|)6h5).

Here,

R̂ =
∑
p+q≥3

βpq(−
√

(hs)2 + (hω)2)p(ihω)q = O((|hs| + |hω|)3).

For |hs| + |hω| sufficiently small, ‖R̂‖ ≤ 1/2, and we can write

D̂(3)
n = (1 + R̂)

(
−
√
s2 + ω2 − iβ1h

4ω5 + β2h
3ω4

1 + R̂

)
+ O((|ω| + |s|)6h5)

= (1 + R̂)(−
√
s2 + ω2 − (iβ1h

4ω5 + β2h
3ω4)) + O((|ω| + |s|)6h5).

By neglecting the O(h5) term and transforming back to physical space, the boundary

condition D
(3)
n u = 0 corresponds to

(1 +R)

(
∂u

∂n
− β1h

4 ∂
5u

∂σ5
− β2h

3 ∂
4u

∂σ4

)
= 0.

By assumption, ‖R‖ is small and the boundary condition can only be satisfied if the
term following (1 + R) is zero. After changing spatial variables, n → x and σ → y,
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we arrive at the modified equation model corresponding to the discrete half-plane
problem (5.3)–(5.4) in domains where the normal is not aligned with the mesh:

utt = uxx + uyy − αh3utyyyy, α ≥ 0, x ≥ 0, −∞ < y <∞,(5.11)

ux = β1h
4uyyyyy + β2h

3uyyyy, x = 0, |u| ≤ const.(5.12)

We have added a dissipation term to the differential equation because we shall need it
later. Note that we have only added dissipation in the tangential direction, to avoid
having to add any extra boundary conditions.

After Fourier-transforming in y and Laplace-transforming in t, we obtain

ûxx = (s2 + ω2)û+ saû, a = αh3ω4, Re s > 0,(5.13)

with boundary conditions

ûx(0) = bû(0), |û| ≤ const, b = iβ1ω
5h4 + β2ω

4h3.(5.14)

As |ω| gets larger, the Fourier symbol of the second divided difference, − 4
h2 sin2(ωh2 ),

deviates more and more from the Fourier symbol of a second derivative, −ω2. In
particular, for the highest frequency on the mesh (ωh = π), the symbol of the second
divided difference is −4/h2, while the symbol of the second derivative is −π2/h2.
Hence, the highest frequencies on the mesh are not accurately modeled by the modified
equation. We therefore restrict the following analysis to |ωh| ≤ 1.

The general solution of (5.13) is given by

û = σ1e
λx + σ2e

−λx,(5.15)

where λ now satisfies

λ =
√
s2 + ω2 + sa, Reλ ≥ 0.(5.16)

Since Reλ > 0 for Re s > 0, the boundary conditions are satisfied if and only if

σ1 = 0, λ = −b = −(iβ1ω
5h4 + β2ω

4h3).(5.17)

There are two possibilities:
1. If β2 ≥ 0, then there are no solutions of (5.17) with Re s > 0 since Reλ > 0,

but Re (−b) ≤ 0. Furthermore, when the dissipation coefficient α > 0, Reλ > 0 also
for Re s = 0, ω �= 0. Hence, there are no generalized eigenvalues when α > 0, and we
conclude that the half-plane problem is stable.

2. If β2 < 0, then the problem can be unstable. We want to show that if |β1|
and |β2| are small, the problem can be stabilized by a small α > 0.

Theorem 5.2. If β2 < 0, |β2| � 1, |β1| � 1, and α ≥ K|β1β2|, K = const,
the modified half-plane problem (5.11)–(5.12) is stable; i.e., the eigenvalue problem
(5.13)–(5.14) has no solutions with Re s > 0 and no generalized eigenvalues Re s = 0
for ω �= 0.

Proof. Introducing (5.17) into (5.16) gives

s2 + sa+ ω2 − b2 = 0.

Since |ωh| ≤ 1, |a| ≤ |α||ω|. If we assume 0 ≤ α ≤ 1, we have |a| ≤ |ω| and
ω2 − a2/4 ≥ 3ω2/4. Therefore,

s = −a
2
± i

√(
ω2 − a2

4

)√
1 − b2

ω2 − a2/4
.(5.18)
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By assumption |b2| � ω2. We can therefore expand the square root and conclude
that

s = −a
2
±
(
i

√(
ω2 − a2

4

)
− ib2

2
√
ω2 − a2/4

+ · · ·
)
.

Hence,

Re s ≈ −α
2
h3ω4 ± Im b2

2
√
ω2 − a2/4

= −α
2
h3ω4 ± β1β2(ωh)

7ω2√
ω2 − a2/4

< 0

for α ≥ 4|β1β2|/
√

3.
We have numerically computed the truncation error coefficients β1 and β2 for

our boundary condition approximation. To conserve space, we will only report the
result of these computations here. For all possible directions of the boundary normal
and all permissible distances between the ghost point and the boundary, we found
that −0.065 < β2 < 0.015 and −0.063 < β1 < 0.063. It is critical that |β2| is small
since the case β2 < 0, |β2| = O(1) cannot be stabilized by adding a dissipative term
to the differential equation. In earlier versions of our numerical code we added a
tangential smoothing operator to the boundary condition approximation. In terms of
the modified problem this means that β2 > 0. The dissipation operator proposed in
section 1 seems to be so efficient that this extra smoothing operator is not needed.

6. The two-dimensional strip problem. Here we generalize the modified
equation approach to study the stability of solutions on a bounded domain,

utt = uxx + uyy − αh3utyyyy, α ≥ 0, 0 ≤ x ≤ 1, −∞ < y <∞,(6.1)

ux = β1h
4uyyyyy + β2h

3uyyyy, x = 0, ux = 0, x = 1.(6.2)

Remark. In reality the boundary condition at x = 1 also contains truncation
order terms, but the results are the same.

After Fourier- and Laplace-transforming the problem, (6.1)–(6.2) becomes

s2û = ûxx − (ω2 + as)û, a = αh3ω4,(6.3)

ûx(0) = bû(0), ûx(1) = 0, b = iβ1ω
5h4 + β2ω

4h3.(6.4)

The general solution of (6.3) now has the form

û = σ1e
λx + σ2e

−λx,(6.5)

where λ is the solution of (5.16), i.e., Reλ > 0 for Re s > 0. Introducing (6.5) into
(6.4) shows that there is a nontrivial solution if and only if

λ− b

λ+ b
= e2λ.(6.6)

We have already studied the corresponding half-plane problem and shown that for
β2 ≥ 0, there are no eigenvalues s, with Re s > 0, and that there are no general-
ized eigenvalues when α > 0. For β2 < 0, Theorem 5.2 shows when the half-plane
problem is stable. Hence, it can be expected that the strip problem also is stable.
In Appendix B, we perform a detailed calculation to verify the stability of the strip
problem. From this calculation, we can also read off the order of magnitude of the
dissipation coefficient α that is necessary for stability. The results are summarized in
the following theorem.

Theorem 6.1. If the half-plane problem (5.11)–(5.12) is stable, the modified strip
problem (6.1)–(6.2) is stable for α > 0, α = O(h3/4).
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7. General two-dimensional domains. In this section, we will add some de-
tails to our proposed scheme that were left out of the general description in section 1.

7.1. Near boundary behavior of the discretized Laplacian. The discret-
ized Neumann boundary condition (1.3) can be used to eliminate all ghost point values
in the discretized Laplacian (1.2). Referring to the case shown in Figure 1, we get at
the point (i, j + 1),

∆hv
n
i,j+1 =

1

h2
(vni+1,j+1 + vni−1,j+1 + vni,j+2 − 4vni,j+1)

− gI
h2g0

(c0v
n
i,j+1 + c1v

n
i+1,j+1 + c2v

n
i+2,j+1)(7.1)

− gII
h2g0

(c3v
n
i,j+2 + c4v

n
i+1,j+2 + c5v

n
i+2,j+2) +

f(xΓ
i,j , tn)

h2g0
,

assuming that (i, j) is the only nearest neighbor of (i, j + 1) that is outside of Ω.
If additional points are outside, other formulas of the type (1.3) would be used to
eliminate those points as well. The coefficients g0, gI , gII are given by (1.4). Since
0 ≤ ξΓ ≤ ξI and h ≤ ξI ≤

√
2h, the denominator g0 satisfies

1

2
√

2h
≤ 1

2ξI
≤ |g0| ≤ 3

2ξI
≤ 3

2h
.

Because the coefficient g0 in (7.1) is bounded away from zero, we conclude that this
discretization of the Laplacian does not suffer from the “small cell” stiffness problem.

7.2. Accuracy of the damped scheme. For simplicity, let the grid function
v satisfy the semidiscrete problem, where time is left continuous,

vtt = Av + b+ F − αh3AT (Avt + bt).

Let the error in the discrete solution be e = u − v, where u is the solution of the
continuous problem (1.1) evaluated on the grid. We have

ett = ∆u−Av − b+ αh3AT (A(vt + ut − ut) + bt)

= ∆u−Au− b+Ae− αh3ATAet + αh3AT (Aut + bt).

We split the error according to e = eI + eII and let eI satisfy

AeI = −αh3AT (Aut + bt).(7.2)

Now, Aut + bt is a second order accurate approximation of ∆ut evaluated on the
grid. Furthermore, away from the boundary, AT∆ut is a second order approximation
of ∆2ut, but near the boundary AT∆ut = O(∆ut/h

2). Hence the right-hand side
of (7.2) is O(h) near the boundary but O(h3) in the interior. Due to the smoothing
properties of the elliptic operatorA (see Figure 2 and Table 1 for a numerical example),
we gain one order of magnitude when solving for eI , resulting in

eI = O(h2).

Since the right-hand side of (7.2) is smooth in time, we also have eItt = O(h2) and
AeIt = O(h). The equation for eII is

eIItt = AeII − αh3ATAeIIt − eItt − αh3ATAeIt + ∆u− (Au+ b).
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Fig. 2. Numerical test of the smoothing properties of AeI = h3AT u. The left figure shows a
contour plot of the right-hand side h3AT u, and the right figure shows the solution eI for N = 171;
see Table 1 for quantitative information. In this case, the computational domain was a circle with
unit radius and the test function was ui,j = cos(xi) sin(yj). The problem was solved using the
conjugated gradient algorithm.

Table 1

Smoothing properties of the operator A investigated by solving AeI = h3AT u for different grid
sizes for the case shown in Figure 2. Clearly, eI = O(h2) while h3AT u = O(h).

N ‖eI‖∞ ‖h3AT u‖∞ h

171 3.43 × 10−4 4.36 × 10−2 2.82 × 10−2

341 9.21 × 10−5 2.20 × 10−2 1.41 × 10−2

681 2.40 × 10−5 1.20 × 10−2 7.06 × 10−3

Because Au + b is a second order accurate approximation of ∆u and h3ATAeIt =
O(h2), all forcing terms are of the order O(h2). Hence

eII = O(h2),

which shows that the damped scheme is second order accurate.

7.3. Fourth order corrections. To reduce the phase-error away from the
boundary, we can optionally add a fourth order correction term,

∆h,4v
n
i,j = −h

2

12
(Dx

+D
x
−γi,jD

x
+D

x
− +Dy

+D
y
−γi,jD

y
+D

y
−)vni,j ,

to our second order accurate approximation of the Laplacian. Clearly, this stencil is
too wide to be evaluated all the way up to the boundary, so the grid function γi,j
must be identically zero in a band near the boundary. Away from the boundary we
want γi,j ≡ 1 to make the correction term cancel the second order truncation error in
∆hvi,j . To aid in the construction of γi,j , we initially compute a smoothed distance
function di,j ≥ 0 using the technique described in [13]. The value of the distance
function at a grid point approximately equals the distance between that grid point
and the nearest boundary. Hence, the distance function is zero on the boundary
and increases monotonically away from the boundary, making it straightforward to
construct a smooth γi,j that is zero near the boundary (di,j ≤ ε1) and one away from
the boundary (di,j ≥ ε2). In all numerical examples presented below, we used ε1 = 3h
and ε2 = 13h. The resulting scheme can be written in semidiscrete form as
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vtt = Av +Bv + F + b− αh3AT
(
Avt +

db

dt
(tn)

)
,(7.3)

where B represents the fourth order correction term. The symmetry of B and the
smoothness of the distance function of γi,j seem to give stability. A heuristic argument
for this is that B cannot generate any boundary layer instability, since this type
of instability decays rapidly away from the boundary and in this region ∆h,4v

n
i,j is

arbitrarily small. And the other type of instability discussed above, highly oscillatory
in the whole domain, is effectively stabilized by our damping term. The smoothness
of the distance function implies that no new spurious solutions are generated. The
smoothness furthermore guarantees accuracy of order two in the transition region.
Hence, the resulting scheme will only be second order accurate. The main benefit
of the fourth order spatial correction will be a reduced phase-error away from the
boundary. For this reason we will call the resulting scheme the “internally fourth
order” method.

We can also improve the basic second order time-integration method by using
a fourth order accurate Taylor series method. Consider the second order system of
ordinary differential equations

wtt = Cw + F ,

where C is a symmetric negative semidefinite matrix. A fourth order time-discretization
is given by

wn+1 − 2wn +wn−1

k2
= Cwn + F n +

k2

12
(C(Cwn + F n) + F ntt),(7.4)

and it is stable for

max
j

(−λj)k2 < 12,

where λj are the real-valued nonpositive eigenvalues of C. The scheme (7.4) can be
formulated in predictor-corrector form,

w̃n+1 = 2wn −wn−1 + k2Cwn + k2F n,(7.5)

wn+1 = w̃n+1 +
k2

12
(C(w̃n+1 − 2wn +wn−1) + k2F ntt).(7.6)

Hence, the predictor step (7.5) is simply the second order time-integration scheme pre-
sented above. The discrete damping term is added to the predictor-corrector scheme
in the same way as in (1.6). For the spatially fourth order method, we take C = A+B;
otherwise C = A. We note that the corrector step (7.6) needs only a second order
accurate approximation of wtt. Hence, from an accuracy standpoint we can omit the
correction term and always take C = A in this step. Numerical experiments (see
section 8) indicate that the resulting scheme is stable.

We start the time-integration at n = 0. For the fourth order time-discretization,
we take v0

i,j = u0(xi, yj) and need to use a fifth order accurate approximation

of u(xi, yj ,−k) for v−1
i,j . This is achieved by using the differential equation to
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approximate higher order time derivatives,

v−1
i,j = u0(xi, yj) − ku1(xi, yj) +

k2

2
(Dx

+D
x
− +Dy

+D
y
−)u0(xi, yj) +

k2

2
F (xi,j , 0)

−k
3

6
(Dx

+D
x
− +Dy

+D
y
−)u1(xi, yj) − k3

6
Ft(xi,j , 0)

(7.7)

−k
2h2

24
((Dx

+D
x
−)2 − (Dy

+D
y
−)2)u0(xi, yj)

+
k4

24
(Dx

+D
x
− +Dy

+D
y
−)2u0(xi, yj) +

k4

24
Ftt(xi,j , 0).

Note that the last three lines can be omitted for the second order time-discretization.

8. Numerical examples. In this section we numerically solve (1.1) with the
schemes described above. For the cases where an analytical solution is known, we use
this solution to initialize the computation at time levels t = −k and t = 0. For the
cases where an analytical solution is not known we use the initialization (7.7).

We will denote the CFL-number by CFL≡ k/h. Note that for a two-dimensional
periodic domain, our second order time-integration scheme (1.6) is stable for CFL
≤ 1/

√
2 ≈ 0.71, while the fourth order predictor-corrector scheme (7.5), (7.6) is

stable for CFL≤√3/2 ≈ 1.22. Also note that all errors are measured in max-norm.
In all examples presented below, the fourth order predictor-corrector time-

integrator (7.5), (7.6) is used together with the internally fourth order spatial cor-
rection. The second order scheme (1.6) is always used together with the second order
spatial discretization. Unless otherwise noted, the Neumann boundary condition is
discretized using the third order accurate formula to reduce the constant in the second
order truncation error, as was mentioned in the introduction.

To evaluate the accuracy of the method, the forcing function is chosen such that
the exact solution is the trigonometric traveling wave:

u(x, y, t) = sin(ω(x− t)) sin(ωy), ω = 4π.(8.1)

The domain Ω is taken to be an ellipse centered at the origin with semiaxes xs = 1 and
ys = 0.75. The Cartesian grid covers the rectangle −1.1 ≤ x ≤ 1.1, −0.85 ≤ y ≤ 0.85.
In Table 2, we present a grid refinement study for the second order scheme (1.6) and
the internally fourth order predictor-corrector scheme (7.5), (7.6). The fourth order
correction applies only in the interior of the domain, and the second order errors
near the boundary clearly dominate the total error. Hence, in this case, there is no
apparent benefit of using the internally fourth order method. The time step can be
taken twice as large, but this gain is balanced by having to evaluate the Laplacian
twice instead of once per time step. Also note that the influence of the damping term
is so small that it changes only the last digit in the error in one of these runs.

To more clearly illustrate the benefits of using a fourth order correction away
from the boundary, we select the forcing function F and boundary data f such that
the exact solution is a spatially localized, outwardly traveling wave,

u(x, y, t) = φ(
√
x2 + y2 − t), φ(ξ) =

1

2

(
1 + tanh

ξ − ξ0
ε

)(
1 − tanh

ξ − ξ1
ε

)
.

(8.2)

Note that such waves are exact solutions to the unforced wave equation in one and
three space dimensions, but not in the two-dimensional case. The domain Ω is taken
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Table 2

Grid refinement study showing the errors in the computed solutions when the exact solution
is the trigonometric function (8.1). Here, CFL = 0.5 for the second order scheme and CFL = 1.0
for the internally fourth order predictor-corrector scheme. The grid size N = 101 corresponds to
h = 2.4 × 10−2 and N = 201 corresponds to h = 1.2 × 10−2. The first line corresponds to the
undamped case, α = 0, and the second line shows the damped case with α = 0.001.

Second order scheme Predictor-corrector scheme

t α N = 101 N = 201 ratio N = 101 N = 201 ratio

2.0 0.0 8.75e-02 2.10e-02 4.17 10.7e-02 2.17e-02 4.93

2.0 0.001 8.77e-02 2.10e-02 4.18 10.7e-02 2.17e-02 4.93

Table 3

Grid refinement study showing the errors in the computed solutions when the exact solution
is the outwardly traveling wave function (8.2). Here, CFL = 0.5 for the second order scheme and
CFL = 1.0 for the predictor-corrector scheme. The grid size N = 201 corresponds to h = 1.8×10−2

and N = 401 corresponds to h = 9.0 × 10−3. In all cases, the damping coefficient was α = 10−3.

Second order scheme Predictor-corrector scheme

t N = 201 N = 401 ratio N = 201 N = 401 ratio

0.5 3.29e-2 8.63e-3 3.8 1.23e-3 8.78e-5 14.0

0.75 4.59e-2 1.23e-2 3.7 1.73e-3 1.26e-4 13.7

1.0 1.05e-1 3.12e-2 3.4 2.71e-2 3.23e-3 8.4

1.25 5.89e-2 1.73e-2 3.4 1.76e-2 2.53e-3 6.9

to be the circle, |r| ≤ 1.5, and the Cartesian grid covers the square −1.6 ≤ x ≤ 1.6,
−1.6 ≤ y ≤ 1.6. The parameters in φ are taken to be

ξ0 = 0.3, ξ1 = 0.5, ε = 0.07.

The wave reaches the boundary at t ≈ 0.8. In Table 3 we see that for the internally
fourth order method, the error is at least one order of magnitude smaller and the con-
vergence rate is much higher before the wave hits the boundary. No such distinction
can be made for the second order method, where the errors grow more gradually in
time. Furthermore, the errors in the internally fourth order method are substantially
smaller than those of the second order method, especially before the wave hits the
boundary.

We proceed by investigating the long-time stability properties of the method. We
take the domain to be the same ellipse used above and take the forcing functions such
that the exact solution is the trigonometric traveling wave (8.1). In Figure 3, we show
the error in the solution as a function of time for different values of α and for different
grid sizes. We conclude that it is sufficient to take α = 2 × 10−3 for both the second
order and the predictor-corrector scheme. Note that these computations integrated
the solution for long times. In particular, the second order scheme on the finer grid
(N = 401) required 66,666 time steps to reach t = 200. Also note that there is no
long-time increase in the error, which indicates that the damping is very mild.

We next study the homogeneous problem

F (x, t) ≡ 0, f(x, t) ≡ 0,

in a domain bounded by an ellipse centered at the origin, with semiaxes xs = 2.0 and
ys = 2.54. The Cartesian grid covers the square −2.1 ≤ x ≤ 2.1, −2.64 ≤ y ≤ 2.64.
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0 20 40 60 80 100 120 140 160 180 200
10

-3

10
 -2

10
 -1

10
0

10
1

10
2

alpha=0,        N=201
alpha=1.5e-- 3, N=201
alpha=2.0e-- 3, N=201
alpha=2.0e-- 3, N=401

0 20 40 60 80 100 120 140 160 180 200
10

-3

10
 -2

10
 -1

10
0

10
1

10
2

alpha=0,        N=201
alpha=5.0e--4, N=201
alpha=1.5e-- 3, N=201
alpha=1.5e-- 3, N=401

Fig. 3. The max-norm of the error in the solution as a function of time. The second order
scheme (1.6) was run at CFL = 0.5 (left), and the predictor-corrector method (7.5), (7.6) was run
at CFL = 1.0 (right). Note that to stabilize the solution, the damping coefficient had to be slightly
larger for the second order scheme (2× 10−3) than for the predictor-corrector method (1.5× 10−3).

We take initial data to be

u0(x, y) = φ(
√
x2 + (y − yF )2),

where φ(ξ) is given by (8.2). The upper focal point is located at yF =
√
y2
s − x2

s ≈ 1.56
and

u1(x) = −φ′(
√
x2 + (y − yF )2).

The parameters in φ(ξ) are

ξ0 = 0.2, ξ1 = 0.4, ε = 0.035.

Note that the initial data is chosen such that the wave is essentially traveling radially
outwardly from the focal point (0, yF ). By making a ray-tracing argument, we see
that a high frequency wave should reflect the boundary and refocus at the other
focal point (0,−yF ). This was verified for the Dirichlet problem in [9] (Figure 6).
For the Neumann boundary condition, we should get a similar behavior, except that
the solution should have the opposite phase compared to the Dirichlet case. This is
confirmed in Figure 4, where we show a well-resolved calculation using the predictor-
corrector scheme with N = 801 and CFL = 1.0. It is interesting to use this calculation
as a yard-stick to compare the quality of the solutions from both schemes at a lower
resolution, N = 401; see Figures 5 and 6. Observe the more pronounced over- and
undershoots for the second order method in comparison to the predictor-corrector
method, indicating that the phase-error dominates at the time of comparison. In all
these calculations, the damping coefficient was α = 0.001.

While all theory and all numerical experiments up to this point have been pre-
sented for the third order accurate discretization of the boundary conditions, our
practical experience with the second order boundary condition stencil is at least as
good. The advantage of the second order stencil is that it uses fewer internal points,
which becomes important for thin or marginally resolved geometries. However, near
true corners, the second order boundary condition needs to be modified to avoid using
grid points where the solution is undefined; see Figure 7. To avoid this problem, all
grid points are first scanned in a preprocessing step to detect interior points within√

2h of corners. All such points that also have at least two exterior nearest neighbors
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Fig. 4. Contours of the bouncing wave solution to the Neumann problem. Here a reference
solution is produced with the predictor-corrector scheme, CFL = 1.0, N = 801, t = 3.12 (left), and
t = 4.41 (right). The dashed line is the boundary and the contour spacing is 0.2.
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Fig. 5. Contours of the bouncing wave solution to the Neumann problem. The second order
scheme is used with CFL = 0.5 (left) and the predictor-corrector scheme is used with CFL = 1.0
(right). Here N = 401, t = 4.41, and the contour spacing is 0.2.
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Fig. 6. Comparison of the bouncing wave solution for the Neumann problem at t = 4.41 along
the line x = 0 centered around y = −2.0 (left) and y = −1.2 (right). The reference solution is
for N = 801 (solid), the second order scheme is for N = 401, CFL = 0.5(“+”), and the predictor-
corrector scheme is for N = 401, CFL = 1.0(“o”).
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Fig. 7. The standard second order boundary condition stencil (outlined with a dash-dotted line)
for the ghost point at “X” involves the point “ O”, where the solution is undefined due to the corner.
In this case, the boundary stencil at “X” is reduced to a divided difference between the solution at
“−1” and “X.”
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Fig. 8. The max-norm of the error for a rotated square domain, as a function of time. The “ ∗”
correspond to the grid size h = 1.417× 10−2, and the “+” represent the grid size h = 7.087× 10−3.
The damping coefficient was α = 2 × 10−3.

get marked with a “−1.” The boundary condition stencil at ghost points neighboring
a “−1” point is then modified to be a divided difference between the ghost point
and the “−1” point; i.e., the direction of the normal is locally changed to be either
vertical or horizontal. As a consequence, no undefined points are involved in the
boundary stencil near the corner, and the resulting contribution to the discretized
Laplace operator (the matrix A) will be locally symmetric.

While the modified boundary condition approximation will be at most first order
accurate near each corner, it is not clear what impact that truncation error has on
the accuracy of the solution. We are also interested in the long-time stability of the
resulting scheme. To investigate these issues, we take the domain to be a square with
side length 2, rotated 10 degrees relative to the grid directions. In rotated coordinates
x̃ = x cos(θ) + y sin(θ), ỹ = −x sin(θ) + y cos(θ), θ = 10π/180, an exact solution of
the homogeneous wave equation can be constructed using Fourier expansion. Here we
take

u(x̃, ỹ, t) = sin

(
πx̃

2

)
sin

(
3πỹ

2

)
cos(ωt), ω =

π
√

10

2
,

which satisfies homogeneous Neumann conditions along x̃ = ±1 and ỹ = ±1, respec-
tively. The errors in the computed solutions on two grid sizes are reported in Figure 8,
indicating that the solution is almost second order accurate despite the corners. How-
ever, for reasons not currently understood, the errors accumulate and seem to grow
linearly in time.

In our last numerical example, we use the numerical method to compute the



DIFFERENCE APPROXIMATIONS FOR THE WAVE EQUATION 1317

-1 -0. 8 -0. 6 -0. 4 -0. 2 0 0.2 0.4 0.6 0.8 1

-0. 5

-0. 4

-0. 3

-0. 2

-0. 1

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 9. The geometry for the harbor model (left). The computational grid covered −1.05 ≤ x ≤
1.05, −0.55 ≤ y ≤ 0.55 and had 801× 401 grid points corresponding to the grid size h = 2.6× 10−3.
The forcing is located at the “ x” and the signal is recorded at the “+.” The right figure shows the
lowest modes in the discrete Fourier transform of the recorded signal, as a function of the frequency.
The spikes indicate eigenfrequencies.

eigenfrequencies and eigenmodes of the domain shown in Figure 9. Since the wave
equation models the propagation of small amplitude water waves, we may think of
this geometry as representing a simple harbor. Even though the grid is rather fine,
the wide stencil used by the third order boundary condition couples the solution at
some ghost points near the ends of the convex fingers protruding into the domain. By
coupling we mean that at least one of the interior points in one boundary condition
stencil is also a ghost point. Satisfying the boundary conditions at all ghost points
would then require an iteration over the ghost point values. To avoid this iterative
procedure, we will instead use the second order boundary condition, which uses fewer
interior points in its stencil. For this case, the solution does not get coupled at any
ghost points. To estimate the eigenfrequencies, we apply a forcing to two consecutive
points in space,

F (xi,j , yi,j , t) =

⎧⎪⎨⎪⎩
Ke−(t−t0)2/ε21 , i = I1, j = J1,

−Ke−(t−t0)2/ε21 , i = I1 + 1, j = J1,

0, otherwise.

Here K = 105, ε1 = 0.07, t0 = 1.0. We choose this forcing since it is likely to
have a component along each eigenmode, except the constant mode corresponding
to the zero eigenvalue, which is present due to the Neumann boundary condition.
We start the computation from rest and integrate up to time T = 200. During
the computation, the solution is recorded at another point (Ir, Jr). This signal is
then Fourier-transformed in time, after which the eigenfrequencies of the domain
appear as spikes in the spectrum; see Figure 9. Note that the frequency resolution is
limited by 2π/T , so a longer computation leads to a more accurate estimate of the
eigenfrequencies. Also note that the eigenvalues of

∆u = λu in Ω,

∂u

∂n
= 0 on Γ

are related to the eigenfrequencies ω through λ = −ω2.
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Fig. 10. A contour plot of the solution at t = 62.4 approximating the eigenmode corresponding
to the eigenfrequency ωr = 0.90 (left). Here, the contour levels are equally spaced between −0.8 and
0.8. The right figure shows the time-history of the solution at the point (x, y) = (−0.6526,−0.1976).
Because of resonance, the amplitude grows linearly in time.

To compute the corresponding eigenmode, we perform a second computation,
where the forcing is taken to be

F (x, y, t) = sin(ωrt)γ
′(x− x0)γ(y), γ(ξ) = e−ξ

2/ε22 , x0 = −0.6, ε2 = 0.2.

The frequency of the time-harmonic forcing is chosen to obtain resonance. In this
computation, we take ωr = 0.90, which is the approximate location of the first spike
in the spectrum; see Figure 9. Due to resonance, the solution will be more and
more dominated by the corresponding eigenmode as time increases, assuming that the
forcing is not orthogonal to that mode. The resulting eigenmode is shown in Figure 10
together with the time-history of the solution in one point, which demonstrates the
expected linear growth in amplitude.

9. Conclusions. We have presented stability theory and numerical examples
for a Cartesian embedded boundary scheme which directly discretizes the second or-
der wave equation subject to Neumann boundary conditions, without rewriting the
problem as a system of first order equations. Since the discrete approximation of the
Laplacian subject to the Neumann boundary condition leads to a matrix A that is
not symmetric, the stability theory developed in [9] does not directly apply. Indeed,
numerical experiments in two-dimensional domains indicate that the basic undamped
scheme is unstable. In the one-dimensional case, we prove that the semidiscrete
scheme is stable, thus indicating that the instability is due to two-dimensional ef-
fects. In two dimensions, tangential derivatives are present in the truncation error of
the boundary condition, when the boundary is not aligned with the mesh. A two-
dimensional stability theory is presented that first is used to show the destabilizing
effect of perturbing a Neumann boundary condition by tangential derivatives. The
stability theory also predicts that a small fourth order dissipative term h3∆2ut can
control the destabilizing effects of high order tangential derivatives. The discrete sta-
bilization term h3ATA(un−un−1)/k is proposed for the practical computation. This
term can be evaluated all the way up to the boundary so no extra numerical bound-
ary conditions are necessary. After discretization in space, the system of second order
ordinary differential equations is integrated in time using a second or fourth order
explicit method. Improved spatial accuracy can be achieved away from the boundary
by adding a fourth order spatial correction term. Our numerical examples indicate
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that the resulting scheme is second order accurate measured in max-norm and that
the time step can be chosen independently of small grid cells near the boundary. Nu-
merical experiments also show that the amount of dissipation needed to stabilize the
scheme is very small and, for smooth boundaries, long-time computations do not show
any accumulation of the error. A simple modification of the scheme in the vicinity of
corners is proposed, but more work is needed to fully understand its implications.

Work is underway to generalize the proposed method to Maxwell’s equations
written as a system of second order wave equations, which requires more complicated
boundary conditions to be satisfied. Further work is also planned to extend the method
to three space dimensions.

Appendix A. Computing ATu. Using standard notation for an N×N matrix
A and vectors u and v, the most straightforward way of computing v = ATu might
be

vi =

N∑
j=1

Aj,iuj .

However, when the matrix is sparse, it is inefficient to store all matrix elements
explicitly. If we let aTi denote the ith row of A, we can write A in row form,

A =

⎛⎜⎜⎜⎜⎜⎜⎝
aT1

aT2
...

aTN

⎞⎟⎟⎟⎟⎟⎟⎠ , AT = (a1,a2, . . . ,aN ),(A.1)

and v = ATu =
∑N
j=1 ajuj . Hence, another way of computing ATu is by accumu-

lating the contributions from each column of AT , i.e., each row of A:
1. v = 0;
2. for j = 1, 2, . . . , N do v+ = ajuj .

Here the operator + = means evaluate the right-hand side and add the result to the
left-hand side (as it is defined in the “C” programming language).

Next consider the particular form of the matrix A = A that arises in our embedded
boundary discretization. Away from the boundary, A is defined by (1.2). Near the
boundary, outside points in the stencil get eliminated using the discretized Neumann
boundary condition, resulting in a stencil of the type (7.1). In general, each row of A
will only have a few nonzero entries. To simplify the notation, we define u(k, l) =: uk,l.
Each row of the matrix can then be written in sparse form as

Au|i,j =:

NZi,j∑
k=1

a
(k)
i,j u(I

(k)
i,j , J

(k)
i,j ),(A.2)

where NZi,j is the number of nonzero entries for the row corresponding to grid point

(i, j), and (I
(k)
i,j , J

(k)
i,j ) is the grid point index of the kth contribution to Au in that

row.
Equation (A.2) represents the matrix A in a sparse row form corresponding to

(A.1). The operation v = ATu can therefore be computed using the above accumu-
lation algorithm,
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1. v = 0;
2. for all grid points (i, j) inside Ω do

for k = 1, 2, . . . , NZi,j do

v(I
(k)
i,j , J

(k)
i,j )+ = a

(k)
i,j u(i, j).

We note that it is only necessary to form the sparse representation of A at interior
points where some neighbors are outside Ω. If all neighbors of (i, j) are interior, the
“for k”-loop in the second step in the accumulation algorithm can be replaced by

v(i+ 1, j) + =
u(i, j)

h2
, v(i− 1, j) + =

u(i, j)

h2
, v(i, j) + = −4u(i, j)

h2
,

v(i, j − 1) + =
u(i, j)

h2
, v(i, j + 1) + =

u(i, j)

h2
.

Appendix B. Proof of Theorem 6.1. The proof is divided into three cases:
|λ| � |b|, |λ| � 1, and |λ| ≤ C|b|.

Case 1, |λ| � |b|. We have (λ − b)/(λ + b) ∼ 1. To make the modulus of the
right-hand side of (6.6) be close to one,

λ = Niπ + λ̃, |λ̃| � 1, N ≥ 1 integer.

(Note that N = 0; i.e., |λ| � 1 is treated in Case 2 below.) To first approximation
in λ̃,

λ̃+ iNπ − b

λ̃+ iNπ + b
= 1 + 2λ̃.

Therefore,

λ̃+ iNπ − b = λ̃+ iNπ + b+ 2λ̃2 + 2iNπλ̃+ 2bλ̃

or

λ̃2 + (iNπ + b)λ̃+ b = 0.

Since |λ| � |b|, |b| � Nπ, and we can expand the roots of λ̃ in the small parameter
ε = b/Nπ, |ε| � 1,

λ̃ = − iNπ + b

2
± i

Nπ

2

√
1 − 4b

Nπ

(
i

2
− 1

Nπ
+

b

4Nπ

)
= − iNπ + b

2
±
(
iNπ + b

2
+

ib

Nπ
+ O(ε2)

)
.

Only the plus sign gives |λ̃| � 1, and we have

λ = iNπ + λ̃ ≈ iNπ +
ib

Nπ
.

By solving the characteristic equation (5.16) for s and inserting the above expression
for λ,

s = −a
2
±
√
a2

4
− ω2 −N2π2 − 2b− b2

(Nπ)2
.(B.1)
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We assume that

0 ≤ α ≤ 1.(B.2)

Since |ωh| ≤ 1, we have that

|a| ≤ |ω|,(B.3)

so N2π2 + ω2 − a2/4 is real and positive. Because |b|/Nπ � 1, we can expand the
roots of (B.1),

s = −a
2
± i

√(
N2π2 + ω2 − a2

4

)√
1 +

2b

N2π2 + ω2 − a2/4

(
1 +

b

2N2π2

)

= −a
2
±
(
i

√(
N2π2 + ω2 − a2

4

)
+

ib√
N2π2 + ω2 − a2/4

+ · · ·
)
.

We have ib = −β1ω
5h4 + iβ2ω

4h3, and N2π2 + ω2 − a2/4 ≥ 3ω2/4, so

Re s ≈ −1

2
αh3ω4 ∓ β1ω

5h4√
N2π2 + ω2 − a2/4

≤ −1

2
αh3ω4 +

2|β1|ω4h4

√
3

.(B.4)

Therefore, Re s < 0 for α ≥ 4|β1|h/
√

3, and we conclude that there can be no expo-
nentially growing solutions with |λ| � |b|, when α exceeds that value.

Case 2, |λ| � 1. If |λ| � 1, we can replace (6.6) by

λ− b

λ+ b
= 1 + 2λ,

i.e.,

λ2 = −b+ O(b3/2).(B.5)

Then (5.16) gives us

s = −a
2
±
√
a2

4
− ω2 + λ2 ≈ −a

2
±
√
a2

4
− ω2 − iβ1ω5h4 − β2ω4h3,(B.6)

and by making the same expansion as above we obtain

Re s ≈ −1

2
αh3ω4 ± |β1|ω4h4

√
3

.

Hence, in this case, Re s < 0 for α > 2|β1|h/
√

3, and there can be no exponentially
growing solutions with |λ| � 1 when α satisfies that inequality. Note that (B.5)
implies that |b| � 1 when |λ| � 1.

Case 3, |λ| ≤ C|b|. From Case 2 above, we know that |b| � 1 when |λ| � 1. We
can therefore assume that |b| ≥ δ1 > 0. Since |b| = ω4h3

√
β2

2 + β2
1ω

2h2 and |ωh| ≤ 1,

c1h
−3/4 ≤ |ω| ≤ h−1.(B.7)

Let us define a complex number ρ such that

λ+ b = ρb,(B.8)
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that is, |ρ− 1| ≤ C. There are two possibilities:

(a) |ρ| ≥ δ > 0, (b) |ρ| ≤ ε� 1.

For possibility (a), we start by deriving a bound for Reλ. Let λr = Reλ and λi =
Imλ. From (6.6)

e2λr =

∣∣∣∣λ+ b− 2b

λ+ b

∣∣∣∣ ≤ 1 +

∣∣∣∣ 2b

λ+ b

∣∣∣∣ = 1 +
2

|ρ| ≤ 1 +
2

δ
,

and therefore

λr ≤ 1

2
log

(
1 +

2

δ

)
= c2.(B.9)

By solving the characteristic equation (5.16) for s, we have

s = −a
2
±
√
a2

4
− ω2 − λ2

i + 2iλiλr + λ2
r.

Since (B.7) bounds |ω| from below, λ2
r � ω2. Hence, we can neglect this term, expand

the roots of s as before, and use (B.9) to get

Re s ≤ −1

2
αh3ω4 +

c2|λi|√
3
4ω

2 + λ2
i

.

Let ρr = Re ρ and ρi = Im ρ. The relation (B.8) gives λi = ξω4h3, where the real-
valued coefficient ξ = ρiβ2 + (ρr − 1)β1ωh. Clearly, for all |ρ| ≥ δ and |ωh| ≤ 1,

|λi|√
3
4ω

2 + λ2
i

=
|ξ||ωh|3√
3
4 + ξ2ω6h6

≤ c3|ωh|3.

Since |ω| is bounded from below by (B.7), Re s < 0 for α > 2c2c3c
−1
1 h3/4.

For possibility (b), we exploit that Reλ > 0 for Re s > 0. We have

λ = −b(1 − ρ), |ρ| � 1.(B.10)

When ρ = 0, this case reverts to (5.17) and the half-plane problem. For β2 > 0,
Re (−b) = −β2ω

4h3 < 0, but Reλ > 0 for Re s > 0, which is contradicted by (B.10).
Hence there are no solutions with Re s > 0 when β2 > 0. When β2 < 0, β1 � 1, and
|β2| � 1, Theorem 5.2 applies and the problem can be stabilized by a small amount
of dissipation α ≥ K|β1β2|.

For the perturbed case, |ρ| = ε, ε� 1, a simple computation yields

Re (−b+ ρb) = (−1 + ρr)β2ω
4h3 − ρiβ1ω

5h4,

and Re (−b+ ρb) < 0 if (−1 + ρr)β2 + |ρiβ1| < 0, i.e.,

β2 >
|ρi|

1 − ρr
|β1| ≈ ε|β1|.(B.11)

Hence, when |ρ| ≤ ε, there cannot be any solutions with Re s > 0 when (B.11) is
satisfied. For β2 < ε|β1|, we can apply the same expansion as in Theorem 5.2 for the
half-plane problem. Since λ is perturbed by ρb = O(ε), the roots of s can only be
perturbed by O(ε), and the amount of dissipation necessary to stabilize the problem
remains essentially the same.

This concludes the proof of Theorem 6.1.
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A FINITE ELEMENT APPROXIMATION OF A VARIATIONAL
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Abstract. We introduce a finite element approximation of a variational formulation of Bean’s
model for the physical configuration of an infinitely long cylindrical superconductor subject to a
transverse magnetic field. We prove an error between the exact solution and the approximate solution
for the current density and the magnetic field in appropriate norms of order h1/2 + ∆t. Numerical
simulations for a variety of applied magnetic fields are also presented.

Key words. finite elements, variational inequalities, superconductors
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1. Introduction. In this paper we consider the numerical approximation of an
evolutionary variational inequality arising from a critical state model for a type-II
superconductor. The physical setting is that of an infinitely long cylinder of type-II
superconducting material subject to an applied transverse magnetic field. We take
the cylindrical superconductor to occupy the region D = Ω × R, where Ω ⊂ R

2, a
bounded, simply connected domain in R

2, is the cross section of the superconductor.
The physical vector fields that are relevant are the current density J = (0, 0, J(x, t)),
which is parallel to the axis of the cylinder, and the magnetic field H = (H(x, t), 0),
which is orthogonal to the cylinder’s axis, for x ∈ R

2. The well-known Bean critical
state model can be formulated as an evolutionary variational inequality for J(x, t) of
the form (see [10]):

(P) Find J(·, t) ∈ K for a.e. t ≥ 0 such that J(·, 0) = J0 ∈ K and(
∂GJ

∂t
, η − J

)
≥ (f, η − J) ∀ η ∈ K.(1.1)

Here (·, ·) denotes the standard L2 inner product over Ω,

V :=
{
η ∈ L2

loc(R
2) : ∇η ∈ L2(R2), (η, 1) = 0

}
,

K =
{
η ∈ V : η = 0 on R

2/Ω, |η| ≤ Jc, (η, 1) = 0
}

and G : V ′ → V is the “inverse Laplacian” operator defined by the solution to the
following variational problem:

Given v ∈ V ′, find Gv ∈ V such that

(∇Gv,∇η)
R

2 = 〈v, η〉 ∀ η ∈ V(1.2)
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with 〈·, ·〉 denoting the duality pairing between V ′ and V. For v ∈ F ⊂ V ′ we have

〈v, η〉 = (v, η) ∀ η ∈ V,
where

F :=
{
η ∈ V ′ : η ∈ L2

loc(R
2) : η = 0 on R

2/Ω
}
.

Setting

F0 :=
{
η ∈ F : (η, 1) = 0

}
,

we have the following for all v ∈ F0:

−∆Gv = v in R
2,

∫
Ω

Gv dx = 0, and ∇Gv ∼ 0 at ∞,(1.3)

and Gv is unique.
Throughout the remaining sections we assume that

f ∈ L2(0, T ;H2(Ω)), ft ∈ L2(0, T ;H1(Ω)).(1.4)

It follows from the classical theory of evolutionary variational inequalities that
(P) has a unique solution; see [10, 5].

2. Derivation of the model and reduction to a bounded domain.

2.1. Derivation of the model. We suppose that all field variables depend only
on t and x ∈ R

2, and that there is a prescribed, time dependent, smooth magnetic
field Ha = (Ha(x, t), 0) applied at infinity and a prescribed, bounded current density
Ja = Ja(x, t)e3, exterior to the superconductor, such that the compatibility condition

Ja − curl Ha → 0 as |x| → ∞
is satisfied. Then Maxwell’s equations, neglecting displacement current, are

∂H

∂t
+ curl E = 0 in R

2,

curl H = J in R
2,

∇ · H = 0 in R
2,

where E is the electric field; see [10]. Note we have taken the magnetic permeability
equal to 1 for simplicity.

The critical state model assumes the following nonlinear Ohm’s law in the super-
conductor,

E = ρJ in Ω

with

|J| ≤ Jc in Ω,

and the effective resistivity ρ achieves the constraint on |J| by the relation ρ ∈ β(|J|),
where β is a multivalued map given by the graph

β(r) =

⎧⎨⎩
(−∞, 0] if r = −Jc,

0 if |r| < Jc,
[0,∞) if r = Jc.
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We assume that exterior to the superconductor the current is prescribed so

J = Ja in R
2/Ω.

To complete this set of equations we require initial and boundary conditions for
the magnetic field given, respectively, by

H(x, 0) = H0(x)

and

H → Ha as |x| → ∞.

On the boundary of the superconductor, ∂Ω, we have that

[Hτ ] = [Hν ] = 0,

where [Hτ ] and [Hν ] denote the jumps in the tangential and normal components,
respectively, of H across ∂Ω.

In order to consider homogeneous boundary conditions at infinity, it is convenient
to introduce a current density Je defined by

Je =

{
0 in Ω,
Ja in R

2/Ω.

Associated with Je is the magnetic field He such that

curl He = Je in R
2,

∇ · He = 0 in R
2,

He → Ha as |x| → ∞.

Finally, we use the shift

Ĵ = J − Je and Ĥ = H − He

to give the problem

∂Ĥ

∂t
+ curl (ρĴ) = −∂H

e

∂t
in Ω,(2.1)

curl Ĥ = Ĵ in R
2,(2.2)

∇ · Ĥ = 0 in R
2,(2.3)

|Ĵ| ≤ Jc in Ω(2.4)

together with the boundary condition

Ĥ → 0 as |x| → ∞.

Note that interpreting (2.2), (2.3) in conservation form yields the compatibility bound-
ary conditions [

Ĥν

]
=
[
Ĥτ

]
= 0 on ∂Ω.
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It follows by the assumption Ja = Ja(x, t)e3 and the definitions of J and Je that
Ĵ = (0, 0, J), where J ∈ K. From this last set of equations and using the assumption
that Ĥ lies in the (x1, x2) plane, we see that there exists a scalar potential q(x, t),
x ∈ R

2, for Ĥ such that Ĥ = (∇⊥q, 0).
Furthermore, q satisfies

−∆q = J in R
2(2.5a)

and

|∇⊥q| → 0 as |x| → ∞.(2.5b)

Imposing the condition ∫
Ω

qdx = 0,(2.5c)

the problem (2.5a)–(2.5c) is known to have a unique solution, which we denote by

q = GJ.

Similarly, there exists a scalar potential qe for He, unique up to a constant func-
tion in time, such that

He = (∇⊥qe, 0), ∇⊥qe → Ha as |x| → ∞.

We may rewrite (2.1) in the form

∇⊥
(
∂q

∂t
+ ρJ

)
= −∇⊥ ∂q

e

∂t

⇒ ∇⊥
(
∂GJ

∂t
+ ρJ

)
= −∇⊥ ∂q

e

∂t
.

Hence, fixing qe, we obtain

∂GJ

∂t
+ ρJ − λ(t) = −∂q

e

∂t
:= f,

where λ is an arbitrary function of time.
Multiplying the above equation by η−J for η ∈ K, integrating over Ω, and using

the fact that (1, η − J) = 0, we have(
∂GJ

∂t
, η − J

)
= (f, η − J) − (ρJ, η − J).

Since ρ(r) ∈ β(|J |) and |η| ≤ Jc, we have

(ρJ, η − J) ≤ 0.

Hence, we obtain problem (P).
The above formulation of Bean’s model is the basis of the numerical algorithm

proposed by Prigozhin in [9, 11] using an explicit formula for the integral operator
G. The discretization is then based upon piecewise constant finite elements. This ap-
proach leads to a dense matrix. In the following we use the finite element method to
approximate G but never form the matrix associated with this finite element approxi-
mation. Whenever G is required we use an elliptic solve. In this paper an error bound
is proved and an iterative method is proposed for the resulting discrete variational
inequality. For an engineering application of (P), see [2, 3].
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x

y

BR

Ω

Fig. 2.1. Reduction in the domain of the problem.

2.2. Reduction to a bounded domain. From a computational viewpoint,
discretizing the whole of R

2 in order to find the operator G is not practical. A
natural approach is to restrict the problem to a large bounded region BR containing
Ω and to write an exact boundary condition for Gv on ∂BR.

Consider the situation where Ω is embedded in a large circle BR of radius R; see
Figure 2.1.

We consider a Dirichlet-to-Neumann mapping which relies on the harmonic prop-
erty of Gv outside BR and the boundedness of ∇⊥Gv in L2(R2). This method of
truncating a problem defined on an infinite domain to one defined on a finite domain
is described in [6]. An overview is given here.

For w ∈ H1/2(∂BR) let z solve

−∆z = 0 in R
2\BR,(2.6)

z = w on ∂BR,(2.7)

∇z ∈ L2(R2\BR).(2.8)

It follows that we have a Fourier expansion

z(r, θ) =
a0

2
+

∞∑
k=1

(ak cos (kθ) + bk sin (kθ))Rkr−k,

where ak, bk are the Fourier coefficients for w = w(θ) on ∂BR.
Differentiating with respect to r and letting r → R gives

∂z

∂r
(R, θ) = −

∞∑
k=1

k

R
(ak cos (kθ) + bk sin (kθ)).(2.9)
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Since

ak = − 1

kπ

∫ 2π

0

∂w

∂ϕ
sin (kϕ)dϕ and bk =

1

kπ

∫ 2π

0

∂w

∂ϕ
cos (kϕ)dϕ,

substituting into (2.9) gives the relation

∂z

∂r

∣∣∣∣
∂BR

(θ) = B(w)(θ) := −
∞∑
k=1

1

Rπ

∫ 2π

0

∂w

∂ϕ
sin (k(ϕ− θ))dϕ.(2.10)

Let z be a solution of (2.6)–(2.8) for w being the trace of Gv on ∂BR. Taking
B(·) to be defined as above, it follows that Gv solves the following Neumann problem
defined on BR:

−∆Gv = v in BR,
∂Gv

∂ν
= B(Gv) on ∂BR.(2.11)

Multiplying (2.11) by a test function η ∈ H1(BR), integrating over BR, and then
integrating by parts yield the equivalent variational problem:

For v ∈ F0, find Gv ∈ H1(BR) such that

(Gv, 1) = 0, a(Gv, η) + b(Gv, η) = (v, η) ∀ η ∈ H1(BR),(2.12)

where for ξ, η ∈ H1(BR),

a(ξ, η) :=

∫
BR

∇ξ · ∇η dx and b(ξ, η) :=

∫
∂BR

B(ξ)η dS.

The existence of a unique solution Gv to this variational problem is easily proved.
We define

A(ξ, η) := a(ξ, η) + b(ξ, η) ∀ ξ, η ∈ H1(BR)(2.13)

together with the seminorm and norm

|η|2A := A(η, η) ∀ η ∈ H1(BR), ||η||2A−1 := |Gη|2A ∀ η ∈ F0.(2.14)

Henceforth we define the L2 norm and the H1 norm and seminorm over X re-
spectively by

||η||20,X =

∫
X

|η|2dx, ||η||21,X =

∫
X

(|η|2 + |∇η|2)dx and |η|21,X =

∫
X

|∇η|2dx.

From [6] we have that A is continuous with respect to the H1 norm; that is, for all
ξ, η ∈ H1(BR)

|A(ξ, η)| ≤ C||ξ||1,BR
||η||1,BR

.(2.15)

Using (2.12)–(2.15), we have the following useful result:

(ξ, η) = A(Gξ, η) ≤ |Gξ|A|η|A ≤ C||ξ||A−1 ||η||1,BR
∀ η ∈ H1(BR), ξ ∈ F0.

(2.16)
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3. Finite element approximation. In this section we consider a finite element
approximation of (P) under the following assumptions on the partitioning:

(A) Let Ω be a polygon and let T 1
h be a quasi-uniform partitioning of Ω into

disjoint open simplices κ with hκ := diam(κ) and h := maxκ∈T 1
h
hκ, so that

Ω = ∪κ∈T 1
h
κ.

(B) Let T 2
h be a partitioning of BR into disjoint open elements κ ∈ T 2

h such that
– ∪κ∈T 2

h
κ = BR,

– either κ ∩ Ω is empty or κ ∈ T 1
h ,

– if κ ∩ ∂BR = ∅, or a point, then κ is a simplex; otherwise, κ is a three-
sided element with a curved edge on ∂BR.

Associated with T 1
h is the finite element space of continuous piecewise linear func-

tions on Ω such that

S1
h =

{
χ ∈ C(Ω) : χ|κ is linear ∀ κ ∈ T 1

h

}
⊂ H1(Ω).

Similarly associated with T 2
h is the finite element space of continuous functions on BR

such that

S2
h =

{
χ ∈ C(BR) : χ|κ is linear ∀ κ ∈ T 2

h

}
⊂ H1(BR).

The discrete inner product (·, ·)h is defined by numerical integration in the following
way.

Associated with each node xi, i = 1, 2, . . . ,M , of S1
h we have a lumped mass

matrix value Mi > 0. We now introduce a discrete semi-inner product on L2(Ω),
defined by

(η1, η2)
h

:=

∫
Ω

Πh(η1η2)dx =

M∑
i=1

Mi(η1η2)(xi),(3.1)

where Πh : C(Ω) → S1
h is the standard linear interpolation operator.

We introduce the L2(Ω) projection operator Qh : L2(Ω) → S1
h such that(

Qhη, χ
)h

= (η, χ) ∀ χ ∈ S1
h.(3.2)

Similar to (2.12) we introduce the operator Gh : F0 → Vh := {vh ∈ S2
h : (vh, 1) = 0}

such that

A(Ghξ, χ) = (Qhη, χ)h ∀ ξ ∈ F0, χ ∈ S2
h,(3.3)

and we define the norm

||η||2A−h :=
∣∣Ghη∣∣2

A
∀η ∈ F0.

It follows from (3.2) and (3.3) similarly to (2.16) that

(ξ, χ) ≤ C||ξ||A−h ||χ||1,BR
∀ χ ∈ S2

h, ξ ∈ F0.(3.4)

From [6] we have the following useful results:∥∥(G−Gh)η
∥∥

0,BR
≤ CRh

2 ‖η‖0,Ω ∀ η ∈ F0,(3.5)
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∣∣
1,BR

≤ CRh ‖η‖0,Ω ∀ η ∈ F0,(3.6)

∣∣Ghχ∣∣
A

≤ |Gχ|A ∀ χ ∈ S1
h,(3.7)

and using (3.6) it follows that

|Gχ|A ≤ C
∣∣Ghχ∣∣

A
∀ χ ∈ S1

h.(3.8)

Lastly from (2.16) and an inverse inequality we have the following for all χ ∈ F0∩S2
h:

‖χ‖2
0,Ω ≤ C |Gχ|A||χ||1,Ω ≤ Ch−1|Gχ|A ‖χ‖0,Ω

⇒ ‖χ‖0,Ω ≤ Ch−1|Gχ|A.(3.9)

Lemma 3.1. We have∣∣G(η −Qhη)
∣∣
A
≤ Ch ‖η‖0,Ω ∀ η ∈ F0.(3.10)

Proof. Using (2.12), (3.2), (3.3), (3.5), Hölder’s inequality, and the well-known
estimate ∣∣(ξ, η) − (ξ, η)h

∣∣ ≤ Ch2|ξ|1,Ω|η|1,Ω ≤ Ch|ξ|1,Ω ‖η‖0,Ω ∀ ξ, η ∈ S1
h,(3.11)

we have the following for all η ∈ F0:∣∣G(η −Qhη)
∣∣2
A

= A(G(η −Qhη), G(η −Qhη))

= (G(η −Qhη), η −Qhη)

= ((G−Gh)(η −Qhη), η −Qhη)

+ (Gh(η −Qhη), Qhη)h − (Gh(η −Qhη), Qhη)

≤ ∥∥(G−Gh)(η −Qhη)
∥∥

0,Ω

∥∥η −Qhη
∥∥

0,Ω

+Ch
∣∣Gh(η −Qhη)

∣∣
1,Ω

∥∥Qhη∥∥
0,Ω

≤ Ch2
∥∥η −Qhη

∥∥2

0,Ω
+ Ch

∣∣Gh(η −Qhη)
∣∣
A

∥∥Qhη∥∥
0,Ω

.

The result follows by noting (3.7) and using Young’s inequality.
Finally we introduce a finite element approximation of (P):
(Ph) Find Jh ∈ Kh such that Jh(·, 0) = QhJ0 and(

∂

∂t
GhJh, χ− Jh

)
≥ (f, χ− Jh) ∀ χ ∈ Kh,(3.12)

where

Kh :=
{
χ ∈ S1

h : |χ| ≤ Jc, (χ, 1) = 0
}
.

Remark 3.1. Let the assumptions (A) hold. Then there exists a unique solution
Jh to (Ph) such that

||Jh||L∞(0,T ;L∞(Ω)) +

∥∥∥∥ ∂∂tGJh
∥∥∥∥
L∞(0,T ;A)

≤ C.(3.13)
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Lemma 3.2. The unique solutions of (Ph) and (Ph) satisfy

||J − Jh||2L∞(0,T ;A−1) ≤ Ch.(3.14)

Proof. Since Jh ∈ K using (1.1), (2.16), and (3.12) we have

1

2

d

dt
‖J − Jh‖2

A−1 =

(
∂

∂t
G(J − Jh), J − Jh

)
≤ (f, J − Jh) −

(
∂

∂t
GJh, J − Jh

)
= (f, J − Jh) −

(
∂

∂t
GhJh, Q

hJ − Jh

)
−
(
∂

∂t
GhJh, J −QhJ

)
−
(
∂

∂t
(G−Gh)Jh, J − Jh

)
≤ (f, J − Jh) −

(
f,QhJ − Jh

)− ( ∂

∂t
GhJh, J −QhJ

)
−
(
∂

∂t
(G−Gh)Jh, J − Jh

)
=

(
f − ∂

∂t
GhJh, J −QhJ

)
−
(
∂

∂t
(G−Gh)Jh, J − Jh

)
≤
∣∣∣∣f − ∂

∂t
GhJh

∣∣∣∣
A

‖J −QhJ‖A−1 +

∥∥∥∥ ∂∂t (G−Gh)Jh

∥∥∥∥
0,Ω

‖J − Jh‖0,Ω.

Using the above inequality together with (1.4), (3.9), (3.5), (3.10), and (3.13) yields

1

2

d

dt
‖J − Jh‖2

A−1 ≤ Ch+ Ch2

∥∥∥∥ ∂∂tJh
∥∥∥∥

0,Ω

‖J − Jh‖0,Ω

≤ Ch+ Ch

∣∣∣∣ ∂∂tGJh
∣∣∣∣
A

.

Integrating from 0 to t and using (3.13) gives the required result.
Remark 3.2. This is a suboptimal error bound because of the error term (f −

∂
∂tG

hJh, J − PhJ), arising due to the variational inequality, which only gives O(h)
because of the lack of H1 regularity of J .

4. Fully discrete model. In this section we consider a fully discrete discretiza-
tion of (P). Setting N∆t = T and tn : n∆t for n = 0 → N and for any χh ∈ S1

h,
n = 0, 1, . . . , we set

δtχ
n =

χn − χn−1

∆t
.

We consider the following fully discrete discretization of (P):
(Ph,∆t) For n = 1 → N , find Jnh ∈ Kh such that J0

h = QhJ0 and(
Gh(δtJ

n
h ), χ− Jnh

) ≥ (fn, χ− Jnh ) ∀ χ ∈ Kh,(4.1)

where fn := f(·, tn).
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Lemma 4.1. Let the assumptions (A) hold. Then for n = 1 → N there exists a
unique solution Jnh to (Ph,∆t) such that

max
n=1→N

||δtJnh ||2A−h ≤ C.(4.2)

Proof. Existence and uniqueness for (4.1) are standard. Setting χ = Jn−1
h in

(4.1), dividing by ∆t, and noting (1.4) and (3.4) gives(
GhδtJ

n
h , δtJ

n
h

) ≤ (fn, δtJ
n
h )

⇒ ||δtJnh ||2A−h ≤ ||fn||1,BR
||δtJnh ||A−h

which together with (1.4) yields (4.2).
Before we derive an error bound on the solutions of (Ph) and (Ph,∆t) we introduce

some useful notation. For n ≥ 1 we set

Jh,∆t(t) :=
t− tn−1

∆t
Jnh +

tn − t

∆t
Jn−1
h , f∆t(t) :=

t− tn−1

∆t
fn+

tn − t

∆t
fn−1 ∀t∈ [tn−1, tn],

(4.3)

and

Ĵh,∆t(t) := Jnh , f̂∆t(t) := fn ∀ t ∈ (tn−1, tn].(4.4)

From (4.3) and (4.4) it follows that for a.e. t ∈ (0, T ),

Jh,∆t − Ĵh,∆t = −(tn − t)
∂

∂t
Jh,∆t, f∆t − f̂∆t = −(tn − t)

∂

∂t
f∆t.(4.5)

We also introduce for t ∈ (0, T ),

R(t) :=

(
f̂∆t − ∂

∂t
GhJh,∆t, Ĵh,∆t − Jh,∆t

)

= (tn − t)

(
f̂∆t − ∂

∂t
GhJh,∆t,

∂

∂t
Jh,∆t

)
, t ∈ (tn−1, tn],(4.6)

and for t ∈ (0, T ],

D(t) := Dn := −(Gh(δtJnh ), δtJ
n
h

)
+
(
Gh(δtJ

n−1
h ), δtJ

n
h

)
, t ∈ (tn−1, tn],(4.7)

with J−1
h satisfying (4.1) and∣∣∣∣∣∣∣∣J0 − J−1

∆t

∣∣∣∣∣∣∣∣2
A−h

=
(
Gh(δtJ

0
h), δtJ

0
h

) ≤ C.(4.8)

Lemma 4.2. For a.e. t ∈ (0, T ) we have that

R(t) ≤ (tn − t)

[
D(t) + ∆t

(
∂

∂t
fh,∆t,

∂

∂t
Jh,∆t

)]
, t ∈ (tn−1, tn],(4.9)
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and ∫ T

0

R(t)dt ≤ C(∆t)2.(4.10)

Proof. Setting χ = Jnh in (4.1) for n = n− 1 and using the definitions of D(t) and
R(t), we have

R(t) = −(tn − t)

(
∂

∂t
GhJh,∆t,

∂

∂t
Jh,∆t

)
+ (tn − t)

(
f̂∆t(t) − f̂∆t(t− ∆t),

∂

∂t
Jh,∆t

)
+(tn − t)

(
f̂∆t(t− ∆t),

∂

∂t
Jh,∆t

)
≤ (tn − t)Dn + (tn − t)

(
f̂∆t(t) − f̂∆t(t− ∆t),

∂

∂t
Jh,∆t

)
,

and (4.9) follows by using (4.3). We now integrate (4.9) from 0 to t and use (1.4),
(3.4), and (4.2) to obtain

∫ T

0

R(t)dt =

N∑
n=1

Dn

∫ tn

tn−1

(tn − t)dt+

∫ T

0

∆t

(
∂

∂t
f∆t,

∂

∂t
Jh,∆t

)
(tn − t)dt

≤
N∑
n=1

(∆t)2

2
Dn + (∆t)2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂tf∆t
∣∣∣∣∣∣∣∣

1,BR

∣∣∣∣∣∣∣∣ ∂∂tJh,∆t
∣∣∣∣∣∣∣∣
A−h

dt(4.11)

≤
N∑
n=1

(∆t)2

2
Dn + C(∆t)2.(4.12)

To bound the first term on the right-hand side we use the identity

2
(
Gh(a− b), a

)
=
(
Gha, a

)− (Ghb, b)+
(
Gh(a− b), a− b

)
to obtain

2Dn ≤ (Gh(δtJn−1
h ), δtJ

n−1
h

)− (Gh(δtJnh ), δtJ
n
h

)
.

Summing the above inequality from n = 1 → N and using (3.4) and (4.8), we have

2

N∑
n=1

Dn ≤(Gh(δtJ0
h), δtJ

0
h

)− (Gh(δtJNh ), δtJ
N
h

)

≤ (Gh(δtJ0
h), δtJ

0
h

) ≤ C.(4.13)

Using (4.13) in (4.12), we conclude (4.10).
Lemma 4.3. The unique solutions of (Ph) and (Ph,∆t) satisfy

||Jh − Jh,∆t||L∞(0,T ;A−1) ≤ C∆t.(4.14)
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Proof. Setting χ = Jh in (4.1) and χ = Jh,∆t in (3.12) and adding the resulting
inequalities gives(

∂

∂t
Gh(Jh,∆t − Jh), Jh,∆t − Jh

)
≤
(
f̂∆t − f, Jh,∆t − Jh

)
+

(
∂

∂t
GhJh,∆t − f̂∆t, Jh,∆t − Ĵh,∆t

)
.

Noting (3.4) and (4.6), we obtain

1

2

∂

∂t
||Jh,∆t − Jh||2A−h ≤

∣∣∣∣∣∣f̂∆t − f
∣∣∣∣∣∣

1,BR

||Jh,∆t − Jh||A−h + R.

From Lemma 3.6 in [8] we conclude that

max
t∈[0,T ]

||Jh,∆t − Jh||A−h ≤
(
||Jh,∆t(0) − Jh(0)||2A−h +

∫ T

0

R(t)dt

)1/2

+

∫ T

0

∣∣∣∣∣∣f̂∆t − f
∣∣∣∣∣∣

1,BR

dt,

and noting (1.4), (3.8), (4.4), and (4.10) yields the required result.
Finally we have our main result.
Theorem 4.4. Let the assumptions (A) hold. Then the unique solutions {Jnh }Nn=0

to (Ph,∆t) and J to (P) satisfy

||J − Jh,∆t||L∞(0,T ;A−1) ≤ C(T )(h1/2 + ∆t).

Proof. The desired result follows directly from (3.14) and (4.14).

Recalling that Ĥ = ∇⊥GJ and setting Ĥ
n

h = Ĥh(tn) := ∇⊥GhJh(tn) and Ĥh,∆t

as in (4.3), we conclude the following.
Corollary 4.1. The error between the magnetic field H and its approximation

Hh,∆t is ∥∥H −Hh,∆t

∥∥
L∞(0,T ;L2(BR))

≤ C(T )(h1/2 + ∆t).

5. Algorithm for solving (P̂h,∆t). In the numerical simulations presented in

section 6 we solve the following approximation of (P̂h,∆t):

(P̂h,∆t) For n = 1 → N , find Jnh ∈ Kh such that J0
h = QhJ0 and(

Ĝh
(
δtĴ

n
h

)
, χ− Ĵnh

)h
≥
(
fn, χ− Ĵnh

)h
∀ χ ∈ Kh,(5.1)

where fn := f(·, tn) and the operator Ĝh : Vh → Vh is such that

A(Ĝhξ, χ) = (ξ, χ)h ∀ ξ ∈ Vh, χ ∈ S2
h.

Below we give an algorithm for solving (P̂h,∆t). See [5] for an account of iterative
methods for solving discrete variational inequalities.

Reformulating (P̂h,∆t) gives the following problem:
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Given J0
h = PhJ0, for n = 1 → N , find Jnh ∈ Kh and λn ∈ R such that |Jnh | ≤ Jc,

(Jnh , 1)h = 0, and(
ĜhĴnh , χ− Ĵnh

)h
≥
(
∆tfn + λn + ĜhĴn−1

h , χ− Ĵnh

)h
∀ χ ∈ S1

h such that |χ| ≤ Jc.

Setting Λnh := ∆tfn + ĜhĴn−1
h , the above problem is equivalent to the following

problem:
Find Ĵnh ∈ S1

h such that (Jnh , 1)h = 0 and

ĜhĴnh − Λnh − λn + βnh = 0

⇔ 1

µ
Ĵnh + ĜhĴnh − λn + βnh = Λnh +

1

µ
Ĵnh ,(5.2)

where βnh (xi) ∈ β(Jnh (xi)).
We solve (5.2) iteratively using a splitting algorithm of Lions and Mercier [7]. Let

Ĵ0
h be given; for fixed µ we construct Jn,k+1

h , βn,k+1
h , and λn,k+1 iteratively by solving

for k ≥ 0:

1

µ
Ĵ
n,k+1/2
h + ĜhĴ

n,k+1/2
h = Λnh +

1

µ
Ĵn,kh − βn,kh + λn,k := Λ̃n,kh ,(5.3)

1

µ
Ĵn,k+1
h − λn,k+1 + βn,k+1

h = Λnh +
1

µ
Ĵ
n,k+1/2
h − ĜhĴ

n,k+1/2
h := Fn,k+1/2,(5.4)

(Jn,k+1
h , 1)h = 0,

where βn,k+1
h (xi) ∈ β(Jn,k+1

h (xi)). To solve (5.3) we use (3.3) to rewrite

1

µ

(
J̄
k+1/2
h , χ

)h
+
(
ĜhJ̄

k+1/2
h , χ

)h
=
(
Λ̃n,kh , χ

)h
as

1

µ
A(ĜhJ̄

k+1/2
h , χ) +

(
ĜhJ̄

k+1/2
h , χ

)h
=
(
Λ̃n,kh , χ

)h
,(5.5)

where J̄
k+1/2
h = Ĵ

k+1/2
h − fn.

At the ith node we may rewrite (5.4) using the projection

Jn,k+1
i = P (µ(F

n,k+1/2
i + λn,k+1)),(5.6)

where

P (r) =

⎧⎨⎩
Jc if r ≥ Jc,
r if |r| < Jc,

−Jc if r ≤ −Jc.

Noting that (Jn,k+1
h , 1)h = 0, λn,k+1 solves the equation

g(λ) =
∑
i

MiP (µ(F
n,k+1/2
i + λ)) = 0.(5.7)

To obtain the solution at the (k + 1)th time step we proceed as follows:
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Step 1. Solve (5.5) to obtain ĜhJ̄
k+1/2
h .

Step 2. Set ĜhJ
n,k+1/2
h = ĜhJ̄

k+1/2
h + fn.

Step 3. Use (5.3) to obtain Ĵ
n,k+1/2
h .

Step 4. Solve (5.6) and (5.7) to obtain Ĵn,k+1
h .

Step 5. Use (5.4) to obtain βn,k+1
h .

Step 6. If |Ĵn,k+1
h − Ĵn,kh | ≤ tol, then set Ĵnh = Ĵn,k+1

h ; else set Ĵn,kh = Ĵ
n,k+1/2
h

and go to Step 1.
The above procedure is relatively cheap apart from Step 1, which involves the

solution of a large sparse matrix problem,

Ax = f , A ∈ R
N×N .

In general N is required to be large, so that interfaces between critical current and
noncritical current can be captured.

Since the matrix A remains fixed throughout time, we could calculate the inverse,
or an LU decomposition, of A at the beginning. Due to the nonlocal boundary
condition the LU decomposition of this matrix produces O(N3/2) entries, and thus,
for large problems this is not practical.

Since Step 1 is part of an iteration, we need not solve this problem exactly. In the
following section ten or fewer preconditioned GMRES iterations (see [12]) are used
with an ILU decomposition used as a preconditioner. This allows large problems to
be solved and accurate solutions to be obtained.

Note that Step 4 is well defined for Jn,k+1
h . It is easily seen that the function g is

continuous and monotone piecewise linear which takes negative values for sufficiently
negative λ and positive values for sufficiently positive λ, and hence (5.7) has a solution.
Furthermore it has only a nonunique solution when g(λ) = 0 in an interval and in

such an interval we observe that P (F
n,k+1/2
i + λ) is constant for each i; hence the

solution of (5.6) is unique. A solution of (5.7) can be found by efficiently by using the
bisection method.

In [9, 11] Prigozhin solves the discrete variational inequality associated with the
full matrix approximation of G using a projected SOR algorithm. We avoid doing
this by using the splitting algorithm defined above in which it is not necessary to
form the solution operator G explicitly but its action is calculated by the use of an
elliptic solve. That is, (5.3) is implemented using elliptic solve (5.5). The constraint
condition is then handled by (5.4), which is easily solved by the projection (5.6) and
the Lagrange multiplier equation (5.7).

In practice we do not actually compute GhJh. Instead we approximate it by
replacing the nonlocal boundary inner product b(·, ·) with a truncated version bM (·, ·),
where

bM (ξ, η) =

∫
∂Ω

BM (ξ)ηdS

with

BM (w)(θ) :=

∫
∂Ω

M∑
k=1

1

Rπ

∫ 2π

0

∂w

∂ϕ
sin (k(ϕ− θ))dϕ.

Error analysis for this approximation can be found in [6].
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Fig. 6.1. A typical mesh used for numerical simulations.

6. Numerical results. In this section we present three sets of computational
simulations. All results are calculated on domains of the form seen in Figure 6.1,
where the superconductor is located in the square region (−0.5, 0.5)× (−0.5, 0.5). For
all simulations the critical current density is taken to be Jc = 1 and the truncated
sum for the nonlocal boundary inner product has M = 5.

In the first set (Figure 6.2) we take an applied magnetic field

Ha = (0,min{t,Hmax}, 0)T

for four values of Hmax. For each value of Hmax we display steady state solutions of
the current density Jh. We see that while the applied magnetic field is increasing, the
region in which the current takes critical values also increases.

In the second set of results (Figure 6.3) we apply an oscillating magnetic field of
the form

Ha =

(
0, 0.14 sin

πt

2
, 0

)T
,(6.1)

and we display plots of the current density Jh at times t = 1, 1.5, 2, and 2.5.

In Table 6.1 we display the calculated error∥∥∥J̃(·, t∗) − Jh,∆t(·, t∗)
∥∥∥
A−1
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−0.5 0 0.5
−0.5

0

0.5

Current density, H
max

 = 0.05

−0.5 0 0.5
−0.5

0

0.5

Current density, H
max

 = 0.08

−0.5 0 0.5
−0.5

0

0.5

Current density, H
max

 = 0.12

−0.5 0 0.5
−0.5

0

0.5

Current density, H
max

 = 0.16

Fig. 6.2. Steady state solutions: Ha = (0,min{t,Hmax}, 0)T .

−0.5 0 0.5
−0.5

0

0.5
Time = 1

−0.5 0 0.5
−0.5

0

0.5
Time = 1.5

−0.5 0 0.5
−0.5

0

0.5
Time = 2

−0.5 0 0.5
−0.5

0

0.5
Time = 2.5

Fig. 6.3. Current density for oscillating problem: Ha = (0, 0.14 sin πt
2
, 0)T .
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Table 6.1

Estimated errors for varying times and meshes.

t∗ = 1.0 t∗ = 2.0 t∗ = 3.0

h = 1/8, ∆t = 1/16 0.0236 0.0255 0.0236
h = 1/16, ∆t = 1/64 0.0126 0.0130 0.0126
h = 1/32, ∆t = 1/256 0.0063 0.0068 0.0063
h = 1/64, ∆t = 1/1024 0.0030 0.0037 0.0030

−0.5 0 0.5
−0.5

0

0.5
Time = 1.5

−0.5 0 0.5
−0.5

0

0.5
Time = 2

−0.5 0 0.5
−0.5

0

0.5
Time = 2.5

−0.5 0 0.5
−0.5

0

0.5
Time = 3

Fig. 6.4. Current density for rotating problem: Ha = min{t, 0.14}(sin πt
2
, cos πt

2
, 0)T .

for the oscillating magnetic field (6.1). Here J̃ is the solution of (P̂h,∆t) obtained
using a fine mesh (h = 1/256) and small time step (∆t = 0.001). These results are
consistent with an error of O(h).

Finally, in Figure 6.4 we take a rotating applied magnetic field of the form

Ha = min{t, 0.14}
(

sin
πt

2
, cos

πt

2
, 0

)T
,

and we display plots of the current density Jh at times t = 1.5, 2, 2.5, and 3.
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Abstract. In this paper, finite element discretizations of the degenerate operator −ω2(y)uxx −
ω2(x)uyy = g in the unit square are investigated, where the weight function satisfies ω(ξ) > 0 for
ξ ∈ (0, 1] and is monotonically increasing. We propose two multilevel methods in order to solve the
resulting system of linear algebraic equations. The first method is a multigrid algorithm with line
smoother. A proof of the smoothing property is given. The second method is a Bramble–Pasciak–Xu-
like preconditioner with line smoother which we call multiple tridiagonal scaling Bramble–Pasciak–Xu
preconditioner.
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1. Introduction. In this paper, we consider the following problem: Find u ∈
H1

0,ω(Ω) such that

a(u, v) :=

∫
Ω

(ω(y))2uxvx + (ω(x))2uyvy =

∫
Ω

gv =: 〈g, v〉 ∀v ∈ H1
0,ω(Ω),(1.1)

where H1
0,ω(Ω) = {u ∈ L2(Ω), ω(x)uy, ω(y)ux ∈ L2(Ω), u |∂Ω= 0}. The domain

Ω = (0, 1)2 is the unit square.
Assumption 1.1. The weight function ω(ξ) ∈ L∞((0, 1)) is assumed to be mono-

tonically increasing and satisfies ω(ξ) > 0 for ξ ∈ (0, 1].
Remark 1.1. If ω(0) = 0, then the differential operator in (1.1) is not uniformly

elliptic in the Sobolev space H1
0 (Ω), and an estimate of the type

a(u, u) ≥ γ ‖ u ‖2
H1(Ω) ∀u ∈ H1

0 (Ω)(1.2)

with a constant γ > 0 is not satisfied.
The integrand on the left-hand side in (1.1) is of the type (∇u)TD(x, y)∇v with

the diffusion tensor

D(x, y) =

[
ω2(y) 0

0 ω2(x)

]
.(1.3)

Therefore, the matrix D is symmetric and positive definite for all (x, y) ∈ Ω but not
uniformly positive definite if ω(0) = 0. Moreover, the matrix D is bounded for each
(x, y) ∈ Ω. Such problems are called degenerate problems. In the past, degenerate
problems have been considered relatively rarely. One reason is the unphysical behavior
of the PDE which is quite unusual in technical applications. One work focusing on
this type of PDE is the book of Kufner and Sändig [17]. Nowadays, problems of this
type have become more and more popular because there are stochastic PDEs which
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bereich 393.
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Fig. 1.1. Mesh for the finite element method (left). Notation within a macroelement Ek
ij (right).

have a similar structure. An example of a degenerate stochastic PDE is the Black–
Scholes PDE in [21]. Moreover, the solver related to the problem of the subdomains
embedded in a domain decomposition preconditioner for the p-version of the finite
element method can be interpreted as an h-version fem-discretization matrix of (1.1)
in the case of the weight function ω(ξ) = ξ. We refer to [6] and [7] for more details.

We discretize problem (1.1) by finite elements. For this purpose, some notation
is introduced. Let k be the level of approximation and n = 2k. Let xkij = ( in ,

j
n ),

where i, j = 0, . . . , n. The domain Ω is divided into congruent, isosceles, right-angled
triangles τ s,kij , where 0 ≤ i, j < n and s = 1, 2 (see Figure 1.1). The triangle τ1,k

ij has

the three vertices xkij , x
k
i+1,j+1, and xki,j+1, τ

2,k
ij has the three vertices xkij , x

k
i+1,j+1,

and xki+1,j (see Figure 1.1). Furthermore, let Ekij = τ1,k
ij ∪ τ2,k

ij be the macroelement[
i
n ,

i+1
n

]
×
[
j
n ,

j+1
n

]
. Piecewise linear finite elements are used on the mesh Tk =

{τ s,kij }n−1,n−1,2
i=0,j=0,s=1. The subspace of piecewise linear functions φkij with

φkij ∈ H1
0 (Ω), φkij |τs,k

lm
∈ P1(τ

s,k
lm )

is denoted by Vk, where P1 is the space of polynomials of degree ≤ 1. A basis of Vk

is the system of the usual hat-functions {φkij}n−1
i,j=1 uniquely defined by

φkij(x
k
lm) = δilδjm

and φkij ∈ Vk, where δil is the Kronecker delta. Now, we can formulate the discretized
problem.

Find uk ∈ Vk such that

a(uk, vk) = 〈g, vk〉 ∀vk ∈ Vk(1.4)

holds. Problem (1.4) is equivalent to solving the system of linear algebraic equations

Kω,kuk = g
k
,(1.5)

where Kω,k =
[
a(φkij , φ

k
lm)
]n−1

i,j,l,m=1
, uk = [uij ]

n−1
i,j=1, and g

k
=
[
〈g, φklm〉

]n−1

l,m=1
. The

index ω denotes the weight function ω. Then, uk =
∑n−1
i,j=1 uijφ

k
ij is the solution of
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(1.4). In this paper, we will derive fast solution methods for (1.5). Because of the

right-angled triangles τ s,kij , and the diagonal matrix D(x, y) in (1.3), the matrix Kω,k

is a sparse matrix with 5-point stencil structure and O(n2) nonzero matrix entries.
Therefore, it is important to find a method which solves (1.5) in O(n2) arithmetical
operations. Using direct methods, an additional memory requirement is necessary.
Moreover, the arithmetical cost is at least O(n3) (see [13] and [14]).

Using iterative methods, no additional memory requirement is necessary in order
to save the matrix Kω,k.

However, efficient preconditioners are needed. For systems of finite element equa-
tions arising from the discretization of boundary value problems as, for example,
−uxx − uyy = f , efficient solution techniques have been developed in the last two
decades. Examples for such solvers are the preconditioned conjugate gradient (PCG)
method with Bramble–Pasciak–Xu preconditioners (see [11]), or hierarchical basis
preconditioners (see [26]), and multigrid methods (see [15] and [16]).

However, the differential operator in (1.1) is not spectrally equivalent to the Lapla-
cian. It is an elliptic, but not uniformly elliptic, differential operator (cf. (1.2)). In
a certain way, this differential operator can be interpreted as an operator with lo-
cal anisotropies, where the range of anisotropy ε goes to zero, if the discretization
parameter h tends to zero.

A typical anisotropic model problem considered in the literature (see [15]) is

−∂
2u

∂x2
− ε

∂2u

∂y2
= f, ε small.

One iterative method with a rate of convergence independent of the choice of ε is the
multigrid algorithm with a line Gauss–Seidel (GS) smoother (cf. [16]). Bramble and
Zhang [12] considered multigrid methods for a more general case than the Laplace
equation. Using a line Jacobi or GS smoother in the x-direction, they proved multi-
grid convergence for differential operators of the type −(f(x, y)ux)x − (g(x, y)uy)y,
where 0 < g(x, y) ≤ gmax and 0 < fmin < f(x, y) < fmax, i.e., one of the coefficients
can be arbitrarily small. However, both coefficients can be arbitrarily small in (1.1).
So a modified smoother handling changing types of anisotropies has to be used. The
papers [2], [19], and [1] propose algebraic multilevel iteration (AMLI) preconditioners.
In the case of piecewise constant functions f(x, y) and g(x, y), the optimality and
robustness of the methods can be shown, i.e., these methods can handle changing
types of anisotropies. In our paper, the coefficients are not piecewise constant.

In [6], the special case of the singular weight function ω(ξ) = ξ in (1.1) is consid-
ered. Using the techniques of Braess [10], Schieweck [22], and Pflaum [20], a mesh-size
independent multigrid convergence rate ρ < 1 has been shown. Moreover, numerical
experiments (see [9]) for discretizations of differential operators as (1.1) indicate a
mesh-size independent convergence rate ρ < 1 for multigrid algorithms with semi-
coarsening and line smoother. In [5], a BPX-like preconditioner which we call the
multiple tridiagonal scaling BPX (MTS-BPX) preconditioner Ĉξ,k for Kξ,k is pro-
posed (i.e., ω(ξ) = ξ). Numerical experiments indicate a small increasing condition
number of Ĉ−1

ξ,kKξ,k.
The aim of this paper is to extend the MTS-BPX preconditioner of [5] and the

multigrid algorithm of [6] to the more general problem of Kω,kw = r, where ω(ξ)
satisfies Assumption 1.1.

This paper is organized as follows. In section 2, the multigrid algorithm is consid-
ered. We state the main assumptions required for the algebraic convergence theory,
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the constant in the strengthened Cauchy inequality, and the smoothing property.
Then, the definition of the smoother in [6] for Kξ,k is generalized to a smoother for
Kω,k. Moreover, a proof of the smoothing property is given. In section 3, the MTS-

BPX preconditioner Ĉω,k for Kω,k is defined. Finally, the upper eigenvalue estimate

of Ĉ−1
ω,kKω,k is proved and some numerical experiments are given.
Throughout this paper, ω(ξ) describes the weight function in (1.1). Moreover, the

lowest and largest eigenvalues of the matrix A are denoted by λmin(A) and λmax(A),
respectively. The integer k is the level number for the refinement of the finite element
mesh and n = 2k.

2. Multigrid for degenerate problems. In the typical multigrid proofs (cf.
[15]), one splits the multigrid operator into a product of two operators, A and B. One
proves a smoothing property for the operator A, whereas an approximation property
has to be shown for B. Helpful tools for this aim are the approximation theorems
for finite elements such as the Aubin–Nitsche trick. In order to prove such a result,
the boundedness and the uniform ellipticity of the bilinear form are required in the
Sobolev space H1(Ω). However, the uniform ellipticity of the bilinear form (1.1)
cannot be guaranteed (cf. relation (1.2)).

Another technique in order to prove a mesh-size independent convergence rate
has been introduced by Braess [10]. In this method, the approximation space Vk is
split into a direct sum of the space Vk−1 and a complementary space Wk. One obtains
a multiplicative solver for the problem on Vk by solving the problems on Vk−1 and
Wk. Schieweck [22] and Pflaum [20] have extended this technique. This method does
not require regularity assumptions to the bilinear form. Moreover, for triangulations
of simple geometry as for (1.4), the required assumptions are quite simple to handle.

Remark 2.1. Note that the bilinear form a(·, ·) is positive definite on the space
Vk (cf. Assumption 1.1).

2.1. Multigrid algorithm and convergence theory. In this subsection, the
multigrid algorithm in order to solve (1.5) is introduced. The space Vk is represented
as the direct sum

Vk = Vk−1 ⊕ Wk, where Wk = span{φkij}(i,j)∈Nk

(see, e.g., [18], [10], [22], [23], and [24]). The index subset Nk ⊂ N
2 contains the

indices of the new nodes on level k and is given by

Nk := {(i, j) ∈ N
2, 1 ≤ i, j ≤ n− 1, i = 2m− 1 or j = 2m− 1,m ∈ N}.(2.1)

Let u0 ∈ Vk be the initial guess, and let ‖ · ‖2
a:= a(·, ·) be the energy norm. One step

of the multigrid algorithm u1 = MULT (k, u0, g) is defined recursively as follows.
Algorithm 2.1 (MULT ). Set l = k.
• If l > 1, then do

1. Projection onto Wl: Determine w̃1 ∈ Wl such that ‖ w̃1 − w1 ‖a≤ ρ1 ‖
w1 ‖a, where w1 ∈ Wl is the unique solution of

a(w1, v) = 〈g, v〉 − a(u0, v) = 〈r1, v〉 ∀v ∈ Wl.(2.2)

Set u1
0 = u0 + w̃1.

2. Projection onto Vl−1 (coarse grid correction): Determine the approxima-
tion w̃2 ∈ Vl−1 to w2 ∈ Vl−1 using µl steps of the algorithm MULT (l−
1, 0, r2), where w2 is the unique solution of

a(w2, v) = 〈g, v〉 − a(u1
0, v) = 〈r2, v〉 ∀v ∈ Vl−1.
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Set u2
0 = u1

0 + w̃2.
3. Projection onto Wl: Determine w̃3 ∈ Wl such that ‖ w̃3 − w3 ‖a≤ ρ1 ‖
w3 ‖a, where w3 ∈ Wl is the unique solution of

a(w3, v) = 〈g, v〉 − a(u2
0, v) = 〈r3, v〉 ∀v ∈ Wl.(2.3)

Set u3
0 = u2

0 + w̃3.
• else

– Solve a(w, v) = 〈g, v〉 for all v ∈ Vl exactly and set u1 = w.
• end-if.

The algorithm can be interpreted as an approximate alternate projection with
respect to a(·, ·) onto the subspaces Vk−1 and Wk. The exact projections are denoted
by wj , the approximate projections by w̃j , j = 1, 2, 3. For the projection onto Vk−1,
we apply µ iterations of the algorithm 2.1. For the exact projection onto Wk, we have
to solve a system with the matrix

KWk
=
[
a(φklm, φ

k
ij)
]
(i,j),(l,m)∈Nk

(2.4)

(compare (2.1)–(2.3) and (1.5)), i.e., the stiffness matrix Kω,k restricted to the space
Wk. In the case of the potential equation, i.e., ω(ξ) = 1, the condition number of
KWk

is bounded independently of the mesh-size h. Hence, in order to solve (2.2), ν
iterations w̃1,0 = 0, w̃1,j = Sw̃1,j−1 + (I − S)w1, j = 1, . . . , ν of a simple iterative
method, i.e., the Jacobi smoother, can be done, where S denotes the error propagation
operator of this method. In each iteration step, the relative error in the energy norm
is reduced up to a factor of ρ, where ρ is bounded by ρ0 < 1 from above for all k ∈ N.

So, for all k ∈ N, it suffices to use ν = 1 +
[

ln ρ1
ln ρ0

]
iterations with a Jacobi smoother

in order to satisfy ‖ w̃1 − w1 ‖a≤ ρ1 ‖ w1 ‖a in the case of ω(x) = 1. However, in
the case of a general weight function ω, the constant ρ cannot be bounded by ρ0 < 1
independent of k if the Jacobi smoother is used. Then, the main aim of this section
is to define a more appropriate preconditioned Richardson iteration, in order to solve
(2.2) and (2.3), such that the error propagation operator S satisfies the estimate

‖ Sνw ‖a≤ ρν ‖ w ‖a ∀w ∈ Wk, ν ∈ N.(2.5)

The constant ρ in (2.5) is bounded by ρ0 < 1 from above independent of k. Then, the
νth iterate of the process w̃1,0 = 0, w̃1,j = Sw̃1,j−1 + (I −S)w1, j = 1, . . . , ν satisfies

‖ w̃1,ν − w1 ‖a = ‖ S(w̃1,ν−1 − w1) ‖a
≤ ρ ‖ w̃1,ν−1 − w1 ‖a≤ · · · ≤ ρν ‖ w̃1,0 − w1 ‖a= ρν ‖ w1 ‖a .

This means that (2.2), or (2.3), can be solved with a relative accuracy of ρ1 by a
number of ν smoothing steps, where ν is bounded independently of the mesh-size h,
i.e., it suffices to verify relation (2.5).

Note that the exact solution w1 does not have to be determined in order to
compute w̃ν,1 if the smoother is a preconditioned Richardson iteration (cf. (2.20)).

In order to prove the convergence of the multigrid algorithm 2.1 for (1.5), the
following convergence theorem is known (see [20] and [22]).

Theorem 2.1. Let us assume that the following assumptions are fulfilled.
• Let a(·, ·) be a symmetric and positive definite bilinear form on Vk.
• Let S be the error propagation operator of a simple iterative method in order

to solve (2.2) and (2.3) which satisfies the estimate (2.5) with 0 ≤ ρ ≤ ρ0 < 1
independent of k.
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• There is a constant 0 ≤ γ < 1 independent of k such that

(a(v, w))2 ≤ γ2a(v, v)a(w,w) ∀w ∈ Wk,∀v ∈ Vk−1(2.6)

holds.
• Let uj+1,k = MULT (k, uj,k, g), let u∗ be the exact solution of (1.5), and let

σk = sup
uj,k−u∗∈V�

‖ uj+1,k − u∗ ‖a
‖ uj,k − u∗ ‖a

be the convergence rate of MULT in the energy norm with ν smoothing op-
erations.

Then, the recursion formula

σk ≤ σ
µk−1

k−1 + (1 − σ
µk−1

k−1 )(ρν + (1 − ρν)γ)2(2.7)

is valid.
Proof. This theorem has been proved by Schieweck, in Theorem 2.2 of [22], with

ρν = ρ1 = ρ3, and Pflaum, in Theorem 4 of [20].
The following lemma gives conditions on ρ, ν, and γ such that the estimate

σk < σ < 1 is valid.
Lemma 2.2. Let us assume that the assumptions of Theorem 2.1 hold. Let

κ2 = (ρν + (1 − ρν)γ)2 < µ−1
µ with µ = µl. If γ2 < µ−1

µ , one has σk < σ < 1 for

ν > ln

√
µ−1
µ − γ

1 − γ
/ ln ρ.

Proof. The proof is standard (see, e.g., [22]).
By Remark 2.1, the first assumption of Theorem 2.1 is satisfied for the bilinear

form a(·, ·) (1.1).
In Theorem 2.2 of [6] we have proved (a(v, w))2 ≤ 95

176a(v, v)a(w,w) for all v ∈ Vk

and for all w ∈ Wk+1 for the bilinear form a(·, ·) (1.1) with the weight function ω(ξ) =
ξ. The techniques described there can be extended to other weight functions. Table
2.1 gives estimates of the strengthened Cauchy inequalities for several weight functions
of the type ω(ξ) = ξα, α ≥ 0. For α = 10, the constant γ2 of the strengthened Cauchy
inequality is very close to 1. In the cases α = 1

2 , 1, 2, the estimate 1
2 < γ2 < 2

3 is valid.
Thus, we can prove a mesh-size independent multigrid convergence rate σk < 1 for
µ = 3, if w̃1 and w̃3 are close to w1 and w3 in Algorithm 2.1 (cf. (2.2) and (2.3)), i.e.,

ν > ln

√
2/3−γ
1−γ / ln ρ.

Table 2.1

Estimates of the constant in strengthened Cauchy inequality for several weight functions.

weight function ω = 1 ω(ξ) =
√
ξ ω(ξ) = ξ ω(ξ) = ξ2 ω(ξ) = ξ10

γ2 in (2.6)
1

2

81

158

95

176

2195375

3508896
≈ 0.9929

In subsection 2.3, we define an iterative method with an error propagation oper-
ator S satisfying relation (2.5) with ρ < ρ0 < 1 for more general weight functions as
in [6]. It will be shown that the constant ρ in (2.5) is independent of the choice of the
weight function.

Therefore, the stiffness matrices restricted to the elements τ1,k
ij and τ2,k

ij are re-
quired. This is done in subsection 2.2.
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xki,j+1 xk+1
2i+1,2j+2 xki+1,j+1

xk+1
2i,2j+1

xk+1
2i+1,2j+1

xk+1
2i+2,2j+1

xki,j xk+1
2i+1,2j xki+1,j

τ1,k+1
2i,2j+1

τ2,k+1
2i,2j+1

τ1,k+1
2i+1,2j+1

τ2,k+1
2i+1,2j+1

τ1,k+1
2i,2j

τ2,k+1
2i,2j

τ1,k+1
2i+1,2j

τ2,k+1
2i+1,2j

Fig. 2.1. Local numbering of the nodes and subtriangles of Ek
ij .

2.2. Calculation of the macroelement stiffness matrices. In this subsec-
tion, we determine the stiffness matrix on the macroelements Ekij with respect to the
basis functions of Wk+1 |Ek

ij
. We start with the introduction of the basis functions on

Ekij . Note that the triangle τ2,k
ij is the union of the triangles τ2,k+1

2i,2j , τ1,k+1
2i+1,2j , τ

2,k+1
2i+1,2j ,

and τ2,k+1
2i+1,2j+1, and the triangle τ1,k

ij is the union of the triangles τ1,k+1
2i,2j , τ1,k+1

2i,2j+1,

τ2,k+1
2i,2j+1, and τ1,k+1

2i+1,2j+1. The nodes xkij , x
k
i,j+1, x

k
i+1,j , and xki+1,j+1 are the coarse grid

nodes, the nodes xk+1
2i+1,2j , x

k+1
2i,2j+1, x

k+1
2i+2,2j+1, x

k+1
2i+1,2j+2, and xk+1

2i+1,2j+1 are new in
level k + 1 (cf. Figure 2.1). Using this notation, we have

Wk+1 |Ek
ij

= span{φk+1
lm }

(l,m)∈NWk+1
ij

.(2.8)

For reasons of simplicity, we write only φk+1
lm instead of φk+1

lm |Ek
ij

for the restriction of

φk+1
lm on Ekij . The index set in (2.8) is given by

N
Wk+1

ij = Nk+1 ∩ {(l,m) ∈ N
2
0, 2i ≤ l ≤ 2i+ 2, 2j ≤ m ≤ 2j + 2},

where Nk+1 was defined in (2.1). Since Vk ⊂ H1
0 (Ω), some modifications are necessary

for boundary macroelements Ekij , i.e., with i = 0, j = 0, i = n− 1, or j = n− 1.

On the elements τs,kij , s = 1, 2, we introduce the matrices

Js,ij :=
[
aτ

s,k
ij (φk+1

lm , φk+1
rq )

]
(r,q),(l,m)∈Ns,Wk+1

ij

with N
s,Wk+1

ij := T sij ∩ N
Wk+1

ij , where T 1
ij := {(l,m) ∈ N

2
0, l −m ≤ i − j} and T 2

ij :=

{(l,m) ∈ N
2
0, l −m ≥ i− j}. Namely, we obtain

N
2,Wk+1

ij = {(2i+ 1, 2j), (2i+ 2, 2j + 1), (2i+ 1, 2j + 1)} and

N
1,Wk+1

ij = {(2i, 2j + 1), (2i+ 1, 2j + 2), (2i+ 1, 2j + 1)} .

The entries of the matrices Jq,ij can be determined by a straightforward calculation.
We compute those for the case of a general weight function ω(ξ). The following
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positive parameters depending on the integer j are introduced:

dj =
1

4

∫
τ1,k+1
2i,2j ∪τ2,k+1

2i,2j+1

(ω(y))2 d(x, y), ej =
1

4

∫
τ2,k+1
2i,2j ∪τ2,k+1

2i+1,2j

(ω(y))2 d(x, y),

fj =
1

4

∫
τ1,k+1
2i,2j+1∪τ1,k+1

2i+1,2j+1

(ω(y))2 d(x, y).(2.9)

Note that dj , ej , and fj are independent of the integer i. The values di, ei, and fi
are defined by a permutation of x with y, and of each triangle τ2,k

ij with τ1,k
ji in (2.9).

One obtains the following proposition.
Proposition 2.3. Let 0 ≤ i < n− 1 and 0 < j ≤ n− 1. Then, one has

J2,ij = 4

⎡⎣ di + ej 0 −di
0 fi + dj −dj

−di −dj di + dj

⎤⎦ .(2.10)

Due to the boundary condition u |∂Ω= 0, the second row and column of J2,ij has
to be canceled for i = n − 1, whereas the first row and column in J2,ij has to be
canceled for j = 0 in (2.10).

By exchanging the indices i and j in (2.10), one derives the matrices J1,ij = J2,ji.

2.3. Construction of the smoother. In order to apply multigrid to the linear
system (1.5), we need an efficient smoother. This smoother will be constructed by
the local behavior of the differential operator. An idea of Axelsson and Padiy [2] (see
also [19]) for anisotropic problems is extended to bilinear forms as in problem (1.1).
This smoother operates only on the space Wk+1.

Consider the triangle τ s,kij . For our discussion, only the submatrices Js,ij , where
0 ≤ i, j ≤ n − 1, and s = 1, 2, are required which correspond to the nodal basis
functions on Wk+1. The two cases i < j and i ≥ j are discussed. We start with i < j
and s = 2. By Proposition 2.3,

J2,ij = 4

⎡⎣ di + ej 0 −di
0 fi + dj −dj

−di −dj di + dj

⎤⎦ .
The index k is omitted. For i < j, the matrix

M2,ij = 4

⎡⎣ di + ej 0 0
0 fi + dj −dj
0 −dj di + dj

⎤⎦(2.11)

is introduced. In the matrix M2,ij , we set all off-diagonal entries of J2,ij to 0 which
have relatively small absolute values in comparison to the corresponding main diagonal
entries. Since ω is monotonically increasing, the relation di < dj is valid for i < j.
Thus, we set the −di entries of J2,ij in M2,ij to 0. We now prove the following lemma.

Lemma 2.4. For 0 ≤ i < j < n, the eigenvalue estimates

λmin

(
M2,ij

−1J2,ij

)
≥ 1 − 1

2

√
2 and λmax

(
M2,ij

−1J2,ij

)
≤ 1 +

1

2

√
2

hold.
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Proof. Let β = difi + didj + fidj . Then, we have

M−1
2,ijJ2,ij =

⎡⎢⎣ 1 0 −di
di+ej−didj

β 1 0
−difi−didj

β 0 1

⎤⎥⎦ .
This matrix has the characteristic polynomial

det(λI −M−1
2,ijJ2,ij) = (λ− 1)

(
(1 − λ)2 − di

di + ej

difi + didj
difi + didj + fidj

)
.

The roots λi, i = 1, 2, 3, of this polynomial are λ1 = 1 and λ2,3 = 1 ±√
ρ, where

ρ =
di

di + ej

difi + didj
difi + didj + fidj

.(2.12)

Note that for all i and j, the values dj , ej , and fj are mean values of the positive
function (ω(y))2 over the union of two triangles having a volume of 1

8n2 . By i ≤ j− 1

and the monotonicity of the weight function, one has ω(x) ≤ ω(y) for all x, y ∈ τ2,k
ij .

Thus, by integration over subtriangles of τ2,k
ij with volume 1

8n2 (cf. Figure 2.1),

di =
1

4

∫
τ2,k+1
2i,2j ∪τ1,k+1

2i+1,2j

(ω(x))2 d(x, y) ≤ 1

4

∫
τ2,k+1
2i,2j ∪τ2,k+1

2i+1,2j

(ω(y))2 d(x, y) = ej ,

or
di

di + ej
≤ 1

2
.

Since di, dj , fi, fj > 0 (the weight function is positive), we have

difi+ didj
difi + didj + fidj

< 1.(2.13)

Inserting the above estimates into (2.12), one has

1 −
√

1

2
≤ λ2 ≤ λ1 ≤ λ3 ≤ 1 +

√
1

2
.

Hence, the assertion follows immediately.
Remark 2.2. The estimate (2.13) is not sharp. With fi ≤ dj and di < dj , one

can show the stronger estimate
difi+didj

difi+didj+fidj
< 2

3 (cf. [8]).

Now, consider the case i ≥ j. Introducing the matrix

M2,ij = 4

⎡⎣ di + ej 0 −di
0 fi + dj 0

−di 0 di + dj

⎤⎦ ,(2.14)

we will show that κ
(
M2,ij

−1J2,ij

)
≤ c independent of the parameters j, i, and n.

Lemma 2.5. For 0 ≤ j ≤ i < n, one has

λmin

(
M2,ij

−1J2,ij

)
≥ 1 − 1

2

√
2 and λmax

(
M2,ij

−1J2,ij

)
≤ 1 +

1

2

√
2.
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Proof. We start with the case i < n − 1 and j > 0. The proof is similar to the
proof of Lemma 2.4. A short calculation yields

det(λI −M−1
2,ijJ2,ij) = (λ− 1)

(
(λ− 1)2 − dj

dj + fi

didj + ejdj
diej + didj + ejdj

)
.

By i ≥ j and the monotonicity of the weight function ω, we have∫
τ2,k+1
2i+1,2j

(ω(x))2 d(x, y) =

∫
τ2,k+1
2i+1,2j+1

(ω(x))2 d(x, y)

≥
∫
τ2,k+1
2j+1,2i

(ω(x))2 d(x, y)

=

∫
τ1,k+1
2i,2j+1

(ω(y))2 d(x, y) ≥
∫
τ1,k+1
2i+1,2j

(ω(y))2 d(x, y).(2.15)

For the same reason,∫
τ2,k+1
2i,2j

(ω(y))2 d(x, y) ≤
∫
τ1,k+1
2i+1,2j

(ω(y))2 d(x, y).(2.16)

Using (2.15) and (2.16), we have

fi =

∫
τ2,k+1
2i+1,2j∪τ2,k+1

2i+1,2j+1

(ω(x))2 d(x, y) ≥
∫
τ2,k+1
2i,2j ∪τ1,k+1

2i+1,2j

(ω(y))2 d(x, y) = dj

and
dj

dj + fi
≤ 1

2
.

Together with ejdj + djdi < ejdi + ejdj + djdi, the assertion follows as in the
proof of Lemma 2.4.

Consider now i = n− 1. Then, the second row and column of M2,ij and J2,ij has
to be canceled. Thus, M2,n−1,j = J2,n−1,j and

λ1(M
−1
2,n−1,jJ2,n−1,j) = λ2(M

−1
2,n−1,jJ2,n−1,j) = 1.

The last case is j = 0. We have to omit the first row and column in M2,i,0 and J2,i,0.
By a short calculation the estimates 1

2 ≤ λ2 < λ1 ≤ 3
2 are obtained for the roots of

the characteristic polynomial of the matrix M−1
2,i,0J2,i,0 (cf. [8]).

In (2.11) and (2.14), we have defined a local preconditioner M2,ij for the element

stiffness matrix J2,ij corresponding to the triangle τ2,k
ij . On the triangles τ1,k

ij , we

define matrices M1,ij in the same way as M2,ij for τ2,k
ij :

M1,ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

4

⎡⎣ ei + dj 0 −dj
0 di + fj 0

−dj 0 di + dj

⎤⎦ for i ≤ j,

4

⎡⎣ ei + dj 0 0
0 di + fj −di
0 −di di + dj

⎤⎦ for i > j.

Remark 2.3. By the symmetry of the differential operator with respect to the
variables x and y, we obtain the same results for the triangles τ1,k

ij as in Lemmas 2.4
and 2.5.
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Following [6], a global preconditioner MWk+1
for KWk+1

(2.4) is defined using the
local matrices Ms,ij , where 0 ≤ i, j ≤ n− 1, s = 1, 2. The matrix KWk+1

is the result
of assembling the local stiffness matrices Js,ij , s = 1, 2, and i, j = 0, . . . , n− 1, i.e.,

KWk+1
=

2∑
s=1

n−1∑
i,j=0

LTs,ijJs,ijLs,ij .(2.17)

The matrices Ls,ij ∈ R
3×3·4k−1−2k

are the usual finite element connectivity matrices.
Definition 2.6. We define the matrix MWk+1

by

MWk+1
=

2∑
s=1

n−1∑
i,j=0

LTs,ijMs,ijLs,ij .(2.18)

Because of the properties of the local preconditioners Ms,ij , the matrix MWk+1
is

a good preconditioner for KWk+1
. This result is stated as the main theorem of this

subsection.
Theorem 2.7. Let ω(ξ) satisfy Assumption 1.1, let MWk+1

and KWk+1
be defined

in (2.18) and (2.17), respectively. Then, one obtains

λmin

(
(MWk+1

)
−1
KWk+1

)
≥ 1 − 1

2

√
2, λmax

(
(MWk+1

)
−1
KWk+1

)
≤ 1 +

1

2

√
2.

In order to prove the assertion, we use the following result (cf. Lemma 2.5 of [6];
see also [2], [25]).

Lemma 2.8. Let {Ai ∈ R
mi,mi}si=1 be a finite set of symmetric positive definite

matrices. Let A =
∑s
i=1 L

T
i AiLi, where Li ∈ R

mi,m and A ∈ R
m,m. Furthermore, let

Ci be a preconditioner for the matrix Ai, i.e., for all w ∈ R
mi the relations

λi(Ciw,w) ≤ (Aiw,w) ≤ λ
i
(Ciw,w)(2.19)

with 0 < λi and 0 ≤ λi hold. Let C =
∑s
i=1 L

T
i CiLi. Then, ∀v ∈ R

m

λ(Cv, v) ≤ (Av, v) ≤ λ(Cv, v)

is valid with

λ = min
i
λi, λ = max

i
λ
i
.

Proof of Theorem 2.7. By Lemmas 2.4 and 2.5 and Remark 2.3, the assumptions
(2.19) are satisfied. Using Lemma 2.8, the assertions follow.

Applying Theorem 2.7, a preconditioned Richardson iteration can be built as a
preconditioned simple iteration method. The error propagation operator Sω,k+1 of
this method is defined by

Sω,k+1 = I − ζ(MWk+1
)−1KWk+1

,(2.20)

where Sω,k+1 denotes the matrix representation of Sω,k+1 by the usual fem-isomorphism.
This smoother S = Sω,k+1 can be used for Algorithm 2.1.

Corollary 2.9. Let ‖ w ‖2
a= a(w,w) be the energy norm of the bilinear form

a. Then, for all w ∈ Wk+1,

‖ Sνω,k+1w ‖a≤ ρν ‖ w ‖a
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Fig. 2.2. Lines of the smoothers Sω,k (left) and S̃ω,k (right).

holds, where ζ = 1 and ρ = 1
2

√
2.

Proof. The proof is similar to the proof of Corollary 2.3 in [6].
The smoother Sω,k+1 can be interpreted as a line smoother (see [6] and the left-

hand picture of Figure 2.2). Then, using Cholesky or Crout decomposition, the op-
eration Sω,kw = r can be done in O(mk) arithmetical operations, where mk is the
number of unknowns on level k.

Additionally, we build a smoother S̃ω,k = I − ζL−1
ω,kKω,k which uses the ideas of

(2.20). This smoother operates on the space Vk. Let

Lω,k = diag(Kω,k) + R̃, where R̃ =
[
b̃(φkij , φ

k
lm) + b̃(φklm, φ

k
ij)
](n−1,n−1)

(i,j),(l,m)=(1,1)

(2.21)

with the bilinear form b̃ : Vk × Vk → R,

b̃(φkij , φ
k
lm) =

⎧⎨⎩ a(φkij , φ
k
lm) if

i = l = r, j = 2, . . . , i, m = j − 1,
or j = m = r, i = 2, . . . , j, l = i− 1,

0 otherwise

for r = 1, . . . , n − 1. As well as Sω,k (2.20), S̃ω,k is a line smoother (cf. [6] and the

right-hand picture of Figure 2.2). Analogous to Sω,k, the operation S̃ω,kw = r can be
done in O(n2) flops using Cholesky or Crout decomposition.

3. BPX preconditioner. Recall the finite element discretization of problem
(1.1).

Find u ∈ Vk such that∫
Ω

(
ω2(y)uxvx + ω2(x)uyvy

)
d(x, y) =

∫
Ω

fv d(x, y)(3.1)

holds for all v ∈ Vk with a weight function ω(ξ) satisfying Assumption 1.1.
For the efficient solution of systems of linear equations arising from discretizations

of uniformly elliptic problems by finite elements, Bramble, Pasciak, and Xu [11] have
developed a preconditioner which has been called the BPX preconditioner. For this
preconditioner, the spectral equivalence to the original stiffness matrix can be shown.
Later, this preconditioner has been improved by the multiple diagonal scaling version
(see [27]). As mentioned in [4], a BPX preconditioner with multiple diagonal scaling
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Table 3.1

Lower (bottom) and upper (top) eigenvalue bounds of the MTS-BPX preconditioned system
matrix.

Level c
ω(ξ) = 1 ω(ξ) =

√
ξ ω(ξ) = ξ ω(ξ) = ξ2 ω(ξ) = ξ10

2 1.86 1.80 1.77 1.82 2.00
3 2.73 2.65 2.59 2.51 2.93
4 3.44 3.41 3.39 3.34 3.75
5 4.00 4.01 4.03 4.06 4.59
6 4.45 4.47 4.52 4.70 5.50
7 4.81 4.85 4.91 5.34 6.44
8 5.11 5.14 5.23 6.03 7.40
9 5.35 5.39 5.59 6.70 8.37
10 5.55 5.59 6.11 7.42 9.35

Level c
ω(ξ) = 1 ω(ξ) =

√
ξ ω(ξ) = ξ ω(ξ) = ξ2 ω(ξ) = ξ10

2 0.607 0.687 0.747 0.822 0.977
3 0.522 0.607 0.647 0.690 0.844
4 0.495 0.554 0.583 0.619 0.716
5 0.489 0.527 0.543 0.569 0.664
6 0.488 0.513 0.524 0.538 0.611
7 0.488 0.504 0.512 0.522 0.569
8 0.488 0.498 0.504 0.511 0.541
9 0.488 0.495 0.498 0.503 0.524
10 0.488 0.493 0.495 0.498 0.513

does not show good numerical results in order to solve Kω,ku = g
k
, the system of

linear algebraic equations resulting from the finite element discretization of (3.1).
One reason is that this preconditioner cannot handle the anisotropies resulting from
the degenerate elliptic operator. However, with a modification, the so-called MTS-
BPX, this behavior of the BPX preconditioner can be improved (see [5]).

In subsection 2.3, the smoother S̃ω,k = I − ζL−1
ω,kKω,k has been considered as

smoother for Kω,k. In this smoother, the matrix Lω,k is a preconditioner for Kω,k

which can handle anisotropies. The idea now is to apply the matrix Lω,k as “scaling”
on each level instead of a diagonal scaling. We expect a stabilization of the BPX
preconditioner. The following MTS-BPX preconditioner is now defined. Let Qkl ,
l = 0, . . . , k be the basis interpolation matrix from the basis {φlij}nl−1

i,j ∈ Vl to the

basis {φkij}nk−1
i,j=1 ∈ Vk, where nj = 2j . Let Qlk be the transposed matrix. Furthermore,

let Lω,k be the matrix in (2.21). Then, we define the preconditioner

Ĉ−1
ω,k =

k∑
l=1

Qkl L
−1
ω,lQ

l
k.(3.2)

This preconditioner is called the MTS-BPX preconditioner for Kω,k. In the case of
ω(ξ) = ξ, this definition corresponds to the definition of the MTS-BPX preconditioner
given in [5].

Concerning the quality of Ĉω,k as preconditioner for Kω,k, the following result
has been proved in [8].

Lemma 3.1. The eigenvalue estimate λmax

(
Ĉ−1
ω,kKω,k

)
≤ 2 k for the MTS-BPX

preconditioner (3.2) is valid.

For the MTS-BPX preconditioner Ĉω,k (3.2), Table 3.1 gives the lower and upper
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constants for the spectral equivalence relations

c
(
Ĉω,kv, v

)
≤ (Kω,kv, v) ≤ c

(
Ĉω,kv, v

)
∀v,

computed by a vector iteration and inverse vector iteration for the corresponding
matrices and the weight functions ω(ξ) = ξα, (α = 0, 1

2 , 1, 2, 10). One can see that
the constant c is proportional to the level number for all considered weight functions
which indicates that the estimate of Lemma 3.1 is sharp. The lower constant c seems
to be bounded from below by a constant of about 0.488 uniformly with respect to α.
However, we cannot prove the boundedness of c from below.

4. Concluding remarks. In this paper, we have proposed two methods in order
to solve the system Kω,kuk = g

k
(1.5). The first method is the multigrid algorithm

MULT with an appropriate line smoother S. We have given the proof of the smooth-
ing property (2.5) for a general class of weight functions ω. Together with the estimate
for the constant γ2 of the strengthened Cauchy inequality, the constant lies between 1

2
and 2

3 for ω(x) = xα, α = 0.5, 1, 2, and we can prove a mesh-size independent conver-
gence rate for µ ≥ 3. Hence, the proposed method solves (1.5) in O(n2) operations if
γ2 < 2

3 . If γ2 > 2
3 , one can obtain an optimal method with two modified approaches.

On the one hand, a multigrid with varying µl can be used, i.e., µl = 3 if l is even
and µl = 4 if l is odd. On the other hand, a PCG method with AMLI preconditioner
Cam,k,ω is used. Then, using the ingredients of the multigrid algorithm, i.e., MWk+1

(2.17) as preconditioner for KWk+1
, and a polynomial iteration of degree µ = 3, one

can prove that the condition number of C−1
am,k,ωKω,k is bounded independently of the

mesh-size h (see [7] for the special case ω(ξ) = ξ, if γ2 < 8
9 ; cf. [3]). The second

method is the PCG method with the MTS-BPX preconditioner. Due to Lemma 3.1,
this method is not optimal. However, the numerical experiments indicate that we
obtain a robust fast solver for weight functions as, e.g., ω(ξ) = ξ10 as well.
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Abstract. We propose a class of finite element schemes for systems of hyperbolic conservation
laws that are based on finite element discretizations of appropriate relaxation models. We consider
both semidiscrete and fully discrete finite element schemes and show that the schemes are stable
and, when the compensated compactness theory is applicable, do converge to a weak solution of the
hyperbolic system. The schemes use piecewise polynomials of arbitrary degree and their consistency
error is of high order. We also prove that the rate of convergence of the relaxation system to a
smooth solution of the conservation laws is of order O(ε).
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1. Introduction. The problem of numerical approximation of nonlinear hyper-
bolic systems of conservation laws,

∂tu+

d∑
j=1

∂xj
Fj(u) = 0, x ∈ R

d, u = u(x, t) ∈ R
n, t > 0 ,

u(·, 0) = u0(·),
(1.1)

is a challenging area testing the performance of various numerical methods. Such
methods need to resolve accurately the shock regions and at the same time approxi-
mate with high accuracy the smooth parts of the solution.

It is a widely held belief that to achieve this goal one has to impose extraneous
stabilization mechanisms, such as shock capturing terms or limiters (depending on
the parameters of the problem, on the order of the method, on the particular form of
the system, etc.). This approach seems to hold for those finite element or high-order
finite volume methods previously developed [21, 10, 19, 11]. We refer to [11] for a
comprehensive review of the current state of the art on the high-order finite difference,
finite volume, and finite element methods for hyperbolic conservation laws; see also
[17, 26].
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Our motivation is to consider schemes designed to be used in conjunction with
appropriate mesh refinement. It is conceivable that successful adaptive schemes may
not need to be stabilized by using extra stabilization operators (such as limiters or
shock capturing terms) accounting in turn for stabilization by the natural diffusion or
relaxation mechanisms of the problem plus an appropriate mesh selection. A success-
ful application of this idea requires one to have at hand a stable, robust, and flexible
method. Indeed, toward this goal finite elements are a natural choice, since the devel-
opment of supportive structures (finite element spaces of any order, flexibility in mesh
construction, etc.) in adaptive finite element literature and software implementation
is at a remarkable level.

In this article we propose a class of finite element methods based on relaxation
models and address stability and convergence issues. For these relaxation finite ele-
ment schemes the stabilization mechanisms are the regularization by wave operators
(coming from the relaxation model) and appropriate mesh refinement in the shock
areas. Our adaptive finite element schemes are of the general type introduced in [4]
and further developed in [2, 3]. There, alternative methods and mesh refinement
strategies are extensively tested computationally. Preliminary results indicate that
the adaptive relaxation finite element schemes are a robust and reliable alternative
for shock computations.

1.1. Relaxation finite element approximations. Relaxation models that ap-
proximate (1.1) are the basis of our schemes. In particular, the model suggested in
[20],

∂t u +

d∑
j=1

∂xj
vj = 0,

∂t vi +Ai ∂xi u = −1

ε

(
vi − Fi(u)

)
, i = 1, . . . , d,

(1.2)

corresponds to the regularization of (1.1) by a wave operator of order ε. Here Ai are
symmetric, positive definite matrices with constant coefficients that are selected to
satisfy certain stability conditions, the subcharacteristic conditions; see [20, 43] and
the next sections. This relaxation model induces a regularization mechanism with
finite speed of propagation that results in a partial differential equation with linear
principal part. In return, the number of unknowns is increased. Nevertheless, in
schemes based on the discretization of (1.2) the extra cost is compensated for by the
simplicity and the natural implicit-explicit discretization that this model admits. The
relaxation finite element schemes are based on the direct finite element approximation
of (1.2).

Let Th = {K} be a decomposition of R
d into elements with the usual properties

[7]. We use the notation hK = diam (K), h= supK∈Th
hK < 1, and h= minK∈Th

hK .
The standard conforming finite element space Sk is defined by

Sk = {φ ∈ C0 (Rd)n : φ |K∈ Pk, K ∈ Th, φ |ΩC ≡ 0}.(1.3)

Here we assume that the initial values have compact support and thus, for all t ∈ [0, T ],
our solution will vanish outside some compact set Ω ⊂ R

n. Clearly, Sk ⊂ H1
0 (Ω); see

[7] for the approximation properties of Sk into Sobolev spaces. Further, we introduce
a finite element space consisting of piecewise discontinuous polynomials:

Vk−1 = {ψ ∈ L2(Rd)n : ψ |K ∈ Pk−1, K ∈ Th, ψ |ΩC ≡ 0}.(1.4)

By construction ∂xiφ ∈ Vk−1 for all φ ∈ Sk.
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The schemes under consideration are obtained by a direct discretization (without
adding additional diffusion terms) of (1.2). The approximation of u is sought in the
space Sk and the approximations of the relaxation variables vi in Vk−1; that is, find
(uh, vh,1, . . . , vh,d) : (0, T ] → Sk × (Vk−1)

d such that

(∂t uh, φ) −
d∑
j=1

(vh,j , ∂xj φ) = 0 ∀ φ ∈ Sk,

(∂t vh,i, ψ) + (Ai ∂xi
uh, ψ) = −1

ε

(
vh,i − Fi(uh), ψ

) ∀ ψ ∈ Vk−1, i = 1, . . . , d,

(1.5)

with initial conditions uh(0) = ΠSu0 and vh,i(0) = ΠV Fi(u0), where ΠS and ΠV are
nodal interpolants on Sk and Vk−1, respectively. We note that (1.5) is a semidiscrete
scheme since we have discretized only the spatial variable, in the sense that for any
fixed t ∈ [0, T ], uh(·, t) ∈ Sk. In section 2 we show that if uh solves (1.5), then it
satisfies

(∂t uh, φ) +

d∑
i=1

(
∂xi

Fi(uh), φ
)

+ ε

(
(∂tt uh, φ) +

d∑
i=1

(Ai ∂xi uh, ∂xi φ)

)
= 0 ∀φ ∈ Sk.

(1.6)

In the stability analysis we work with (1.6) but note that (1.5) is better suited to
explicit-implicit one-step discretizations in time. Time discretizations based on (1.6)
are also possible; see section 3.

The method is comparable, in terms of computational performance, with the fully
conforming discretization of the relaxation model considered in [4]: find (uh, vh,1, . . . ,
vh,d) : (0, T ] → (Sk)

d+1 such that

(∂t uh, φ) −
d∑
j=1

(vh,j , ∂xj
φ) = 0 ∀ φ ∈ Sk,

(∂t vh,i, ψ) + (Ai ∂xi
uh, ψ) = −1

ε

(
vh,i − Fi(uh), ψ

) ∀ ψ ∈ Sk, i = 1, . . . , d.

(1.7)

The corresponding one field equation to (1.7) takes the form

(∂t uh, φ) +

d∑
i=1

(
∂xiP Fi(uh), φ

)
,

+ ε

(
(∂tt uh, φ) +

d∑
i=1

(Ai P ∂xi uh, P ∂xi φ)

)
= 0 ∀φ ∈ Sk,

(1.8)

where P is the L2-projection operator onto Sk. Note that, when discretizing (1.7) in
time with an explicit scheme, the computation of uh will require the inversion of d+1
systems with the same mass matrix. The same procedure in (1.5) will require only
the inversion of one mass matrix.

Based on the semidiscrete schemes one can devise various one-step implicit-
explicit Runge–Kutta time discretizations [40, 4, 2, 3]. In the following sections we
analyze the stability properties of semidiscrete as well as fully discrete schemes.
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1.2. Stabilization by mesh refinement. Schemes (1.5) and (1.7) are indeed
simple, but the relaxation mechanism alone does not provide the necessary stabiliza-
tion required in the shock regions. Indeed, this is confirmed by coarse mesh numerical
experiments; see section 6 and [4]. This also becomes evident by further examination
of properties of the schemes. Consider the one-space dimensional (d = 1) system

∂tu+ ∂xF (u) = 0, x ∈ R, t > 0, u = u(x, t) ∈ R
n,

(1.9)
u(·, 0) = u0(·)

with u0 of compact support and the associated finite element relaxation scheme.
Following the argument in [4], it is seen that the effective equation of both schemes
(1.5) and (1.7) in the case n = 1, d = 1, q = 1 is

∂tu+ F (u)x + ε
[
∂ttu−A∂xxu

]
+ β h2

locF (u)xxx = 0(1.10)

for some positive constant β. As expected, the finite element discretization induces a
dispersion term which is linear in the flux variable. Applying the Chapman–Enskog
expansion to (1.10) we obtain

∂tu+ F (u)x − ε∂x
(
(c2 − F ′(u)2) ∂xu

)
+ β h2

locF (u)xxx = 0.

It is evident that to exclude approximations with oscillatory character near shocks or
to avoid computing nonentropic solutions, the diffusion term should be dominant; see
the relevant numerical example in section 6 and the literature on diffusion-dispersion
approximations of conservation laws [28, 29]. This will enforce a condition of the form

hloc < o(ε),(1.11)

where hloc is the local mesh size close to the shock. On the other hand, the theo-
retical analysis in sections 2–4 provides convergence results under the slightly weaker
condition

hloc < γ ε(1.12)

for some constant γ. That is, the convergence results include even certain cases per-
taining to nonclassical shocks. However, in practice typically mesh adaptivity se-
lects the entropic solution, since it applies mesh refinement in a neighborhood of the
shock. The extensive numerical experiments in [4, 2] and section 6 show that appro-
priate mesh refinement indeed stabilizes in a robust way the finite element relaxation
schemes. Since the focus of this paper is the theoretical justification of the above
schemes, we will not insist on the important problem of identifying appropriate mesh
refinement strategies and refer to [4, 2, 3].

1.3. Stability and related properties. In what follows, we investigate the
theoretical properties of the relaxation finite element schemes (1.5). It is shown that
for a wide class of one-dimensional but also of multidimensional systems (1.1), the
schemes are stable in the sense that they satisfy certain strong dissipation estimates;
see Propositions 2.1, 2.3, 2.6, 3.1, 3.3, and 3.5. Similar estimates are satisfied by the
relaxation model (1.2) [43, 18]. The strong dissipation estimates for relaxation approx-
imations introduced in [43] are a basic tool in our analysis. In addition, nonstandard
stability estimates for appropriate finite element projections are used in an essential
way. The stability results are of interest since they justify the dissipative character of
our schemes.
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The stability estimates will also be used in conjunction with the compensated
compactness framework to derive compactness conditions. Recall that a pair of func-
tions η = η(u), q = q(u) are called an entropy-entropy flux pair (or entropy pair for
short) if (η, q) solve the linear hyperbolic system

∇q = ∇η · ∇F.
The existence and properties of entropy pairs have been extensively investigated (e.g.,
[15, 38]), and entropy pairs are used to describe the compactness properties of ap-
proximate solutions for certain one-dimensional systems of two conservation laws
[42, 15, 38, 37].

In fact, we show that for the finite element relaxation scheme (1.5) with d = 1,
the approximations uh satisfy

∂t η(uh) + ∂x q(uh) ⊂ compact set of H−1
loc(O).

This condition suffices to apply the compensated compactness program for certain
one-dimensional equations and systems (see section 4) and to obtain convergence for
semidiscrete or fully discrete finite element schemes. Similar results appear to hold
for the fully conforming methods (1.7), (1.8), but their verification requires additional
technical estimations. This is largely because the presence of the projection P in the
one field equation (1.8) will result in extra error terms in the stability analysis. This
case will not be pursued here.

The estimates derived in the following sections are rather complicated. To focus
on the ideas and to present the material in a readable way, we have chosen to work
step by step to distinguish the cases:

• semidiscrete schemes with symmetric flux F ′,
• semidiscrete schemes and the system admits a convex entropy function,
• fully discrete schemes with symmetric flux F ′,
• fully discrete schemes and the system admits a convex entropy function, and
• semidiscrete and fully discrete schemes for multidimensional systems that

admit a convex entropy function.
In summary, the results provide theoretical support to the use of finite element relax-
ation schemes by establishing stability for a wide class of systems and convergence in
various cases.

1.4. Error estimates for smooth solutions. Since the schemes are based on
the discretization of model (1.2), in section 5 we address the problem of error estimates
for relaxation approximations. We consider a system endowed with a convex entropy.
Let u be a smooth solution of (1.1) defined on a maximal interval of existence, and
let Uε be the smooth solution of the relaxation approximation (1.2). We show that

‖Uε(t) − u(t)‖L2 ≤ C(t, u) ε,(1.13)

where the constant C(t, u) depends on a strong norm of u and blows up at the critical
time. The proof is based on a novel application of an idea of Dafermos [14, Thm.
5.2.1] to an error estimation. The difficulty posed by the relaxation approximation is
handled by introducing a modified functional, corresponding to the relative entropy

HR(u, Uε) = η
(
Uε + ε∂t(Uε − u)

)− η(u) − η′(u)
(
Uε − u+ ε∂t(Uε − u)

)
(1.14)

in the place of

H(u,w) = η(w) − η(u) − η′(u)(w − u)(1.15)

used in [14]; see section 5 for details.
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The finite element relaxation schemes are related to the central difference schemes
of [33, 27]. One of their main common properties is that both schemes are Riemann
solvers free and thus they combine high accuracy with simplicity. Finite element meth-
ods for hyperbolic conservation laws were considered in [21, 39, 22, 23, 19, 12, 10].
The theoretical properties of the streamline diffusion method were analyzed exten-
sively (convergence, error estimates) in the scalar case [21, 39, 9]. The case of systems
admitting entropy pairs is considered in [23] and it is shown that, for a streamline
diffusion shock capturing method defined using the entropy variables, the bounded
a.e. converging limits of approximations are weak entropy solutions of the system.

Finite element methods with discontinuous elements were proposed in [19] and
[12]. In [12] stabilization is enforced by applying projection operators based on lim-
iters. The above methods use piecewise polynomials of arbitrary degree and are
formally of high order. Adaptive finite element methods based on a posteriori esti-
mates have been considered in [22] for the ε-viscous approximation of one-dimensional
systems of conservation laws. There exists a large literature on finite difference relax-
ation schemes; see, e.g., [20, 1, 25, 18] and [24] for relaxation schemes on unstructured
grids.

The article is organized as follows. In section 2 we consider semidiscrete schemes
and show stability and compactness of the dissipation measure for (i) case d = 1, F ′

is symmetric; (ii) case d = 1 and the system admits a convex entropy; and (iii) the
multidimensional case. Section 3 is devoted to the analysis of implicit-explicit fully
discrete schemes. The proofs are presented in a compact way, avoiding repetition of
arguments already used in the semidiscrete case. In section 4 we discuss issues related
to the application of compensated compactness to certain specific systems in order to
conclude convergence of the schemes to a weak solution of (1.1). Section 5 is devoted
to the error estimation between a smooth solution of (1.1) and the relaxation model
(1.2). We conclude in section 6 with a discussion of implementation issues and present
indicative examples reflecting the numerical performance of the method in two test
cases.

2. Semidiscrete schemes: Stability estimates. We start by showing that
the scheme (1.5) admits a field equation that is in fact a standard finite element
discretization of the conservation law perturbed by a wave operator.

Lemma 2.1. If uh solves (1.5), then it satisfies (1.6).
Proof. Select ψ = ∂xi

φ, φ ∈ Sk in (1.5). Since ψ ∈ Vk−1 we have on summing
with respect to i, i = 1, . . . , d,

d∑
i=0

(∂t vh,i, ∂xi
φ) +

d∑
i=1

(Ai ∂xi
uh, ∂xi

φ) = −1

ε

d∑
i=0

(vh,i − Fi(uh), ∂xi
φ).

Differentiating the first equation of (1.5) with respect to t we get

(∂tt uh, φ) −
d∑
j=1

(∂tvh,j , ∂xjφ) = 0.

Hence,

ε(∂tt uh, φ) + ε

d∑
i=1

(Ai ∂xi uh, ∂xi φ) +

d∑
i=1

(vh,i, ∂xi φ) −
d∑
i=1

(
Fi(uh), ∂xi φ

)
= 0.
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Then by (1.5) we get the desired relation.
In what follows, we establish stability properties for the finite element scheme

(1.6). The stability estimates are proved consecutively for (i) case d = 1, F ′, sym-
metric; (ii) case d = 1, and the system admits a convex entropy; and (iii) the multi-
dimensional case.

The one-dimensional semidiscrete finite element scheme takes the form

(∂t uh, φ) − (F (uh), ∂xφ
)

+ ε
(
(∂tt uh, φ) + (A∂xuh, ∂x φ)

)
= 0 ∀φ ∈ Sk.(2.1)

For (2.1), we also prove compactness of the dissipation measure so as to apply the
compensated compactness program and deduce convergence of the scheme in section 4.
In the proof we use Murat’s lemma [32].

Lemma 2.2 (see Murat [32]). Let O be an open subset of R
m and {φj} a bounded

sequence of W−1,p(O) for some p > 2. In addition let φj = χj + ψj , where {χj}
belongs in a compact set of H−1(O) and {ψj} belongs in a bounded set of the space
of measures M(O). Then {φj} belongs in a compact set of H−1(O).

2.1. The case d = 1 and F ′ is symmetric. Let φ = uh in (2.1) and use(
F (uh), ∂xuh

)
= 0 to get

∂t

[∫
Ω

(
1

2
|uh|2 + ε uh ∂tuh

)
dx

]
+ ε

∫
Ω

[A∂x uh · ∂x uh − (∂tuh)
2]dx = 0.(2.2)

To estimate ε
∫
Ω
(∂tuh)

2dx let φ = ∂tuh in (2.1). Then,

‖∂t uh‖2
L2 + (F ′(uh) ∂x uh, ∂t uh)

+ ε
1

2
∂t‖∂t uh‖2

L2 + ε
1

2
∂t(A∂x uh, ∂x uh) = 0.

(2.3)

Adding (2.2) with 2ε times (2.3) yields

1

2
∂t ‖uh + ε∂t uh‖2

L2 + ε (A∂x uh, ∂x uh) + 2ε(F ′(uh) ∂x uh, ∂t uh)

+ ε ‖∂t uh‖2
L2 +

1

2
ε2 ∂t

{
‖∂t uh‖2

L2 + 2(A∂x uh, ∂x uh)
}

= 0.

Since F ′ is symmetric, we have

‖∂xF (uh)‖2
L2 =

(
F ′2(uh)∂xuh, ∂xuh

)
,

and we obtain

1

2
∂t

{
‖uh + ε∂t uh‖2

L2 + ε2‖∂tuh‖2
L2 + 2ε2(A∂x uh, ∂x uh)

}
+ ε‖∂t uh + ∂xF (uh)‖2

L2 + ε
(
[A− F ′2(uh)]∂xuh, ∂xuh

)
= 0.

We conclude with the following.
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Proposition 2.1. Assume that F ′(u), A are symmetric and satisfy for some
ν > 0

A− F ′(u)2 ≥ ν I, u ∈ R
n.(2.4)

Then the finite element approximation (2.1) satisfies∫
Ω

(
|uh+ε ∂t uh|2 + ε2|∂t uh|2 + 2ε2A∂x uh · ∂x uh

)
+ 2

∫ t

0

∫
Ω

(
ε|∂tuh + F ′(uh)∂x uh|2 + ε ν|∂x uh|2

)
≤
∫

Ω

|u0
h + ε ∂t uh(0)|2 + ε2|∂t uh(0)|2 + 2ε2A∂x u

0
h · ∂x u0

h =: C(u0
h).

In what follows we prove the next proposition.
Proposition 2.2. Let (η, q) be an entropy pair satisfying

‖η‖L∞ , ‖q‖L∞ , ‖η′‖L∞ , ‖η′′‖L∞ ≤ C.

Then, for h ≤ γ ε, there holds

η(uh)t + q(uh)x lies in a compact set of H−1
loc (R × R

+).

Proof. Let (η, q) be an entropy pair and φ ∈ C∞
c (R× [0,∞)) a test function, and

suppφ ⊂ Ω̃ × [0, T̃ ] =: Q. We denote by Π : L2(Ω) → Sk a projection operator
onto the finite element space of uh to be determined later. Using the definition of the
scheme we have(

η(uh)t + q(uh)x, φ
)

=
(
η′(uh)

[
uh,t + F ′(uh)uh,x

]
, φ
)

=
([
uh,t + F ′(uh)uh,x

]
,Π
(
η′(uh)φ

))
+
([
uh,t + F ′(uh)uh,x

]
, η′(uh)φ − Π(η′(uh)φ)

)
= − ε

(
A∂x uh,

[
Π
(
η′(uh)φ

)]
x

)
− ε
(
uh,tt,Π

(
η′(uh)φ

))
+
([
uh,t + F ′(uh)uh,x

]
, η′(uh)φ− Π

(
η′(uh)φ

))
.

(2.5)

We select now Π : L2(Ω) → Sk to be the L2-projection onto Sk. Π satisfies

(Πω, φ) = (ω, φ) ∀φ ∈ Sk, ω ∈ L2(Ω),(2.6)

‖Πω − ω‖L2(Ω) = inf
χ∈Sk

‖ω − χ‖L2(Ω) ≤ C h ‖ωx‖L2(Ω), ω ∈ H1(Ω),(2.7)

as well as the stability estimate [13]

‖(Πω)x‖L2(Ω) ≤ C‖ωx‖L2(Ω), ω ∈ H1(Ω).(2.8)

We are ready to bound the terms in the right-hand side of (2.5). Indeed, (2.8)
implies

(2.9)

ε
∣∣∣(A uh,x,

[
Π
(
η′(uh)φ

)]
x

)∣∣∣ ≤ ε C‖uh,x‖L2(Ω) ‖
(
η′(uh)φ

)
x
‖L2(Ω)

≤C
(
ε

∫
Ω

|uh,x|2
)
‖η′′‖L∞(Ω)‖φ‖C0(Ω) + ε1/2C

(
ε

∫
Ω

|uh,x|2
)1/2

‖η′‖L∞(Ω)‖φx‖L2(Ω).
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Next, since uh,tt ∈ Sk and by (2.6),

− ε

∫ t

0

∫
Ω

uh,tt Π
(
η′(uh)φ

)
dxds = −ε

∫ t

0

∫
Ω

uh,tt η
′(uh)φdxds

= ε

∫ t

0

∫
Ω

uh,t
(
η′(uh)φ

)
t
dxds+ ε

∫
Ω

uh,t η
′(uh)φ

∣∣∣
s=0

dx− ε

∫
Ω

uh,t η
′(uh)φ

∣∣∣
s=t

dx.

By Proposition 2.1 we have

ε
∣∣∣∫

Ω

uh,t η
′(uh)φ(t)dx

∣∣∣ ≤ ε
(∫

Ω

u2
h,t

)1/2

‖η′‖L∞(Ω) ‖φ‖C0(Ω)m(Ω)1/2 ≤ CΩ‖φ‖C0(Ω),

(2.10)

and as before

ε
∣∣∣∫ t

0

∫
Ω

uh,t
(
η′(uh)φ

)
t
dxdt

∣∣∣ ≤ C
(
ε

∫ t

0

∫
Ω

|uh,t|2
)
‖η′′‖L∞(Q) ‖φ‖C0(Q)

+ ε1/2
(
ε

∫ t

0

∫
Ω

|uh,t|2
)1/2

‖η′‖L∞(Q) ‖φt‖L2(Q).

(2.11)

To estimate the last term in (2.5), note that η′(uh)φ ∈ H1(Ω) and thus

‖η′(uh)φ− Π
(
η′(uh)φ

)‖L2(Ω) ≤ Ch‖(η′(uh)φ)x‖L2(Ω) + Ch‖η′(uh)φx‖L2(Ω)

≤ Ch‖η′′‖L∞(Ω) ‖uh,x‖L2(Ω) ‖φ‖C0(Ω) + Ch‖η′‖L∞(Ω) ‖φx‖L2(Ω).

By (2.4) we have ‖F ′(uh)2‖L∞(Ω) ≤ C; therefore∣∣∣([uh,t + F ′(uh)uh,x
]
, η′(uh)φ− Π

(
η′(uh)φ

))∣∣∣
≤ C

(
h

∫
Ω

(|uh,t|2dx + |∂xuh|2)dx
)
‖φ‖C0(Ω)

+ h
(∫

Ω

(|uh,t|2 + |∂xuh|2) dx
)1/2

‖φx‖L2(Ω).

(2.12)

Combining (2.9)–(2.12) and using Murat’s Lemma 2.2 (in our case, χh → 0 in H−1

and is thus precompact in H−1), we complete the proof.

2.2. The case d = 1, and the system admits a convex entropy. The case
that F ′ is not necessarily symmetric but the system is equipped with a convex entropy
η is examined next. In this case the system is symmetrizable. The finite element
approximations (1.5) enjoy the same a priori bounds with the continuous solution of
the relaxation model considered in [43]. Indeed, the following proposition holds.

Proposition 2.3. Let (1.9) be equipped with a strictly convex entropy η(u)
satisfying for some α > 0

1

α
I ≤ η′′(u) ≤ α I, u ∈ R

n.(2.13)

Assume for some M > 0 we have |F ′(u)| ≤ M for u ∈ R
n and that the positive

definite, symmetric matrix A is selected to satisfy, for α = 2αmax{β, 1}, β as in
(2.22) and some ν > 0,

1

2

(
(η′′(u)A)T + η′′(u)A

)− αF ′(u)TF ′(u) ≥ ν I for u ∈ R
n.(2.14)
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Then there is γ = γ(α, β,M, ν) > 0 such that, for

h ≤ γ ε(2.15)

and for some positive constants c1, c2, and c3, the finite element approximation (2.1)
satisfies the stability estimate∫

Ω

(
η(uh + ε ∂t uh) + ε2c1

[|∂t uh|2 +A∂x uh · ∂x uh
])
dx

+ εc2

∫ t

0

∫
Ω

(
|∂tuh + F ′(uh)∂x uh|2 + |∂x uh|2 + |∂tuh|2

)
dxdt

≤
∫

Ω

(
η(u0

h + ε ∂t uh(0)) + ε2c3
[|∂t uh(0)|2 +A∂x u

0
h · ∂x u0

h

])
dx.

(2.16)

Remark 2.1. We are interested here in data and associated finite element approx-
imations uh that are of compact support. It is thus natural to normalize η so that
η(0) = 0 and η′(0) = 0. This can always be achieved, because if (η, q) is an entropy
pair, then

η(u) − η(0) − η′(0)u, q(u) − q(0) − η′(0)(F (u) − F (0))

is also an entropy pair. In view of (2.13), the normalized η is equivalent to the
Euclidean norm, η(u) ∼ |u|2. Thus the stability framework in Proposition 2.3 is that
of L2.

Using the stability estimate, it is easy to see that strong convergence of the finite
element approximations gives a weak solution that satisfies the integral version of the
entropy inequality.

Proposition 2.4. Under the hypotheses of Proposition 2.3, if

uh → u in L2
x,t and a.e.,(2.17)

then u is a weak solution of (1.9) that satisfies∫
Ω

η(u(x, t))dx ≤
∫

Ω

η(u0(x))dx for a.e. t.(2.18)

Proof. We assume with no loss of generality that F (0) = 0 and note that |F (u)| ≤
M |u|. Let u0 ∈ H1

0 and be of compact support, let v0 = F (u0) ∈ H1
0 and be of

compact support, and define the approximations u0
h ∈ Sk and v0

h ∈ Vk−1 defined by
v0
h = ΠVk−1

F (u0
h) with ΠVk−1

the L2-projection. Let uh = uh(x, t), vh = vh(x, t) be
the solution of the semidiscrete scheme. Note that ∂tuh(0) = ΠSk

∂xF (u0
h), where ΠSk

is the L2-projection onto Sk.
For φ(x) ∈ Sk and θ(t) ∈ C∞

c ([0,∞)) we have

−
∫ t

0

∫
Ω

[uhφ∂tθ + F (uh)∂xφθ − εA∂xuh · ∂xφθ + ε∂tuh · φ∂tθ]dxdt(2.19)

−
∫

Ω

(u0
hφθ(0) + ε∂tuh(0)φθ(0))dx = 0.

Note that

uh → u, F (uh) → F (u) in L2
x,t and a.e.,

u0
h → u0, ε∂tuh(0) → 0 in L2

x and (along a subsequence) a.e.,

ε
1
2 ‖∂xuh‖L2

x,t
+ ε

1
2 ‖∂tuh‖L2

x,t
≤ O(1).
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Using that tensor products φ(x) ⊗ θ(t), φ ∈ Sk, θ ∈ C∞
c ([0,∞)) are dense as h → 0

in C2(Ω̄) for Ω bounded, we pass to the limit in (2.19) and obtain that u is a weak
solution of (1.9). Using Fatou’s lemma, we pass to the limit ε, h → 0 in (2.16) to
deduce ∫

Ω

η(u(x, t)) dx ≤ lim inf
h→0, ε→0

∫
Ω

η(uh + ε∂tuh) dx ≤
∫

Ω

η(u0(x)) dx

and conclude.
To show the stability estimate we use the elliptic projection operator onto Sk and

its approximation and stability properties. To this end let P1 : H1
0 → Sk be the Ritz

(elliptic) projection defined by

(A∂x P1v, ∂xφ) = (A∂x v, ∂xφ) ∀φ ∈ Sk, v ∈ H1
0 .(2.20)

It is a standard result that P1 satisfies

‖P1ω − ω‖L2(Ω) ≤ C h ‖ωx‖L2(Ω), ω ∈ H1
0 ,

‖(P1ω)x‖L2(Ω) ≤ C‖ωx‖L2(Ω), ω ∈ H1
0 .

(2.21)

The second bound is a direct consequence of the definition and the first is obtained by
a standard duality argument using once more the second bound (see [7, Thm. 5.4.8]).
The following nonstandard stability property of P1 will be crucial in the proof of
Proposition 2.3. It uses in an essential way the stability analysis of the finite element
method by mesh-dependent norms due to Babuška and Osborn [5].

Lemma 2.3. Let η be a strictly convex entropy and vh ∈ Sk. Under hypothesis
(2.13), there exists a positive constant β such that

(vh, P1 [ η′′(w)(vh) ] ) ≤ β ‖η′′(w)‖L∞(Ω) ‖vh‖2
L2(Ω) ∀w ∈ Sk.(2.22)

Proof. It is known that P1 is not stable with respect to L2(Ω) [5]. Its stability
with respect to the mesh-dependent L2-like norm

‖v‖0,h,Ω =

(
‖v‖2

L2(Ω) +
∑
j

δj |v(xj)|2
)1/2

,(2.23)

where xj are the nodes of the partition and δj = (xj+1 − xj−1)/2 is as shown in [5],
and

‖P1 v‖0,h,Ω ≤ β1‖v‖0,h,Ω,(2.24)

where β1 is a positive constant independent of h. Thus, (2.24) implies

‖P1 [ η′′(w)(vh) ] ‖L2(Ω) ≤ β1‖η′′(w)‖L∞(Ω) ‖vh‖0,h,Ω.(2.25)

But in the finite element space local inverse inequalities imply

‖vh‖0,h,Ω ≤ β2‖vh‖L2(Ω) ∀vh ∈ Sk,(2.26)

with β2 independent of h [7, 5]. Therefore, (2.22) follows with β = β1 β2.
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Proof of Proposition 2.3. The finite element approximation uh satisfies (2.1).
Setting φ = P1 η

′(uh) and using (2.20), we obtain after a rearrangement

(∂t uh, η
′(uh))+

(
∂xF (uh), η

′(uh)
)

+ ε(∂ttuh, P1η
′(uh)) + ε(A∂xuh, ∂xη

′(uh))

= (∂t uh, η
′(uh) − P1 η

′(uh))+
(
∂xF (uh), η

′(uh) − P1 η
′(uh)

)
=: Z1 + Z2.

(2.27)

The terms in the right-hand side will be estimated in what follows. First we ex-
amine the stability properties of the left-hand side. Since P1 commutes with time
differentiation,

ε(∂tt uh, P1 η
′(uh)) = ε∂t (∂t uh, P1 η

′(uh)) − ε(∂t uh, P1 [ η′′(uh)∂t uh ])

= ε∂t (∂t uh, η
′(uh)) − ε(∂t uh, P1 [ η′′(uh)∂t uh ])

− ε∂t (∂t uh, η
′(uh) − P1η

′(uh)).
(2.28)

We thus have

∂t

∫
Ω

η(uh)+

∫
Ω

∂xq(uh) + ε∂t (∂t uh, η
′(uh))

+ ε(A∂x uh, η
′′(uh)∂x uh) − ε(∂t uh, P1 [ η′′(uh)∂t uh ])

= Z1 + Z2 + Z3,

(2.29)

where the new term Z3 is given by

Z3 = ε∂t (∂t uh, η
′(uh) − P1η

′(uh)) = ε∂tZ1.(2.30)

As in [43] the following identity will be important:∫
Ω

η(uh + ε∂t uh)dx =

∫
Ω

η(uh)dx+ ε(η′(uh), ∂t uh)

+ ε2
(
∂t uh,

{∫ 1

0

∫ s

0

η′′(uh + ε τ∂t uh)dτds

}
∂t uh

)
.

(2.31)

It is evident that we need to estimate ε(∂tuh, P1[ η
′′(uh)∂tuh ]). This is done by

Lemma 2.3, which gives

ε|(∂t uh, P1 [ η′′(uh)∂t uh ])| ≤ εβ ‖η′′(uh)‖L∞(Ω) ‖∂t uh‖2
L2(Ω).(2.32)

We proceed to handle ε
∫
Ω
(∂tuh)

2dx. Observe that setting φ = ∂tuh in (2.1) gives

(2.33)

‖∂t uh‖2
L2(Ω) + (F ′(uh)∂x uh, ∂t uh) + ε

1

2
∂t‖∂t uh‖2

L2(Ω) + ε
1

2
∂t(A∂x uh, ∂x uh) = 0.

Next, define

β = β ‖η′′(uh)‖L∞(Ω),

η′′ =

{∫ 1

0

∫ s

0

η′′(uh + ε τ∂t uh)dτds

}
,

α = max{2β, 2α}

(2.34)
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and note that β = βα, α = 2αmax{1, β}. After summing (2.29) with 2ε α times
(2.33), we arrive at

(2.35)

∂t

∫
Ω

(
η(uh + ε∂t uh) + ε2∂tuh ·

{
α I − η′′}∂tuh + ε2αA∂x uh · ∂xuh

)
dx− ε∂tZ1

+ ε (α− β)‖∂t uh‖2
L2(Ω) + εα‖∂t uh‖2

L2(Ω) + 2εα(F ′(uh)∂xuh, ∂tuh )

+ ε(A∂x uh, η
′′(uh)∂x uh) ≤ Z1 + Z2.

But since

‖∂t uh‖2
L2(Ω) + 2(F ′(uh) ∂x uh, ∂t uh )

= ‖∂tuh + F ′(uh)∂xuh‖2
L2(Ω) − (F ′(uh)TF ′(uh)∂xuh, ∂x uh)

(2.36)

and

(A∂x uh, η
′′(uh)∂x uh) =

1

2

((
η′′(uh)A+ (η′′(uh)A)T

)
∂x uh, ∂x uh

)
,

we conclude by (2.13) and (2.14) that

(2.37)

∂t

{∫
Ω

η(uh + ε∂tuh)dx+ ε2α‖∂tuh‖2
L2(Ω) + ε2α(A∂xuh, ∂xuh) − εZ1

}
+ εβ‖∂t uh‖2

L2(Ω) + ε α ‖∂t uh + F ′(uh) ∂x uh‖2
L2(Ω) + εν ‖∂x uh‖2

L2(Ω)

≤ Z1 + Z2.

At this point α, β, and ν are fixed. We now turn to the estimation of the Zi.
Observe that, by (2.13) and (2.21),

Z1 = (∂t uh, η
′(uh) − P1 η

′(uh))
≤ C h ‖∂t uh‖L2(Ω) ‖∂x η′(uh)‖L2(Ω)

≤ C h ‖∂t uh‖L2(Ω) ‖η′′(uh)‖L∞(Ω) ‖∂x uh‖L2(Ω)

≤ Chα ‖∂t uh‖L2(Ω) ‖∂x uh‖L2(Ω),

(2.38)

while

Z2 =
(
∂xF (uh), η

′(uh) − P1 η
′(uh)

)
≤ C h ‖∂x uh‖L2(Ω) ‖F ′(uh)‖L∞(Ω) ‖η′′(uh)‖L∞(Ω) ‖∂x uh‖L2(Ω)

≤ C hαM ‖∂x uh‖2
L2(Ω).

(2.39)

Next, we select h so that (i) the quadratic form in the first term of (2.37) is positive
definite, and (ii) the terms Z1 and Z2 on the right of (2.37) can be absorbed to the
left. This can be done provided h ≤ γε for some γ = γ(α, β,M, ν) positive and small.
This gives (2.16) and concludes the proof.

The compactness of the dissipation measure for the scheme is obtained by an
argument similar to that in the symmetric case.

Proposition 2.5. For entropy pairs (η, q) satisfying

‖η‖L∞ , ‖q‖L∞ , ‖η′‖L∞ , ‖η′′‖L∞ ≤ C(2.40)
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and for h ≤ γ ε,

η(uh)t + q(uh)x lies in a compact set of H−1
loc (R × R

+).(2.41)

Remark 2.2. Proposition 2.5 and the analogous statement for the symmetric case
(Proposition 2.2) state that for entropy pairs satisfying (2.40) the entropy dissipation
measure is controlled. They are used in section 4 to prove compactness of relaxation
finite element approximations for the system (4.1). We note that entropy pairs (η, q)
that satisfy (2.40) are constructed in [38] for the system (4.1) under hypotheses (4.3)–
(4.4).

2.3. The multidimensional case. Next we consider multidimensional systems
(1.1) for which the system is endowed with a uniformly convex entropy η. Let
(q1, . . . , qd) be the associated entropy flux, and

q′i(u) = η′(u)F ′
i (u), i = 1, . . . , d,

η′′(u)F ′
i (u) = F ′

i (u)
T η′′(u), i = 1, . . . , d.

(2.42)

Still, in this case the finite element approximations (1.5) satisfy similar a priori bounds
with the one-dimensional case, provided that each Ai is chosen to satisfy certain
subcharacteristic conditions.

Proposition 2.6. Assume that (1.1) is equipped with a strictly convex entropy
η(u) that satisfies for some α > 0

1

α
I ≤ η′′(v) ≤ α I, v ∈ R

n;(2.43)

let α = 2αmax{1, β} with β as in (2.46), and assume that the symmetric, positive
definite matrices Ai satisfy, for some ν > 0,

d∑
j=1

1

2

(
Ajη

′′(v) + (Ajη
′′(v))T

)
ξj · ξj − α

∣∣∣∣∣∣
d∑
j=1

F ′
j(v)ξj

∣∣∣∣∣∣
2

≥ ν

d∑
j=1

|ξj |2

∀ξ1, . . . , ξd ∈ R
n, v ∈ R

n.

(2.44)

If h ≤ γε for some γ > 0, then the finite element approximations (1.5) satisfy, for
some c1, c2 > 0, the stability estimate∫

Ω

(
η(uh + ε∂tuh) + ε2c1

[
|∂tuh|2 +

d∑
i=1

Ai∂xiuh · ∂xiuh

])

+ εc2

∫ t

0

∫
Ω

(∣∣∣∣∣∂tuh +

d∑
i=1

F ′
i (uh)∂xuh

∣∣∣∣∣
2

+

d∑
i=1

|∂xi
uh|2 + |∂tuh|2

)
≤ C(u0

h, ∂tuh(0) ).

The proof is entirely similar to the one-dimensional case presented before and
therefore it will be omitted. Still, an essential tool in the analysis will be the elliptic
projection P1 : H1 → Sk defined by

d∑
i=1

(Ai∂xi
P1v, ∂xi

φ) =

d∑
i=1

(Ai∂xi
v, ∂xi

φ) ∀φ ∈ Sk.(2.45)
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The multidimensional analogue of Lemma 2.3 still holds:

(vh, P1 [ η′′(uh)(vh) ] ) ≤ β ‖η′′(w)‖L∞(Ω) ‖vh‖2
L2(Ω).(2.46)

Its proof is based on the stability analysis of the finite element method by mesh-
dependent norms [6]; see [16] for related results on stability of the elliptic projection
in L2(Ω). The quasi-uniformity assumption on the mesh in [6] needed to verify (2.24)
can be relaxed along the lines of arguments presented in [16].

3. Fully discrete schemes. There are many alternative ways to perform the
time discretization of (1.5) at the discrete time nodes 0, κ, 2κ, . . . . In this section
we consider a simple implicit-explicit time discretization. Seek (unh, v

n
h,1, . . . , v

n
h,d) ∈

Sk × V dk−1, n = 0, 1, . . . ,(
un+1
h − unh

κ
, φ

)
−

d∑
i=1

(vnh,i, ∂xiφ) = 0 ∀φ∈Sk,(
vn+1
h,i − vnh,i

κ
, ψ

)
+ (Ai∂xiu

n+1
h , ψ) = −1

ε

(
vn+1
h,i − Fi(u

n+1
h ), ψ

)
,

∀ψ∈Vk−1, i = 1, . . . , d,

(3.1)

where u0
h = u0, v

0
h,i = Fi(u0), and i = 1, . . . , d.

When d = 1, the scheme takes the form(
un+1
h − unh

κ
, φ

)
− (vnh , ∂xφ) = 0 ∀φ∈Sk,(

vn+1
h − vnh

κ
, ψ

)
+ (A∂xu

n+1
h , ψ) = −1

ε

(
vn+1
h − F (un+1

h ), ψ
) ∀ψ∈Vk−1.

(3.2)

3.1. Properties of the scheme. For any sequence {Y n} ⊂ L2(Ω), define the
operators ∂t, ∂tt:

∂tY
n :=

1

κ
(Y n+1 − Y n), ∂ttY

n := ∂t∂tY
n.

Then the centered difference quotient that corresponds to the second time derivative
at tn is

∂ttY
n−1 =

1

κ2
(Y n+1 − 2Y n + Y n−1).

The following properties will prove useful (L2 stands for L2(Ω)):

(∂tY
n, Y n+1) =

1

2κ

[ ‖ Y n+1‖2
L2 − ‖ Y n‖2

L2 + ‖ Y n+1 − Y n‖2
L2

]
=

1

2

[
∂t‖ Y n‖2

L2 + κ‖ ∂tY n‖2
L2

]
,

(3.3)

(∂tY
n, Y n) =

1

2

[
∂t‖ Y n‖2

L2 − κ‖ ∂tY n‖2
L2

]
,(3.4)

(∂ttY
n, ∂tY

n+1) = (∂tW
n, Wn+1), Wn := ∂tY

n, n = 0, 1, 2, . . . ,

=
1

2

[
∂t‖ ∂tY n‖2

L2 + κ‖ ∂ttY n‖2
L2

]
.

(3.5)
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In addition one can verify that

(∂ttY
n−1, Y n+1) = κ(∂ttY

n−1, ∂tY
n)

+∂t(∂tY
n−1, Y n) − ‖ ∂tY n‖2

L2 .
(3.6)

Now we have the following lemma.
Lemma 3.1. If unh solves (3.1), then it satisfies

(∂tu
n
h, φ) −

d∑
i=1

(Fi(u
n
h), ∂xiφ) + ε

(
(∂ttu

n−1
h , φ) +

d∑
i=1

(Ai∂xiu
n
h, ∂xiφ)

)
= 0.(3.7)

Proof. For φ∈Sk, we see that the solution of (3.1) satisfies

d∑
i=1

(∂tv
n−1
h,i , ∂xi

φ) =

d∑
i=1

(
vnh,i − vn−1

h,i

κ
, ∂xi

φ

)
(3.1)
=

(
∂tu

n
h − ∂tu

n−1
h

κ
, φ

)
= (∂ttu

n−1
h , φ).

Next, summing i = 1, . . . , d, (3.1), and using that ∂xiφ∈ Vk−1, we get

0 =

d∑
i=1

(vnh,i, ∂xi
φ) −

d∑
i=1

(Fi(u
n
h), ∂xiφ) + ε

d∑
i=1

(∂tv
n−1
h,i +Ai∂xi

unh, ∂xiφ)

(3.1)
= (∂tu

n
h, φ) −

d∑
i=1

(Fi(u
n
h), ∂xiφ) + ε

d∑
i=1

(∂tv
n−1
h,i +Ai∂xi

unh, ∂xi
φ)

(3.8)

and the result follows.
In the case d = 1, we have

(∂tv
n
h , ∂xφ) = (∂ttu

n
h, φ),(3.9)

(∂tu
n
h, φ) − (F (unh), ∂xφ) + ε

(
(∂ttu

n−1
h , φ) + (A∂xu

n
h, ∂xφ)

)
= 0.(3.10)

3.2. The case d = 1 and F ′ symmetric. Let φ = 2un+1
h +4ε ∂tu

n
h, in (3.10).

Then

0 = 2(∂tu
n
h, u

n+1
h ) + 2(∂xF (unh), u

n+1
h )

+ 2ε(∂ttu
n−1
h , un+1

h ) + 2ε(A ∂xu
n
h, ∂xu

n+1
h )

+ 4ε(∂tu
n
h, ∂tu

n
h) + 4ε(∂xF (unh), ∂tu

n
h)

+ 4ε2(∂ttu
n−1
h , ∂tu

n
h) + 4ε2(A ∂xu

n
h, ∂x∂tu

n
h).

(3.11)

Using the properties of the discrete time operators listed above, the terms of (3.11)
are handled as follows. First note

2(∂tu
n
h, u

n+1
h ) =∂t‖ unh‖2

L2 + κ‖ ∂tunh‖2
L2 .

Also,

2(∂xF (unh), u
n+1
h ) = 2 κ(F ′(unh) ∂xu

n
h, ∂tu

n
h).
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The next term is estimated as

2ε(∂ttu
n−1
h , un+1

h )
(3.6)
= 2ε∂t(∂tu

n−1
h , unh) − 2ε‖∂tunh‖2

L2 + 2εκ(∂ttu
n−1
h , ∂tu

n
h)

≥ 2ε∂t(∂tu
n−1
h , unh)−2ε‖∂tunh‖2

L2−2ε2κ‖ ∂ttun−1
h ‖2

L2−κ
2
‖∂tunh‖2

L2 .

In addition,

2ε(A ∂xu
n
h, ∂xu

n+1
h ) = 2ε(A ∂xu

n
h, ∂xu

n
h) + 2ε κ(A ∂xu

n
h, ∂x∂tu

n
h).

For the terms with coefficient 4ε we first note

4ε2(∂ttu
n−1
h , ∂tu

n
h)

(3.5)
= 2ε2 ∂t‖ ∂tun−1

h ‖2
L2 +2ε2 κ‖ ∂ttun−1

h ‖2
L2

and

4ε2(A ∂xu
n
h, ∂x∂tu

n
h) = 4ε2(Wn, ∂tW

n), Wn := A1/2∂xu
n
h, n = 0, 1, 2, . . . ,

(3.4)
= 2ε2 ∂t‖Wn‖2

L2 −2ε2 κ‖ ∂tWn‖2
L2

= 2ε2 ∂t(A ∂xu
n
h, ∂xu

n
h) − 2ε2 κ(A ∂x∂tu

n
h, ∂x∂tu

n
h).

Summarizing, the terms with discrete time derivative that will appear in (3.11) are

∂t

[
‖ unh‖2

L2 + 2ε(∂tu
n−1
h , unh) + 2ε2‖ ∂tun−1

h ‖2
L2 + 2ε2(A ∂xu

n
h, ∂xu

n
h)
]

= ∂t

[
‖ unh + ε ∂tu

n−1
h ‖2

L2 + ε2‖ ∂tun−1
h ‖2

L2 + 2ε2(A ∂xu
n
h, ∂xu

n
h)
]
.

In addition, the following calculation is useful:

2ε‖∂tunh‖2
L2 + 4ε(∂xF (unh), ∂tu

n
h)

= ε‖∂tunh‖2
L2 + 2ε‖ 1√

2
∂tu

n
h +

√
2 F ′(unh) ∂xu

n
h‖2
L2

− 4ε((F ′(unh))
2 ∂xu

n
h, ∂xu

n
h).

We conclude, therefore, that

∂t

[
‖ unh + ε ∂tu

n−1
h ‖2

L2 + ε2‖ ∂tun−1
h ‖2

L2 + 2ε2(A ∂xu
n
h, ∂xu

n
h)
]

+ ε‖∂tunh‖2
L2 +

κ

2
‖∂tunh‖2

L2 + 2ε((A− 2(F ′(unh))
2) ∂xu

n
h, ∂xu

n
h)

≤ |2κ(∂xF (unh), ∂tu
n
h)| + |2ε κ(A ∂xu

n
h, ∂x∂tu

n
h)|

+ 2ε2 κ(A ∂x∂tu
n
h, ∂x∂tu

n
h).

(3.12)

Next,

|2κ(∂xF (unh), ∂tu
n
h)| ≤ 4κ((F ′(unh))

2 ∂xu
n
h, ∂xu

n
h) +

κ

4
‖∂tunh‖2

L2 .

We will use the inverse inequality in Sk [7],

‖∂xϕ‖L2 ≤ CIh
−1‖ϕ‖L2 ∀ϕ ∈ Sk,(3.13)
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to obtain

|2ε κ(A ∂xu
n
h, ∂x∂tu

n
h)| ≤ ε CI ‖A‖ κ

h
‖∂xunh‖2

L2 + ε CI ‖A‖ κ
h
‖∂tunh‖2

L2 ,

2ε2 κ(A ∂x∂tu
n
h, ∂x∂tu

n
h) ≤ ε

ε

h

(
C2
I ‖A‖

κ

h

)
‖∂tunh‖2

L2 .

Multiplying (3.12) by κ, and summing we finally conclude with the following propo-
sition.

Proposition 3.1. We assume that F ′(u) is symmetric and that for given β̃ there
holds

κ ≤ β̃ε.(3.14)

Assume further that we can choose A symmetric so that for some ν,

A− ( 2 + 4β̃ )F ′(u)2 ≥ ν I for u ∈ R
n.(3.15)

Let γCFL = C2
I ‖A‖κh and assume that γCFL is sufficiently small and that

ε ≤ 1

2 γCFL
h.

Then the approximations of the fully discrete schemes satisfy the stability estimate

‖ unh + ε ∂tu
n−1
h ‖2

L2 + ε2‖ ∂tun−1
h ‖2

L2 + 2ε2(A ∂xu
n
h, ∂xu

n
h)

+

n−1∑
j=1

ε κ‖∂tujh‖2
L2 +

n−1∑
j=1

κ2‖∂tujh‖2
L2 +

n−1∑
j=1

ε κ ‖∂xujh‖2
L2 ≤ C(u0

h).

In what follows we study the compactness properties of the dissipation measure
associated to the scheme. To this end we use the notation

uh denotes the piecewise linear in time

function such that uh(t
n) = unh,

uh denotes the piecewise constant in time

function such that uh(t
n) = unh, In = (tn, tn+1].

(3.16)

Proposition 3.2. Under the assumptions of Proposition 3.1, for entropy pairs
(η, q) such that

‖η‖L∞ , ‖q‖L∞ , ‖η′‖L∞ , ‖η′′‖L∞ ≤ C

and for h ≤ C ε there holds

η(uh)t + q(uh)x lies in a compact set of H−1
loc (R × R

+),(3.17)

where uh is defined by (3.16).
Proof. Let (η, q) be an entropy pair and φ ∈ C∞

c (R × [0,∞)) a test function,
and suppφ ⊂ Ω̃ × [0, T̃ ] =: Q. Without loss of generality assume that T̃ = tm+1. Let
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Π : H1 → Sk be the L2-projection onto the finite element space defined in (2.6).
Then using the definition of the scheme we obtain

(3.18)∫ T̃

0

(
∂tη(uh) + ∂xq(uh), φ

)
dt =

∫ T̃

0

(
η′(uh)

[
∂tuh + ∂xF

′(uh)uh
]
, φ
)
dt

= −ε
j=m∑
j=0

∫
Ij

{(
A∂x u

j
h, ∂x

[
Π
(
η′(uh)φ

)])
+
(
∂ttu

j−1
h ,Π

(
η′(uh)φ

))}
dt

+

j=m∑
j=0

∫
Ij

{([
∂tu

j
h + ∂xF

′(uh)
]
, η′(uh)φ− Π

(
η′(uh)φ

))
+
(
η′(uh)∂x

[
F (uh) − F (uh)

]
, φ
)}
dt.

Note here that for notational simplicity when we use ∂tu
j
h, u

j
h, ∂ttu

j−1
h we mean the

piecewise constant (with respect to t) functions that have these values in Ij . To proceed
with the estimates, note that using (2.8) one obtains

ε

j=m∑
j=0

∫
Ij

∣∣∣ (A∂x ujh, ∂x[Π(η′(uh)φ)]) ∣∣∣ dt
≤ ε C

(
κ

m∑
j=0

‖∂x ujh‖2
L2(Ω)

)1/2

‖∂x
(
η′(uh)φ

)‖L2(Q)

≤ C

(
ε κ

m∑
j=0

‖∂x ujh‖2(Ω)

)
· ‖η′′‖L∞ ‖φ‖C0(Q)

+ ε1/2 C

(
ε κ

m∑
j=0

‖∂x ujh‖2(Ω)

)1/2

‖η‖L∞ ‖∂xφ‖L2(Q).

(3.19)

In addition, using the notation

vj = κ−1

∫
Ij

v dt,

we have by (2.6),

− ε
m∑
j=0

∫
Ij

∫
Ω

∂ttu
j−1
h Π

(
η′(uh)φ

)
= −ε

m∑
j=0

∫
Ij

∂ttu
j−1
h

∫
Ω

η′(uh)φ

= −ε
∫

Ω

m∑
j=0

(∂tu
j
h − ∂tu

j−1
h ) (η′(uh)φ)j

= ε

∫
Ω

m−1∑
j=0

∂tu
j
h ( (η′(uh)φ)j+1 − (η′(uh)φ)j ) − ε

∫
Ω

∂tu
m
h

∫
Ω

(η′(uh)φ)m.

(3.20)
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The stability in Proposition 3.1 implies, since |vj | ≤ ‖ v ‖∞,

ε
∣∣∣∫

Ω

∂tu
m
h (η′(uh)φ)m

∣∣∣ ≤ ε ‖∂tumh ‖L2(Ω) ‖η′‖L∞ ‖φ‖C0(Ω)m(Ω)1/2

≤ CΩ‖φ‖C0(Q).

(3.21)

Observing that |vj+1 − vj | = 1
κ

∣∣∫
Ij

∫ t+κ
t

vt ds dt
∣∣ ≤ ∫ tj+2

tj
| vt | dt, we conclude

ε

∣∣∣∣∣
∫

Ω

m−1∑
j=0

∂tu
j
h ((η′(uh)φ)j+1 − (η′(uh)φ)j)

∣∣∣∣∣
≤ C

(
ε κ

m∑
j=0

‖∂t ujh‖2
L2(Ω)

)
‖η′′‖L∞ ‖φ‖C0(Q)

+ ε1/2

(
ε κ

m∑
j=0

‖∂t ujh‖2
L2(Ω)

)1/2

‖η′‖L∞ ‖∂tφ‖L2(Q).

(3.22)

Next,

‖η′(uh)φ− Π
(
η′(uh)φ

)‖L2(Ω)

≤ Ch‖η′′‖L∞ ‖∂xuh‖L2(Ω) ‖φ‖C0(Ω) + Ch‖η′‖L∞ ‖∂xφ‖L2(Ω)

and ‖F ′(u)2‖L∞ ≤ C (see (2.4)); therefore,

m∑
j=0

∫
Ij

∣∣∣([ ∂tujh + F ′(uh)∂xuh
]
, η′(uh)φ− Π

(
η′(uh)φ

))∣∣∣
≤ C

(
h κ

m∑
j=0

‖∂t ujh‖2
L2(Ω) + ‖∂x ujh‖2

L2(Ω)

)
‖φ‖C0(Q)

+ h

(
κ

m∑
j=0

‖∂t ujh‖2
L2(Ω) + ‖∂x ujh‖2

L2(Ω)

)1/2

‖∂xφ‖L2(Q).

(3.23)

Finally, using the fact that |uh−uh| ≤ Cκ|∂tuh| = Cκ|∂t unh|, we have by using (3.14)
and (3.15),

m∑
j=0

∫
Ij

(
η′(uh)∂x

[
F (uh) − F (uh)

]
, φ
)

= −
m∑
j=0

∫
Ij

([
F (uh) − F (uh)

]
, ∂x(η

′(uh) φ)
)

≤ C

(
ε κ

m∑
j=0

‖∂t ujh‖2
L2(Ω) + ‖∂x ujh‖2

L2(Ω)

)
‖φ‖C0(Q)

+ ε

(
κ

m∑
j=0

‖∂t ujh‖2
L2(Ω) + ‖∂x ujh‖2

L2(Ω)

)1/2

‖∂xφ‖L2(Q).

(3.24)

Combining (3.19)–(3.24), we obtain the desired result in view of Lemma 2.2.
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3.3. The case d = 1, and the system admits a convex entropy. The case
that F ′ is not necessarily symmetric but the system is equipped with a convex entropy
η will be briefly examined here. The analysis in this case mainly uses a combination
of arguments from the corresponding semidiscrete case and the analysis of the fully
discrete scheme in the symmetric case. For this reason we will present briefly the
basic steps of the proof, explaining only the new estimates. The following proposition
holds.

Proposition 3.3. Assume that (1.9) admits a convex entropy η(u) satisfying
(2.13), and the symmetric, positive definite matrix A satisfies (2.14) for some ν > 0
where the constant α depends on α, β, and β̃; see (2.13), (2.22), and (3.14). Under
similar conditions on κ, ε, h as in Proposition 3.1 (with possibly different constants),
and if h ≤ γ ε for some γ > 0, the fully discrete finite element approximations satisfy

‖ unh + ε ∂tu
n−1
h ‖2

L2 + ε2‖ ∂tun−1
h ‖2

L2 + 2ε2(A ∂xu
n
h, ∂xu

n
h)

+

n−1∑
j=1

ε κ‖∂tujh‖2
L2 +

n−1∑
j=1

κ2‖∂tujh‖2
L2 +

n−1∑
j=1

ε κ ‖∂xujh‖2
L2 ≤ C(u0

h).
(3.25)

Proof. The fully discrete finite element approximation unh satisfies

(∂tu
n
h, φ) − (F (unh), ∂xφ) + ε

(
(∂ttu

n−1
h , φ) + (A∂xu

n
h, ∂xφ)

)
= 0.(3.26)

Let φ = P1 η
′(un+1

h ) in (3.26), where P1 : H1 → Sk is the elliptic projection defined
in (2.20). Then

(∂tu
n
h, η

′(un+1
h )) +

(
∂xF (unh), η

′(un+1
h )

)
+ ε(∂ttu

n−1
h , P1, η

′(un+1
h )) + ε(A∂x u

n
h, ∂xη

′(un+1
h ))

= (∂tu
n
h, η

′(un+1
h ) − P1 η

′(un+1
h ))

+
(
∂xF (unh), η

′(un+1
h ) − P1 η

′(un+1
h )

)
=: Z1 + Z2.

(3.27)

The terms in the right-hand side will be estimated as in the semidiscrete case. We
start by examining the stability that is inherited in the left-hand side. In a way similar
to (3.6) one can show

(∂ttY
n−1, Wn+1) = κ(∂ttY

n−1, ∂tW
n)

+ ∂t(∂tY
n−1, Wn) − (∂tY

n, ∂tW
n).

(3.28)

Therefore,

ε(∂ttu
n−1
h , P1 η

′(un+1
h ))

= εκ(∂ttu
n−1
h , ∂tP1 η

′(unh)) + ε∂t(∂tu
n−1
h , P1 η

′(unh)) − ε(∂tu
n
h, ∂tP1 η

′(unh))

= ε∂t(∂tu
n−1
h , η′(unh)) + εκ(∂ttu

n−1
h , ∂tP1 η

′(unh))

− ε(∂tu
n
h, ∂tP1 η

′(unh)) + ε∂t(∂tu
n−1
h , P1 η

′(unh) − η′(unh)).

(3.29)

Taylor’s formula implies∫
Ω

η(unh)dx =

∫
Ω

η(un+1
h )dx− κ(η′(un+1

h ), ∂tu
n
h)

+ κ2

(
∂tu

n
h,

{∫ 1

0

∫ s

0

η′′(un+1
h − κ τ∂tu

n
h)dτds

}
∂tu

n
h

)
,

(3.30)
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i.e.,

(∂tu
n
h,η

′(un+1
h )) = ∂t

∫
Ω

η(unh)dx

+ κ

(
∂tu

n
h,

{∫ 1

0

∫ s

0

η′′(un+1
h − κ τ∂tu

n
h)dτds

}
∂tu

n
h

)
.

(3.31)

Further, since (η, q) is an entropy pair,

(F ′(unh) ∂xu
n
h, η

′(un+1
h )) = (F ′(unh) ∂xu

n
h, η

′(unh))

+ (F ′(unh) ∂xu
n
h, η

′(un+1
h ) − η′(unh))

= κ(F ′(unh) ∂xu
n
h, ∂tη

′(unh)).

Hence

∂t

∫
Ω

η(unh)dx+ ε∂t(∂tu
n−1
h , η′(unh))

+ ε(A∂x u
n
h, η

′′(uh)∂x unh) − ε(∂t uhn , P1 ∂tη
′(unh))

+κ

(
∂tu

n
h,

{∫ 1

0

∫ s

0

η′′(un+1
h − κ τ∂tu

n
h)dτds

}
∂tu

n
h

)
=Z1 + Z2 + Z3,

(3.32)

where the new term Z3 is given by

Z3 = − εκ(∂ttu
n−1
h , ∂tP1 η

′(unh))

− ε∂t(∂tu
n−1
h , P1 η

′(unh) − η′(unh)) − κ(F ′(unh) ∂xu
n
h, ∂tη

′(unh)).
(3.33)

Using once more Taylor’s formula we obtain,∫
Ω

η(unh + ε∂tu
n−1
h )dx =

∫
Ω

η(unh)dx+ ε∂t(∂tu
n−1
h , η′(unh))

+ ε2
(
∂tu

n−1
h ,

{∫ 1

0

∫ s

0

η′′(unh + ε τ∂tu
n−1
h )dτds

}
∂tu

n−1
h

)
.

(3.34)

By a slight modification of the proof of Lemma 2.3 we have

ε|(∂t unh, P1 ∂tη
′(unh))| ≤ β ‖η′′‖L∞ ‖∂t unh‖2

L2(Ω).(3.35)

Essentially what remains now is an estimate of ‖∂t unh‖L2(Ω). As in the symmetric

case we use the test function φ = ∂t u
n
h and we conclude the proof by combining

arguments from the semidiscrete case (see (2.33)–(2.37)), and the fully discrete case
with symmetric F ′ (cf. the terms with coefficient 4ε2), and by estimating of course
the terms Zi. It is to be noted, finally, the essential role of the estimate

κ

(
∂tu

n
h,

{∫ 1

0

∫ s

0

η′′(un+1
h − κ τ∂tu

n
h)dτds

}
∂tu

n
h

)
≥ µκ‖∂tunh‖2

L2 , µ > 0,

(3.36)

in the stability analysis.
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Remark 3.1 (mesh conditions). Proposition 3.3 holds under the assumptions for
the mesh stated in Proposition 3.1, assuming in addition that h ≤ γε. Combining these
conditions we conclude that we need to have a CFL condition with small constant
γCFL and in addition h ≤ γ

2γCFL
h. This last relation is a quasi-uniformity condition

on the mesh, the constant of which depends on how strong the CFL condition is. It
seems that it is a weakness of our proof to assume h ≤ γε rather than hloc ≤ γε, where
hloc is the local mesh size close to the shock; see section 1.2. If this were the case this
would not be a restriction since hloc is naturally of the order of h. Nevertheless, the
above conditions provide enough room for computations compatible with the principle
to have finer mesh in the shock areas and coarser mesh in the smooth parts of the
solution. See also the related discussion in section 6.

We conclude with the following proposition.
Proposition 3.4. For entropy pairs (η, q) such that

‖η‖L∞ , ‖q‖L∞ , ‖η′‖L∞ , ‖η′′‖L∞ ≤ C

and under the hypotheses of Proposition 3.3, we have

η(uh)t + q(uh)x ⊂ lies in a compact set of H−1
loc (R × R

+),

where uh and unh are related by (3.16).

3.4. Estimates in the multidimensional case. Let (1.1) be endowed with a
uniformly convex entropy η; the fluxes qi are given by (2.42) [14, sec. IV.4.3]. The
finite element approximations defined by (3.1) satisfy similar a priori bounds with the
one-dimensional case. The matrices Ai should now satisfy the analogue of (2.44). We
state the stability estimate; its proof is a modification of the proof of Proposition 3.3
and is omitted.

Proposition 3.5. Assume that (1.1) is equipped with a convex entropy η(u) sat-
isfying (2.6). If the symmetric, positive definite matrices Ai satisfy (2.44), then, under
similar conditions on κ, ε, h as in Proposition 3.1 (with possibly different constants),
and for h ≤ γε for some γ > 0, the fully discrete finite element approximations (3.1)
satisfy

‖ unh + ε ∂tu
n−1
h ‖2

L2 + ε2‖ ∂tun−1
h ‖2

L2 + 2ε2
d∑
i=1

(Ai ∂xiu
n
h, ∂xiu

n
h)

+

n−1∑
j=1

ε κ‖∂tujh‖2
L2 +

n−1∑
j=1

κ2‖∂tujh‖2
L2 +

n−1∑
j=1

ε κ

d∑
i=1

‖∂xiu
j
h‖2
L2 ≤ C(u0

h).

4. Convergence of finite element schemes for one-dimensional systems.
The compactness of the dissipation measure (2.41) or (3.17) is central in establishing
compactness of approximate solutions for systems of conservation laws via the pro-
gram of compensated compactness. Such results are available (in a one-dimensional
context) for the scalar conservation law, the equations of elastodynamics, the equa-
tions of isentropic gas dynamics, and the class of rich systems (see [42, 15] and the
references in [14, Chap. XV]). One difficulty in applying the compensated compact-
ness framework is that, while several of the existing compactness theorems are valid
in the presence of uniform L∞-estimates, the available estimates in applications are
often just in the energy norm. In particular, this is the case for the approximations
arising via semidiscrete (2.1) or fully discrete (3.2) finite element schemes. Note that
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under the additional hypothesis of uniform L∞ bounds for the approximations, one
would conclude directly convergence toward a weak solution for all the aforementioned
systems.

Our results can be applied to systems where the compensated compactness pro-
gram has been carried out in the energy-norm framework. Such results are available
for the scalar conservation law in the Lp framework (e.g., [35], [34, Thm. 2.3]) and for
the equations of one-dimensional elasticity,

u1,t − u2,x = 0,

u2,t − σ(u1)x = 0,
(4.1)

in the energy norm [31, 38, 37]. In both cases one can deduce compactness of semidis-
crete or fully discrete finite element schemes and conclude with a convergence result.

We consider here as a paradigm the system (4.1). For σ′(u1) > 0, it is strictly
hyperbolic with wave speeds λ1,2 = ±√σ′(u1). It admits an infinite number of
entropy pairs, of which the special pair

η =
1

2
u2

2 +

∫ u1

0

σ(τ)dτ, q = −u2σ(u1)(4.2)

is associated with the mechanical energy and the work of contact forces, and η is
strictly convex. We assume that σ satisfies the subcharacteristic condition

0 < s ≤ σ′(u) ≤ S, u ∈ R,(4.3)

with s, S positive constants. One easily checks that the matrix A can be selected so
that all conditions in Propositions 2.3 and 3.3 hold.

We need a second hypothesis on σ that allows us to apply the results of [38, 37].
We assume either that (4.1) is genuinely nonlinear with

σ′′(u) �= 0 and σ′′, σ′′′ ∈ L2 ∩ L∞(R)(4.4)

or that σ has precisely one inflection point at u0 with

(u− u0)σ
′′(u) �= 0 for u �= u0

and σ′′, σ′′′ ∈ L2 ∩ L∞(R).
(4.5)

We then have the following theorem.
Theorem 4.1. Let σ ∈ C3 satisfy hypotheses (4.3), (4.4) (or (4.3), (4.5)). Let

(uε,h1 , uε,h2 ) be a family of solutions of (2.1), and let A be a symmetric, positive definite
matrix satisfying (2.14). Then, for h ≤ γε (with γ as in Proposition 2.3) and along
a subsequence,

u1,h → u1 , u2,h → u2 , a.e. (x, t) and in Lploc(R × (0, T )) for p < 2,

and (u1, u2) is a weak solution of (4.1).
Proof. The proof uses the theory of compensated compactness and proceeds by

controlling the dissipation measure

∂tη(u
ε,h
1 , uε,h2 ) + ∂xq(u

ε,h
1 , uε,h2 ) lies in a compact of H−1

loc ,(4.6)

for entropy pairs (η(u, v) , q(u, v)) for the equations of elasticity. In the presence of
uniform L∞-bounds, the theorem of DiPerna [15] would guarantee compactness of
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approximate solutions and imply that, along a subsequence, uε,h1 → u1 and uε,h2 → u2

a.e. (x, t).
In the current case, uniform L∞-estimates are not available and the natural sta-

bility framework is in the energy norm (see Proposition 2.3). Nevertheless, under
hypothesis (4.3) and by Proposition 2.5, the dissipation measure is controlled for a
class of entropy-flux pairs (η(u, v) , q(u, v)) satisfying the growth restrictions

η, q, ηu, ηv, ηuu, ηuv, ηvv ∈ L∞(R2).(4.7)

This class of entropy pairs contains sufficient test pairs in order to achieve the reduc-
tion of the generalized Young measure to a point mass and to show strong conver-
gence in Lploc for p < 2. The hypotheses (4.3)–(4.4) allow us to apply the result of
Shearer [38], where the reduction is performed for the genuine nonlinear case, while
the hypotheses (4.3)–(4.5) allow us to apply the corresponding reduction in Serre and
Shearer [37] applicable to the case of elasticity with one inflection point.

In a similar manner we can prove convergence of fully discrete finite element
approximations (3.2) for the equations (4.1).

Theorem 4.2. Let σ be as in Theorem 4.1 and let A satisfy the hypotheses of
Proposition 3.3. Let (u1,h, u2,h) be the fully discrete finite element approximations
defined in (3.16). If the parameters κ, h, and ε are restricted by (3.14) and h ≤ γε
for some γ > 0, then along a subsequence

u1,h → u1, u2,h → u2, a.e. (x, t) and in Lploc(R × (0, T )) for p < 2,

and (u, v) is a weak solution of (4.1).

5. Error estimates for smooth solutions. In this section we consider the
system of conservation laws

∂tu+ ∂xF (u) = 0(5.1)

and assume that (5.1) is endowed with a convex entropy η(u). We let u be a classical
solution of (5.1) defined on a maximal interval of existence and let Uε be the smooth
solution of the relaxation approximation

∂tUε + ∂xF (Uε) = εA∂xxUε − ε∂ttUε .(5.2)

We show

‖Uε(t) − u(t)‖L2 ≤ C(t, u) ε ,(5.3)

where the constant C(t, u) depends on a strong norm of u and blows up at the critical
time.

5.1. Motivation. It was established in Theorem 5.2.1 of [14] that the classical
solution of (1.1) is unique among the class of admissible weak solutions in the case
where the system admits a convex entropy. The result follows by showing a stability
estimate in L2:

‖u(t) − w(t)‖L2 ≤ C(t, u) ‖u(0) − w(0)‖L2 .(5.4)

Here u is the classical and w an admissible weak solution of (1.1). The main idea of
the proof is to control the spatial integral of the quadratic in the u− w function

H(u,w) = η(w) − η(u) − η′(u)(w − u).(5.5)
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This is made possible by the observation that certain quantities arising in the proof
vanish when u is a classical solution and thus satisfies the entropy inequality as equal-
ity. Our idea is to use a similar approach to show the error estimate (5.3). A difficulty
arises (except for handling the error terms in an appropriate way) that it is no longer
possible to work with the same function H as in (5.5). On the other hand, the esti-
mates in [43] and in section 2 suggest that when the system admits a convex entropy,
we are able to control the quantity∫

η(Uε + ε∂t Uε)dx.

Motivated by these considerations, we introduce the functions

HR(u, Uε) = η
(
Uε + ε∂t(Uε − u)

)− η(u) − η′(u)
(
Uε − u+ ε∂t(Uε − u)

)
,(5.6)

Q (u, Uε) = q(Uε) − q(u) − η′(u) (F (Uε) − F (u)).(5.7)

The function HR is the relaxational correction of (5.5) and is of quadratic order in
the quantity

(
Uε − u+ ε∂t(Uε − u)

)
. Control of ‖u(t)−Uε(t)‖2

L2 is achieved through
the additional control of ε2‖∂t (Uε − u)‖2

L2 that is obtained from a separate estimate
natural for approximations by wave equation (5.2).

5.2. The decay functional. The first objective is to establish that HR is a
Lyapunov functional. We begin with the derivation of the main decay identity.

Let η be the convex entropy with q the corresponding flux. The classical solution
u satisfies

∂tη(u) + ∂xq(u) = 0.

The approximate solution of (5.2) will henceforth be denoted by U ≡ Uε. It satisfies
the identities

∂t(U − u) + ∂x(F (U) − F (u)) = εAUxx − εUtt,

∂tη
′(u)(U − u) + ∂xη

′(u)(F (U) − F (u))

= η′′(u)ux · [F (U) − F (u) − F ′(u)(U − u)] + εη′(u) ·AUxx − εη′(u) · Utt,

where we use (5.1) and the fact that η is an entropy if and only if (η′′F ′)T = η′′F ′;
see (2.42). Combining the above, we deduce

∂t[η(U) − η(u) − η′(u)(U − u)] + ∂x[q(U) − q(u) − η′(u)(F (U) − F (u))]

= −η′′(u)ux · [F (U) − F (u) − F ′(u)(U − u)]

+ ε
(
η′(U) − η′(u)

) ·AUxx − ε
(
η′(U) − η′(u)

) · Utt.(5.8)

We now use (5.8) in conjunction with the identities

(η′(U) − η′(u)) · Utt = ∂t[(η
′(U) − η′(u)) · (Ut − ut)] − η′′(U)(Ut − ut) · (Ut − ut)

− (η′′(U) − η′′(u))ut · (Ut − ut) + (η′(U) − η′(u)) · utt,
(η′(U) − η′(u)) ·AUxx = ∂x[(η

′(U) − η′(u)) ·A(U − u)x]

− η′′(U)(U − u)x ·A(U − u)x

− (η′′(U) − η′′(u))ux ·A(U − u)x + (η′(U) − η′(u)) ·Auxx
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and

η
(
U + ε∂t(U − u)

)
= η(U) + η′(U)ε∂t(U − u) + ε2∂t(U − u) · η′′∂t(U − u)

with η′′ =

∫ 1

0

∫ s

0

η′′(U + ε τ∂t (U − u))dτds

to conclude

(5.9)

∂t{η(U + ε∂t(U − u)) − η(u) − η′(u)[U − u+ ε∂t(U − u)]

− ε2∂t(U − u) · η′′∂t(U − u)}
+ ∂x{q(U) − q(u) − η′(u)(F (U) − F (u))}
+ ε{η′′(U)(U − u)x ·A(U − u)x − η′′(U)(U − u)t · (U − u)t}

= ∂x{ε(η′(U) − η′(u)) ·A(U − u)x} − η′′(u)ux · [F (U) − F (u) − F ′(u)(U − u)]

+ a1t + a2t + b1x + b2x.

The error terms a1t, a2t, b1x, and b2x are defined by

a1t = ε
(
η′′(U) − η′′(u)

)
ut · (Ut − ut),

a2t = −ε(η′(U) − η′(u)
) · utt,

(5.10)
b1x = −ε(η′′(U) − η′′(u)

)
ux ·A(U − u)x,

b2x = ε
(
η′(U) − η′(u)

) ·Auxx
and will be estimated in what follows.

Identity (5.9) is supplemented by a correction accounting for the fact that the
third term is indefinite. The correcting identity is obtained by multiplying the equa-
tion

(U−u)t+F ′(U)(U−u)x = εA(U−u)xx−ε(U−u)tt+ε(Auxx−utt)−(F ′(U)−F ′(u))ux

by (U − u)t and integrating by parts to deduce

∂t

{1

2
ε|Ut − ut|2 +

1

2
ε(U − u)x ·A(U − u)x

}
+ |(U − u)t|2

+ F ′(U)(U − u)x · (U − u)t = ∂x

{
εA(U − u)x · (U − u)t

}
+ c1t + c2t,

(5.11)

where c1t, c2t are given by

c1t = ε(Auxx − utt) · (U − u)t,

c2t = −(F ′(U) − F ′(u))ux · (U − u)t.
(5.12)

Next, we multiply (5.11) by 2αε, add the resulting identity to (5.9), and use (5.6)
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and (5.7) to arrive at

∂tG(u, U) + ∂xQ(u, U) + αε
∣∣∣(U − u)t + F ′(U)(U − u)x

∣∣∣2
+ ε
{
η′′(U)(U − u)x ·A(U − u)x − αF ′(U)(U − u)x · F ′(U)(U − u)x

}
+ ε
{(
αI − η′′(U)

)
(U − u)t · (U − u)t

}
= ∂x

{
ε(η′(U) − η′(u)

) ·A(U − u)x + 2αε2A(U − u)x · (U − u)t

}
− η′′(u)ux ·

[
F (U) − F (u) − F ′(u)(U − u)

]
+ a1t + a2t + b1x + b2x + 2αε(c1t + c2t),

(5.13)

where

G(u, U) = HR(u, U)

+ ε2
[
αI − η′′

]
(U − u)t · (U − u)t + ε2αA(U − u)x · (U − u)x.

(5.14)

5.3. The error estimate. Equation (5.13) is the basic decay identity. We see
below that, under certain conditions on the entropy η, the quantity G(u, U) becomes
a Lyapunov functional and leads to an error estimate.

Proposition 5.1. Assume that (5.1) is equipped with a strictly convex entropy
η that satisfies, for some α > 0,

1

α
I ≤ η′′(u) ≤ α I, u ∈ R

n,(5.15)

and the positive definite, symmetric matrix A can be selected so that for some ν > 0
we have

1

2

(
(η′′(u)A)T + η′′(u)A

)− αF ′T (u)F ′(u) ≥ νI, u ∈ R
n.(5.16)

Let u be a smooth solution of (5.1), let Uε be a smooth solution of (5.2), and suppose
that both u, Uε decay sufficiently fast at infinity.

(i) Then G(u, U) is positive definite and

d

dt

∫
R

G(u, Uε)dx+
1

c
ε

∫
R

|(Uε − u)x|2 + |(Uε − u)t|2dx

≤
∫

R

{
|η′′(u)ux

(
F (Uε) − F (u) − F ′(u)(Uε − u)

)|(5.17)

+ |a1t + a2t + b1x + b2x + 2αε(c1t + c2t)|
}
dx

for some constant c independent of ε.
(ii) If in addition for some M > 0

|F ′′(u)| ≤M, |η′′′(u)| ≤M, u ∈ R
n,(5.18)

then

‖(Uε − u)(t)‖L2 + ε‖(∂xUε − ∂xu)(t)‖L2 + ε‖(∂tUε − ∂tu)(t)‖L2

(5.19)

≤ C(t, u)(‖(Uε − u)(0)‖L2 + ε‖(∂xUε − ∂xu)(0)‖L2 + ε‖(∂tUε − ∂tu)(0)‖L2 + ε),
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where C(t, u) is a constant depending on t and norms of the smooth solution u.
Proof. Integrating (5.13) over R and using the hypotheses (5.15) and (5.16), we

obtain (5.17). By (5.15),

αI − η′′ = αI −
∫ 1

0

∫ s

0

η′′(U + ε τ∂t (U − u))dτds ≥ 1

2
αI.

Moreover, the function HR(u, U) defined in (5.6) is strictly convex and thus G(u, U)
in (5.14) is positive definite.

Under (5.15), (5.18) and for

ϕ(t) =

∫
R

|U − u|2 + ε2|Ut − ut|2 + ε2|Ux − ux|2dx,

we have

1

C
ϕ(t) ≤

∫
R

G(u, U)dx ≤ Cϕ(t) .

The error terms in (5.10) are estimated by

‖a1t‖L1 ≤ εC‖ut‖L∞‖U − u‖L2‖Ut − ut‖L2 , ‖a2t‖L1 ≤ εC‖utt‖L2‖U − u‖L2 ,

‖b1x‖L1 ≤ εC‖ux‖L∞‖U − u‖L2‖Ux − ux‖L2 , ‖b2x‖L1 ≤ εC‖uxx‖L2‖U − u‖L2 ,

while the ones in (5.12) are estimated by

‖εc1t‖L1 ≤ ε2C
(‖utt‖L2 + ‖uxx‖L2

)‖Ut − ut‖L2 ,

‖εc2t‖L1 ≤ εC‖ux‖L∞‖U − u‖L2‖Ut − ut‖L2 ,

where C is a generic constant depending on α, M , and norms of u.
From (5.17) we obtain

(5.20)

d

dt

∫
R

G(u, Uε)dx+
1

C
ε
(‖Ut − ut‖2

L2 + ‖Ux − ux‖2
L2

)
≤ C(‖U − u‖2

L2 + ε‖U − u‖L2(1 + ‖Ut − ut‖L2 + ‖Ux − ux‖L2) + ε2‖Ut − ut‖L2)

≤ C(‖U − u‖2
L2 + ε2‖Ut − ut‖2

L2 + ε2‖Ux − ux‖2
L2 + ε2).

This in turn gives

ϕ(t) ≤ ϕ(0) + ε2Ct+ C

∫ t

0

ϕ(s)ds

and we conclude from Gronwall’s inequality that

ϕ(t) ≤ C(t, u)
(
ϕ(0) + ε2

)
.(5.21)

Then (5.19) follows.
Remark 5.1. As an example where Proposition 5.1 applies, consider the equations

of elastodynamics (4.1). This system admits the entropy pair (4.2). One checks that
if

0 < s ≤ σ′(u) ≤ S, |σ′′(u)| ≤M,

for some constants s, S, and M > 0, then (5.15), (5.16), and (5.18) are fulfilled and
we obtain the relevant stability estimate.

Remark 5.2. Proposition 5.1 can be extended for multidimensional hyperbolic
systems. In this case, condition (5.16) should be replaced by the analogue of (2.44).
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6. Implementation issues. We include here a short discussion on the imple-
mentation of the schemes and we present indicative numerical examples that relate
to our results.

Adaptivity and mesh reconstruction. The basic principles of our mesh reconstruc-
tion policy are

(a) locate the regions of space where increased accuracy is demanded, through a
positive functional g;

(b) find a partition of space with predefined constant cardinality and density that
follows the estimator function g; and

(c) reconstruct the solution on the finite element space which corresponds to that
partition and advance to the next time step by applying the finite element scheme.

These steps are studied, introducing appropriate estimator functions for finite el-
ement methods of systems of hyperbolic conservation laws. Among others, estimator
functions g are proposed which are based on a posteriori estimates or on the cur-
vature of the approximate solution [4, 2, 3]. This approach yields a dynamic mesh
construction which is combined with finite element schemes in what follows, but the
mesh selection according to the basic properties of the solution is independent of the
particular method used.

Mesh conditions. The mesh conditions needed in the stability analysis in sec-
tion 3 are somewhat restrictive regarding the flexibility in the selection of the mesh,
especially for small values of ε. The main reason is that the time step κ should be
chosen very small if ε is very small. (The restrictions on the spatial mesh discussed in
Remark 3.1 are not present in the numerical experiments.) In fact, the computational
examples show that certain mesh conditions that relate the mesh size and ε are indeed
needed and thus for fixed number of spatial mesh points and fixed κ we cannot take
ε close to zero; see the following examples and [2, 3].

An alternative that completely bypasses this problem is provided by a modifi-
cation of the finite element relaxation schemes developed in [2, 3]. The alternative
is a class of finite element schemes based on the finite element discretization of a
modified model with switched relaxation. These are schemes in which the appli-
cation of a Runge–Kutta scheme uses the relaxation finite element model (1.5) for
the calculation of the intermediate stages and of un+1

h and then vn+1
h,i is calculated as

vn+1
h,i = ΠFi(u

n+1
h ). This enforces the projection to the equilibrium manifold v = F (u)

in each time step. The resulting schemes (switched relaxation finite element schemes)
show remarkable stability even for extremely small values of ε. This is illustrated in
the examples presented below.

CFL conditions. A common problem in explicit schemes with mesh refinement
is to require strong CFL conditions, reflecting the relation of the time step κ to the
minimum spatial mesh size h. This problem appears in the computational examples
of [4, 2, 3] but it is not very essential. A computationally more attractive idea would
be to use time steps variable with x, or space-time elements, but this will remain for
a future work.

Two-phase flow scalar problem. As a scalar example we chose the Buckley–
Leverett equation [30] as a model of a two-phase flow in a porous medium. Here
the flux F is not convex and is given by

F (u) =
u2

u2 + 0.5(1 − u)2
.(6.1)

We compute the (periodic) Riemann problem in [0, 1] with u0 = 1 on [0, 0.1]∪ [0.5, 1]
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-1.79e-02

 1.01e+00

 0.00e+00  1.00e+00

 8.53e-02

 1.88e-01

 2.91e-01

 3.94e-01

 4.97e-01

 6.00e-01

 7.03e-01

 8.06e-01

 9.09e-01

(a) ε = 5e−4 uniform mesh

-4.79e-06

 1.00e+00

 0.00e+00  1.00e+00

 1.00e-01

 2.00e-01

 3.00e-01

 4.00e-01

 5.00e-01

 6.00e-01

 7.00e-01

 8.00e-01

 9.00e-01

(b) ε = 5e−4 refined mesh

-2.48e-01

 1.15e+00

 0.00e+00  1.00e+00

-1.06e-01

 3.41e-02

 1.74e-01

 3.14e-01

 4.54e-01

 5.94e-01

 7.34e-01

 8.74e-01

 1.01e+00

(c) ε = 5e−6 uniform mesh

-2.29e-03

 1.00e+00

 0.00e+00  1.00e+00

 9.83e-02

 1.98e-01

 2.98e-01

 3.98e-01

 4.98e-01

 5.98e-01

 6.98e-01

 7.98e-01

 8.98e-01

(d) ε = 5e−6 refined mesh

Fig. 1. Buckley–Leverett two-phase flow problem: 200 nodes on [0, 1]. The effect of the rela-
tionship of h and ε and of the stabilization by mesh refinement. Dotted line: exact solution; gray
line: approximation. The distribution of the nodes in the refined mesh is displayed at top in (b) and
(d).

and u0 = 0 on (0.1, 0.5). In Figure 1 we display the results of application of our
schemes in this problem for 200 nodes in [0, 1] with and without mesh refinement.
For ε = 5e − 4 the uniform mesh approximation has oscillations, while the corre-
sponding approximation with mesh refinement provides an acceptable solution free of
oscillations. Next for ε = 5e − 6 the uniform mesh finite element solution seems to
approximate a nonclassical weak solution. Thus the restrictions in our stability re-
sults on the relationship of h and ε are necessary. In this case the corresponding finite
element approximation with mesh refinement not only eliminates the oscillations but
resumes into the approximation of the entropy solution.
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It is interesting to note that the method with uniform mesh, although oscillatory,
seems to converge (weakly) as h → 0. Moreover, this is also true in the example
above where a nonclassical shock for (6.1) is captured. This is an indication that
relaxation finite element schemes may conceivably be used to compute nonclassical
shocks; compare to [29]. This interesting issue will be examined in a forthcoming
work.

For 200 points we cannot take ε smaller unless we use the modified method based
on the switched relaxation parameter. In Figure 2 we display the switched relaxation
finite element schemes mentioned above. (Here the parameter ε = ε(t) is a function
of time that vanishes only on discrete time steps and elsewhere has a constant value
ε.) Now we can have acceptable approximations for extremely small values of ε. This
is a further indication of the strong regularization inherited by the adaptive mesh
refinement.

System of elastodynamics. The one-dimensional system of elastodynamics is a
particular case where all the results of this paper apply. We consider

u1,t − u2,x = 0,

u2,t − σ(u1)x = 0

with σ(v) = v + v3. We compute the relaxation finite element approximations with
Riemann data u1(0) = 2 on [0, 1/4]∪[3/4, 1] and u1(0) = 1 on [1/4, 3/4] and u2(0) = 2
on [0, 1] extended periodically. Figure 3 displays the approximations for 200 nodes in
[0, 1] with mesh refinement for ε = 5e−5. As before we use the modified method with
switched relaxation parameter to compute the approximations still with 200 nodes but
taking much smaller ε; Figure 4 displays the corresponding results. Figure 5 shows
the improvement of the approximations if we use 400 points. In Figure 6 we see
the dramatic difference of the approximations with uniform mesh and adaptive mesh
refinement still with 400 nodes in [0, 1]. For further numerical results and detailed
discussion on the adaptive mesh refinement strategies and on implementation issues
for the schemes, see [4, 2, 3].
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Fig. 2. Buckley–Leverett two-phase flow problem: switched relaxation finite elements with stabi-
lization by mesh refinement. Dotted line: exact solution; gray line: approximation. The distribution
of the nodes in the refined mesh is displayed at top.
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Fig. 3. System of elastodynamics: q = 1, 200 nodes in [0, 1] with adaptive mesh refinement.



1390 C. ARVANITIS, C. MAKRIDAKIS, AND A. E. TZAVARAS

 1.00e+00

 2.00e+00

 0.00e+00  1.00e+00

 1.10e+00

 1.20e+00

 1.30e+00

 1.40e+00

 1.50e+00

 1.60e+00

 1.70e+00

 1.80e+00

 1.90e+00

(a) u1 : ε = 5e−9, t = 0.058 with refinement

 5.97e-01

 3.41e+00

 0.00e+00  1.00e+00

 8.77e-01

 1.15e+00

 1.43e+00

 1.71e+00

 1.99e+00

 2.27e+00

 2.55e+00

 2.83e+00

 3.11e+00

(b) u2 : ε = 5e−9, t = 0.058 with refinement

 9.84e-01

 2.00e+00

 0.00e+00  1.00e+00

 1.08e+00

 1.18e+00

 1.28e+00

 1.38e+00

 1.48e+00

 1.58e+00

 1.68e+00

 1.78e+00

 1.88e+00

(c) u1 : ε = 5e−9, t = 0.35 with refinement

 1.25e+00

 2.75e+00

 0.00e+00  1.00e+00

 1.39e+00

 1.54e+00

 1.69e+00

 1.84e+00

 1.99e+00

 2.14e+00

 2.29e+00

 2.44e+00

 2.59e+00

(d) u2 : ε = 5e−9, t = 0.35 with refinement

Fig. 4. System of elastodynamics: q = 1, 200 nodes in [0, 1] with adaptive mesh refinement.
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Fig. 5. System of elastodynamics: q = 1, 400 nodes in [0, 1] with adaptive mesh refinement.
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Fig. 6. System of elastodynamics: q = 1, 400 nodes in [0, 1] with uniform mesh (solid lines)
and adaptive mesh refinement (dotted lines).
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Abstract. We present and analyze a new a posteriori error estimator for lowest order conforming
finite elements. It is based on Raviart–Thomas finite elements and can be obtained locally by a
postprocessing technique involving for each vertex a local subproblem associated with a dual mesh.
Under certain regularity assumptions on the right-hand side, we obtain an error estimator where the
constant in the upper bound for the true error tends to one. Replacing the conforming finite element
solution by a postprocessed one, the error estimator is asymptotically exact. The local equivalence
between our estimator and the standard residual-based error estimator is established. Numerical
results illustrate the performance of the error estimator.
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1. Introduction. Many efficient numerical algorithms for the solution of partial
differential equations are based on adaptive techniques. Here, we consider conform-
ing finite elements for the numerical solution of scalar second order elliptic partial
differential equations. A posteriori error estimators are very often used to control the
adaptive refinement process of the triangulations. Moreover, upper bounds for the
discretization error in terms of the error estimator can be obtained. The quality of
the error estimator depends highly on the constants in the upper and lower bounds.
Unfortunately, the reliability and efficiency constants very often can be quite large.
Here, we propose a new approach such that the discretization error is bounded by
our a posteriori error estimator. We refer to [3, 8, 33] for a good overview and some
recent techniques and ideas.

There are many different possibilities for constructing locally defined error esti-
mators. One possibility is to use residual-type error estimators which measure locally
the jump of the discrete flux; see, e.g., [4, 5, 6, 7, 11, 31, 32]. A different approach is to
solve local subproblems by using higher order finite elements, e.g., [9, 12, 18, 20, 25].
The starting point for the construction of these hierarchical error estimators is a satu-
ration assumption. Very simple and extremely cheap a posteriori error estimators can
be based on averaging techniques; see, e.g., [14, 29, 34, 35]. Error estimators for more
general norms are very often based on duality techniques [10, 26]. Convergent adap-
tive algorithms without explicit knowledge of constants are proposed and analyzed in
[19, 23].

Here, we propose a new approach which can be interpreted as a combination of
equilibration and averaging techniques. The error estimator can be obtained locally
and is based on a local subproblem for the flux. On each patch, we compute a
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Raviart–Thomas finite element approximation. The error estimator is then defined in
terms of the L2-norm of the difference between the discrete flux approximation and
the Raviart–Thomas finite element solution.

We consider the following elliptic second order boundary value problem with
homogeneous Dirichlet boundary conditions on ∂Ω:

−div (a∇p) = f on Ω,(1.1)

where Ω ⊂ R
2 is a bounded polygonal domain. The symmetric tensor a is assumed to

be uniformly positive definite and f ∈ L2(Ω). Associated with (1.1) is the symmetric
bilinear form a(p, q) :=

∫
Ω
∇q · a∇p dx.

To discretize (1.1), we use conforming finite elements of lowest order on a shape
regular family of simplicial triangulations Th. We use standard nodal hat functions
φx associated with the vertices of Th to define Vh. Then, the hat functions associated
with the interior vertices of Th form a basis of the finite element space Vh ⊂ H1

0 (Ω).
The weak solution of (1.1) is denoted by p ∈ H1

0 (Ω) and the discrete weak solution by
ph ∈ Vh. We assume that the tensor a restricted to T ∈ Th is constant, and aD ∈ R

stands for the lower bound of the eigenvalues of a restricted to the subdomain D ⊂ Ω.
The space of polynomials of order less than or equal to k ≥ 0 on D is denoted by
Pk(D). In the following the generic constants 0 < c,C < ∞ do not depend on the
mesh size but only on the shape regularity of the triangulations and possibly on the
variation of the tensor a restricted to suitable local patches. We use the notation
y ≡ z as the abbreviation for the equivalence cy ≤ z ≤ Cz.

The rest of this paper is organized as follows. In section 2, we define a Raviart–
Thomas finite element by solving local systems, and we introduce our a posteriori error
estimator. Global upper and local lower bounds are established for the discretization
error in the energy norm in section 3, where we also show the local equivalence with the
jump term of the standard residual-based error estimator. In section 4, we introduce
a postprocessed flux approximation. It can be shown that our error estimator is
asymptotically exact for this discrete flux. Finally, in section 5, we provide some
numerical results illustrating the performance of our approach.

2. An a posteriori error estimator. In this section, we introduce our a pos-
teriori error estimator. It is based on a postprocessing of the finite element solution
ph. We consider a dual mesh Kh which is defined by the centers of gravity of the
triangles and the midpoints of the edges; see Figure 2.1.

Fig. 2.1. Primal Th and dual Kh mesh (left) and local construction of the fine mesh Sh (right).

The number of elements in the dual mesh Kh is equal to the number of vertices
in the primal mesh Th. We denote the set of vertices of the primal mesh by Xh. The
left picture in Figure 2.1 shows the primal (solid lines) and the dual mesh (dashed
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lines). We note that each K ∈ Kh is associated with one center vertex xK ∈ Xh.
The corners of an element K of the dual mesh are the midpoints of the edges of the
primal mesh which have the vertex xK as an endpoint and the centers of gravity of
all triangles T ∈ Th with xK as vertex. This dual mesh is well known and widely
used in the context of finite volume methods, e.g., [24]. The intersection of the primal
Th and the dual Kh mesh yields a third mesh. To obtain a simplicial triangulation
Sh, we have to introduce additional edges. The elements t ∈ Sh are subtriangles of
the elements T ∈ Th. Each element T ∈ Th is decomposed into six subtriangles, as
follows. The center of gravity of T is connected with the three vertices and with the
three midpoints of the edges of T , yielding six subelements; see the right picture of
Figure 2.1. By construction the area of each subelement t of T is equal, and thus
|t| = |T |/6. Moreover, the number of elements of Sh is 6nT , where nT is the number
of elements in Th. The shape regularity of Sh follows from the shape regularity of Th.
We note that the primal Th and the fine Sh mesh are simplicial triangulations but
that the dual mesh Kh is not. Figure 2.2 illustrates the construction of an element
K ∈ Kh.

Fig. 2.2. Different examples for an element K ∈ Kh.

We now can introduce a new finite element space Uh associated with the fine
mesh Sh. This new space is a subspace of H(div ; Ω) := {v ∈ (L2(Ω))2, div v ∈
L2(Ω)} and is based on mixed finite elements. We denote by RT0(t) the local space
of Raviart–Thomas finite elements of lowest order on t and by RTh ⊂ H(div ; Ω) the
global space of Raviart–Thomas finite elements of lowest order associated with the
fine triangulation Sh; see, e.g., [13, 27]. Locally the elements of RTh can be written
as v|t = (at, bt)

T + ct(x, y)
T with some constants at, bt, ct ∈ R, t ∈ Sh. The finite

element space Uh is defined by

Uh := {vh ∈ RTh; div vh ∈ Qh} ⊂ RTh,

where Qh := {v ∈ L2(Ω); v|K ∈ P0(K),K ∈ Kh} ⊂ Wh := {v ∈ L2(Ω); v|t ∈
P0(t), t ∈ Sh}. We denote by Eh the set of edges of the fine triangulation Sh which
belong to the boundary ∂K of at least one element K ∈ Kh, and we denote by
K0
h ⊂ Kh the subset of elements K ∈ Kh such that ∂K ∩∂Ω = ∅. Associated with the

edge e is the unit vector ne, which is orthogonal on e. The orientation is arbitrary but
should be fixed. We define two local spaces RTK := {vh ∈ RTh; supp vh ⊂ K̄} and
WK := {wh ∈Wh; supp wh ⊂ K̄,

∫
K
wh dx = 0}, K ∈ Kh. Then it is well known that

the differential operator Lv := div v is a surjective mapping from RTK onto WK ; see,
e.g., [13]. Moreover, the dimension of its kernel is equal to one if K ∈ K0

h and to zero
if K ∈ Kh \ K0

h. For each K ∈ K0
h, we set wK := βKcurl ψK , where ψK is the nodal

P1 conforming basis function associated with the vertex xK and the fine triangulation
Sh, and the scaling parameter βK is given by βK := (curl ψK , curlψK)−0.5

0 . It is easy
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to verify that the support of wK is K, div wK = 0 and (wK , wK)0 = 1. Given wK ,
we define we ∈ Uh, e ∈ Eh, by

wenê|ê =
1

he
δeê, ê ∈ Eh, and (we, wK)0 = 0, K ∈ K0

h,(2.1)

where he denotes the length of the edge e. We note that each we ∈ Uh is uniquely
defined by (2.1). Let v1

h, v
2
h ∈ Uh satisfy (2.1); then ∆vh := v1

h − v2
h can be written as

a linear combination of elements in RTK , K ∈ Kh, i.e.,

∆vh =
∑
K∈Kh

vK , vK ∈ RTK .

Observing that divvK ∈ P0(K) and
∫
K

divvK dx = 0, we find that divvK = 0. The
orthogonality on wK yields vK = 0. The existence follows now from the uniqueness
and the dimension of the space. For each inner edge, we find that supp we = K1∪K2,
K1,K2 ∈ Kh such that e = ∂K1 ∩ ∂K2.

It is easy to see that we, e ∈ Eh and wK , K ∈ K0
h form a set of linear independent

functions. Let wh be an element of Uh; then vh := wh −
∑
e∈Eh

βewe ∈ Uh with
βe := hewhne|e . Moreover, by definition vhne|e = 0, e ∈ Eh and thus div vh = 0.
Observing that vh|K ∈ Uh, we find that vh ∈ span {wK ,K ∈ K0

h}. Thus we, e ∈ Eh
and wK , K ∈ K0

h form a basis of Uh and

Uh =
∑
e∈Eh

span {we} ⊕
∑
K∈K0

h

span {wK}.

To introduce our error estimator, we define uh ∈ Uh in terms of ph and f . Each
element uh ∈ Uh can be written as a linear combination of the given basis functions,
i.e., uh =

∑
e∈Eh

αewe +
∑
K∈K0

h
αKwK . We set αe and αK ,

αe :=

∫
e

a∇phne dσ + α̂Ke
, αK :=

∫
K

a∇ph wK dx,(2.2)

where α̂Ke
:= 0 if e �⊂ ∂Ω. Otherwise, we set

α̂Ke :=
1

2

(∫
Ω

−fφxKe
dx−

∫
∂Ke

a∇phnKe dσ

)
,(2.3)

where Ke is the unique element of the dual mesh such that e ⊂ ∂Ke ∩ ∂Ω. By using
the orthogonality between we and wK and definition (2.2), we find∫

K

uhwK dx =

∫
K

a∇phwK dx, K ∈ K0
h.(2.4)

The analysis of the properties of uh is based on two operators PQ and IQ. For
each K ∈ Kh, we introduce two sets of edges EK , ExK and a set of triangles SK :=
{t ∈ Sh; t ⊂ K}. The set of edges EK contains all edges of the triangulation Sh which
are in the interior of K, and the set of ExK is the union of all edges of the primal
triangulation Th having xK as a vertex; see Figure 2.3. The edges in ExK are marked
by dashed lines and the elements in EK by solid lines.

We remark that the number of elements in SK and EK is the same for K ∈ K0
h.

By definition, the divergence of uh is constant on each element K ∈ Kh. Moreover, it
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Fig. 2.3. The two sets of edges Ex
K (left) and EK (right).

depends only on the right-hand side and can be obtained as a weighted mean value
of f . To see this, we introduce two quasi-interpolants. The first, PQ : L2(Ω) −→ Qh,
is defined in terms of a weighted mean value of v on K,

PQv|K :=
1

|K|

∫
Ω

vφxK
dx, v ∈ L2(Ω),

where φxK
is the nodal P1 conforming basis function associated with the vertex xK

and the primal triangulation Th. If v is constant on each element T ∈ Th, then PQv =
ΠQv, where ΠQ denotes the L2-projection on Qh. The second, IQ : C(Ω) −→ Qh, is
given in terms of a nodal value,

IQv|K := v(xK), v ∈ C(Ω).

It is easy to verify that∫
Ω

wvh dx =

∫
Ω

PQw IQvh dx, vh ∈ Vh, w ∈ L2(Ω).(2.5)

Furthermore, we have the orthogonality relation∫
Ω

qh(IQ − Id)vh dx = 0, qh ∈Wh, vh ∈ Vh,(2.6)

where Wh := {v ∈ L2(Ω); v|T ∈ P0(T ), T ∈ Th}. This results from the fact that
|T ∩K| = 1/3|T | for each T such that T ∩K has a nonzero measure. Additionally,
the operators PQ, IQ satisfy a local approximation property in the L2-norm,

‖v − IQv‖0;K ≤ ChK |v|1;K , v ∈ Vh,

‖v − PQv‖0;K ≤ ChK |v|1;ωK
, v ∈ H1(Ω),

where ωK is the union of all elements T ∈ Th such that K and T have a nonempty
intersection. The first inequality results from a discrete norm equivalence. We next
observe that PQv = v on K if v is constant on ωK . The second inequality is then a
consequence of the L2-stability of PQ. In terms of PQ, we find a relation between the
divergence of uh and f .

Lemma 2.1. div uh = −PQf .
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Proof. In a first step, we consider a K ∈ K0
h. The definition of the basis functions

of Uh and (2.2) yield∫
K

div uh dx =

∫
∂K

uhnK dσ =

∫
∂K

a∇phnK dσ

=
∑
t∈SK

∫
∂t

a∇phnt dσ −
∑
e∈EK

∫
e

[a∇phne] dσ,

where the jump on e is defined by [a∇phne] := (a∇ph|t1 −a∇ph|t2)ne and ∂t1∩∂t2 = e
such that ne is the outer unit normal on ∂t1 and nt is the outer unit normal on ∂t
and nK on ∂K. The first term on the right side is zero. Using the observation that
[a∇phne] = 0 for each e which is an interior edge of a primal element T ∈ Th and that
the jump of the discrete flux is constant on each edge, we get∫

K

div uh dx = −1

2

∑
E∈Ex

K

∫
E

[a∇phnE ] dσ = −
∑
E∈Ex

K

∫
E

[a∇phnE ]φxK
dσ

= −
∑
T∈TK

∫
∂T

a∇phnTφxK
dσ = −

∑
T∈TK

∫
T

a∇ph∇φxK
dx

= −
∑
T∈TK

∫
T

fφxK
dx = −

∫
Ω

fφxK
dx = −

∫
K

PQf dx,

where TK contains all elements of Th such that K ∩T �= ∅. Using the definition (2.3),
the assertion follows for K ∈ Kh \ K0

h from∫
K

div uh dx =

∫
∂K

a∇phnK dσ + 2α̂K .

We define our a posteriori error estimator in terms of uh. For each element K in
Kh, the local contribution is given by

η2
K := ‖a− 1

2 (uh − a∇ph)‖2
0;K ,(2.7)

and the global error estimator is defined as η2 :=
∑
K∈Kh

η2
K . This error estimator is

related to averaging techniques, to the equilibrated residual method, and to a better
flux approximation; see, e.g., [2, 3, 22, 28, 30]. It can be evaluated easily and is cheap.
The coefficients of uh with respect to the basis functions we and wK are defined by
scalar equations. To obtain the basis functions we, we have to solve low dimensional
local systems on K.

However, it is more efficient to compute uh directly as an element inRTh. Working
with a scaled nodal basis for Raviart–Thomas finite elements of lowest order, the
coefficients of uh can be obtained locally by solving for each K a low dimensional
system. We denote by qe the scaled nodal basis function of RTh associated with the
edge e. The scaling is done such that qe satisfies, for all edges ê of the fine triangulation
Sh,

(qenê)|ê =
δeê
he
.

The values of uhnK on ∂K in combination with div uh ∈ P0(K) define uh on K ∈
Kh \ K0

h uniquely. Moreover, for K ∈ K0
h, these properties define uh up to a term
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of the form cKcurl ψxK
. Using the definition of the scaled nodal basis functions

qe and of we and Uh ⊂ RTh, we find that uh restricted to K can be written as
uh =

∑
e⊂∂K αeqe +

∑
e∈EK

βeqe, where αe is defined by (2.2). The coefficients βe
can now be obtained from the fact that div uh is constant on K and from (2.4). We
enumerate the small triangles and the edges in K clockwise. Let mK be the number
of triangles in SK . The edges on ∂K \ ∂Ω are denoted by êi and the edges in the
interior of K or on ∂K ∩ ∂Ω by ei. For K ∈ Kh, ti has the edges êi, ei, and ei+1,
1 ≤ i ≤ mK , where emK+1 := e1 for K ∈ K0

h; see Figure 2.4. The orientation of the
normals is chosen such that −nei is the outer normal on ti and nêi is the outer normal
on K.

ê1

ê1

ê2

ê2

êmK

t1

t1

t2

t2

tmK

tmK

∂Ω nêi

êi

nei

ei

ti

nei+1

ei+1

Fig. 2.4. An element K ∈ Kh \ K0
h (left) and an element K ∈ K0

h (right).

In the case of K ∈ Kh \K0
h, we have to find βei , 2 ≤ i ≤ mK , and for K ∈ K0

h, we
have to find βei , 1 ≤ i ≤ mK . In a first step, we define coefficients γi, 2 ≤ i ≤ mK ,
such that ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · 0
−1 1 0 · · · · · · 0
0 −1 1 0 · · · 0

0
. . .

. . .
. . .

. . .

0
. . .

. . .
. . . 0

0 · · · · · · 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ2

γ3

...

...

...
γmK

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
...
...
...

bmK−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the right side b depends only on ph and f . We set

bi := −PQf(xK)|ti| − αêi + dKδi1αe1 ,

where dK = 0 if K ∈ K0
h and dK = 1 if K ∈ Kh \ K0

h. For this choice, we find
div uh = div ũh, where ũh :=

∑mK

i=1 αêiqêi +
∑mK

i=2 γiqei +dK(αe1qe1 +αemK+1qemK+1),

and ũhnK = uhnK restricted on ∂K. We recall that Lemma 2.1 yields
∑mK

i=1 αêi =
−PQf(xK)|K|, K ∈ K0

h, and
∑mK

i=1 αêi−αe1 +αemK+1 = −PQf(xK)|K|, K ∈ Kh\K0
h.

Due to the uniqueness of uh, we get that uh = ũh onK ∈ Kh\K0
h and uh = ũh+γKwK

on K ∈ K0
h, where γK is given by

γK :=

∫
K

(a∇ph − ũh)wK dx.

Remark 2.2. We note that in the more general case of Neumann boundary
conditions with data gN , we have to add the term he/ate‖a∇ph − gN‖2

0;e, where
e = te∩∂Ω to our estimator. This term is well known for the standard residual-based
error estimator.
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3. Upper and lower bounds for the discretization error. In this section,
we establish upper and lower bounds for the discretization error in terms of the error
estimator. The following theorem provides an upper bound for the error in the energy
norm in terms of the error estimator. To start, we introduce a higher order term

ξ2 :=
∑
K∈Kh

h2
K

aK
‖f − PQf‖2

0;K +
∑
T∈Th

h2
T

aT
‖f − ΠW f‖2

0;T ,

where ΠW denotes the L2-projection on Wh.
Theorem 3.1. The error in the energy norm is bounded by

|||eh||| := a(p− ph, p− ph)
1
2 ≤ η + Cξ.

Proof. Integration by parts and Lemma 2.1 yield for the error in the energy norm

|||eh|||2 =

∫
Ω

(a∇p− uh + uh − a∇ph)(∇p−∇ph) dx

=

∫
Ω

div (a∇p− uh)(ph − p) dx+

∫
Ω

(uh − a∇ph)(∇p−∇ph) dx

≤ ‖a− 1
2 (uh − a∇ph)‖0|||eh||| +

∫
Ω

(f − PQf)(p− ph) dx.

We now have to consider the second term on the right side in more detail. Using the
projection operator Ph of Scott and Zhang [21] and the identity (2.5), we find∫

Ω

(f − PQf)(p− ph) dx =

∫
Ω

(f − PQf)(p− ph − Ph(p− ph)) dx

+

∫
Ω

(f − PQf)Ph(p− ph) dx

≤ C
∑
K∈Kh

hK‖f − PQf‖0;K‖∇p−∇ph‖0;ω̃K

+

∫
Ω

PQf(IQ − Id)Ph(p− ph) dx,

where ω̃K is a suitable local neighborhood of K. The number of elements T ⊂ ω̃K
is bounded independently of the mesh size. In terms of the orthogonality (2.6), the
second term can be bounded by∫

Ω

PQf(IQ − Id)Ph(p− ph) dx =

∫
Ω

(PQf − ΠW f)(IQ − Id)Ph(p− ph) dx

≤
∑
K∈Kh

hK‖ΠW f − PQf‖0;K |Ph(p− ph)|1;K .

The definition of the energy norm and the H1-stability of Ph yield

|||eh||| ≤ η + C

( ∑
K∈Kh

h2
K

aK
‖f − PQf‖2

0;K +
∑
T∈Th

h2
T

aT
‖f − ΠW f‖2

0;T

) 1
2

.

We remark that ξ is a higher order term and can be neglected asymptotically.
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For a reliable and efficient error estimator, it is not sufficient to guarantee a global
upper bound for the discretization error. Additionally, we have to consider the local
contributions of the error estimator. We define for each edge e ∈ EK the coefficient ae
by ae := 0.5(at1 + at2) if e = ∂t1 ∩ ∂t2, t1, t2 ∈ Sh and ae := at if e = ∂t∩ ∂Ω, t ∈ Sh.

Lemma 3.2. The local contribution ηK , K ∈ K0
h, of the error estimator is equiv-

alent to the jump of the discrete flux a∇ph, i.e.,

c
∑
e∈EK

he
ae

‖[a∇ph]‖2
0;e ≤ η2

K ≤ C
∑
e∈EK

he
ae

‖[a∇ph]‖2
0;e, K ∈ K0

h.

Proof. To obtain the lower bound, we use a discrete norm equivalence for lowest
order Raviart–Thomas finite elements. The L2-norm of v ∈ RT0(t) on t ∈ Sh is
equivalent to a weighted L2-norm on ∂t of the normal component

c‖v‖2
0,t ≤

∑
e⊂∂t

he‖vne‖2
0;e ≤ C‖v‖2

0,t, v ∈ RT0(t).(3.1)

Using this norm equivalence and observing that locally a∇ph|t is in RT0(t), we find
for K ∈ Kh

η2
K =

∑
t∈SK

‖a− 1
2 (uh − a∇ph)‖2

0;t ≡
∑
t∈SK

ht
at

‖(uh − a∇ph)nt‖2
0;∂t

≡
∑
e∈EK

he
ae

(
‖[(uh − a∇ph)ne]‖2

0;e + ‖{uh − a∇ph}ne‖2
0;e

)
+

∑
e⊂∂K

he
ae

‖(uh − a∇ph)nK‖2
0;e,

where [·] denotes the jump and {·} denotes the average over the edge e. The orientation
is arbitrary but should be fixed. By definition, uhnK = a∇phnK on ∂K \ ∂Ω. Thus,
in the second term on the right-hand side, we can replace the sum by

∑
e⊂∂K∩∂Ω.

Observing that uh ∈ H(div ; Ω) results in [uhne] = 0, we find

η2
K ≡

∑
e∈EK

he
ae

(
‖[a∇phne]‖2

0;e + ‖{uh − a∇ph}ne‖2
0;e

)
+

α̂2
K

aK
.(3.2)

This norm equivalence guarantees the lower bound for η2
K . To establish the upper

bound, it is sufficient to bound α̂K and ‖{uh − a∇ph}ne‖0;e. Let K be in K0
h; then

∂K ∩ ∂Ω = ∅ and α̂K = 0. In a first step, we introduce wh ∈ RTh locally on K by

whnK = a∇phnK on ∂K, whne = {a∇phne} on e ∈ EK .

Then, in general, div wh is not constant on K and thus wh �∈ Uh. We can now
decompose uh restricted to K in terms of wh by uh = wh + vh and find

σ2
average :=

∑
e∈EK

he
ae

‖{uh − a∇ph}ne‖2
0;e =

∑
e∈EK

he
ae

‖vhne‖2
0;e ≤ C‖a− 1

2 vh‖2
0;K .

The number of elements t in K is bounded independently of the mesh size. The bound
depends only on the shape regularity of the triangulation. A generalized Poincaré–
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Friedrichs-type inequality for Raviart–Thomas elements yields

‖a− 1
2 vh‖2

0;K ≤ C
∑
t∈SK

|t|
at

‖div vh‖2
0;t +

C

aK

(∫
K

vhwK dx

)2

= C
∑
t∈SK

|t|
at

‖div (uh − wh)‖2
0;t +

C

aK

(∫
K

vhwK dx

)2

.

To obtain the first inequality, we used vhnK = 0 on ∂K. In a next step, we consider
the two terms on the right-hand side separately. We start with the second term and
find (∫

K

vhwK dx

)2

=

(∫
K

(a∇ph − wh)wK dx

)2

≤ ‖a∇ph − wh‖2
0;K .

Using the definition of wh, we obtain that (a∇ph−wh)|t ∈ RT0(t) and that the normal
component depends only on the jump of a∇phn. Thus, the L2-norm of a∇ph − wh
can be bounded by the jump, and we get

1

aK

(∫
K

vhwK dx

)2

≤ C
∑
e∈EK

he
ae

‖[a∇phne]‖2
0;e.

We note that each element t ∈ SK has at least one edge such that [a∇phne] = 0.
This results from the fact that ph is linear on the triangles of the primal mesh. Let
e1 := ∂t ∩ ∂K, e3 stands for the edge of t which is a subset of an edge in EpK , and e2
is the edge of ∂t in the interior of a T ∈ Th; see Figure 3.1.

t

T

e1
e2

e3

K ∩ T

Fig. 3.1. Numeration of the three edges of ∂t.

We then get for the divergence of wh on t,

|t| ‖div wh‖2
0;t =

(∫
t

div wh dx

)2

=

(
3∑
i=1

∫
ei

whnt dσ

)2

=

(∫
e1

a∇phnt dσ +

∫
e2

a∇phnt dσ +

∫
e3

{a∇phnt} dσ
)2

=

(∫
∂t

a∇phnt dσ − 1

2

∫
e3

[a∇phnt] dσ
)2

=
he3
4

‖[a∇phne3 ]‖2
0;e3 .

In terms of the jump and the divergence of uh, we can now bound σ2
average by

σ2
average ≤ C

(∑
t∈SK

|t|
at

‖div uh‖2
0;t +

∑
e∈EK

he
ae

‖[a∇phne]‖2
0;e

)
.
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In a last step, we have to consider the divergence of uh in more detail. To bound
div uh, we use the proof of Lemma 2.1 and the fact that it is constant on K. We find
that

∑
t∈SK

|t|
at

‖div uh‖2
0;t ≤

∑
t∈SK

1

at

(∫
K

div uh dx

)2

≤ C
∑
t∈SK

1

at

(∑
e∈EK

∫
e

[a∇phne] dσ
)2

≤ C
∑
e∈EK

he
ae

‖[a∇phne]‖2
0;e.

We note that the jump of the discrete flux a∇phne is one component of the
standard residual-based error estimator; see, e.g., [33]. In particular, this term can
be bounded locally by the exact error and a higher order term. Moreover, we find
that ηK = 0, K ∈ K0

h if and only if ph is linear on K. The second term in the
standard residual error estimator is a weighted L2-norm of ΠW f . An inverse estimate
for Raviart–Thomas finite elements yields

η2
K ≥ C

∑
t∈SK

h2
t

at
‖div (uh − a∇ph)‖2

0;t ≥ C
h2
K

aK
‖PQf‖2

0;K .

By means of Lemma 3.2, we find that h2
K/aK‖PQf‖2

0;K , K ∈ K0
h, is bounded by the

jump of the discrete flux approximation a∇ph. We cannot establish this result for
an element K ∈ Kh \ K0

h. The following lemma provides an equivalence for these
elements of the dual mesh.

Lemma 3.3. The local contribution ηK , K ∈ Kh \ K0
h, of the error estimator is

equivalent to

cη2
K ≤ h2

K

aK
‖PQf‖2

0;K +
∑
e∈EK

he
ae

‖[a∇phne]‖2
0;e ≤ Cη2

K , K ∈ Kh \ K0
h.

Proof. The starting point for the lower bound is the norm equivalence (3.1). We
recall that if wh ∈ Uh and div wh = 0 on K ∈ Kh \ K0

h and whnK = 0 on ∂K, then
wh = 0. Due to the shape regularity, the number of elements t in K is bounded, and
thus we obtain

η2
K ≤ C

∑
t∈SK

1

at
‖uh − a∇ph‖2

0;t

≤ C

(∑
t∈SK

h2
t

at
‖ div uh‖2

0;t +
∑
e∈EK

he
ae

‖[a∇phne]‖2
0;e +

α̂2
K

aK

)

≤ C

(
h2
K

aK
‖PQf‖2

0;K +
∑
e∈EK

he
ae

‖[a∇phne]‖2
0;e +

α̂2
K

aK

)
.
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We now have to consider α̂K in more detail:

α̂2
K ≤

(∫
K

PQf dx+

∫
∂K

a∇phnK dσ

)2

=

(∫
K

PQf dx+
∑
t∈SK

∫
∂t

a∇phnt dσ −
∑
e∈EK

∫
e

[a∇phne] dσ
)2

≤ C

(
h2
K‖PQf‖2

0;K +
∑
e∈EK

he‖[a∇phne]‖2
0;e

)
.

The upper bound can be easily established by using the norm equivalence (3.2), the
definition (2.3), and the observation that

∫
∂K

a∇phnK dσ is bounded by the jump.
As a consequence, we find that the weighted L2-norm of PQf on K can be bounded
by a weighted sum of the boundary term |α̂K | and the jump.

By using Lemmas 3.2 and 3.3, we find that our error estimator can be bounded
locally, up to higher order terms, by the discretization error.

Theorem 3.4. The local contribution ηK of the error estimator can be bounded
locally by the exact discretization error

ηK ≤ C

(
|||eh|||K +

h2
K

aK
‖f − PQf‖0;K

)
.

Proof. We do not provide details. Using Lemmas 3.2 and 3.3, it is sufficient to
bound the jump terms and PQf . This can be done by standard techniques; see, e.g.,
[3, 8, 33]. To get the local bound on K for the jump, we have to use quadratic edge
bubble functions associated with the small edges e ∈ EK .

Remark 3.5. Although the starting point for the construction of our error es-
timator is quite different from an equilibrated error estimator, we can interpret our
estimator in that framework. In the case of an equilibrated error estimator, a linear
approximation of the flux is locally computed in a postprocessing step on each edge.
This can be done by using biorthogonal basis functions and solving, for each vertex,
a low dimensional system; see, e.g., [30]. Here, we use an approximation of the flux
by Raviart–Thomas elements. Each edge of the primal triangulation is decomposed
into two subedges, and for each subedge we compute a constant approximation of the
flux. As in the equilibrated situation, we have two degrees of freedom per edge and
the arising linear system has the same algebraic structure.

4. A postprocessed flux approximation. In this section, we introduce a
postprocessing step. To start, we define an approximation of the flux by

uph :=
a∇ph + uh

2
.(4.1)

The following theorem guarantees that our error estimator is asymptotically exact for
the flux uph.

Theorem 4.1. There exists a constant 0 < C <∞ independent of the mesh size
such that for all ε > 0

1

4
(1 − ε)η2 − C

(
1 +

1

ε

)
ξ2 ≤ ‖a 1

2∇p− a−
1
2uph‖2

0 ≤ 1

4
(1 + ε)η2 + C

(
1 +

1

ε

)
ξ2.



1406 R. LUCE AND B. I. WOHLMUTH

Proof. We start with the definition of the approximation uph and set u := a∇p,

4‖a 1
2∇p− a−

1
2uph‖2

0 = ‖a 1
2 (∇p−∇ph) + a−

1
2 (u− uh)‖2

0

= ‖a 1
2 (∇p−∇ph)‖2

0 + ‖a− 1
2 (u− uh)‖2

0 + 2(∇p−∇ph, u− uh)0

= ‖a 1
2∇ph − a−

1
2uh‖2

0 + 4(∇p−∇ph, u− uh)0

= η2 + 4

∫
Ω

(f − PQf)(p− ph) dx.

Using Theorem 3.1 and the results of its proof, the second term on the right side can
be bounded by

−C(η + Cξ)ξ ≤ 4

∫
Ω

(f − PQf)(p− ph) dx ≤ C(η + Cξ)ξ.

Young’s inequality provides upper and lower bounds,

η2 − εη2 − 4C

(
1 +

1

ε

)
ξ2 ≤ 4‖a 1

2∇p− a−
1
2uh‖2

0 ≤ η2 + εη2 + 4C

(
1 +

1

ε

)
ξ2.

We note that ξ, compared to η, is a higher order term which can be neglected
asymptotically. If f ∈ Hs(Ω), 0 < s ≤ 1, we find that ξ is of order h1+s. Setting
ε = hs and assuming η ≥ ch, we obtain

1 −O(hs) ≤ 4‖a 1
2∇p− a−

1
2uph‖2

0

η2
≤ 1 + O(hs).

Remark 4.2. The term ae/he‖ph − gD‖2
0;e, e ⊂ ∂Ω, enters into the a posteri-

ori estimates, in the case of nonhomogeneous Dirichlet boundary conditions gD. If
the boundary data is smooth enough, this is also a higher order term which can be
neglected asymptotically.

Figure 4.1 illustrates the postprocessing in the case that PQf = f and homoge-

neous Dirichlet boundary conditions. In that case, we have 2‖a 1
2∇p− a−

1
2uph‖0 = η.

a∇p

a∇phuh uph
Fig. 4.1. The discrete flux uh and the postprocessed flux uph.

We note that our approach is not restricted to conforming finite elements of low-
est order in two dimensions. It can be extended to higher order elements by using
higher order Raviart–Thomas finite elements, to the three-dimensional situation and
to nonconforming finite elements. However, the construction is then more techni-
cal. Nonconforming Crouzeix–Raviart elements are of special interest. Residual- and
averaging-based a posteriori error estimators for nonconforming finite elements can
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be found in [15, 16, 17]. We do not work out all the details but only point out the
basic ideas. In this situation, the construction of a dual mesh is very simple. Each
edge of the primal mesh is associated with an element of the dual mesh; see Figure
4.2. The elements of the primal mesh are marked by solid lines and those of the dual
and fine mesh by dashed lines, respectively. The shadowed region in the left picture
shows an element of the dual mesh.

Fig. 4.2. Primal and dual mesh (left) and primal and fine mesh (right).

Proceeding as in the conforming setting yields a locally defined Raviart–Thomas
finite element of lowest order. However, there is one essential difference. In contrast
to conforming finite elements, the Crouzeix–Raviart finite element solution ph is, in
general, not continuous. Thus, applying integration by parts produces an additional
term. This term reflects the nonconformity of the finite element solution and can be
bounded by the weighted L2-norm of the jump of ph. As a consequence, we find that
the discretization error cannot be bounded by ‖a− 1

2 (uh−a∇ph)‖2
0. We must add one

term to bound the discretization error from above and below, and we can define the
local component of the error estimator on K by

‖a− 1
2 (uh − a∇ph)‖2

0;K +
aeK
heK

‖[ph]‖2
0;eK ,

where ek is the edge of the primal triangulation which is associated withK. Upper and
lower bounds with constants independent of the mesh size can be established. Unfor-
tunately, we cannot guarantee that the upper constant in the bound is one. However,
a sharper result can be found in [1]. Here, the same patch as in the conforming situ-
ation is used to construct a local error estimator. To estimate the nonconformity, a
smoothing step must be carried out; see [1] for details. It can be easily verified that
the difference between the nonconforming finite element solution ph and the smoothed
solution is locally equivalent to the jump of ph on the edges.

5. Numerical results. In this section, we show some numerical results illus-
trating the efficiency of our error estimator. We provide the global ratio between the
exact discretization error and the error estimator for different test examples. Addi-
tionally, we consider the local ratio on each element of the dual mesh. The adaptive
refinement process is controlled by a standard mean value strategy. We start with
an initial coarse triangulation and show the adaptively generated triangulations. We
denote the square of the different error components by

ep :=
∥∥∥a 1

2 (∇p−∇ph)
∥∥∥2

0
, ep;K :=

∥∥∥a 1
2 (∇p−∇ph)

∥∥∥2

0,K
,

eu :=
∥∥∥a 1

2∇p− a−
1
2uph

∥∥∥2

0
, eu,K :=

∥∥∥a 1
2∇p− a−

1
2uph

∥∥∥2

0,K
.
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In the case of inhomogeneous Dirichlet boundary conditions, we set

eΓ :=
∑
e∈∂Ω

ae
he

‖p− ph‖2
0;e .

To compute the error contributions, we use on each element of the fine triangulation
Sh a Gaussian quadrature formula of higher order or a semianalytical integration
scheme if ∇p has a singularity. We note that asymptotically the quadrature error can
be neglected. To illustrate the performance of the a posteriori error estimator, we
consider the ratio between the exact and the estimated error. We set σp :=

√
ep/η

and σu := 2
√
eu/η.

In our first example, Table 5.1, we use Ω := (0, 1)2, a = 1. The source term and
the boundary condition are chosen to match the exact solution:

p(x, y) = x(x− 1)y(y − 1) exp

(
−100

(
x− 1

2

)2

− 100

(
y − 117

1000

)2
)
.

Table 5.1

Example 1: Error estimator and global errors.

Nodes η2 ep σp eu σu ξ2

5 9.156 10−2 2.268 10−1 1.574 1.591 10−1 2.637 2.316 10−1

13 9.569 10−3 2.920 10−2 1.747 2.408 10−2 3.173 1.078 10−1

35 1.126 10−3 3.417 10−3 1.742 2.872 10−3 3.194 3.530 10−2

81 3.859 10−4 7.183 10−4 1.364 6.170 10−4 2.529 3.320 10−3

158 2.362 10−4 2.083 10−4 0.939 1.181 10−4 1.414 2.731 10−4

329 8.167 10−5 5.717 10−5 0.866 2.515 10−5 1.110 2.072 10−5

843 2.634 10−5 1.734 10−5 0.811 7.038 10−6 1.034 2.203 10−6

2175 1.061 10−5 6.031 10−6 0.808 2.793 10−6 1.033 5.067 10−7

5091 4.551 10−6 2.928 10−6 0.802 1.165 10−6 1.021 1.171 10−7

12311 1.775 10−6 1.145 10−6 0.803 4.480 10−7 1.011 1.847 10−8

29976 7.583 10−7 4.901 10−7 0.804 1.907 10−7 1.003 4.464 10−9

We observe that σu tends asymptotically to one, as predicted by our theory.
The ratio between η and

√
ep is asymptotically ≈ 0.80. We remark that on the coarse

levels, the error ep is underestimated by the error estimator. This is because the higher
order term ξ2 is dominant at the beginning. The last column of the table shows that
ξ2 can be neglected asymptotically. We recall that ξ2 measures the quality of the
approximation of the right-hand side by the triangulation and has to be controlled
during the adaptive refinement process.

Figure 5.1 shows the local distribution of the different error terms and the adap-
tively generated triangulations on level six. The left and middle pictures have the
same scaling and compare the local contribution between η2

K and 4eu,K . To compare
η2
K and ep,K , a rescaling is carried out. It shows that our error estimator captures

the local distribution of the error very well.
In the second example, we use an L-shaped domain and set the exact solution of

the inhomogeneous Dirichlet problem to be p = r2/3 sin(2/3θ), where (r, θ) are the
polar coordinates and the center is located at the corner of the L-shaped domain.
Here, the geometry of the domain and the singularity of the solution at the corner
dominate the adaptive refinement process. We note that the higher order term ξ2 is
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Fig. 5.1. Example 1: Local contributions of the error estimator η2
K (left), the postprocessed

error 4eu,K (middle), and the error ep,K (right).

Table 5.2

Example 2: Error estimator and global errors.

Nodes η2 ep σp eu σu eΓ

11 3.314 10−1 1.340 10−1 0.636 8.622 10−2 1.020 3.429 10−3

22 1.487 10−1 6.445 10−2 0.659 2.938 10−2 1.028 2.835 10−3

50 6.395 10−2 2.846 10−2 0.667 1.638 10−2 1.008 4.459 10−4

82 3.360 10−2 1.618 10−2 0.694 8.615 10−3 1.012 4.459 10−4

176 1.473 10−2 7.258 10−3 0.702 3.700 10−3 1.002 5.626 10−5

306 7.481 10−3 3.822 10−3 0.715 1.885 10−3 1.003 5.626 10−5

566 3.746 10−3 1.971 10−3 0.725 9.401 10−4 1.002 1.696 10−5

1129 1.710 10−3 9.242 10−4 0.736 4.282 10−2 1.001 6.478 10−6

2236 8.342 10−4 4.596 10−4 0.742 2.094 10−4 1.002 2.878 10−6

4669 3.835 10−4 2.149 10−4 0.748 9.600 10−5 1.003 1.929 10−6

9272 1.870 10−4 1.061 10−4 0.753 4.680 10−5 1.000 4.004 10−7

18942 8.830 10−5 5.066 10−5 0.758 2.208 10−5 1.000 1.096 10−7

zero but that we have a nontrivial boundary contribution eΓ due to the inhomogeneous
Dirichlet boundary condition.

Table 5.2 reports the values of the different error terms. Since f = 0 and thus
ξ2 = 0, we show the influence of the inhomogeneous Dirichlet condition in the last
column of Table 5.2. We note that eΓ does not decrease if no element touching the
boundary is refined in the next adaptive step. Compared to η2, the boundary term
eΓ is of smaller magnitude. The ratio between eΓ and η2 tends slowly to zero with
the increasing number of refinement steps. During the adaptive refinement process,
we have to control this additional term.

From the beginning, σu is close to one. The ratio between ep and η2 is increasing
but it is bounded by one. In this example the asymptotic rate starts late and cannot
be observed. We note that the asymptotic ratio σu is independent of the problem
setting, whereas σp depends on the given data. Our theoretical results yield that
asymptotically 0 < c ≤ σp ≤ 1.

In Figure 5.2, the local distribution of the errors is given for Example 2. As
expected, the highest value is located at the corner singularity. In the case of η2

K and
4eu,K the scaling is the same, and the local values are quite close.
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Fig. 5.2. Example 2: Local contributions of the error estimator η2
K (left), the postprocessed

error 4eu,K (middle), and the error ep,K (right).
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Fig. 5.3. Example 3: Local contributions of the error estimator η2
K (left), the postprocessed

error 4eu,K (middle), and the error ep,K (right).

In the following example, we use a discontinuous coefficient. The domain Ω is
decomposed into four subdomains, Ωij := (−i,−i + 1) × (−j,−j + 1) , 0 ≤ i, j ≤ 1.
On each subdomain a constant coefficient aij is used. We set a10 := a01, a00 := a11

and assume that the analytical solution has the form p = rα(βij sin(αθ)+γij cos(αθ)),
where (r, θ) are the polar coordinates in Ω and βij , γij are constants depending on the
subdomains Ωij . The interface conditions [p] = 0 and [a∇p] = 0 yield −div(a∇p) =
0. The coefficients α, βij , γij are uniquely defined in terms of a01 and a00. In the
case a01 := 1, a00 := 5, we find α = 0.53544094560, β10 = −0.7453559925, γ10 =
2.333333333, β00 = 0.4472135955, γ00 = 1, β11 = −0.9441175905, γ11 = 0.555555556,
β01 = −2.401702643, and γ01 = −0.4814814815.

We report the numerical results for ep, eu, and eΓ in Table 5.3. The ratio σu tends
asymptotically to one as in the other examples. In contrast to our first example, it is
close to one from the first step on. This is due to the fact that ξ = 0 and that eΓ is
of smaller magnitude.

Figure 5.3 shows that the local error estimator captures very well the location
and the amplitude of the singularity. The isolines of the solution are given in the
right picture of Figure 5.4.

In all our examples the local contributions of 4eu,K and η2
K are quite close; see

Figures 5.1–5.3. The error estimator captures the local contributions of eu,K better
than the ones of ep,K . We note that we compare the local contributions on the dual
mesh and not on the primal triangulation.
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Table 5.3

Example 3: Error estimator and global errors.

Nodes η2 ep σp eu σu eΓ

17 3.797 1.502 0.629 1.001 1.027 2.500 10−2

49 1.742 7.251 10−1 0.645 4.394 10−1 1.004 2.906 10−3

77 8.962 10−1 3.954 10−1 0.664 2.268 10−1 1.006 2.906 10−3

151 4.509 10−1 2.098 10−1 0.682 1.150 10−1 1.010 2.906 10−3

333 2.205 10−1 1.022 10−1 0.681 5.533 10−2 1.002 3.607 10−4

767 1.057 10−1 4.983 10−2 0.686 2.658 10−2 1.003 2.674 10−4

1775 4.974 10−2 2.346 10−2 0.687 1.254 10−2 1.004 2.053 10−4

4151 2.368 10−2 1.112 10−2 0.685 5.930 10−3 1.001 2.676 10−5

9621 1.119 10−2 5.256 10−3 0.686 2.779 10−3 1.000 4.874 10−6

22397 5.261 10−3 2.461 10−3 0.684 1.315 10−3 1.000 7.083 10−7

1 0.5 0 0.5 1
1

0.5

0

0.5

1

1 0.5 0 0.5 1
1

0.5

0

0.5

1

_

_
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Fig. 5.4. Example 3: Adaptively generated mesh (step 6) and isolines of ph.

We compare the standard residual-based error estimator with our estimator. Fig-
ure 5.5 shows the errors ep and eu with respect to the number of unknowns. In the
two left pictures, we use a01 := 1 and a00 := 5. The two right pictures show the
results for a01 := 1 and a00 := 100. The efficiency of both error estimators is almost
the same for the first setting. Increasing a00 from 5 to 100 demonstrates the qual-
ity of our error estimator. We note that in the pictures the discretization errors are
shown, not the error estimators. In the case a00 = 100, the solution has a higher
singularity at the center and our new error estimator yields better results than the
standard residual-based estimator. To obtain the same accuracy, considerably more
degrees of freedom are required if the adaptive refinement process is controlled by
the residual-based error estimator. We remark that in contrast to the residual-based
error estimator, the tensor a enters by the bilinear form a(·, ·) in the calculation of η.

In our next example, we consider the domain Ω defined in Figure 5.6. Ω is
decomposed into three subdomains Ωi, 0 ≤ i ≤ 2. On each subdomain a constant
coefficient ai is used. We set a2 = a0, a1 = 1 and f = 100.

Figure 5.7 shows the adaptive meshes on levels three and four. For a0 = 10, there
is no significant difference in the mesh size on the three different subdomains. As a0

increases, we observe stronger adaptive refinement in Ω1. In the case a0 = 1000, the
mesh size is considerably smaller in the subdomain Ω1 than in Ω0 and Ω2.
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Fig. 5.5. Discretization errors ep and eu for a00 = 5 (left) and a00 = 100 (right).
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Fig. 5.6. Example 4: Geometry and initial coarse mesh.
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Fig. 5.7. Example 4: Adaptive refinement on Level 3 (upper) and Level 4 (lower).
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[29] R. Rodŕiguez, Some remarks on the Zienkiewicz-Zhu estimator, Numer. Methods Partial
Differential Equations, 10 (1994), pp. 625–636.

[30] E. Stein and S. Ohnimus, Equilibrium method for postprocessing and error estimation in the
finite element method, Comput. Assist. Mech. Engrg. Sci., 4 (1997), pp. 645–666.

[31] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretiza-
tions of elliptic equations, Math. Comp., 62 (1994), pp. 445–475.

[32] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, J.
Comp. Appl. Math., 50 (1994), pp. 67–83.

[33] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement
Techniques, Ser. Adv. Numer. Math., John Wiley, Chichester, UK, 1996.

[34] J. Zhu and O. Zienkiewicz, Adaptive techniques in the finite element method, Commun. Appl.
Numer. Methods, 4 (1988), pp. 197–204.

[35] O. Zienkiewicz and J. Zhu, A simple error estimator and adaptive procedure for practical
engineering analysis, J. Numer. Meth. Engrg., 28 (1987), pp. 28–39.



TENSORIAL RATIONAL SURFACES WITH BASE POINTS VIA
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Abstract. Let S be a tensorial rational surface defined by a rational function from [0, 1]2 onto
R

3 with a base point at (u, v) = (0, 0). We demonstrate that the image of this base point is a set of
rational curves; a base point is a parameter value for which the rational parametrization takes the
value

(
0
0
, 0
0
, 0
0

)
. This result was established by Clebsch [Ueber die abbildung algebraischer flächen,

insbesondere der vierten und fünften ordnung, Math. Ann., 1 (1869), pp. 253–316]. Base points
were first introduced in the context of geometric design by Chionh [Base Points, Resultants and
the Implicit Representation of Rational Surfaces, Ph.D. thesis, Department of Computer Science,
University of Waterloo, Waterloo, Ontario, 1990] and Manocha and Canny [Implicitizing Rational
Parametric Surfaces, Tech. report 90/592, Computer Science Division, University of California,
Berkeley, 1990] and were used by Warren [ACM Trans. Graphics, 11 (1992), pp. 127–139] to define
multisided rational Bézier patches. We give here a constructive approach of this result to exploit it
directly in the industrial scope of computer aided design. We show that these rational curves are
placed end to end by using the formalism of massic vectors introduced by Fiorot and Jeannin [Courbes
et Surfaces Rationnelles. Applications à la CAO, R.M.A. 12, Masson, Paris, 1989]. Furthermore,
we give the relations between the massic vectors which define these curves and the massic vectors
which define S. Finally, we give an algorithm to draw on a computer a surface having base points.

Key words. base point, Newton polygon, SBR-surfaces, BR-curves, blow up, blow down
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1. Introduction. The aim of this article is to study the image of the base
points of rational surfaces put on the form of SBR-surfaces (see [11], [10], [24]). The
representation of tensor product rational surfaces in the SBR-form is quite relevant.
Indeed, the control of the classical rational Bézier surfaces (see [9]) is obtained only
via weighted points where the masses of the points are positive reals. Hence, there is
no identity between rational surfaces and rational Bézier surfaces. This is why Fiorot
and Jeannin introduced the massic vector space to control any rational surfaces. In
addition, they showed that one needs pure vectors and weighted points with negative
masses to obtain this identity with rational surfaces. The elements of the massic vector
space are called massic vectors; they are either weighted points or pure vectors.

For applications, rational surfaces are usually defined on the square domain [0, 1]
2
.

Therefore, we shall state some results on the images of base points which are located
on the vertices of [0, 1]

2
. The formalism of massic vectors will help us to obtain these

images more precisely. We shall demonstrate that the image of a base point of a
rational surface is a set of rational curves whose massic vectors are obtained from the
massic vectors of the initial SBR-surface.

We shall see that this type of singularity, which one wishes to avoid in general, is
very useful for applications in computer aided geometric design.

Indeed, the users of computer aided design systems are often faced with the
problem of filling in a many-sided hole, for example, when trying to define the body
of a car or joint surface of a mould in smelting.
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Given an n-sided hole left by n contiguous connecting surfaces, either along a
common boundary curve or by a point, our aim is to build a surface, called a filling
surface, to fill in this hole. The surfaces needed are either Bézier–de Casteljau [1], [7]
polynomial surfaces or SBR-surfaces (see [11], [10]). In this case we have to define
an n-sided filling SBR-surface to join these n given surfaces along the curves which
surround the hole. In [31] and [30], Warren used base points to create n-sided rational
Bézier patches. Consequently, to create such a filling surface as a single entity we
need to introduce base points at the vertices of the parameter domain [0, 1]

2
of a

rational surface to obtain this n-sided SBR-surface (n ≥ 5). The additional boundary
curves resulting from the images of these base points are obtained by the use of the
fundamental Theorem 3.5. As a consequence, this filling n-sided SBR-surface will be
defined in one piece on [0, 1]

2
.

In [22], the author introduced another approach via toric patches associated to
lattice polygon to deal with this problem of multisided patches (see [20] for related
algorithms). Nevertheless, this model of surface takes into account only positive
weights.

In section 2, we recall some results concerning massic vectors which allow us
to control rational curves or rational surfaces, as was done with points by Bézier–
de Casteljau for polynomial curves or surfaces [1], [7]. We give the explicit form
of the rational curves and surfaces in terms of massic vectors. The main theorem
demonstrated in section 3 is that the image of a base point of a rectangular SBR-
surface is a set of rational curves. This result was established by Clebsch in [5]
and mentioned in [27]. We state this result via the formalism of massic vectors.
Therefore, we consider a more general framework than did Warren. Furthermore,
we need to define the Newton polygon of an SBR-surface from the set of indices
of the nonzero massic vectors. We show that the massic vectors of the BR-curve
images of a base point are those (within a constant) which belong to boundaries of
this Newton polygon. With an assumption on the masses of the massic vectors we
demonstrate that the curves are placed end to end. A corollary to this theorem is
that the image of a base point may be either a curve or reduced to a point. In
section 4 we shall examine the problem of drawing rectangular SBR-surfaces with
base points at corners on a computer. In [22], the author used the concept of facet
variables (see [6]) associated to the lattice polygon of a toric patch (which is in fact
the Newton polygon of the patch) to draw it. The method is based on a subdivision
process where an n-sided patch is divided into n adjacent tensor product rational
Bézier surfaces. Contrary to this strategy (under the conditions of Theorem 3.5), we
propose to draw the surface by also using the properties of the Newton polygon of the
surface, but we apply successive quadratic changes of variables to obtain n rectangular
SBR surfaces without base points. It should be noted that in [24], [25], and [23], the
authors used implicit representation to represent a tensor product rational surface.
They developed a simple algorithm for implicitizing a rational surface with base points
based on perturbation and symbolic manipulation. As we can see, the Newton polygon
plays a key role for drawing a rational surface with base points and multisided toric
patches. It is also the key for other problems like the efficient computation of sparse
mixed resultants (see [2]).

In section 5, we construct from a given set of seven rational BR-curves a seven-
sided SBR-surface defined via a rectangular one containing one base point at (0, 0).
We get three consecutive rational curves arbitrarily taken among the set of given
curves as the image of this base point.
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2. BR-form and SBR-form of rational curves and surfaces. We know that
any rational curve of an affine space in three dimensions (respectively, n), denoted E ,
is the conic projection of a polynomial curve of an affine space F in fourth dimen-
sion (respectively, (n+ 1)th). The latter can be expressed as a polynomial Bézier–de
Casteljau curve. The conic projection of the affine space F onto E of a polynomial
Bézier–de Casteljau curve whose control points are projected to a finite distance is a
rational Bézier–de Casteljau curve controlled by weighted points. A particular prob-
lem arises when certain control points of the polynomial Bézier–de Casteljau curve
of F are projected to infinity. In this case, it is necessary to add vectors of �E (the
vector space associated with the affine space E) to the weighted points to control any
rational curve of E . We call massic vectors either weighted points of E or vectors of
�E . They lead to the BR-form of any rational curve.

To understand these notions, according to [11], we recall some basic definitions
and results concerning the representation of rational curves (respectively, rational
surfaces) by BR-curves (respectively, SBR-surfaces).

Let us define E (respectively, F) a real affine space, �E (respectively, �F) its associ-

ated linear vector space such that E (respectively, �E) is a hyperplane of F (respectively,
�F), and Ẽ the projective completion of E . Let Ω be a point of F not belonging to E .

We define the linear vector space Ê = (E × R
∗)∪ �E called the massic vector space :

θ ∈ Ê is called a massic vector; it is either a weighted point of E denoted by the couple
(P, α), where P ∈ E and α ∈ R

∗, or a pure vector, denoted by �u ∈ �E . The one-to-one

map Ω̂ : Ê → �F defined by Ω̂ (P, α) = α.
−→
ΩP , Ω̂ (�u) = �u induces an addition operator

and an external multiplication in Ê , respectively denoted ⊕ and ∗, such that Ê is a
linear space and Ω̂ is an isomorphism.

For any θ, θ
′ ∈ Ê and λ ∈ R

∗ : θ⊕θ′
= Ω̂−1(Ω̂(θ)+Ω̂(θ

′
)) and λ∗θ = Ω̂−1(λ.Ω̂(θ)).

These operations on massic vectors were first introduced by Grassmann in [21]; see
also the survey by Cartan in [3] and the book by Goldman [20].

We shall define the linear form χ : Ê → R ; χ (P, α) = α, χ (�u) = 0. χ (θ) is

called the mass of θ. Let ΠΩ : �F\{�0} → Ẽ be the conic projection of apex Ω and

Π : Ê\{�0} → Ẽ the natural projection : Π (P, α) = P , Π (�u) = (�u)∞, where (�u)∞
designates the point at infinity of E along the direction �u. These projections are
linked by the relation Π = ΠΩ ◦ Ω̂. We have Π (λ ∗ θ) = Π (θ) for all λ ∈ R

∗. We can
now define a BR-curve.

Definition 2.1. Let θ0, θ1, . . . , θn be n + 1 massic vectors not simultaneously
null ; a BR-curve of Ẽ, of controlling massic polygon θ = {θi, 0 � i � n}, denoted by
BR [θ0, θ1, . . . , θn] or BR [θ], is parametrized by

BR [θ] (t) = Π (BP [θ0, θ1, . . . , θn; [0, 1]] (t)) ,

where BP [θ0, θ1, . . . , θn; [0, 1]] (t) =
∑n
i=0B

n
i (t) ∗ θi is the Bézier–de Casteljau curve

in Ê, n is called the length of the BR-curve.
For i = 0, . . . , n, the Bni (t) =

(
n
i

)
(1 − t)

n−i
ti are Bernstein’s polynomials of

degree n relative to [0, 1] where
(
n
i

)
= n!

(n−i)!i! denotes the binomial coefficients.

Proposition 2.2. Let θ = (θi)0≤i≤n be a set of massic vectors which define a

BR-curve. Let us define the sets I := {i : θi = (Pi, βi) ∈ E × R
∗} and Ī := {i : θi =

�Ui ∈ �E} such that I ∪ Ī = {0, 1, . . . , n} and I ∩ Ī = ∅ and the mass of the curve
denoted by β (t) =

∑
i∈I βiB

n
i (t). Hence the explicit form of this BR-curve is



1418 OLIVIER GIBARU

(a) if β (t) 
= 0, then

BR [θ] (t) =

∑
i∈IβiB

n
i (t)Pi

β (t)
+

∑
i∈ĪB

n
i (t) �Ui

β (t)
;

(b) if β (t) = 0 and �V (t) =
∑
i∈I βiB

n
i (t)Pi+

∑
i∈Ī B

n
i (t) �Ui 
= �0, then BR [θ] (t)

defined the point at infinity

BR [θ] (t) =

(∑
i∈I

βiB
n
i (t)Pi +

∑
i∈Ī

Bni (t) �Ui

)
∞

along the direction given by the vector
∑
i∈I βiB

n
i (t)Pi +

∑
i∈Ī B

n
i (t) �Ui;

(c) if �V (t0) = �0 (hence β (t0) = 0), then BR [θ] (t0) = limt→t0BR [θ] (t).
Proof. For the proof, see Proposition 1.3 in [11].
Definition 2.3. Let θ = (θij)0≤i≤n

0≤j≤p
be a set of massic vectors. A rectangular

SBR-surface, denoted by SBR [θ], is defined by

SBR [θ] (u, v) = Π

(
n∑
i=0

p∑
j=0

Bni (u)Bpj (v) ∗ θij

)
for all (u, v) ∈ [0, 1]

2
.

This SBR-surface is said to be of length n and of width p.
Theorem 2.4. There is an identity between the set of rational surfaces (respec-

tively, rational curves) and rectangular SBR-surfaces (respectively, BR-curves).
Proof. For the proof, see Propositions 2.2.2.2 and 6.3.1.3 in [11].
Proposition 2.5. Let θ = (θij)0≤i≤n

0≤j≤p
be a set of massic vectors which define a

SBR-surface. Let us define I := {(i, j) : θij = (Pij , βij) ∈ E × R
∗}, Ī := {(i, j) : θij =

�Uij ∈ �E}, and

β (u, v) := χ

(
n∑
i=0

p∑
j=0

Bni (u)Bpj (v) ∗ θij

)
=
∑

(i,j)∈I
Bni (u)Bpj (v)βij

the mass of S. The explicit form of this rectangular SBR-surface is
(a) if β (u, v) 
= 0, then

SBR [θ] (u, v) =

∑
(i,j)∈I

βijB
n
i (u)Bp

j (v)Pij

β(u,v) +

∑
(i,j)∈Ī

Bn
i (u)Bp

j (v)�Uij

β(u,v) ;

(b) if β (u, v) = 0 and �V (u, v) =
∑

(i,j)∈I βijB
n
i (u)Bpj (v)Pij +

∑
(i,j)∈Ī

Bni (u)Bpj (v) �Uij 
= �0, then SBR[θ] (u, v)defines the point at infinity( ∑
(i,j)∈I

βijB
n
i (u)Bpj (v)Pij +

∑
(i,j)∈Ī

Bni (u)Bpj (v) �Uij

)
∞

;

(c) if �V (u0, v0) = �0 (hence β (u0, v0) = 0), then SBR [θ] (u0, v0) is not defined.
SBR[θ](u, v) takes on the value

(
0
0 ,

0
0 ,

0
0

)
and we say that the SBR-surface has a base

point at (u, v) = (u0, v0).
Proof. For the proof, see Proposition 6.3.1.5 in [11].
From now on, we assume that the base point is at (u, v) = (0, 0). If this is not

the case, we apply an affine change of variables to make it so.



TENSORIAL SBR-SURFACES WITH BASE POINTS 1419

Lemma 2.6. Let f̂ : [0, 1]
2 → Ê be a polynomial function defined by

f̂ (u, v) =

n∑
i=0

p∑
j=0

Bni (u)Bpj (v) ∗ θij,(2.1)

where θ = (θij)0≤i≤n
0≤j≤p

is a set of massic vectors. Then we have �V (0, 0) = �0 ⇔

f̂ (0, 0) = �0 ⇔ θ00 = �0.

Proof. We remark that �V (u, v) = Ω̂(f̂ (u, v)) and that f̂ (0, 0) = θ00.
The main subject of this paper is to handle this singularity as thoroughly as

possible for further applications in the industrial scope of computer aided design.

3. Image of a rectangular SBR-surface base point. The aim of this section
is to show that there is a deep connection between the lattice polytope (see [6]), here
defined by the indices of the nonzero massic vectors of a rectangular SBR-surface, and
the image of its base points.

The following theorem highlights the link between the null derivatives of f̂ defined
by (2.1) at a base point (u, v) = (0, 0) (i.e., f̂ (u, v) = �0) of the rational surface issued

from the Π-projection of f̂ and the null massic vectors of f̂ in the vicinity of θ00 = �0.
Theorem 3.1. Let Ŝ be a polynomial surface of Ê defined by (2.1). Consider

n0 < n and let q (0) ≥ q (1) ≥ · · · ≥ q (n0) ≥ 0 be n0 + 1 given integers with p > q (0).

Hence, ∂k+lf̂ (0, 0)/∂uk∂vl = �0 for k = 0, . . . , n0 and l = 0, . . . , q (k) if and only if
θkl = �0 for k = 0, . . . , n0 and l = 0, . . . , q (k).

Moreover, if we put f̂ in the monomial form as f̂ (u, v) =
∑n
i=0

∑p
j=0 u

ivj ∗ αij,
we obtain that αkl = �0 for k = 0, . . . , n0 and l = 0, . . . , q (k) if and only if θkl = �0 for
k = 0, . . . , n0 and l = 0, . . . , q (k).

Proof. We shall use the following relation: for any (k, l) ∈ R
2 we have

∂k+lf̂ (0, 0)

∂uk∂vl
=

n!p!

(n− k)! (p− l)!
∗ ∆klθ00,(3.1)

where ∆klθ00 is the forward difference operator defined by

∆klθ00 =

k∑
i=0

l∑
j=0

(
k

i

)(
l

j

)
(−1)

k+l−i−j ∗ θij .(3.2)

We shall demonstrate the necessary condition by induction on k. Assuming that
∂k+lf̂ (0, 0)/∂uk∂vl = �0, it follows from (3.1) that ∆klθ00 = �0. For k = 0 and
l = 0, . . . , q (0) , the set of relations ∆0lθ00 = �0 is a triangular linear system which
directly gives θ00 = θ01 = · · · = θ0q(0) = �0. Assuming that θjl = �0 for j = 0, . . . , k

(k < n0) and l = 0, . . . , q (j), then the conditions ∆k+1,lθ00 = �0 for l = 0, . . . , q (k + 1)
with q (k + 1) ≤ q (k) ≤ · · · ≤ q (0) imply that θk+1,l = �0 for l = 0, . . . , q (k + 1), so
completing the induction proof. The sufficient condition is obvious via (3.1) and (3.2).
The previous result and the relation αij =

(
n
i

)(
p
j

)
∗ ∆ijθ00 enable us to conclude the

proof.
Remark. Obviously, in the previous theorem we may change the role of k and l.



1420 OLIVIER GIBARU

Let us consider the following grid of massic vectors:

θ0p · · · · · · · · · · · · θnp

...
...

θ03 θ13
...

�0 �0 θ22
...

�0 �0 θ21
...

�0 �0 �0 θ30 · · · θn0

,

where at least θ00 = �0. Following the previous theorem for k = 0, 1, 2 and l =
0, . . . , q (k) with q (0) = q (1) = 2, q (2) = 0, we have ∂k+lf̂ (0, 0)/∂uk∂vl = �0. Of

course, partial derivatives of f̂ can be equal to zero for orders (k, l) different from

those above given by the theorem; for instance, we may have ∂4f̂ (0, 0)/∂u2∂v2 = �0
if θ22 = 2 ∗ θ21.

As we shall see later, knowing the minimum orders of the nonzero partial deriva-
tives of f̂ at a base point is not sufficient to determine the images of this base
point. In the previous example the minimum orders are (k, q (k) + 1), k = 0, 1, 2.
If χ (θ03) > 0, χ (θ30) > 0, and χ (θ21) ≥ 0, then we shall show that the image
of the base point (u, v) = (0, 0) is the rational cubic defined by the massic vectors

θ03, θ12 = �0, θ21, θ30 (we have, respectively, ∂3f̂ (0, 0)/∂v3 
= �0, ∂3f̂ (0, 0)/∂u∂v2 = �0,

∂3f̂ (0, 0)/∂u2∂v 
= �0, ∂3f̂ (0, 0)/∂u3 
= �0); θ13 corresponding to ∂3f̂ (0, 0)/∂u1∂v3 
= �0
is not concerned.

Consider a rational surface defined by θ = (θij)0≤i≤n
0≤j≤p

, a set of massic vectors.

Assumption 1. We assume that at least θ00 = �0 and among the massic vectors
θi0, i ∈ {1, . . . , n} (respectively, among the massic vectors θ0j , j ∈ {1, . . . , p}), there
exists at least a nonzero massic vector.

We define the set A := {pij = (i, j) ∈ R
2 : θij 
= �0} so as to create the Newton

polygon of an SBR-surface.
Definition 3.2. The point Q ∈ A is an extreme point if it does not exist two

different points q1 and q2 belonging to A such that Q∈ ]q1, q2[.
Definition 3.3. Let Q0, Q1, . . . , Ql be the extreme points of A. The convex hull

of A is defined by Conv (A) := {λ0Q0 + · · · + λlQl, λi ∈ R
+ :
∑l
i=0 λi = 1} ⊂ R

2.
Definition 3.4. The Newton polygon (see [29], [8], [28], [6]) of the rectangular

SBR-surface SBR [θ], denoted by Newton (SBR [θ]), is defined as the convex hull of A.
We denote by {P0,P1, . . . ,Pq} the set of extreme points of Conv (A) (q ≤ l). These
points are included in the set {Q0, Q1, . . . , Ql} of the extreme points of A.

We denote by (αi, βi) the integer coordinates of the point Pi for i = 0, . . . , q. Let
us assume that P0 = (α0 
= 0, β0 = 0) is the point such that α0 is the lowest value with
y = 0 and Pm = (αm = 0, βm 
= 0) is the point such that βm is the lowest value with

x = 0. This implies that βi+1−βi

αi−αi+1
> βi−βi−1

αi−1−αi
for i = 1, . . . ,m − 1, where αi > αi+1

and βi+1 > βi for i = 0, . . . ,m− 1. We need to define the complement of the Newton
polygon with respect to the positive orthant in R

2 which contains the point (0, 0),

denoted Newton
00

(SBR [θ]).
Notice that each edge [Pk,Pk+1], for k = 0, . . . ,m − 1, of Conv (A) has a nor-

mal vector �nk such that it is inwardly oriented and it is taken as the shortest vec-
tor in this direction with integer coordinates. Actually, the coordinates of �nk are
(βk−βk+1

dk
, αk+1−αk

dk
), where dk is the greatest common divisor of the integers βk+1−βk
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and αk−αk+1. It is observed that dk+1 is the number of integer points which belong
to the segment [Pk,Pk+1].

Assumption 2. We assume that the mass of θij ≥ 0 for all (i, j) ∈ A except for
the (i, j) ∈ {P0,P1, . . . ,Pq}, where the mass of θij > 0.

We come to the fundamental theorem.
Theorem 3.5. With Assumptions 1 and 2 we obtain that the image of the base

point (u, v) = (0, 0) of the rational surface

SBR [θ] : [0, 1]
2
/D → Ẽ

(u, v) �→ SBR [θ] (u, v) = Π

(
n∑
i=0

p∑
j=0

Bni (u)Bpj (v) ∗ θij

)
(3.3)

is m consecutive rational curves (D being the points of [0, 1]
2

where SBR [θ] is not
defined). They are respectively defined by the massic vectors θij whose indices (i, j)
respectively belong to the m segments [Pk,Pk+1] for k = 0, . . . ,m− 1. More precisely,

these m BR-curves are defined by BR
[
τ (k+1)

]
(t) = Π(

∑dk
i=0B

dk
i (t) ∗ τ (k+1)

i ), where

the massic vectors τ
(k+1)
i of these rational curves are defined via the massic vectors

of SBR [θ] as follows:

τ
(k+1)
i =

(
n

αk − iαk−αk+1

dk

)(
p

βk + iβk+1−βk

dk

)
(
dk
i

) ∗ θ
αk−iαk−αk+1

dk
,βk+i

βk+1−βk
dk

.(3.4)

Proof. We use fractional changes of variables to obtain any image curve directly
without having to apply successive changes of variables, as is usually done in algebraic
geometry [26]. For each value of k in {0, . . . ,m− 1} we apply the change of variables

ϕk (r, t) =

(
u = r(βk+1−βk) (1 − t)

dk
αk−αk+1 , v = r(αk−αk+1)t

dk
βk+1−βk

)
to the function SBR [θ]. Therefore we have

SBR [θ] (ϕk (r, t))

= Π

( ∑
(i,j)∈A

(
n
i

)(
p
j

)(
1 − r(βk+1−βk) (1 − t)

dk
αk−αk+1

)n−i
×
(
1 − r(αk−αk+1)t

dk
βk+1−βk

)p−j

× ri(βk+1−βk)+j(αk−αk+1) (1 − t)
idk

αk−αk+1 t
jdk

βk+1−βk ∗ θij

)
for all (r, t) ∈ [0, 1]

2
.

Pairs (i, j) of integers belonging to [Pk,Pk+1] satisfy i (βk+1 − βk) + j (αk − αk+1) =
αkβk+1−αk+1βk. Consequently for all (i, j) ∈ A we have i (βk+1 − βk)+j (αk − αk+1)
≥ αkβk+1−αk+1βk. Therefore in the previous sum we factorize with r(αkβk+1−αk+1βk),
which is eliminated by a property of the Π-projection (see section 2). Finally, with
the assumption on the masses it is possible to set r = 0. It gives

SBR [θ] (ϕk (0, t)) = Π

( ∑
(i,j)∈[Pk,Pk+1]∩A

(
n

i

)(
p

j

)
(1 − t)

idk
αk−αk+1 t

jdk
βk+1−βk ∗ θij

)
.
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Actually, pairs (i, j) of integers belonging to [Pk,Pk+1] are given by i = αk−lαk−αk+1

dk

and j = βk + l βk+1−βk

dk
for l = 0, . . . , dk. Again via the Π-projection we simplify with

(1 − t)
αk+1dk

αk−αk+1 t
βkdk

βk+1−βk in the previous relation.
We have

SBR [θ] (ϕk (0, t))

= Π

(
dk∑
l=0

(
n

αk − lαk−αk+1

dk

)(
p

βk + l βk+1−βk

dk

)
(1 − t)

dk−l tl

∗ θ
αk−lαk−αk+1

dk
,βk+l

βk+1−βk
dk

)
.

Therefore we obtain for k = 0, . . . ,m− 1 the following BR-curves:

SBR [θ] (ϕk (0, t)) = Π

(
dk∑
i=0

Bdki (t) ∗ τ (k+1)
i

)
, t ∈ [0, 1] ,

where

τ
(k+1)
i =

(
n

αk − iαk−αk+1

dk

)(
p

βk + iβk+1−βk

dk

)
(
dk
i

) ∗ θ
αk−iαk−αk+1

dk
,βk+i

βk+1−βk
dk

.

As we have τ
(k)
dk−1

= τ
(k+1)
0 for k = 1, . . . ,m− 1, it comes that the BR-curves images

of the base point are consecutive. Hence, the image of the base point (u, v) = (0, 0)
is a set made of these m consecutive rational curves whose massic vectors are defined
by (3.4).

Since Clebsch [5], it has been known that the image of a base point can be blown
up into a set of rational curves. The main result of this theorem is that via relation
(3.4) we explicitly give the link between the massic vectors defining this set of ratio-

nal curves and those of indices belonging to Newton (SBR [θ]) ∩ Newton
00

(SBR [θ]).
Moreover, we point out that these BR-curves are placed end to end, which is very
important for applications in geometric design.

In Figure 1, the image of the base point (u, v) = (0, 0) is represented by two
consecutive rational curves respectively defined up to multiplicative constants by the
massic vectors: θ8,0, θ3,2; and θ3,2, θ2,4, θ1,6, θ0,8.

Remark. The assumption that χ (θij) ≥ 0 for all (i, j) ∈ A except for (i, j) ∈
{P0,P1, . . . ,Pq} where χ (θij) > 0 prevents the SBR-surface from having base points
elsewhere than at the vertices of each definition domains obtained after applying
changes of variables to the surface. We could have admitted negative and positive
masses but the image curves of the base point (u, v) = (0, 0) of SBR [θ] are not
necessarily given by the massic vectors whose indices belong to Newton (SBR [θ]) ∩
Newton

00
(SBR [θ]). Moreover, they are not necessarily end to end and their number

can be greater than the number of edges of Newton (SBR [θ]) ∩ Newton
00

(SBR [θ]).
For instance, in Figure 2 the image of the base point (0, 0) is two orthogonal segments.
In a future work, we shall tackle this difficult problem.

If we want the image of the base point (u, v) = (0, 0) to be a unique rational curve
or a point then we have the following.
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Pm = P2 = Q4

P1 = Q3

P0 = Q0 Pq = P5 = Q7

P4 = Q6P3 = Q5

Q1

Q2

Fig. 1. An example of a convex hull of a set of integer points associated with the nonzero
massic vectors of an SBR-surface. • (respectively, ◦) denotes integer points (i, j) such that θij �= �0

(respectively, θij = �0); Qi = extreme points of A; Pi = extreme points of Conv(A).

Corollary 3.6. Let S be a SBR-surface defined by (3.3) where χ (θij) ≥ 0 for
all (i, j) ∈ A except for (i, j) ∈ {P0,P1, . . . ,Pq} where χ (θij) > 0. If P0 = (α0, 0)

and P1 = (0, β1) (α0 < n and β1 < p) such that θij = �0 for all (i, j) ∈ R
2 with

iβ1 + jα0 < α0β1, then the image of the base point (u, v) = (0, 0) is the BR-curve
defined by

Π

⎛⎜⎜⎜⎝
d0=gcd(α0,β1)∑

i=0

Bd0i (t)

(
n

α0 − iα0

d0

)(
p

iβ1

d0

)
(
d0

i

) ∗ θ
α0−iα0

d0
,i

β1
d0

⎞⎟⎟⎟⎠ for all t ∈ [0, 1] .(3.5)

Furthermore, if Π (θα0,0) = Π (θ0,β1)
(
where Π (θ0,β1) = P ∈ R

3
)

and either

Π(θ
α0−iα0

d0
,i

β1
d0

) = P or θ
α0−iα0

d0
,i

β1
d0

= �0 for i = 1, . . . , d0 − 1, then SBR [θ] is continu-

ous at (0, 0).
Proof. Relation (3.5) follows from the application of the previous theorem with

P0 = (α0, 0) and P1 = (0, β1). The assumption on the masses compels us to demon-
strate the continuity of SBR [θ] at (0, 0). Let us define the sets I = {(i, j) : θij =
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I1

I3

I
I2

Fig. 2. The image of the base point is the two orthogonal segments [I1, I2] and [I, I3] which
intersect at the point I.

(Pij , βij) ∈ E × R
∗} and Ī = {(i, j) : θij = �Uij ∈ �E}; then we obtain via the explicit

form of an SBR-surface (see Proposition 2.5(a)) that for all (u, v) ∈ [0, 1]
2
,

SBR [θ] (u, v) − P =

∑
(i,j)∈I

βijB
n
i (u)Bp

j (v).(Pij−P )+

∑
(i,j)∈Ī

Bn
i (u)Bp

j (v).�Uij∑
(i,j)∈I

βijBn
i (u)Bp

j (v)
.

When applying the change of variables u = rβ1 (1 − t)
d0
α0 , v = rα0t

d0
β1 (with r ≥ 0

and t ∈ [0, 1]) to the right side of the previous expression and symplifying by rα0β1 it
follows that

SBR [θ] (u, v) − P

=

∑
(i,j)∈I(

n
i)(

p
j)r

iβ1+jα0−α0β1βij .

(
1−rβ1 (1−t)

d0
α0

)n−i(
1−rα0 t

d0
β1

)p−j

(1−t)i
d0
α0 t

j
d0
β1 (Pij−P )∑

(i,j)∈I(
n
i)(

p
j)riβ1+jα0−α0β1βij .

(
1−rβ1 (1−t)

d0
α0

)n−i(
1−rα0 t

d0
β1

)p−j

(1−t)i
d0
α0 t

j
d0
β1

+

∑
(i,j)∈Ī
i+j>m

(ni)(
p
j)r

iβ1+jα0−α0β1

(
1−rβ1 (1−t)

d0
α0

)n−i(
1−rα0 t

d0
β1

)p−j

(1−t)i
d0
α0 t

j
d0
β1 .�Uij∑

(i,j)∈I(
n
i)(

p
j)riβ1+jα0−α0β1βij .

(
1−rβ1 (1−t)

d0
α0

)n−i(
1−rα0 t

d0
β1

)p−j

(1−t)i
d0
α0 t

j
d0
β1

.

(3.6)

The assumption on the masses of the massic vectors implies that the denominator is
strictly greater than zero for all r ≥ 0 and t ∈ [0, 1]. Consequently as Pi,j = P for
all (i, j) ∈ I such that iβ1 + jα0 = α0β1 we can factorize the numerator of (3.6) by r
and we obtain

‖SBR [θ] (u, v) − P‖ = O (r) .



TENSORIAL SBR-SURFACES WITH BASE POINTS 1425

θ05 θ15 θ25 θ35 θ45

θ04 �0 �0 �0 θ44

θ03 �0 �0 �0 θ43
�0 θ12 �0 �0 θ42
�0 �0 θ21 �0 θ41
�0 �0 θ20 θ30 θ40

Fig. 3. An SBR-surface with a corner of null massic vectors.

Hence,

lim
(u,v)→(0,0)

(u,v)∈[0,1]2

SBR [θ] (u, v) = P

and the continuity of SBR [θ] at (0, 0) holds.
Figure 3 illustrates the case of an SBR-surface having a base point at (u, v) = (0, 0)

whose image is a unique rational boundary curve of S. This image is the segment
defined by the massic vectors θ03 and θ20.

Remark. If

lim
(u,v)→(0,0)

(u,v)∈[0,1]2

SBR [θ] (u, v) = P

we say that the image of the base point (u, v) = (0, 0) blows down into a point.

4. Algorithm for drawing a rectangular SBR-surface with base points.
To draw a rectangular SBR-surface S which is the image of [0, 1]

2
, where S has a

base point at (u, v) = (0, 0) whose image is m consecutive rational curves, we may
apply a finite number of quadratic changes of variables of type u = r (1 − t) , v = rt
to the function SBR [θ] (see [29]). Another strategy is to apply the same kind of
change of variables as in the proof of Theorem 3.5. In each case, we clearly show the
m additional boundary curves of S. Assuming that we apply the first strategy, the
drawing of S will be a set of SBR-surfaces without any base point. We shall not apply
the second strategy. Indeed, in that case, the regular SBR-surfaces we obtain by this
method overlap, which is unsatisfactory for applications. The following proposition
will help us to highlight the image curves of a base point.

Proposition 4.1. Let S be an SBR-surface defined by (3.3). Hence, by applying
the change of variables u = r (1 − t) , v = rt to function SBR [θ] we obtain

SBR [θ] (u (r, t) , v (r, t)) = Π

(
n+p∑
k=0

n+p∑
l=0

Bn+p
k (r)Bn+p

l (t) ∗ ωkl

)
,

where for all (k, l) ∈ {0, . . . , n+ p}2

ωkl =

k∑
i=0

min(i,p)∑
j=max(0,i−n)

(
k
i

)(
n
i−j
)(
p
j

)(
n+p−i
l−j

)(
n+p
i

)(
n+p
l

) ∗ ∆i−j,jθ00 if n ≤ p,

ωkl =

k∑
i=0

min(i,n)∑
j=max(0,i−p)

(
k
i

)(
n
j

)(
p
i−j
)(
n+p−i
l−j

)(
n+p
i

)(
n+p
l

) ∗ ∆j,i−jθ00 else.
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Proof. We can write SBR [θ] in the following monomial form:

SBR [θ] (u, v) = Π

(
n∑
i=0

p∑
j=0

(
n

i

)(
p

j

)
uivj ∗ ∆ijθ00

)
.

With the assumption that n ≤ p, letting u = r (1 − t) , v = rt, and k = i + j, we
obtain

SBR [θ] (u (r, t) , v (r, t)) = Π

⎛⎝n+p∑
k=0

min(k,p)∑
j=max(0,k−n)

rkBkj (t)

(
n
k−j
)(
p
j

)(
k
j

) ∗ ∆k−j,jθ00

⎞⎠.
To provide the expression of SBR [θ] in the Bernstein polynomial bases of degree n+p
in t, one can apply n+ p− k degree of elevations in t (see [9]), which gives

SBR [θ] (u (r, t) , v (r, t))

= Π

⎛⎝n+p∑
k=0

n+p∑
l=0

rkBn+p
l (t)

min(k,p)∑
j=max(0,k−n)

(
n
k−j
)(
p
j

)(
n+p−k
l−j

)(
n+p
l

) ∗ ∆k−j,jθ00

⎞⎠.
We are now able to write SBR [θ] (u (r, t) , v (r, t)) in the Bernstein polynomial bases
of degree n+ p in r as follows:

SBR [θ] (u (r, t) , v (r, t)) = Π

(
n+p∑
k=0

n+p∑
l=0

Bn+p
k (r)Bn+p

l (t)ωkl

)
,

where ∆k0ω0l =
∑min(k,p)
j=max(0,k−n)

( n
k−j)(

p
j)(

n+p−k
l−j )

(n+p
k )(n+p

l )
∗ ∆k−j,jθ00. Moreover, as we have

ωkl =
∑k
i=0

(
k
i

)
∗ ∆i0ω0l, then for all (k, l) ∈ {0, . . . , n+ p}2

,

ωkl =

k∑
i=0

min(i,p)∑
j=max(0,i−n)

(
k
i

)(
n
i−j
)(
p
j

)(
n+p−i
l−j

)(
n+p
i

)(
n+p
l

) ∗ ∆i−j,jθ00.

The case n > p is obtained by replacing n by p and conversely replacing ∆i−j,j by
∆j,i−j .

Remark. We can use this proposition for any base point at the corners of the
definition domain. It suffices to apply an affine change of variables to the function
(3.3).

The application of a quadratic change of variables to a rational surface with a
base point at (0, 0) provides a new SBR-surface with certain complete lines of zero
massic vectors which come from the diagonal lines of null massic vectors of the initial
rectangular SBR-surface. Therefore, the aim of Proposition 4.2 is to eliminate these
complete lines of null massic vectors.

Proposition 4.2. Let S be an SBR-surface defined by (3.3), where for any given
integers k0, k1, l0, l1 such that n− k0 − k1 ≥ 0 and p− l0 − l1 ≥ 0, we have θij = �0 for
all (i, j) ∈ {0, . . . , k0 − 1} × {0, . . . , l0 − 1} and for all (i, j) ∈ {n− k1 + 1, . . . , n} ×
{p− l1 + 1, . . . , p}. Then we have

SBR [θ] (u, v) = Π

(
n−k0−k1∑
i=0

p−l0−l1∑
j=0

Bn−k0−k1i (u)Bp−l0−l1j (v) ∗ ωij

)
,
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where ωij =
( n
i+k0

)( p
j+l0

)
(n−k0−k1

i )(p−l0−l1
j )

∗ θi+k0,j+l0 for all (i, j) ∈ {0, . . . , n− k0 − k1} ×
{0, . . . , p− l0 − l1}.

Proof. With these assumptions we have

SBR [θ] (u, v)

= Π

(
p∑
j=0

Bpj (v)

((
n

k0

)
(1 − u)

n−k0 uk0 ∗ θk0,j ⊕ · · · ⊕ (1 − u)
k1 un−k1 ∗ θn−k1,j

))
.

Consequently, we can factorize by uk0 (1 − u)
k1 and write SBR [θ] in the following

form:

SBR [θ] (u, v) = Π

(
n−k0−k1∑
i=0

p∑
j=0

Bn−k0−k1i (u)Bpj (v)

(
n

i+k0

)(
n−k0−k1

i

) ∗ θi+k0,j
)
.

Again we factorize by vl0 (1 − v)
l1 and we obtain the result.

To draw on a computer a rectangular SBR-surface S having a base point at (0, 0)
which satisfies the assumptions of Theorem 3.5, we need to remove the singularity.
This can be done via the use of quadratic changes of variables and a subdivision
process. Hence, the initial singular rectangular SBR-surface will be drawn by a net
of regular SBR-surfaces defined by massic vectors. To do so, we define the following
algorithm:
Step 0: Initialize the set C to {S}
Step 1: Do while there is a null massic vector either in the top left corner or in the bottom

left corner of one rectangular SBR-surface of C

If there is a null massic vector at the two left corners of a surface of C then

- Subdivide the set of the massic vectors of this surface into four sets of massic vectors via

the use of the algorithm of de Casteljau for SBR-surfaces [10] evaluated with the following

parameters:
(

1
2 ,

1
2

)
.

- Remove the surface from C

- Add the two right regular surfaces to C

- Apply four quadratic changes of variables (see Propositions 4.1 and 4.2) to the two left

surfaces:

- For the bottom left SBR-surface, one at (0, 0) and one at (1, 1) (see Figure 5)

- For the top left SBR-surface, one at (0, 1) and one at (1, 0)
- Add these four new surfaces to C

End if

If there is only a null massic vector at the top left corner of a surface of C, then

- Remove the surface from C

- Apply two quadratic changes of variables to this surface, one at (0, 1) and one at (1, 0)
- Add the two resulting sets of massic vectors to C

End if

If there is only a null massic vector at the bottom left corner of a surface of C, then

- Remove the surface from C

- Apply two quadratic changes of variables to this surface, one at (0, 0) and one at (1, 1)
- Add the two resulting sets of massic vectors to C

End if

Step 2: Draw all the regular SBR-surfaces to the set C.
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Fig. 4. Example of a rectangular SBR-surface with a base point at (0, 0). ◦ denotes points
associated with null massic vectors; • denotes points associated with non-zero massic vectors.

For instance, in the case of Figure 4, we first apply the change of variables u =
r (1 − t) , v = rt to SBR [θ] (see Figure 5). Thus, we divide the domain [0, 1]

2
into two

triangles. The upper triangle defines the domain of the surface SBR-surface called
S1 which does not have any base points at corners. The image of the lower one is,
in variables (r, t), the square [0, 1]

2
, where the image of (u, v) = (0, 0) is (0, t) for

all t ∈ [0, 1]. As the SBR-surface image of this domain has two base points (one at
t = 0 and the other one at t = 1), we subdivide it into four SBR-patches by applying
the classical algorithm of de Casteljau [7], [11], [10] at (r, t) =

(
1
2 ,

1
2

)
so that two of

them (S4 and S5) are free from base points at corners. However, the two other do
have a base point. By applying again a quadratic change of variables, r = r1 (1 − t1),
t = r1t1 and r = r2 (1 − t2), t = 1 − r2t2, we obtain two additional SBR-patches S6

and S7, which do not present any base points on [0, 1]
2
. This method is illustrated

by Figure 5.

5. Example of a seven-sided SBR-surface. We are now able to construct
an n-sided SBR-surface which interpolates n given consecutive rational curves via the
introduction of base points at the vertices of the definition domain of a rectangular
SBR-surface. This can be done via relation (3.4), which gives the relations between

the massic vectors whose indices belong to Newton (SBR [θ]) ∩ Newton
00

(SBR [θ])
of the initial SBR-surface, and the massic vectors of the given BR-curves. Naturally,
the massic vectors whose indices are inside points of the Newton polygon can be
chosen arbitrarily with positive or null masses. This brings new possibilities to control
the form of surfaces. The framework thus considered is more significant than that
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⇑
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⇓
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S2

1

1

0 r

t

Fig. 5. The diagram of the consecutive change of variables.

considered in [30] and [31]. We shall now study an example with seven BR-curves.

Let (Ω,�i,�j,�k) be a Cartesian frame. Let us consider the seven following BR-curves
which create a hole (see Figure 6):

Γ1 (t) = BR[τ1
0 = (A1; 1) , τ1

1 = 2�k, τ1
2 = (A2; 1)] (t) ,

Γ2 (t) = BR[τ2
0 = (A2; 1) , τ2

1 = −2�k, τ2
2 = (A3; 1)] (t) ,

Γ3 (t) = BR[τ3
0 = (A3; 1) , τ3

1 = (A4; 1)] (t) ,

Γ4 (t) = BR

⎡⎣τ4
0 = (A4; 1) , τ4

1 =

⎛⎝⎛⎝ 12.5
0
−4

⎞⎠ ; 2

⎞⎠ , τ4
2 = (A5; 1)

⎤⎦ (t) ,

Γ5 (t) = BR
[
τ5
0 = (A5; 1) , τ5

1 = (A6; 1)
]
(t) ,

Γ6 (t) = BR
[
τ5
0 = (A6; 1) , τ5

1 = (A7; 1)
]
(t) ,

Γ7 (t) = BR[τ4
0 = (A7; 1) , τ4

1 = −2�k, τ4
2 = (A1; 1)] (t) ,
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where

A1 =

⎛⎝−5
10
0

⎞⎠, A2 =

⎛⎝−3
5
0

⎞⎠, A3 =

⎛⎝ 0
3
1

⎞⎠, A4 =

⎛⎝ 10
0
0

⎞⎠,

A5 =

⎛⎝ 15
0
0

⎞⎠, A6 =

⎛⎝ 15
15
1

⎞⎠, A7 =

⎛⎝−5
15
0

⎞⎠.
As χ

(
τ1
1

)2 − χ
(
τ1
0

)
χ
(
τ1
2

)
< 0, χ

(
τ2
1

)2 − χ
(
τ2
0

)
χ
(
τ2
2

)
< 0, and χ

(
τ7
1

)2 −
χ
(
τ7
0

)
χ
(
τ7
2

)
< 0, we can conclude via Proposition 5.1.6 in [11] that Γ1, Γ2, and

Γ7 are arcs of ellipses. As χ
(
τ4
1

)2 − χ
(
τ4
0

)
χ
(
τ4
2

)
> 0 via the same proposition, we

conclude that Γ4 is a hyperbolic arc.
Moreover, we can show that Γ1, Γ2 join C1 at A2 and Γ1, Γ7 join C1 at A1 via

Proposition 4.1.6 in [11].
We can now construct the grid of massic vectors of a rectangular SBR-surface,

denoted by S, which fills the previous hole. We have to satisfy some relations so that
the given BR-curves are the boundary curves of this surface. We arbitrarily choose
to define the massic vectors of S as follows.

The massic vectors θi9, i = 0, . . . , 8 (respectively, θ8j , j = 0, . . . , 9), are obtained
from seven (respectively, eight) elevations of the length of the BR-curve Γ6 (respec-
tively, Γ5). This allows us to obtain a better parametrization of the surface.

We are now searching for the relations between the massic vectors of the rectan-
gular SBR-surface and the massic vectors of the boundary BR-curves Γ1, Γ2, Γ3 so
that they are the image of the base point at (0, 0). With that aim in view, we use the
relation (3.4) and we obtain

for Γ1 : θ07 =

(
2
2

)(
8
0

)(
9
7

) ∗ (A1; 1), θ15 =

(
2
1

)(
8
1

)(
9
5

)2�k, θ23 =

(
2
0

)(
8
2

)(
9
3

) ∗ (A2; 1) ;

for Γ2 : θ23 =

(
2
2

)(
8
2

)(
9
3

) ∗ (A2; 1), θ32 = −
(
2
1

)(
8
3

)(
9
2

)2�k, θ41 =

(
2
0

)(
8
4

)(
9
1

) ∗ (A3; 1) ;

for Γ3 : θ41 =

(
1
1

)(
8
4

)(
9
1

) ∗ (A3; 1), θ60 =

(
1
0

)(
8
6

)(
9
0

) ∗ (A4; 1) .

Moreover, Γ4 (respectively, Γ7) has to be the image of (u, 0), u ∈ [0, 1] (respec-
tively, of (0, v), v ∈ [0, 1]). So we have

for Γ4 : θ60 =

(
2
2

)(
8
6

) ∗ (A4; 1), θ70 =

(
2
1

)(
8
7

) ∗
⎛⎝⎛⎝ 12.5

0
−4

⎞⎠ ; 2

⎞⎠, θ80 =

(
2
0

)(
8
8

) ∗ (A5; 1) ;

for Γ7 : θ07 =

(
2
2

)(
9
7

) ∗ (A1; 1), θ08 = −
(
2
1

)(
9
8

)2�k, θ09 =

(
2
0

)(
9
9

) ∗ (A7; 1) .

As these relations are compatible, we have Figure 8.
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A1
A2

A3

A4

A5

A6

A7 Γ1

Γ2

Γ3
Γ4

Γ5

Γ6

Γ7

Fig. 6. The seven given boundary BR-curves of the hole.

θ09 θ19 θ29 θ39 θ49 θ59 θ69 θ79 θ89

θ08 �0 �0 �0 �0 �0 �0 �0 θ88

θ07 �0 �0 �0 �0 �0 �0 �0 θ87

�0 �0 �0 �0 �0 �0 �0 �0 θ86

�0 θ15 �0 �0 �0 �0 �0 �0 θ85

�0 �0 �0 �0 �0 �0 �0 �0 θ84

�0 �0 θ23 �0 �0 �0 �0 �0 θ83

�0 �0 �0 θ32 �0 �0 �0 �0 θ82

�0 �0 �0 �0 θ41 �0 �0 �0 θ81

�0 �0 �0 �0 �0 �0 θ60 θ70 θ80

Fig. 7. A grid of the massic vectors of S.

To draw this seven-sided SBR-surface S we use the results of the previous section.
It is composed of seven SBR-surfaces which join each other naturally with the G∞-
continuity. Notice that the C1-continuity of Γ7 and Γ1 at A1 (respectively, the C1-
continuity of Γ1 and Γ2 at A2) is satisfied and the null massic vectors whose indices
are in the interior of Conv(A) (see Figure 7) induce a tension effect on the surface.

This seven-sided SBR-surface could have been defined with a base point, for
instance, at (0, 0), (1, 0), (1, 1), with the constraint that the image of each base point
is a unique BR-curve.

For instance, in the case of a five-sided filling surface we use the grid of massic
vectors defined in Figure 3. The image curve of the base point is given by the massic
vectors,

θ20 =

⎛⎝⎛⎝ 5
0
0

⎞⎠ ; 1

⎞⎠ , θ03 =

⎛⎝⎛⎝ 0
5
0

⎞⎠ ; 1

⎞⎠
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Fig. 8. A seven sided SBR-surface defined from a rectangular one with a base point.

(see Corollary 3.6), and the other boundaries are defined via the following four arcs
of ellipses:

θ20, θ30 = �k, θ40 =

⎛⎝⎛⎝ 10
0
0

⎞⎠ ; 1

⎞⎠;

θ40, θ41 =

⎛⎝⎛⎝ 10
0
2
3

⎞⎠ ;
3

5

⎞⎠, θ42 =

⎛⎜⎜⎝
⎛⎜⎜⎝

10
5
2

3
2

⎞⎟⎟⎠ ;
2

5

⎞⎟⎟⎠, θ43 =

⎛⎜⎜⎝
⎛⎜⎜⎝

10
15
2

3
2

⎞⎟⎟⎠ ;
3

5

⎞⎟⎟⎠,
θ44 =

⎛⎝⎛⎝ 10
10
2
3

⎞⎠ ;
3

5

⎞⎠, θ45 =

⎛⎝⎛⎝ 10
10
0

⎞⎠ ; 1

⎞⎠;

θ03, θ04 = �k, θ05 =

⎛⎝⎛⎝ 0
10
0

⎞⎠ ; 1

⎞⎠;

θ05, θ15 =

⎛⎝⎛⎝ 0
10
1
2

⎞⎠ ;
1

2

⎞⎠, θ25 =

⎛⎝⎛⎝ 5
10
1

⎞⎠ ;
1

3

⎞⎠, θ35 =

⎛⎝⎛⎝ 10
10
1
2

⎞⎠ ;
1

2

⎞⎠, θ45;
where the vector

�k =

⎛⎝ 0
0
1

⎞⎠
and the massic vectors θ12 = θ21 = 1

4
�k.

If we modify θ12 and θ21, the surface preserves its boundaries but the shape of
the surface is modified (see Figures 9 and 10).

In a future work, we will apply the previous results to define an n-sided filling
SBR-surface which joins G1 or G2 continuously with n given polynomial or rational
surfaces. More generally (see [12], [13], [15], [14], [17], [16], [19]), we have dealt with
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Fig. 9. A five-sided rational surface where the segment is the image of the base point.

Fig. 10. A five-sided rational surface with θ12 = �0 and θ21 = 2�k.

this n-sided filling problem with parametric pole-functions of two variables where the
image of a base point is several parametric boundary curves.
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A POSTERIORI ESTIMATION OF DIMENSION REDUCTION
ERRORS FOR ELLIPTIC PROBLEMS ON THIN DOMAINS∗
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Abstract. A new a posteriori error estimator is presented for the verification of the dimensionally
reduced models stemming from the elliptic problems on thin domains. The original problem is
considered in a general setting, without any specific assumptions on the domain geometry, coefficients,
and the right-hand sides. For the energy norm of the error of the zero-order dimension reduction
method, the proposed estimator is shown to always provide a guaranteed upper bound. In the case
when the original domain has constant thickness (but, possibly, nonplane upper and lower faces),
the estimator demonstrates the optimal convergence rate as the thickness tends to zero. It is also
flexible enough to successfully cope with infinitely growing right-hand sides in the equation when
the domain thickness tends to zero. The numerical tests indicate the efficiency of the estimator and
its ability to accurately represent the local error distribution needed for an adaptive improvement of
the reduced model.

Key words. dimension reduction, thin domain, a posteriori error estimate, reliability, efficiency,
local error distribution
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1. Introduction. The method of dimension reduction is a popular approach
frequently used by engineers for the approximate solution of the problems posed in thin
domains. The term “thin” means that the size of the original physical domain along
one coordinate direction is much smaller than along the others; this allows us to make
some simplifying assumptions on the behavior of the exact solution and to replace
the original high-dimensional problem with a lower-dimensional one. For instance,
such a situation arises if a three-dimensional problem is analyzed with the help of a
two-dimensional model. It is, however, clear that the solution of the new, “reduced”
problem will, in general, differ from the solution to the original high-dimensional
problem. Thus, the dimension reduction method unavoidably produces an error that
can be referred to as the dimension reduction or the modeling error. The essential
part of the model verification is, hence, a reliable a posteriori control of the dimension
reduction error.

Despite the practical importance of the topic, only a few a posteriori estimators for
the dimension reduction error have been introduced so far. In [15] and [3] (see also [2])
the residual-type estimators were proposed and proved reliable and efficient under the
assumptions that the right-hand side of the given equation is zero and the original
domain is a plate with plane parallel faces. In [5] and [12] the implicit estimators
based on the solution of local three-dimensional Neumann problems were developed
for the hierarchical modeling of complex elastic plates. In [1] the estimator of Babuška
and Schwab (see [2], [3]) was extended to take into account the discretization error
stemming from the approximate solution of the reduced problem. In this respect, we
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have to notice that the present work is focused on the estimation of the modeling
error; i.e., we assume, exactly as in [2], [3], that the error of discretizing the reduced
problem is negligible. The work on the simultaneous a posteriori estimation of both
the modeling error and the discretization error will be reported in a forthcoming
paper.

In this work we propose a reliable and efficient a posteriori estimator for the
dimension reduction error in the energy norm, having no specific assumptions on the
right-hand side of the given equation and considering a general geometry of the given
domain. In contrast to the above-mentioned papers, which deal with the hierarchical
modeling of the problems in thin domains, we consider only the so-called zero-order
method of dimension reduction that is, however, very popular owing to its simplicity
and purely two-dimensional formulation. At the same time, this method forms a basis
for the hierarchical modeling of three-dimensional plates (see, e.g., [14], [3], [12]). It is
also worth noting that the zero-order method of dimension reduction does not cover
the important Kirchhoff plate model in linear elasticity. The presented approach can,
however, be extended to this case; the work on this subject is underway.

We advocate the functional-type a posteriori error estimation approach (see [7],
[8], [9], [10]) that essentially differs from the approaches taken in the aforemen-
tioned articles; however, surprisingly enough, it is possible to show that Babuška
and Schwab’s estimator for the zero-order reduced problem can be obtained as a par-
ticular case of our estimator when the right-hand side of the equation is zero and the
original domain is a plate with plane parallel faces. It must also be noticed that the
treatment of the case with nonzero right-hand side may require special care, as we
are about to see in one of the numerical examples; the presented estimator exhibits
sufficient flexibility to remain efficient in this case.

The paper is set out as follows. Section 2 contains the geometric definitions
and the problem statement. In section 3 we derive the reduced problem. Section 4
is devoted to the derivation of the a posteriori error estimate, while in section 5 we
consider two particular cases and analyze the behavior of the estimator. The numerical
examples are considered in section 6, and we draw the conclusions in section 7.

2. Problem setting. We consider three-dimensional Lipschitz domains, which
can be given in the form

Ω := {x ∈ R
3 | (x1, x2) ∈ Ω̂ , d�(x1, x2) < x3 < d⊕(x1, x2)} ,

where Ω̂ ⊂ R
2 is the orthogonal projection of Ω on the (x1, x2)-plane (Ω̂ has the

Lipschitz boundary Γ̂) and d� and d⊕ are Lipschitz continuous functions defined on

Ω̂. The lower and upper faces of Ω are denoted by

Γ� := {x ∈ R
3 | (x1, x2) ∈ Ω̂ , x3 = d�(x1, x2)}

and

Γ⊕ := {x ∈ R
3 | (x1, x2) ∈ Ω̂ , x3 = d⊕(x1, x2)} ;

the lateral boundary by

Γ0 := {x ∈ R
3 | (x1, x2) ∈ Γ̂ , d�(x1, x2) < x3 < d⊕(x1, x2)}

(see Figure 1).
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Fig. 1. Sketch of the domain geometry.

Remark 2.1. We consider d� and d⊕ as explicit functions of (x1, x2)-coordinates
only for the sake of simplicity. The generalization of the theory to the case of an
arbitrary Lipschitz domain Ω presents no difficulty from the conceptional point of
view.

The assumption that the given domain Ω is “thin” can now be written as

diam Ω̂ � max
(x1,x2)∈Ω̂

d (x1, x2) ,(2.1)

where d = d⊕ − d� is the domain thickness, d (x1, x2) ≥ d∗ > 0 ∀(x1, x2) ∈ Ω̂.
Although the assumption is of a purely qualitative nature, it will motivate the deriva-
tion of the corresponding two-dimensional reduced model in the next section. We also
have to notice that Figure 1 depicts a simplified case; in the geometrical definitions
we do not assume the domain thickness d (x1, x2) to be a constant.

In the domain Ω we consider a model elliptic problem

−Div (A∇u) = f in Ω ,(2.2)

u = 0 on Γ0 ,(2.3)

A∇u · ν� = F� on Γ� ,(2.4)

A∇u · ν⊕ = F⊕ on Γ⊕ ,(2.5)

where f ∈ L2(Ω), F� ∈ L2(Γ�), F⊕ ∈ L2(Γ⊕), and ν� and ν⊕ are outward normal
vectors at Γ� and Γ⊕, respectively. The matrix A = (aij(x))i,j=1,3 with the com-
ponents from L∞(Ω) is symmetric and uniformly positive definite; i.e., there exist
constants 0 < c < C <∞ such that

c|ξ|2 ≤ A(x)ξ · ξ ≤ C|ξ|2 ∀ξ ∈ R
3, a.e. in Ω.(2.6)

If the space of admissible functions is denoted by

V0 := {v ∈ H1(Ω) | v = 0 on Γ0} ,(2.7)
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the weak form of problem (2.2)–(2.5) reads as follows.
Problem (P). Find u ∈ V0 such that∫

Ω

A∇u · ∇w dx =

∫
Ω

f w dx+

∫
Γ�

F� w ds+

∫
Γ⊕

F⊕ w ds ∀w ∈ V0 .(2.8)

From now on we will frequently use the notation x̂ = (x1, x2), x̂ ∈ Ω̂, and all functions
depending only on (x1, x2) will be marked by ̂ ; in addition, we will distinguish
between the three- and two-dimensional divergence operators:

Div τ =
∂τ 1

∂x1
+
∂τ 2

∂x2
+
∂τ 3

∂x3
, div τ̂ =

∂τ̂ 1

∂x1
+
∂τ̂ 2

∂x2
.

We also denote F̂�(x̂) := F�(x̂, d�(x̂)), F̂⊕(x̂) := F⊕(x̂, d⊕(x̂)) for any x̂ ∈ Ω̂. Finally,
we define the energy norm

|||v||| :=

(∫
Ω

A(x)∇v · ∇v dx
)1/2

∀v ∈ V0 .(2.9)

3. The reduced problem. In view of (2.1), it is reasonable to consider the
hypothesis that

the exact solution u is almost constant with respect to the x3-coordinate.(3.1)

This gives rise to the so-called zero-order reduced model for the original problem
(2.8). The model is very popular due to its simplicity and purely two-dimensional
formulation. A discussion on the hierarchy of reduced models of different orders can
be found in, e.g., [14], [3].

With (3.1) in mind, one can expect that the exact solution u may be well approx-
imated by the functions from the subspace

V̂0 := {v ∈ V0 | ∃ v̂ ∈ H1
0 (Ω̂) such that v(x) = v̂(x̂) for a.e. x = (x̂, x3) ∈ Ω} .

(3.2)

Thus, any function from V̂0 can be identified with the corresponding function v̂ ∈
H1

0 (Ω̂) (and vice versa: for any v̂ ∈ H1
0 (Ω̂) one can reconstruct v ∈ V̂0 ⊂ V0 by the

constant extension as in the definition of V̂0). Then, the energy-norm projection of

u onto the subspace V̂0 yields the following reduced problem (the zero-order reduced
model).

Problem (P̂ ). Find û ∈ V̂0 such that∫
Ω

A∇û · ∇ŵ dx =

∫
Ω

f ŵ dx+

∫
Γ�

F� ŵ ds+

∫
Γ⊕

F⊕ ŵ ds ∀ŵ ∈ V̂0 .(3.3)

Now we can define the dimension reduction error (the modeling error) as the difference
e := u− û between the solution to the original problem (2.8) and the solution to the
reduced problem (3.3).

Remark 3.1. It may be noticed that assumption (2.1) (and, consequently, (3.1))
serves only as an intuitive motivation for the introduction of the approximation sub-
space V̂0 and the reduced problem (3.3). Since the assumption cannot be quantified,
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the real error of “replacing” u with û may be large; a robust a posteriori error estima-
tor should, however, measure this error sufficiently accurately even in the cases when
assumption (2.1) is virtually unsatisfied.

Remark 3.2. The asymptotic behavior of the modeling error e was analyzed in
[14] (see also [2]) for the case of a plate with plane parallel faces Γ� and Γ⊕ (i.e.,
when d� = −d0

2 , d⊕ = d0
2 , d0 = const > 0 is the plate thickness) and f = 0. It was

proved that

|||e||| ≤ C d
1/2
0

(
‖F̂�‖L2(Ω̂) + ‖F̂⊕‖L2(Ω̂)

)
as d0 → 0 .

Remark 3.3. We have to note that the third component of the vector ∇û is zero
(since û does not depend on x3) and, thus, the vector will sometimes be considered
as a two-component vector when no confusion is possible.

In order to see that the reduced problem (3.3) is, in fact, a two-dimensional
problem, we define the operation (˜) of averaging in the x3-direction as follows:

∀g ∈ L1(Ω) : g̃(x̂) :=
1

d (x̂)

∫ d⊕(x̂)

d�(x̂)

g(x̂, x3) dx3 for a.e. x̂ ∈ Ω̂ ,

and, having noticed that∫
Γ�

F� ŵ ds =

∫
Ω̂

F̂� (x̂) ŵ (x̂)
√

1 + |∇d�(x̂)|2 dx̂
(

analogously for

∫
Γ⊕

F⊕ ŵ ds

)
,

we can rewrite problem (3.3) as follows.

Find û ∈ V̂0 such that∫
Ω̂

d (x̂)Ãp(x̂)∇û · ∇ŵ dx̂ =

∫
Ω̂

d (x̂)f̂(x̂)ŵ dx̂ ∀ŵ ∈ V̂0 .(3.4)

Here Ãp(x̂) = (ãij(x̂))i,j=1,2 is the averaged “plane” part Ap(x) (Ap(x) = (aij(x))i,j=1,2)
of the matrix A and

f̂(x̂) = f̃(x̂) +
F̂�(x̂)

√
1 + |∇d�(x̂)|2 + F̂⊕(x̂)

√
1 + |∇d⊕(x̂)|2

d (x̂)
.

It is clear that problem (3.4) is a two-dimensional elliptic problem with the homoge-
neous Dirichlet boundary condition

−div (d(x̂) Ãp(x̂)∇û) = d(x̂) f̂(x̂) in Ω̂,(3.5)

û = 0 on Γ̂ .(3.6)

4. A posteriori estimation of the modeling error. In order to control the
dimension reduction error, we apply the functional-type a posteriori error estimate
derived in [10] (see also [7] and [9]) to the original three-dimensional problem (2.8).
The estimate reads as follows.

For all γ > 0, δ > 0, and y∗ ∈ H∗(Ω,Div) there holds

|||u− v|||2 ≤ (1 + γ)M2
1 (v, y∗) +

(
1 +

1

γ

)
(1 + δ)C2

ΩM
2
2 (y∗)

+

(
1 +

1

γ

)(
1 +

1

δ

)
C2

Γ(1 + C2
Ω)M2

3 (y∗),(4.1)
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where v is any function from the energy space V0, CΩ is the constant from Friedrichs’
inequality,

C−2
Ω = inf

w∈V0\{0}
|||w|||2

‖w‖2
L2(Ω)

,(4.2)

CΓ is the constant from the trace inequality,

C2
Γ = sup

w∈V0\{0}

‖w‖2
L2(Γ⊕) + ‖w‖2

L2(Γ�)

|||w|||2 + ‖w‖2
L2(Ω)

,(4.3)

the space H∗(Ω,Div) is defined as

H∗(Ω,Div) := {y∗ ∈ L2(Ω,R
3) | Div y∗ ∈ L2(Ω) , y∗ · ν� ∈ L2(Γ�) , y∗ · ν⊕ ∈ L2(Γ⊕)} ,

and the functionals M2
1 (v, y∗), M2

2 (y∗), M2
3 (y∗) are defined by

M2
1 (v, y∗) :=

∫
Ω

(∇v − A−1y∗) · (A∇v − y∗) dx ,

M2
2 (y∗) := ‖Div y∗ + f‖2

L2(Ω) ,

M2
3 (y∗) := ‖F� − y∗ · ν�‖2

L2(Γ�) + ‖F⊕ − y∗ · ν⊕‖2
L2(Γ⊕) .

In what follows, we will denote the functionals simply by M2
1 , M2

2 , M2
3 . Since estimate

(4.1) holds true for any “approximate solution” v from V0 and since the solution û

of the reduced problem is in V̂0 ⊂ V0, we can simply plug û into estimate (4.1) to
obtain an upper bound of the modeling error. We also emphasize that the estimate
is valid for any positive numbers γ and δ and for any vector-function y∗ from the
space H∗(Ω,Div). While the best possible option would be to take as y∗ the exact
flux A∇u (then M2 and M3 would vanish and M1 would give us the energy norm of
the exact error), we have to restrict ourselves to choosing some computable quantity,
i.e., not containing the unknown exact solution u. We approximate the flux by

y∗ = Ãp∇û+ τ ∗ ,(4.4)

with τ ∗ = {0 , 0 , ψ(x)}T . Here ψ is the auxiliary function from L2(Ω) satisfying the
conditions ∂ψ

∂x3
∈ L2(Ω) , ψ ∈ L2(Γ�), and ψ ∈ L2(Γ⊕). The concrete form of the

function ψ will be given later. Its meaning becomes clear in the case of the Poisson
equation (i.e., if A is the identity matrix), where ψ should, obviously, approximate
the derivative ∂u

∂x3
of the exact solution in the x3-direction. Using (3.5), it is easy to

verify that y∗ from (4.4) belongs to H∗(Ω,Div).
Remark 4.1. If in (4.1) we take y∗ from the set

Q∗
f,F := {q∗ ∈ L2(Ω,R

3) | Div q∗ = −f in Ω , q∗ · ν�,⊕ = F�,⊕ on Γ�,⊕} ,
we obtain the dual-formulation-based error estimate of [4] (see also [6] and [13]).
Since it is not easy to satisfy the constraints of the set Q∗

f,F , the estimate (4.1) with
y∗ from H∗(Ω,Div) seems to be more practical. In particular, for the estimation of
the modeling error under consideration we essentially exploit the freedom of choosing
y∗ in the whole space H∗(Ω,Div).

Remark 4.2. The estimate (4.1) possesses the property of asymptotic exactness
(see [10]) but, if we choose y∗ as in (4.4), this property might be lost, since the
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only remaining “degree of freedom” is the function ψ and the approximate plane flux
Ãp∇û may not sufficiently represent the first two components of the exact flux A∇u.
On the other hand, if we did not fix the first two components of y∗, the process of
estimation would require the minimization of the right-hand side of (4.1) with respect
to those components, which is, in principle, equivalent to solving a three-dimensional
problem. However, our goal is to avoid any truly three-dimensional calculations in
the evaluation of the error estimator (this process should not be more expensive than

the solution of the reduced problem). Fortunately, in most of the situations, Ãp∇û is
a good approximation to the “plane” part of the exact flux, and the modeling-error
estimate with y∗ as in (4.4) exhibits both efficiency and flexibility, as the numerical
tests of section 6 show.

In order to rewrite estimate (4.1) in a more convenient form, we introduce the
notation

B := A−1 (B(x) = (bij(x))i,j=1,3 , B = BT ) ,(4.5)

Bp := (bij)i,j=1,2 ,(4.6)

b3 := {b31 , b32}T .(4.7)

The term M2
1 with v = û reads

M2
1 =

∫
Ω

(∇û− By∗) · (A∇û− y∗) dx =

∫
Ω

(A∇û · ∇û− 2y∗ · ∇û+ By∗ · y∗) dx .
(4.8)

For the first term in (4.8), one immediately obtains∫
Ω

A∇û · ∇û dx =

∫
Ω̂

d (x̂)Ãp(x̂)∇û · ∇û dx̂ .(4.9)

The second term in (4.8) can be further rewritten if one notices that (recall ∂û
∂x3

= 0)

y∗ · ∇û = (Ãp∇û+ τ∗) · ∇û = Ãp∇û · ∇û .

Thus, ∫
Ω

y∗ · ∇û dx =

∫
Ω̂

d (x̂)Ãp(x̂)∇û · ∇û dx̂ .(4.10)

For the third term in (4.8) we have

By∗ · y∗ = (BÃp∇û+ Bτ∗) · (Ãp∇û+ τ∗) = BÃp∇û · Ãp∇û+ BÃp∇û · τ∗
+Bτ∗ ·Ãp∇û+Bτ∗ ·τ∗ = BpÃp∇û ·Ãp∇û+2(b3 ·Ãp∇û)ψ+b33ψ

2

that yields

∫
Ω

By∗ · y∗ dx =

∫
Ω̂

d (x̂)B̃pÃp∇û · Ãp∇û dx̂+

∫
Ω

(b33ψ(x)2 + 2(b3 · Ãp∇û)ψ(x)) dx ,

(4.11)

where B̃p is the averaged “plane” part Bp(x) of the matrix B(x).
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Substituting (4.9), (4.10), and (4.11) into (4.8), one obtains

M2
1 =

∫
Ω̂

d (x̂) (B̃pÃp − I)∇û · Ãp∇û dx̂+

∫
Ω

(b33ψ(x)2 + 2(b3 · Ãp∇û)ψ(x)) dx ,

(4.12)

where I is the identity (2 × 2)-matrix. It is interesting to note that the first integral
in (4.12) represents the error in averaging the coefficient matrix A(x); this becomes
fully transparent in the case of a block-diagonal matrix A, i.e., when a31 = a32 = 0
(then Bp = A−1

p and, without the averaging, the integral would be identically zero).
The functional M2

2 of (4.1) also can be rearranged if one takes y∗ as in (4.4).
First, note that

Div y∗ = div Ãp∇û+
∂ψ

∂x3
.

From (3.5) one can deduce

div Ãp∇û = −f̂ − ∇d
d

· Ãp∇û .

Hence,

M2
2 =

∥∥∥∥∥f − f̃ − F̂�
√

1 + |∇d�|2 + F̂⊕
√

1 + |∇d⊕|2
d

− ∇d
d

· Ãp∇û+
∂ψ

∂x3

∥∥∥∥∥
2

L2(Ω)

.

(4.13)

The term M2
3 with y∗ from (4.4) reads

M2
3 = ‖F� − Ãp∇û · ν� − ψν�3‖2

L2(Γ�) + ‖F⊕ − Ãp∇û · ν⊕ − ψν⊕3‖2
L2(Γ⊕) ,

(4.14)

where Ãp∇û is considered as a vector in R
3 with the third component equal to zero,

and

ν�3 =
−1√

1 + |∇d�|2
, ν⊕3 =

1√
1 + |∇d⊕|2

are the third components of the normal vectors ν� and ν⊕.
Now we can write the general a posteriori estimate for dimension reduction error

as follows.
For all γ > 0 and δ > 0 there holds

|||u− û|||2 ≤ (1 + γ)M2
1 +

(
1 +

1

γ

)
(1 + δ)C2

ΩM
2
2 +

(
1 +

1

γ

)(
1 +

1

δ

)
C2

Γ(1 + C2
Ω)M2

3 ,

(4.15)

where the constants CΩ and CΓ are as above (see (4.2) and (4.3)) and the functionals
M2

1 , M2
2 , and M2

3 are given by (4.12), (4.13), and (4.14).
In estimate (4.15) we still have the freedom of choosing the auxiliary function ψ.

The simplest choice is to take such a ψ so that the term M3 (i.e., the residual on the
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Neumann boundary condition) would be identically zero. To do so, we first rewrite

the L2-norms on Γ⊕,� in (4.14) as the integrals over Ω̂:

‖ F � − Ãp∇û · ν� − ψν�3‖2
L2(Γ�)

=

∫
Ω̂

(F̂�(x̂) − Ãp∇û · ν� − ψ(x̂, d�(x̂))ν�3)
2
√

1 + |∇d�|2 dx̂

(analogously for the norm in L2(Γ⊕)). Then, we denote

Ĝ⊕,� := F̂⊕,� − Ãp∇û · ν⊕,�

and set

ψ1(x) = α̂(x̂)x3 + β̂(x̂) ,(4.16)

where the functions α̂ and β̂ (α̂ , β̂ ∈ L2(Ω̂)) are chosen so that

ψ1ν⊕3 = Ĝ⊕ at x3 = d⊕ , ψ1ν�3 = Ĝ� at x3 = d� .(4.17)

As ν�3, ν⊕3 belong to L∞(Ω̂) and cannot be zero in Ω̂, the functions α̂ and β̂ are
uniquely defined by conditions (4.17):

α̂ =
1

d

(
Ĝ⊕
ν⊕3

− Ĝ�
ν�3

)
,(4.18)

β̂ =
1

d

(
Ĝ�
ν�3

d⊕ − Ĝ⊕
ν⊕3

d�

)
.(4.19)

It is obvious that the function ψ1, as well as its derivative in the x3-direction, belongs
to L2(Ω), and ψ1 belongs to L2(Γ⊕) and L2(Γ�) (since ψ1

∣∣
x3=d⊕,�(x̂)

∈ L2(Ω̂)).

Moreover, with such a function ψ the term M3 becomes zero.
Remark 4.3. One can also consider a quadratic (with respect to x3) function

ψ2(x) = ψ1(x) + η̂(x̂)(x3 − d⊕(x̂))(x3 − d�(x̂))

with η̂ being an arbitrary function from L2(Ω̂). The substitution of ψ2 instead of ψ
into (4.14) will evidently imply M3 = 0. In the second numerical example of section
6 we will use ψ2 because of the freedom in the choice of the function η̂. It is clear
that one can quite analogously construct the functions {ψm}, m = 3, 4, . . . , which
would make the M3-term vanish and could, possibly, allow us to approximate the
third component of the exact flux A∇u with a higher accuracy.

Having chosen the function ψ such that M3 = 0, one can obtain from (4.15) the
following estimate for the squared energy norm of the modeling error:

|||u− û|||2 ≤ (1 + γ)M2
1 +

(
1 +

1

γ

)
C2

ΩM
2
2 ,(4.20)

where γ is any positive number, CΩ is the Friedrichs constant, and M2
1 and M2

2 are
given by (4.12) and (4.13). Minimizing the right-hand side of (4.20) with respect to
the scalar parameter γ > 0, we immediately arrive at the estimate for the energy
norm of the modeling error,

|||u− û||| ≤M := M1 + CΩM2,(4.21)

with M1 and M2 defined by (4.12) and (4.13).
The rest of the paper will be devoted to the analysis of the properties of estimates

(4.20), (4.21).
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5. Particular cases. The error majorant M in (4.21) has been derived for quite
general geometry of Ω and coefficient matrix A(x); to make the estimate more trans-
parent, we consider two particular cases.

5.1. Plate of constant thickness. We assume that

d⊕ = d� + d0 (d0 = const > 0)(5.1)

and, in addition, that

A = A(x̂) (this immediately implies B = B(x̂)) ,(5.2)

a31 = a32 = 0 (this yields Bp = A−1
p , b33 = a−1

33 , b31 = b32 = 0) .(5.3)

With these assumptions and the choice ψ = ψ1 (see (4.16)) the terms M1 and M2 in
estimate (4.21) become simpler:

M1 =

(∫
Ω

a−1
33 ψ

2
1 dx

)1/2

, M2 = ‖f − f̃‖L2(Ω) .(5.4)

One may notice that the integral in the first term M1 of the error majorant M can
be rewritten as∫

Ω

a−1
33 ψ

2
1 dx = d0 ·

∫
Ω̂

a−1
33

(
α̂2 d

2
⊕ + d⊕d� + d2

�
3

+ α̂β̂(d⊕ + d�) + β̂2

)
dx̂ ,

which means that the term M1 is of order O(d
1/2
0 ) when the plate thickness d0 tends

to zero. If f ∈ L∞(Ω), the second term M2 is obviously of the same order O(d
1/2
0 );

i.e., the whole estimator M converges to zero with the rate O(d
1/2
0 ) as d0 → 0. This

is the optimal convergence rate for the modeling error e in the energy norm, as was
shown in [14] for the simpler case of a plate with plane parallel faces and f = 0 (see
Remark 3.2). It is worth noting that, if f ∈ C1(Ω), the second term in M is of higher

order O(d
3/2
0 ) as compared to the first term.

5.2. Plate with plane parallel faces. If in addition to (5.2), (5.3) we strengthen
assumption (5.1) by replacing it with

d⊕ =
d0

2
, d� = −d0

2
(d0 = const > 0) ,(5.5)

then the function ψ1 takes the simple form

ψ1(x) =
F̂⊕(x̂) + F̂�(x̂)

d0
x3 +

F̂⊕(x̂) − F̂�(x̂)

2

and the error estimate (4.21) reduces to

|||u− û||| ≤
√
d0

3

(∫
Ω̂

a−1
33 (F̂ 2

⊕ + F̂ 2
� − F̂⊕F̂�) dx̂

)1/2

+ CΩ ‖f − f̃‖L2(Ω) .(5.6)

If we set here f = 0, a33 = 1, and F̂⊕ = F̂� = F̂ , we obtain

|||u− û||| ≤
√
d0

3
‖F̂‖L2(Ω̂),(5.7)
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which is exactly the estimator of Babuška and Schwab (see [2]) for the zero-order
reduced model. Thus, the latter estimator can be obtained as a particular case of the
error majorant (4.21) if one makes the assumptions (5.2), (5.3), (5.5) and sets f = 0.
This fact is especially interesting, since we advocate the estimation approach (see the
details in [10]) that is completely different from the one utilized in [2].

Remark 5.1. The error estimate (4.21) contains the Friedrichs constant CΩ that
must be, in general, evaluated numerically. The constant depends solely on the geom-
etry of the domain Ω and can be computed as 1/

√
λ, where λ is the minimal eigenvalue

of the elliptic operator −Div (A∇· ) equipped with the homogeneous Dirichlet condi-
tion on Γ0 and homogeneous Neumann conditions on Γ⊕,� (see (4.2)). It is clear that,
in the case of a plate with plane parallel faces, CΩ can be easily estimated from above
if one computes the Friedrichs constant in a larger domain obtained by embedding
the cross section Ω̂ of Ω into some rectangle; the faces of this larger domain are then
obtained by the extension of plane faces of Ω. Yet a simpler, but rougher, upper
estimate for CΩ in the case of a plate with plane parallel faces is given by (diam Ω̂)/c,
where c is the lower bound of the minimal eigenvalue of the matrix A(x) in Ω (see
(2.6)). It is worth noticing that the constant CΩ multiplies in the majorant the term
M2, which is often of higher order as compared to the first term M1 (it is so, for exam-
ple, in the particular cases considered above, when the function f is smooth). Then,
the possible error of overestimation of CΩ is harmless for the majorant accuracy.

6. Numerical examples.

6.1. Numerical test 1. In order to analyze the performance of the proposed er-
ror estimator, we consider a two-dimensional test problem in the “sine-shape” domain
(see Figure 2 (left)) whose upper and lower faces are given by

d⊕,�(x) = sin(kπx) ± d0

2
, k = 1, 2, . . . ,

where d0 > 0 is the domain thickness. In this example, Ω̂ = (0, 1) and Ω = {(x, y) ∈
R

2 | x ∈ Ω̂ , d�(x) < y < d⊕(x)}. The considered problem is

−∆u = f in Ω ,

u = 0 at x = 0 and x = 1 ,

∇u · ν⊕,� = F⊕,� at y = d⊕,� ,

and the right-hand sides of the equation and of the boundary condition are computed
using the exact solution

u(x, y) = sin(πx) · ym (m = 1, 2, . . . ).

The reduced problem (3.3) is, in this case, a one-dimensional Dirichlet problem that, of
course, can be solved very accurately (in the present work, we address the estimation
of the modeling error only, assuming that the discretization error stemming from
the solution of the reduced problem is negligible). The Friedrichs constant CΩ was
evaluated by computing the minimal eigenvalue of the Laplace operator with the
corresponding homogeneous Dirichlet/Neumann boundary conditions (see Remark
5.1). We found that, for each k = 1, 2, . . . , CΩ is an increasing function of the
thickness d0 as d0 → 0. There always exists, however, a clear upper bound for CΩ; in
particular, the estimates CΩ ≤ √

2 for k = 2 and CΩ ≤ 3 for k = 4 hold true.
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Fig. 2. Left: The domain geometry. Right: Convergence rate of the exact modeling error
and of the error majorant, k = 2, m = 4 (solid lines) and m = 5 (dash-dot lines). The majorant is
indicated by “ ◦ .”

Table 1

Convergence of the exact modeling error in the energy norm (|||e|||) and of the error majorant
(M) as d0 → 0 (k = 2); the results are rounded up to 10−4.

m = 4 m = 5

d−1
0 |||e||| M M

|||e||| |||e||| M M
|||e|||

100 3.2108 9.5598 2.9774 5.0842 16.8434 3.3129
101 0.5058 0.5690 1.1250 0.6399 1.3481 2.1066
102 0.1581 0.1598 1.0106 0.1991 0.3937 1.9770
103 0.0500 0.0501 1.0010 0.0630 0.1237 1.9650
104 0.0158 0.0158 1.0000 0.0199 0.0391 1.9638

Figure 2 (right) shows the convergence rates of the exact modeling error in the
energy norm (|||e|||) and of the error majorant (M) as the domain thickness d0 tends
to zero (the analysis here corresponds to the case k = 2, when the domain Ω has
the shape depicted in Figure 2 (left)). It is clear that both the exact error and the

majorant vanish with the theoretically predicted, optimal rate O(d
1/2
0 ). However, the

behavior of the majorant is different for even and odd values of degree m determining
the polynomial growth of the exact solution u in the y-direction. The typical picture
corresponding to an even value of the parameter m is well represented by the case
m = 4 in Figure 2 (right); in this case, the majorant M demonstrates the asymptotic
exactness, and, moreover, the effectivity index M

|||e||| behaves like 1 + O(d0) (see Ta-

ble 1). In the case of an odd value of m (represented by m = 5 in Figure 2 (right)), the
majorant loses the property of asymptotic exactness, although the effectivity index
remains stable and behaves, approximately, like 1.963 + O(d0) (see Table 1). This
problem was addressed in Remark 4.1 and is caused by the fact that the approximate
flux computed in the reduced model does not provide sufficient information on the
corresponding components of the exact flux. We may note, however, that the effec-
tivity index is still quite acceptable in this case. Finally, it is worth noticing that the
presented error estimator provides a reliable upper bound for the exact error at any
positive values of the domain thickness d0, i.e., also in the cases when the domain is
not “thin” at all.

The local error distributions provided by the exact error and by the first M1-
term of the majorant M (see (5.4)) are depicted in Figure 3 (here we consider the
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Fig. 3. Local error distribution provided by the exact modeling error (solid line) and by the
M1-term of the majorant (dash-dot line), k = 4, m = 4. Left: d0 = 0.1. Right: d0 = 0.05.

case k = 4, when the functions d⊕,� defining the shape of the domain have 4 extrema).
The figure shows that already for rather large values of the domain thickness d0 = 0.1
the majorant delivers sufficiently accurate information on the location of the regions
of the biggest modeling error, while for d0 = 0.05 the exact and the estimated error
distributions are practically coincident.

6.2. Numerical test 2. The previous test shows that in the standard situations
the proposed error estimator performs well. The example in this section demonstrates
the performance of the estimator in a relatively difficult case when the right-hand side
of the equation grows infinitely as the domain thickness tends to zero.

In this test, we consider a very simple geometry (see Figure 4 (left)), namely

d⊕,� = ±d0

2
,

where d0 > 0 is the given thickness of the domain, Ω̂ = (0, 1) and Ω = {(x, y) ∈
R

2 | x ∈ Ω̂ , −d0
2 < y < d0

2 }. The considered problem reads

−∆u = f in Ω ,

u = 0 at x = 0 and x = 1 ,

∂u

∂y
= ±F⊕,� at y = ±d0

2
,

and the right-hand sides of the equation and of the boundary condition are computed
using the exact solution

u(x, y) = sin(πx) · ym

dm−1
0

(m = 1, 2, . . . ).

The scaling factor dm−1
0 makes this test essentially different from the previous one:

while the Neumann boundary data F⊕,� remain of order O(1) as d0 → 0, the right-
hand side of the equation f exhibits the behavior f ∼ O(d0)+O( 1

d0

)
, i.e., unboundedly

grows when d0 tends to zero. The unbounded growth of f may yield serious problems
for an a posteriori error estimator, as we are about to see. We also note that the
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Fig. 4. Left: The domain geometry. Right: Convergence rate of the exact modeling error and
of the error majorant, m = 2; the majorant is indicated by “◦.”
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Fig. 5. The case m = 3. Left: Divergence of the majorant M(ψ1) as d0 → 0. Right: Conver-
gence of the improved majorant M(ψ2).

constant CΩ can be computed exactly in this example: CΩ = 1
π for all values of the

thickness d0.
First, we take m = 2 and observe the convergence of the exact modeling error in

the energy norm and of the error majorant as d0 tends to zero; see Figure 4 (right). As
in the preceding example, the error majorant provides a reliable upper bound for the
exact error at any values of the thickness d0, both the exact error and the majorant

demonstrate the optimal convergence rate O(d
1/2
0 ) and, moreover, the error majorant

shows the asymptotic exactness in this case (the effectivity index M
|||e||| = 1 + O(d0);

see the column under “m = 2, M(ψ1),” in Table 2). However, if we set m = 3,

the second term of the majorant M (i.e., ‖f − f̃‖L2(Ω), see (5.6)) becomes domi-
nant and the whole estimator grows unboundedly, as can be seen in Figure 5 (left).
The estimator becomes, of course, useless as it dramatically overestimates the exact
error for small values of d0. It is rather clear that the problem originates from the
poor choice of the auxiliary function ψ that is supposed to approximate ∂u

∂y ; for m = 3
the derivative is quadratic and cannot be adequately represented by the linear
function ψ1.
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The situation may be improved by invoking the quadratic function ψ = ψ2 (see

Remark 4.3), ψ2(x, y) = ψ1(x, y)+η̂(x) (y2− d20
4 ), where η̂ is an arbitrary function from

L2(Ω̂). The possibility of choosing a suitable η̂ enables us to suppress the unbounded
growth of f in the M2-term of the majorant and makes the majorant flexible enough
to efficiently reproduce the behavior of the exact error.

If we plug ψ2 into the estimate (4.20), we obtain

|||u− û|||2 ≤M2(η̂, γ) ∀η̂ ∈ L2(Ω̂) , ∀γ > 0 ,(6.1)

where

M2(η̂, γ) : = (1 + γ)‖ψ2‖2
L2(Ω) +

(
1 +

1

γ

)
C2

Ω

∥∥∥∥f − f̃ +
∂ψ2

∂y

∥∥∥∥2

L2(Ω)

= (1 + γ)

∫
Ω

(
ψ1(x, y) + η̂(x)

(
y2 − d2

0

4

))2

dxdy

+

(
1 +

1

γ

)
C2

Ω

∫
Ω

(f(x, y) − f̃(x) + η̂(x) · 2y)2 dxdy .

Since estimate (6.1) is valid for any γ > 0 and η̂ from L2(Ω̂), one can minimize
the functional M2(η̂, γ) with respect to these parameters. In particular, one can set
γ = γ∗ < 1 (the concrete value of γ∗ does not matter, as the numerical experiments
show; we used the value γ∗ = 0.5) and find η̂min as the minimizer of M2(η̂, γ∗) over

the space S of piecewise-constant functions defined on some finite subdivision of Ω̂
(obviously, S ⊂ L2(Ω̂)). The minimization problem is just an L2-projection onto the

space of functions defined on Ω̂ and amounts to the solution of a linear system with
the diagonal matrix.

The properties of the improved majorant M(ψ2) = M1(ψ2) + CΩM2(ψ2), where

M1(ψ2) :=

∥∥∥∥∥ψ1 + η̂min

(
y2 − d2

0

4

)∥∥∥∥∥
L2(Ω)

,

M2(ψ2) := ‖f − f̃ + η̂min · 2y‖L2(Ω),

can be observed in Figure 5 (right). We see that the improved majorant vanishes

with the optimal rate O(d
1/2
0 ) as d0 → 0, remains a reliable upper bound for the

exact error at any values of the thickness d0, and even demonstrates the asymptotic
exactness with the effectivity index behaving like 1 + O(d0) (see Table 2).

We may note that in the case of larger values of m (m > 3) the higher degree
function ψm−1 might be needed (see Remark 4.3); the function will contain several

free parameters which are the functions from L2(Ω̂), and, hence, the minimization
should be performed with respect to all of them. However, as this always remains a
least-squares minimization problem, the total complexity for the moderate values of
m will not be greater than the complexity of solving the reduced problem. In general,
if the right-hand side f exhibits an unbounded growth for d0 → 0 and no a priori
information on the behavior of the exact solution is available, one has to choose the
function ψ in an adaptive way; i.e., starting with ψ1, increase the polynomial degree
of the function until the difference between the two successive majorants M(ψn−1)
and M(ψn) becomes small enough.
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Table 2

Convergence of the exact modeling error in the energy norm (|||e|||) and of the error majorant
(M) as d0 → 0; the results are rounded up to 10−4.

m = 2, M(ψ1) m = 3, M(ψ2)

d−1
0 |||e||| M M

|||e||| |||e||| M M
|||e|||

100 0.4405 0.9284 2.1074 0.2594 0.4187 1.6142
101 0.1291 0.1461 1.1265 0.0751 0.0793 1.0562
102 0.0408 0.0414 1.0127 0.0237 0.0239 1.0056
103 0.0129 0.0130 1.0013 0.0075 0.0076 1.0006
104 0.0041 0.0041 1.0001 0.0024 0.0024 1.0001

7. Conclusions. For the zero-order dimension reduction method, the new a
posteriori error estimator has been derived in a general geometrical setting of the
problem and without any specific assumptions on the given data. In particular, the
estimator reduces to the Babuška–Schwab estimator when the physical domain Ω is a
plate with plane parallel faces and the equation has zero right-hand side. It has been
demonstrated, both theoretically and numerically, that also in a more complicated
case of a plate having constant thickness but nonplane faces and for a general right-

hand side f ∈ L∞(Ω) the proposed estimator vanishes with the optimal rate O(d
1/2
0 )

as the plate thickness d0 tends to zero. Since the estimator always provides an upper
bound for the exact modeling error, the latter convergence result can be considered as
the generalization of the result on the convergence of the dimension reduction error
proved in [14] (see also [2]) for the case of a plate with plane parallel faces and zero
right-hand side f .

The presented estimator cannot, however, be considered as just a generalization of
the explicit residual-type error estimator to the case of more complicated geometry,
coefficients, and right-hand side. As numerical test 2 shows, in the problem with
the right-hand side f infinitely growing as the plate thickness tends to zero, some
additional “degree of freedom” should be introduced into the estimator to suppress
the unbounded growth of f . Thus, it seems that any error estimator that cannot be
adjusted to the particular problem will fail in such a case. The proposed estimator
is sufficiently flexible to allow the modification necessary for capturing the behavior
of the exact error. The recovered efficiency of the estimator manifests itself in the
asymptotics of the effectivity index M

|||e||| = 1+O(d0) when d0 tends to zero. We have

to note that such an asymptotics may not always be observed if the domain Ω has
nonplane faces; however, even in the latter case, the effectivity index of the estimator
remains stable (i.e., does not grow with the decreasing domain thickness) and stays
at the acceptable level.

The computational cost of evaluating the presented error majorant is typically
smaller than or, in the worst case, of the same order as the cost of solving the reduced,
lower-dimensional problem. Finally, the numerical results show that the proposed
estimator is capable of an accurate indication of the local error distribution and,
hence, may be utilized not only for the verification of the dimensionally reduced
model but also for its adaptive improvement.
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[2] I. Babuška, I. Lee, and C. Schwab, On the a posteriori estimation of the modeling error
for the heat conduction in a plate and its use for adaptive hierarchical modeling, Appl.
Numer. Math., 14 (1994), pp. 5–21.



A POSTERIORI ESTIMATOR FOR DIMENSION REDUCTION ERROR 1451
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Abstract. We analyze a discretization method for a class of degenerate parabolic problems
that includes the Richards’ equation. This analysis applies to the pressure-based formulation and
considers both variably and fully saturated regimes. To overcome the difficulties posed by the lack
in regularity, we first apply the Kirchhoff transformation and then integrate the resulting equation
in time. We state a conformal and a mixed variational formulation and prove their equivalence. This
will be the underlying idea of our technique to get error estimates.

A regularization approach is combined with the Euler implicit scheme to achieve the time dis-
cretization. Again, equivalence between the two formulations is demonstrated for the semidiscrete
case. The lowest order Raviart–Thomas mixed finite elements are employed for the discretization in
space. Error estimates are obtained, showing that the scheme is convergent.
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1. Introduction. A commonly accepted mathematical model of water flow in
porous media is the Richards’ equation, a nonlinear, possibly degenerate, parabolic
differential equation. In the pressure formulation, Richards’ equation [5] is expressed
as

∂tΘ(ψ) −∇ ·K(Θ)∇(ψ + z) = 0,(1.1)

where ψ is the pressure head, Θ the saturation, K the conductivity, and z the height
against the gravitational direction. The equation (1.1) models the flow of a wetting
fluid (water) in a porous media in the presence of a nonwetting fluid (air) supposed to
be at constant pressure, 0. In the saturated region (where only water is present) we
have ψ ≥ 0, while ψ < 0 in the unsaturated domain. Different functional dependencies
(retention curves) between ψ, K and Θ are proposed in the literature. These are
provided essentially by soil particularities and allow reducing all the unknowns in the
above equation to a single one. Here we are interested in both partially saturated and
saturated flow, therefore we retain the pressure ψ as primary unknown.

As suggested in [1], applying the Kirchhoff transformation

K : R −→ R,

ψ �−→
∫ ψ

0

K(Θ(s)) ds(1.2)
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leads to unknowns that are more regular. Since K(Θ(s)) is positive, this transforma-
tion can be inverted and equation (1.1) can be rewritten in terms of a new variable,
u := K(ψ). Now defining

b(u) := Θ ◦ K−1(u),
k(b(u)) := K ◦ Θ ◦ K−1(u)

(1.3)

and letting ez denote the vertical unit vector, (1.1) becomes

∂tb(u) −∇ · (∇u+ k(b(u)) ez) = 0 in (0, T ] × Ω.(1.4)

By the above transformation, diffusion becomes linear in equation (1.1). However,
the problem may still remain degenerate, leading to solutions lacking regularity. Since
this equation models important practical problems, several papers are dealing with
analysis and numerical methods for it. Euler methods are often employed for the
discretization in time. Adaptive time stepping is studied in [25], [14], or [28]. In case
of an implicit discretization, iterative methods are considered (see, for example, [16],
[8], whose method was already proposed in [12] and used also in [15], and [14]).

For the spatial discretization, mixed finite elements or finite volumes provide a
good approximation of the solution [17], [4], [6], [10]. The most comprehensive al-
gorithmic approach has been presented in the thesis [25], where hybrid mixed finite
elements and an implicit Euler discretization are used. The set of nonlinear equations
is solved by a Newton/multigrid method, while time and space adaptive strategies
are constructed on the basis of rigorous error indicators. However, most of the au-
thors are mainly interested in computational aspects and less concerned with rigorous
convergence results. With respect to this last aspect we mention [2], where a model
nonlinear, degenerate, advection-diffusion equation is considered. Through time inte-
gration a mixed variational formulation respecting the known minimal regularity of
the solution is obtained. Raviart–Thomas lowest order finite elements are used. A pri-
ori error estimates are derived for the time integral of the flux and for the saturation.
The estimates are optimal for the semidiscrete (continuous in time), noncomputable
scheme. In the degenerate case, an explicit order of convergence for the fully discrete
scheme can be deduced only by assuming extra (nonrealistic) regularity for the so-
lution. Using similar techniques, [26] proved also some a priori error estimates for
a mixed finite element discretization of Richards’ equation. Unfortunately, again an
explicit order of convergence for the scheme can be derived only in the nondegenerate
case. Another important paper is [21], which deals with a class of multidimensional
degenerate parabolic equations, including Richards’ equation. A fully discrete scheme
based on C0 piecewise linear finite elements in space and a semi-implicit discretiza-
tion in time is proposed and analyzed. An explicit order of convergence (τ1/2 + h) is
proved. The techniques used here to cope with degenerate parabolic equations, which
have been not used so far for discretizations based on mixed finite element method,
will permit us to extend the results in [2] to the general, degenerate case. As in [26],
error bounds for the time integral of the pressure will be also derived. We note also
the recent paper [29], where the techniques from [2] are used for the numerical analysis
of an expanded mixed finite element discretization of the Richards’ equation. Also
employed here are the Raviart–Thomas lowest order finite elements. Convergence
rates depending on the Hölder continuity of the capacity term are derived for the
entire regime of fully saturated to fully unsaturated flow. Nevertheless, the expanded
mixed finite element method is not equivalent with the standard mixed finite element
method and their results cannot be simply transferred to our method. Finally, we
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mention also [10] (where convergence of an implicit finite volume method is proven by
compactness arguments), [13] (for a relaxation scheme that applies to this equation
too), and [23] (where error estimates are obtained for the unsaturated regime).

Here we consider an increasing and Lipschitz continuous b. Nevertheless, b′(u)
may be 0 for some values of u (not necessary isolated). Our numerical approach
employs the lowest order Raviart–Thomas finite elements in space and Euler implicit
in time, together with a regularization step. Specifically, with N > 0 integer, set
τ = T/N and let Th be a decomposition of Ω into closed d-simplices; h stands for the
mesh-size. In a formal writing, the numerical scheme under consideration reads as

bε(p
n
h) + τ∇ · qnh = bε(p

n−1
h ),

qnh + ∇pnh + k(b(pnh))ez = 0

for n = 1, N ; p0
h approximates u0 in the finite dimensional approximation space. The

term ∇pnh should be understood in a weak sense. Here bε is a regular approximation
of b depending on the small parameter ε > 0. By pnh we denote a piecewise constant
approximation of u and qnh is a Raviart–Thomas (RT0) approximation of the flux
-(∇u+ k(b(u))ez), based on Th, both at t = nτ .

As suggested in [2], to overcome the difficulties posed by the lack in regularity,
equation (1.4) is first integrated in time. For the resulting problem a mixed variational
formulation is stated.

Convergence is shown by obtaining first error estimates for the time discrete
scheme, by following the ideas in [21]. Since we work in a slightly more general frame-
work, we include for completeness the proof for the conformal formulation. Next,
using the procedure described in [2, 26], error estimates for the fully discrete scheme
are obtained. In this setting, the equivalence between the mixed and conformal for-
mulations becomes essential since, in this way, results obtained for one case can be
transferred to the other one.

The outline of the paper is as follows. First, we state the main assumptions and
notations used throughout the paper, define the problem to be solved, and discuss
questions regarding existence and regularity of a solution. In section 2 the equivalence
between a conformal and a mixed variational formulations is proved, for the continuous
case as well as for the time discrete one. In section 3 we investigate the stability of
the numerical scheme, while error estimates are derived in section 4.

1.1. Notations and assumptions. In what follows we let Ω be a domain in
R
d (with d = 1, 2, or 3). Let J = (0, T ] be a finite time interval. We are interested

in solving (1.4) endowed with initial and boundary conditions,

∂tb(u) −∇ · (∇u+ k(b(u))ez) = 0 in J × Ω,
u = u0 in 0 × Ω,
u = 0 on J × Γ.

(1.5)

Throughout this paper we make use of the following assumptions.
(A1) Ω ⊂ R

d is bounded with Lipschitz continuous boundary.
(A2) b ∈ C1 is nondecreasing and Lipschitz continuous.
(A3) k(b(z)) is continuous and bounded in z and satisfies, for all z1, z2 ∈ R,

| k(b(z2)) − k(b(z1)) |2≤ Ck(b(z2) − b(z1))(z2 − z1).
(A4) b(u0) is essentially bounded (by 0 and 1) in Ω and u0 ∈ L2(Ω).
Remark 1.1. By (A3), the convection term is bounded. This restriction is not

unrealistic since, for Richards’ equation, k stands for the conductivity of the medium.
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This assumption makes our analysis easier, but can be avoided. Moreover, the growth
condition on k(b(·)) (see also [11], [27], [30], or [23]) relaxes the more often assumed
Lipschitz continuity of k (see, e.g., [21], [2]). It gives uniqueness for the weak solution,
as shown in [1]. In addition, source terms can also be considered here, provided that
they satisfy a similar growth condition as k(b(u)).

Remark 1.2. In the transformed version, Richards’ equation fits in our frame-
work. However, since b is Lipschitz, a vanishing permeability in (1.1) is not allowed,
meaning that our analysis is valid in the variably saturated to fully saturated flow
regimes, but not in the completely air saturated one.

Remark 1.3. For the sake of simplicity, we deal with homogeneous Dirichlet
boundary conditions. More general situations can be included in a straightforward
manner, with similar results. Here nonlinearities depend only on the unknown u, not
on x and t. For more general situations, techniques developed in [2] can be employed.

Because of its degenerate character, we do not expect smooth solutions for prob-
lem (1.5). For defining a solution in a weak sense we let (·, ·) stand for the inner
product on L2(Ω) or the duality pairing between H1

0 (Ω) and H−1(Ω), ‖ · ‖ for the
norm in L2(Ω), and ‖ · ‖1 and ‖ · ‖−1 for the norms in H1(Ω) and H−1(Ω), respec-
tively. We use analogous notations for the inner product and the corresponding norm
on L2(J ;H), with H being either L2(Ω), H1(Ω), or H−1(Ω). In addition, we often
write u or u(t) instead of u(t, x) and use C to denote a generic positive constant, not
depending on the discretization or regularization parameters.

A weak solution for problem (1.5) is defined as follows.
Definition 1.4. A function u is called a weak solution for equation (1.5) iff

b(u) ∈ H1(J ;H−1(Ω)), u ∈ L2(J ;H1
0 (Ω)), u(0) = u0 (in H−1 sense), and for all

ϕ ∈ L2(J ;H1
0 (Ω)) it holds that∫ T

0

(∂tb(u(t)), ϕ(t)) + (∇u(t) + k(b(u(t)))ez,∇ϕ(t))dt = 0.(1.6)

Existence, uniqueness, and essential bounds for a weak solution of the above
problem are studied in several papers (see, for example, [1], [22], [27] and the references
therein). In [1] the following regularity result is obtained:

b(u) ∈ L∞(J ;L1(Ω)),(1.7)

q := − (∇u+ k(b(u))ez) ∈ L2(J ; (L2(Ω))d).(1.8)

Here b(u) models the water content, hence it is natural to assume that, after scaling,
it lies between 0 and 1 for almost every (t, x) ∈ J × Ω. For the same reason, in (A4)
similar restrictions are imposed to the initial data. Such essential estimates can be
shown, for example, if b and k do not depend explicitly on x, or if k(b(u)) is constant for
u = 0 and u = 1. Moreover, u ∈ L2(J ;H1

0 (Ω)) yields b(u) ∈ L2(J ;H1
0 (Ω)) due to the

Lipschitz continuity of b. Since b(u) ∈ H1(J ;H−1(Ω)) we have b(u) ∈ C([0, T ];L2(Ω))
(see [20, Chapter I]), allowing a simplified mixed variational formulation. Following
[2] or [29] we integrate (1.5) in time and obtain, for every t ∈ J ,

b(u(t)) + ∇ ·
∫ t

0

q (s) ds = b(u0)(1.9)

in L2 sense. It follows (see [2] or [25]) that the flux �q defined in (1.8) satisfies∫ t

0

q dτ ∈ H1(J ; (L2(Ω))d) ∩ L2(J ; (H1(Ω))d) =: X.(1.10)
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2. Equivalent formulations. In this section we give the mixed variational for-
mulations and study the equivalence with the conformal ones in both continuous and
time discrete cases.

2.1. The continuous case. Integrated in time, problem (1.5) becomes the
following.

Problem 1. Find u ∈ L2(J,H1
0 (Ω)) such that b(u) ∈ L∞(J ×Ω), and for all t ∈ J

and φ ∈ H1
0 (Ω) it holds that

(b(u(t)) − b(u0), φ) +

∫ t

0

(∇u(s) + k(b(u(s)))ez,∇φ)ds = 0.(2.1)

As mentioned in the previous section, this stronger formulation makes sense since
b(u) ∈ C(J ;L2(Ω)).

A mixed formulation for problem (1.5) reads as follows.
Problem 2. Find (p, q̃) ∈ L2(J ×Ω))×X such that b(p) ∈ L∞(J ×Ω) and for all

t ∈ J the equations

(b(p(t)) − b(p0), w) + (∇ · q̃(t), w) = 0,(2.2)

(q̃(t), v) −
∫ t

0

(p(s),∇v)ds+

∫ t

0

(k(b(p(s)))ez, v)ds = 0(2.3)

hold for all w ∈ L2(Ω) and v ∈ H(div,Ω), with p0 = u0 ∈ L2(Ω).
The two problems are equivalent, as shown in Proposition 2.2. In the proof we

use the following lemma [7, p. 91].
Lemma 2.1. Let v ∈ H(div,Ω) and �n denote the outer normal to Γ. Then v · �n

is defined in H−1/2(Γ) (in the sense of traces) and Green’s formula applies for all
p ∈ H1(Ω) ∫

Ω

∇ · v p dx+

∫
Ω

v · ∇p dx =

∫
Γ

�n · v p ds.(2.4)

Proposition 2.2. u ∈ L2(J,H1
0 (Ω)) solves Problem 1 iff (p, q̃) ∈ L2(J×Ω))×X

defined as

(p, q̃) =

(
u,−

∫ t

0

(∇u(s) + k(b(u(s)))ez)ds

)
(2.5)

solves Problem 2. Moreover, in this case we have p ∈ L2(J,H1
0 (Ω)).

Proof. We use some ideas from [18].
“⇒” Let u ∈ L2(J,H1

0 (Ω)) be a solution of Problem 1 and (p, q̃) defined in (2.5).
By (1.10) we have (p, q̃) ∈ L2(J,H1

0 (Ω))×X. Fixing now t > 0, for any v ∈ H(div,Ω),
using Green’s formula we get

(q̃(t), v) = −
∫ t

0

(∇u(s) + k(b(u(s)))ez, v)ds

=

∫ t

0

(p(s),∇v) − (k(b(p(s)))ez, v)ds,

so (2.3) is proven.
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Next, taking any φ ∈ C∞
0 (Ω) in (2.1) yields

(b(u(t)) − b(u0), φ) = −
(∫ t

0

(∇u(s) + k(b(u(s)))ez)ds,∇φ
)

= (q̃(t),∇φ) = −(∇ · q̃(t), φ).

However, for any t > 0, both b(u(t)) − b(u0) and ∇ · q̃(t) lie in L2(Ω), so the above
relations still hold for φ ∈ L2(Ω), implying (2.2).

“⇐” Let (p, q̃) ∈ L2(J × Ω) ×X solving Problem 2 and set u = p ∈ L2(J × Ω).
Taking v ∈ (C∞

0 (Ω))d ⊂ H(div,Ω) arbitrary, by differentiating (2.3) we get for almost
all t > 0

(∂tq̃(t), v) + (k(b(p(t)))ez, v) = (p(t),∇ · v) = −(∇p(t), v),(2.6)

so ∇p = −∂tq̃ − k(b(p))ez in a distributional sense. Since both ∂tq̃ and k(b(p))ez are
in L2(J × Ω), the same holds for ∇p, so u = p ∈ L2(J,H1(Ω)).

Taking now v ∈ H(div,Ω) in (2.3) gives, for every t ∈ J ,

−
∫ t

0

(∇p, v) (2.6)
= (q̃(t), v) +

∫ t

0

(k(b(p))ez, v)
(2.3)
=

∫ t

0

(p,∇ · v).

In this way, using (2.4) we get∫ t

0

∫
Γ

pv · �nds =

∫ t

0

(∇p, v) +

∫ t

0

(p,∇ · v) = 0.

Here v was chosen arbitrary, so the trace of p on Γ is zero. Thus p ∈ L2(J,H1
0 (Ω))

and the same holds for u.
Moreover, taking any φ ∈ H1

0 (Ω) yields, for all t > 0,(
b(u(t)) − b(u0), φ

) (2.2)
= −(∇ · q̃(t), φ) = (q̃(t),∇φ)

(2.3)
= −

∫ t

0

(∇u(s) + k(b(u(s)))ez,∇φ)ds,

so u solves (2.1).

2.2. The semidiscrete case. As mentioned in the introduction, for overcom-
ing difficulties due to degeneracy, we first perturb the original equation to obtain a
regular parabolic one. Such a technique has been successfully applied in the analysis
of degenerate problems and also allows developing effective numerical schemes (see,
e.g., [21]).

In problem (1.5) degeneracy appears due to the vanishing of b′. Therefore we
approximate this nonlinearity by bε, with ε > 0 a small perturbation parameter. A
possible choice reads as

bε(u) = b(u) + εu.(2.7)

Obviously, bε is Lipschitz continuous (with the same Lipschitz constant as b, if ε is
small enough), strictly increasing and its derivative is bounded from below by ε. The
regularized problem becomes

∂tbε(u) −∇ · (∇u+ k(b(u))ez) = 0 in (0;T ] × Ω,
u = u0 in Ω,
u = 0 on J × Γ.

(2.8)
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We letN > 1 be an integer giving a time step τ = T/N , with tn = nτ . The regularized
semidiscrete conformal problem reads

Problem 3. Let n = 1, N and un−1 be given. Find un ∈ H1
0 (Ω) such that, for all

φ ∈ H1
0 (Ω),

(bε(u
n) − bε(u

n−1), φ) + τ(∇un + k(b(un))ez,∇φ) = 0.(2.9)

However, our final aim is a mixed discretization. The time discrete regularized
mixed problem becomes the following.

Problem 4. Let n = 1, N and pn−1 given. Find (pn, qn) ∈ L2(Ω)×H(div,Ω) such
that

(bε(p
n) − bε(p

n−1), w) + τ(∇ · qn, w) = 0,(2.10)

(qn, v) − (pn,∇v) + (k(b(pn))ez, v) = 0,(2.11)

for all w ∈ L2(Ω), respectively, v ∈ H(div,Ω), with p0 = u0 ∈ L2(Ω).
As in the continuous case, the two problems above are equivalent.
Proposition 2.3. Let n = 1, N be fixed and assume un−1 = pn−1. Then

un ∈ H1
0 (Ω) solves Problem 3 iff (pn, qn) ∈ L2(Ω) ×H(div,Ω) defined as

(pn, qn) = (un,−(∇un + k(b(un))ez))(2.12)

solve Problem 4. Moreover, we have pn ∈ H1
0 (Ω).

Proof. “⇒” Let un ∈ H1
0 (Ω) be a solution of Problem 3 and (pn, qn) be defined

in (2.12). For all v ∈ H(div,Ω) we have

(qn, v) = −(∇un + k(b(un))ez, v) = (pn,∇v) − (k(b(pn))ez, v),

so (pn, qn) verify (2.11).
Next, for all φ ∈ C∞

0 (Ω) (which is dense in H1
0 (Ω)) we get

(bε(p
n) − bε(p

n−1), φ)
(2.9)
= −τ(∇un + k(b(un))ez,∇φ) = τ(qn,∇φ)

= −τ(∇ · qn, φ).

But bε(p
n) − bε(p

n−1) ∈ L2(Ω), so ∇ · qn ∈ L2(Ω), implying qn ∈ H(div,Ω) and that
(2.10) holds by density arguments.

“⇐” Let (pn, qn) ∈ L2(Ω)×H(div,Ω) be a solution of Problem 4 and un = pn ∈
L2(Ω). For any v ∈ (C∞

0 (Ω))d ⊂ H(div,Ω) we have

(qn, v)
(2.11)
= (pn,∇v) − (k(b(pn))ez, v)

= −(∇pn, v) − (k(b(pn))ez, v),

implying

∇pn + k(b(pn))ez = −qn
in distributional sense. Since both qn and k(b(pn)) are L2(Ω) functions it follows that
pn ∈ H1(Ω). As for the continuous case, using Green’s formula (2.4), we get actually
un = pn ∈ H1

0 (Ω).
Finally, (2.9) results by taking any φ ∈ H1

0 (Ω) in (2.10),

(bε(u
n) − bε(u

n−1), φ) = −τ(∇ · qn, φ) = τ(qn,∇φ)

= −τ((∇pn + k(b(pn))ez),∇φ).

As resulting from the equivalencies proven above, stability and error estimates for
the time discrete mixed formulation can be obtained by analyzing the Euler implicit
scheme applied to Problem 3. This is the underlying idea in the forthcoming section.
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3. Stability estimates. In this section we investigate the stability of our nu-
merical approach. We make use of the lemmas below.

Lemma 3.1. For any vectors ak, bk ∈ R
q (k = 1, N, q ≥ 1) we have

2
N∑
n=1

an

n∑
k=1

ak =

(
N∑
n=1

an

)2

+

N∑
n=1

(an)
2,(3.1)

2
N∑
n=1

(an − an−1, an) = |aN |2 − |a0|2 +

N∑
n=1

|an − an−1|2,(3.2)

N∑
n=1

(an − an−1, bn) = aNbN − a0b0 −
N∑
n=1

(bn − bn−1, an−1).(3.3)

Lemma 3.2. Under the assumption (A1), for any real sequence xj, j = 1, n we
have

n∑
j=1

(bε(x
j) − bε(x

j−1)) xj ≥ −C|x0|2 +
ε

2
|xn|2.(3.4)

Proof. Since b′ε ≥ ε, one has, for any reals x and y,

((bε(x) − bε(y))x ≥
∫ x

y

sb′εds and

∫ x

0

sb′ε(s)ds ≥
ε

2
x2.

Furthermore,

n∑
j=1

(bε(x
j) − bε(x

j−1))xj ≥
n∑
j=1

∫ xj

xj−1

sb′ε(s)ds

=

∫ xn

0

sb′ε(s)ds−
∫ x0

0

sb′ε(s)ds ≥ −C|x0|2 +
ε

2
|xn|2,

where the constant C is half of the Lipschitz constant of b.

3.1. Stability in the time discrete conformal case.
Proposition 3.3. Assume (A1)–(A4). If un solves Problem 3 (n = 1, N), we

have

τ
N∑
n=1

‖un‖2
1 ≤ C.(3.5)

Proof. Taking φ = un in (2.9) and summing up for n = 1, N give

N∑
n=1

(
bε(u

n) − bε(u
n−1), un

)
+

N∑
n=1

τ ‖∇un‖2
+

N∑
n=1

τ (k(b(un))ez,∇un) = 0.(3.6)

Now we estimate the terms on the left in the above. By (3.4), since u0 ∈ L2(Ω),

N∑
n=1

(
bε(u

n) − bε(u
n−1), un

) ≥ −C.
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The second term needs no further treatment. Finally, since k is bounded, applying
the Cauchy–Schwarz inequality, we get

τ

N∑
n=1

|(k(b(un))ez,∇un)| ≤ τ

2

N∑
n=1

‖k(b(un))ez‖2
+
τ

2

N∑
n=1

‖∇un‖2

≤ C +
τ

2

N∑
n=1

‖∇un‖2
.

Inserting the last inequalities into (3.6) and using the inequality of Poincaré gives
(3.5).

3.2. Stability for the time discrete mixed formulation. By the equivalence
of Problems 3 and 4, Proposition 3.3 provides stability for the time discrete solutions
pn and qn.

Proposition 3.4. Assuming (A1)–(A4), if, for any n = 1, N , (pn, qn) solve
Problem 4, we have

τ

N∑
n=1

‖pn‖2
1 + τ

N∑
n=1

‖qn‖2 ≤ C.(3.7)

Proof. The estimate for pn is a direct consequence of (3.5). Next, taking w = pn

in (2.10) and v = τqn in (2.11) yields

(bε(p
n) − bε(p

n−1), pn) + τ(∇ · qn, pn) = 0,

(qn, τqn) − (pn, τ∇ · qn) + (k(b(pn))ez, τq
n) = 0.

Adding these two equations and summing up for n = 1 to N give

N∑
n=1

(bε(p
n) − bε(p

n−1), pn) + τ

N∑
n=1

‖qn‖2 + τ

N∑
n=1

(k(b(pn))ez, q
n) = 0,

and the rest of the proof follows exactly as in the previous proposition.
Other stability estimates can be obtained defining an initial flux q0 ∈ [L2(Ω)]d.

In doing so we take ρ ∈ C∞
0 (Bd(0, 1)) (Bd(0, 1) being the unit ball in R

d) so that∫
Bd(0,1)

ρ(x)dx = 1 and consider the mollifier sequence {ρµ(x) = 1
µd ρ(

x
µ )}1>>µ>0.

Defining q0 as

q0 = −∇(ρµ ∗ p0) − k(b(p0))ez,(3.8)

with µ to be chosen further and ∗ denoting the convolution operator, for any v ∈
H(div,Ω) we have

(q0, v) − (ρµ ∗ p0,∇ · v) + (k(b(p0))ez, v) = 0.(3.9)

A mollifying of p0 in the above is necessary for having q0 ∈ [L2(Ω)]d. However, since
p0 ∈ L2(Ω), ‖p0 − ρµ ∗ p0‖ goes to 0 as µ ↘ 0, so ‖q0‖ is uniformly bounded with
respect to µ. Now the following estimates can be obtained.

Proposition 3.5. Assuming (A1)–(A4), if, for all n = 1, N , (pn, qn) solve
Problem 4, for any k > 0 we have

k∑
n=1

(bε(p
n) − bε(p

n−1), pn − pn−1) + τ‖qk‖2 + τ

k∑
n=1

‖qn − qn−1‖2 ≤ Cτ.(3.10)
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Proof. First we take w = pn − pn−1 ∈ L2(Ω) in (2.10) and subtract equation
(2.11) at time step n − 1 from the one at time step n. Testing with v = τqn in the
resulting equality yields

(bε(p
n) − bε(p

n−1), pn − pn−1) + τ(∇ · qn, pn − pn−1) = 0,

τ(qn − qn−1, qn) − τ(pn − pn−1,∇ · qn) + τ((k(b(pn)) − k(b(pn−1)))ez, q
n) = 0.

For n = 1 the second equation above reads as

τ(q1−q0, q1)−τ(p1−p0,∇·q1)+τ((k(b(p1))−k(b(p0)))ez, q
1) = τ(p0−ρµ ∗p0,∇·q1).

Adding the above pairs of equalities and summing the result up for n = 1, k yields

k∑
n=1

(bε(p
n) − bε(p

n−1), pn − pn−1) + τ

k∑
n=1

(qn − qn−1, qn)

+ τ

k∑
n=1

((k(b(pn)) − k(b(pn−1)))ez, q
n) = τ(p0 − ρµ ∗ p0,∇ · q1).

(3.11)

Denoting the terms above by T1, . . . , T4, we first notice that T1 is positive by the
monotonicity of bε. Next, by (3.2),

T2 = τ

k∑
n=1

(qn − qn−1, qn)

=
τ

2
‖qk‖2 − τ

2
‖q0‖2 +

τ

2

k∑
n=1

‖qn − qn−1‖2.

Recalling (A3) and the Cauchy–Schwarz inequality, for T3 we get

|T3| ≤ δ1
2

k∑
n=1

‖(k(b(pn)) − k(b(pn−1)))ez‖2 +
τ2

2δ1

k∑
n=1

‖qn‖2

≤ δ1Ck
2

k∑
n=1

(b(pn) − b(pn−1), pn − pn−1) +
τ2

2δ1

k∑
n=1

‖qn‖2.

Estimating T4 follows as before,

|T4| ≤ τ‖p0 − ρµ ∗ p0‖‖∇ · q1‖ ≤ δ2‖p0 − ρµ ∗ p0‖2 +
τ2

4δ2
‖∇ · q1‖2.

To estimate ‖∇ · q1‖ we use (2.10) for n = 1, test with w = ∇· q1 ∈ L2(Ω) and obtain

τ‖∇ · q1‖2 ≤ ‖bε(p1) − bε(p
0)‖‖∇ · q1‖ ≤ C

2τ

(
bε(p

1) − bε(p
0), p1 − p0

)
+
τ

2
‖∇ · q1‖2

by the Lipschitz continuity of bε. In this way we get

τ‖∇ · q1‖2 ≤ C
τ (bε(p

1) − bε(p
0), p1 − p0).

Using these estimates in (3.11) and choosing the δ′s properly give

k∑
n=1

(bε(p
n) − bε(p

n−1), pn − pn−1) + τ‖qk‖2 + τ

k∑
n=1

‖qn − qn−1‖2

≤ C1τ + C2‖p0 − ρµ ∗ p0‖2 + C3τ
2

k∑
n=1

‖qn‖2.
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We still have to choose µ in (3.8). Since ‖p0 − ρµ ∗ p0‖ converges to 0, taking µ
sufficiently small, the right term in the above becomes

C4τ + C3τ
2

k∑
n=1

‖qn‖2.

Now (3.10) follows by the discrete Gronwall lemma.
Remark 3.6. If p0 ∈ H1(Ω), q0 can be defined without using a mollifier,

q0 = −∇p0 − k(b(p0))ez.(3.12)

Then T4 = 0 in (3.11), without changing (3.10).
A direct consequence of the stability estimates above follows.
Proposition 3.7. In the setting of Proposition 3.5 we have

N∑
n=1

τ‖∇ · qn‖2 ≤ C.(3.13)

Proof. Taking w = ∇ · qj in equation (2.10) and applying the Cauchy–Schwarz
inequality one gets

τ‖∇ · qj‖2 ≤ 1

2τ
‖bε(pj) − bε(p

j−1)‖2 +
τ

2
‖∇ · qj‖2,

so

τ‖∇ · qj‖2 ≤ 1

τ
‖bε(pj) − bε(p

j−1)‖2.

Summing up the above for j = 1, N , using the Lipschitz continuity of bε and (3.10)
leads to (3.13).

4. Error estimates. In this section we obtain a priori error estimates for both
time discrete scheme, as well as for the fully discrete one.

4.1. Error estimates for the semidiscrete approximation. To obtain error
estimates for the time discrete scheme we employ techniques developed in [21] and
make use of the Green operator G : H−1(Ω) → H1

0 (Ω) defined as

(∇(Gψ),∇φ) = (ψ, φ) for all φ ∈ H1
0 (Ω).(4.1)

Obviously, G is linear and self-adjoint. Moreover, by the Cauchy–Schwarz inequality,
using (3.3) yields the following lemma.

Lemma 4.1. For all f, fk ∈ H−1(Ω) (k = 1, N) and g ∈ H1(Ω) we have

(f, g) ≤ ‖f‖−1‖∇g‖,
‖∇Gf‖2

= (f,Gf) = ‖f‖2
−1 ,

2

N∑
k=1

(fk − fk−1, Gfk) = ‖fk‖2
−1,Ω − ‖f0‖2

−1,Ω +

N∑
k=1

‖fk − fk−1‖2
−1,Ω.
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Further, we use the notations

un =
1

τ

∫ tn

tn−1

u(t)dt,

u∆(t) = un for t ∈ (tn−1, tn] ,(4.2)

eb(u) = b(u) − bε(u∆),

where n = 1, N and u0 = u0.
It is worth pointing out here that, by Propositions 2.2 and 2.3, estimates obtained

for the conformal discretization can be transferred to the mixed case.
Proposition 4.2. Assuming (A1)–(A4), if u is the weak solution of Problem 1

and un solves, for each n = 1, N , Problem 3, then

max
n=1,N

∥∥∥eb(u)n∥∥∥2

−1
+ ‖eb(u)‖2

L2(J×Ω) +

∫ T

0

(bε(u(t)) − bε(u∆), u(t) − u∆)dt

≤ C (τ + ε).

(4.3)

Proof. Subtracting (2.1) at t = tj−1 from the one at t = tj and then subtracting
(2.9) with n = j from the result give

(b(u(tj)) − b(u(tj−1)) − bε(u
j) + bε(u

j−1), φ)

+ τ(∇(uj − uj),∇φ) + τ((k(b(u))
j − k(b(uj)))ez,∇φ) = 0.

Taking φ = Geb(u)
j ∈ H1

0 (Ω) into above and summing up for j = 1, n (with n ≤ N)
yield

n∑
j=1

(b(u(tj)) − b(u(tj−1)) − bε(u
j) + bε(u

j−1), Geb(u)
j
)

+

n∑
j=1

τ(∇uj −∇uj ,∇Geb(u)j)(4.4)

+

n∑
j=1

τ((k(b(u))
j − k(b(uj)))ez,∇Geb(u)j) = 0.

We estimate now each of terms in (4.4), denoted by T1, T2, and T3:

T1 =

n∑
j=1

(b(u(tj)) − b(u)
j − b(u(tj−1)) + b(u)

j−1
, Geb(u)

j
)

+
n∑
j=1

(b(u)
j − bε(u

j) − b(u)
j−1

+ bε(u
j−1), Geb(u)

j
)

=: T11 + T12.

Further, by (3.3) and recalling that b(u(0)) = b(u)
0

we have

T11 =

n∑
j=1

(b(u(tj)) − b(u)
j − b(u(tj−1)) + b(u)

j−1
, Geb(u)

j
)

= (b(u(tn)) − b(u)
n
, Geb(u)

n
)
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−
n∑
j=1

(b(u(tj−1)) − b(u)
j−1

, Geb(u)
j −Geb(u)

j−1
)

=: T111 − T112.

For T111 we make use of Lemma 4.1 and obtain

|T111| ≤ 1

τ

∫ tn

tn−1

|(b(u(tn)) − b(u(t)), Geb(u)
n
)|dt

≤ 1

τ

∫ tn

tn−1

∫ tn

t

|(∂sb(u(s)), Geb(u)n)|dsdt

≤ 1

τ

∫ tn

tn−1

√
τ ‖∂tb(u)‖L2(tn−1,tn;H−1) ‖eb(u)

n‖−1dt(4.5)

≤ √
τ ‖∂sb(u)‖L2(tn−1,tn;H−1) ‖eb(u)

n‖−1

≤ τ ‖∂sb(u)‖2
L2(tn−1,tn;H−1) +

1

4
‖eb(u)n‖2

−1.

Proceeding as before, T112 can be estimated as

|T112| ≤ τ ‖∂tb(u)‖2
L2(0,tn;H−1) +

1

4

n∑
j=1

‖eb(u)j − eb(u)
j−1‖2

−1.(4.6)

Using Lemma 4.1 again, since eb(u)
0

= 0, T12 gives

T12 =

n∑
j=1

(b(u)
j − bε(u

j) − b(u)
j−1

+ bε(u
j−1), Geb(u)

j
))

=
1

2
(eb(u)

n
, Geb(u)

n
)(4.7)

+
1

2

n∑
j=1

(eb(u)
j − eb(u)

j−1
, Geb(u)

j −Geb(u)
j−1

)

=
1

2
‖eb(u)n‖2

−1 +
1

2

n∑
j=1

‖eb(u)j − eb(u)
j−1‖2

−1.

For T2 we have

T2 =

n∑
j=1

τ(∇uj −∇uj ,∇Geb(u)j)

= τ

n∑
j=1

(
1

τ

∫ tj

tj−1

(u(t) − uj)dt,
1

τ

∫ tj

tj−1

(b(u(s)) − bε(u
j))ds

)

=

n∑
j=1

∫ tj

tj−1

(
u(t) − uj , b(u(t)) − bε(u

j)
)
dt

+

n∑
j=1

∫ tj

tj−1

(
u(t) − uj ,

1

τ

∫ tj

tj−1

(b(u(s)) − b(u(t)))ds

)
dt

=: T21 + T22.
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T21 can be decomposed as follows:

T21 =

n∑
j=1

∫ tj

tj−1

(
u(t) − uj , b(u(t)) − bε(u(t))

)
dt

+
n∑
j=1

∫ tj

tj−1

(
u(t) − uj , bε(u(t)) − bε(u

j)
)
dt =: T211 + T212.

The definition of bε in (2.7) gives

|T211| =

∣∣∣∣∣
n∑
j=1

∫ tj

tj−1

(
u(t) − uj , ε u(t)

)
dt

∣∣∣∣∣
≤ ε

n∑
j=1

∫ tj

tj−1

∥∥u(t) − uj
∥∥ ‖u(t)‖ dt(4.8)

≤ ε

4

n∑
j=1

∫ tj

tj−1

∥∥u(t) − uj
∥∥2
dt+ ε ‖u‖2

L2(0,tn;L2(Ω)) .

Since bε is monotone, T212 is positive; moreover, it holds

T212 ≥ 1

2

n∑
j=1

∫ tj

tj−1

(
u(t) − uj , bε(u(t)) − bε(u

j)
)
dt

+
ε

2

n∑
j=1

∫ tj

tj−1

∥∥u(t) − uj
∥∥2
dt.(4.9)

Proceeding as for T111 and recalling the a priori estimates in Proposition 3.3, since
b(u) ∈ H1(J ;H−1) and u ∈ L2(J ;H1) we obtain

T22 =
1

τ

n∑
j=1

∫ tj

tj−1

∫ tj

tj−1

(
u(t) − uj , b(u(s)) − b(u(t))

)
dsdt

=
1

τ

n∑
j=1

∫ tj

tj−1

∫ tj

tj−1

(∫ s

t

(u(t) − uj , ∂rb(u))dr

)
dsdt

≤ 1

τ

n∑
j=1

∫ tj

tj−1

∫ tj

tj−1

∫ s

t

‖∇(u(t) − uj)‖‖∂rb(u)‖−1drdsdt(4.10)

≤ τ

2

n∑
j=1

∫ tj

tj−1

∥∥∇(u(t) − uj)
∥∥2

+
τ

2
‖∂rb(u)‖2

L2(0,tn;H−1)

≤ C τ.

For the T3 we proceed as follows:

|T3| ≤ τ

4δ

n∑
j=1

‖k(b(u))j − k(b(uj))‖2 + δτ

n∑
j=1

‖eb(u)j‖2
−1

= T31 + δτ

n∑
j=1

‖eb(u)j‖2
−1.
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Applying (A3) and taking δ = Ck gives

|T31| =
τ

4δ

1

τ2

n∑
j=1

∫
Ω

(∫ tj

tj−1

(k(b(u)) − k(b(uj)))dt

)2

dx

≤ 1

4δτ

n∑
j=1

∫
Ω

τ

∫ tj

tj−1

(k(b(u)) − k(b(uj)))2dtdx

≤ 1

4

n∑
j=1

∫ tj

tj−1

(
b(u) − b(uj), u− uj

)
dt(4.11)

≤ 1

4

n∑
j=1

∫ tj

tj−1

(
bε(u) − bε(u

j), u− uj
)
dt.

Since b(u) ∈ H1(J ;H−1) and u ∈ L2(J ;H1(Ω)), inserting (4.5)–(4.11) into (4.4)
yields

‖eb(u)n‖2
−1 +

n∑
j=1

‖eb(u)j − eb(u)
j−1‖2

−1 + ε

∫ tj

tj−1

∥∥u(t) − uj
∥∥2
dt

+

n∑
j=1

∫ tj

tj−1

(
u(t) − uj , bε(u(t)) − bε(u

j)
)
dt

≤ C(τ + ε) + 4Ckτ

n∑
j=1

‖eb(u)j‖2
−1,

and (4.3) is a direct consequence of the discrete Gronwall lemma.
Using the above result an error estimate for the L2 norm of the time integrated

gradient can be obtained. Such an estimate is essential for our analysis because it
provides also an error estimate for the time integral of the flux in the mixed formula-
tion.

Proposition 4.3. Under the assumptions in Proposition 4.2 we have∥∥∥∥∥
∫ T

0

(u(t) − u∆(t))dt

∥∥∥∥∥
2

1

≤ C (τ + ε).(4.12)

Proof. Following the ideas in [21], we first add (2.9) for n = 1 to N , subtract the
result from (2.1) at t = tN = T and end up with(

b(u(T )) − bε(u
N ), φ

)− (b(u(t0)) − bε(u
0), φ

)
+

(
N∑
j=1

∫ tj

tj−1

∇(u(t) − uj)dt,∇φ
)

+

(
N∑
j=1

∫ tj

tj−1

(k(b(u)) − k(b(uj)))ezdt,∇φ
)

= 0

for all φ ∈ H1
0 (Ω). Now taking φ =

∑N
j=1 τ

(
uj − uj

)
into the total above gives
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b(u(T )) − bε(u

N ), τ

N∑
j=1

(
uj − uj

))

−
(
εu0, τ

N∑
j=1

(
uj − uj

))
+

∥∥∥∥∥τ
N∑
j=1

∇ (uj − uj
) ∥∥∥∥∥

2

(4.13)

+

(
N∑
j=1

∫ tj

tj−1

(k(b(u)) − k(b(uj)))ez,∇
N∑
j=1

τ
(
uj − uj

))
= 0.

Denoting the terms in (4.13) by T1, T2, T3, and T4, we proceed by estimating each of
them separately. T1 yields

T1 =

(
b(u(T )) − b(u)

N
+ b(u)

N − bε(u
N ),

N∑
j=1

τ
(
uj − uj

))
=: T11 + T12.

As in (4.5), since ∂tb(u) ∈ L2(J ;H−1), T11 gives

|T11| ≤ 1

τ

∫ tN

tN−1

∫ tN

t

∣∣∣∣∣
(
∂sb(u),

N∑
j=1

τ
(
uj − uj

))∣∣∣∣∣dsdt
≤ C11

2δ11
τ +

δ11
2

∥∥∥∥∥
N∑
j=1

τ
(
uj − uj

) ∥∥∥∥∥
2

1

.(4.14)

Applying the Cauchy–Schwarz inequality, for T12 we obtain

|T12| ≤ 1

2δ12

∥∥∥eb(u)N∥∥∥2

−1
+
δ12
2

∥∥∥∥∥
N∑
j=1

τ
(
uj − uj

) ∥∥∥∥∥
2

1

.(4.15)

Analogously, T2 gives

|T2| ≤ 1

2δ2
ε
∥∥u0
∥∥2

+
δ2
2

∥∥∥∥∥
N∑
j=1

τ
(
uj − uj

) ∥∥∥∥∥
2

1

.(4.16)

For T3 we recall the inequality of Poincaré:

T3 =

∥∥∥∥∥
N∑
j=1

τ∇ (uj − uj
) ∥∥∥∥∥

2

≥ C

∥∥∥∥∥
N∑
j=1

τ
(
uj − uj

) ∥∥∥∥∥
2

1

.(4.17)

Analogously, T4 can be estimated as

|T4| ≤ 1

2δ4

∥∥∥∥∥
N∑
j=1

∫ tj

tj−1

(k(b(u)) − k(b(uj)))ezdt

∥∥∥∥∥
2

+
δ4
2

∥∥∥∥∥∇
N∑
j=1

τ
(
uj − uj

) ∥∥∥∥∥
2

.

For the first term above—denoted by T41—we get, by (A3),

T41 ≤ N

N∑
j=1

τ

∫ tj

tj−1

‖k(b(u)) − k(b(uj))‖2dt

≤ TCk

N∑
j=1

∫ tj

tj−1

(
b(u(t)) − b(uj), u(t) − uj

)
.(4.18)
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Inserting (4.14)–(4.18) into (4.13), choosing the δ′s properly and recalling the esti-
mates in Proposition 4.2 we obtain (4.12).

Propositions 4.2 and 4.3 can be summarized in the following.
Theorem 4.4. If u is the solution of Problem 1 and un solves Problem 3 (n =

1, N), we have

max
n=1,N

‖eb(u)n‖2
−1 + ‖eb(u)‖2

L2(J×Ω) +

∥∥∥∥∥
∫ T

0

(u(t) − u∆(t))dt

∥∥∥∥∥
2

1

+

∫ T

0

(bε(u(t)) − bε(u∆(t)), u(t) − u∆(t))dt ≤ C (τ + ε).(4.19)

Remark 4.5. The estimates above do not change if we replace the last term on

the left by
∫ T
0

(b(u(t)) − b(u∆(t)), u(t) − u∆(t))dt.
Since Problems 3 and 4 are equivalent we immediately obtain the following the-

orem.
Theorem 4.6. In the setting of Theorem 4.4, if (pn, qn) solve Problem 4 (n =

1, N), we get

N∑
n=1

∫ tn

tn−1

(bε(u(t)) − bε(p
n), u(t) − pn)dt

+

∥∥∥∥∥
N∑
n=1

∫ tn

tn−1

(u(t) − pn)dt

∥∥∥∥∥
2

1

+

∥∥∥∥∥q̃(T ) − τ

N∑
n=1

qn

∥∥∥∥∥
2

(4.20)

≤ C(τ + ε).

Remark 4.7. As in Remark 4.5, we can replace the scalar product in (4.20) by∫ T
0

(b(u(t))−b(u∆(t)), u(t)−u∆(t))dt. This immediately implies an error estimate for
the saturation,

N∑
n=1

∫ tn

tn−1

‖b(u(t)) − b(pn)‖2dt ≤ C(τ + ε).

4.2. Error estimates for the fully discrete mixed discretization. The next
step in our analysis is proving error estimates for the fully discrete approximation.
We first estimate the error for the flux variable and then proceed with estimates for
the p unknowns.

In doing so we denote by W and V the spaces L2(Ω) and H(div,Ω). Let Th be a
regular decomposition of Ω ⊂ R

d into closed d-simplices; h stands for the mesh-size
(see [9]). Here we assume Ω = ∪T∈Th

T , hence Ω is polygonal. Thus we neglect the
errors caused by an approximation of a nonpolygonal domain, avoiding an excess of
technicalities (a complete analysis in this sense can be found in [21]).

The discrete subspaces Wh × Vh ⊂W × V are defined as

Wh := {p ∈W | p is constant on each element T ∈ Th},
Vh := {−→q ∈ V | −→q |T = −→a + b−→x for all T ∈ Th}.(4.21)
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So Wh denotes the space of piecewise constant functions, while Vh is the RT0 space
(see [7]). Further we make use of the usual L2 projector

Ph : L2(Ω) →Wh, ((Phw − w), wh) = 0 ∀wh ∈Wh.(4.22)

Taking a Ṽ slightly better than V (for example, V ∩ (Ls(Ω))d with an s > 2), a
projector Πh can be defined as (see [7, p. 131])

Πh : Ṽ → Vh, (∇ · (Πhv − v), wh) = 0(4.23)

for all wh ∈Wh. With r ∈ (0, 1], for the operators defined above we have

‖w − Phw‖ ≤ Chr‖w‖r,
‖v − Πhv‖ ≤ Chr‖v‖r(4.24)

for any w ∈ Hr(Ω) and v ∈ (Hr(Ω))d.
The following technical lemma is proven in [25].
Lemma 4.8. Assuming (A1), taking fh ∈Wh, a vh ∈ Vh exists so that

∇ · vh = fh,

‖vh‖ ≤ C ‖∇ · vh‖ ,
C > 0 being a generic constant not depending on h, fh, or vh.

Before proceeding with the fully discrete approximation scheme, we rewrite Prob-
lem 4 (continuous in space) as

Problem 5. Let n = 1, N . Find (pn, qn) ∈W × V such that

(bε(p
n), w) − (bε(p

0), w) + τ

(
n∑
j=1

∇ · qj , w
)

= 0,(4.25)

(qn, v) − (pn,∇ · v) + (k(b(pn))ez, v) = 0(4.26)

for all w ∈W and v ∈ V , with p0 = u0.
The fully discrete mixed finite element approximation reads the following.
Problem 6. Let n = 1, N . Find (pnh, q

n
h) ∈Wh × Vh such that

(bε(p
n
h), wh) + τ

(
n∑
j=1

∇ · qjh, wh
)

= (bε(p
0
h), wh),(4.27)

(qnh , vh) − (pnh,∇ · vh) + (k(b(pnh))ez, vh) = 0(4.28)

for all wh ∈Wh and vh ∈ Vh.
Initially we take p0

h = b−1
ε (Phbε(u

0)). Since Phbε(u
0) is constant on any T ∈ Th,

the same holds for b−1
ε (Phbε(u

0)), so p0
h ∈ Wh. Moreover, with this choice, for all

wh ∈Wh, we obtain

(bε(p
0
h), wh) = (bε(u

0), wh) = (bε(p
0), wh).

We start with some stability estimates for the fully discrete case.
Proposition 4.9. Assuming (A1)–(A4), if (pnh, q

n
h) solve Problem 6 (n = 1, N),

we have

‖pnh‖2 + ‖qnh‖2 ≤ C,
n∑
k=1

(bε(p
k
h) − bε(p

k−1
h ), pkh − pk−1

h ) ≤ Cτ.
(4.29)
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Proof. Applying the arguments used in Propositions 3.4 and 3.7 we immediately
obtain the estimates (4.29), excepting the one for ‖pnh‖. To complete the proof we
apply Lemma 4.8. Consequently, there exists a vh ∈ Vh such that ∇ · vh = pnh and
‖vh‖ ≤ C‖pnh‖. Using this as a test function in (4.28) gives

‖pnh‖2 = (qnh , vh) + (k(b(pnh))ez, vh) ≤ C(‖qnh‖ + ‖k(b(pnh))‖)‖pnh‖,
and the estimate follows from the estimates for ‖qnh‖ and the boundedness of k.

Applying now techniques developed in [2] we estimate the errors induced by the
spatial discretization.

Proposition 4.10. Let n = 1, N . If (pn, qn) ∈W ×V , (pnh, q
n
h) ∈Wh×Vh solve

Problem 5, respectively 6, assuming (A1)–(A4) yields

N∑
n=1

{
(bε(p

n) − bε(p
n
h), p

n − pnh) + τ‖Πhq
n − qnh‖2

}
+ τ

∥∥∥∥∥
N∑
n=1

(Πhq
n − qnh)

∥∥∥∥∥
2

≤ C

N∑
n=1

{‖qn − Πhq
n‖2 + ‖Phpn − pn‖2}.(4.30)

Proof. Subtracting (4.27) from (4.25) and (4.28) from (4.26) gives

(bε(p
n) − bε(p

n
h), wh) + τ

(
n∑
j=1

∇ · (qj − qjh), wh

)
= 0,

(qn − qnh , vh) − (pn − pnh,∇ · vh) + ((k(b(pn)) − k(b(pnh)))ez, vh) = 0.

Taking wh = Php
n − pnh ∈ Wh and vh = τ

∑n
j=1(Πhq

j − qjh) ∈ Vh into the above
leads to

(bε(p
n) − bε(p

n
h), Php

n − pnh) + τ

(
n∑
j=1

∇ · (Πhq
j − qjh), Php

n − pnh

)
= 0,

τ

(
qn − qnh ,

n∑
j=1

(Πhq
j − qjh)

)
− τ

(
Php

n − pnh,∇ ·
n∑
j=1

(Πhq
j − qjh)

)

+ τ

⎛⎝(k(b(pn)) − k(b(pnh)))ez,

n∑
j=1

(Πhq
j − qjh)

⎞⎠ = 0.

Adding these equalities and summing the result up from 1 to N yields

N∑
n=1

(bε(p
n) − bε(p

n
h), Php

n − pnh) +

N∑
n=1

(
qn − qnh ,

n∑
j=1

τ(Πhq
j − qjh)

)

+

N∑
n=1

⎛⎝(k(b(pn)) − k(b(pnh)))ez,

n∑
j=1

τ(Πhq
j − qjh)

⎞⎠ = 0.(4.31)

We estimate now each of the terms above, denoted by T1, T2, and T3:

T1 =

N∑
n=1

(bε(p
n) − bε(p

n
h), p

n − pnh)
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+

N∑
n=1

(bε(p
n) − bε(p

n
h), Php

n − pn) =: T11 + T12.(4.32)

By (A2) and the definition (2.7) of bε, a C > 0 independent of τ and h exists such
that

T11 ≥ 1

2

N∑
n=1

(bε(p
n) − bε(p

n
h), p

n − pnh)

+C

(
N∑
n=1

‖bε(pn) − bε(p
n
h)‖2 + ε

N∑
n=1

‖pn − pnh‖2

)
.(4.33)

Applying the inequality of Cauchy T12 yields

|T12| ≤ µ

2

N∑
n=1

‖bε(pn) − bε(p
n
h)‖2 +

1

2µ

N∑
n=1

‖Phpn − pn‖2.(4.34)

Rewriting T2 as

T2 =

N∑
n=1

(
qn − Πhq

n,

n∑
j=1

τ(Πhq
j − qjh)

)

+

N∑
n=1

(
Πhq

n − qnh ,

n∑
j=1

τ(Πhq
j − qjh)

)
=: T21 + T22,(4.35)

we estimate T21 and T22. For T21 we get

|T21| ≤ 1

2

N∑
n=1

‖qn − Πhq
n‖2 +

τ2

2

N∑
n=1

∥∥∥∥∥
n∑
j=1

(Πhq
j − qjh)

∥∥∥∥∥
2

,(4.36)

while for T22 we use (3.1) to obtain

T22 =
τ

2

∥∥∥∥∥
N∑
n=1

(Πhq
n − qnh)

∥∥∥∥∥
2

+
τ

2

N∑
n=1

‖Πhq
n − qnh‖2

.(4.37)

Using (A3), T3 gets

|T3| ≤ δ

2

N∑
n=1

‖k(b(pn)) − k(b(pnh))‖2 +
τ2

2δ

N∑
n=1

∥∥∥∥∥
n∑
j=1

(Πhq
j − qjh)

∥∥∥∥∥
2

≤ Ckδ

2

N∑
n=1

(b(pn) − b(pnh), p
n − pnh) +

τ2

2δ

N∑
n=1

∥∥∥∥∥
n∑
j=1

(Πhq
j − qjh)

∥∥∥∥∥
2

.(4.38)

Inserting (4.32)–(4.38) into (4.31) and choosing µ and δ properly gives

N∑
n=1

{(bε(pn) − bε(p
n
h), p

n − pnh) + τ‖Πhq
n − qnh‖2} + τ

∥∥∥∥∥
N∑
n=1

(Πhq
n − qnh)

∥∥∥∥∥
2

≤ C

N∑
n=1

{
‖qn − Πhq

n‖2 + ‖Phpn − pn‖2 + τ2

∥∥∥∥∥
n∑
j=1

(Πhq
j − qjh)

∥∥∥∥∥
2}
.
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Finally, (4.30) follows applying the discrete Gronwall lemma.
Remark 4.11. By the equivalence proven in Proposition 2.3, pn ∈ H1(Ω) for all

n. Now using (4.24) and (3.7) we get

N∑
n=1

‖Phpn − pn‖2 ≤ Ch2
N∑
n=1

‖pn‖2
1 ≤ C

h2

τ
,

and the estimates (4.30) can be modified accordingly.
Similar estimates can be obtained for the p-unknowns.
Proposition 4.12. Under the assumptions of Proposition 4.10 we have

τ

∥∥∥∥∥
N∑
n=1

(Php
n − pnh)

∥∥∥∥∥
2

≤ C

{
N∑
n=1

(bε(p
n) − bε(p

n
h), p

n − pnh)

+ τ

∥∥∥∥∥
N∑
n=1

(Πhq
n − qnh)

∥∥∥∥∥
2

+

N∑
n=1

‖qn − Πhq
n‖2

}
.(4.39)

Proof. Subtracting (4.28) from (4.26), recalling the definition of Ph, and summing
up for n = 1 to N yield(

N∑
n=1

(qn − qnh), vh

)
−
(

N∑
n=1

(Php
n − pnh),∇ · vh

)

+

(
N∑
n=1

τ(k(b(pn)) − k(b(pnh)))ez, vh

)
= 0(4.40)

for any vh ∈ Vh. Using now Lemma 4.8, a vh ∈ Vh exists such that

∇ · vh =

N∑
n=1

τ(Php
n − pnh)(4.41)

and ‖vh‖ < C‖τ∑N
n=1(Php

n − pnh)‖. In this case (4.40) gives

τ

∥∥∥∥∥
N∑
n=1

(Php
n − pnh)

∥∥∥∥∥
2

=

(
N∑
n=1

(qn − qnh), vh

)

+

(
N∑
n=1

(k(b(pn)) − k(b(pnh)))ez, vh

)
.(4.42)

Denoting by T1 and T2 the terms on the right into above, applying the inequality of
Cauchy and recalling the estimates on ‖vh‖ leads to

|T1| ≤ τ

2δ1

∥∥∥∥∥
N∑
n=1

(qnh − qn )

∥∥∥∥∥
2

+
δ1
2τ

‖vh‖2

≤ τ

2δ1

∥∥∥∥∥
N∑
n=1

(qnh − qn)

∥∥∥∥∥
2

+
Cτδ1

2

∥∥∥∥∥
N∑
n=1

(pnh − Php
n
h)

∥∥∥∥∥
2

.(4.43)
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Similarly, by (A3) we obtain

|T2| ≤ τ

2δ2

∥∥∥∥∥
N∑
n=1

(k(b(pnh)) − k(b(pn)))

∥∥∥∥∥
2

+
δ2
2τ

‖vh‖2

≤ C

2δ2

N∑
n=1

(b(pnh) − b(pn), pnh − pn) +
Cτδ2

2

∥∥∥∥∥
N∑
n=1

(pnh − Php
n
h)

∥∥∥∥∥
2

.(4.44)

Choosing δ1 and δ2 properly, (4.42)–(4.44) gives

τ

∥∥∥∥∥
N∑
n=1

(Php
n − pnh)

∥∥∥∥∥
2

≤ C

{
N∑
n=1

(bε(p
n) − bε(p

n
h), p

n − pnh) + τ

∥∥∥∥∥
N∑
n=1

(qn − qnh)

∥∥∥∥∥
2}

.

The last term above can be rewritten as

τ

∥∥∥∥∥
N∑
n=1

(qn − qnh)

∥∥∥∥∥
2

≤ τ

∥∥∥∥∥
N∑
n=1

(Πhq
n − qnh)

∥∥∥∥∥
2

+ τ

∥∥∥∥∥
N∑
n=1

(qn − Πhq
n)

∥∥∥∥∥
2

≤ τ

∥∥∥∥∥
N∑
n=1

(Πhq
n − qnh)

∥∥∥∥∥
2

+ T

N∑
n=1

‖qn − Πhq
n‖2

,

which completes the proof.
The following is a direct consequence of Propositions 4.10 and 4.12.
Theorem 4.13. Assuming (A1)–(A4), if (pn, qn) ∈ W × V , (pnh, q

n
h) ∈ Wh × Vh

solve, for n = 1, N , Problems 5 and 6, we obtain

N∑
n=1

(bε(p
n) − bε(p

n
h), p

n − pnh) + τ

N∑
n=1

‖Πhq
n − qnh‖2

+ τ

∥∥∥∥∥
N∑
n=1

(qn − qnh)

∥∥∥∥∥
2

+ τ

∥∥∥∥∥
N∑
n=1

(pn − pnh)

∥∥∥∥∥
2

(4.45)

≤ C

(
N∑
n=1

‖qn − Πhq
n‖2 +

N∑
n=1

‖Phpn − pn‖2

)
.

Combining the estimates in Theorems 4.6 and 4.13 and recalling Remark 4.11 we
get, for the fully discrete scheme, the following.

Theorem 4.14. Assuming (A1)–(A4), we get∥∥∥∥∥
N∑
n=1

∫ tn

tn−1

(u(t) − pnh)dt

∥∥∥∥∥
2

+

∥∥∥∥∥q̃(T ) − τ

N∑
n=1

qnh

∥∥∥∥∥
2

≤ C

(
τ + ε+ h2 + τ

N∑
n=1

‖qn − Πhq
n‖2

)
.(4.46)
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Proof. Let T1 and T2 denote the terms on the left in (4.46). For T1, by the
properties of norms we have

T1 ≤ 2

∥∥∥∥∥
N∑
n=1

∫ tn

tn−1

(u(t) − pn)dt

∥∥∥∥∥
2

+ 2τ2

∥∥∥∥∥
N∑
n=1

(pn − pnh)

∥∥∥∥∥
2

.

Estimates (4.20) in Theorem 4.4 give∥∥∥∥∥
N∑
n=1

∫ tn

tn−1

(u(t) − pn)dt

∥∥∥∥∥
2

≤ C(τ + ε),

which, together with (4.45), imply

T1 ≤ C(τ + ε).(4.47)

Analogously, for T2 we obtain

T2 ≤ 2

∥∥∥∥∥q̃(T ) − τ

N∑
n=1

qn

∥∥∥∥∥
2

+ 2τ2

∥∥∥∥∥
N∑
n=1

(qn − qnh)

∥∥∥∥∥
2

≤ C1(τ + ε) + C2

(
τ + ε+ h2 + τ

N∑
n=1

‖qn − Πhq
n‖2

)
(4.48)

by the arguments above. Now (4.46) follows from (4.47) and (4.48).
Corollary 4.15. Under the assumptions of Theorem 4.14, for the scalar product

we have

N∑
n=1

∫ tn

tn−1

(bε(u(t)) − bε(p
n
h), u(t) − pnh)dt

≤ C

(
τ

1
2 + ε

1
2 + h2/τ

1
2 + τ

1
2

N∑
n=1

‖qn − Πhq
n‖2

)
.(4.49)

Proof. We decompose the scalar product as follows:

N∑
n=1

∫ tn

tn−1

(bε(u(t)) − bε(p
n
h), u(t) − pnh)dt

=

N∑
n=1

∫ tn

tn−1

(bε(u(t)) − bε(p
n), u(t) − pnh)dt

+

N∑
n=1

∫ tn

tn−1

(bε(p
n) − bε(p

n
h), u(t) − pnh)dt =: T1 + T2.

Applying Cauchy’s inequality T1 yields

|T1| ≤
N∑
n=1

∫ tn

tn−1

‖bε(u(t)) − bε(p
n)‖‖u(t) − pnh‖dt

≤ 1

4δ1

N∑
n=1

∫ tn

tn−1

‖bε(u(t)) − bε(p
n)‖2dt+ δ1

N∑
n=1

∫ tn

tn−1

‖u(t) − pnh‖2dt.
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Since bε is Lipschitz, using (4.20), the first sum gives

N∑
n=1

∫ tn

tn−1

‖bε(u(t)) − bε(p
n)‖2dt

≤ C

N∑
n=1

∫ tn

tn−1

(bε(u(t)) − bε(p
n), u(t) − pn)dt

≤ C(τ + ε).

Having u ∈ L2(J × Ω), by (4.29) we get

N∑
n=1

∫ tn

tn−1

‖u(t) − pnh‖2dt ≤ C.

In this way, choosing δ1 = (τ + ε)
1
2 yields

|T1| ≤ C(τ + ε)
1
2 ≤ C(τ

1
2 + ε

1
2 ).(4.50)

For T2 we obtain

|T2| ≤
N∑
n=1

∫ tn

tn−1

‖bε(pn) − bε(p
n
h)‖‖u(t) − pnh‖dt

≤ τ
1
2

4

N∑
n=1

‖bε(pn) − bε(p
n
h)‖2 + τ

1
2

N∑
n=1

∫ tn

tn−1

‖u(t) − pnh‖2dt.

As before, the second sum above is uniformly bounded, while for the first one we write

N∑
n=1

‖bε(pn) − bε(p
n
h)‖2 ≤ C

N∑
n=1

(bε(p
n) − bε(p

n
h), p

n − pnh).

Using (4.45) gives

N∑
n=1

‖bε(pn) − bε(p
n
h)‖2 ≤ C

(
h2/τ +

N∑
n=1

‖qn − Πhq
n‖2

)
,

so T2 is bounded by

|T2| ≤ C

(
τ

1
2 + h2/τ

1
2 + τ

1
2

N∑
n=1

‖qn − Πhq
n‖2

)
.(4.51)

The result follows now from (4.50) and (4.51).
Assuming additionally

(A5) qn ∈ H1(Ω)d for all n = 1, N ,
using (4.24) and the estimates in Theorem 4.14 and Corollary 4.15 we obtain the
following theorem.
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Theorem 4.16. Assuming (A1)–(A5) we have∥∥∥∥∥
N∑
n=1

∫ tn

tn−1

(u(t) − pnh)dt

∥∥∥∥∥
2

+

∥∥∥∥∥q̃(T ) − τ

N∑
n=1

qnh

∥∥∥∥∥
2

≤ C(τ + ε+ h2),

N∑
n=1

∫ tn

tn−1

(bε(u(t)) − bε(p
n
h), u(t) − pnh)dt ≤ C(τ

1
2 + ε

1
2 + h2/τ

1
2 ).(4.52)

Remark 4.17. Obviously (A5) is fulfilled in one spatial dimension, since then
H(div,Ω) and H1(Ω) coincide. Assumption (A5) also holds in the multidimensional
case, provided ∂Ω is smooth enough and k is differentiable. Using (A2) and (A3),
since k(b(·)) ∈ C1(0, 1) we have

|∂uk(b(u))| ≤ lim
δ→0

∣∣∣∣k(b(u+ δ)) − k(b(u))

δ

∣∣∣∣ ≤
√
Ck

b(u+ δ) − b(u)

δ
≤ C.

Following [19, Chapter 4, Theorems 5.1 and 5.2], for any n = 1, N , un solving
Problem 3 is in H2(Ω) and the corresponding norm is bounded uniformly in n by a
constant that, nevertheless, may depend on τ . Therefore qn ∈ H1(Ω) for all n ≥ 1
and ‖qn‖1 ≤ C(τ).

To confirm our theoretical results we present a numerical test. We consider a
problem allowing for a travel wave solution, as proposed in [12] which refers to the
Richards’ equation in its form after the Kirchhoff transformation (1.4), without grav-
itation term and with

b(u) =

{
π2

2 − u2

2 for u ≤ 0,

π2

2 for u > 0.

For this problem an exact solution is known:

uex(t, x, y) =

{−2(es−1)
es+1 for s ≥ 0,

−s for s < 0,

where s = x−y− t. The equation has been solved in the unit square Ω, with Dirichlet
boundary condition given by u = uex on ∂Ω and initial value uex at t = 0. For mixed
finite element discretizations the emerging system of equations is difficult to solve due
to being the solution of a saddle point problem. A common implementation trick is
to enlarge the system by adding Lagrange multipliers on edges (hybridization of the
method). Briefly, within one timestep the resulting algorithm reads as follows: first
the flux variable is eliminated on each element; then the continuity equation is locally
solved for pressure by a variably damped Newton’s method. The global system is set
for the Lagrange multipliers and solved using the Newton method and a multigrid
solver for the linear subproblems in the Newton iterations (for details see [25]). An
alternative linearization approach is discussed in [24]. The implementation is based
on the package UG (version 3.8, see also [3]), and the computations have been done
on a SUN workstation.

To verify the theoretical estimates, we have started performing computations on
a uniform triangular mesh with h = 0.25, and a time step τ = 0.04. Then τ and h2

are successively halved, up to τ = 0.000625 and h = 0.03125. The final time was set
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Table 4.1

Numerical results.

N τ h Error τ + h2 Convergence Order

1 0.04 0.25 6.344201e-06 1.025000e-01 —
2 0.02 0.176 3.620119e-06 5.125000e-02 0.81 0.81
3 0.01 0.125 2.057356e-06 2.562500e-02 0.82 0.81
4 0.005 0.088 9.574634e-07 1.281250e-02 1.10 0.91
5 0.0025 0.0625 5.362175e-07 6.406250e-03 0.84 0.89
6 0.00125 0.044 2.431734e-07 3.203250e-03 1.14 0.94
7 0.000625 0.03125 1.355397e-07 1.601562e-03 0.84 0.92

to be 1.0 for all the computations. Knowing the exact solution, the square of the total
error (as written in (4.52)) is given by

E2
tot =

∥∥∥∥∥
N∑
n=1

∫ tn

tn−1

(uex(t) − pnh) dt

∥∥∥∥∥
2

+

∥∥∥∥∥q̃ex(T ) − τ

N∑
n=1

qnh

∥∥∥∥∥
2

,

where q̃ex(T ) =
∫ T
0
∇ uex(t) dt is the exact flux. The order of convergence (for

the squared error) is estimated by dividing the errors above, computed for two sets
of parameters (refined according to the procedure mentioned above). Dividing the
natural logarithm of the result by the natural logarithm of the refinement ratio yields
an approximation of the convergence order. Results are displayed in Table 4.1. As
predicted by Theorem 4.14, the order of E2

tot is between 0.8 and 1.1. Thus we can
conclude that the numerical results are in concordance with our theoretical analysis,
in particular confirming the convergence of the scheme.

Acknowledgments. We would like to thank Prof. C. J. van Duijn and Dr. E. F.
Kaasschieter for useful discussions and suggestions.
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[13] W. Jäger and J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by
relaxation schemes, RAIRO Model. Math. Numer. Anal., 29 (1995), pp. 605–627.

[14] D. Kavetski, P. Binning, and S. W. Sloan, Adaptive time stepping and error control in a
mass conservative numerical solution of the mixed form of Richards equation, Adv. Water
Res. 24 (2001), pp. 595–605.

[15] P. Knabner, Finite element simulation of saturated-unsaturated flow through porous media,
in Large Scale Scientific Computing, Progress in Scientific Computing 7, P. Deuflhard and
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1. Introduction.

1.1. Statistical model. We want to recover a function f in L2(ΩX), where
ΩX is a certain bounded domain in R

d, but we are able to observe data about Kf
only, where K : L2(ΩX) → L2(ΩY ) is a compact linear operator and ΩX and ΩY are
two bounded domains in R

d and R
q, respectively. In the following, when mentioning

L2 or more general function spaces, we shall omit the domain ΩX or ΩY when this
information is obvious from the context.

We are interested in the statistical formulation of linear inverse problems: we
assume that the data are noisy, so that we observe

gε = Kf + ε Ẇ ,(1.1)

where Ẇ is a white noise and ε a noise level. In rigorous probabilistic terms, we
observe a Gaussian measure on L2 with drift Kf and intensity ε2 (see, e.g., [20]).
Observable quantities take the form

〈gε, v〉 = 〈Kf, v〉 + ε η(v),

where v ∈ L2 is a test function and η(v) is a Gaussian centered random variable with
variance ‖v‖2

L2 . For v1, v2 ∈ L2 the covariance between η(v1) and η(v2) is given by
the scalar product 〈v1, v2〉. In particular, if v1 and v2 are orthogonal, the random
variables η(v1) and η(v2) are stochastically independent. The cognitive value of the
white noise model (1.1) is discussed in detail in [4], [26] and the references therein.
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If fε ∈ L2 is an estimator of f , that is a measurable quantity w.r.t. the data gε,
we measure its accuracy by the mean-square error E(‖fε− f‖2

L2) as ε→ 0, with E(·)
denoting the expectation operator.

1.2. SVD and Galerkin projection. Among the most popular regularization
methods, let us first mention the singular value decomposition (SVD); see, e.g., [21],
[22], and [24]. Although very attractive theoretically, the SVD suffers from two limita-
tions. First, the singular basis functions may be difficult to determine and manipulate
numerically. Second, while these bases are fully adapted to describe the action of K,
they might not be appropriate for the accurate description of the solution with a
small number of parameters (see, e.g., [16]). Concerning numerical simplicity, projec-
tion methods are more appealing. Given finite dimensional subspaces Xh ⊂ L2(ΩX)
and Yh ⊂ L2(ΩY ) with dim(Xh) = dim(Yh), one defines the approximation fε as the
solution in Xh of the problem

〈Kfε, gh〉 = 〈g, gh〉 for all gh ∈ Yh,(1.2)

which amounts to solving a linear system (see [25] for a general approach to projection
methods). In the case where ΩX = ΩY and K is a self-adjoint positive definite
operator, we choose Yh = Xh and the linear system is particularly simple to solve
since the corresponding discretized operator Kh is symmetric positive definite: this is
the so-called Galerkin method. In the case of general ΩX �= ΩY and injective K, one
may choose Yh := K(Xh) and we are led back to the Galerkin method applied to the
least squares equation K∗Kf = K∗g with data K∗gε, where K∗ denotes the adjoint
of K. The numerical simplicity of projection methods comes from the fact that Xh

and Yh are typically finite element spaces equipped with standard local bases. As
in the SVD method, the discretization parameter h has to be properly chosen. The
choice of finite element spaces for Xh and Yh is also beneficial with respect to the
second limitation of SVD, since the approximation properties of finite elements can
be exploited when the solution has some smoothness.

However, the Galerkin projection method suffers from two drawbacks which are
encountered in all linear estimation methods, including, in particular, the SVD. First,
the choice of h with respect to the noise level ε depends on the regularity of the solution
which is almost always unknown in advance. Second, the use of a finite element space
Xh with a fixed uniform mesh size h does not provide any spatial adaptation.

1.3. Wavelet-vaguelette decomposition. In recent years, nonlinear meth-
ods have been developed, with the objective of automatically adapting to unknown
smoothness and locally singular behavior of the solution. In the case of simple de-
noising, i.e., when K is the identity, wavelet thresholding is probably one of the
most attractive nonlinear methods, since it is both numerically straightforward and
asymptotically optimal for a large variety of Sobolev or Besov classes as models for the
unknown smoothness of the solution; see, e.g., [18]. This success strongly exploits the
fact that wavelets provide unconditional bases for such smoothness spaces. In order
to adapt this approach to the framework of ill-posed inverse problems, Donoho intro-
duced in [16] a wavelet-like decomposition which is specifically adapted to describe
the action of K, the so-called wavelet-vaguelette decomposition (WVD), and proposed
applying a thresholding algorithm on this decomposition. In [1] Donoho’s method
was compared with the similar vaguelette-wavelet decomposition (VWD) algorithm.
Both methods rely on an orthogonal wavelet basis (ψλ) and associated Riesz bases of
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“vaguelettes” defined as

vλ = βλK
−1ψλ and uλ = βλ(K

∗)−1ψλ,(1.3)

where the scaling coefficients βλ typically depend on the order of ill-posedness of K.
We thus have the WVD and VWD decompositions

f =
∑
λ

β−1
λ 〈Kf, uλ〉ψλ =

∑
λ

β−1
λ 〈Kf,ψλ〉vλ.(1.4)

The WVD and VWD estimation methods amount to estimating the coefficients in
these expansions from the observed data and applying a thresholding procedure. On
a theoretical level, similarly to wavelet thresholding in the case of simple denoising,
both WVD and VWD allow recovery at the same rate as the projection method, under
weaker smoothness conditions, a fact that reflects their ability for spatial adaptivity.

On a more applied level, numerical implementations in [1] and [15] have illus-
trated the efficiency of both WVD and VWD methods, in the case of operators that
behave like integration Kf(x) =

∫ x
0
f(t)dt. For more general operators, however, the

assumption that K−1ψλ or (K∗)−1ψλ are known for all indices λ may simply result
in putting forward the inversion problem: if an integral operator has a kernel with
a complicated structure (see [5]), or if this kernel is itself derived from observations
(see [27]), this inversion has to be done numerically with additional computational
cost and error. In other words, the vaguelettes uλ and vλ might be difficult to handle
numerically (similar to the SVD functions), and in particular they are not ensured to
have compact support.

1.4. Our approach: Adaptive wavelet Galerkin. In this context, a natural
goal is to build a method which combines the numerical simplicity of linear Galerkin
projection methods with the optimality of adaptive wavelet thresholding methods.
This is the goal of the paper.

Adaptive Galerkin methods are well established in the context of solving operator
equations without noise; typically, the finite element space is locally refined based on
a-posteriori error analysis of the current numerical solution. Such adaptive algorithms
were recently extended to the context of wavelet discretizations, exploiting both the
characterization of function spaces and the sparse representation of the operator by
wavelet bases; see, e.g., [8]. Our goal is to introduce and analyze similar adaptive
wavelet Galerkin algorithms in the context of statistical inverse problems. Such adap-
tive algorithms involve only the wavelet system (ψλ) and are therefore often easier
to handle numerically than WVD and VWD. On the other hand, their optimality
will essentially rely on the assumption that K has certain mapping properties with
respect to the relevant function spaces, a fact which is also implicitly used in the
WVD and VWD approaches. Last but not least, one can exploit the fact that the
Galerkin discretization of K in the wavelet basis might be sparse even for nonlocal
integral operators, in order to improve the computational efficiency of our estimator.

Concerning the organization of the paper, we progressively develop our method-
ology. In section 2, we introduce general assumptions on model (1.1), in terms of
mapping properties of the operator K between smoothness spaces. After a brief re-
call of the analysis of the linear Galerkin method using a wavelet multiresolution
space Vj in section 3.1, a first nonlinear method is proposed in section 3.2, which
initially operates in a way similar to the VWD, by thresholding the wavelet coeffi-
cients gελ := 〈gε, ψλ〉 with λ restricted up to a maximal scale level j = j(ε), and then
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applies a linear Galerkin inversion of these denoised data on the multiresolution space
Vj . As ε decreases, the scale level j(ε) grows and the Galerkin approximation thus
becomes computationally heavy, while the solution could still be well represented by a
small adaptive set of wavelets within Vj . Therefore, we propose in section 4 an adap-
tive algorithm which iteratively produces such a set together with the corresponding
Galerkin estimator. This algorithm intertwines the process of thresholding with an
iterative resolution of the Galerkin system, and it exploits, in addition, the sparse rep-
resentation of K in the wavelet basis. As we completed the revision of this paper, we
became aware of a related approach recently proposed in [13], based on least squares
minimization with a nonquadratic penalization term in a deterministic setting, which
results in a similar combination of gradient iteration with a thresholding procedure,
yet operating in infinite dimension. Both methods in sections 3.2 and 4 are proved to
achieve the same minimax rate as WVD and VWD under the same general assump-
tions on the operator K. We eventually compare the different estimators in section
5 numerically on the example of a singular integral equation of the first kind. For
simplicity, we present our methods and results in the case where K is elliptic and
self-adjoint. The extension to more general operators, via a least squares approach,
is the object of Appendix A. We also discuss in Appendix B several properties of
multiresolution spaces which are used throughout the paper.

2. Assumptions on the operator K. The ill-posed nature of the problem
comes from the assumption that K is compact and therefore its inverse is not L2-
continuous. This is expressed by a smoothing action: K typically maps L2 into Ht

for some t > 0. More generally we say that K has the smoothing property of order t
with respect to some smoothness space Hs (resp., W s

p , Bsp,q) if this space is mapped
onto Hs+t (resp., W s+t

p , Bs+tp,q ).
The estimator fε will be searched within a finite dimensional subspace V of

L2(ΩX) based on the projection method. In the case where ΩX = ΩY = Ω and
K is self-adjoint positive definite, we shall use the Galerkin method, that is,

find fε ∈ V such that 〈Kfε, v〉 = 〈gε, v〉 for all v ∈ V .(2.1)

The smoothing property of order t will be expressed by the ellipticity property

〈Kf, f〉 ∼ ‖f‖2
H−t/2 ,(2.2)

where H−t/2 stands for the dual space of the Sobolev space Ht/2 appended with
boundary conditions that might vary depending on the considered problem (homoge-
neous Dirichlet, periodic, and so on). The symbol a ∼ b means that there exists c > 0
independent of f such that c−1b ≤ a ≤ cb.

In the case where ΩX �= ΩY or when K is not self-adjoint positive definite, we
shall consider the least squares method, that is,

find fε ∈ V which minimizes ‖Kv − gε‖2
L2 among all v ∈ V .(2.3)

As already remarked, this amounts to applying the Galerkin method on the equation
K∗Kf = K∗g with data K∗gε and trial space K(V ). The smoothing property of
order t will then be expressed by the ellipticity property

‖Kf‖2
L2 = 〈K∗Kf, f〉 ∼ ‖f‖2

H−t .(2.4)

We shall only deal with this general situation in Appendix A, and we therefore assume
for the next sections that K is self-adjoint positive definite and satisfies (2.2).
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3. Nonlinear estimation by linear Galerkin. Wavelet bases have been doc-
umented in numerous textbooks and survey papers (see [12] for a general treatment).
With a little effort, they can be adapted to fairly general domains Ω ⊂ R

d (see [7]
for a survey of these adaptations as well as a discussion of the characterizations of
function spaces on Ω by wavelet coefficients).

The wavelet decomposition of a function f ∈ L2 takes the form

f =
∑
λ∈Γj0

αλϕλ +
∑
j≥j0

∑
λ∈∇j

fλψλ,(3.1)

where (ϕλ)λ∈Γj is the scaling function basis spanning the approximation at level j
with appropriate boundary modification, and (ψλ)λ∈∇j is the wavelet basis spanning
the details at level j. The index λ concatenates the usual scale and space indices j
and k. The coefficients of f can be evaluated according to

αλ = 〈f, ϕ̃λ〉 and fλ = 〈f, ψ̃λ〉,
where ϕ̃λ and ψ̃λ are the corresponding dual scaling functions and wavelets. In what
follows, we shall (merely for notational convenience) always take j0 := 0. To simplify
notation even more, we incorporate the first layer of scaling functions (ϕλ)λ∈Γ0 into
the wavelet layer (ψλ)λ∈∇0 and define ∇ = ∪j≥0∇j , so that, if we write |λ| = j if
λ ∈ ∇j , we simply have

f =
∑
λ∈∇

fλψλ =

∞∑
j=0

∑
|λ|=j

fλψλ.

3.1. Preliminaries: Linear estimation by linear Galerkin. We first recall
some classical results on the linear Galerkin projection method. For some scale j > 0
to be chosen further, let Vj be the linear space spanned by (ϕλ)λ∈Γj . We define our
first estimator fε =

∑
γ∈Γj

fε,γϕγ ∈ Vj as the unique solution of the finite dimensional
linear problem

find fε ∈ Vj such that 〈Kfε, v〉 = 〈gε, v〉 for all v ∈ Vj .(3.2)

Defining the data vector Gε := (〈gε, ϕγ〉)γ∈Γj
and the Galerkin stiffness matrix Kj :=

(Kϕγ , ϕµ〉)γ,µ∈Γj
, the coordinate vector Fε := (fε,γ)γ∈Γj

of fε is therefore the solution
of the linear system

KjFε = Gε.(3.3)

The analysis of the method is summarized in the following classical result; see, for
instance, [21], [22], [25], [15], and the references therein.

Proposition 3.1. Assuming that f belongs to the Sobolev ball B := {f ∈
Hs ; ‖f‖Hs ≤M} and choosing j = j(ε) with 2−j(ε) ∼ ε2/(2s+2t+d), we have

sup
f∈B

E(‖f − fε‖2
L2) <∼ ε4s/(2s+2t+d),

and this rate is minimax over the class B.
The symbol <∼ means that the left-hand side is bounded by a constant multiple

of the right-hand side where the constant possibly depends on s and M , but not on
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ε. In order to be self contained, we give a proof of Proposition 3.1. The techniques
we use here will prove helpful in the sequel.

Proof. The analysis of this method can be done by decomposing fε according to

fε = fj + hε,(3.4)

where the terms fj and hε are, respectively, solutions of (3.2) withKf and εẆ in place
of gε as the right-hand side. This gives the classical decomposition of the estimation
error into a bias and variance term

E(‖f − fε‖2
L2) = ‖f − fj‖2

L2 + E(‖hε‖2
L2).(3.5)

Both terms are estimated by inverse and direct estimates with respect to Sobolev
spaces, which are recalled in Appendix B. The variance term can be estimated as
follows: we first use the ellipticity property (2.2), which gives

‖hε‖2
H−t/2

<∼ 〈Khε, hε〉 = ε〈Ẇ , hε〉 ≤ ε‖PjẆ‖L2‖hε‖L2 .(3.6)

Using the inverse inequality ‖g‖L2 <∼ 2tj/2‖g‖H−t/2 for all g ∈ Vj and dividing by
‖hε‖L2 , we obtain

‖hε‖L2 <∼ ε2tj‖PjẆ‖L2 ,(3.7)

and therefore

E(‖hε‖2
L2) <∼ ε222tj dim(Vj) <∼ ε22(2t+d)j .(3.8)

For the bias term, we take an arbitrary gj ∈ Vj and write

‖f − fj‖L2 ≤ ‖f − gj‖L2 + ‖fj − gj‖L2

<∼ ‖f − gj‖L2 + 2tj/2‖fj − gj‖H−t/2

<∼ ‖f − gj‖L2 + 2tj/2‖f − gj‖H−t/2 ,

where we have again used the inverse inequality and the fact that the Galerkin pro-
jection satisfies ‖f − fj‖H−t/2 <∼ ‖f − gj‖H−t/2 for any gj ∈ Vj . It follows that

‖f − fj‖L2 <∼ inf
gj∈Vj

[‖f − gj‖L2 + 2tj/2‖f − gj‖H−t/2 ].(3.9)

Assuming that f belongs to B we obtain the direct estimate

inf
gj∈Vj

[‖f − gj‖L2 + 2tj/2‖f − gj‖H−t/2 ] <∼ 2−sj ,(3.10)

and therefore

‖f − fj‖2
L2 <∼ 2−2sj .(3.11)

Balancing the bias and variance terms gives the optimal choice of resolution

2−j(ε) ∼ ε2/(2s+2t+d),(3.12)

and the rate of convergence

E(‖f − fε‖2
L2) <∼ ε4s/(2s+2t+d),(3.13)

which ends the proof of Proposition 3.1.
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3.2. Nonlinear estimation by linear Galerkin. Our first nonlinear estimator
fε simply consists of applying a thresholding algorithm on the observed data before
performing the linear Galerkin inversion which was described in the previous section:
for some j ≥ 0 to be chosen later, we define fε =

∑
|λ|<j fε,λψλ ∈ Vj such that

〈Kfε, ψλ〉 = Tε(〈gε, ψλ〉)(3.14)

for all |λ| < j. Here Tε is the hard thresholding operator

Tε(x) = xχ(|x| ≥ t(ε))(3.15)

(where χ(P ) is 1 if P is true and 0 otherwise), and the threshold t(ε) has the usual
size

t(ε) := 8ε
√

| log ε|.(3.16)

Defining the data vector Gε := (〈gε, ψλ〉)|λ|<j , and the Galerkin stiffness matrix
Kj := (〈Kψλ, ψµ〉)|λ|,|µ|<j , the coordinate vector Fε := (fε,λ)|λ|<j of fε in the wavelet
basis (ψλ)|λ|<j is the solution of the linear system

KjFε = Tε(Gε),(3.17)

where Tε(Gε) := (Tε(〈gε, ψλ〉))|λ|<j . Note that such an estimator can be viewed as
a variant of the vaguelette-wavelet estimator truncated at level j. Such an estimator
would indeed be given (in the case where (ψλ) is an orthonormal basis) by

fε :=
∑
|λ|<j

Tε(〈gε, ψλ〉)K−1ψλ.(3.18)

The solution fε of (3.14) has a similar form with the vaguelettes K−1ψλ replaced by
their Galerkin approximations ujλ ∈ Vj such that

〈Kujλ, v〉 = 〈ψλ, v〉 for all v ∈ Vj .(3.19)

We therefore expect that this estimator behaves in the same optimal way as the VWD
estimator provided that j is large enough. The following theorem shows that this is
indeed true if 2−j ≤ ε1/t where t is the degree of ill-posedness of the operator. It should
be noted that the lower bound on j does not depend on the unknown smoothness of
f , in contrast to the classical thresholding for signal denoising.

Theorem 3.2. Assume that f belongs to B := {f ; ‖f‖Bs
p,p

≤ M} with s > 0
and 1/p = 1/2 + s/(2t + d). Assume in addition that K is an isomorphism between
L2 and Ht and that it has the smoothing property of order t with respect to the space
Bsp,p. Then the estimator from equation (3.14) satisfies the minimax rate

sup
f∈B

E(‖f − fε‖2
L2) <∼ [ε

√
| log ε|]4s/(2s+2t+d),(3.20)

provided that j is such that 2−j ≤ ε1/t.
Proof. We write again fε = fj + hε, where fj ∈ Vj is the solution of the linear

problem with data gε

find fj ∈ Vj such that 〈Kfj , v〉 = 〈g, v〉 for all v ∈ Vj ,(3.21)
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where g = Kf . Correspondingly, the term hε represents the solution of the linear
problem with the thresholding error as data, in other words hε ∈ Vj such that

〈Khε, ψλ〉 = Tε(〈gε, ψλ〉) − 〈g, ψλ〉(3.22)

for all |λ| < j. Similarly to the analysis described in the previous section, we need to
estimate ‖f − fj‖2

L2 and E(‖hε‖2
L2). For the deterministic term, we remark that the

space Bsp,p is continuously imbedded in Hα whenever

α ≤ s+ d/2 − d/p = 2ts/(2t+ d).(3.23)

By the same arguments as in the previous section we obtain

‖f − fj‖2
L2 <∼ 2−4sj t

d+2t .(3.24)

This gives the optimal order ε4s/(2s+2t+d) if j is large enough so that

2−j ≤ ε
d+2t

t(2s+2t+d) .(3.25)

We have ε1/t ≤ ε
d+2t

t(2s+2t+d) for all s ≥ 0. Therefore the choice 2−j ≤ ε1/t yields

‖f − fj‖2
L2 <∼ ε4s/(2s+2t+d).(3.26)

We next turn to the stochastic term E(‖hε‖2
L2). If Hε is the coordinate vector of hε

in the basis (ψλ)|λ|<j , we want to estimate E(‖Hε‖2
�2). We write

Hε = K−1
j (Tε(Gε) −Gj)(3.27)

and remark that Tε(Gε) −Gj is exactly the error when estimating Gj by the thresh-
olding procedure on the data Gε. We shall take into account the action of K−1

j by

measuring this error in the wavelet version of the Ht norm

‖U‖2
ht :=

∑
|λ|<j

22t|λ||uλ|2.(3.28)

Indeed, we shall see that the stability property

‖K−1
j U‖�2 <∼ ‖U‖ht(3.29)

holds under the assumption that K−1 maps Ht onto L2. Our result will therefore
follow from

E(‖Tε(Gε) −Gj‖2
ht) <∼ [ε

√
| log ε|]4s/(2s+2t+d).(3.30)

Such a rate is a particular case of classical results on wavelet thresholding, using the
fact that g belongs to a Besov ball B̃ = {g ∈ Bs+tp,p ; ‖g‖Bs+t

p,p
≤ M̃}. For this model,

(3.30) follows, e.g., from Theorem 4 in [10]. We are thus left with proving the stability
property (3.29). To do so, we remark that if

K−1
j U = V = (vλ)|λ|<j ,(3.31)
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then the function v =
∑

|λ|<j vλψλ, is the Galerkin approximation of K−1u, where u
is the function defined by

U = (〈u, ψλ〉)|λ|<j and 〈u, ψλ〉 = 0 if |λ| ≥ j.(3.32)

It follows that

‖K−1u− v‖H−t/2 <∼ 2−jt/2‖K−1u‖L2 <∼ 2−jt/2‖u‖Ht .(3.33)

For the projection PjK
−1u, we also have the error estimate

‖K−1u− PjK
−1u‖H−t/2 <∼ 2−jt/2‖K−1u‖L2 <∼ 2−jt/2‖u‖Ht .(3.34)

It follows that

‖v − PjK
−1u‖H−t/2 <∼ 2−jt/2‖u‖Ht .(3.35)

Using the inverse estimate, we obtain

‖v − PjK
−1u‖L2 <∼ ‖u‖Ht ,(3.36)

so that

‖v‖L2 <∼ ‖u‖Ht + ‖PjK−1u‖L2 <∼ ‖u‖Ht + ‖K−1u‖L2 <∼ ‖u‖Ht .(3.37)

Using the wavelet characterization of L2 and Ht, this yields (3.29).
Remark. The assumption that K−1 maps Ht into L2 which we are using in the

above result is also implicit in the vaguelette-wavelet method when assuming that the
vaguelettes

vλ = βλK
−1ψλ = 2−t|λ|K−1ψλ(3.38)

constitute a Riesz basis of L2.

4. Nonlinear estimation by adaptive Galerkin. The main defect of the
method described in the previous section remains its computational cost: the dimen-
sion of Vj is of order Nj = 2dj ∼ ε−d/t and might therefore be quite large. Moreover,
in the case of an integral operator the stiffness matrix Kj might be densely populated.
In this section we shall try to circumvent this problem by replacing the full Galerkin
inversion by an adaptive algorithm which operates only in subspaces of Vj generated
by appropriate wavelets and which exploits, in addition, the possibility of compressing
the matrix Kj when discretized in the wavelet basis. Our estimator fε will therefore
belong to an adaptive subspace of Vj

VΛε = Span{ψλ ; λ ∈ Λε},(4.1)

where Λε is a data-driven subset of {|λ| < j}. A first intuitive guess for Λε is the set
obtained by the thresholding procedure applied on gε in the previous section, namely

Λε := {|λ| < j ; |〈gε, ψλ〉| ≥ t(ε)}.(4.2)

It would thus be tempting to define fε ∈ VΛε
by applying the Galerkin inversion in

this adaptive subspace:

〈fε, ψλ〉 = 〈gε, ψλ〉 for all λ ∈ Λε.(4.3)
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However, it is by no means ensured that such an estimator fε will achieve the optimal
convergence rate in the case of nonlocal operatorsK. Indeed, there are many instances
of operator equations Kf = g where the adapted wavelet set for the solution f differs
significantly from the adapted set for the data g.

In order to build a better adapted set of wavelets, we shall introduce a level
dependent thresholding operator Sε to be applied in the solution domain (in contrast
to Tε which operates in the observation domain) according to

Sε(uλ) = uλχ(|uλ| ≥ 2t|λ|t(ε)).(4.4)

The role of the weight 2t|λ| is to take into account the amplification of the noise by
the inversion process. The L2-approximation error obtained by such level dependent
thresholding procedures is well understood; see, in particular, Theorem 7.1 in [9],
which implies that for f =

∑
λ∈∇ fλψλ ∈ Bsp,p, with s > 0 and 1/p = 1/2+ s/(2t+ d)

and Sε(f) =
∑
λ∈∇ Sε(fλ)ψλ we have

‖f − Sε(f)‖2
L2 ∼

∑
|fλ|<2t|λ|t(ε)

|fλ|2

<∼ ‖f‖2
Bs

p,p
t(ε)2−p = ‖f‖2

Bs
p,p
t(ε)4s/(2s+2t+d).(4.5)

Our first result shows that Sε is well adapted to build an adaptive solution of the
inverse problem in the following sense: if we apply Sε to the coordinates of the
estimator fε defined in the previous section by (3.14), then the resulting estimator

Sε(fε) :=
∑
|λ|<j

Sε(fε,λ)ψλ(4.6)

still satisfies the optimal convergence rate.
Theorem 4.1. Let us assume that f belongs to B := {f ; ‖f‖Bs

p,p
≤ M} with

s > 0 and 1/p = 1/2 + s/(2t+ d). Then, we have the estimate

sup
f∈B

E(‖fε − Sε(fε)‖2
L2) <∼ [ε

√
| log ε|]4s/(2s+2t+d).(4.7)

It follows that the adaptive estimator Sε(fε) =
∑

|λ|<j Sε(fε,λ)ψλ is also rate-optimal.
Proof. We want to estimate the expectation of

‖fε − Sε(fε)‖2
L2 <∼

∑
|λ|<j,|fε,λ|<2t|λ|t(ε)

|fε,λ|2.(4.8)

Using the fact that if |a| ≤ η we have for all real b

|a| ≤ |a− bχ(|b| ≥ 2η)|,(4.9)

we derive

‖fε − Sε(fε)‖2
L2

<∼
∑
λ∈∇ |fε,λ − fλχ(|fλ| ≥ 2t|λ|+1t(ε))|2

<∼ ‖f − fε‖2
L2 +

∑
|fλ|<2t|λ|+1t(ε) |fλ|2

<∼ ‖f − fε‖2
L2 + [ε

√| log ε|]4s/(2s+2t+d).
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Taking the expectation, we obtain (4.7) and

E(‖f − Sε(fε)‖2
L2) <∼ [ε

√
| log ε|]4s/(2s+2t+d)(4.10)

follows by the triangle inequality.
Of course, computing Sε(fε) is more costly than computing fε, and we cannot

be satisfied with this new estimator. However, it shows us that the level-dependent
thresholding operator Sε maintains optimality. Based on this observation we now
build an adaptive procedure which aims at reducing the computational cost. Let us
note that many numerical methods are available in order to solve the system

KjFε = Tε(Gε)(4.11)

with the optimal cost O(Nj), where Nj = dim(Vj) ∼ 2dj . In particular, one can rely
on multigrid methods [3] in the case of local elliptic operators and fast multipole or
wavelet [2] methods in the case of integral operators. However, our goal here is to
reduce further the computational cost to the order of the dimension of the compressed
solution, i.e., the number of nonzero coefficients in Sε(fε). Therefore, we shall rather
be inspired by the approach introduced in [8] for adaptively solving operator equations
without noise: consider a simple method for solving

KjFε = Tε(Gε),(4.12)

namely the fixed step gradient iteration F 0
ε = 0 and

Fnε = Fn−1
ε + τ(Tε(Gε) −KjF

n−1
ε )(4.13)

with a sufficiently small enough relaxation parameter τ > 0. The convergence rate
of Fnε to Fε might deteriorate for large j due to the bad condition number of Kj .
Wavelet discretization is well adapted to circumvent this problem, when using the
preconditioned iteration

Fnε = Fn−1
ε + τD−1

j (Tε(Gε) −KjF
n−1
ε ),(4.14)

where Dj = Diag(2−t|λ|). From the ellipticity of K and the wavelet characterization
of H−t/2, it follows that the condition number κ(D−1

j Kj) remains bounded indepen-
dently of j, so that a proper choice of τ will ensure a fixed error reduction rate

‖Fε − Fnε ‖�2 ≤ ρ‖Fε − Fn−1
ε ‖�2 ,(4.15)

with ρ ∈]0, 1[ independent of j. The idea is now to perturb this iteration by the
thresholding operator Sε, i.e., define

Fnε = Sε[F
n−1
ε + τD−1

j (Tε(Gε) −KjF
n−1
ε )].(4.16)

At each step n, the vector Fnε = (fnε,λ) is supported on an adaptive index set Λnε . The
corresponding estimator for f is given as

fnε =
∑
λ∈Λn

ε

fnε,λψλ.(4.17)

When comparing (4.16) with (4.14), we observe a first obvious gain in computa-
tional time: the cost of the matrix-vector multiplication KjF

n−1
ε in (4.16) is of
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order (dim(Vj))
2 ∼ 22dj , while the cost of the matrix-vector multiplication KjF

n−1
ε

in (4.16) is of order dim(Vj) × #(Λnε ) ∼ 2dj#(Λnε ). Additional computational time
can be gained using the fact that for many relevant instances of operators K, the
matrix Kj can be compressed by discarding most of its entries. Such instances in-
clude in particular pseudodifferential operators and singular integral operators with
Calderon–Zygmund-type kernel; see, e.g., Chapter 4 in [7] and [8]. For such operators,
the entries Kj(λ, µ) can be estimated a priori, allowing us to predict in advance those
coefficients in Fn−1

ε + τD−1
j (Tε(Gε) −KjF

n−1
ε ) which will be thresholded by Sε and

to avoid their exact computation. With such an approach, the cost of each iteration
(4.16) can therefore be pushed down to the order #(Λnε )

2, and even to #(Λnε ) using
a fast matrix vector multiplication; see Chapter 4 in [7] and [8].

We shall now prove that after a sufficient number of iterations independent of the
unknown smoothness, the estimator fnε attains the optimal rate of convergence.

Theorem 4.2. Let us assume that f belongs to B := {f ; ‖f‖Bs
p,p

≤ M} with
s > 0 and 1/p = 1/2 + s/(2t+ d). For n ≥ log(ε)/ log(ρ), we have

sup
f∈B

E(‖fε − fnε ‖2
L2) <∼ [ε

√
| log ε|]4s/(2s+2t+d).(4.18)

It follows that the adaptive estimator fnε is also rate-optimal.
Proof. The result will follow from the reduction estimate

E(‖Fε − Fnε ‖2
�2) ≤ ρ̃2E(‖Fε − Fn−1

ε ‖2
�2) + C[ε

√
| log ε|]4s/(2s+2t+d)(4.19)

for any ρ̃ > ρ, where C depends of the closeness of ρ̃ to ρ. Indeed, assuming this
estimate to hold, from

E(‖Fε − F 0
ε ‖2

�2) = E(‖Fε‖2
�2) <∼ ‖F‖2

�2 ≤ C(4.20)

we obtain after n steps

E(‖Fε − Fnε ‖2
�2) <∼ max{ρ̃2n, [ε

√
| log ε|]4s/(2s+2t+d)}.(4.21)

Since 4s/(2s+ 2t+ d) < 2, we have

ρ̃2 log(ε)/ log(ρ) = ε2 log(ρ̃)/ log(ρ) <∼ [ε
√
| log ε|]4s/(2s+2t+d)(4.22)

if ρ̃ is chosen close enough to ρ, and (4.18) follows. In order to prove (4.19), we
introduce the intermediate vector

Fn−1/2
ε = Fn−1

ε + τD−1
j (Tε(Gε) −KjF

n−1
ε ),(4.23)

for which we have

‖Fε − Fn−1/2
ε ‖�2 ≤ ρ‖Fε − Fnε ‖�2 .(4.24)

We can then write

‖Fε − Fnε ‖2
�2 =

∑
|λ|<j

|fε,λ − f
n−1/2
ε,λ

χ(|fn−1/2
ε,λ | ≥ 2t|λ|t(ε))|2.(4.25)

Denoting by K > 1 a constant to be fixed later, we split the above sum into three
parts Σ1, Σ2, and Σ3, respectively corresponding to the index sets

I1 := {|λ| < j ; |fn−1/2
ε,λ | < 2t|λ|t(ε) and |fε,λ| < K2t|λ|t(ε)},

I2 := {|λ| < j ; |fn−1/2
ε,λ | ≥ 2t|λ|t(ε)},

I3 := {|λ| < j ; |fn−1/2
ε,λ | < 2t|λ|t(ε) and |fε,λ| ≥ K2t|λ|t(ε)}.
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If λ ∈ I1, we have |fε,λ− f
n−1/2
ε,λ

χ(|fn−1/2
ε,λ | ≥ 2t|λ|t(ε))| = |fε,λ|. Using again the fact

that if |a| ≤ η we have |a| ≤ |a− bχ(|b| ≥ 2η)| for all b, we can write

|fε,λ| ≤ |fε,λ − fλχ(|fλ| ≥ 2K2t|λ|t(ε))|
≤ |fε,λ − fλ| + |fλ − fλχ(|fλ| ≥ 2K2t|λ|t(ε))|.

It follows that

Σ1 = 2‖fε − f‖2
L2 + 2

∑
|fλ|<2K2t|λ|t(ε) |fλ|2

<∼ ‖fε − f‖2
L2 + [ε

√| log ε|]4s/(2s+2t+d),

so that

E(Σ1) <∼ [ε
√
| log ε|]4s/(2s+2t+d).(4.26)

If λ ∈ I2, we have

|fε,λ − f
n−1/2
ε,λ

χ(|fn−1/2
ε,λ | ≥ 2t|λ|t(ε))| = |fε,λ − f

n−1/2
ε,λ |,(4.27)

so that

Σ2 = ‖Fε − Fn−1/2
ε ‖2

�2(Λ1).
(4.28)

If λ ∈ I3, we have |fε,λ − f
n−1/2
ε,λ

χ(|fn−1/2
ε,λ | ≥ 2t|λ|t(ε))| = |fε,λ| and

|fε,λ| ≤ |fε,λ − f
n−1/2
ε,λ | + |fn−1/2

ε,λ | ≤ |fε,λ − f
n−1/2
ε,λ | + 2t|λ|t(ε).(4.29)

On the other hand, since |fε,λ| > K2t|λ|t(ε) and |fn−1/2
ε,λ | < 2t|λ|t(ε), we also have

|fε,λ − f
n−1/2
ε,λ | ≥ (K − 1)2t|λ|t(ε).(4.30)

It follows that

|fε,λ − f
n−1/2
ε,λ

χ(|fn−1/2
ε,λ | ≥ 2t|λ|t(ε))| < K

K−1 |fε,λ − f
n−1/2
ε,λ |,(4.31)

so that

Σ3 ≤ ( K
K−1 )2‖Fε − Fn−1/2

ε ‖2
�2(Λ3)

.(4.32)

Combining (4.28) and (4.32), we obtain

Σ2 + Σ3 ≤ ( K
K−1 )2‖Fε − Fn−1/2

ε ‖2
�2 ≤ ( K

K−1 )2ρ2‖Fε − Fn−1
ε ‖2

�2 .(4.33)

Combined with (4.26), this yields the claimed estimate (4.19) with ρ̃ = K
K−1ρ, which

can be made arbitrarily close to ρ by taking K large enough, up to enlarging the
constant C which comes from the estimation of Σ1.

Remark. As was already explained, the cost of each iteration can be, at most,
pushed down to O(#(Λnε )), which allows the estimate of the computational cost of
the algorithm by

C(ε) ≤
∑

n≤log(ε)/ log(ρ)

#(Λnε ).(4.34)
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In addition, a rough estimate of #(Λnε ) can be obtained from the smoothness of f ,
assuming that the number of coefficients retained at each thresholding step is of the
same order as the number of coefficients which would be retained when applying
Sε to the exact f . In order to estimate this number, we note that if f belongs to
B := {f ; ‖f‖Bs

p,p
≤ M} with s > 0 and 1/p = 1/2 + s/(2t + d), it also belongs to

B̃ := {f ; ‖f‖Bs
q,q

≤M} with 1/q = 1/2 + (s+ t)/d (since q ≤ p), or equivalently∑
‖fλψλ‖qH−t ∼

∑
|fλ2−t|λ||q ≤Mq.(4.35)

It follows that

#(Λnε ) <∼ t(ε)−q ∼ [ε
√
| log ε|]− 2d

d+2s+2t ,(4.36)

and therefore

C(ε) <∼ [ε
√
| log ε|]− 2d

d+2s+2t log(ε)/ log(ρ).(4.37)

In contrast, the cost of a nonadaptive inversion of (4.11) when using an optimal solver
is of order

C(ε) ∼ dim(Vj) ∼ 2dj <∼ ε−d/t.(4.38)

Since 2d
d+2s+2t <

d
t , we see that (4.37) always improves (4.38). Let us insist on the

fact that this improvement relies on the compressibility of the stiffness matrix in the
sense that the adaptive matrix-vector multiplication involved in the iteration only
costs O (#(Λnε )) operations. For arbitrary noncompressible matrices, this cost should
be multiplied by 2jd. Note also that the cost for nonadaptive inversion may then also
be substantially higher than dim(Vj).

Note also that, in addition to the fact that the algorithm adapts to unknown
smoothness, its practical computational cost also decreases as the amount of smooth-
ness increases.

5. A numerical example. We focus on a simple example of a logarithmic
potential kernel in dimension one and a single test function. The relatively simple
analytical form of this operator gives the ability to approximate reasonably well its
singular values. Therefore, the SVD method is feasible and can be compared with the
Galerkin approach with reasonable accuracy. Our goals are the following:

1. To illustrate on a specific test case that (1) the oracle-SVD and the oracle
linear Galerkin methods are comparable; (2) the nonlinear Galerkin method
of section 4, obtained by thresholding the data in the image domain, achieves
comparable numerical results as the oracle-SVD and the oracle linear Galerkin
estimators.

2. To verify on an example that the empirical L2 error stabilizes beyond a certain
resolution level j, which is related to the noise level ε and the degree of ill-
posedness of the operator. In theory, we know that the condition 2−j <∼ ε1/t

is sufficient to obtain optimality and that there is no gain in increasing j
further.

3. To verify on an example that if we threshold further by Sε the estimator
obtained by the nonlinear Galerkin inversion of section 4, we still have a good
estimator, as predicted by our Theorem 4.1. This suggests that the iterative
adaptive Galerkin method described in Theorem 4.2 shall be effective when
dealing with more precise numerical studies.
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A logarithmic potential integral operator. We consider a single-layer log-
arithmic potential operator that relates the density of electric charge on an infinite
cylinder of a given radius r > 0: {(z, rei2πx), z ∈ R, x ∈ [0, 1]} to the induced potential
on the same cylinder, when both functions are independent of the variable z. The
associated kernel k(x, y) of the operator that we take is

Kf(x) =

∫ 1

0

k(x, y)f(y)dy, k(x, y) = − log
(
r|ei2πx − ei2πy|)(5.1)

for some r > 0. We choose r = 1
4 and we rewrite (5.1) as

k(x, y) = − log
[
1
2 | sinπ(y − x)|], x, y ∈ [0, 1],(5.2)

so that k(x, y) ≥ 0 on the unit square. It is singular on the diagonal {x = y} but
integrable. The single layer potential is known to be an elliptic operator of order −1,
which maps H−1/2 into H1/2 (see [7]). So the assumptions on K are satisfied with
t = 1.

For the maximal resolution level J ≤ 15 we discretize K by computing the matrix
KJ with entries

(KJ)m,n=0,... ,2J−1 = (〈KJϕJ,m, ϕJ,n〉)m,n=0,... ,2J−1,

where the ϕJ,m = 2J/21[m2−J ,(m+1)2−J ) are the Haar functions. Each

〈KJϕJ,m, ϕJ,n〉 =

∫ 1

0

∫ 1

0

k(x, y)ϕJ,m(x)ϕJ,n(y)dxdy

is computed by midpoint rule at scale 2−18. It is noteworthy that k is a periodic
convolution kernel. In turn the discretization K15 of K is a Toeplitz cyclic matrix,
of the form KJ(m,n) = KJ

(
(m − n)[mod 2J ]

)
. As a consequence, the fast Fourier

transform diagonalizes the matrix KJ , which makes the computation of its singular
values an easy numerical task. We take K15 as a proxy for K and let the level of
analysis of our method vary for j = 1, . . . , 15. We consider the test function f , defined
for x ∈ [0, 1] by

f(x) = max{1 − |30(x− 1
2 )|, 0}.

The piky function f is badly approximated by the singular functions of K, but it
has a sparse representation in a wavelet basis, so the Galerkin method shall be more
effective for the estimation problem.

Methodology. We first pick the maximal resolution level J := 12, a noise
level ε := 2 · 10−4, and a single typical sample of a white noise process w12 =
(wk,12)k=0,... ,212−1. This means that the wk,12 are outcomes of independent iden-
tically distributed standard Gaussian random variables that contaminate the action
of K12 on f , up to the noise level ε = 2 · 10−4. Figure 1 shows the true signal f
(dash-dotted) together with the data process.

Let us recall that given a family of estimators f̂j depending on a tuning constant

j = 1, . . . , jmax (here, f̂j is constructed with the SVD or the linear Galerkin method,

and j varies from level 1 to level 12), the oracle estimator f̂∗ is defined as f̂∗ = f̂j∗ ,
where

j∗ := argminj=1,... ,jmax‖f̂j − f‖L2 .
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Fig. 1. True function f and noisy signal.

Table 1

SVD oracle Linear Galerkin Nonlinear Galerkin

j∗ L2-error j∗ L2-error L2-error

f 5 5.66 · 10−4 5 5.31 · 10−4 3.75 · 10−4

Note that, strictly speaking, f̂∗ is not an estimator (the ideal level j∗ depends on
the unknown) and appears as a benchmark for the method at hand. For technical
reasons, we have replaced the L2-risk by its empirical version.

Numerical results. The oracle estimator f̂∗, for the SVD is displayed in Figure
2 and the oracle linear Galerkin estimator is displayed in Figure 3. In Figure 4, we
show the performance of the nonlinear Galerkin estimator (Method 3), when applying
a threshold Tε(·) in the observation domain, specified with t(ε) := 8 · 10−4. We take
a wavelet filter corresponding to compactly supported Daubechies wavelets of order
14. The numerical results of the three methods are summarized in Table 1.

Compression rate and approximation results. In the same context, we
next investigate (see Figure 5) the performance of the nonlinear Galerkin estimator
when applying further the level dependent thresholding operator Sε(·), recall (4.4),
with t(ε) := 8 · 10−4. We also indicate the number of wavelet coefficients put to
zero divided by the total number of coefficients. The very high compression rate (see
Table 2) that still ensures a small estimation error advocates in favor of the iterative
adaptive scheme of section 4.
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Fig. 2. Oracle SVD.

Table 2

L2-error, Tε only L2-error, Tε and Sε comp. rate

f 3.75 · 10−4 4.12 · 10−4 0.996

On a visual level, we observe that the nonlinear methods avoid the persistence
of high oscillations far away from the singularity, in contrast to the linear methods.
However, we still observe an artifact on the right side of the central peak. We hope
to remedy this defect by (i) using biorthogonal spline wavelets instead of Daubechies
orthogonal wavelets and (ii) apply a translation-invariant processing as introduced in
[11] for denoising.

Appendix A. Extension to nonelliptic operators. In this appendix, we shall
briefly explain how the methods and results that we have presented throughout can be
extended by the mean-square approach to the case where K is not an elliptic operator.
Here, the smoothing property of order t is expressed by the ellipticity property of the
normal operator

‖Kf‖2
L2 = 〈K∗Kf, f〉 ∼ ‖f‖2

H−t .(A.1)

We discuss the adaptation of sections 3 and 4 to this more general context.
Linear Galerkin estimation. The method becomes the Galerkin projection
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Fig. 3. Oracle linear Galerkin method.

method applied to the normal equation K∗Kf = K∗g. It therefore reads as follows:

find fε ∈ Vj such that 〈Kfε,Kv〉 = 〈gε,Kv〉 for all v ∈ Vj .(A.2)

As in the elliptic case, we can use the decomposition fε = fj +hε in order to estimate
the mean-square error according to

E(‖f − fε‖2
L2) <∼ ‖f − fj‖2

L2 + E(‖hε‖2
L2).(A.3)

For the variance term, we write

‖hε‖2
H−t ∼ 〈K∗Khε, hε〉 = ε〈Ẇ ,Khε〉

≤ ε‖PKj Ẇ‖L2‖Khε‖L2 <∼ ε‖PKj Ẇ‖L2‖hε‖H−t,

where PKj is the orthogonal projector onto KVj . Using the inverse inequality which

states that ‖hε‖L2 <∼ 2tj‖hε‖H−t , we therefore obtain

‖hε‖L2 <∼ ε2tj‖PKj Ẇ‖L2 ,(A.4)

and therefore

E(‖hε‖2
L2) <∼ ε222tj dim(KVj) <∼ ε22(2t+d)j .(A.5)
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Fig. 4. Nonlinear Galerkin estimator, thresholding in the image domain.

For the bias term, we take any gj ∈ Vj and write

‖f − fj‖L2 <∼ ‖f − gj‖L2 + 2tj‖fj − gj‖H−t

<∼ ‖f − gj‖L2 + 2tj‖f − gj‖H−t ,

where we have used the inverse inequality and Galerkin orthogonality. Assuming
that f belongs to a Sobolev ball B := {f ∈ Hs ; ‖f‖Hs ≤ M}, we obtain from
approximation theory the direct estimate

‖f − fj‖2
L2 <∼ inf

gj∈Vj

[‖f − gj‖L2 + 2tj‖f − gj‖H−t ] <∼ 2−sj .(A.6)

Proceeding as in section 3, we therefore achieve the same estimate for E(‖f − fε‖2
L2)

under the same assumptions as in the elliptic case.
Nonlinear estimation by linear Galerkin. The method becomes the Galerkin

projection applied to the normal equation after thresholding the observed data. It
therefore reads as follows: find fε =

∑
|λ|<j fε,λψλ ∈ Vj such that

〈Kfε,Kψλ〉 = T̃ε(〈gε,Kψλ〉)(A.7)

for all |λ| < j. Here the thresholding operator T̃ε differs from Tε since it is applied to
the wavelet coefficients of K∗gε. More precisely, we define

T̃ε(dλ) = dλχ(|dλ| ≥ 2−t|λ|t(ε)) = 2−t|λ|Tε(2t|λ|dλ),(A.8)
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Fig. 5. Nonlinear Galerkin estimator, thresholding in the image and solution domain.

again with t(ε) = Cε
√| log ε|. With this method, Theorem 3.2 can be extended

to the nonelliptic case, provided that we now use the assumption that K∗K is an
isomorphism from L2 to H2t and has the smoothing property of order 2t with respect
to the space Bsp,p. For the proof of this result, we again write fε = fj + hε, where the
term hε now represents the solution of the linear problem with the thresholding error
as data. By the same analysis as in the proof of Theorem 3.2, we obtain

‖f − fj‖2
L2 <∼ ε4s/(2s+2t+d)(A.9)

if j is large enough so that 2−j ≤ ε1/t. For the stochastic term, if Hε is the coordinate
vector of hε in the basis (ψλ)|λ|<j , we write

Hε = L−1
j Dj(Tε(G̃ε) − G̃j),(A.10)

where Lj := (〈Kψλ,Kψµ〉)|λ|,|µ|<j is now the Galerkin matrix for the least-squares

formulation, G̃j := (2t|λ|〈K∗g, ψλ〉)|λ|<j , G̃ε := (2t|λ|〈K∗gε, ψλ〉)|λ|<j , and again

Dj := Diag(2−t|λ|). In this case, we invoke the stability property

‖L−1
j U‖�2 <∼ ‖U‖h2t ,(A.11)

which is proved by similar argument as in the proof of Theorem 3.2. Since Dj is an i
somorphism from ht to h2t, we are therefore left to prove that

E(‖Tε(G̃ε) − G̃j‖2
ht) <∼ [ε

√
| log ε|]4s/(2s+2t+d).(A.12)
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The components of G̃ε are related to those of G̃j by

g̃ε,λ := 2t|λ|〈K∗Kf,ψλ〉 + ε〈Ẇ , 2t|λ|Kψλ〉 = g̃j,λ + εηλ,(A.13)

where the ηλ are normalized Gaussian variables since

‖2t|λ|Kψλ‖L2 ∼ 2t|λ|‖ψλ‖H−t ∼ 1.(A.14)

Therefore, the estimate (A.12) again follows from classical results on wavelet thresh-
olding such as Theorem 4 in [10] using the fact that K∗Kf belongs to a Besov ball
B̃ = {h ∈ Bs+2t

p,p ; ‖h‖Bs+2t
p,p

≤ M̃}.
Nonlinear estimation by adaptive Galerkin. The iterative method becomes

Fnε = Sε[F
n−1
ε + τD−1

j (T̃ε(Gε) − LjF
n−1
ε )],(A.15)

and the statements of Theorems 4.1 and 4.2 remain valid with the same proof.

Appendix B. Direct and inverse inequalities for multiresolution spaces.
Direct and inverse inequalities are a key ingredient in multiresolution approximation
theory. In their simplest form, the direct inequality reads as follows:

inf
gj∈Vj

‖f − gj‖L2 <∼ 2−sj |f |Hs ,(B.1)

and the inverse estimate states that for all gj ∈ Vj

|gj |Hs <∼ 2sj‖gj‖L2 .(B.2)

The proof of such estimates is quite classical and we refer the reader to Chapter 3
in [7]. Basically, the validity of the direct inequality requires that the spaces Vj have
enough approximation power, in the sense that polynomials of degree m are contained
in Vj for all m < s. On the other hand, the validity of the inverse estimate requires
that the functions of Vj have enough smoothness in the sense that they are contained
in Hs. The direct and inverse estimate which have been used in section 3 are less
standard since they involve the Sobolev space of negative order H−t/2, and we shall
therefore briefly discuss their validity. The inverse estimate states that for all gj ∈ Vj ,

‖gj‖L2 <∼ 2tj/2‖gj‖H−t/2 .(B.3)

We prove it by a duality argument:

‖gj‖L2 = supfj∈Vj ,‖fj‖L2=1 |〈gj , fj〉|
<∼ supfj∈Vj ,‖fj‖L2=1 ‖gj‖H−t/2‖fj‖Ht/2

<∼ 2tj/2‖gj‖H−t/2 ,

where we have used the standard inverse estimate (B.2) with s = t/2. The direct
estimate states that

inf
gj∈Vj

[‖f − gj‖L2 + 2tj/2‖f − gj‖H−t/2 ] <∼ 2−sj‖f‖Hs .(B.4)

In order to prove it, we take gj = Pjf where Pj is the L2-orthogonal projector onto
Vj . Clearly the first part ‖f − Pjf‖L2 <∼ 2−sj‖f‖Hs is simply the standard direct
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estimate (B.1). For the second part, we write

‖f − Pjf‖H−t/2 = sup‖g‖
Ht/2=1 |〈f − Pjf, g〉|

= sup‖g‖
Ht/2=1 |〈f − Pjf, g − Pjg〉|

= ‖f − Pjf‖L2 sup‖g‖
Ht/2=1 ‖g − Pjg‖L2

∼ 2−sj‖f‖Hs2−tj/2,

where we have used the fact that (I − Pj)
2 = (I − Pj)

∗(I − Pj) = I − Pj and the
standard direct estimate (B.1) both for Hs and Ht/2.

Remark. The type of duality argument that we have used in order to prove both
(B.3) and (B.4) can be generalized in such a way that the standard direct and inverse
estimate between L2 and Ht/2 are invoked for a dual space Ṽj which might differ
from Vj . For the direct estimate, this means that we take for Pj a more general

biorthogonal projector, such that P ∗
j is a projector onto Ṽj (see [7] for examples of

dual spaces and biorthogonal projectors), so that we are led to apply a standard direct
inequality of the type

‖g − P ∗
j g‖L2 <∼ 2−tj/2‖g‖Ht/2(B.5)

which only requires polynomial exactness up to order t/2 for Ṽj . For the inverse

estimate, we can also use the space Ṽj in order to evaluate the L2 norm according to

‖gj‖L2 <∼ sup
f̃j∈Ṽj ,‖f̃j‖L2=1

|〈gj , f̃j〉| <∼ sup
f̃j∈Ṽj ,‖f̃j‖L2=1

‖gj‖H−t/2‖f̃j‖Ht/2 ,(B.6)

so that we are led to apply a standard inverse inequality of the type

‖f̃j‖Ht/2 <∼ 2tj/2‖f̃j‖L2 ,(B.7)

which only requires that the space Ṽj has Ht/2 smoothness. This last point is practi-
cally important, since it means that we are not enforced to use multiresolution spaces
Vj consisting of smooth functions, neither are we forced to use smooth wavelets in
the nonlinear methods. In contrast, it is crucial that the spaces Vj have enough poly-
nomial reproduction (Πm ⊂ Vj for all m < s) in order to apply the direct estimate
for Hs, and it is crucial for the nonlinear method that the wavelets ψλ have enough
vanishing moments (

∫
xmψλ = 0 for all m < s + t) in order to apply the results on

wavelet thresholding such as (3.30).
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1. Introduction. Mixed finite elements often are used in engineering applica-
tions, and their analysis has been considered in several papers, starting from the
1970s (see [10, 3, 13]), mainly for the approximation of steady source problems. For
the reader’s convenience, we recall here what we mean by a general standard mixed
problem. We consider a pair of Hilbert spaces Φ and Ξ and denote by Φ′ and Ξ′ their
dual spaces. Given two data f ∈ Φ′ and g ∈ Ξ′, a general (steady) mixed problem
reads as follows: Find ψ ∈ Φ and χ ∈ Ξ such that

a(ψ,ϕ) + b(ϕ, χ) = Φ′< f, χ >Φ ∀ϕ ∈ Φ,
b(ψ, ξ) = Ξ′< g, ξ >Ξ ∀ξ ∈ Ξ,

(1)

where a : Φ × Φ → R and b : Φ × Ξ → R are continuous bilinear forms.
When a finite element approximation to problem (1) is considered, it is well

known that the necessary and sufficient condition for the well posedness, stability,
and convergence of the scheme (for any given data) is that two inf-sup constants are
bounded below away from zero independently of the meshsize parameter.

In the 1980s the use of mixed finite elements has been considered also for the
approximation of eigenvalue problems (see [18, 4]), and only fairly recently it has been
understood (see [8, 7]) that the inf-sup conditions are not the main assumptions in
this context. It has been observed that, in most cases, we can distinguish between two
families of mixed problems, depending on the role played by the two equations which
define the mixed problem itself, and it has been proved that suitable conditions have
to be considered in either case for the good convergence of the computed eigenvalues.
Namely, we can consider

(
f
0

)
-type problems, when in (1) g = 0 and

(
0
g

)
-type problems

when the opposite situation occurs, i.e., f = 0. For instance, the Stokes problem
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belongs to the first family and the standard mixed formulation for the Laplace problem
to the second one.

In this paper, we want to consider the finite element approximation of evolution
problems in mixed form. The mathematical literature on this field is mainly related to
the approximation of the heat equation by means of Raviart–Thomas (RT) elements
(see, e.g., [16]); mixed finite element schemes have been used extensively for the
approximation of evolution problems, in particular in fluid dynamic applications (see
[14, 15]).

It is not an unexpected result that the theoretical analysis of such approximations
strongly relies on the behavior of the corresponding eigenvalue approximations. For
this reason, we consider separately the

(
0
g

)
- and

(
f
0

)
-type formulations. Actually, it

is not completely true that, for instance, in the mixed form of the heat equation f
has to vanish, being possibly related to some nonhomogeneous boundary conditions.
However, in this paper, we shall consider only truly

(
0
g

)
and

(
f
0

)
problems; in the case

of the heat equation, for instance, we can reduce the problem into this form via a
suitable extension of the boundary trace.

The outline of the paper is as follows. In the next section we recall some known
results about the standard Galerkin space semidiscretization of parabolic problems. In
section 3 we introduce the problems we are dealing with and present some examples.
We are going to use a different notation than the one introduced in (1). In particular,
we want to adapt our notation to the mixed Laplace equation for the

(
0
g

)
-type system

and to the Stokes problem when dealing with the
(
f
0

)
problem. In section 4, we

report on some numerical experiments. In particular, we construct test cases and
approximating spaces in such a way that the inf-sup conditions hold true (hence the
corresponding steady problems are well approximated) but for which we observe that
the evolution problem is not well approximated. These results show the need for an
accurate analysis of the evolution case, which is not a straightforward extension of
the standard steady state analysis. In the next two sections, where the main results
of this paper are stated and proved, we give sufficient conditions for the convergence
of the approximation of evolution problems of

(
0
g

)
- and

(
f
0

)
-type, respectively. The

last section contains additional remarks related to the counterexample presented in
section 4. It follows, in particular, that, if the data are smooth enough, the solution
can be accurately approximated even with the scheme used for our counterexample.

2. Galerkin semidiscretization of parabolic problems. In this section we
collect some known results on the semidiscrete approximation to parabolic problems
with the aim of introducing some basic estimates and of comparing them with those
obtained in the case of mixed formulations. The interested reader is referred to,
e.g., [23] for a more detailed analysis of the problem under consideration in this section.

We consider two Hilbert spaces V and H, V ⊆ H, V dense in H. We identify
H with its dual space H ′. Let a : V × V → R be a continuous bilinear form,
satisfying the following coercivity condition: There exist α > 0 and µ ≥ 0 such that
a(v, v) + µ||v||2H ≥ α||v||2V for all v ∈ V . The variational formulation of the parabolic
problem (denoting by (·, ·) the scalar product in H) reads as follows: Given T > 0,
f : ]0, T [ → V ′, and u0 ∈ H, for almost every t ∈ ]0, T [ find u(t) ∈ V such that

d

dt
(u(t), v) + a(u(t), v) = V ′< f(t), v >V ∀v ∈ V ; u(0) = u0.(2)

The following existence and uniqueness theorem for problem (2) is well known (see,
e.g., [17]).



1504 DANIELE BOFFI AND LUCIA GASTALDI

Theorem 1. Assume that the bilinear form a is continuous and coercive on
V × V . Then, given f ∈ L2(]0, T [ ;V ′) and u0 ∈ H, there exists a unique solution
u ∈ L2(]0, T [ ;V ) ∩ C0([0, T ];H) to (2), with ∂u/∂t ∈ L2(]0, T [ ;V ′). Moreover, the
following energy estimate holds true:

max
t∈[0,T ]

||u(t)||2H + α

∫ T

0

||u||2V dt ≤ ||u0||2H + C

∫ T

0

||f ||2V ′ dt.

A suitable shift reduces our problem to the case µ = 0; for this reason we consider
this case in detail.

If the bilinear form a is symmetric and the embedding of V in H is compact, then,
for every f ∈ L2(]0, T [ ;H), the solution to (2) can be represented with the following
series:

u(t) =

∞∑
i=1

(
(u0, wi)e

−λit +

∫ t

0

(f(s), wi)e
−λi(t−s) ds

)
wi.(3)

Here, λi ∈ R and wi ∈ V , with wi �= 0, are eigenvalues and eigenvectors of the bilinear
form a; that is, for each i they satisfy a(wi, v) = λi(wi, v) for all v ∈ V .

Example 1 (the heat equation). The standard example is given by the following
heat equation: Ω is a polygon in R

2 or a Lipschitz polyhedron in R
3, H = L2(Ω),

V = H1
0 (Ω), and a(u, v) =

∫
Ω

gradu · grad v dx. Clearly, in this case, the coercivity
assumption is valid with µ = 0 for the Poincaré inequality.

Approximating the space V by a finite dimensional subspace Vh provides a space
semidiscretization of the variational formulation (2). Given f ∈ L2(]0, T [ ;H) and
u0,h ∈ Vh, for each t ∈ [0, T ] find uh(t) ∈ Vh such that

d

dt
(uh(t), v) + a(uh(t), v) = V ′< f(t), v >V ∀v ∈ Vh; uh(0) = u0,h.(4)

Subtracting (4) from (2), we obtain the error equation

d

dt
(u(t) − uh(t), v) + a(u(t) − uh(t), v) = 0 ∀v ∈ Vh.

Then we can derive the following estimate for all vh ∈ Vh:

max
t∈[0,T ]

||u(t) − uh(t)||2H + α

∫ T

0

||u(t) − uh(t)||2V ≤ ||u0 − u0,h||2H

+

∫ T

0

((
∂

∂t
(u(t) − uh(t)), u(t) − vh

)
+ a(u(t) − uh(t), u(t) − vh)

)
dt.

(5)

Let us try to get some error estimates from (5) in the case of the finite element
approximation of the heat equation (see Example 1). If we take vh = uI(t), the
interpolant of u(t) in Vh, then we get

max
t∈[0,T ]

||u(t) − uh(t)||2H + α

∫ T

0

||u(t) − uh(t)||2V ≤ ||u0 − u0,h||2H

+

∫ T

0

((∥∥∥∂u
∂t

(t)
∥∥∥
H

+
∥∥∥∂uh
∂t

(t)
∥∥∥
H

)
‖u(t) − uI(t)‖H + C‖u(t) − uI(t)‖2

V )

)
dt.
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If Vh is the space of continuous piecewise linear functions and u0,h is the interpolant
of u0, then we have the optimal convergence (with the obvious modifications in the
case of nonconvex domains)

||u− uh||L∞(L2) + α||u− uh||L2(H1) ≤ Ch
(||u0||H1 + ||f ||L2(L2)

)
.(6)

Unfortunately, the generalization of (6) to higher order approximations is not
optimal; when kth order elements are used, (5) gives only O(h(k+1)/2). On the other
hand, we can take in (5) vh = Pu(t), the L2-projection of u(t) into Vh. Now the first
term in the integral on the right-hand side of (5) reads(

∂

∂t
u(t) − ∂

∂t
uh(t), u(t) − Pu(t)

)
=

(
∂

∂t
u(t) − P

∂

∂t
u(t), u(t) − Pu(t)

)
=

1

2

d

dt
||u(t) − Pu(t)||2H ,

since ∂uh(t)/∂t ∈ Vh, P is the L2-projection onto Vh, and P commutes with the time
derivative. Moreover, the estimate of the second term in the integral on the right-
hand side of (5) involves the term ||u(t)− Pu(t)||H1 . If Vh is the space of continuous
piecewise polynomials of degree k, and if we assume that the mesh is such that we
can use an inverse estimate, then we can obtain

||u− uh||L∞(L2) + α||u− uh||L2(H1) ≤ Chk
(||u0||Hk + ||u||L∞(Hk) + ||u||L2(Hk+1)

)
.

(7)

If, instead of using (5), we introduce the elliptic projection operator Π defined as

Πw ∈ Vh, a(Πw, v) = a(w, v) ∀v ∈ Vh,

for each w ∈ V , then the following error estimate holds true:

max
t∈[0,T ]

||u(t) − uh(t)||2H + α

∫ T

0

||u(t) − uh(t)||2V dt ≤ ||u0 − u0,h||2H

+ max
t∈[0,T ]

||u(t) − Πu(t)||2H + C

∫ T

0

(∥∥∥∥ ∂∂t(u(t) − Πu(t)
)∥∥∥∥2

V ′
+ ||u(t) − Πu(t)||2V

)
dt.

In the case of the heat equation, the last equation, together with the usual error
estimates for elliptic problems, leads to an estimate similar to (7) but without using
the inverse inequality (see, e.g., [23, 20]).

3. Setting of the problem.

3.1.
(0
g

)
-type problems. We consider two Hilbert spaces Σ and V and a third

Hilbert space H (which will be identified with its dual space H ′) such that the follow-
ing standard inclusions hold with dense and continuous embedding: V ⊆ H 
 H ′ ⊆
V ′. When referring to the inner product of H, we shall omit the reference to the
space; in the main application we have in mind, H is simply L2. A model

(
0
g

)
-type

evolution problem reads as follows: Given T > 0, g : ]0, T [ → V ′, and u0 ∈ H, for
almost every t ∈ ]0, T [ find σ(t) ∈ Σ and u(t) ∈ V such that

a(σ(t), τ) + b(τ, u(t)) = 0 ∀τ ∈ Σ,

b(σ(t), v) − d

dt
(u(t), v) = −V ′< g(t), v >V ∀v ∈ V,

u(0) = u0,

(8)
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where the first two equations are defined in the sense of distributions in ]0, T [ . We
make the following assumptions on the involved bilinear forms a : Σ × Σ → R and
b : Σ × V → R:

a(·, ·) and b(·, ·) are continuous; that is,
∃Ma > 0 : ∀σ, τ ∈ Σ a(σ, τ) ≤Ma||σ||Σ||τ ||Σ,
∃Mb > 0 : ∀σ ∈ Σ,∀v ∈ V b(σ, v) ≤Mb||σ||Σ||v||V .

We also assume that a(·, ·) is symmetric and positive semidefinite and set

|τ |a := (a(τ, τ))1/2.

It is immediate to check that | · |a is a seminorm on Σ and that for all σ, τ ∈ Σ we
have

a(σ, τ) ≤ |σ|a|τ |a.

We suppose that problem (8) is well posed and that the following a priori estimates
hold true:

max
t∈[0,T ]

||u(t)||2H +

∫ T

0

||u(t)||2V dt ≤ ||u0||2H + C

∫ T

0

||g(t)||2V ′ dt,(9) ∫ T

0

µ2(t)||σ(t)||2Σ dt ≤ C

(
||u0||2H +

∫ T

0

||g(t)||2V ′ dt

)
,(10)

where µ(t) is a suitably chosen weight function which might tend to zero as t goes to
zero.

Let Σh and Vh be finite dimensional subspaces of Σ and V , respectively. The
space semidiscretization of problem (8) reads as follows: For almost every t ∈ ]0, T [ ,
find σh(t) ∈ Σh and uh(t) ∈ Vh such that

a(σh(t), τ) + b(τ, uh(t)) = 0 ∀τ ∈ Σh,

b(σh(t), v) − d

dt
(uh(t), v) = −V ′< g(t), v >V ∀v ∈ Vh,

uh(0) = u0,h,

(11)

where u0,h ∈ Vh is a suitable approximation of u0.

Example 2 (the heat equation in mixed form). Let Ω be an open Lipschitz
polygon in R

2 or polyhedron in R
3. Setting Σ = H(div; Ω), V = H = V ′ = L2(Ω),

the formulation given in (8) is a weak form of the heat equation (σ(t) = gradu(t))
with the choices

a(σ, τ ) = (σ, τ ), b(τ , v) = (div τ , v).

It can be directly checked that the a priori estimates (10) hold with µ(t) = t.
The estimates can be improved to get µ(t) = 1 if more regularity is assumed on u0,
namely u0 ∈ H1

0 (Ω) or, analogously, σ0 = gradu0 ∈ L2(Ω).

For the mixed spatial semidiscretization of the heat equation we construct two
sequences of finite element spaces Σh ⊂ H(div; Ω) and Vh ⊂ L2(Ω) and consider
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the following discrete problem: For almost every t ∈ ]0, T [ , find σh(t) ∈ Σh and
uh(t) ∈ Vh such that

(σh(t), τ ) + (div τ , uh(t)) = 0 ∀τ ∈ Σh,

(divσh(t), v) − d

dt
(uh(t), v) = −(g(t), v) ∀v ∈ Vh,

uh(0) = u0,h.

(12)

Several possible choices for the spaces Σh and Vh have been presented in the literature
for the corresponding source problem. For instance, in the case of triangular or
tetrahedral meshes, we can choose as Σh the spaces of the RT elements introduced
in [21, 19] or the Brezzi–Douglas–Marini (BDM) and Brezzi–Douglas–Fortin–Marini
(BDFM) elements introduced in [12, 11] (see [13] for a unified presentation; see also
[16] for the use of RT elements in the context of parabolic problems in mixed form). In
all these cases Vh is equal to div Σh. On quadrilaterals or hexahedrons the situation
is more complicated; a two-dimensional theory has been developed recently in [1],
showing that the standard families just listed do not achieve optimal approximation
properties in H(div; Ω) for general quadrilateral meshes. There, a new Arnold–Boffi–
Falk (ABF) family has been proposed by adding internal degrees of freedom to the
RT elements in order to recover the optimal accuracy. In this case, the inclusion
div Σh ⊆ Vh is no longer valid (see [1] for the details about the definition of Vh).

All these spaces satisfy the conditions for the well posedness of the steady problem,
namely, there exist two positive constants α and β such that

(τ , τ ) ≥ α||τ ||2H(div;Ω) ∀τ ∈ Σh with (div τ , v) = 0 ∀v ∈ Vh,(13)

sup
τ∈Σh

(div τ , v)

||τ ||H(div;Ω)
≥ β||v||L2(Ω) ∀v ∈ Vh.(14)

In section 4 we shall test the lowest order RT element for the approximation of the
heat equation, together with another less standard element which also satisfies (13)
and (14).

3.2.
(f
0

)
-type problems. We consider three Hilbert spaces V , H, and Q such

that V ⊆ H 
 H ′ ⊆ V ′ with dense and continuous inclusions. As in the previous
section, we shall refer to the scalar product ofH with (·, ·). A model

(
f
0

)
-type evolution

problem reads as follows: Given T > 0, f : ]0, T [ → V ′, and u0 ∈ H, for almost every
t ∈ ]0, T [ find u(t) ∈ V and p(t) ∈ Q such that

d

dt
(u(t), v) + a(u(t), v) + b(v, p(t)) = V ′< f, v >V ∀v ∈ V,

b(u(t), q) = 0 ∀q ∈ Q,

u(0) = u0,

(15)

where the first two equations are defined in the sense of distributions in ]0, T [ . We
recall the definitions of the bilinear forms a : V × V → R and b : V × Q → R and
make the following standard hypotheses:

a(·, ·) and b(·, ·) are continuous; that is,

∃Ma > 0 : ∀u, v ∈ V a(u, v) ≤Ma||u||V ||v||V ,
∃Mb > 0 : ∀v ∈ V,∀q ∈ Q b(v, q) ≤Mb||v||V ||q||Q.
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Moreover, we assume that the form a is coercive on the kernel of B,

K = {v ∈ V : b(v, q) = 0 ∀q ∈ Q},
i.e., there exists α > 0 such that

a(v, v) ≥ α||v||2V ∀v ∈ K.(16)

A weaker ellipticity could be considered when dealing with parabolic problems. How-
ever, it can be reduced to (16) with a change of variables. We suppose that prob-
lem (15) is well posed and that the following a priori estimates hold true:

max
t∈[0,T ]

||u(t)||2H + α

∫ T

0

||u(t)||2V dt ≤ ||u0||2H + C

∫ T

0

||f(t)||2V ′ dt,(17) ∫ T

0

||p(t)||2Q dt ≤ C

(
||u0||2H +

∫ T

0

||f(t)||2V ′ dt

)
.(18)

Let Vh and Qh be finite dimensional subspaces of V and Q; then the Galerkin
space semidiscretization of problem (15) reads as follows: For almost every t ∈ ]0, T [ ,
find uh(t) ∈ Vh and ph(t) ∈ Qh such that

d

dt
(uh(t), v) + a(uh(t), v) + b(v, ph(t)) = V ′< f, v >V ∀v ∈ Vh,

b(uh(t), q) = 0 ∀q ∈ Qh,

uh(0) = u0,h,

(19)

where u0,h ∈ Vh is an approximation of u0.
Example 3 (the Stokes equations). Let Ω be an open Lipschitz polyhedron in R

n

(with n = 2 or 3); then the Stokes equations fit in a natural way within our setting
with the following definitions:

V = (H1
0 (Ω))n, Q = L2(Ω)/R, H = (L2(Ω))n,

a(u,v) = (ε(u) : ε(v)), b(v, q) = (div v, q),

where ε is, as usual, the linearized strain tensor. It is known (see, for instance, [22])
that estimates (17) and (18) hold true in this case. Moreover, whenever Ω is convex
(with the usual modifications for the nonconvex case), if f ∈ L2(]0, T [ ;H) and u0 ∈ K,
then u ∈ L2(]0, T [ ; (H2(Ω))n), ∂u/∂t ∈ L2(]0, T [ ;H), and p ∈ L2(]0, T [ ;H1(Ω)).

For the discretization of the steady problem, we refer to [13]. We shall see at the
end of section 6 that a good approximation of the steady Stokes equations provides a
convergent approximation to the time dependent problem also.

4. Numerical investigations. In this section we report on some numerical
tests for various mixed discretization to the heat equation presented in Example 2.
The discrete problem we are dealing with is the one presented in (12). We consider

two possible choices for the discrete spaces Σh and Vh. Given Ω = ]0, π[
2

and a
triangular mesh, the first method consists in choosing Σh as the lowest order RT
element (see [21]) and as Vh the space of piecewise constant functions. We shall refer
to this choice as the RT method. In the second method, which has been analyzed in [8],
the space Σh consists of continuous piecewise linear (in each component) vector fields
and Vh is simply defined as Vh = div Σh and turns out to be a subset of the space
of piecewise constant functions. We shall refer to this example as the P1 method.
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Fig. 1. u(10) on 16-by-16 criss-cross mesh computed with the RT (left) and P1 (right) methods
with g = 2 sinx sin y.

The RT method is well known to be stable (see [21]), when applied to the steady
problem (see (13) and (14)). The P1 method has been introduced in [8] in order
to construct a counterexample for the approximation of eigenvalue problems. It has
been shown to be stable on a special mesh sequence of the square which is built of
uniform subsquares, each of them subdivided into four triangles (criss-cross mesh).
In this section, we shall denote by N the number of subdivisions of each side of Ω,
so that a criss-cross mesh contains 4N2 triangles. On general triangular meshes, the
P1 element does not satisfy the inf-sup condition (14) in the sense that the inf-sup
constant β tends to zero as h goes to zero.

If not otherwise indicated, we take T = 10 and advance in time using an implicit
Euler scheme with step dt = 0.1.

In all our tests, g does not depend on t and u0 ≡ 0, so that the solution (σ(t), u(t))
asymptotically tends to the solution (σ∞, u∞) ∈ H(div; Ω) × L2(Ω) of the steady
problem

(σ∞, τ ) + (div τ, u∞) = 0 ∀τ ∈ H(div; Ω),
(divσ∞, v) = −(g, v) ∀v ∈ L2(Ω).

In our first test, we choose g(x, y) = 2 sinx sin y, so that u∞(x, y) = sinx sin y. In
Figure 1 the component u(t) of the solution at time T = 10 is plotted for both methods
on a criss-cross mesh with N = 16. The results look quite similar; the L2(Ω) norms of
the solution are 1.5725 and 1.5674 (the reference value is π/2 = 1.57079 . . . ) for the
RT and P1 methods, respectively, and the corresponding solution values at the center
are 0.9957 and 0.9925 (the reference value is 1.0). In the second test, considering
again criss-cross meshes, we take the function g = c(h) depending on the meshsize
h as a checkerboard function with values ±1 on the underlying mesh of subsquares.
For example, the case N = 4 is plotted in Figure 2. Let u∞(h) be the asymptotic
solution of our problem with datum g = c(h). As h goes to zero, the function c(h)
tends weakly to zero in L2(Ω), so that, for the compactness of the inverse Laplace
operator, we have that u∞(h) tends to zero strongly in L2(Ω). We expect a good
numerical method to provide a solution uh(t) ∈ Vh tending to zero as h goes to zero.
We explicitly observe that our expectation is related to a sort of uniform convergence,
since the solution is computed, for each h, with respect to a different right-hand side.
On the other hand, this kind of convergence is what we usually obtain from the error
estimates (see (27) and (36)).
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Fig. 2. The checkerboard c(h) for N = 4.
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Fig. 3. The reference criss-cross macro-
element.

Table 1

L2 norms of the solution with g = c(h).

dt = .1 dt = .01

N RT P1 RT P1

4 0.080756 0.451091 0.080756 0.451091
8 0.020186 0.430821 0.020186 0.430821

16 0.005047 0.427416 0.005047 0.427416
32 0.001262 0.426687 0.001262 0.426687

Table 2

L2 norms of the solution when g is
the 8-by-8 checkerboard.

N RT P1

4 0.053830 0.103860
8 0.020186 0.430821

16 0.022569 0.020642
32 0.020689 0.019728
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Fig. 4. u(10) on 16-by-16 criss-cross mesh computed with the RT (left) and P1 (right) methods
when g is a checkerboard.

In Table 1 we report the L2 norm of uh(10) for various values of N computed
with RT and P1 methods. It is evident that the solution computed with the P1
method does not go to zero. This fact clearly indicates a different behavior for the
two methods. In particular, it is evident that the stability of the steady problem (see
(13) and (14)) is not sufficient for the good approximation of the evolution problem
in mixed form. Here, by good approximation we mean a convergence like it comes
from estimates (27) or (36). In Table 1 we also show that the bad behavior of the P1
approximation is not related to a poor time discretization. Indeed, a refinement in t
does not produce any improvement. At the end of section 5, we shall come back to
this example and analyze more deeply the differences between the two methods. In
Figure 4 we show the solution uh(10) computed with the two methods. The resonance
induced by the checkerboard in the case of the P1 scheme can be observed. This will
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Fig. 5. L2 norm of uh(t) for t ∈ [0, 20] with g(t) equal to N(t)-by-N(t) checkerboard function
and Dirichlet (natural) boundary conditions.

be related to the presence of spurious eigenvalues (see [8]) at the end of section 5.
On the other hand, if we keep g fixed and let h go to zero, then we observe that the
solution computed with the P1 method is similar to the one obtained with the RT
method (see Table 2), the only exception being when the mesh is the one underlying
the structure of g.

We introduce now another example, in which the P1 method is not converging as
h goes to zero in the L∞(L2) norm. The load term g is now a function of t; namely,
at time t, g(t) is the N(t)-by-N(t) checkerboard function with N(t) = �t�. The
norm of the solution u(t), computed with RT and P1 methods using three different
meshes (N = 8, 12, 16), is plotted in Figure 5. We notice that, when the P1 method
is used, there is a pick with constant height appearing at an increasing value of t as h
decreases. This happens when the structure of g resonates with the mesh and cannot
be avoided even if the mesh is refined.

5. Convergence analysis for the
(0
g

)
-type evolution problems. In this sec-

tion we shall develop two different error estimates. The first one, stated in Theorem 3,
is new and is based on the compatibility assumption (23). This assumption is satisfied
for most standard finite elements used for the approximation of the heat equation.
The second estimate, given in Theorem 5, is basically equivalent to the one given in
Theorem 2.1 of [16]. Our proof is new, and we explicitly observe that, in this case,
the regularity hypothesis (34) has to be made.

We start this section by recalling the continuous problem (8) and its space semidis-
cretization (11). The hypotheses on the involved bilinear forms have been made ex-
plicit in section 3.1. Given T > 0, g : ]0, T [ → V ′, and u0 ∈ H, for almost every
t ∈ ]0, T [ we look for σ(t) ∈ Σ and u(t) ∈ V such that

a(σ(t), τ) + b(τ, u(t)) = 0 ∀τ ∈ Σ,

b(σ(t), v) − d

dt
(u(t), v) = −V ′< g(t), v >V ∀v ∈ V,

u(0) = u0.

The semidiscrete counterpart reads as follows: For almost every t ∈ ]0, T [, find σh(t) ∈
Σh and uh(t) ∈ Vh such that

a(σh(t), τ) + b(τ, uh(t)) = 0 ∀τ ∈ Σh,

b(σh(t), v) − d

dt
(uh(t), v) = −V ′< g(t), v >V ∀v ∈ Vh,

uh(0) = u0,h.
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The error equations are

a(σ(t) − σh(t), τ) + b(τ, u(t) − uh(t)) = 0 ∀τ ∈ Σh,

b(σ(t) − σh(t), v) − d

dt
(u(t) − uh(t), v) = 0 ∀v ∈ Vh.

Given two linear operators Π : Σ → Σh and P : H → Vh, and taking τ = Πσ(t)−σh(t),
v = Pu(t) − uh(t) in the error equations we get, after summation,

(20) (
∂

∂t

(
Pu(t) − uh(t)

)
, Pu(t) − uh(t)

)
+ a(Πσ(t) − σh(t),Πσ(t) − σh(t))

= b(σ(t) − Πσ(t), Pu(t) − uh(t)) −
(
∂

∂t

(
u(t) − Pu(t)

)
, Pu(t) − uh(t)

)
− a(σ(t) − Πσ(t),Πσ(t) − σh(t)) − b(Πσ(t) − σh(t), u(t) − Pu(t)).

Let us now take Π as a Fortin operator and P as the H projection onto Vh, namely,

Π : Σ → Σh,
b(τ − Πτ, v) = 0 ∀v ∈ Vh,

(21)

and

P : H → Vh,
(w − Pw, v) = 0 ∀v ∈ Vh.

Then, (20) reduces to(
∂

∂t

(
Pu(t) − uh(t)

)
, Pu(t) − uh(t)

)
+ a(Πσ(t) − σh(t),Πσ(t) − σh(t))

= a(σ(t) − Πσ(t),Πσ(t) − σh(t)) − b(Πσ(t) − σh(t), u(t) − Pu(t)),

(22)

where we used the fact that Π is a Fortin operator (see (21)) and that the projection
P commutes with the time derivative.

In several interesting applications, the last term in the right-hand side of (22)
vanishes. Let B : Σ → V ′ denote the canonical operator defined by V ′< Bσ, v >V =
b(σ, v) for all σ ∈ Σ and v ∈ V ; if

B(Σh) ⊆ Vh,(23)

then we can show that, for any v ∈ V ,

b(τ, v − Pv) = 0 ∀τ ∈ Σh.

Indeed, in this case, b(τ, v − Pv) = V ′< Bτ, v − Pv >V = (Bτ, v − Pv) = 0, due to
the identification H 
 H ′.

Hence, we can easily obtain the following result.
Lemma 2. Let (σ, u) and (σh, uh) be the solutions of problems (8) and (11),

respectively. If the inclusion (23) holds, then the following error estimate is true:

max
t∈[0,T ]

||u(t) − uh(t)||2H +

∫ T

0

|σ(t) − σh(t)|2a dt

≤ ||Pu0 − u0,h||2H + max
t∈[0,T ]

||u(t) − Pu(t)||2H + 2

∫ T

0

|σ(t) − Πσ(t)|2a dt.
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In order to obtain a convergence result, we need some assumptions on the opera-
tors P and Π. Let us denote by V + a subspace of V such that the second component
of the solution u belongs to L2(]0, T [ ;V +) whenever g ∈ L2(]0, T [ ;H) and denote by
Σ+ a space such that the first component of the solution σ belongs to L2(]0, T [ ; Σ+)
whenever g ∈ L2(]0, T [ ;H). Moreover, let us assume that the following estimate
holds:

‖σ‖L2(Σ+) + ‖u‖L2(V +) ≤ C‖g‖L2(H).(24)

Then we assume that there exists ρ1(h), tending to zero as h goes to zero, such
that for every u ∈ V + it holds that

||u− Pu||H ≤ ρ1(h)||u||V + .(25)

In general, estimate (25) can be achieved if P is a suitable approximation operator.
As far as the operator Π is concerned, in the spirit of [7], we make the following
assumption: There exists ρ2(h), tending to zero as h goes to zero, such that

|σ − Πσ|a ≤ ρ2(h)||σ||Σ+ .(26)

The following theorem summarizes the results obtained so far.
Theorem 3. Let (σ, u) and (σh, uh) be the solutions of problems (8) and (11),

respectively, and suppose that the inclusion (23) holds true. If there exist P and Π
satisfying (25) and (26), then we have the following estimate:

||u(t) − uh(t)||L∞(H)+

(∫ T

0

|σ(t) − σh(t)|2a dt
)1/2

≤ C||Pu0 − u0,h||H + C(ρ1(h) + ρ2(h))||g||L2(H).

(27)

A different estimate, which does not require the inclusion (23), but for which some
more regularity assumption on the solution is required, can be obtained by using the
approach of the elliptic projection (see section 2). Let us consider the steady problem
associated to (8): Given g ∈ V ′, find (σ, u) ∈ Σ × V such that

a(σ, τ) + b(τ, u) = 0 ∀τ ∈ Σ,
b(σ, v) = −V ′< g, v >V ∀v ∈ V,

(28)

and the corresponding discrete problem: Find (σh, uh) ∈ Σh × V such that

a(σh, τ) + b(τ, uh) = 0 ∀τ ∈ Σh,
b(σh, v) = −V ′< g, v >V ∀v ∈ Vh.

(29)

We make the assumption that (28) and (29) are well posed. Then, given (σ, u) ∈ Σ×V
solution of (28), we can define Πσ ∈ Σh and Pσ ∈ Vh as the solution of (29) with
right-hand side V ′< g, v >V = −b(σ, v), namely,

a(Πσ, τ) + b(τ, Pσ) = 0 ∀τ ∈ Σh,
b(Πσ, v) = b(σ, v) ∀v ∈ Vh.

(30)

We observe that, thanks to the well posedness of problem (28), the continuous solution
of (30) is (σ, u). Since, basically, Π and P depend explicitly only on σ, we omit u
from the notation for simplicity. It should be remembered, however, that Pσ is a
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discrete counterpart to u. Moreover, the operator Π : Σ → Σh defined in (30) is a
Fortin operator in the sense of (21). Inserting now the elliptic projections Π and P
defined in (30) into (20), we obtain(

∂

∂t

(
Pσ(t)−uh(t)

)
, Pσ(t) − uh(t)

)
+ a(Πσ(t) − σh(t),Πσ(t) − σh(t))

= −
(
∂

∂t

(
u(t) − Pσ(t)

)
, Pσ(t) − uh(t)

)
,

where we made use of the fact that Π is a Fortin operator and we took advantage of
the following error equation:

a(σ(t) − Πσ(t), τ) + b(τ, u(t) − Pσ(t)) = 0 ∀τ ∈ Σh.

Hence, using standard arguments and Gronwall’s lemma, we obtain the following
result.

Lemma 4. Let (σ, u) and (σh, uh) be the solutions of problems (8) and (11),
respectively. Let Π : Σ → Σh and P : V → Vh be defined as in (30). Suppose,
moreover, that u0 is in V and is such that there exists σ0 ∈ Σ with (σ0, u0) solution
to (28) for a suitable g ∈ V ′. Then the following error estimate is true:

max
t∈[0,T ]

||u(t) − uh(t)||2H +

∫ T

0

|σ(t) − σh(t)|2a dt ≤ ||Pσ0 − u0,h||2H

+ max
t∈[0,T ]

||u(t) − Pσ(t)||2H + 2

∫ T

0

|σ(t) − Πσ(t)|2a dt+ C

∫ T

0

∥∥∥∥ ∂∂t (u(t) − Pσ(t))

∥∥∥∥2

H

dt.

In order to get the convergence estimate from the previous lemma, we make the
following assumptions. First, we assume that there exists ω1(h), going to zero as h
goes to zero, such that

||u− Pσ||H ≤ ω1(h)||u||V + .(31)

Then, we need an estimate for ||σ(t) − Πσ(t)||a. In analogy to (26), we suppose that
there exists ω2(h), going to zero as h goes to zero, such that

|σ − Πσ|a ≤ ω2(h)||σ||Σ+ .(32)

Finally, we suppose the existence of ω3(h), going to zero as h goes to zero, such that∥∥∥∥ ∂∂t (u− Pσ)

∥∥∥∥
L2(H)

≤ ω3(h)

∥∥∥∥∂u∂t
∥∥∥∥
L2(V +)

.(33)

Remark 1. We explicitly notice that estimate (33) is not an immediate conse-
quence of (31) unless the operator P commutes with the time derivative. Actually,
this property is true provided some regularity assumption is made. Indeed, we need
to assume
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∂σ

∂t
∈ L2(]0, T [ ; Σ)(34)

in order to define P (∂σ(t)/∂t) ∈ Vh, according to (30):

a

(
Π
∂σ(t)

∂t
, τ

)
+ b

(
τ, P

∂σ(t)

∂t

)
= 0 ∀τ ∈ Σh,

b

(
Π
∂σ(t)

∂t
, v

)
= b

(
∂σ(t)

∂t
, v

)
∀v ∈ Vh.

Differentiating (30) with respect to t, we get

a

(
∂Πσ(t)

∂t
, τ

)
+ b

(
τ,
∂Pσ(t)

∂t

)
= 0 ∀τ ∈ Σh,

b

(
∂Πσ(t)

∂t
, v

)
= b

(
∂σ(t)

∂t
, v

)
∀v ∈ Vh.

Comparing the last two equations, and using the uniqueness hypothesis on prob-
lem (29), we finally obtain

P
∂σ(t)

∂t
=
∂Pσ(t)

∂t
for a.e. t ∈ ]0, T [ .(35)

Relation (35), which relies on the regularity assumption (34), can be used to get the
estimate ∥∥∥∥ ∂∂t (u− Pσ)

∥∥∥∥
L2(H)

≤ ω1(h)

∥∥∥∥∂u∂t
∥∥∥∥
L2(V +)

.

Assumptions (31), (32), and (33) allow us to state the following theorem.

Theorem 5. Let (σ, u) and (σh, uh) be the solutions of problems (8) and (11),
respectively. Let Π and P be the two components of the elliptic projection (30), and let
σ0 be as in Lemma 4. If (31), (32), and (33) are satisfied, then we have the following
estimate:

||u(t) − uh(t)||L∞(H) +

(∫ T

0

|σ(t) − σh(t)|2a dt
)1/2

≤ C||Pσ0 − u0,h||H + C(ω1(h) + ω2(h))||g||L2(H) + Cω3(h)

∥∥∥∥∂u∂t
∥∥∥∥
L2(V +)

.

(36)

Example 4 (convergence analysis for the mixed approximation to the heat equa-
tion). We review here the numerical examples presented in section 4. We start with
the analysis of the RT, BDM, and BDFM methods for mesh of triangles, tetrahedrons,
rectangles, and parallelepipeds. In these cases, Theorem 3 gives the optimal kth order
rate of convergence (see [13, 8]).

On general quadrilateral meshes, we can use the ABF family introduced in [1]. In
this case we cannot use Theorem 3, since the inclusion (23) is not satisfied. However,
we can invoke Theorem 5 and conclude with the optimal estimate, provided some
extra regularity on the time derivative of u is assumed.
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On the other hand, the P1 scheme does not fit within our results. Indeed, it
has been proved in [8] that (32) does not hold. We shall make it clear how things
might go wrong (as shown numerically in Figure 4) with the following considerations.
In [8] it has been shown that the P1 element, when applied to the mixed eigenvalue
problem associated with the Laplace operator, presents spurious eigenvalues. Let Ω
be the square of side length π, and define fh as the eigenfunction associated to the
first spurious eigenvalue λ̄h. We normalize fh so that ||fh||L2 = 1. This function, in
particular, has a clear checkerboard pattern, and numerical evidence shows that λ̄h
tends to a number close to six (see [8] and section 7 of this paper). Take u0 = 0, then
the continuous solution uh to the heat equation is (see (3))

uh(t) =

∞∑
i=1

wi

∫ t

0

(fh, wi)e
λi(s−t) ds.

Let us consider the discrete eigenmodes λi,h ∈ R and wi,h ∈ Vh, σi,h ∈ Σh, i =
1, . . . ,N (h), (where N (h) is the dimension of Vh) satisfying

(σi,h, τ ) + (div τ , wi,h) = 0 ∀τ ∈ Σh,
(divσi,h, v) = −λi,h(wi,h, v) ∀v ∈ Vh.

With this notation, a solution expansion also holds at the discrete level, namely,

uhh(t) =

N (h)∑
i=1

wi,h

∫ t

0

(fh, wi,h)e
λi,h(s−t) ds =

N (h)∑
i=1

wi,h(f
h, wi,h)

1 − e−λi,ht

λi,h
.(37)

Since fh tends to zero weakly in L2(Ω), the continuous asymptotic solution uh∞
tends to zero strongly in L2(Ω). On the other hand, from (37) we get

uhh(t) = fh
1 − e−λ̄ht

λ̄h
and ||uhh||L∞(L2) =

1 − e−λ̄hT

λ̄h
.

This last relation implies that an estimate like (27) cannot hold for the P1 method if
we can show that ||uh||L∞(L2) tends to zero as h goes to zero. Indeed, we can split

uh as the sum of u1 and u2 defined as follows:

∂u1

∂t
− ∆u1 = fh in Ω × ]0, T [ ,

u1(0) = uh∞ in Ω,

∂u2

∂t
− ∆u2 = 0 in Ω × ]0, T [ ,

u2(0) = −uh∞ in Ω.

It is clear that u1(t) = uh∞ for all t, so that

||uh||L∞(L2) ≤ ||u1||L∞(L2) + ||u2||L∞(L2) ≤ 2||uh∞||L2 .

6. Convergence analysis for the
(f
0

)
-type evolution problems. Also in this

section we present two different error estimates. In the first one, we shall make the
hypothesis that the bilinear form a is coercive on the whole space V (see Theorem 9).
This estimate applies, for instance, to the Stokes problem introduced in Example 3
and in this case provides the optimal rate of convergence only when the lowest order
elements are used. In the second estimate, presented in Theorem 11, we only assume
the ellipticity in the kernel (16), but, in order to get the result, we require an additional
approximation property. If applied to the Stokes problem, this estimate turns out to
be optimal also for higher order schemes.
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We recall the continuous problem (15) and its space semidiscretization (19). The
hypotheses on the forms, in particular the ellipticity in the kernel (16), have been
made in section 3.2. Given T > 0, f : ]0, T [ → V ′, and u0 ∈ H, for almost every
t ∈ ]0, T [ find u(t) ∈ V and p(t) ∈ Q such that

d

dt
(u(t), v) + a(u(t), v) + b(v, p(t)) = V ′< f, v >V ∀v ∈ V,

b(u(t), q) = 0 ∀q ∈ Q,
u(0) = u0.

The discrete counterpart reads as follows: For almost every t, find uh(t) ∈ Vh and
ph(t) ∈ Qh such that

d

dt
(uh(t), v) + a(uh(t), v) + b(v, ph(t)) = V ′< f, v >V ∀v ∈ Vh,

b(uh(t), q) = 0 ∀q ∈ Qh,
uh(0) = u0,h,

where u0,h ∈ Vh is an approximation of u0. The error equations are as follows:

d

dt
(u(t) − uh(t), v) + a(u(t) − uh(t), v) + b(v, p(t) − ph(t)) = 0 ∀v ∈ Vh,

b(u(t) − uh(t), q) = 0 ∀q ∈ Qh.

In the next lemma, we shall use the kernel of the discrete operator associated to b,
namely, Kh = {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh}.

Lemma 6. Let us suppose that the form a is elliptic in V , that is, (16) holds
for any v ∈ V . Let (u, p) and (uh, ph) be the solutions of problems (15) and (19),
respectively. If the time derivatives of u and uh are bounded in L2(]0, T [ ;H), then
the following estimate holds true:

max
t∈[0,T ]

||u(t) − uh(t)||2H + α

∫ T

0

||u(t) − uh(t)||2V ≤ ||u0 − u0,h||2H

+ C

(∫ T

0

||u(t) − Πu(t)||2H dt
)1/2

+ C

∫ T

0

||u(t) − Πu(t)||2V dt

+

∫ T

0

b(Πu(t) − uh(t), p(t)) dt,

(38)

where Π is an operator from V + to the discrete kernel Kh.
Proof. From the ellipticity and the error equations we get

1

2

d

dt
||u(t) − uh(t)||2H + α||u(t) − uh(t)||2V

=

(
∂

∂t

(
u(t) − uh(t)

)
, u(t) − uh(t)

)
+ a(u(t) − uh(t), u(t) − uh(t))

=

(
∂

∂t

(
u(t) − uh(t)

)
, u(t) − Πu(t)

)
+ a(u(t) − uh(t), u(t) − Πu(t))

− b(Πu(t) − uh(t), p(t) − ph(t)).

(39)

From our assumption on the time derivative of u and uh and the fact that Πu(t) ∈ Kh,
we easily get the result integrating from 0 to T .
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Remark 2. From the previous proof it follows that the first constant C appearing
on the right-hand side of (38) is related to the bound of the time derivatives of u and
uh in L2(]0, T [ ;H). This is a regularity assumption which is in general not too strong
if f ∈ L2(]0, T [ ;H). On the other hand, if the time derivatives of u and uh are only
in L2(]0, T [ ;V ′), then a result similar to (38) can be obtained but with the V norm
instead of the H one in the second term in the right-hand side.

In order to obtain a rate of convergence from the previous lemma, we consider
V + ⊆ V and Q+ ⊆ Q such that the solution to (15) satisfies u ∈ L2(]0, T [ ;V +)
and p ∈ L2(]0, T [ ;Q+) if f ∈ L2(]0, T [ ;H) with the a priori estimate ‖u‖L2(V +) +
‖p‖L2(Q+) ≤ C‖f‖L2(H). Then we introduce the following definitions (see [7]).

Definition 7. We say that the weak approximability property of the space Q+

holds, if there exists ρ1(h), tending to zero as h goes to zero, such that

sup
vh∈Kh

b(vh, p)

||vh||V ≤ ρ1(h)||p||Q+ ∀p ∈ Q+.

Moreover, we also need an approximability property of the kernel; hence, we
define the following strong approximability of V +.

Definition 8. The strong approximability of V + with respect to Π is satisfied if
there exists ρ2(h) tending to zero as h goes to zero, such that for all u ∈ V + it holds
that

‖u− Πuh‖V ≤ ρ2(h)‖u‖V + .

If the above definitions are fulfilled, then the following theorem holds true.
Theorem 9. Let us assume that the form a is elliptic in V and that Definitions

7 and 8 hold true. Moreover, let us denote by ρ3(h) a function going to zero as h
tends to zero such that ||u − Πu||H ≤ ρ3(h)||u||V + . Let (u, p) and (uh, ph) be the
solutions of problems (15) and (19), respectively. If the time derivatives of u and uh
are bounded in L2(]0, T [ ;H), then we have the following error estimate:

||u− uh||L∞(H) + ||u− uh||L2(V ) ≤ ||u0 − u0,h||H
+ C

(√
ρ3(h)||f ||L2(H) + (ρ1(h) + ρ2(h)) ||f ||L2(H)

)
.

(40)

Remark 3. Since V ⊆ H with continuous embedding, we could take ρ3(h) = ρ2(h)
in the previous theorem. However, we prefer to keep separated the two functions, since
in general the approximation in H might be of higher order than in V .

From estimate (40), it is clear that, in order to derive an optimal order of conver-
gence, we need a good balance among the ρi, i = 1, 2, 3. We shall discuss this issue
in more detail in Example 5.

Going back to the proof of the previous theorem, we notice that, taking in (39)
Π as the H projection onto the discrete kernel Kh, we obtain the following different
estimate, provided u belongs to L∞(V ) (see [14] for a similar approach to the analysis
of the Navier–Stokes equations):

||u− uh||L∞(H) + ||u− uh||L2(V )

≤ ||u0 − u0,h||H + C
(
ρ4(h)||u||L∞(V ) + ρ2(h)‖u‖L2(V +) + ρ1(h)||p||L2(Q+)

)
,

(41)

where ρ4(h), going to zero as h tends to zero, is such that

||u− Πu||H ≤ ρ4(h)||u||V .(42)
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We notice that this estimate is not fully satisfactory either. Indeed, in some cases, in
order to get a good bound for ρ4(h), one should use an inverse inequality, leading to
stronger assumptions on the mesh sequence.

We are now ready to present the second estimate of this section. Let Π : V + ×
Q+ → Kh and P : V + ×Q+ → Qh denote the elliptic projections; that is, for u ∈ V +

and p ∈ Q+,

a(Π(u, p), v) + b(v, P (u, p)) = a(u, v) + b(v, p) ∀v ∈ Vh,
b(Π(u, p), q) = 0 ∀q ∈ Qh.

(43)

In order to give sense to (43), we make the assumption that the approximation to the
steady equation associated with problem (15) is stable in the sense of [13].

Lemma 10. Let (u, p) and (uh, ph) be the solutions of problems (15) and (19),
respectively. Assume that the form a is uniformly elliptic in the discrete kernel; that
is, (16) is satisfied for any v ∈ Kh with α independent of h. Then we have

max
t∈[0,T ]

||u(t) − uh(t)||2H + α

∫ T

0

||u(t) − uh(t)||2V dt ≤ ||Π(u0, 0) − u0,h||2H
+ max
t∈[0,T ]

||u(t) − Π(u(t), p(t))||2H

+

∫ T

0

(∥∥∥∥ ∂∂t (u(t) − Π(u(t), p(t)))

∥∥∥∥2

H

+ ||u(t) − Π(u(t), p(t))||2V
)
dt,

(44)

where Π is the elliptic projector mapping V + ×Q+ into Kh (see (43)).
Proof. Using the ellipticity in the discrete kernel we have

1

2

d

dt
||Π(u(t), p(t)) − uh(t)||2H + α||Π(u(t), p(t)) − uh(t)||2V

≤−
(
∂

∂t

(
u(t) − Π(u(t), p(t))

)
,Π(u(t), p(t)) − uh(t)

)
− a(u(t) − Π(u(t), p(t)),Π(u(t), p(t)) − uh(t))

− b(Π(u(t), p(t)) − uh(t), p(t) − ph(t)).

In the last term, ph can be replaced by P (u, p) ∈ Qh, since Π(u(t), p(t))−uh(t) ∈ Kh.
Then, using the definition of the elliptic projections (see (43)), we get the desired
estimate.

The following theorem gives the convergence result.
Theorem 11. Let the hypotheses of Lemma 10 be satisfied, and suppose that

the strong approximability property (see Definition 8) is fulfilled. Then, we have the
estimate

(45)

||u− uh||L∞(H) + α||u− uh||L2(V )

≤ ||Π(u0, 0) − u0,h||H + ρ4(h)

(
||u||L∞(V ) +

∥∥∥∥∂u∂t
∥∥∥∥
L2(V )

)
+ ρ2(h)||u||L2(V +),

where ρ4(h) has been introduced in (42).
Proof. The proof easily follows from the previous lemma, by noticing that the

elliptic projection operator Π commutes with the time derivative.
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We now present an estimate for the pressure.
Theorem 12. Let (u, p) and (uh, ph) be the solutions of problems (15) and (19),

respectively. Let the hypotheses of Lemma 10 be satisfied, and suppose that the fol-
lowing discrete inf-sup condition holds with β > 0 independent of h:

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

||vh||V ||qh||Q ≥ β.

If there exists ρ5(h) going to zero as h tends to zero such that

||p− P (u, p)||Q ≤ ρ5(h)||p||Q+ ∀q ∈ Q+,

then we have the following estimate:

||p− ph||L2(Q) ≤ C

(
ρ5(h)||p||L2(Q+) + ρ4(h)

∥∥∥∥∂u∂t
∥∥∥∥
L2(V )

+ ||Π(u0, 0) − u0,h||V
)
.

(46)

Proof. For almost any t we have

β||P (u(t), p(t)) − ph(t)||Q ≤ sup
vh∈Vh

b(vh, P (u(t), p(t)) − ph(t))

||vh||V

= sup
vh∈Vh

b(vh, P (u(t), p(t)) − p(t)) −
(
∂

∂t

(
u(t) − uh(t)

)
, vh

)
− a(u(t) − uh(t), vh)

||vh||V
≤ ||p(t) − P (u(t), p(t))||Q +

∥∥∥∥ ∂∂t(u(t) − uh(t)
)∥∥∥∥

V ′
+ ||u(t) − uh(t)||V .

In order to conclude the proof we need to estimate the second term. We subtract
from the first equation in (43) the first equation in (19) and, taking vh ∈ Kh, we get(

∂

∂t

(
Π(u(t), p(t)) − uh(t)

)
, vh

)
+ a(Π(u(t), p(t)) − uh(t), vh)

= −
(
∂

∂t

(
u(t) − Π(u(t), p(t))

)
, vh

)
.

We take vh = ∂(Π(u(t), p(t)) − uh(t))/∂t ∈ Kh, and we have∥∥∥∥ ∂∂t(Π(u(t), p(t)) − uh(t)
)∥∥∥∥2

H

+
1

2

d

dt
a(Π(u(t), p(t)) − uh(t),Π(u(t), p(t)) − uh(t))

≤
∥∥∥∥ ∂∂t(u(t) − Π(u(t), p(t))

)∥∥∥∥
H

∥∥∥∥ ∂∂t(Π(u(t), p(t)) − uh(t)
)∥∥∥∥

H

.

Integrating over [0, T ], we obtain the result in a standard way.
Example 5 (convergence analysis for the approximation to the evolution Stokes

problem). Estimate (40) can be used when lowest order elements are used. For
instance, if we consider the MINI element (see [2]); then we have ρ2(h) = Ch, ρ3(h) =
Ch2, and ρ1(h) can be bounded by Ch in a standard way as follows:

sup
vh∈Kh

b(vh, p)

||vh||H1

= sup
vh∈Kh

b(vh, p− pI)

||vh||H1

≤ Ch||p||H1 ,
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where pI is an approximation of p satisfying ‖p−pI‖L2 ≤ Ch‖p‖H1 . Then, Theorem 9
gives a first order convergence estimate.

Estimate (45) can be used to analyze higher order methods. For instance, when
using generalized kth order Hood–Taylor schemes (see [5] and [6]), we have ||u −
Π(u, p)||L2 + h||u − Π(u, p)||H1 ≤ Chk+1|u|Hk+1 and Theorem 11 gives a kth order
estimate, provided suitable regularity on the solution is assumed, in particular on
the time derivative of u. An alternative estimate can be obtained from (41) with no
regularity assumptions on ∂u/∂t but with the need for an inverse inequality. As far
as the approximation of the pressure is concerned, the conclusions of Theorem 12 are
that ||p − ph||L2(L2) is O(hk), as expected, provided the solution is smooth enough
(see (46)).

7. Further considerations on the heat equation in mixed form. In this
section we study in more detail the numerical results reported at the end of section 4.
We introduce a modified P1 element on criss-cross meshes, which we call P1∗, following
the notation of [8], and which has a behavior similar to the P1 element with respect
to the convergence of eigenmodes. We recall that the criss-cross mesh is constructed
by dividing Ω into N -by-N subsquares (macroelements) which are then partitioned
into four subtriangles by their diagonals. The elements P1 and P1∗ present different
definitions of both spaces Σh and Vh. For the P1∗ approximation, the space of scalars
Vh is made of piecewise constants on the square macroelements and the number of
degrees of freedom in Σh has been reduced by eliminating the ones corresponding to
the centers of the macroelements. The elimination is performed in such a way that
the divergences of the elements in Σh are constant on each macroelement. We refer
the reader to [8] for more details on how to perform the elimination of such degrees
of freedom.

To get started, we recall the mixed formulation of the Laplace eigenproblem: Find
λ ∈ R such that there exist w ∈ V = L2

0(Ω) and σ ∈ Σ = H0(div; Ω) with w �≡ 0
satisfying

(σ, τ ) + (div τ , w) = 0 ∀τ ∈ Σ,
(divσ, v) = −λ(w, v) ∀v ∈ V,

(47)

and its numerical approximation with the P1∗ method: Find λh ∈ R such that there
exist wh ∈ Vh and σh ∈ Σh with wh �≡ 0 satisfying

(σh, τ ) + (div τ , wh) = 0 ∀τ ∈ Σh,
(divσh, v) = −λh(wh, v) ∀v ∈ Vh.

(48)

It can be easily shown (in (48), set wh = −1/λh divσh, which comes from the second
equation, into the first equation) that the eigenvalues of (48) correspond to the non-
vanishing ones of the following problem: Find λh ∈ R such that there exists σh ∈ Σ
with σh �≡ 0 satisfying

(divσh,div τ ) = λh(σh, τ ) ∀τ ∈ Σh.(49)

In [8] it has been proved and numerically demonstrated that this method does not
work. Namely, some spurious solutions appear which pollute the numerical spectrum.
Here we present the following new result which shows that the only pathology of the
method under consideration is the presence of spurious modes; namely, all continuous
eigenmodes are correctly approximated.
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Let Ω = ]0, π[× ]0, π[ ; then by separation of variable it is easy to obtain the exact
solution to (47):

λmn = m2 + n2, m, n ∈ N, n+m �= 0,

σmn(x, y) = (m sin(mx) cos(ny), n cos(mx) sin(nx)),

wmn = − cos(mx) cos(ny).

The following proposition and the next corollary give the expressions of the discrete
solutions to (49) and (48).

Proposition 13. Given N ∈ N, and defined

h = π/N, cm = cos(mh), cn = cos(nh),

A = (1 + 1/3 cos(mh) + 1/3 cos(nh) + 1/3 cos(mh) cos(nh))(cos(nh) − cos(mh)),

B1 = sin(mh) sin(nh)(4/3 + 2/3 cos(mh)),

B2 = sin(mh) sin(nh)(4/3 + 2/3 cos(nh)),

for m,n = 0, . . . , N − 1, the eigenvalues of scheme (49) are given by λ00
h = 0,

λm0
h =

6

h2

1 − cos(mh)

2 + cos(mh)
, λ0n

h =
6

h2

1 − cos(nh)

2 + cos(nh)
,

λmnh =
2

h2

4 + cm + cn − (cm + cn)2 − cm cn(cm + cn) + 3
√
A2 +B1B2

(1 + cm/3 + cn/3 + cm cn/3)(4 + cm + cn) −√
A2 +B1B2

, mn > 0.

(50)

Setting for mn > 0,

m =

√
A+

√
A2 +B1B2

B2

√
nm, n =

√
−A+

√
A2 +B1B2

B1

√
nm,(51)

the eigenfunctions corresponding to (50) are

σmnh (xi, yj) =

⎧⎪⎨⎪⎩
(m sin(mxi), 0) if n = 0,

(0, n sin(nyj)) if m = 0,

(m sin(mxi) cos(nyj), n cos(mxi) sin(nyj) if mn > 0.

(52)

Proof. We provide a sketch of the proof which is mainly a tedious calculation.
Considering the reference criss-cross macroelement (based on the square [0, 1]× [0, 1]),
we denote by ϕi(x̂, ŷ), i = 1, . . . , 5, the standard continuous piecewise linear functions
associated to the nodes represented in Figure 3. It turns out that the eight basis
functions for the space Σh are

ψ1(x̂, ŷ) = (ϕ1(x̂, ŷ) + ϕ5(x̂, ŷ)/4, ϕ5(x̂, ŷ)/4),
ψ2(x̂, ŷ) = (ϕ5(x̂, ŷ)/4, ϕ1(x̂, ŷ) + ϕ5(x̂, ŷ)/4),
ψ3(x̂, ŷ) = (ϕ2(x̂, ŷ) + ϕ5(x̂, ŷ)/4,−ϕ5(x̂, ŷ)/4),
ψ4(x̂, ŷ) = (−ϕ5(x̂, ŷ)/4, ϕ2(x̂, ŷ) + ϕ5(x̂, ŷ)/4),
ψ5(x̂, ŷ) = (ϕ3(x̂, ŷ) + ϕ5(x̂, ŷ)/4, ϕ5(x̂, ŷ)/4),
ψ6(x̂, ŷ) = (ϕ5(x̂, ŷ)/4, ϕ3(x̂, ŷ) + ϕ5(x̂, ŷ)/4),
ψ7(x̂, ŷ) = (ϕ4(x̂, ŷ) + ϕ5(x̂, ŷ)/4,−ϕ5(x̂, ŷ)/4),
ψ8(x̂, ŷ) = (−ϕ5(x̂, ŷ)/4, ϕ4(x̂, ŷ) + ϕ5(x̂, ŷ)/4),
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where the numbering is taken such that ψ2i−1(x̂, ŷ) and ψ2i(x̂, ŷ) are the two shape
functions associated with node i (i = 1, . . . , 4). Taking σh as given by (52), it is
easy (even if long) to check that the expression for λh is the one reported in (50).
We acknowledge that, in order to guess the correct expression for (52), we have used
Mathematica (see [24]).

Corollary 14. With the same notation as in Proposition 13, the solutions
(λh,σh, wh) of (48) are given by (50), (52), and by the following expressions:

(53)

wm0
h |Kij = − 2

hλm0
h

m sin
(
m
h

2

)
cos
(
mxi+ 1

2

)
,

w0n
h |Kij = − 2

hλ0n
h

n sin
(
n
h

2

)
cos
(
nyj+ 1

2

)
,

wmnh |Kij

= − 2

hλmnh

(
m sin

(
m
h

2

)
cos
(
n
h

2

)
+ n sin

(
n
h

2

)
cos
(
m
h

2

))
cos
(
mxi+ 1

2

)
cos
(
nyj+ 1

2

)
,

where the last term in (53) holds for mn > 0 and xi+1/2 = xi+h/2, yj+1/2 = yi+h/2,
and Kij is the square of vertices (xi, yj), (xi+1, yj), (xi+1, yj+1), and (xi, yj+1).

Proof. The proof follows from the expressions for λh and σh given in Proposi-
tion 13 and from the formula wh = −divσh/λh.

Let m and n be fixed; then from (50) and (51) we have

lim
h→0

λmnh = m2 + n2 and lim
h→0

m = m, lim
h→0

n = n,

so that it is evident that all continuous eigensolutions are approximated by a suitably
chosen discrete one. On the other hand, if we take m = n = N − 1 = π/h− 1, then

lim
h→0

λN−1,N−1
h = 6,

which does not correspond to any continuous eigenvalue of (47). This result is in
agreement with the numerical experiments presented in [8], where, in particular, the
presence of a sequence of spurious eigenvalues converging to 6 was apparent. For
a better understanding of the behavior of the discrete eigenvalues, in Figure 6 we
present the graph of λmnh as a function of m,n when N = 100. The obtained surface
is similar to the one obtained in [9] in an analogue situation. We now present the
main result of this section, which is closely related to the numerical tests reported in
section 4. In that section, we showed two examples in order to demonstrate that the
P1 method provides results which are acceptable in one case (regular right-hand side)
and awful in the other (oscillatory right-hand side). Here we theoretically substantiate
those tests, proving that, in general, the P1∗ methods works if the right-hand side
is regular enough. Our theorem is proved under the general hypothesis that any
continuous eigensolution to (47) is well approximated by the numerical scheme, no
matter whether other spurious solutions are present. For this reason we analyze the
P1∗ method, since to our best knowledge estimates like (50), (52), and (53) are not
available for the P1 method. On the other hand, we chose to perform the numerical
tests using the P1 method (which seems more natural), even though the P1∗ method
would behave similarly.
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Fig. 6. Eigenvalues corresponding to formula (50) as functions of m and n when N = 100.

Theorem 15. Let us consider the P1∗ element for the approximation of the heat
equation as in scheme (12), and let g ∈ L∞(]0, T [;L2(Ω)) and u0 ∈ L2(Ω).

Then, if (σ, u) is the continuous solution and (σh, uh) the discrete one, we have
that uh converges to u in L∞([0, T ];L2(Ω)).

Proof. The regularity assumptions on g and u0 can be written in a more convenient
way as follows: For any ε > 0 there exists N such that∑

i>N

(g(t), wi)
2 < ε, ∀t ∈ [0, T ],

∑
i>N

(u0, wi)
2 < ε,(54)

where wi denote the eigenfunctions of problem (47).
The following structure for the continuous and discrete solutions of the mixed

heat equation holds:

u(t) =

∞∑
i=1

(
(u0, wi)e

−λit +

∫ t

0

(g(s), wi)e
−λi(t−s) ds

)
wi,

uh(t) =

∞∑
i=1

(
(u0, wih)e−λi,ht +

∫ t

0

(g(s), wi,h)e
−λi,h(t−s) ds

)
wi,h,

(55)

where λi and wi (resp., λi,h and wi,h for i = 1, . . . ,N (h)) denote continuous (resp.,
discrete) eigensolutions of problem (47) (resp., (48)). According to the analysis pre-
sented at the beginning of this section (see, in particular, (50) and (53)), they can be
ordered in such a way that for any i,

λi,h → λi and wi,h → wi pointwise in Ω(56)

as h goes to zero. We explicitly note that in the previous notation we have associated
with any eigenvalue λi (resp., λi,h) a one-dimensional eigenspace spanned by the
eigenfunction wi (resp., wi,h); this means in particular that it might be λi = λj
(and/or, resp., λi,h = λj,h) for some i �= j. Moreover, we shall use the orthogonalities
(wi, wj) = 0 (resp., (wi,h, wj,h)) for i �= j.

The aim of our proof is to show that for any ε > 0 we have ||u(t) − uh(t)||0 < ε
for any t ∈ [0, T ] when h is small enough. Using (55), we have

||u(t) − uh(t)||20 ≤ T1 + T2 + T3 + T4
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with

T1 =

∞∑
i=N+1

(
(u0, wi)

2e−2λit +

∫ t

0

(g(s), wi)
2e−2λi(t−s) ds

)
,

T2 =

N (h)∑
i=N+1

(
(u0, wi,h)

2e−2λi,ht +

∫ t

0

(g(s), wi,h)
2e−2λi,h(t−s) ds

)
,

T3 =

∥∥∥∥∥
N∑
i=1

(
(u0, wi)wie

−λit − (u0, wi,h)wi,he
−λi,ht

)∥∥∥∥∥
2

0

,

T4 =

∫ t

0

∥∥∥∥∥
N∑
i=1

(
(g(s), wi)wie

−λi(t−s) − (g(s), wi,h)wi,he
−λi,h(t−s)

)∥∥∥∥∥
2

0

ds.

Given ε > 0, thanks to the regularity hypotheses (54), we can choose N such that
T1 < ε. The convergence of the eigenvalues and eigenvectors (56) gives that, for h
small enough, we also have T3 < ε and T4 < ε. It remains to estimate T2, which
we do now. We shall show that

∑
i>N (u0, wi,h)

2 can be bounded by 2ε if h is small
enough. The term involving g(s) can be handled in the same way and, putting things
together, this is what we need in order to get T2 < ε. The term

∑
i>N (u0, wi,h)

2 can
indeed be estimated in the following way. We have

N∑
i=1

(u0, wi,h)
2 +

N (h)∑
i=N+1

(u0, wi,h)
2 =

N (h)∑
i=1

(u0, wi,h)
2

≤
∞∑
i=1

(u0, wi)
2 =

N∑
i=1

(u0, wi)
2 +

∞∑
i=N+1

(u0, wi)
2 ≤

N∑
i=1

(u0, wi)
2 + ε.

From the convergence of the eigenvectors (56), we have, for h small enough,

N∑
i=1

(u0, wi,h)
2 −

N∑
i=1

(u0, wi)
2 ≤ ε, and the bound

N (h)∑
i=N+1

(u0, wi,h)
2 ≤ 2ε.

Remark 4. The proof of the previous theorem strongly relies on (54) and (56).
In particular, it shows that any scheme which provides convergent eigenmodes for
problem (47) (no matter whether spurious solutions are present) can be successfully
applied to the approximation of the heat equation in the case of smooth data (in the
sense of (54)).
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Abstract. We construct a family of absorbing boundary conditions for the linear Schrödinger
equation on curved boundaries in any dimension which are local both in space and time. We give a
convergence result and show that the corresponding initial boundary value problems are well posed.
We also prove the nonlinear Schrödinger equation with the absorbing boundary conditions of the
linearized problem to be well posed. We finally present numerical results both for the linear and the
nonlinear case.
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1. Introduction. The Schrödinger equation on the whole space arises in par-
ticular in quantum mechanics and, with some additional nonlinear term, models the
propagation of a laser beam. Numerical computations of this equation are therefore
often needed. Although the problem is defined in the whole space, it is often sufficient
to know the solution only on a bounded domain: the domain of interest. An artificial
domain which includes this region of interest is then defined. Inside the domain the
equations are discretized in the usual way but there remains the question of the choice
of reliable boundary conditions on the artificial boundary. To reduce the computa-
tional cost, the numerical domain must be chosen to be slightly larger than the region
of interest. Thus the boundary conditions have to be well posed and accurate to be
able to approximate the restriction of the solution to the domain of interest.

Several strategies have been developed to find boundary conditions that minimize
the reflection of the solution at the artificial boundary. These absorbing boundary
conditions have been constructed for hyperbolic problems [12] and parabolic problems
[14] with success using pseudodifferential calculus. This is the strategy we develop in
this paper for the linear Schrödinger equation.

Engquist and Majda [12] first found a sequence of absorbing boundary conditions
for the case of the wave equation in a half space which implies the convergence toward
the restriction to this half-space of the solution in the whole space. They also imple-
mented a strategy based on a pseudodifferential factorization of the operator allowing
them to derive absorbing boundary conditions for linear hyperbolic equations with
variable coefficients.

For linear parabolic equations, Halpern and Rauch [14] also used a pseudo-
differential factorization of the operator to construct a family of absorbing boundary
conditions on a curved boundary, and they identified the various terms geometrically.
In [10], Dubach implemented these boundary conditions in R

2 on a disk.
In the case of the reaction diffusion equations, we used the conditions designed

for the linearized heat equation, we proved them to be well posed for the nonlinear
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problem and, through numerical experiments, that they were well suited for reaction-
diffusion equations (see [27]).

In the case of the linear Schrödinger equation, several authors [6], [8], [25], [4],
[5], [22], [3] approximated the transparent condition (the boundary condition satisfied
by the exact solution) with a finite difference scheme in one space dimension. The
authors in [26], [17], [9], [13], and [1] constructed absorbing boundary conditions for
the half-space case, and the author in [9] proved with the Laplace transform in time
and Fourier transform in the directions of the boundary that they are well posed.
Antoine and Besse [2] wrote absorbing boundary conditions involving the nonlocal
operator in time

√
∂t in the case of a curved boundary in two dimensions, and they

identified the various terms geometrically. In [7], the authors tested numerically
some qualitative properties of absorbing boundary conditions designed for the linear
Schrödinger equation on a nonlinear Schrödinger equation.

We extend here all these works for the linear and nonlinear Schrödinger equa-
tions. As in [12], we rely on the theory of reflection of singularities we derived in a
related paper [28]. The present work consists of two parts. First, we study the linear
Schrödinger equation. We recall the expression of the transparent operator obtained
in [28] through a result of reflection of singularities for the Schrödinger equation, and
we identify geometrically the first two terms in the asymptotic expansion. The trans-
parent condition is not very manageable for numerical simulation and we approximate
it with absorbing boundary conditions that are easy to implement. We justify the
choice of these absorbing boundary conditions in the case of the half-space with a con-
vergence result and we generalize these conditions for open sets with curved boundary.
Then we show the Schrödinger equation to be well posed with these conditions. Fi-
nally, we present numerical results in the linear case relying on the optimization of
the reflection coefficient.

Second, we study the application to the nonlinear case. We prove the well-
posedness of the nonlinear problem with the boundary conditions of the linear one:
these boundary conditions have never been studied in the Schrödinger literature. We
define an iterative scheme, and we use the estimates of the linear nonhomogeneous
problem to show the convergence of the scheme. We finally present numerical results
related to the propagation of solitons.

2. The linear Schrödinger equation. We try to approximate the restriction
to a bounded region of the solution uex of the Cauchy problem for the Schrödinger
operator: {

(i∂t + ∆)uex = 0 in R
+
t × R

d,
uex|t=0 = u0.

(2.1)

2.1. Absorbing boundary conditions for the Schrödinger equation.

2.1.1. The transparent operator for the Schrödinger equation. We adapt
to the Schrödinger equation the work of Engquist and Majda on absorbing bound-
ary conditions for hyperbolic equations [12] and the work of Halpern and Rauch
on absorbing boundary conditions for parabolic equations [14]. We first factorize the
Schrödinger operator near the boundary of the numerical domain through Nirenberg’s
method, as in the case of hyperbolic [12] and parabolic [14] equations. We deduce the
transparent operator from this factorization using a result of reflection of singularities.
This is an important result in itself and was addressed in a separate paper [28].

Let Ω be a bounded convex open subset of R
d which together with its boundary

S is an embedded smooth submanifold with boundary. Let L = i∂t + ∆ be the
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Schrödinger operator on R
d, u0 be in L2(Rd) with compact support in Ω, and uex in

C0(R+
t , L

2(Rd)) be the unique solution of (2.1).
We consider the Dirichlet problem for L. Let h be in C∞

0 (R × S) so that h ≡ 0
for t ≤ 0, and let v be the unique solution of⎧⎪⎨⎪⎩

Lv = 0 in R × Ω,

v|R×S = h,

v = 0 for t ≤ 0 in Ω.

(2.2)

Let νΩ be the unit outward pointing normal. We call NΩ : h→ ∂νΩv|S the Dirichlet-
to-Neumann map for the open set Ω and the operator L.

In Ω̃ = ext(Ω), uex is a solution of{
Luex = 0 in R × Ω̃,

uex = 0 for t ≤ 0.
(2.3)

The definition ofNΩ̃ therefore implies ∂νΩuex = −NΩ̃(uex|R×S). Thus uex is a solution
of ⎧⎪⎨⎪⎩

Luex = 0 in R
+ × Ω,

∂νΩuex = −NΩ̃uex in R
+ × S,

uex = u0 at t = 0.

(2.4)

As in [21], for any even integer r, we define the inhomogeneous Sobolev space,

Hr, r2 (]0, T [×Ω) = {u ∈ D′(]0, T [×Ω)/∂lt∂
α
x u ∈ L2(]0, T [×Ω)

∀(l, α), 2l + |α| ≤ r},(2.5)

and extend it for r ≥ 0 by interpolation. uex|R+×Ω is the unique solution of (2.4).
Lemma 1. Let u0 be in H4(Rd) with compact support in Ω and T > 0. There

exists a unique solution w of (2.4) in H4,2(]0, T [×Ω).
Proof. The extension of u0 by 0 outside Ω is in H4(Rd) and we still call it u0.

The solution uex of (2.1) is in H4,2(]0, T [×R
d) and taking w = uex|R+×Ω imply the

existence.
Let w be a solution of (2.4) in H4,2(]0, T [×Ω) and let h = w|

R
+×S . The results

in [21] imply that h is in H7/2,7/4(]0, T [×S) and satisfies h|t=0 = ∂th|t=0 = 0, and

that there exists a unique solution v in H2,1(]0, T [×Ω̃) of (2.2), where Ω̃ replaces Ω.

Multiplying (2.2) by v̂, taking the imaginary part, and integrating on Ω̃ in space and
on ]0, T ′[ in time,

‖v(T ′, .)‖2
L2(Ω) +

∫ T ′

0

[∂νΩ̃v, v] = 0,(2.6)

where 0 ≤ T ′ ≤ T , and [., .] denotes the Hermitian product in L2(S). Multiplying
(2.4) by ŵ, taking the imaginary part, and integrating on Ω in space and on ]0, T ′[ in
time,

‖w(T ′, .)‖2
L2(Ω) − ‖u0‖2

L2(Ω) −
∫ T ′

0

[NΩ̃w,w] = 0.(2.7)
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As w|
R

+×S = w|
R

+×S = h and ∂νΩ̃v = NΩ̃h by definition of NΩ̃,∫ T ′

0

[∂νΩ̃v, v] =

∫ T ′

0

[NΩ̃w,w],

and thus
∫ T ′

0
[NΩ̃w,w] ≤ 0 by (2.6), which implies for all 0 ≤ T ′ ≤ T

‖w(T ′, .)‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω)(2.8)

in view of (2.7). (2.8) implies the uniqueness result.
We first show that NΩ̃ is a pseudodifferential operator and compute the first

two terms of its symbol. For this we use a change of coordinates which splits the
normal coordinate from the tangential ones in L. We recall the expression of the
Laplace–Beltrami operator for the Riemannian metric g =

∑
gijdxi ⊗ dxj ,

∆gv =
∑
i,j

(detg)−
1
2 ∂xi

((detg)
1
2 gij∂xj

v),

where gij = (g−1)i,j . Therefore L = i∂t + ∆g with g being the canonical scalar
product on R

d. In geodesic normal coordinates, g has the form

g = (dxd)
2 +

d−1∑
α,β=1

gαβdxαdxβ

(i.e., gid = 0 for i = 1, . . . , d− 1, and gdd = 1), and

∆gv = ρ−1∂xd
(ρ∂xd

v) +

d−1∑
α,β=1

ρ−1∂xα(ρgαβ∂xβ
v),

where ρ = (detg)1/2 (with the analyst’s sign convention for ∆g). With the standard
notation D ≡ −i∇ ≡ (D1, . . . , Dd) ≡ (D′, Dd), the operator L takes the form

L = −D2
d + iρ−1∂xd

ρDd +

d−1∑
α,β=1

ρ−1∂α(ρgαβ)iDβ −
d−1∑
α,β=1

gαβDαDβ −Dt.

Lascar [18] introduces a pseudodifferential algebra well suited to the Schrödinger
equation. The symbol class SmSch(Rt × R

d
x) is defined by

|∂αt,x∂βτ,ξp(t, x, τ, ξ)| ≤ Cα,β(1 + τ2 + |ξ|4)
m−2βτ−|βξ|

4 .(2.9)

Remark. Antoine and Besse [2] use this algebra to compute NΩ.
We will give an approximation of NΩ by an operator of OpS1

Sch(Rt × S).
Let I be the first fundamental form for the metric g restricted to S. I is given by

I(x′)(ξ′, ξ′) =

d−1∑
α,β=1

gαβξαξβ .

We define the glancing region G, the hyperbolic region H, and the elliptic region E :

G = {(t, (x′, 0), τ, ξ′) ∈ T ∗(Rt × S)/τ + I(x′)(ξ′, ξ′) = 0},(2.10)
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H = {(t, (x′, 0), τ, ξ′) ∈ T ∗(Rt × S)/τ + I(x′)(ξ′, ξ′) < 0},(2.11)

E = {(t, (x′, 0), τ, ξ′) ∈ T ∗(Rt × S)/τ + I(x′)(ξ′, ξ′) > 0}.(2.12)

The following result is proved in [28] using Nirenberg’s procedure of factorization
(see [23]).

Proposition 1. Suppose geodesic normal coordinates are introduced as above.
Then there are tangential pseudodifferential operators A(x,Dt, Dx′) and B(x,Dt, Dx′)
in C∞(] − ε, ε[xd

, OpS1
Sch(T

∗(Rt × S)\G)) with symbols

A(x, τ, ξ′) ∼
∑
j≥0

A1−j(x, τ, ξ′),

B(x, τ, ξ′) ∼
∑
j≥0

B1−j(x, τ, ξ′)

with Ak and Bk satisfying Ak(x, λ
2τ, λξ′) = λkAk(x, τ, ξ

′) and Bk(x, λ
2τ, λξ′) =

λkBk(x, τ, ξ
′) for all λ > 0 such that

L = −(Dxd
+A)(Dxd

+B) mod C∞(] − ε, ε[xd
: OpS−∞

Sch (T ∗(Rt × S)\G)),

B1 ∈ iR+ in E and B1 ∈ R
+ in H.(2.13)

We compute B1 and B0:

(Dxd
+A)(Dxd

+B) = D2
xd

+ (A+B)Dxd
+AB + [Dxd

, B]

∼ D2
xd

+ (A+B)Dxd
− i

∂B

∂xd
+
∑

(∂ατ,ξ′A)(Dα
t,x′B)/α!.

Comparing with the expression of L, we identify

B1 =

(
− τ −

∑
α,β

gαβξαξβ

) 1
2

,

B0 = −iρ
−1∂xd

ρ

2
+
i
∑

ρ−1∂α(ρgαβ)ξβ +Dxd
B1 −

∑
∂ξαB1Dxα

B1

2B1
.

(2.14)

The following proposition allows us to compute the Dirichlet-to-Neumann map. It
is proved in [28] using a result of reflection of singularities for Schrödinger’s equation.

Proposition 2. Let NΩ̃ be the Dirichlet-to-Neumann map for the open set Ω̃
and let B be the operator appearing in (2.13). If Ω is convex, then NΩ̃ = −iB +
OpS−∞

Sch (T ∗(Rt × S)\G).
Remark. Antoine and Besse [2] proved the previous factorization in the two-

dimensional case, and they formally wrote NΩ̃ = −iB.
Proposition 2 shows that NΩ̃ is a pseudodifferential operator, and we computed

the first two terms of its symbol. Consider the Schrödinger operator L0 on the Rie-
mannian product manifold S×R

+
xd

with metric equal to gS + gR = gS +(dxd)
2. Then

L0 = i∂t + ∆S + ∂2
d . For this operator, N2

0 = −i∂t − ∆S , where N0 is the Dirichlet-
to-Neumann map for L0 and S × R

+
xd

. (2.14) gives a pseudodifferential asymptotic
expansion of N0:

σ((−i∂t −∆S)
1
2 ) = σ(N0) = −iB1 +

∑
ρ−1∂α(ρgαβ)ξβ + i

∑
∂ξαB1Dxα

B1

2B1
+ S−1

Sch;
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thus we obtain

σ(NΩ̃) = σ((−i∂t − ∆S)
1
2 ) − i

Dxd
B1

2B1
− ρ−1∂xd

ρ

2
+ S−1

Sch.(2.15)

The geometrical interpretation in [14] remains. Let H be the mean curvature,
and let I and II be the two first fundamental forms for the metric g restricted to S.
H and II are given by

H =
1

d− 1
ρ−1∂dρ, and II(ξ′, ξ′) = −1

2

d−1∑
α,β=1

∂xd
gαβξαηβ .

Then the proposition follows.
Proposition 3. The symbol of NΩ̃ is given by

σ(NΩ̃) = σ((−i∂t − ∆S)
1
2 ) − d− 1

2
H +

II(ξ′, ξ′)
2(τ + I(ξ′, ξ′))

+ S−1
Sch.

Remark. This is a generalization of the result obtained by Antoine and Besse [2]
in two dimensions.

2.1.2. A sequence of absorbing boundary conditions for the half-space.
Having in mind (2.4), we solve the problem⎧⎪⎨⎪⎩

Luapp = 0 in R
+ × Ω,

∂νΩuapp = Fuapp in R
+ × S,

uapp = u0 at t = 0,

(2.16)

where the operator F is an approximation of −NΩ̃ in a sense that we will make more
precise later. We may keep only the first terms in the asymptotic expansion of NΩ̃ so
that we let the singular part of the solution leave the domain. (We will keep B1 or

B1 +B0 in what follows.) But (−i∂t−∆S)
1
2 is nonlocal in space and time and thus is

not practical for numerical computations. We need to approximate it with operators
local in space and time leading to well-posed initial boundary value problems.

Here we adapt to Schrödinger’s equation the strategy used in [12] for the wave
equation.

Let d be an integer, d ≥ 2, and h be a function in H7/2,7/4(R+
t × R

d−1
x′ ). We

assume that h|t=0 = 0 and ∂th|t=0 = 0. For all T > 0, there exists a unique solution
ũ in H2,1(]0, T [×R

d−1
+ ) (see [21]) of (2.2) in the half space x ≥ 0:⎧⎪⎨⎪⎩

i∂tũ+ ∆ũ = 0, t ≥ 0, y ∈ R
d−1, x ≥ 0,

ũ = 0 for t ≤ 0,

ũ(0, y, t) = h(y, t).

(2.17)

Remark. Taking h = uex|x=0 and u0 with support in x < 0, we see from (2.3)
that ũ = uex|x>0.

Let δ > 0 be an acceptable error, let T be a strictly positive time, and let a0 be a
strictly positive real number. We look for a boundary operator F on the hyperplane
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x = a, with a ≥ a0 as close to a0 as possible, such that if u is the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
i∂tu+ ∆u = 0, t ≥ 0, y ∈ R

d−1, 0 < x < a,

u = 0 for t ≤ 0,

u(0, y, t) = h(y, t),

∂xu(a, y, t) = Fu(a, y, t),

(2.18)

then u satisfies (∫ T

0

∫
R

d−1

∫ a0

0

|ũ− u|2dxdydt
) 1

2

≤ δ.(2.19)

Moreover, we seek F as a local operator in space and time leading to a well-posed
problem for the Schrödinger operator. As in [12], to get (2.19) we will minimize the
amplitude of the reflected waves.

Given η > 0, the Laplace transform in t and the Fourier transform in y are defined
for w such that e−ηtw is in L2(]0,+∞[t×R

d−1) by:

Lw(s, ω) =
1

(2π)
d
2

∫ +∞

0

∫
R

d−1

exp(−(η + iτ)t− iωy)w(t, y)dtdy,

where s = η + iτ . For all η > 0, e−ηtũ(x, .) is in L2(R+
t × R

d−1) for almost all
x > 0, and its Fourier–Laplace transform satisfies the following ordinary differential
equation:

d2

dx2
Lũ− (−is+ |ω|2)Lũ = 0.

The Fourier–Laplace transform of ũ is not more than slowly increasing because it is
a tempered distribution. Therefore, Lũ = exp(−�x)Lh, where � = (−is + |ω|2)1/2,
and we choose the square root branch well defined for −π < arg(z) < π. At x = a,
Lũ satisfies

d

dx
Lũ+ �Lũ = 0.

We will thus seek a sequence of local operator Fm such that its symbol approximates
−�.

To write absorbing boundary conditions for the heat equation on a half-space,
Joly used the following sequence of rational functions in [16]:

fm+1(z) = 1 + z
1 + fm(z)

,

f0(z) = 0.
(2.20)

In the following lemma, we group together the properties that will be used in
what follows.

Lemma 2. Let ∆ be the set of all real numbers smaller than −1. For all complex
numbers z in C \ ∆ we have the equality

fm(z) − (1 + z)
1
2

fm(z) + (1 + z)
1
2

= −
(

1 − (1 + z)
1
2

1 + (1 + z)
1
2

)m
.(2.21)
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In particular, we have for any set K in C\∆

sup
z∈K

∣∣∣∣∣fm(z) − (1 + z)
1
2

fm(z) + (1 + z)
1
2

∣∣∣∣∣ ≤ γ(K)m

with γ(K) = supz∈K
∣∣∣ 1−(1+z)

1
2

1+(1+z)
1
2

∣∣∣ ≤ 1. If K is a compact subset of C\∆, then γ(K) < 1.

Finally, we have for all integer m

f2m(z) =
1

m

m−1∑
k=0

(z + 1) Œ cos2
( (2k+1)π

4m

)
z + 1 + tan2

( (2k+1)π
4m

) .(2.22)

As � = (−is + |ω|2)1/2 = −i(is − |ω|2)1/2 we may approximate it by �m =
−if2m(is−|ω|2−1). It is the same as approximating the transparent operator by the
operator Fm which symbol is if2m(is− |ω|2 − 1). Using Lemma 2, we can rewrite the
symbol of Fm as

σ(Fm) = iβm + i

m−1∑
k=0

akm(is− |ω|2)
is− |ω|2 + dkm

,(2.23)

where βm = 0, akm = 1/ cos2( (2k+1)π
4m ), and dkm = tan2( (2k+1)π

4m ). In particular,
βm ≥ 0, akm > 0, and dkm > 0. Following Lindmann [19], we introduce the auxiliary
functions ϕkm defined in the Fourier–Laplace domain by

Lϕkm =
Lv

is− |ω|2 + dkm
.

Fm is then defined by

Fmv = iβmv + i

m−1∑
k=0

akm(i∂t + ∆y)ϕkm,

where ϕkm is defined by{
(i∂t + ∆y + dkm)ϕkm = v in R

+
t × R

d−1
x′ ,

ϕkm = 0 at t = 0.

Fm is therefore local in space and time.
We will show the well-posedness of Schrödinger’s equation with boundary condi-

tions Fm in Proposition 6. (We prove it for a bounded domain but it extends easily
to the half-space case.) We show here that the solution um of (2.18) with F = Fm
satisfies (2.19) for sufficiently large m. We have the following proposition.

Proposition 4. Let δ be an acceptable error, let a0 be a strictly positive real
number, let T be a strictly positive time, let h be in H7/2,7/4(R+

t × R
d−1
x′ ) so that

h|t=0 = 0 and ∂th|t=0 = 0, and let um be the solution of (2.18) with F = Fm. Then
um is in H2,1(]0, T [×R

d
+) and there exists a ≥ a0 and an integer m so that um satisfies

(2.19).
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Proof. We use the results in [21] for the nonhomogeneous Dirichlet condition at
x = 0 and Proposition 6 for the absorbing boundary conditions at x = a to prove the
existence and the regularity of um. e−ηtũ and e−ηtum are in L2(R+

t × R
d−1
x′ ×]0, a[)

because h is in H7/2,7/4(R+
t × R

d−1
x′ ). Using the Parseval equality,∫ T

0

∫
R

d−1

∫ a0

0

|e−ηtũ− e−ηtu|2dxdydt ≤
∫

R
d

∫ a0

0

|Lũ− Lu|2dxdωdτ.(2.24)

The map taking h ∈ H7/2,7/4(]0, T [×R
d−1
x′ ) to ũ ∈ H2,1(]0, T [×R

d
+) is contin-

uous. It is therefore sufficient to prove the proposition for h in a dense subset of
H7/2,7/4(]0, T [×R

d−1
x′ ). We may assume there exists a real number 0 < ε < 1 such

that the support of Lh is included in {(τ, ω)/|τ + |ω|2| ≥ ε and τ + |ω|2 ≥ −1/ε}.
As Lũ, Lum satisfies a second-order ordinary differential equation with constant

coefficients. We compute Lum explicitly using boundary conditions at x = 0 and
x = a. We obtain

Lum − Lũ = (exp(�x) − exp(−�x)) Rm
Rm − exp(2�a)

Lh,(2.25)

where Rm is the reflection coefficient defined by

Rm(s, iω) =
−(−is+ |ω|2) 1

2 − if2m(is− |ω|2 − 1)

(−is+ |ω|2) 1
2 − if2m(is− |ω|2 − 1)

.

Lemma 2 implies that |Rm(s, iω)| < 1 for all η > 0. We define the following three
regions of R

d:

G1 = {(τ, ω)/|τ + |ω|2| ≤ ε or τ + |ω|2 ≤ − 1
ε},

G2 = {(τ, ω)/− 1
ε ≤ τ + |ω|2 ≤ −ε},

G3 = {(τ, ω)/τ + |ω|2 ≥ ε}.

In G1, L(un − ũ) = 0.

Let γε be equal to supz∈Kε

∣∣∣ 1−(1+z)
1
2

1+(1+z)
1
2

∣∣∣, where Kε is the compact set of C \ ∆

defined by {θ + iη/ε − 1 ≤ θ ≤ 1/ε − 1, 0 ≤ η ≤ 1}. 0 < γε < 1 by Lemma 2 and
(2.25) implies the following inequality in G2:

|Lum − Lũ| ≤ 2γ2m
ε

1 − γε
|Lh|.

In G3, we have the inequality

|Lum − Lũ| ≤ exp(
√
ε(a0 − 2a))|Lh|

1 − exp(−2a0
√
ε)

.

Summing up, we finally get∫ a0

0

∫
R

+

∫
R

d−1

|Lum − Lũ|2 =

∫ a0

0

∫
G2

|Lum − Lũ|2 +

∫ a0

0

∫
G3

|Lum − Lũ|2

≤ 4a0γ
4m
ε

(1 − γε)2

∫
G2

|Lh|2 +
exp(2

√
ε(a0 − 2a))a0

(1 − exp(−2a0
√
ε))2

∫
G3

|Lh|2.
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We choose m such that
4a0γ

4m
ε

(1−γε)2
∫
G2

|Lh|2 ≤ δ
2 and a such that

exp(2
√
ε(a0 − 2a))a0

(1 − exp(−2a0
√
ε))2

∫
G3

|Lh|2 ≤ δ

2
.

Using (2.24), we obtain (2.19) by letting η converge toward 0.

2.1.3. Absorbing boundary conditions in the general case. The study in
section 2.1.2 suggests the following approximation of (−i∂t − ∆S)1/2:

(−i∂t − ∆S)
1
2 ≈ iβ + i

m∑
k=1

ak(i∂t + ∆S)(i∂t + ∆S + dk)
−1,

where β ≥ 0, ak > 0, and dk > 0 again. The term (i∂t + ∆S + dk)
−1 can again be

handled with auxiliary functions:{
(i∂t + ∆S + dk)ϕk = u in R

+ × S,

ϕk = 0 at t = 0.
(2.26)

Remark. In the case of the half-space, the conditions on β, ak, and dk imply that
the reflection coefficient R(η + iτ, ω) is less than one when η = 0 and holomorphic
when η > 0. Thus, the maximum principle implies that |R| < 1 when η > 0 as in the
proof of Proposition 4.

If we keep only B1 +B0 in the pseudodifferential expansion, we approximate NΩ̃

by −F with F defined by

F = iβu+ i

m∑
k=1

ak(i∂t + ∆S)ϕk − d− 1

2
HΩ̃u+

II(D′, D′)
2

ϕ0,(2.27)

where {
(i∂t + ∆S)ϕ0 = u in R

+ × S,

ϕ0 = 0 at t = 0.
(2.28)

2.2. The linear problem with absorbing boundary conditions.

2.2.1. Properties of the boundary operator F . The auxiliary functions are
defined by (2.26) and (2.28). F is the operator defined by

F : u→ iβu+ i

m∑
k=1

ak(u− dkϕk) − d− 1

2
HΩu+ II(D′, D′)

ϕ0

2
.

Let η be a strictly positive real number. We introduce the following auxiliary
functions: {

(i∂t + ∆S + iη + dk)ϕηk = u in R
+ × S,

ϕηk = 0 at t = 0.
(2.29)

Fη is the operator defined by

Fη : u→ iβu+ i

m∑
k=1

ak(u− dkϕηk) − d− 1

2
HΩu+ II(D′, D′)

ϕη0
2
.
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Remark. F equals Fη when η = 0.
Let b be the continuous bilinear form on H1(S) ×H1(S) such that[

−II(D
′, D′)v
2

, w

]
= b(v, w) ∀v ∈ H2(S) ∀w ∈ H1(S).

To obtain energy estimates, we assume that Ω is convex. Therefore, HΩ is nonnegative
on S and b is a nonnegative bilinear form in this case.

Remark. We did not need this additional hypothesis for the heat equation (see
[27]) due to the more favorable estimates derived in that case. In any case, the convex-
ity hypothesis has been used to compute the transparent operator (see Proposition 2).

Proposition 5. Let T be any strictly positive time, let s be any real num-
ber, and let u be in H1(]0, T [, Hs(S)). For all η ≥ 0, there exist functions ϕηk
in L∞(]0, T [, Hs+2(S)) ∩ W 1,∞(]0, T [, Hs(S)) for k = 0, . . . ,m solutions of (2.29).
Moreover, Fη satisfies the following inequalities in D′(0, T ):

Im ([Fηu, u]) ≥ 1

2

d

dt
b(ϕη0, ϕη0) + ηb(ϕη0, ϕη0) − C‖u‖2

L2(S)(2.30)

and

Re ([Fηu, ∂tu]) ≤ C(‖u‖2
L2(S) + ‖∂tu‖2

L2(S)).(2.31)

Finally, if η > dk for k = 1, . . . ,m we define cη =
∑m
k=1 ak(1 − dk/η). Then cη > 0

and Fη satisfies the following inequality:

∫ T

0

Im ([Fηu, u]) ≥ (β + cη)

∫ T

0

‖u‖2
L2(S) +

1

2
b(ϕη0(T ), ϕη0(T )) +

∫ T

0

ηb(ϕη0, ϕη0).

(2.32)

Proof. We first prove the existence and regularity of ϕkη. We prove it in the case
s = 0. The case where s is an integer follows by iteration differentiating the equation
along any C∞ vector field on S. The case where s is a nonnegative real number
follows by interpolation. (See [27] in the case of the heat equation.)

Let d be a nonnegative real number and let u be in H1(]0, T [, L2(S)). We will
prove the existence and uniqueness of ϕη in W 1,∞(]0, T [, L2(S)) ∩ L∞(]0, T [, H2(S))
solution of ⎧⎪⎨⎪⎩

∀ψ ∈ H1(S),

i ddt [ϕη, ψ] − [∇Sϕη,∇Sψ] + (d+ iη)[ϕη, ψ] = [u, ψ] in D′(0, T ),

ϕη = 0 at t = 0.

(2.33)

Multiplying the equation by ϕη, integrating it in space, and taking the imaginary
part, we obtain a first a priori estimate:

1

2

d

dt
‖ϕη‖2

L2(S) + η‖ϕη‖2
L2(S) ≤

1

2
‖ϕη‖2

L2(S) +
1

2
‖u‖2

L2(S).(2.34)

Multiplying the equation by ∂tϕη, integrating it in space, and taking the real part,
we obtain a second a priori estimate:

1

2

d

dt
‖∇Sϕη‖2

L2(S) ≤ C(‖ϕη‖2
L2(S) + ‖∂tϕη‖2

L2(S) + ‖u‖2
L2(S)).(2.35)
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Differentiating in time the equation satisfied by ϕη, multiplying it by ∂tϕη, integrating
it in space, and taking the imaginary part, we obtain a third a priori estimate:

1

2

d

dt
‖∂tϕη‖2

L2(S) + η‖∂tϕη‖2
L2(S) ≤

1

2
‖∂tϕη‖2

L2(S) +
1

2
‖∂tu‖2

L2(S).(2.36)

We deduce from these three energy estimates and Galerkin’s method the existence
and uniqueness of ϕη in W 1,∞(]0, T [, L2(S)) ∩ L∞(]0, T [, H1(S)) solution of (2.33).

Since ∆Sϕη = −i∂tϕη + u, ∆Sϕη is in L∞(]0, T [, L2(S)). Thus ϕη belongs to
L∞(]0, T [, H2(S)) by using the regularity of weak solutions of second-order elliptic
equations on a manifold, and we obtain the following estimate:

‖ϕη‖L∞(]0,T [,H2(S)) ≤ C(‖ϕη‖W 1,∞(]0,T [,L2(S)) + ‖u‖H1(]0,T [,L2(S))).(2.37)

The estimates (2.34), (2.36), and (2.37) and Gronwall’s lemma yield

‖ϕη‖L∞(]0,T [,H2(S)) + ‖ϕη‖W 1,∞(]0,T [,L2(S)) ≤ C‖u‖H1(]0,T [,L2(S)).(2.38)

It remains to prove (2.30), (2.31), and (2.32). We first recall the following lemma
(see [20]).

Lemma 3. Let V , H, and V ′ be three Hilbert spaces such that V ⊂ H ⊂ V ′ and
V ′ is the dual space of V . If ϕ is in L2(]0, T [, V ) and ϕ′ is in L2(]0, T [, V ′), then
ϕ equals almost everywhere a continuous function from [0, T ] to H and d

dt‖ϕ‖2
H =

2Re < ϕ′, ϕ >.
Using the previous lemma with H = H1(S), V = H2(S) and V ′ = H−2(S), we

obtain d
dtb(ϕη0, ϕη0) = 2Re b(ϕη0, ∂tϕη0). Using the regularity of u and ϕηk, we have

Im ([Fηu, u]) = β‖u‖2
L2(S) +

m∑
k=1

akRe ([u− dkϕηk, u])

+ Im

([
II(D′, D′)

ϕη0
2
, i∂tϕη0 + ∆Sϕη0 + iηϕη0

])
≥ 1

2

d

dt
b(ϕη0, ϕη0) + ηb(ϕη0, ϕη0) + β‖u‖2

L2(S)

−
m∑
k=1

ak‖u− dkϕηk‖L2(S)‖u‖L2(S),

which yields (2.30). Then, let e be equal to d−1
2 ‖HΩ‖L∞(S):

Re ([Fηu, ∂tu]) = −βIm ([u, ∂tu]) +

m∑
k=1

Re (iak[u− dkϕηk, ∂tu])

− d− 1

2
Re ([HΩu, ∂tu]) + Re

([
II(D′, D′)

ϕη0
2
, ∂tu

])
≤
(
d− 1

2
‖HΩ‖L∞(S) + β

)
‖u‖L2(S)‖∂tu‖L2(S)

+

m∑
k=1

ak‖u− dkϕηk‖L2(S)‖∂tu‖L2(S) + C‖ϕη0‖H2(S)‖∂tu‖L2(S),
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which yields (2.31) by using (2.38). Finally we have

Im ([Fηu, u]) = β‖u‖2
L2(S) +

m∑
k=1

akRe ([u− dkϕηk, u])

+ Im

([
II(D′, D′)

ϕη0
2
, i∂tϕη0 + ∆Sϕη0 + iηϕη0

])

≥
(
β +

m∑
k=1

ak

)
‖u‖2

L2(S) +
1

2

d

dt
b(ϕη0, ϕη0) + ηb(ϕη0, ϕη0)(2.39)

−
m∑
k=1

akdk‖ϕηk‖L2(S)‖u‖L2(S).

Moreover, we may generalize (2.34) for all C > 0 to

1

2

d

dt
‖ϕη‖2

L2(S) + η‖ϕη‖2
L2(S) ≤ C‖ϕη‖2

L2(S) +
1

4C
‖u‖2

L2(S).

Taking C = η/2, we obtain

η2

∫ T

0

‖ϕη‖2
L2(S) ≤

∫ T

0

‖u‖2
L2(S),(2.40)

and if η > dk for all k = 1, . . . ,m, (2.39) and (2.40) yield (2.32).

2.2.2. Existence and uniqueness results. We try to approximate the re-
striction of the solution uex of (2.1) to the open set Ω. We introduce the following
problem: ⎧⎪⎨⎪⎩

Lu = 0 in R
+ × Ω,

∂νΩu = Fu in R
+ × S,

u = u0 at t = 0,

(2.41)

where F is defined by (2.27).
Proposition 6. Let g be in H1(]0, T [, L2(Ω)) and u0 be in H2(Ω) such that

∂νΩu0|S = −
(
iβ + ia1 + · · · + iam − d− 1

2
HΩ

)
u0|S .(2.42)

There exists a unique solution u in the space W 1,∞(]0, T [, L2(Ω))∩H1(]0, T [, L2(S))∩
L∞(]0, T [, H1(Ω)) of the following variational problem:{

∀v ∈ H1(Ω) :

i ddt (u, v) − (∇u,∇v) + [Fu, v] = (g, v) in D′(0, T ),
(2.43)

where (u, v) denotes the Hermitian product in L2(Ω).
Moreover, suppose g is in H2(]0, T [, L2(Ω)) and ∆u0 and g(0) are in H2(Ω)

and satisfy (2.42). Then u belongs to W 2,∞(]0, T [, L2(Ω)) ∩ W 1,∞(]0, T [, H1(Ω)) ∩
L∞(]0, T [, H2(Ω)) and satisfies the estimate

‖u‖2
L∞(]0,T [,H2(Ω)) ≤ C(‖u0‖2

H2(Ω) + ‖∆u0‖2
H2(Ω) + ‖g(0)‖2

H2(Ω)

+ ‖∂tg(0)‖2
L2(Ω) + ‖g‖2

H2(]0,T [,L2(Ω))).(2.44)
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Remark. If u0 has compact support in Ω as in section 2.1.1, then u0 satisfies
(2.42).

Remark. The existence result of Proposition 6 with g = 0 implies the well-
posedness of problem (2.41). The regularity result of Proposition 6 will be used to
define and show the convergence of the iterative scheme in section 3.1.2

Proof. Let η be equal to max1≤k≤m(dk) + 1; then η > dk for k = 1, . . . ,m.
Let gη = exp(−ηt)g and uη be equal to exp(−ηt)u. u is the unique solution in
W 1,∞(]0, T [, L2(Ω))∩H1(]0, T [, L2(S))∩L∞(]0, T [, H1(Ω)) of (2.43) if and only if uη
is the unique solution in W 1,∞(]0, T [, L2(Ω)) ∩H1(]0, T [, L2(S)) ∩ L∞(]0, T [, H1(Ω))
of the following variational problem:{

∀v ∈ H1(Ω) :

i ddt (uη, v) + iη(uη, v) − (∇uη,∇v) + [Fηuη, v] = (gη, v) in D′(0, T ).
(2.45)

We will prove the existence and uniqueness of uη in the spaceW 1,∞(]0, T [, L2(Ω))∩
H1(]0, T [, L2(S))∩L∞(]0, T [, H1(Ω)) solution of (2.45). Multiplying the equation by
uη, integrating it in space, and taking imaginary part yields

d

dt
‖uη‖2

L2(Ω) + 2η‖uη‖2
L2(Ω) + 2Im ([Fηuη, uη]) = 2Im (gη, uη).(2.46)

Multiplying the equation by ∂tuη, integrating it in space, and taking the real part
yields

d

dt
‖∇uη‖2

L2(Ω) ≤ 2Re ([Fηuη, ∂tuη]) + η‖∂tuη‖2
L2(Ω) + η‖uη‖2

L2(Ω) − 2Re (gη, ∂tuη).

(2.47)

Differentiating the equation satisfied by uη in time, multiplying it by ∂tuη, integrating
it in space, and taking the imaginary part yields

d

dt
‖∂tuη‖2

L2(Ω) + 2η‖∂tuη‖2
L2(Ω) + 2Im ([Fη∂tuη, ∂tuη]) = 2Im (∂tgη, ∂tuη).(2.48)

By (2.32), (2.46), and Gronwall’s lemma we obtain the following a priori estimate:

‖uη‖2
L∞(]0,T [,L2(Ω)) + ‖uη‖2

L2(]0,T [,L2(S)) ≤ C(‖u0‖2
L2(Ω) + ‖gη‖2

L2(]0,T [,L2(Ω))),(2.49)

where C = max(1, (2(β+cη))
−1). In what follows, we do not make this dependence on

η precise because η is fixed. By an inequality similar to (2.32), (2.48), and Gronwall’s
lemma we obtain the following a priori estimate:

‖∂tuη‖2
L∞(]0,T [,L2(Ω))+ ‖∂tuη‖2

L2(]0,T [,L2(S)) ≤C(‖∂tu(0)‖2
L2(Ω)+ ‖∂tgη‖2

L2(]0,T [,L2(Ω))).

(2.50)

We shall find a bound on ‖∂tuη(0)‖2
L2(Ω). Multiplying the equation by ∂tuη and

taking the imaginary part, we obtain after an integration by part in space

‖∂tuη‖2
L2(Ω) + ηRe (uη, ∂tuη) + Im (∆uη, ∂tuη)

+ Im [Fηuη − ∂νΩuη, ∂tuη] = Re (gη, ∂tuη).(2.51)

By (2.42), Fηuη(0)−∂νΩuη(0) = (iβ+ i
∑m
k=1 ak−(d−1)/2HΩ)u0−∂νΩu0 = 0. Thus,

taking t = 0 in (2.51),

‖∂tuη(0)‖L2(Ω) ≤ η‖u0‖L2(Ω) + ‖∆u0‖L2(Ω) + ‖gη(0)‖L2(Ω).(2.52)
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Remark. We do not use the equality i∂tuη(0) = g(0)−iηu0−∆u0 to give a bound
on ‖∂tuη(0)‖2

L2(Ω). We rather use the variational formulation so that the estimates
remain valid for approximate solutions of Galerkin’s method. In fact, we may take
initial conditions of these approximate solutions satisfying (2.42) as in [27]. Then,
these approximate solutions satisfy (2.52).

Finally, (2.50) and (2.52) yield

‖∂tuη‖2
L∞(]0,T [,L2(Ω)) + ‖∂tuη‖2

L2(]0,T [,L2(S))

≤ C(‖u0‖2
H2(Ω) + ‖gη(0)‖2

L2(Ω) + ‖∂tgη‖2
L2(]0,T [,L2(Ω))).(2.53)

Equations (2.31) and (2.47) yield the following energy estimate:

‖∇uη‖2
L∞(]0,T [,L2(Ω)) ≤ C(‖u0‖2

H1(Ω) + ‖gη‖2
L2(]0,T [,L2(Ω))

+ ‖uη‖2
H1(]0,T [,L2(Ω)) + ‖uη‖2

H1(]0,T [,L2(S)).(2.54)

Thus (2.49) and (2.53) yield

‖∂tuη‖2
L∞(]0,T [,L2(Ω)) + ‖∂tuη‖2

L2(]0,T [,L2(S))

≤ C(‖u0‖2
H2(Ω) + ‖gη(0)‖2

L2(Ω) + ‖∂tgη‖2
L2(]0,T [,L2(Ω))).(2.55)

From the energy estimates (2.49), (2.53), and (2.55) we deduce by using Galerkin’s
method the existence and uniqueness of uη inW 1,∞(]0, T [, L2(Ω))∩H1(]0, T [, L2(S))∩
L∞(]0, T [, H1(Ω)) solution of (2.45). Therefore, we have proved the existence and
uniqueness of u in W 1,∞(]0, T [, L2(Ω))∩H1(]0, T [, L2(S))∩L∞(]0, T [, H1(Ω)) solution
of (2.43). Moreover, estimates (2.49), (2.53), and (2.55) remain valid for u (with
different constants C).

Moreover, we suppose that g is in H2(]0, T [, L2(Ω)) and ∆u0 and g(0) are in
H2(Ω) and satisfy (2.42). The previous estimates are valid for ∂tu which is like u
in W 1,∞(]0, T [, L2(Ω)) ∩H1(]0, T [, L2(S)) ∩ L∞(]0, T [, H1(Ω)). In particular, u is in
W 2,∞(]0, T [, L2(Ω)) ∩W 1,∞(]0, T [, H1(Ω)) and we have a similar estimate to (2.55)
for ∂tu:

‖∇∂tu‖2
L∞(]0,T [,L2(Ω)) ≤ C(‖∆u0‖2

H2(Ω) + ‖g(0)‖2
H2(Ω)

+ ‖∂tg(0)‖2
L2(Ω) + ‖∂tg‖2

H1(]0,T [,L2(Ω))).(2.56)

It remains to show that u belongs to L∞(]0, T [, H2(Ω)). As g and ∂tu belong
to L∞(]0, T [, L2(Ω)), ∆u belongs also to L∞(]0, T [, L2(Ω)). Moreover, u belongs to

W 1,∞(]0, T [, H1(Ω)), and thus Fu belongs to L∞(]0, T [, H
1
2 (S)) according to Propo-

sition 5. This proves that ∂νΩu is in L∞(]0, T [, H
1
2 (S)). Standard results for elliptic

boundary value problems (see, for example, [21]) imply that u is in L∞(]0, T [, H2(Ω))
and satisfies the following estimate:

‖u‖2
L∞(]0,T [,H2(Ω)) ≤ C

(‖u‖2
L∞(]0,T [,L2(Ω)) + ‖∆u‖2

L∞(]0,T [,L2(Ω))

+ ‖∂νΩu‖2

L∞(]0,T [,H
1
2 (S))

)
.(2.57)

Since ∂νΩu = Fu, Proposition 5 yields

‖∂νΩu‖2

L∞(]0,T [,H
1
2 (S))

≤ C‖u‖2

H1(]0,T [,H
1
2 (S))

≤ C‖u‖2
H1(]0,T [,H1(Ω)),(2.58)

‖g‖L∞(]0,T [,L2(Ω)) ≤ ‖g(0)‖L2(Ω) + C‖∂tg‖L2(]0,T [,L2(Ω)).
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Therefore, using ∆u = g − i∂tu we get

‖∆u‖L∞(]0,T [,L2(Ω)) ≤ ‖g(0)‖L2(Ω) + C‖∂tg‖L2(]0,T [,L2(Ω)) + ‖∂tu‖L∞(]0,T [,L2(Ω)).
(2.59)

(2.49), (2.53), (2.55), (2.56), (2.57), (2.58), and (2.59) imply (2.44).
Remark. We can prove the half-space case in a similar way (see section 2.1.2).

Moreover, we could prove a similar result replacing the operator −∆ by the elliptic
operator −∑d

i,j=1 ∂xi
aij(t, x)∂xj , where aij are in C1(R× Ω̄) (as in [14] for parabolic

operators). Finally, we may prove Schrödinger’s equation with the absorbing bound-
ary conditions of Di Menza [9] to be well posed in a similar way. (Di Menza gives a
proof in a half-space through a Laplace transform.)

2.3. Numerical results.

2.3.1. The frame. We test our absorbing boundary conditions in the one-
dimensional and two-dimensional cases.

In the one-dimensional case, we take Ω = ]−5, 5[ as computational domain and
]−4.98, 4.98[ as domain of interest. The boundary S reduces then to two points. We
compare the solution of (2.41) to the explicit solution of (2.1):

uex(t, x) =
exp(−iπ/4)√

4t− i
exp

(
ix2 − 6x− 36t

4t− i

)
.

This solution is a good test because it has almost compact support in ]−5, 5[ at t = 0
(it remains under 10−10 on the boundary) and crosses the boundary x = −5 between
t = 0 and t = 1. We take the time step δt = 10−3 and the space step h = 10−2.
(δt is small compared to h to avoid numerical instabilities pointed out in [1].) We
use three auxiliary functions (m = 3), and the coefficients β, ak, and dk are given
in section 2.3.2. We use a finite difference scheme with N = 10/h, xj = jh for
0 ≤ j ≤ N , and tn = nδt. unj approximates u(tn, xj), ϕ

n
k,1 approximates ϕk(tn, x1),

and ϕnk,2 approximates ϕk(tn, xN−1). Inside the computational domain we use Crank–
Nicolson’s scheme

i
un+1
j − unj
δt

+
u
n+1/2
j+1 − 2u

n+1/2
j + u

n+1/2
j−1

h2
= 0,

where u
n+1/2
j = (un+1

j + unj )/2. The boundary conditions are approximated by

u
n+1/2
0 − u

n+1/2
2

2h
= iβu

n+1/2
1 + i

m∑
k=1

ak(u
n+1/2
1 − dkϕ

n+1/2
k,1 ),

u
n+1/2
N − u

n+1/2
N−2

2h
= iβu

n+1/2
N−1 + i

m∑
k=1

ak(u
n+1/2
N−1 − dkϕ

n+1/2
k,2 ),

i
ϕn+1
k,1 − ϕnk,1

δt
+ dkϕ

n+1/2
k,1 = u

n+1/2
1 , k = 1, . . . ,m,
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Fig. 1. The exact solution (solid) and the approximate ones (dashed) at t= 0.3, one-
dimensional case. (a) ABC in [9], (b) Padé, (c) present method.
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Fig. 2. The exact solution (solid) and the approximate ones (dashed) at t= 0.6, one-
dimensional case. (a) ABC in [9], (b) Padé, (c) present method.

and

i
ϕn+1
k,2 − ϕnk,2

δt
+ dkϕ

n+1/2
k,2 = u

n+1/2
N−1 , k = 1, . . . ,m.

We give a snapshot of the solution at time t = 0.3 and t = 0.6 computed, respectively,
with the ABC of Di Menza [9] with m = 3 (Figures 1(a) and 2(a)), the ABC with the
coefficient of (2.23) and m = 3, which will be called Padé in what follows (Figures 1(b)
and 2(b)), and our method with m = 3 (Figures 1(c) and 2(c)) and compared to the
exact solution. We give the relative error in L2 norm on ] − 4.98, 4.98[ as a function
of time computed, respectively, with the ABC of Fevens and Jiang [13] with p = 3
(Figure 3(a)), the TBC of Arnold and Ehrhardt [5] (Figure 3(b)), and our method
with m = 3 (Figure 4). We take this time δt = 2.10−4 and h = 2.10−3 (otherwise we
compute the errors of the scheme instead of the errors due to our absorbing boundary
conditions).

Remark. The TBC of Arnold and Ehrhardt [5] is the only boundary condition
we tried that gives results of the same order as our method. However, we must
store the boundary values at all previous times and do discrete convolution in time
to implement the transparent boundary conditions of [5] (see (3.6)). It is much less
costly to approximate the solution with our absorbing boundary conditions.

In the two-dimensional case, we take the disk with radius 1.1 as computational
domain and the disk with radius 0.9 as domain of interest. We take the time step δt =
10−3 and we mesh the two disks with Freefem+ [15] taking 200 points on the boundary
of each disk. We use Crank–Nicolson’s scheme for the time discretization and for the
space discretization P1 finite elements based on the following weak formulation:
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Fig. 3. Linear case on ]−4.98, 4.98[. Relative error in the L2 norm as a function of time. (a)
ABC in [13], (b) TBC in [5].
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Fig. 4. Linear case on ]−4.98, 4.98[. Relative error in the L2 norm as a function of time.
Present method.

i

(
un+1 − un

δt
, v

)
− (∇un+1/2,∇v) + iβ[un+1/2, v] + i

m∑
k=1

ak[u
n+1/2 − dkϕ

n+1/2
k , v]

− 1

2
[Hun+1/2, v] +

[
II(D′, D′)

2
un+1/2, v

]
= 0

and

i

[
ϕn+1
k − ϕnk
δt

, θk

]
− [∇Sϕ

n+1/2
k ,∇Sθk] + dk[ϕ

n+1/2
k , θk] = [un+1/2, θk], k = 1, . . . ,m,
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Fig. 5. Linear case on the disk of radius 0.9, relative error in the L2 norm as a function of time.

Table 1

Maximum of the relative error in L2 norm for Padé ABC with increasing m.

m 3 5 7 10 12 15

Padé 7.0737 1.9673 0.5647 0.0846 0.0200 0.0085

where un+1/2 = (un+1 + un)/2, ϕ
n+1/2
k = (ϕn+1

k + ϕnk )/2, k = 1, . . . ,m, and where
v and θk, k = 1, . . . ,m, are test functions. We compare the solution of (2.41) to the
explicit solution of (2.1):

uex(t, x1, x2) =
−i

4tγ − i
exp

(
iγ|x|2 −√

γx1 − γt

4tγ − i

)
,

where γ = 24 so that the initial condition has almost compact support in Ω (it remains
under 10−10 on the boundary). This solution crosses the boundary between t = 0
and t = 1. Figure 5 gives the relative error in L2 norm on the disk of radius 0.9 as a
function of time. We take three auxiliary functions (m = 3), and the coefficients β,
ak, and dk are given in section 2.3.2.

2.3.2. Optimization of the reflection coefficient. The one-dimensional case.
We proved in section 2.1.2 the convergence of the problem with absorbing boundary
conditions (2.18) to the problem (2.17). This happens for a special choice of the coef-
ficients βm, akm, and dkm when letting m converge toward infinity. (See Table 1 for a
numerical verification.) However, we are not interested in the case where m is large.
In fact, one goal of this work is to reduce the numerical cost as much as possible.
Thus we try for a given small m to optimize the absorbing boundary conditions.
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Section 2.1.2 emphasized the role of the reflection coefficient. m being fixed, we
optimize it for β ≥ 0, ak > 0, and dk > 0, where k = 1, . . . ,m. In the one-dimensional
case, the reflection coefficient is

R(τ) =
−√

τ − iβ − i
∑m
k=1

ak(−τ)
−τ+dk√

τ − iβ − i
∑m
k=1

ak(−τ)
−τ+dk

, τ ∈ R.

As in section 2.1.2, |R| = 1 when τ ≥ 0 and |R| < 1 when τ < 0 for all β ≥ 0,
ak > 0, and dk > 0. We optimize the reflection coefficient in the region τ < 0
(which corresponds to the hyperbolic region G2 in section 2.1.2) and more precisely
in [−2π/δt,−2π/T ] to stay in the range of the numerical frequencies. Moreover, we
optimize in the L2 norm with the weight dτ/(1+ τ2). Because δt is small we optimize
with the simplex method for r = −1/τ in [0, T/2π] the integral

∫ T/2π

0

∣∣∣∣∣
√
r − βr −∑m

k=1
akr

1+dkr√
r + βr +

∑m
k=1

akr
1+dkr

∣∣∣∣∣
2

dr

1 + r2
,

which is computed with the Weddle–Hardy method. Figure 4 shows the result ob-
tained in the case m = 3. The error remains under 0.2% for times between 0 and 1,
which is very satisfactory.

The coefficients that allowed us to obtain these results are β = 7.269284.10−1,
a1 = 2.142767, a2 = 5.742223, a3 = 4.658032.101, d1 = 6.906263, d2 = 6.582243.101,
and d3 = 1.124376.103.

The two-dimensional case. In the case of the disk of radius κ = 1.1, the reflection
coefficient is

R(τ, ω) =
−√τ + (ωκ )2 − iβ − i

∑m
k=1

ak(−τ−(ω
κ )2)

−τ−(ω
κ )2+dk√

τ + (ωκ )2 − iβ − i
∑m
k=1

ak(−τ−(ω
κ )2)

−τ−(ω
κ )2+dk

.

We optimize the reflection coefficient in the region τ + (ωκ )2 < 0 (which corresponds
to the hyperbolic region G2 in section 2.1.2). More precisely, we optimize in L2 norm
on s = −τ − (ωκ )2 in [b,+∞[ with the weight ds/(1 + s2) where b > 0. Because the
interval is large we optimize for r = 1/s the integral

∫ 1/b

0

∣∣∣∣∣
√
r − βr −∑m

k=1
akr

1+dkr√
r + βr +

∑m
k=1

akr
1+dkr

∣∣∣∣∣
2

dr

1 + r2
.

We obtained our best results with b = 0.5. Figure 5 shows the results obtained in the
case m = 3. The error remains under 8% for times between 0 and 1. (The solution
computed with Dirichlet conditions on the circle of radius 1.1 gives 2000% error at
time t = 1.)

Remark. We could use more terms in the asymptotic expansion of the Dirichlet-
to-Neumann map NΩ̃ to improve these results. (We used only two terms in this
study.)

The coefficients that allowed us to obtain those results are β = 2.241274.10−1,
a1 = 7.062909.10−1, a2 = 2.057994, a3 = 1.705610.101, d1 = 6.941414.10−1, d2 =
7.496463, and d3 = 1.449250.102.
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3. The nonlinear problem with the absorbing boundary conditions
of the linear problem. We wrote absorbing boundary conditions for the linear
Schrödinger’s equation. The numerical tests were convincing. In the case of the heat
equation, we used absorbing boundary conditions of the linear problem for nonlinear
ones and the results were also very good (see [27]). Similarly, we will try for nonlinear
Schrödinger’s equations the absorbing boundary conditions designed for the linear
problem.

3.1. Existence results for nonlinear approximate problems.

3.1.1. The exact problem and the approximate problems. We fix an in-
teger d so that 1 ≤ d ≤ 3 and let f be a C2 function from C to C (as a function
from R

2 to R
2). The operator −∆ is the generator of a semigroup of contraction on

H2(Rd) and f is locally Lipschitzian from H2(Rd) into itself. Thus (see [24]), for all
u0 in H2(Rd), there is a time T > 0 and a unique solution uex in C([0, T ], H2(Rd))
of the problem {

Luex = f(uex), ]0, T [×R
d,

uex = u0 at t = 0,
(3.1)

We want to approximate the restriction of uex to the open set Ω. To generalize
problem (2.16), we introduce the following problem:⎧⎪⎨⎪⎩

Lu = f(u) in R
+ × Ω,

∂νΩu = Fu in R
+ × S,

u = u0 at t = 0,

(3.2)

where F is an operator equal to the right-hand side of (2.27) in what follows.
We define the solution of (3.2) via the following variational formulation:⎧⎪⎨⎪⎩

u ∈ L∞(]0, T [, L2(Ω)) ∩ L2(]0, T [, H1(Ω)) , f(u) ∈ L∞(]0, T [, L2(Ω)),

∀v ∈ H1(Ω),

i ddt (u, v) − (∇u,∇v) + [Fu, v] = (f(u), v) in D′(0, T ).

(3.3)

Theorem 1. Suppose Ω is convex. For any u0 in H4(Ω) with compact support
in Ω, there exists a time T > 0 such that problem (3.3) has a unique solution u in
W 2,∞(]0, T [, L2(Ω)) ∩W 1,∞(]0, T [, H1(Ω)) ∩ L∞(]0, T [, H2(Ω)).

Remark. We have already used the compactness of the support of u0 in Ω to
obtain our absorbing boundary conditions (see 2.1.1).

3.1.2. The iterative scheme. First, we define ul+1 from ul, as the solution of
the linear problem with the right-hand side f(ul). Then we prove that for sufficiently
small T > 0, (ul) is bounded in the space W 2,∞(]0, T [, L2(Ω))∩W 1,∞(]0, T [, H1(Ω))∩
L∞(]0, T [, H2(Ω)). Finally, we show that (ul) is a Cauchy sequence in C0(0, T ;L2(Ω))
and that the limit u satisfies the nonlinear problem.

To define (ul), we need the following lemma.
Lemma 4. Let v belong to the space L∞(]0, T [, H2(Ω)) ∩W 1,∞(]0, T [, H1(Ω)) ∩

W 2,∞(]0, T [, L2(Ω)), and g = f(v). Then g belongs to H2(]0, T [, L2(Ω)) and satisfies
the inequality
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‖g‖2
H2(]0,T [,L2(Ω)) ≤ Tθ(‖v‖2

L∞(]0,T [,H2(Ω))+‖v‖2
W 1,∞(]0,T [,H1(Ω))+‖v‖2

W 2,∞(]0,T [,L2(Ω))),

where θ is a continuous increasing function.
The proof of this lemma relies on the injection of H2(Ω) in L∞(Ω), the injection

of H1(Ω) in L4(Ω), and the fact that f is C2.
Proposition 6, Lemma 4, and Gronwall’s lemma yield the following.
Corollary 1. Let v belong to L∞(]0, T [, H2(Ω)) ∩ W 1,∞(]0, T [, H1(Ω)) ∩

W 2,∞(]0, T [, L2(Ω)) such that v(0) = u0 and i∂tv(0) = −∆u0 + f(u0), where u0

is in H4(Ω) with compact support in Ω. Let w be the unique solution of Proposition 6
with g = f(v). Then w satisfies following estimate:

‖w‖2
W 2,∞(]0,T [,L2(Ω)) + ‖w‖2

W 1,∞(]0,T [,H1(Ω)) + ‖w‖2
L∞(]0,T [,H2(Ω)) ≤ eCT (θ(‖u0‖H4(Ω))

+ Tθ(‖v‖2
W 2,∞(]0,T [,L2(Ω)) + ‖v‖2

W 1,∞(]0,T [,H1(Ω))

+ ‖v‖2
L∞(]0,T [,H2(Ω)))),

where C depends only on Ω, θ and the function f .
Remark. We suppose that u0 has compact support which is stronger than (2.42).

In fact, (2.42) is not preserved under the action of a nonlinear function f .
Now we set C1 = max(‖u0‖H2(Ω), θ(‖u0‖H4(Ω))) and T1 > 0 so that we

have eCT1(C1 + T1θ(2C1)) ≤ 2C1. Set C2 = sup|s|≤4C1
|f ′(s)| and T2 > 0 so that

CC2T2 ≤ 1
2 .

Definition 1. Let T > 0 be such that T ≤ max(T1, T2). We define the se-
quence (ul) in W 2,∞(]0, T [, L2(Ω)) ∩W 1,∞(]0, T [, H1(Ω)) ∩ L∞(]0, T [, H2(Ω)) by in-
duction. u0 is constant in time and is equal to u0 on [0, T ]. Suppose ul is defined
in W 2,∞(]0, T [, L2(Ω)) ∩ W 1,∞(]0, T [, H1(Ω)) ∩ L∞(]0, T [, H2(Ω)); then f(ul) is in
H2(]0, T [, L2(Ω)) by Lemma 4: we may thus define ul+1 as the unique solution of
problem (2.43) with the right-hand side f(ul).

Corollary 1 and the energy estimates of Proposition 6 yield the following.
Lemma 5. The sequence (ul) is bounded in the space W 2,∞(]0, T [, L2(Ω)) ∩

W 1,∞(]0, T [, H1(Ω))∩L∞(]0, T [, H2(Ω)) and is a Cauchy sequence in C([0, T ], L2(Ω)).
The end of the proof of the existence of u is classical (see, for example, [20]). The

limit u of the Cauchy sequence (ul) satisfies the variational formulation (3.3) by using
the strong convergence in C([0, T ], L2(Ω)) and the boundedness in L∞(]0, T [, H2(Ω))
for the nonlinear term. The uniqueness follows from the energy estimate (2.49) and
the fact that u belongs to L∞(]0, T [, H2(Ω)).

3.2. Numerical results. We test our absorbing boundary conditions in the
one-dimensional case. In fact, we will see that the numerical results are poor in this
case. It is therefore useless to implement higher-dimensional cases.

3.2.1. The frame. We take Ω =]−5, 5[ as computational domain and
]−4.98, 4.98[ as domain of interest. We take the time step δt = 10−3 and the space
step h = 10−2. We compare the solution of (3.2) to the soliton solution of (3.1) with
f(u) = −|u|2u:

uex(t, x) =
√

2a sech(
√
a(x− ct)) exp

(
i
c

2
(x− ct) + iθ0

)
exp

(
i

(
a+

c2

4

)
t

)
,

where a = 27, c = 15, and θ0 = π/4. This solution is a good test because it has
almost compact support in ]−5, 5[ at t = 0 (it remains under 10−10 on the boundary),
and it crosses the boundary x = 5 between t = 0 and t = 1.
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We use Durán and Sanz-Serna’s scheme [11], where the semidiscrete form is

Un+1 − Un

δt
= i∂2

xxU
n+ 1

2 + if(Un+ 1
2 ),(3.4)

where Un+1/2 = (Un+1 + Un)/2 and n = 0, . . . , T/δt − 1. We solve the nonlinear
system with a fixed-point method giving Un+1/2:

Z =

(
1 − i

δt

2
∂2
xx

)−1(
Un + i

δt

2
f(Z)

)
.

We initialize the fixed-point method with Un. Then Un+1 = 2Z − Un.

3.2.2. The discrete transparent operator for the linear case. We approx-
imate (3.2) with the following problem:⎧⎪⎨⎪⎩

Lu = f(u) in R
+ × Ω,

∂νΩu = Tu in R
+ × S,

u = u0 at t = 0,

(3.5)

where T is the transparent operator for the linear case (the Dirichlet-to-Neumann
map of section 2.1.1). In [5], Arnold and Ehrhardt discretize T (here at x = −5) as

un+1
1 − s0un+1

0 =

n∑
l=1

sn+1−kuk0 − un1 ,(3.6)

where (sk)k≥0 is computed through a recurrence formula (see Theorem 3.8 of [5]). We
implement the solution of (3.5) with the scheme (3.4).

Figure 6 shows that (3.2) approximates (3.5), but not very well. In fact, the error
reaches 37% at time 1. In any case, Figure 7 shows that (3.5) does not approximate
(3.1) at all. In fact, the soliton leaves Ω, which is not the case of the solution of (3.5).
Therefore, the use of any choice of absorbing boundary conditions of the linearized
problem does not allow one to approximate the solution of the nonlinear Schrödinger’s
equation.

Remark. This strategy (to approximate the nonlinear equation with the absorbing
boundary conditions of the linearized problem) is efficient in the case of reaction-
diffusion equations (see [27]).

Remark. In [7], the authors show that the solution of (3.1) and of (3.5) share
some qualitative properties (blow-up, filamentation, etc.). However, Figure 7 shows
that the two solutions are quantitatively very different.

4. Conclusion. Our absorbing boundary conditions give an accurate method
with which to approximate the solution of Schrödinger’s equation on the whole space
with a low numerical cost. In the case of curved boundaries, we could still improve
our results by computing more terms in the asymptotic expansion of the Dirichlet-to-
Neumann map. (we used only two terms in this study.)

Regarding the nonlinear problem, we have proved an existence and uniqueness
result for the problem with nonclassical boundary conditions, which is a new result.
Our absorbing boundary conditions for the linearized problem allow us to approximate
the problem with the transparent boundary conditions for the linearized problem as
shown by our numerical computations. However, the nonlinear problem with the
transparent boundary conditions of the linearized problem does not approximate the
nonlinear problem on the whole space. We should develop a purely nonlinear strategy.
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Abstract. We show how to use numerical continuation to compute the intersection C = A∩B of
two algebraic sets A and B, where A, B, and C are numerically represented by witness sets. En route
to this result, we first show how to find the irreducible decomposition of a system of polynomials
restricted to an algebraic set. The intersection of components A and B then follows by considering
the decomposition of the diagonal system of equations u − v = 0 restricted to {u, v} ∈ A × B. An
offshoot of this new approach is that one can solve a large system of equations by finding the solution
components of its subsystems and then intersecting these. It also allows one to find the intersection
of two components of the two polynomial systems, which is not possible with any previous numerical
continuation approach.
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1. Introduction. In a series of papers [12, 13, 14, 15, 16, 17], we proposed
numerical continuation algorithms that use witness sets as the basic construct for
representing solution components of a system of polynomial equations on C

N . Wit-
ness sets are the central concept of a young subject that we call numerical algebraic
geometry, which uses numerical continuation [1, 2] and generalizes earlier work in
computing isolated solutions of polynomial systems [8, 9]. The main concern of this
paper is to provide an algorithm for computing the intersection of two solution com-
ponents A,B from two possibly identical polynomial systems f, g, whose witness sets
have been given. It is important to realize that naively combining f, g into one sys-
tem h = {f, g} is not sufficient, even if we were willing to put aside the potentially
prohibitive size of the combined system. For example, suppose A is the line x2 = 0
as a solution component of f(x) = x1x2 and B is the line x1 − x2 = 0 as a solution
component of g(x) = x1(x1 − x2). Then, A ∩ B, which is the isolated point (0, 0),
does not appear as an irreducible component of the system h = {f, g}.

Questions involving intersection of components arise naturally in applications.
Just as a single polynomial in one variable has multiple roots, a system of polynomial
equations in several variables can have multiple solution components; these compo-

∗Received by the editors June 25, 2003; accepted for publication (in revised form) January 28,
2004; published electronically December 16, 2004. This research was supported by Land Baden-
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nents can even appear at different dimensions (points, curves, surfaces, etc.) from
the same set of equations. We may wish to find the intersection of just one of those
components with another algebraic set. In our new approach, only the degrees of the
components being intersected come into play in the determination of the number of
paths followed by the homotopies that we use. This is important since the degree of
a component of a given system of polynomials is typically much less than the number
of paths required to find even all isolated solutions of the given system.

Viewed another way, the intersection operation is required for a Boolean algebra
of constructible algebraic sets; a complete Boolean algebra also requires the operations
of union and complement. Suppose W is a witness set for a component X. There
are several probability-one algorithms for deciding if a point x ∈ C

N is a member
of X, using numerical continuation and the data in W . (We review witness sets and
membership tests in section 2.) The complement operation is just the logical inversion
of a membership test, and the union operation is just a union of witness sets, utilizing
membership tests to eliminate duplications. However, the operation of intersection is
more difficult.

In our previous work, we showed how to find the solution set of a system of
polynomial equations as a union of witness sets, and, further, we showed how to de-
compose these into witness sets for the irreducible components. Said another way, this
solves the problem of intersecting a collection of hypersurfaces defined by polynomial
equations. But this does not give us an effective means of computing the intersection
of two components represented by witness sets.

Our first step in creating an algorithm for the intersection of components is to
generalize an earlier algorithm for generating the witness sets for the solution set of
a system of polynomial equations on C

N . The generalization instead considers the
polynomial equations restricted to an algebraic set. The intersection of components
A and B then follows by considering the decomposition of the diagonal system of
equations u − v = 0 restricted to {u, v} ∈ A × B. Hence, we call the intersection
algorithm the diagonal homotopy.

This paper is organized as follows. First, in section 2, we review the definition
of a witness set and its role in finding the numerical irreducible decomposition of
the solution set of a system of polynomial equations. In section 3 we introduce a
slight generalization of the randomization procedure of [17], and in section 4 we give
a general construction of homotopies. These sections give the basic definitions and
results that will be needed later in the article.

The original algorithm for constructing witness supersets was given in [17]. A
much more efficient algorithm for constructing witness supersets was given in [12] by
means of an embedding theorem. In section 5, we show how to carry out the gen-
eralization of [12] to the case of a system of polynomials on a pure N -dimensional
algebraic set X ⊂ C

m, i.e., an algebraic subset of C
m all of whose irreducible com-

ponents are N -dimensional. We call this the abstract embedding theorem because it
does not rely on any specific numerical description of X. In this generality we lose
some control of multiplicities. However, since our main objective is to find the un-
derlying reduced algebraic solution components, this loss of multiplicity information
is of minor importance.

In section 6 we show how to implement the abstract embedding theorem nu-
merically. We need only the information about X that would be produced by the
algorithm for the numerical irreducible decomposition of a polynomial system f , for
which X is an irreducible component of the solution set of f .

In section 7 we specialize to the situation in which we have two polynomial systems
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f and g on C
N and we wish to describe the irreducible decompositions of A∩B where

A is an irreducible component of V (f) and B is an irreducible component of V (g).
Computational experiments are discussed in section 8.

In Appendix A, we give some further discussion of the method of constructing
homotopies described in section 4.

In Appendix B, we give the proof of Theorem 5.1.

2. Witness sets. We begin by reviewing the basics of numerical algebraic geom-
etry, wherein the most fundamental concept is a witness set. See [13, 15, 17] for details
on irreducible components, the irreducible decomposition, and reduced algebraic sets.

Given a system of polynomials on C
N

f(x) :=

⎡⎢⎣ f1(x)
...

fn(x)

⎤⎥⎦ ,(2.1)

we denote the underlying point set
{
x ∈ C

N
∣∣ f(x) = 0

}
by V (f), i.e., the algebraic

set f−1(0) (with all multiplicity information that comes with f−1(0) ignored). A pure
i-dimensional algebraic subset X of V (f) is a subset X ⊂ V (f) equal to the closure
of a union of i-dimensional connected components of the smooth points of V (f). We
emphasize that X is reduced, i.e., that we are ignoring the multiplicity of X within
f−1(0). We represent X numerically by a witness set, defined as follows.

Definition 2.1. A witness set for a pure i-dimensional algebraic set X ⊂ V (f) ∈
C
N consists of

1. the dimension, i, of X;
2. the polynomial system f(x);
3. a general (N − i)-dimensional affine linear subspace LN−i ⊂ C

N ; and
4. the set of degX distinct points X = LN−i ∩X.

In other words, a witness set W for X is the ordered set W = {i, f, LN−i,X}. We
use the notation V (W ) to denote the component represented by W ; in the current
context V (W ) = X.

This definition is useful because it allows us to numerically represent and manip-
ulate the irreducible decomposition of the solution set of a polynomial system. Let
us quickly review that concept before describing our new results. Everything we say
is over the complex numbers, e.g., even if the polynomials have real coefficients, we
always deal with the sets of solutions on complex Euclidean space.

We start with a system of polynomials f on C
N as in (2.1). Let V (f) denote

the set of solutions of f on C
N , i.e., the set of points x ∈ C

N such that f(x) = 0.
The set Z := V (f) is an affine algebraic set and decomposes into a union of distinct
irreducible components. Recall that an algebraic set X is irreducible if and only if
the Zariski open dense subset of manifold points on X is connected. We have the
decomposition

Z =

dimZ⋃
i=1

Zi =

dimZ⋃
i=1

⎛⎝⋃
j∈Ii

Zi,j

⎞⎠ ,(2.2)

where
1. for each i, Zi := (∪j∈IiZi,j);
2. the sets Ii are finite and each Zi,j is irreducible of dimension i; and
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3. Zi,j is not contained in a union of a collection of the Za,b unless Zi,j occurs
in the collection.

Any collection of irreducible components Zi,j having the same dimension, i, can
be numerically represented by a witness set. A numerical irreducible decomposition is
a list having one witness set Wi,j for the reduction of each irreducible component Zi,j .

In a series of papers [12, 13, 14, 15, 16, 17], we showed how to compute a numerical
irreducible decomposition of Z := V (f). The approach is to intertwine two numerical
algorithms: a witness generating algorithm, which finds a superset of witness points
for each pure-dimensional algebraic set Zi, and a decomposition algorithm, which
eliminates spurious points from the superset and breaks it into irreducible compo-
nents. To be more precise, at each dimension i = 0, . . . ,dimZ, the witness generating
algorithm gives a finite set of points Ŵi satisfying LN−i∩Zi ⊂ Ŵi ⊂ LN−i∩(∪j≥iZj),
where LN−i ⊂ C

N is a general (N− i)-dimensional affine linear subspace. The second

algorithm decomposes the Ŵi. Precisely,
1. Ŵi decomposes into the disjoint union

Ji ∪
⎛⎝⋃
j∈Ii

Zi,j
⎞⎠,(2.3)

where Ji ⊂ ∪k>iZk and Zi,j consists of the degZi,j points of LN−i ∩ Zi,j ;
and

2. JdimZ = ∅.
The points Zi,j , along with the dimension i, the system of equations f , and the linear
subspace LN−i, form a witness set for the irreducible component Zi,j .

The key theoretical advance of this paper is to observe that the previous algo-
rithms for numerical irreducible decomposition still work with restrictions of a polyno-
mial system to a pure-dimensional algebraic set. Only the first algorithm constructing
the witness point supersets Ŵi needs to be generalized. The decomposition algorithms
starting with the witness point supersets Ŵi are proved in [13, 14, 15] in sufficient
generality to cover the present situation.

The above implicitly assumes that the components Zi,j are reduced, i.e., of mul-
tiplicity one in f−1(0). The algorithms in [12, 17] in fact produce sets Zi,j consisting
of degZi,j distinct points each repeated µi,j times, where µi,j is greater than or equal
to the multiplicity of Zi,j in f−1(0). Moreover the multiplicity of Zi,j is one if and
only if µi,j = 1. Unfortunately, in the algorithm in this article we can assert only that
µi,j > 0 for any irreducible component Zi,j .

As mentioned in the introduction, an important aspect of a witness set X is that
we can use it to test a point for membership in the algebraic set X = V (X ) that X
represents. This stems from the fact that we can sample X by continuously perturb-
ing the linear slice and numerically tracking its intersection with X, starting from
the witness points in X . Several different membership tests can be employed. At
one expensive extreme, by sampling and fitting, we might compute a set of polynomi-
als, whose set of common zeros is exactly X. A much more efficient probability-one
test for a point x ∈ C

N to be in X is whether the pullback from C
dimX+1 of a

degX defining polynomial for π(X) ⊂ C
dimX+1 is zero on x, where π is a general

linear projection from C
N to C

dimX+1. Finally, a very different sort, and quite ef-
ficient test, for x ∈ C

N to be in X is to see whether x is one of the images of
the set X under the homotopy taking LN−i to a general (N − i)-dimensional linear
subspace of C

N that contains x. This test depends on the real-one-dimensional path
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between the general linear subspaces to remain general, which occurs with probability
one.

3. Randomizing systems. Randomization is a key element of our approach.
This section introduces some notation for randomized systems and gives a lemma
describing their most important properties. Given a system of n equations defined on
C
N , as in (2.1), and a positive integer k, we define a randomization operation

R(f(x); k) := Λf(x), Λ ∈ C
k×n,(3.1)

where Λ is chosen generically from C
k×n. Note that k does not have to equal n.

Gaussian elimination does not change the ideal generated by Λf(x). Therefore, when
k ≥ n, Λf(x) is equivalent to the system consisting of f(x) plus k − n identically
zero equations. For the same reason, when k ≤ n, Λf(x) is equivalent to the sys-
tem [

Ik R
]
f(x), R ∈ C

k×(n−k),(3.2)

where Ik is the k×k identity matrix. Consequently, we may without loss of generality
assume that R(f(x); k) is of the form of (3.2) with a generic choice of R ∈ C

k×(n−k).
This form allows us to take some advantage of the original equations. For example, if
k = N and the original equations had total degrees d1 ≥ d2 ≥ · · · ≥ dn, then the total
degree of the original form of R(f(x);N) is dN1 , but the total degree of the modified
form is d1d2 · · · dN .

The following lemma gives the main properties of randomization.
Lemma 3.1. Let

f(x) :=

⎡⎢⎣ f1(x)
...

fn(x)

⎤⎥⎦(3.3)

be a system of restrictions of n polynomials on C
m to a pure N -dimensional affine

algebraic set X ⊂ C
m. Assume that k ≤ min{n,N}. Assume that f does not vanish

on any component of X. These conclusions follow:
1. The dimension of any component of V (R(f(x); k)) is ≥ N − k.
2. The irreducible components of V (R(f(x); k)) and V (f) of dimension greater

than N−k are the same, and the irreducible (N−k)-dimensional components
of V (f) are components of V (R(f(x); k)).

Proof. This variant of Bertini’s theorem follows by the same type of reasoning
as the analogous result in [12, 17] for systems of N polynomials on C

N . For the
convenience of the reader, we give a proof.

The first conclusion is simply [11, Corollary 3.14].
Since V (f) ⊂ V (R(f(x); k)), the second conclusion will follow if we show that

all irreducible components V (R(f(x); k)) ∩ (X \ V (f)) have dimension N − k. Thus
it suffices to show that if V (f) is empty, it follows that all irreducible components
V (R(f(x); k)) have dimension N − k. This is immediate from Theorem B.1.

4. Construction of homotopies. Our algorithm for intersecting algebraic va-
rieties is based on constructing homotopies to solve a system of polynomial equations
restricted to an algebraic set. This is a generalization of existing homotopies, which
have until now always worked on complex Euclidean space, C

m. Accordingly, in this
section we give a very general construction for homotopies on varieties.
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Let X ⊂ C
m be an irreducible N -dimensional affine algebraic set and let Y be an

irreducible r-dimensional smooth algebraic set with r ≥ 1. Let

f(x, y) =

⎡⎢⎣ f1(x, y)
...

fN (x, y)

⎤⎥⎦ = 0(4.1)

be a system of N algebraic functions on X × Y . In practice, Y is a parameter space
defining a family of systems of interest, and for any one member of the family, we
wish to find its solution points in X.

More precisely, suppose we have some parameter value y∗ ∈ Y for which we want
to find a finite set F∗ of solutions of the system f(x, y∗) = 0, such that all the isolated
solutions of f(x, y∗) = 0 are contained in F∗. A procedure to do this proceeds in a
number of steps in the same manner as if Y is C

N :
1. Choose a point y′ ∈ Y for which we can find the isolated solutions F ′ of
f(x, y′) = 0, and the number of isolated solutions is the maximum number
D for any system f(x, y) = 0 as a system in the x variables. We assume here
that y′ �= y∗, since otherwise we are done.

2. Construct a smooth connected algebraic curve B ⊂ Y which contains y∗ and
y′. (Typically Y is a Euclidean space and we choose B equal to the complex
line joining the points y∗ and y′.)

3. Construct a differentiable mapping c : [0, 1] × Γ → B, where Γ is an interval
or the unit circle, c(0,Γ) = y∗, c(1,Γ) = y′, and where there is a positive
integer K such that given any point y′′ ∈ c([0, 1] × Γ) not equal to y∗ or y′,
it follows that c−1(y′′) has at most K inverse images.

4. Choose a random γ ∈ Γ and starting with the isolated solutions F ′ of
f(x, y′) = 0 use homotopy continuation of the system f(x, c(t, γ)) = 0 to
continue from the solutions F ′ at t = 1 to solutions F∗ at t = 0.

Let us show that if we can make the choices specified by this procedure, we will find a
finite set F∗ of solutions of the system f(x, y∗) = 0, such that all the isolated solutions
of f(x, y∗) = 0 are contained in F∗. In Appendix A we show how to relax item 2 so
that the procedure can be carried in all situations where Y is irreducible.

It may happen that the solution sets of f(x, y) = 0 for some or all the y ∈ Y
also contain positive dimensional solution components. Nevertheless, the number D
in item 1 exists and is finite by general results, e.g., [10]. Now choose B as in item 2.
Lemma A.1 guarantees that for all but a finite number of points ŷ ∈ B, f(x, ŷ) = 0
has D isolated solutions and that the closure of the union of the isolated solutions of
f(x, ŷ) = 0 as ŷ runs over B is an algebraic curve B which surjects generically D-to-
one onto B. Since the set of points in B over which this mapping is not a covering is
an algebraic set and hence finite, the procedure is seen to work.

Remark 4.1. Algebraic functions on an affine algebraic set X ⊂ C
m are the

restrictions of polynomials from C
m. If by deg fi we denote a degree of a polynomial

on C
m restricting to X, it follows that the number D above is at most degX ×

ΠN
i=1 deg fi. From this it further follows that if we can find a y′ such that f(x, y′) = 0

has degX × ΠN
i=1 deg fi nonsingular isolated solutions, we can use y′.

Remark 4.2. Lemma A.1, which justifies the above procedure, is strong enough
to yield the algorithms we need to construct witness points. However, the lemma is
too weak to relate the multiplicity of the points as they appear in these algorithms
to the multiplicity of the components that they represent. See Appendix A for more
details.
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5. An abstract embedding theorem. The object of this section is to present
Theorem 5.1, a generalization of the main theorem of [12]. We are aiming for the
same results as in that article except that C

N is replaced by a pure N -dimensional
affine algebraic set X. We call the generalization in this section abstract because we
do not specify an explicit description of X; a numerical version is the topic of the next
section. Since the proof of Theorem 5.1 follows the same line of reasoning of [12], we
only state and discuss the parts of that article that need changes. Before we can state
the theorem, we need some notation.

5.1. Definitions. LetX ⊂ C
m be a reduced pureN -dimensional affine algebraic

set, i.e., an affine algebraic subset of C
m, all of whose irreducible components are of

multiplicity one and dimension N . We assume that we have a system of restrictions
of polynomials on C

m to X,

f(x) :=

⎡⎢⎣ f1(x)
...

fN (x)

⎤⎥⎦ .(5.1)

We assume that f does not vanish identically on any irreducible component of X. We
will occasionally abuse notation and use the same notation fi to denote the polynomial
on C

m and its restriction to X. In line with this abuse, we let

x :=

⎡⎢⎣ x1

...
xm

⎤⎥⎦(5.2)

denote both the coordinates on C
m and the restrictions of the coordinates to X.

Let Y denote the matrix space C
N×(1+m+N), with submatrices denoted as[ A0 A1 A2

]
,(5.3)

where A0 ∈ C
N×1, A1 ∈ C

N×m, and A2 ∈ C
N×N . We have the stratification of Y,

Y0 ⊂ Y1 ⊂ · · · ⊂ YN ,(5.4)

where Yi is the subspace of Y obtained by setting the last N − i rows of Y equal to
0, and we define πi : Y → Yi as the corresponding projection. Note in particular that
YN is Y, whereas Y0 is an N × (1+m+N) matrix of zeros. Defining ei as the N ×N
matrix of all zeros except a 1 in the ith diagonal element and letting Pi =

∑i
j=1 ej ,

we can explicitly write πi(Y ) = PiY . We define P0 to be the N ×N matrix with all
entries zero. This notation will be useful in defining a homotopy.

We let

z :=

⎡⎢⎣ z1
...
zN

⎤⎥⎦(5.5)

denote coordinates on C
N .
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5.2. Embedding and cascade. For Y = (A0,A1,A2) ∈ Y, we define the sys-
tem

E(f)(x, z, Y ) :=

[
f(x) + AT

2 z
z −A0 −A1x

]
,(5.6)

which admits the embeddings

Ei(f)(x, z, Y ) = E(x, z, πi(Y )) = E(x, z, PiY ).(5.7)

We often refer to Ei(f)(x, z, Y ) by Ei or Ei(f). We regard Ei as a family of systems of
equations on X × C

N parameterized by Yi. Note that
1. the Ei are the restrictions of systems EN to Yi; and
2. the Ei can be identified with systems on X × C

i with coordinates z1, . . . , zi
on C

i. (This is because zj = 0 for j > i.) Thus, E0 is naturally identified
with the system f .

For i from 1 to N and γi ∈ {γ ∈ C | |γ| = 1}, we define a cascade of homotopies
that connect the embedded systems:

Hi(x, z, t, Y, γi) :=

⎡⎢⎢⎣
f(x) + AT

2 z

Pi−1(z −A0 −A1x)
+ ei((1 − t)z + γit(z −A0 −A1x))
+ (IN − Pi)z

⎤⎥⎥⎦ .(5.8)

The nonzero parts of the three terms in the lower block of this expression occupy
separate rows, with only the ith row depending on t. At t = 1, Hi(x, z, 1, Y, γi) is
equivalent to Ei(x, z, Y ) (they differ only in that the ith row of the lower block has
been scaled by γi), and at t = 0, Hi(x, z, 0, Y, γi) = Ei−1(x, z, Y ). Homotopy Hi allows
us to compute solutions to the embedded systems by continuation, as described in
the next paragraph.

For i from 1 to N , Fi denotes the solutions to Ei = 0 with z �= 0. In the case of
i = 0, we make the convention that F0 is the empty set. Of course, like Ei, Fi depends
on Y ∈ Y. We do not emphasize the dependence since the thrust of the main result
is that a generic choice of Y , which is done once and for all using a random number
generator in implementations, has a number of nice properties:

1. The solutions Fi of Ei = 0 are nonsingular and isolated and equal to the set
of solutions of Ei = 0 with zi �= 0.

2. The solutions of Ei = 0 equal Fi for i > dimV (f).
3. For all u ∈ Fi and but a finite number of γi, there is a unique continuous

map su(t) : [0, 1] → X × C
i such that

(a) su(1) = u;
(b) Hi(su(t), t, Y, γi) = 0; and
(c) the Jacobian of Hi(x, z, t, Y, γi) with respect to (x, z) is invertible at

(su(t), t) for t ∈ (0, 1].
4. The limits of the functions su(t) as t→ 0, which exist by the last properties,

consist of the set Fi−1 plus a finite set Ŵi−1.

The collection of sets Ŵi for i = 1, . . . , N contains the witness points for the
irreducible decomposition of f−1(0). This is stated formally in the following theorem,
a generalization of the main theorem of [12].

Theorem 5.1. Let f be the restriction of a system of N polynomials on C
m to

a pure N -dimensional affine algebraic set X ⊂ C
m. Assume that f is not identically
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zero on any irreducible component of X and that (A0,A1,A2) is chosen generically.

If j is the largest integer with Ŵj nonempty, then the dimension of f−1(0) is j.
Moreover, given any irreducible component W of f−1(0) of dimension i ≤ j, then

the finite set Ŵi contains deg(Wred) generic points of Wred, each counted νW times,
where νW is a positive integer, and Wred is the reduction of W . The remaining points
Ji ⊂ Ŵi lie on components of f−1(0) of dimension > i.

Theorem 5.1 is a consequence of Lemma A.1 and Lemmas B.2 and B.4.

6. Numerical embedding. In this section we show how to numerically imple-
ment the algorithm of section 5. We assume that we have f and X ⊂ C

m as in
Theorem 5.1. We assume that we have a system of polynomials on C

m

g(x) :=

⎡⎢⎣ g1(x)
...

gn(x)

⎤⎥⎦(6.1)

such that X is a union of dimension N irreducible components of V (g). Once and
for all choose a randomized system of m − N polynomials G(x) := R(g(x);m−N).
By Lemma 3.1 we know that X is a union of dimension N irreducible components of
V (G).

We further assume that we begin with a witness set for X; that is, we know its
dimensionN and have found the degX smooth isolated witness pointsW = Lm−N∩X
for a general linear subspace Lm−N of dimension m−N . (This will be on hand after
computing the numerical irreducible decomposition of g(x) = 0.)

To convert the abstract systems of the previous section to systems we can compute
with, we append G. Thus regarding the fi as polynomials on C

m, we replace Ei(f)
by [

G(x)
Ei(f)(x, z)

]
,(6.2)

which by abuse we still call Ei(f). We let Ẽi(f) denote the original Ei(f) without the
G(x); we use this only in (6.6) and (6.7).

To start the algorithm we need to solve EN (f) = 0. Assume the total degree of
fi as a polynomial on C

m is di for each i.
Choosing d1 + · · · + dN general linear forms

L1,1(x), . . . , L1,d1(x), . . . , LN,1(x), . . . , LN,dN (x)(6.3)

on C
m, we want them to have the good property that for any choice of integers ij in

1, . . . , dj for each j in 1, . . . , N , the solution set Si1,...,iN of the system of restrictions
to X of the linear equations

L1,i1(x) = 0
...

LN,iN (x) = 0

(6.4)

consists of degX nonsingular isolated solutions, and moreover Si1,...,iN ∩ Sk1,...,kN =
∅ unless (i1, . . . , iN ) = (k1, . . . , kN ). Let π : C

m → C
N denote a general linear

projection. As discussed in [14], πX is proper and (degX)-to-one. Let B be the proper
algebraic subset such that πX is an unramified cover when restricted toX\π−1(B). By
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composing with π we have reduced to the straightforward observation that choosing
d1 + · · ·+dN general linear functions Li on C

N for i from 1 to d1 + · · ·+dN , it follows
that

1. the unique zero of the linear functions Li1 , . . . , LiN for distinct i1, . . . , iN
between 1 and d1 + · · · + dN vanishes at a general point of C

N \B; and
2. given any N + 1 of the d1 + · · · + dN linear functions, there are no solutions

on C
N .

The system

L̂(x) =

⎡⎢⎣ L1,1(x) · · ·L1,d1(x)
...

LN,1(x) · · ·LN,dN (x)

⎤⎥⎦ = 0(6.5)

has d1 · · · dN · degX nonsingular isolated solutions wα contained in Xreg, the Zariski
open set of smooth points of X. By homotopy continuation tracking from Lm−N to

each of the d1 · · · dN linear systems that occur in the system L̂(x), we can compute

all the solutions wα of L̂(x) = 0.
Fix the homotopy

H(x, z, t) :=

⎡⎣ G(x)

(1 − t)ẼN (f)(x, z) + tγ

[
L̂(x)
z

] ⎤⎦ = 0,(6.6)

where γ is any of all but a finite number of norm one complex numbers. The solutions
of EN (f) = 0 are the nonsingular limits as t→ 0 on X of paths starting at t = 1 with
the wα and zi = 0 for all i.

Remark 6.1. In practice we often have some estimate, say, N − 1, of the largest
dimension of any component of the solution set of f on X. This will happen, for
example, in section 7. In such a situation we need only start with EN . In this case
we can replace the homotopy (6.6) with

H(x, z, t) :=

⎡⎣ G(x)

(1 − t)ẼN (f)(x, z) + tγ

[
L̂(x)
z

] ⎤⎦ = 0.(6.7)

Note that the smooth nonsingular solutions of Ei(f) on X are generic. Thus they
miss E := (G−1(0) \X) ∩ X except for a proper algebraic set of parameter values.
Thus for a Zariski open dense set of the homotopy parameters the homotopies with G
compute the abstract homotopies. Although E may contain the limits of a homotopy,
the value of the limit is not influenced by G.

It is important to realize that serious numerical difficulties can arise, even when
we are dealing with a smooth reduced component C of the system f on X. These
occur if C is contained in a component of V (g) other than those in X. If this happens,
path tracking to decompose the witness point superset containing generic points of C
will be singular and require the path tracker used in [15].

7. Diagonal homotopies. Assume that A is an irreducible component of the
solution set of polynomial system fA(u) = 0 in u ∈ C

k of dimension a > 0 and that
B is an irreducible component of the solution set of polynomial system fB(v) = 0 in
v ∈ C

k of dimension b > 0. An important special case of this is when fA and fB are
the same system and A and B are distinct irreducible components. After renaming if
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necessary, we assume a ≥ b. Moreover, we assume that B is not contained in A, since
we would check this at the start of the algorithm and terminate if B was contained
in A. Thus all components of A ∩B are of dimension at most b− 1.

We wish to compute the irreducible decomposition of A ∩ B. Note that the
product X := A × B ⊂ C

2k is irreducible of dimension a + b. The theory of the
preceding sections applies with m = 2k and N = a + b. The intersection of A and
B can be identified, e.g., [4, Example 13.15], with X ∩ ∆, where ∆ is the diagonal of
C

2k defined by the system on X,

δ(u, v) :=

⎡⎢⎣ u1 − v1
...

uk − vk

⎤⎥⎦ = 0.(7.1)

Remark 7.1. Notice that δ(u, v) plays the role of f in (5.1).
If a+ b ≥ k, set D(u, v) equal to δ(u, v) with a+ b− k identically zero equations

adjoined. If k < a+b, fix a randomizationD(u, v) := R(δ(u, v); a+ b) once and for all.
Note that the smallest dimensional nonempty component of A∩B is of dimension at
least max{0, a+b−k}. Thus by Lemma 3.1, we can find the irreducible decomposition
of A ∩B by finding the irreducible decomposition of D(u, v) = 0 on X.

Fix randomizations FA(u) := R(fA(u); k − a) and FB(v) := R(fB(v); k − b) once
and for all. We assume that we have already processed fA and fB through our
numerical irreducible decomposition. Thus our data for A consist of a generic system
LA(u) = 0 of a = dimA linear equations and the degA solutions {α1, . . . , αdegA} ∈ C

k

of the system [
FA(u)
LA(u)

]
= 0,(7.2)

and the data for B consist of a generic system LB(v) = 0 of b = dimB linear equations
and the degB solutions {β1, . . . , βdegB} ∈ C

m of the system[
FB(v)
LB(v)

]
= 0.(7.3)

Remark 7.2. We are not assuming that A and B occur with multiplicity one. If
the multiplicity is greater than one, we must use a singular path tracker [15].

Note that A×B is an irreducible component of the solution set of the system

F(u, v) :=

[
FA(u)
FB(v)

]
= 0.(7.4)

In the following paragraphs, we write zh:k to mean the column vector of variables
zh, . . . , zk.

Since we know that all components of A ∩B are of dimension at most b− 1, the
first system of the cascade of homotopies is

Eb(u, v, z1:b) =

⎡⎣ F(u, v)
R(D(u, v), z1, . . . , zb; a+ b)
z1:b − R(1, u, v; b)

⎤⎦ = 0.(7.5)

This system consists of k−a+ k− b+a+ b+ b = 2k+ b equations in 2k+ b variables.
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To start the cascade, we must find the solutions of (7.5). Recall a ≥ b. Specializing
the system from the end of section 6, we have the homotopy⎡⎢⎢⎣

F(u, v)

(1 − t)

[
R(D(u, v), z1, . . . , zb; a+ b)
z1:b − R(1, u, v; b)

]
+ tγ

⎡⎣ LA(u)
LB(v)
z1:b

⎤⎦
⎤⎥⎥⎦ = 0.(7.6)

At t = 1, solution paths start at the degA× degB nonsingular solutions

{(α1, β1), . . . , (αdegA, βdegB)} ⊂ C
2k(7.7)

obtained by combining the witness points for A and B. At t = 0, the solution paths
terminate at the desired start solutions for (7.5).

Since A ∩B �= ∅ implies that

dimA ∩B ≥ a+ b− k,(7.8)

we see that when a + b ≥ k, we do not have to continue the cascade beyond level
a+ b− k. We can codify this into the numerics by noting that the system Eb is, with
probability one, the same as the system

Êb(u, v, zb−ā+1, . . . , zb) =

⎡⎢⎢⎣
F(u, v)
R(δ(u, v), zb−ā+1, . . . , zb; k)
R(1, u, v; b− ā)
z(b−ā+1):b − R(1, u, v; ā)

⎤⎥⎥⎦ = 0,(7.9)

where ā = k−a. This system has (k−a)+ (k− b)+ k+(k−a)+ (a+ b− k) = 3k−a
equations in 3k − a variables. Notice that a + b ≥ k implies 3k − a ≤ 2k + b. To
appreciate this, consider the case when a and b are both k − 1 and fA and fB are
each a single equation. In this case the first system of the cascade is

Ê1(u, v, z1) =

⎡⎢⎢⎢⎢⎣
fA(u)
fB(v)

u− v +Rk×1z1
R(1, u, v; k − 2)
z1 − R(1, u, v; 1)

⎤⎥⎥⎥⎥⎦ = 0,(7.10)

where Rk×1 is a generic complex k-vector.
In the important case when a + b ≥ k, we want to compute the start solutions

for (7.9). Then, letting ā = k−a, the homotopy (7.6) reduces with probability one to⎡⎢⎢⎣
F(u, v)

(1 − t)

⎡⎣ R(δ(u, v), zb−ā+1, . . . , zb; k)
R(1, u, v; b− ā)
z(b−ā+1):b − R(1, u, v; ā)

⎤⎦+ tγ

⎡⎣ LA(u)
LB(v)

z(b−ā+1):b

⎤⎦
⎤⎥⎥⎦ = 0.(7.11)

8. Computational experiments. The diagonal homotopies are implemented
in the software package PHCpack [18], recently upgraded to deal with positive dimen-
sional solution components. The software is available at http://www.math.uic.edu/˜jan.

To compute witness points on all positive dimensional components of the inter-
section, we distinguish three stages:
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1. Given witness points on the two components, construct the top dimensional
system in the cascade and the start system to start the cascade.

2. Use polynomial continuation to compute the solutions at the start of the
cascade.

3. Follow all paths defined by the cascade, in b stages, until all slack variables in
z1:b are eliminated or until no more paths are left to trace. When a+ b ≥ k,
we need work only with z(b−ā+1):b.

The complexity of this procedure thus depends on
1. the number of variables (and equations) in the top dimensional system in the

cascade,
2. the number of paths it takes to compute the solutions at the start of the

cascade, and
3. the number of paths defined by the cascade.

Although we mention timings of runs done on a 2.4 Ghz Linux machine, the numbers
describing the complexity are less transient.

8.1. An illustrative example. Consider the following example:

f(x, y, z, w) =

⎡⎢⎢⎣
xz
xw
yz
yw

⎤⎥⎥⎦ = 0.(8.1)

There are two solution components of dimension two, characterized by the equations
{x = 0, y = 0} and {z = 0, w = 0}. Pretending we do not know the two compo-
nents intersect in the origin, we will set up a cascade of homotopies to compute the
intersection of the two components.

Since we start out with four variables (k = 4) and work with two-dimensional
components (a = b = 2), the total number of variables at the start of the cascade
is 2k + b = 10. The components are characterized by one witness point each, so
there is only one path to trace. Tracing one path to start the cascade takes only 80
milliseconds of CPU time and gives a point with z2 �= 0, z1 �= 0. In the first stage
of the cascade, we take z2 to zero, but z1 remains nonzero, showing that there is not
a one-dimensional component. The second stage of the cascade takes z1 to zero and
yields the origin as the point of intersection of the two components, as expected. The
two stages of the cascade together take just 30 milliseconds.

8.2. Intersection of a cylinder with a sphere. In Figure 8.1 we see a sphere
intersected by a cylinder. The curve C defined by this intersection is

C := { (x, y, z) | x2 + y2 − 1 = 0 ∩ (x+ 0.5)2 + y2 + z2 − 1 = 0 }.(8.2)

The total user CPU time of all path tracking is about a tenth of a second. First
we track two paths to find a witness set for the cylinder, which takes 20 milliseconds.
Then it also takes 20 milliseconds to compute a witness set for the sphere. We have
a = b = 2 and k = 3; thus a + b > k and the diagonal homotopy requires seven
variables, as 7 = 3k − a. Tracking the 2 × 2 paths defined by the diagonal homotopy
takes 70 milliseconds of CPU time. At the end of the paths we find four points in the
witness set for the curve C.

We may now move the slicing plane of the witness set to find the intersection of
C with any desired plane. For example, to find the points on C of the form (x, x, z),
we move the slice in a continuous fashion to x− y = 0. Tracking the four solutions in
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Fig. 8.1. Intersection of a sphere with a cylinder. At the right we see the curve of degree four
defined by the intersection.

the witness set to this special plane takes only 10 milliseconds of CPU time and gives
two real and two complex-conjugate solutions.

8.3. Adding an extra leg to a moving platform. In this section we give an
application of the important case where one of the components is a hypersurface. We
consider a special case of a Stewart–Gough platform proposed by Griffis and Duffy [6].
When further specialized to have equilateral upper and lower triangles connected by
six legs in cyclic fashion from a vertex of one triangle to a midpoint of an edge of the
other triangle, and vice versa, the platform permits motion. This property was first
identified and analyzed by Husty and Karger [7] and subsequently reexamined in [15].

When the legs of the mechanism described above have general lengths, a formu-
lation of the kinematic equations using Study coordinates has one curve of degree 28
and 12 lines [15]. The lines are mechanically irrelevant, so we ignore them. Suppose
we form a tetrahedron by adding a fourth point in general position to the base triangle
and similarly for the upper triangle and then add a seventh leg of known length con-
necting these two points. The condition for assembling the mechanism is equivalent
to intersecting the motion curve of degree 28 for the first six legs with a quadratic
hypersurface that equates the length of the seventh leg to the distance between its
points of connection. This hypersurface is of the same form as the main equations in
the system defining the curve. With the addition of the seventh leg, the platform will
no longer move but instead will have a finite number of fixed postures.

The number of variables and equations in the original system is eight (k = 8). We
intersect a one-dimensional component with a hypersurface; for k = 8, this hypersur-
face is of dimension seven. Since a ≥ b, we have a = 7 and b = 1. Thus the cascade
starts with 17 variables, as 2k + b = 2 × 8 + 1 = 17. The hypersurface is represented
by two witness points and the curve we intersect has 28 witness points. To start the
cascade, we trace 2×28 = 56 paths in dimension 17, using 20.3 seconds of CPU time.
The cascade just has to remove one hyperplane to arrive at the 40 intersection points
(16 of the 56 paths diverge), which requires 14.4 seconds of CPU time. Interestingly,
a general Stewart–Gough platform also has 40 solution points.

Finally, we point out that the CPU time spent on the diagonal homotopy is con-
siderably less than for solving the system directly. For the direct approach the input is
a system in nine equations and eight variables. Before giving it to the blackbox solver
of PHCpack, we add to every equation one monomial, which is a new slack variable
multiplied with a random constant. The mixed volume of this new nine-dimensional
system is 164. The computation of the mixed volume and tracking of all 164 paths
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takes 108.5 seconds (1.8 minutes) of CPU time. At the end we find the same 40 inter-
section points; the other 124 paths diverged to infinity. Notice that in the diagonal
homotopy, only 16 paths diverged.

9. Conclusions. In this paper, we extend the cascade of [12] to compute witness
points on all components of the intersection of two irreducible varieties. This is done
by computing the irreducible decomposition of the diagonal of the product of the two
irreducible varieties, and so we call the new procedure a diagonal homotopy. The
procedure is justified as a special case of a method, also described herein, for the
irreducible decomposition of the solution set of any polynomial system restricted to
an irreducible algebraic set.

The diagonal homotopy given here always has at least twice the number of vari-
ables as the ambient space of the varieties being intersected. In a sequel to this paper,
we will describe a modification to the diagonal homotopy that avoids the explicit dou-
bling of the system, which leads to more efficient computation.

Appendix A. Homotopy on an algebraic set. In section 4, we give a pro-
cedure for constructing homotopies to solve a system of parameterized polynomials
restricted to an algebraic set. In that procedure, Y is the parameter space and B is
a smooth curve in Y , and we compute solution paths along a one-real-dimensional
curve in B. Both Y and B are irreducible algebraic sets.

While choosing a smooth B is a difficulty when Y is irreducible and singular, it
is always easy to find an irreducible curve B that contains y′ and y∗ with y′ �∈ BSing.
If y′ is not in the singular set YSing of Y , then B is not contained in YSing. This is
more than enough for the procedure to find a finite set F∗ of solutions of the system
f(x, y∗) = 0, such that all the isolated solutions of f(x, y∗) = 0 are contained in F∗.

In fact, the procedure given in section 4 works with item 2 of that procedure
relaxed to the condition of constructing an irreducible curve B containing y′ and y∗

such that
1. B is not contained in the singular set YSing of Y , and
2. y′ �∈ BSing.

That the procedure finds a finite set F∗ of solutions of the system f(x, y∗) = 0,
such that all the isolated solutions of f(x, y∗) = 0 are contained in F∗, may be shown
by reducing to the nonsingular case:

1. Desingularize Y , i.e., let π : Y → Y denote a surjective birational morphism
which gives an isomorphism from Y \ π−1(YSing) to Y \ YSing.

2. Note that since B �⊂ YSing, there is an algebraic curve B′ ⊂ Y that maps
generically one to one and onto B. By using embedded resolution of Y , it
can be further assumed that B′ is smooth.

3. By composition with π we get algebraic functions f ′i on X × Y .
4. Note that given y∗ ∈ B ⊂ Y , there is a point y′∗ ⊂ B′ that maps onto y∗.
5. Note that the result shown holds for X,Y , f ′, B′ and that (with the obvious

identifications) the system f(x, y∗) = 0 on X×{y∗} is identical to the system
f ′(x, y′∗) on X × {y′∗}.

The lemma which justifies the homotopy is as follows.
Lemma A.1. Let X ⊂ C

m be an irreducible N -dimensional affine algebraic set
and let Y be an irreducible smooth algebraic set. Let

f(x, y) =

⎡⎢⎣ f1(x, y)
...

fN (x, y)

⎤⎥⎦ = 0(A.1)
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be a system of N algebraic functions on X × Y . Let x∗ be an isolated solution of
f(x, y∗) = 0 for a fixed value y∗ ∈ Y , i.e., assume that there is an open set O ⊂ X
containing x∗ with x∗ the only solution of f(x, y∗) = 0 on O. Then there exists a
neighborhood V of y∗ ∈ Y such that for any y ∈ V there exists at least one isolated
solution of x ∈ O of f(x, y) = 0.

Proof. This result is a special case of a basic general result from complex algebraic
geometry, e.g., [11, (3.10)]. Any irreducible component of f(x, y) = 0 is of dimension
≥ dimY . Choose such a component C through (x∗, y∗). Consider C ⊂ X ×Y , where
we close up X within P

m. Since the induced projection π : C → Y is proper, and there
is a Euclidean neighborhood O of x∗ as in the lemma with π−1

O (y∗) = x∗, we conclude
that there is a neighborhood V ⊂ Y of y∗ such that πC∩(O×V ) : C ∩ (O × V ) → V
is proper. By the proper mapping theorem the image is an algebraic subset, and by
the upper semicontinuity of fiber dimension it must be surjective. This proves the
lemma.

We conclude this appendix with a few remarks on multiplicity. Lemma A.1 is
strong enough to yield the algorithms we need to construct witness points but unfor-
tunately too weak for us to relate the multiplicity of x∗ as a solution of f(x, y∗) = 0
to the multiplicity of the projection map from C to Y at (x∗, y∗). If X were a local
complete intersection, then it would follow that C was Cohen–Macaulay in a neigh-
borhood of (x∗, y∗), and we could use the stronger result [12, Lemma 6], conclude the
two multiplicities are the same, and thus have the same multiplicity statements as in
[12, Theorem 3].

When we apply Lemma A.1, we know a bit more information, i.e., that for a
general point y′ near y∗, the solutions of f(x, y′) = 0 near (x∗, y′) are nonsingular.
It is worth noting in this case, e.g., using [11, Appendix to Chapter 6] that when
we choose a sufficiently generic smooth curve in Y through y∗, e.g., a generic line
through y∗ when Y is Euclidean space, the number of paths coming into (x∗, y∗) is
the multiplicity of the local ring of X at x∗ with respect to the ideal generated by the
functions fi(x, y

∗). Unfortunately, this multiplicity is in general bounded only by the
multiplicity of (x∗, y∗) as a solution of f(x, y∗) = 0.

Appendix B. Proof of the main theorem. For algebraic sets, there is a
very strong version of Sard’s theorem, e.g., [11, Theorem 3.7]. This result has a large
number of consequences, going under the name Bertini’s theorem, asserting that the
zero set of a suitably general function inherits properties of the set the function
is defined on. For the convenience of the reader we collect in one place a Bertini
theorem of sufficient generality to cover the needs of this article. Given a complex
vector space V , we let V r denote the Cartesian product of V with itself r times, i.e.,
the space of r-tuples of elements of V . V r has a natural vector space structure given
by addition of r-tuples and multiplication of an r-tuple by a complex number being
defined as the r-tuple obtained by componentwise multiplication of elements of the
r-tuple by the complex number. V r with this vector space structure is denoted by
V ⊕r. In the following theorem, we use notation close to that of Fulton [5, Lemma
B.9.1].

Theorem B.1 (Bertini’s theorem). Let X denote an irreducible algebraic subset
of C

k. Let Z1, . . . , Zq denote a finite number of irreducible algebraic subsets of X
(with one of the Xi possibly equal to X). Let V denote a finite dimensional vector
space of polynomial functions on C

k. Assume that for each point of X at least one
element of V does not evaluate to zero. Then for any integer r > 0, there is a Zariski
open dense set U ⊂ V

r such that for f := (f1, . . . , fr) ∈ U it follows for each Zi
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that
1. if V (f) ∩ Zi is nonempty, then dimV (f) ∩ Zi = dimZi − r, and
2. letting Sing(Zi) denote the singular set of Zi, V (f)∩(Zi\Sing(Zi)) is smooth.

Proof. We first apply [5, Lemma B.9.1]. For the vector bundle E in [5, Lemma
B.9.1] take X ×C

r; take p = 1 with C1 = X ×{0}; for Γ take V
⊕r, i.e., take V

r. The
conclusion from [5, Lemma B.9.1] is the existence of a Zariski open dense set Γo of Γ
such that for f := (f1, . . . , fs) ∈ Γo, it follows that if V (f) ∩ Zi is nonempty, then

dim(V (f) ∩ Zi) ≤ dimZi − r.

The opposite inequality is a property of zero sets of functions, e.g., [11, Corollary
3.14].

Since the intersection of a finite number of Zariski open and dense sets is Zariski
open and dense, it suffices to show that there is a Zariski open dense set Ui ⊂ V

⊕r

such that for f ∈ Ui, V (f) ∩ (Zi \ Sing(Zi)) is smooth. For this we use [3, Theorem
1.7.1.1]. Restricting to (Zi \ Sing(Zi)), we conclude from [3, Theorem 1.7.1.1] that
there is a Zariski open dense set O1 ⊂ V such that for f1 ∈ O1 we have that V (f1) ∩
(Zi \ Sing(Zi)) is smooth and if nonempty of dimension dimZi − 1. Applying [3,
Theorem 1.7.1.1] to the restriction of V to V (f1) ∩ (Zi \ Sing(Zi)), we conclude that
there is a Zariski open dense set O2 ⊂ V such that for f2 ∈ O2 we have that V (f1, f2)∩
(Zi \ Sing(Zi)) is smooth and if nonempty of dimension dimZi − 2. Proceeding
this way for j going to r, Ui := O1 × · · · × Or ⊂ V

⊕r is the desired Zariski open
dense set.

Lemma B.2. Let f and X be as in Theorem 5.1. Assume further that Z is
an algebraic subset of X of dimension < N . Assume that f does not vanish on any
component of X or of Z. There is a Zariski open and dense set U ⊂ Y = C

N×(1+m+N)

such that
1. the solutions Fi of the system Ei(f)(x, z, Y ) for Y ∈ U with z �= 0 are isolated

nonsingular solutions and lie in the set (X \ Z) × C
i;

2. U ∩ Yi is Zariski open and dense for each i < N ; and
3. the solutions of Ei(f)(x, z, Y ) for Y ∈ U with z �= 0 are the same as those

with zi �= 0.
Proof. Since the following result follows almost verbatim from the reasoning in

the first half of the proof of [12, Lemma 2], we give only a brief sketch of the proof.
As discussed in section 5, we regard Ei as a system on X × C

i.
Consider the vector space V1 of functions on X × C

i generated by

f1, . . . , fN , z1, . . . , zi.

The common zeros of the functions in V1 are the points

V (V1) :=
{
(x, 0) ∈ X × C

i|f(x) = 0
}
.

From this we conclude, using Theorem B.1, that for a choice of a system S in a
nonempty Zariski open set of the vector space V ⊕N

1 , it follows that the common zeros
ZS of S onX×C

i\V (V1) are pure i-dimensional with singular set of dimension ≤ i−1.
Similarly, ZS meets Z×C

i \V (V1) in a set of dimension at most dimZ+i−N ≤ i−1.
Now let V2 be the vector space of functions on X × C

i generated by

1, x1, . . . , xm, z1, . . . , zi.

Since 1 ∈ V2, there are no common zeros of the functions in V2. Using Theorem B.1
again, we conclude that for a generic choice of a system S ′ in a nonempty Zariski
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open set of the vector space V ⊕i
2 , it follows that the common zeros of S ′ on ZS with

z �= 0 are a finite set of isolated smooth points not contained in Z × C
i. The above

system [ S
S ′

]
= 0(B.1)

of N + i equations is of the form

B

⎡⎢⎣ f1(x)
...

fN (x)

⎤⎥⎦+ C

⎡⎢⎣ z1
...
zi

⎤⎥⎦ = 0,

D + E

⎡⎢⎣ x1

...
xm

⎤⎥⎦+ F

⎡⎢⎣ z1
...
zi

⎤⎥⎦ = 0,

(B.2)

where B is an N ×N complex matrix, C is an N × i complex matrix, D is an i× 1
complex matrix, E is an i ×m complex matrix, and F is an i × i complex matrix.
The above Bertini type results show that the set of

(B,C,D,E, F ) ∈ C
N×(N+i)+i×(1+m+i)

giving rise to systems of the form (B.2) with only isolated nonsingular solutions on
X×C

i \X×{0} is dense in C
N×(N+i)+i×(1+m+i) with respect to the usual Euclidean

topology. The set of such (B,C,D,E, F ) such that the maximal number of isolated
solutions of the associated system (B.2) on X × C

i \X × {0} occurs is a dense con-
structible set and thus by Chevalley’s theorem, e.g., [11, Proposition 2.31], contains a
dense Zariski open set O. Moreover, we know that the systems of the form (B.2) with
only isolated solutions onX×C

i\X×{0} form a constructible set C of (B,C,D,E, F ).
By the density of the systems (B.1) in the usual Euclidean topology, we conclude that
C is a dense Zariski constructible set and thus contains a dense Zariski open set O′.
The systems arising with parameters from the set U ′

i = O ∩ O′ have the properties
required for the first assertion of the lemma. The matrices (B,C,D,E, F ) giving rise
to systems with the desired properties are invariant under the action

G1 ×G2 × (B,C,D,E, F ) → (G−1
1 B,G−1

1 C,G−1
2 D,G−1

2 E,G−1
2 F ),

where G1 is an invertible N ×N complex matrix and G2 is an invertible i× i complex
matrix. Thus we can assume that U ′

i is invariant under this action. Since the matrices
(B,C,D,E, F ) with B and F invertible form a Zariski open dense set invariant under
the same action, we can assume that the Zariski open set U ′

i is chosen so that all
(B,C,D,E, F ) in the set have B and F invertible. Since (IN , B

−1C,F−1D,F−1E, Ii)
is in U ′

i , we see that the set

Ui := U ′
i ∩ {(B,C,D,E, F )|B and F invertible}

is the desired set for conclusion 1 of the lemma.
We have natural projections πi : Y → Yi obtained by setting the last N − i rows

of an element of Y to 0. The set U := ∩Ni=1π
−1(Ui) is Zariski open and dense. Noting

that since the maps πi are surjective, the images are Zariski dense constructible sets,
we have, on redefining Ui := U ∩ Yi, the first two assertions of the lemma.
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For the last assertion we can assume without loss of generality that i ≥ 2. The
desired assertion will follow if we show that the set of Y ∈ U for which there are
solutions of Ei(f)(x, z, Y ) with zi = 0 but z �= 0 is not Zariski dense. Assume it is
Zariski dense. Then, for a general Y ∈ U and a general (ai, a1,1, . . . , ai,N ) ∈ C

N+1,
the system [ Ei−1(f)(x, z, Y )

ai + ai,1x1 + · · · + ai,mxm

]
= 0

has a solution with (z1, . . . , zi−1) �= 0. This is absurd, since we have already shown
that for a general Y ∈ U , there are only a finite number of solutions of Ei−1(f)(x, z, Y )
with (z1, . . . , zi−1) �= 0.

Remark B.3. The condition in Lemma B.2 that the Fi lie in (X − Z) × C
i is

important because we typically will not have defining polynomials forX but know only
that X is an irreducible component of V (g) for a system of polynomials g. Taking Z
equal to the union of the intersections of X with other components of V (g) guarantees
with probability one that g will be a set of defining equations for X on a Zariski open
set large enough so that all the homotopy continuations that are given in this article
will be well defined.

We need some information about the isolated solutions of Ei(f)(x, z, Y ) with
z = 0. This is the generalization of the last assertion of [12, Lemma 2].

Lemma B.4. There is a Zariski open and dense set U ⊂ Y = C
N×(1+m+N) such

that the solutions of the system Ei(f)(x, z, Y ) for Y ∈ U with z = 0 consist of
1. positive dimensional components all contained in components of V (f) of di-

mension greater than i, plus
2. for each dimension i irreducible component W of f−1(0), isolated solutions

consisting of deg(Wred) generic points of Wred, the reduction of W , each
occurring the same number of times.

Proof. When z = 0, the system Ei(f)(x, z, Y ) reduces to[
f(x)

A0 + A1 · x
]
.(B.3)

The assertion is contained in the discussion in [17].
The remaining result from [12] that needs modification is the local extension

lemma [12, Lemma 6]. We use Lemma A.1 in its place.
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Abstract. The solution of the Reissner–Mindlin plate problem with free boundary conditions
presents a strong layer effect near the free edges. As a consequence, the solution is not even uniformly
bounded even in H3/2, which implies that at most an O(h1/2) uniform convergence rate can be
reached by finite element methods in the H1 norm. Following instead the modified free boundary
model presented by Beirão da Veiga and Brezzi, which gives more regular solutions, better error
estimates can be obtained in principle. In this paper we present and analyze the extension of
different families of well-known optimal plate methods to this new model. All the modified methods
presented are proved to be optimal and free of locking.
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1. Introduction. The history of finite element methods for Reissner–Mindlin
plates is strictly tied to the well-known shear locking phenomena. This numerical
effect, which arises from the natural constraint enforced in the problem when the
thickness of the plate tends to zero, can severely deteriorate the convergence of the
method at small thicknesses.

Numerous finite element schemes that are completely free of locking are available
in the literature. Most of these methods hold a rate of convergence to the contin-
uous solution which is independent of the plate thickness and optimal with respect
to the polynomial degree of the discrete spaces and the regularity required for the
solution.

On the other hand, this last point introduces another issue which is funda-
mental in the numerical analysis of plates—the presence of boundary layers. As a
consequence of this phenomena, even the solution of Reissner–Mindlin plate prob-
lems with C∞ loads can hold (as the thickness tends to zero) a Sobolev regularity
which is not much higher than H1, the minimum required for the variational problem
formulation.

In particular, as proved in [4], even with smooth loads the maximum (uniform in
t) Hs regularity which can be expected for the rotations is

s <
7

2
soft clamped plates,

s <
5

2
hard clamped, hard supported plates,

s <
3

2
soft supported, free plates.

This low solution regularity, especially because it is coupled with the locking phenom-
ena, clearly hinders the approximation capabilities of numerical methods on the whole
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plate domain (unless some ad hoc mesh refinement is introduced). For example, for
the hard clamped plate there are only a few elements (for instance, the nonconforming
element of [5] and the MITC4 of Bathe and Dvorkin as proved in [17]) which give an
uniform O(h) rate of convergence adopting a basic polynomial degree equal to one
and using a solution regularity which satisfies the bounds above. The effect of the
boundary layer is particularly severe in the case of soft supported and free plates,
where at most an O(h1/2) uniform convergence rate can be reached in the H1 norm.
In the case of the supported plates, as there is no clear physical reason whether to
use the soft or hard version, this can be avoided using the latter one. This is not true
for free plates, where no other immediate choice seems to be viable.

In [9] the authors proposed a new way to model the free plate boundary condition
which, holding a deeper consistency with the limit Kirchhoff model, gives a Sobolev
order of regularity of up to 5/2. The idea is to minimize the usual Reissner–Mindlin
energy functional under the additional condition that the tangential component of the
rotations equals the tangential derivative of the transversal displacements on the free
edge. Roughly speaking, this additional constraint generates free boundary conditions
which are more consistent than the original ones with those of the limit (thickness
= 0) Kirchhoff model; as a consequence, the respective boundary layer is weaker and
the solution gains more regularity.

On the other hand, this new free boundary condition cannot in general be directly
enforced in the discrete space (as is done for the clamped and supported conditions)
without spoiling its approximation properties. Therefore it may not be immediate to
derive a finite element method which shows optimal error bounds. In [9] an optimal
finite element method, which was an adaptation of the Duran–Libermann element
(see [18]), was presented. The aim of this contribution is to show that several fami-
lies of finite elements present in the literature can be adapted to efficiently treat this
model.

The outline of the paper is as follows. In section 2 we present the problem and the
new free boundary model of [9]. In section 3 we treat the discretization of the problem
following the Helmholtz decomposition finite element philosophy (see, for example,
[11, 12]), which for instance covers well-known plate elements as the MITC. The
additional boundary constraint above is here imposed in a relaxed way that involves
use of the projection operator already present in this method. We also introduce a new
first order nonconforming element and its adaptation to the new model. In section 4
we present the extension of the linked interpolation plate methods (see, for example,
[6, 7, 21]). The projection operator which is hidden in the linked formulation is not
suitable to directly enforce the free boundary constraint in a relaxed way, as done in
section 3. On the other hand, we show that the particular approximation properties
of this finite element allow one to enforce this condition by penalization.

For all the extensions presented we prove that the same uniform and optimal
approximation properties of the original methods continue to hold. Considering the
solution regularity of the modified model, this means that O(h) (respectively, O(h3/2))
uniform error estimates are provided for all the first order (respectively, higher order)
methods analyzed. This is to be compared with an O(h1/2) convergence rate, which
is the best that can be reached using the original free plate model.

2. The Reissner–Mindlin plate model. We start by introducing the equa-
tions in strong form for the Reissner–Mindlin plate model. Let Ω be an open bounded
domain in R

2 representing the plate and let g be an assigned sufficiently regular load.
Then (θ, w,γ), respectively, the rotation, transversal displacements, and scaled shear
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stresses, must satisfy the scaled equations

−div C ε(θ) − γ = 0 in Ω,(2.1)

−div γ = g in Ω,(2.2)

γ = λt−2(∇w − θ) in Ω.(2.3)

In (2.1)–(2.3), C is the tensor of bending moduli, ε is the usual symmetric gradient
operator, λ(= 5/6) is the shear correction factor, and t is the thickness.

The boundary conditions to be coupled with the above system clearly depend on
the physical constraints imposed at the edges of the plate.

We first introduce the operators (defined on any rotation ϕ sufficiently regular)

M[ϕ] := C ε(ϕ), Mn[ϕ] := M[ϕ] · n,(2.4)

and

Mnn[ϕ] := Mn[ϕ] · n, Mns[ϕ] := Mn[ϕ] · s,(2.5)

where n and s are, respectively, the outward unit normal and counterclockwise unit
tangent vector to ∂Ω. Here and in what follows, whenever the above operators are
applied on the solution θ, this will not be written explicitly; for example, by Mnn we
intend Mnn[θ].

We also need the following notation: for every vector valued function η and for
every scalar function v, we will write

ηn := η · n, ηs := η · s, v/n :=
∂v

∂n
, v/s :=

∂v

∂s
.(2.6)

We now assume that the boundary ∂Ω is the union of three nonoverlapping parts
∂Ω = Σc ∪ Σs ∪ Σf , corresponding to clamped, (hard) simply supported, and free
boundary conditions. More precisely, we require (formally)

θ = 0, w = 0 on Σc,(2.7)

θs = 0, w = 0, Mnn = 0 on Σs,(2.8)

and

Mnn = 0, Mns = 0, γn ≡ −(div M)n = 0 on Σf .(2.9)

We make also the minimal requirement that every part of ∂Ω is the union of a finite
number of connected components and that every rigid movement r satisfying r = 0
on Σc and rs = 0 on Σs is necessarily 0. This, together with the usual ellipticity
assumptions on C, will grant the well-known Korn inequality: there exists a constant
α > 0 such that for every η ∈ (H1(Ω))2 satisfying η = 0 on Σc and ηs = 0 on Σs we
have

α||η||2(H1(Ω))2 ≤
∫

Ω

C ε(η) : ε(η)dx.(2.10)
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It is well known that, as the thickness t→ 0, the solution (θt, wt,γt) of the Reissner–
Mindlin plate model tends to a finite limit which is the solution of the Kirchhoff model
with the corresponding boundary conditions; on the other side, this convergence is
well known to take place only in Sobolev spaces of low order. In particular, in [4]
it is proved that if Σf = ∅, then ||θ(t)||s remains bounded as t → 0 at least for all
s < 5/2 while, if some free boundary conditions are present (Σf �= ∅), the solution
stays uniformly bounded only up to s < 3/2.

This additional irregularity of the Σf �= ∅ case is clearly of great hindrance when
t-uniform error estimates for finite element methods are sought. It is easily seen that,
unless some particular technique is applied to treat the corresponding boundary layer,
an error estimate of order no better than h1/2 can be obtained in the natural norms
of the problem.

This is the reason why in [9] a modified set of conditions to model the plate free
boundaries was proposed; the idea is to change (2.9) with a set of boundary conditions
holding deeper consistency with the limit Kirchhoff model:

θs = w/s, Mnn = 0, and Mns/s − γn = 0 on Σf .(2.11)

Introducing the spaces

Θ = {ϕ ∈ [H1(Ω)]2 : ϕ = 0 on Σc, ϕs = 0 on Σs},(2.12)

W = {w ∈ [H1(Ω)] : w = 0 on Σc ∪ Σs},(2.13)

V = {(θ, w) ∈ Θ ×W such that θs = w/s on Σf},(2.14)

classical arguments give the following result (see [9]).
Proposition 2.1. For every t > 0, any smooth solution of (2.1)–(2.3) with

the boundary conditions (2.7), (2.8), and (2.11) coincides with the unique minimizing
argument on V of the functional

J t(η, v) =
1

2
a(η,η) +

λt−2

2
||∇v − η||20,Ω − (g, v),(2.15)

where

a(θ,η) :=

∫
Ω

C ε(θ) : ε(η)dx ≡
∫

Ω

M : ε(η)dx.(2.16)

Conversely, the unique minimizing argument of (2.15) satisfies (2.1)–(2.3) in the dis-
tributional sense, and if it is smooth enough it also satisfies the boundary conditions
(2.7), (2.8), and (2.11).

Concerning the t-uniform regularity of the solution for this new problem, we have
the following.

Proposition 2.2. Assume, for simplicity, that the material is homogeneous (and
hence the system has constant coefficients), that the load g is in C∞(Ω̄), and that Ω is
a polygon (or that the boundary ∂Ω is piecewise C∞). Let D be any open subset of Ω
such that D that does not contain any vertex or points where the boundary conditions
change from one type to another. Then there exists a constant c, independent of t,
such that

||θ||r+2,D + t||γ||r+1,D + ||γ||r,D + ||divγ||r,D ≤ c||g||r ∀ − 1 ≤ r <
1

2
,(2.17)

||w||ρ+2,D ≤ ||g||ρ ∀ρ ≥ −1.(2.18)
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Proof. The proof can be easily obtained by adapting the analysis of [4] to the
present situation near Σf . We see that the most irregular term in the expansion
of the solution (as computed by [4]) drops, leaving for θ a limit regularity of order
s < 5/2.

Consequently, following this new model, ||θ(t)||s,D stays uniformly bounded for
any s < 5/2. As addressed in [9], taking the steps from Proposition 2.2 it is not
unrealistic to assume

||θ||r+2,Ω + ||w||r+2,Ω + t||γ||r+1,Ω + ||γ||r,Ω + ||divγ||r,Ω ≤ c ∀r < 1/2,(2.19)

as we will do in what follows. In light of (2.18), it will also be realistic to require (as
we will need for the linked interpolation elements) the additional uniform regularity

||w||s,Ω ≤ c ∀s < 7/2.(2.20)

This improved uniform regularity of the solution allows in principle a t-independent
error estimate of up to order h3/2 in the natural norms of the problem. The diffi-
culty here is that the additional constraint θs = w/s on Σf appearing in V cannot
in general be directly enforced in the discrete problem (as is done for the clamped
and hard simply supported conditions) without spoiling its approximation properties.
Therefore it may not be immediate to derive a finite element method which shows the
aforementioned optimal error bounds. In [9] an optimal finite element method, which
was an adaptation of the Duran–Libermann element (see [18]), was analyzed. The
aim here is to show that several families of finite elements present in the literature
can be adapted to efficiently treat this model; in particular we will consider all those
methods pertaining to the Helmholtz decomposition (see, for instance, [11, 12]) and
the linked interpolation (see, for example, [6, 7, 21]) philosophies.

3. Model discretization following the P1–P5 philosophy. In this section
we discretize and derive (uniform and optimal) error estimates for our free plate model,
taking the steps from the plate finite element methods proposed in [11, 12].

Let Th be a regular mesh on Ω (see, for example, [10, 14]) and h the maximum
diameter of its elements. Then, we start with three conforming piecewise polynomial
spaces on this grid,

Θh ⊂ Θ, Wh ⊂W, Γh ⊂ H(rot; Ω),(3.1)

approximating, respectively, the space of rotations, deflections, and shear stresses.
To relax the shear stress constraint, we introduce as usual a linear reduction

operator Πh,

Πh : H(rot; Ω) −→ Γh,(3.2)

which is the identity when restricted to Γh.
At this stage we require that our operator Πh satisfies the approximation property

||ϕ− Πhϕ||0 ≤ c h||ϕ||1,(3.3)

which in particular implies continuity as an application from H1(Ω) to L2(Ω).
Given the spaces Θh,Wh and the operator Πh above, we set

Vh := {(ηh, vh) ∈ Θh ×Wh such that (Πhηh)s = (vh)/s on Σf},(3.4)
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where we remark that the boundary conditions on Σc,Σs are already included in (3.1).
We can now define the discrete solution (θh, wh) as the unique minimizer of the

relaxed functional

J th(ηh, vh) =
1

2
a(ηh,ηh) +

λt−2

2
||∇vh − Πhηh||20,Ω − (g, vh)(3.5)

over the discrete space Vh. It is then easily seen that, setting

γh := λt−2(∇wh − Πhθh),(3.6)

the triple (θh, wh,γh) coincides with the unique solution of the variational problem⎧⎪⎪⎨⎪⎪⎩
Find ((θh, wh),γh) ∈ Vh × Γh such that

a(θh,ηh) − (γh,Πhηh −∇vh) = (g, vh), (ηh, vh) ∈ Vh,
λ−1t2(γh, δh) − (∇wh, δh) + (Πhθh, δh) = 0, δh ∈ Γh.

(3.7)

Now let Qh ⊂ L2
0(Ω) be an auxiliary finite element space such that the five properties

introduced in [12] hold for the choice of spaces (Θh,Wh,Γh, Qh):
P1. ∇Wh ⊂ Γh;
P2. rotΓh ⊂ Qh;
P3. rot Πhϕ = Phrotϕ, ϕ ∈ [H1

0 ]2, where Ph : L2
0 → Qh denotes the L2 projec-

tion;
P4. {s ∈ Γh : rot s = 0} = ∇Wh; and
P5. (Θh, Qh) is a stable pair of spaces for the Stokes problem.

We also assume the following:
P6. If γ ∈ H(rot; Ω) is such that γs = 0 on Σf , then the same is true for Πhγ.

Then we have the following crucial lemma.
Lemma 3.1. Consider the couple (θ, w) ∈ V. Let the properties P1 to P6 be

satisfied. Then there exists a couple of interpolants (θI , wI) ∈ Vh such that

Πh(∇wI − θI) = Πh(∇w − θ)(3.8)

with

‖ θ − θI ‖1 ≤ c inf
ϕ∈Θh

‖ θ −ϕ ‖1,(3.9)

‖ w − wI ‖1 ≤ c inf
ϕ∈Θh

‖ θ −ϕ ‖1 + ‖ ∇w − Πh(∇w) ‖0.(3.10)

Proof. A similar proof can be found in [18]. Due to property P5, it follows easily
(see [11]) that there exists θI ∈ Θh such that∫

Ω

rot(θ − θI)q = 0 ∀q ∈ Qh(3.11)

and (3.9) holds.
From (3.11) and P3 we have

0 = Phrot(θ − θI) = rot Πh(θ − θI),(3.12)

which, recalling P4, grants the existence of w1 ∈Wh such that Πh(θ − θI) = ∇w1.
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With similar steps, starting from the obvious statement rot(∇w) = 0 we obtain
rot Πh(∇w) = 0 and finally the existence of a w2 ∈ Wh such that Πh(∇w) = ∇w2.
Setting wI = w2 − w1 and remembering that, due to P1, Πhvh = vh for all vh ∈Wh,
we immediately have (3.8).

Using the Poincaré inequality and the triangle inequality and recalling the defi-
nition of w1, w2, it follows that

‖ w − wI ‖1 ≤ c ‖ ∇w −∇wI ‖0 ≤ c(‖ ∇w −∇w2 ‖0 + ‖ ∇w1 ‖0)

= c(‖ ∇w − Πh∇w ‖0 + ‖ Πh(θ − θI) ‖0).(3.13)

Recalling the continuity observed for Πh, statements (3.13) and (3.9) immediately
give estimate (3.10).

What remains to check is that the couple (θI , wI) ∈ Vh, in other words, that it
satisfies the boundary condition on Σf . But this follows easily if we remember that
(θ, w) ∈ V, using first P6 on (∇w − θ) and then (3.8).

Under the above hypothesis we have uniform error estimates, as shown in the
following proposition.

Proposition 3.2. Let ((θ, w),γ) be the solution of the continuous problem (see
section 2) while ((θh, wh),γh) is the solution of the discrete problem (3.7). Let the
approximating spaces satisfy properties P1 to P6. Then we have the following error
estimates:

||θ − θh||1 + t||γ − γh||0 + ||∇(w − wh)||0

≤ c

(
inf

ϕ∈Θh

‖ θ −ϕ ‖1 +t||γ − Πhγ||0+ ‖ ∇w − Πh∇w ‖0 +hA1 + h1/2A2

)
,(3.14)

where

A1 = sup
ϕ∈Θh

(γ, (I − Πh)ϕ)

||(I − Πh)ϕ||0
,(3.15)

A2 = sup
ϕ∈Θh

∫
Σf
Mns(I − Πh)ϕs ds

||(I − Πh)ϕs||0,Σf

.(3.16)

Proof. Using statement (3.8) it follows immediately that

γI := λt−2(Πh∇wI − ΠhθI) = λt−2(Πh∇w − Πhθ) ≡ Πhγ,(3.17)

which will play a fundamental role in our proof.

Before deriving the error equations we first notice that the space Vh, as defined
in (3.4), is not a subspace of V, defined in (2.14). As a consequence, for (η, v) ∈ Vh
we have, integrating by parts and using (2.1) and (2.2), using boundary conditions
(2.7), (2.8), then using (2.11), and finally (3.4),

a(θ,η) + (γ,∇v − η) − (g, v) =

∫
Σf

Mnsηs + γnv ds

=

∫
Σf

Mns(ηs − v/s) ds =

∫
Σf

Mns(η − Πhη)s ds.

(3.18)
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Comparing (3.18) with the first equation of (3.7) we obtain, for (η, v) ∈ Vh, the
error equation

a(θ − θh,η) + (γ,∇v − η) − (γh,∇v − Πhη) =

∫
Σf

Mns(η − Πhη)s ds,(3.19)

which can also be rewritten as

a(θ − θh,η) + (γ − γh,∇v − Πhη) = (γ, (I − Πh)η) +

∫
Σf

Mns((I − Πh)η)s ds.

(3.20)

Using the Korn inequality and adding and subtracting θ and γ we have

(3.21)

α||θI − θh||21 +λ−1t2||γI −γh||20 ≤ a(θI − θh,θI − θh) + λ−1t2(γI − γh,γI − γh)
= a(θI − θ,θI − θh) + a(θ − θh,θI − θh)

+λ−1t2(γI −γ,γI −γh) +λ−1t2(γ −γh,γI −γh).

On the other hand, as γI − γh = λt−2(∇(wI − wh) − Πh(θI − θh)), it follows from
the error equation (3.20) (tested with η = θI − θh and v = wI − wh) that

a(θ − θh,θI − θh) + λ−1t2(γ − γh,γI − γh)

= (γ, (I − Πh)(θI − θh)) +

∫
Σf

Mns(I − Πh)(θI − θh)s ds.
(3.22)

Combining (3.21) and (3.22) we then have

α||θI − θh||21 + λ−1t2||γI − γh||20 = T1 + T2 + T3 + T4,(3.23)

where

T1 = a(θI − θ,θI − θh),(3.24)

T2 = λ−1t2(γI − γ,γI − γh),(3.25)

T3 = (γ, (I − Πh)(θI − θh)),(3.26)

T4 =

∫
Σf

Mns(I − Πh)(θI − θh)s ds,(3.27)

which we shall bound separately.
By continuity (and remembering (3.17)),

T1 ≤ c ||θ − θI ||1 ||θI − θh||1,(3.28)

T2 ≤ c t ||γ − Πhγ||0 t ||γI − γh||0.(3.29)

For the third term, dividing and multiplying by ||(I −Πh)(θI − θh)||0, using property
(3.3), and finally bounding with the supremum, we obtain

T3 ≤ c h
(γ, (I − Πh)(θI − θh))
||(I − Πh)(θI − θh)||0

||θI − θh||1 ≤ c h sup
ϕ∈Θh

(γ, (I − Πh)ϕ)

||(I − Πh)ϕ||0
||θI − θh||1.

(3.30)
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To bound the last term, we first recall the well-known Agmon inequality [1]: if e is
an edge of a triangle T (with the usual minimum angle condition), ϕ ∈ H1(T ), and
hT is the diameter of T , then we have

||ϕ||0,e ≤ c (h
−1/2
T ||ϕ||0,T + h

1/2
T ||ϕ||1,T ).(3.31)

With the same arguments used in (3.30) we obtain, for any e ∈ Σf ,

∫
e

Mns(I − Πh)(θI − θh)s ds ≤ c sup
ϕ∈Θh

∫
e
Mns(I − Πh)ϕs ds

||(I − Πh)ϕs||0,e
||(I − Πh)(θI − θh)s||0,e.

(3.32)

Using (3.31) and (3.3), from (3.32) we have

T4 ≤ c h1/2 sup
ϕ∈Θh

∫
Σf
Mns(I − Πh)ϕs ds

||(I − Πh)ϕs||0,Σf

||θI − θh||1.(3.33)

Finally, inserting (3.28)–(3.30) and (3.33) in (3.23), and from the usual arithmetic-
geometric inequality, we have

α||θI − θh||21 + λ−1t2||γI − γh||20 ≤ c ( ||θ − θI ||21 + t2||γ − Πhγ||20 + h2A2
1 + hA2

2 ),

(3.34)

where we recall that A1 and A2 are defined in (3.15) and (3.16).
From (3.34) we can then easily obtain an estimate for ∇(wI − wh):

||∇(wI − wh)||0 ≤ λ−1t2 ||γI − γh||0 + ||θI − θh||0.(3.35)

The proposition is finally proved using (3.34), (3.35), (3.9), (3.10) and the triangle
inequality and absorbing λ in the constants.

3.1. Examples of finite elements. The above analysis works essentially with
all the plate finite elements following the P1–P5 philosophy (see [11, 12]).

To fix the ideas, we will apply Proposition 3.2 to one of the two main elements
of [11], the MITC7. Then we will show briefly how the same arguments can be
applied to the general families of [11, 12]; finally, an adaptation to a new low order
nonconforming element will be presented.

3.1.1. The MITC7 element. We quickly present the second order triangular
mixed interpolation of tensorial components plate element, MITC7. We assume that
we are given a triangulation (into triangles T ) of Ω (see, for instance, [10, 14]). We
introduce, on every T , the space

S7(T ) = P2(T ) ⊕B(T ),(3.36)

where here and in what follows Pk represents the polynomials of order k, and B =
λ1λ2λ3 is the cubic bubble on T .

Let also

RTk(T ) = [Pk]
2 ⊕ Pk (y,−x)T(3.37)

be the rotated Raviart–Thomas space of order k (k ∈ N; see [20]).
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The discretization spaces for our problem are

Θh = {ϕ : ϕ ∈ Θ, ϕ|T ∈ S7(T ) ∀ T},(3.38)

Wh = {v : v ∈W, v|T ∈ P2(T ) ∀ T},(3.39)

Γh = {δ : δ ∈ H(rot; Ω), δ|T ∈ RT1(T ) ∀ T},(3.40)

where we note that requiring δ ∈ H(rot; Ω) in (3.40) is equivalent to the continuity
of the tangential components at the interelement boundaries.

The approximating space Vh therefore will be as described in (3.4); we observe
that, given the degrees of freedom of the spaces above, the additional condition on
the free boundary is indeed quite easy to implement.

We now introduce the reduction operator Πh. Given a smooth δ defined on Ω,
Πhδ is the unique element of Γh such that, on every triangle T ,∫

e

(δ − Πhδ)sp1(s) ds = 0 ∀e edge of T, ∀p1(s) ∈ P1(e),(3.41) ∫
T

(δ − Πhδ) dxdy = 0.(3.42)

From (3.41) and (3.42) it can be seen that Πh is indeed uniquely defined (see, for
example, [20]) and with image in Γh. Also, the approximation property (3.3) follows
from classical results (see again [20]).

For these elements, it is proved in [11] that, choosing Qh as the piecewise linear
a priori discontinuous functions, properties P1–P5 hold; on the other side, from the
definition of Πh, it can be easily checked that P6 also holds.

Applying the general Proposition 3.2 we then have the following.

Proposition 3.3. Let ((θh, wh),γh) be the solution of the discrete problem (3.7)
using the MITC 7 finite element spaces already introduced, while ((θ, w),γ) is the
solution of the continuous problem (see section 2). Then, for 1 ≤ s ≤ 2,

||θ − θh||1 + t||γ − γh||0 + ||∇(w − wh)||0 ≤ c hs( ‖ θ ‖s+1 +t||γ||s + ||γ||s−1 ),(3.43)

which, recalling (2.19), gives an error estimate of order O(hs) for s < 3/2 on the full
domain.

Proof. We start applying Proposition 3.2. The bounds for the first three addenda
in the left member of (3.14) follow from classical polynomial interpolation theory (see,
for instance, [10, 14]). We have

inf
ϕ∈Θh

‖ θ −ϕ ‖1≤ ch2 ‖ θ ‖3,(3.44)

t||γ − Πhγ||0 ≤ ch2t||γ||2,(3.45)

||∇w − Πh∇w||0 ≤ ch2||w||3.(3.46)

To treat A1 (see (3.15)), we use the orthogonality of (I − Πh)ϕ to the piecewise
constants (given in (3.42)); taking γ̄ as the piecewise constant function representing
the mean value of γ on every triangle, we have

A1 = sup
ϕ∈Θh

(γ − γ̄, (I − Πh)ϕ)

||(I − Πh)ϕ||0
.(3.47)
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Now, using the Cauchy–Schwarz inequality on (3.47) and classical polynomial inter-
polation results, we infer

A1 ≤ c h ||γ||1.(3.48)

Using instead (3.41), with similar reasoning we obtain for A2

A2 ≤ c h3/2 ||Mns||3/2,Σf
,(3.49)

which, recalling the definition of Mns and classical trace operator results for Sobolev
spaces, give

A2 ≤ c h3/2 ||θ||3.(3.50)

The proof in the s = 2 case follows immediately combining the above statements,
while the s = 1 case is done with similar arguments. Finally, the extension to a
general 1 ≤ s ≤ 2 is done by the usual space interpolation techniques.

3.1.2. Some finite element families. In [11], a recipe for building finite el-
ements that satisfy P1–P5 is given. To apply such methods to this new free plate
model, we must check an additional set of conditions.

1. The validity of P6. To apply Proposition 3.2, it is essential to check P6. In
[11, 12], the analyzed problem is a clamped plate; therefore, the shear stresses being
null at the boundary, Πh is built as an application fromH0(rot; Ω) to Γh ⊂ H0(rot; Ω).
Consequently, it is easily seen that the natural extension of Πh to H(rot; Ω) (i.e.,
treating boundary edges as internal edges) satisfies P6.

2. Practical applicability of the free boundary condition. We must check that
the free boundary condition in (3.4) can be expressed as a direct relation between
the degrees of freedom of Θh and Wh. But this usually follows naturally from the
good properties of the discretization spaces and the operator Πh, which, roughly
speaking, are already built to interact well. For example this holds true for all elements
introduced in [11, 12].

3. Estimates for A1 and A2 in Proposition 3.2. We must check that A1 and
A2 can be bounded with an order in h which is sufficiently high; we want to avoid
deterioration of the global estimate (3.14) by the additional A1, A2 terms. This usually
can be done using orthogonality properties of Πh as already shown for the MITC7.
These orthogonality properties are, for example, already part of the definition of Πh
in almost all the elements of [11, 12].

Using Proposition 3.2, applying classical polynomial interpolation results, and
checking the above points (see the MITC7 example), the following proposition follows
easily.

Proposition 3.4. For the triangular families I and III of [12] of general order k,
and for all the quadrilateral elements of [11] (both MITC 9 (k = 2) and higher order
elements (k = 3)), the following error estimate holds:

||θ − θh||1 + t||γ − γh||0 + ||∇(w − wh)||0 ≤ c hs( ‖ θ ‖s+1 +t||γ||s + ||γ||s−1 ),(3.51)

where 1 ≤ s ≤ k.
Remark 1. The triangular elements of [11] are not mentioned here because they

are already included in those of [12]. Note also that the quadrilateral elements of [11]
can be easily extended to k ≥ 4.
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Remark 2. The finite element family II of [12] was not included because point 3
above does not follow immediately (by orthogonality) as in the other cases. Clearly,
this does not imply that the estimate could not be obtained by other means.

Remark 3. Recalling (2.19), the above proposition gives an error estimate of up
to order 3/2 on the full domain for our free plate problem. Estimates of up to order k
can, however, be expected in parts of the domain where the solution is more regular,
for example, in interior subdomains.

Remark 4. The elements above are all at least of order 2. A first order element
following this philosophy was presented in [9] and another will be presented in what
follows.

3.1.3. A first order nonconforming element. We present here a first order
method which follows this philosophy. Given a regular triangulation Th of Ω of max-
imum diameter h, let T+ and T− be any two triangles with an edge e in common,
and let n+,n− be their outward normal unit vectors. Furthemore, given a piecewise
continuous function ϕ on Ω (either scalar or vectorial), call ϕ+ (respectively, ϕ−) the
trace of ϕ |T+

(respectively, ϕ |T−) on e. Then, the jump of ϕ across e is given by

[ϕ] = ϕ+n+ + ϕ−n− for ϕ scalar,(3.52)

[ϕ] = (ϕ+ ⊗ n+)sym + (ϕ− ⊗ n−)sym for ϕ vectorial,(3.53)

where the symbol sym denotes the symmetric part of the tensor. If instead e is a
boundary edge, then the jump function is simply [ϕ] = ϕn or [ϕ] = (ϕ ⊗ n)sym,
where n is again the outward normal.

Let Σi be the set of all internal edges; we introduce the space Θh as

Θh =

{
ϕ : ϕ|T ∈ P1(T ) ∀ T,

∫
e

[ϕ] = 0 ∀e ∈ Σc ∪ Σi,

∫
e

[ϕs] = 0 ∀e ∈ Σs

}
.

(3.54)

This space follows a classical nonconforming approximation of [H1(Ω)]2; the basic
degrees of freedom are simply the values on the midpoints of the triangle edges,
adjusted according to the boundary conditions.

We also define (see also (3.37))

Wh = {v : v ∈W, v|T ∈ P1(T ) ∀ T},(3.55)

Γh = {δ : δ ∈ H(rot; Ω), δ|T ∈ RT0(T ) ∀ T},(3.56)

and Πh as the classical interpolant for RT0 (see, for example, [20]) uniquely defined
on each triangle T by ∫

e

(δ − Πhδ)s ds = 0 ∀e edge of T(3.57)

for all sufficiently regular δ. Finally, the space Vh is defined as in (3.4).
We have the following proposition.
Proposition 3.5. Let ((θ, w),γ) be the solution of the continuous problem (see

section 2). Let ((θh, wh),γh) be the solution of the discrete problem⎧⎪⎪⎨⎪⎪⎩
Find ((θh, wh),γh) ∈ Vh × Γh such that

a(θh,ηh) + j(θh,ηh) − (γh,Πhηh −∇vh) = (g, vh), (ηh, vh) ∈ Vh,
λ−1t2(γh, δh) − (∇wh, δh) + (Πhθh, δh) = 0, δh ∈ Γh,

(3.58)
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where the jump penalty

j(θh,ηh) =
∑

e∈Σi∪Σc

1

| e |

∫
e

[θh] : [ηh] ds+
∑
e∈Σs

1

| e |

∫
e

[(θh)s] · [(ηh)s] ds.(3.59)

Then, we have the error estimate

||θ − θh||1 + t||γ − γh||0 + ||∇(w − wh)||0 ≤ c h( ‖ ϕ ‖2 +t||γ||1 + ||γ||0 ).(3.60)

Proof. The proof will be presented rather briefly. This method is nonconforming
because the space Θh is not in H1(Ω). We start defining the norm on Θh,

||η||2θ := ||η||21 + j(η,η),(3.61)

which is also well defined for all θ in [H1(Ω)]2. Then, it can be proved that the
discrete Korn inequality

α||η||2θ ≤ a(η,η) + j(η,η) ∀η ∈ Θh(3.62)

holds (see, for example, [13, 3]) and that a(·, ·) is continuous with respect to the norm
(3.61). For these finite elements, if we define wI as the usual Lagrange interpolant of
w and θI as the unique element of Θh satisfying∫

e

(θ − θI) ds = 0 ∀e edge of Th,(3.63)

where the integral is to be intended component by component, we easily infer Lemma
3.1.

Consequently, and without referring to P1–P6, we can follow the same steps as
in the proof of Proposition 3.2, starting from the ellipticity of a(·, ·) in the || · ||θ norm.
The main difference is that now, due to the nonconformity of Θh, when we test (2.1)
and (2.3) on the discrete spaces, we get an additional addendum in the right-hand
side of the error equation (3.20). Without showing the calculations, such a term is∑

e∈Σi∪Σc

∫
e

Mnη ds+
∑
e∈Σs

∫
e

Mnsηs ds,(3.64)

where n is the outward normal to each triangle (see (2.4)). For simplicity, we will now
assume Σs = ∅; the general case can be treated with the same arguments as below.
When tested with η = θI − θh and v = wI − wh (see (3.22)), the term (3.64) gives
the additional addendum in (3.23):

T5 =
∑

e∈Σi∪Σi

∫
e

Mn(θI − θh) ds.(3.65)

It can be checked that

T5 =
∑

e∈Σi∪Σi

∫
e

M : [θI − θh] ds,(3.66)

where we also used that, due to the regularity of θ, M is continuous across the internal
edges (see, for instance, [2, 13] for a similar computation); otherwise we should simply
substitute M above with the average between the traces of M |T+ and M |T− on e.
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From the definition of Θh, the jumps [θI − θh] are orthogonal to the constants.
Therefore, for any family {M̄e}e∈Σi∪Σc of constant tensors

T5 =
∑

e∈Σi∪Σc

∫
e

(M − M̄e) : [θI − θh] ds ≤
∑

e∈Σi∪Σc

||(M − M̄e)||0,e||[θI − θh]||0,e.

(3.67)

Without showing the details, from the Cauchy–Schwarz inequality in l2, the Agmon
inequality (3.31), classical polynomial interpolation results, and the definition of M ,
we obtain

T5 ≤ c

(
h
∑
T∈Th

||θ||22,T

)1/2 (
h
∑

e∈Σi∪Σc

1

| e | ||[θI − θh]||
2
0,e

)1/2

≤ ch||θ||2||θI − θh||θ.(3.68)

All the other terms T1−T4 have the same identical form as in (3.24)–(3.27) and can be
bounded by an O(h) following the same arguments as in the proof of Propositions 3.2
and 3.3. Therefore, bounding the error for the deflections as already done in (3.35),
the proposition is proved.

4. Discretization following the linked interpolation philosophy. Another
class of finite element methods for plates that give good results are the ones based on
the kinematic linked interpolation philosophy. We will show how these methods can
be adapted to our free plate model, but by following a path different from the previous
section. The aim here mainly is to introduce this extension and to show another viable
way to enforce our new free boundary condition in a finite element setting; therefore
we will be rather brief on some more standard parts of the demonstrations.

We start with a quick introduction to the linked interpolation method, referring,
for example, to [6, 7, 21, 22] and references therein for a deeper presentation. Let
Th be a (regular) grid on the domain Ω. Call hK the diameter of each element K
and h the maximum of all the diameters. With the usual notation, now let Θh ⊂
Θ, Wh ⊂ W, Γh ⊂ [L2(Ω)]2 be the finite element spaces adopted; then, the linked
interpolation method is based on the introduction of a linear and uniformly bounded
operator L : Θh →W .

The final form of the discrete problem takes the form

⎧⎪⎪⎨⎪⎪⎩
Find ((θh, wh),γh) ∈ Θh ×Wh × Γh such that

a(θh,ηh) − (γh,ηh −∇(vh + Lηh)) = (g, vh + Lηh), (ηh, vh) ∈ Θh ×Wh,

λ−1t2(γh, δh) + (θh −∇(wh + Lθh), δh) = 0, δh ∈ Γh.

(4.1)

Then, for all (θ, w,γ) ∈ [H1(Ω)]2 ×H1(Ω) × [L2(Ω)]2, we define the norms

||γ||2h :=
∑
K∈Th

h2
K ||γ||0,K ,(4.2)

|||θ, w,γ|||2 := ||θ||21 + ||w||21 + ||γ||2h + t2||γ||20.(4.3)

Assume also that the following two properties hold for the discretization spaces:

∇Wh ⊂ Γh,(4.4)

sup
(ηh,vh)∈Θh×Wh

(δh,ηh −∇(ηh + Lvh))

||ηh||1 + ||vh||1
≥ β||δh||h ∀δh ∈ Γh,(4.5)



1586 L. BEIRÃO DA VEIGA

where β is a positive constant independent of h.
Under this hypothesis, optimal error estimates (with respect to the order of the

polynomial spaces used) in the ||| · ||| norm are proved in [6]; the results are shown in
the clamped plate case but can be immediately extended to hard simply supported
and free plates. The extension to our new free plate model is instead to be handled
with some care; the projection operator which is hidden in the linked formulation is
not suitable to directly enforce θs = w/s on Σf in a relaxed way as done in (3.4). On
the other hand, the particular approximation properties of this finite element allow
us to enforce the free boundary condition by penalization.

4.1. A new discrete formulation. We start introducing the symmetric bilin-
ear form (see (2.4)–(2.5)),

C(θ, w;η, v) =
∑
e∈Σf

∫
e

Mns[θ](η −∇v)s ds+

∫
e

(θ −∇w)sMns[η] ds

+
1

| e |

∫
e

(θ −∇w)s(η −∇v)s ds,(4.6)

which in particular is well defined on the discrete space Θh ×Wh.
We now remark that L can be extended to all Θ by composition with the L2

projection on Θh. Then, starting from (4.3), we can define the norm

|||η, v, δ|||2∗ := |||η, v, δ|||2 +
∑
e∈Σf

1

| e |

∫
e

(η −∇(v + Lη))2s ds,(4.7)

defined for all (η, v, δ) in the discrete space and, for instance, for all (η, v, δ) ∈
[H1(Ω)]2 ×H2(Ω) × [L2(Ω)]2.

The condition θs = w/s on Σf will be enforced through the addition of the bilinear
form (4.6) to the original discrete plate problem. In simple words, the first term is
introduced to reach consistency with the continuous problem, the second to obtain a
symmetric form, and the third to add stability.

Our discrete problem is therefore

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Find ((θh, wh),γh) ∈ Θh ×Wh × Γh such that

a(θh,ηh) + C(θh, wh + Lθh;ηh, vh + Lηh) − (γh,ηh −∇(vh + Lηh))

= (g, vh + Lηh) ∀(ηh, vh) ∈ Θh ×Wh,

λ−1t2(γh, δh) + (θh −∇(wh + Lθh), δh) = 0 ∀δh ∈ Γh.

(4.8)

Letting

A(θh, wh,γh; vh,ηh, δh)

:= a(θh,ηh) − (γh,ηh −∇vh) + (θh −∇wh, δh) + λ−1t2(γh, δh),(4.9)

problem (4.8) is equivalent to

⎧⎪⎪⎨⎪⎪⎩
Find (θh, wh,γh) ∈ Θh ×Wh × Γh such that

A(θh, wh + Lθh,γh;ηh, vh + Lηh, δh) + C(θh, wh + Lθh;ηh, vh + Lηh)

= (g, vh + Lηh) ∀(ηh, vh, δh) ∈ Θh ×Wh × Γh.

(4.10)
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We have the following lemma.

Lemma 4.1. Let θ, w,γ be the solution of the continuous problem of section 2
((2.1)–(2.3) plus boundary conditions (2.7), (2.8), and (2.11)). Then, it holds that

A(θ, w,γ;ηh, vh + Lηh, δh) + C(θ, w;ηh, vh + Lηh) = (g, vh + Lηh)(4.11)

for all (ηh, vh, δh) ∈ Θh ×Wh × Γh.

Proof. The proof follows by standard variational means, testing (2.1)–(2.3), re-
spectively, on ηh, vh + Lηh, δh, then integrating by parts and recalling the boundary
conditions (2.7), (2.8), and (2.11). Because the finite element space used does not
satisfy a priori the condition on Σf , a nonconforming term appears; but this is taken
care of by the additional bilinear form C introduced. We note that the regularity of
w and θ (see (2.19)) is sufficient to ensure the well posedness of the form C in the
variational equation (4.11).

The following proposition, which states the uniform invertibility of the discrete
problem, is fundamental for the following estimates. Its proof relies strongly on the
inf-sup condition (4.5) and adopts the same technique of [6, 19, 15]; therefore we will
not include it here.

Proposition 4.2. There exists a positive constant k independent of h such that
for any (θh, wh,γh) ∈ Θh×Wh×Γh there exists (ηh, vh, δh) ∈ Θh×Wh×Γh, giving

A(θh, wh + Lθh,γh;ηh, vh + Lηh, δh) + C(θh, wh + Lθh;ηh, vh + Lηh)

≥ |||θh, wh,γh|||∗,(4.12)

|||ηh, vh, δh|||∗ ≤ k.(4.13)

For any η sufficiently regular, we indicate (here and in what follows) by ηII the
interpolant of η in Θh. Analogously, vI will indicate the interpolant of v in Wh and
δ∗ the interpolant of δ in Γh.

We will assume, in addition to (4.4) and (4.5), that the property

γs = 0 on e =⇒ (LγII)s = 0 on e(4.14)

holds for all boundary edges e. We remark that, being already implicit in the linking
philosophy, this condition is not restrictive; for example, it holds for all the linked
elements presented in [6, 7, 8], using the natural interpolant in Θh.

Now, following the mainstream of [6], we introduce the operator

Πv := vI + L(∇v)II ∀v sufficiently regular.(4.15)

We can finally state the main result.

Proposition 4.3. Let (θh, wh,γh) be the solution of problem (4.8) and let
(θ, w,γ) be the solution of the continuous problem of section 2 ((2.1)–(2.3) plus bound-
ary conditions (2.7), (2.8), and (2.11)). Then, we have the following estimate:

|||θ − θh, w − wh,γ − γh|||∗
≤ c[h||θ − θII ||2 + ||θ − θII ||1 + h−1||θ − θII ||0 + ||w − Πw||2

+h−1||w − Πw||1 + ||γ − γ∗||H−1(div) + t||γ − γ∗||0 + t||∇LγII ||0].(4.16)

Proof. We start applying Proposition 4.2 to (θh−θII , wh−wI ,γh−γ∗) and find
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(ηh, vh, δh) in the discrete space such that

A(θh − θII , wh − wI + L(θh − θII),γh − γ∗;ηh, vh + Lηh, δh)

+C(θh − θII , wh − wI + L(θh − θII);ηh, vh + Lηh)

≥ |||θh − θII , wh − wI ,γh − γ∗|||∗,(4.17)

|||ηh, vh, δh|||∗ ≤ k.(4.18)

Adding and subtracting as usual

A(θ, w,γ; vh + Lηh,ηh, δh) + C(θ, w;ηh, vh + Lηh)(4.19)

in (4.17), and then using the error equation given by the difference of (4.10) and
(4.11), we obtain in the end

|||θh − θII , wh − wI ,γh − γ∗|||∗
≤ A(θ − θII , w − wI − LθII ,γ − γ∗; vh + Lηh,ηh, δh)

+C(θ − θII , w − wI − LθII ;ηh, vh + Lηh).(4.20)

Recalling definition (4.9), and using the Cauchy–Schwarz inequality, the continuity of
a(·, ·), and the bound (4.18), we can derive by standard means,

A(θ − θII , w − wI − LθII ,γ − γ∗; vh + Lηh,ηh, δh) ≤ c[||θ − θII ||1
+ ||γ − γ∗||H−1(div) + t||γ − γ∗||0 + (δh,θ − θII −∇(w − wI − LθII))].(4.21)

To bound the last term, we argue as in [6], and we refer there for the details. Starting
from (2.3), it is immediate to see that

∇LθII = ∇L(∇w)II + λ−1t2∇LγII .(4.22)

We now substitute (4.22) into the last member of (4.21) and use the Cauchy–Schwarz
inequality in L2. Observing that, due to (4.18), ||δh||h+t||δh||0 is bounded, and recalling
(4.15), we obtain

(δh,θ − θII −∇(w − wI − LθII)) ≤ c(h−1||θ − θII ||0 + h−1||w − Πw||1 + t||∇LγII ||0).
(4.23)

To estimate the right-hand side of (4.20), we still need to bound the free boundary
part (defined in (4.6)),

C(θ − θII , w − wI − LθII ;ηh, vh + Lηh)

=
∑
e∈Σf

∫
e

Mns[θ − θII ](ηh −∇(vh + Lηh))s ds

+

∫
e

(θ − θII −∇(w − wI − LθII))sMns[ηh] ds

+
1

| e |

∫
e

(θ − θII −∇(w − wI − LθII))s(ηh −∇(vh + Lηh))s ds.(4.24)

We start observing that, recalling the definition of Mns in (2.5) and the Agmon
inequality (3.31), we have∑

e∈Σf

||Mns[θ − θII ]||20,e ≤ c
∑
K∈Th

h−1||θ − θII ||21,T + h||θ − θII ||22,T

≤ h−1||θ − θII ||21,Ω + h||θ − θII ||22,Ω,(4.25)
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while, from the definition (4.7) and bound (4.18), it follows that∑
e∈Σf

||(ηh −∇(vh + Lηh))s||20,e

≤ h
∑
e∈Σf

1

| e | ||(ηh −∇(vh + Lηh))s||20,e ≤ h|||ηh, vh, δh|||2∗ ≤ c h.(4.26)

Applying the Cauchy–Schwarz inequality (first in L2(e), then in l2), we can bound
the first term in the right-hand side of (4.24) with the product of the square roots of
(4.25) and (4.26). Summing over all e ∈ Σf , this easily gives∑

e∈Σf

∫
e

Mns[θ − θII ](ηh −∇(vh + Lηh))s ds ≤ c[||θ − θII ||1 + h||θ − θII ||2].(4.27)

From (4.22) and the definition of Π in (4.15) it follows that

||(θ − θII −∇(w − wI − LθII))s||0,e ≤ ||θ − θII ||0,e+ | w − Πw |1,e +λ−1t2||(LγII)s||1,e,
(4.28)

where e ∈ Σf .
Due to the boundary condition (2.11) and property (4.14), the last term in (4.28)

is null. Therefore, using the Agmon inequality on each e ∈ Σf and then summing
over all K ∈ Th, we have∑

e∈Σf

||(θ − θII −∇(w − wI − LθII))s||20,e

≤ c[h−1||θ − θII ||20,Ω + h||θ − θII ||21,Ω + h−1||w − Πw||21,Ω + h||w − Πw||22,Ω].(4.29)

Using again the Agmon inequality, classical inverse inequalities for piecewise polyno-
mials and then bound (4.18), we easily get∑

e∈Σf

||Mns[ηh]||20,e ≤ ch−1
∑
K∈Th

||ηh||21,K

≤ ch−1||ηh||21,Ω ≤ ch−1|||ηh, vh, δh|||2∗ ≤ ch−1.(4.30)

Using (4.29) and (4.30) and the Cauchy–Schwarz inequality (as done in (4.27)), we
can then bound the second term in the right-hand side of (4.24):∑

e∈Σf

∫
e

(θ − θII −∇(w − wI − LθII))sMns[ηh] ds

≤ c[h−1||θ − θII ||0 + ||θ − θII ||1 + h−1||w − Πw||1 + ||w − Πw||2].(4.31)

The last member of (4.24) can be bounded in a similar way using (4.26) and (4.29);
combining (4.27) and (4.31) with this last bound, we finally obtain from (4.24)

(4.32)

C(θ − θII , w − wI − LθII ;ηh, vh + Lηh)

≤ c[||θ − θII ||1 + h||θ − θII ||2 + h−1||θ − θII ||0 + h−1||w − Πw||1 + ||w − Πw||2].
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The proof follows by the triangle inequality and combining estimates (4.21), (4.23),
and (4.32).

Proposition 4.3 grants uniform and optimal error estimates for most of the linked
elements in the literature applied to our new free boundary model.

Assume that properties (4.4), (4.5), and (4.14) are true, and that, for k ≤ 1,
• the interpolant θII is Pk invariant,
• the interpolant wI is Pk invariant, and
• the interpolant γ∗ is Pk−1 invariant.
Assume also that, for the linear and uniformly bounded operator L : Θh → W ,

it holds that
• the application Π (see (4.15)) is Pk+1 invariant and
• | Lδ |1= O(hk) for all sufficiently regular δ.
Then, it is easy to obtain from Proposition 4.3 and standard polynomial interpo-

lation that, for all 1 ≤ s ≤ k,

||θ − θh||1 + ||w − wh||1 + ||γ − γh||h + t2||γ − γh||0
≤ chs( ‖ ϕ ‖s+1 + ‖ w ‖s+2 +t||γ||s + ||γ||s−1 + ||divγ||s−1 ),(4.33)

which, remembering (2.19) and from Remark 6, gives an order of convergence of up
to order min(3/2, k) on the full domain.

Remark 5. The last two conditions above may seem less natural, but they are
fundamental requirements for any linked interpolation method and follow in each par-
ticular case from the form of the operator L. For example, all the above requirements
are met by the triangular elements of [7] with k = 1, by the quadrilateral elements of
[8] with k = 1, and by the higher order triangular elements of [6] with k = 2.

Remark 6. We note that for these elements, the higher order (but realistic)
regularity (2.20) is required for w.

Remark 7. A similar method was applied and numerically tested in [16] for the
PSRI plate elements.
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A TIME-DOMAIN FINITE ELEMENT METHOD FOR MAXWELL’S
EQUATIONS∗
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Abstract. Presented here is a time-domain finite element method for approximating Maxwell’s
equations. The problem is to approximate the electromagnetic fields scattered by a bounded, inho-
mogeneous cavity embedded in an infinite ground plane. The time-dependent scattering problem is
first discretized in time by Newmark’s time-stepping scheme. The resulting semidiscrete problem is
proved to be well posed. A nonlocal boundary condition on the cavity aperture is constructed to
reduce the computational domain to the cavity itself. Stability analysis and error estimates of the
fully discrete problem are provided.
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1. Introduction. Time-harmonic (frequency-domain) Maxwell’s equations for
scattering problems are well studied and documented ([1, 19, 20, 21], to name a few)
compared to their time-domain counterparts. This is due, to a large extent, to their
obvious advantage of the absence of the time dependence and the limitations of com-
puter power. The recent rapid advances in computing technology have prompted
a growing popularity of numerical schemes for simulating electromagnetic transients
(time-domain) for their potential to generate wide-band data and model nonlinear
materials. Reports of new and faster numerical techniques for electromagnetic anal-
ysis have flourished in the engineering literature (see, for example, [18, 23, 12, 25]).
However, very little analysis is known in the open literature. To the authors’ knowl-
edge, the first mathematical study of time-domain Maxwell’s equations for scattering
by a bounded perfectly electric conducting (PEC) body was reported in [22], in which
a spatially discretized problem is analyzed. More recently, in [4, 5], fully discrete
finite element methods for solving Maxwell’s equations of bounded PEC scattering
bodies are considered. In both cases, the problem is defined in a bounded domain.
This paper serves as our first attempt to understand the various stability and conver-
gence issues associated with the finite element method for modelling transient elec-
tromagnetic scattering from non-PEC bodies. The problem is defined in an infinite
space.

As observed in [7], most numerical schemes for scattering problems are faced with
the problem of truncating the infinite domain to a bounded computational domain
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without introducing excessive error. This is usually achieved by introducing an ar-
tificial boundary with appropriately defined boundary conditions that reduce the re-
flection of waves incident on this artificial boundary. Among the more popular are
the so-called absorbing boundary conditions (ABC), perfectly matched layer (PML),
and exact nonreflecting boundary conditions (NRBC) (for a survey of nonreflecting
boundary conditions see [14]). An NRBC is nonlocal in both time and space. The
nonlocality of NRBC in time requires the storing of the entire history of the solution
on the artificial boundary and can be very expensive for large problems. In [15], the
numerical methods for solving three-dimensional acoustic and elastic wave problems
are derived based on the Kirchhoff-type boundary condition which is nonlocal in both
time and space. For electromagnetic scattering problems, exact NRBCs are developed
in [16] by using vector spherical harmonic series expansions for the spherical artificial
boundary. In this formulation the computational domain can be unnecessarily large
when the scatterer geometry is highly irregular, such as a thin and long body. In
this paper, we present a finite element/Fourier transform method for analyzing the
transient electromagnetic scattering from three-dimensional cavities embedded in the
infinite PEC ground plane. Contrary to the conventional approach, we first discretize
the problem in time by the Newmark scheme. At each time step, a spatially nonlocal
boundary condition is constructed right at the cavity aperture Γ so that the compu-
tational domain is reduced to a minimum: the cavity itself. The finite element matrix
is precomputed outside of the time loop and is reused at each time step, significantly
reducing storage and computational time. Since the memory requirement does not
increase with time, one is able to numerically solve larger problems.

The next section describes the model problem. Section 3 demonstrates the time-
discretization of the cavity problem by using the Newmark time-stepping scheme.
This procedure yields the so-called semidiscrete problem, which is analytically solved
in the exterior of the cavity by using Fourier transform. The exterior solution is
used to construct a nonlocal boundary condition, which is then used to reduce the
semidiscrete problem to a finite domain (the cavity itself). Section 4 establishes
the existence and uniqueness of a weak solution of the semidiscrete problem. The
semidiscrete problem is fully discretized in section 5 by the curl-conforming finite
elements. Motivated by the work of Baker [2] and Cowsar, Dupont, and Wheeler
[11] for second-order hyperbolic equations, stability of the time-marching scheme is
analyzed. Convergence properties of the finite element method are also addressed.
The paper is concluded in section 6.

2. Mathematical formulation. Let Ω denote a bounded Lipschitz domain
(cavity) in R

3 such that Ω ⊂ {x = (x1, x2, x3) ∈ R
3 : x3 ≤ 0}. The relative electric

permittivity of Ω is characterized by the bounded positive function εr = ε/ε0. It
is assumed that the medium throughout is nonmagnetic, thus, µr = 1. The cavity
aperture is defined by the surface Γ = {x ∈ ∂Ω : x3 = 0}. We are interested in the
scattering properties of the cavity-backed aperture in an infinite ground plane. The
infinite ground plane excluding the cavity is assumed to be PEC, hence, the tangential
components of the total field and the scattered field vanish there. An incident elec-
tromagnetic field (Ei,Hi) is assumed to be the classical solution of the time-domain
Maxwell’s equations in the free space⎧⎪⎨⎪⎩

curlEi(x, t) = − ∂

∂t
Hi(x, t) in R

3 × (0, T ),

curlHi(x, t) =
∂

∂t
Ei(x, t) in R

3 × (0, T ),
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Γ
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Γc

S Ω

U = R
3
+

Infinite ground plane

Fig. 2.1. Cavity Ω in the infinite ground plane.

where 0 < T < ∞. The incident field interacts with the cavity to produce the total
field (E,H) which satisfies the initial-value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

curlE(x, t) = − ∂

∂t
H(x, t) in R

3 × (0, T ),

curlH(x, t) = εr(x)
∂

∂t
E(x, t) in R

3 × (0, T ),

E(x, 0) = E0 and H(x, 0) = H0,

(2.1)

where E0 and H0 are initial conditions with compact support. Let (Er,Hr) denote
the field reflected by the ground plane in the absence of the scatterer. The scattered
field (Es,Hs) is defined by the differences

Es = E − (Ei +Er), Hs = H − (Hi +Hr).

Let us denote S as the cavity walls, Γc = {x ∈ R
3 : x3 = 0} \ Γ, and U as the

upper half space {x ∈ R
3 : x3 > 0}. The domain of interest is G := Ω∪U . The surface

∂G is perfectly conducting, where ∂G = S ∪ Γc (see Figure 2.1). Inside the cavity Ω
we solve for the total field E, while in the upper half space U we only need to solve
for the scattered field Es since both Ei and Er are known in U . We eliminate the
magnetic field H in (2.1) to obtain a transmission-type problem,⎧⎪⎪⎨⎪⎪⎩

curl curlE(x, t) + εr
∂2

∂t2
E(x, t) = 0 in Ω × (0, T ),

curl curlEs(x, t) +
∂2

∂t2
Es(x, t) = 0 in U × (0, T ),

(2.2)

with the transmission conditions

n̂×E = 0 on S × (0, T ),

n̂×Es = 0 on Γc × (0, T ),

n̂×E = n̂× (Es +Ei +Er) on Γ × (0, T ),

n̂× curlE = n̂× curl(Es +Ei +Er) on Γ × (0, T )

and the initial conditions

E(x, 0) = E0(x), ∂tE(x, 0) = E1(x) = curlH0(x)/εr(x),
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where E0 and H0 are the given electric and magnetic fields at time t = 0. In
the rest of the paper, we wish to numerically solve the time-dependent problem
(2.2).

3. Semidiscrete problem. In this section, we shall first discretize the model
problem (2.2) in time using Newmark’s time-marching scheme [26, 27]. At each time
step, we solve the resulting semidiscrete problem exactly in the exterior of the cav-
ity using Fourier transform method. The solution is then used to construct an ex-
act nonlocal boundary condition over the cavity aperture. This boundary condi-
tion is key to reducing the infinite problem to a bounded (interior) computational
domain.

3.1. Time-discretization. We begin by describing the Newmark time-stepping
scheme. Let ∆t > 0 be the (constant) time step

∆t = T/N ,

where N is an arbitrary positive integer and T the total time. Let tn = n∆t be the
nth time step. Newmark’s scheme can be defined as follows. Consider the following
expansion of a sufficiently regular function y(t):

y(tn+1) = y(tn) + ∆ty′(tn) + (∆t)2
[
βy′′(tn+1) +

(
1

2
− β

)
y′′(tn)

]
+ O(∆t3),

y′(tn+1) = y′(tn) + ∆t [γy′′(tn+1) + (1 − γ)y′′(tn)] + O(∆t2),

where β and γ are parameters. Define the approximations yn+1, ẏn+1, and ÿn+1 of
y(tn+1), y

′(tn+1), and y′′(tn+1), respectively, by

yn+1 = yn + ∆tẏn + (∆t)2
[
βÿn+1 +

(
1

2
− β

)
ÿn

]
, n = 0, 1, . . . ,N ,

ẏn+1 = ẏn + ∆t
[
γÿn+1 + (1 − γ)ÿn

]
, n = 0, 1, . . . ,N .

The above recurrence equations are called the Newmark time-stepping scheme. We
note that the scheme is explicit if β = 0, i.e., yn+1 depends only on the terms at the
nth time step, and implicit otherwise. The scheme accuracy is O(∆t2) if γ = 1/2 and
O(∆t) if γ �= 1/2, which can be seen from the Taylor expansion

y′(tn+1) = y′(tn) +
∆t

2
y′′(tn) + O(∆t2).

Throughout the paper, we apply the Newmark scheme with γ = 1/2. By applying
the scheme to (2.2) we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curl curlEn+1 + εrË
n+1

= 0 ,

En+1 = En + ∆tĖ
n

+
(∆t)2

2
[(1 − 2β)Ë

n
+ 2βË

n+1
] ,

Ė
n+1

= Ė
n

+ ∆t

[
Ë
n

2
+
Ë
n+1

2

]
,

(3.1)

where En = En(x), Ė
n

= Ė
n
(x), and Ë

n
, are the temporal approximations of

E(x, tn),
∂E
∂t (x, tn), and ∂2E

∂t2 (x, tn), respectively, for n = 1, 2, . . . ,N . If n = 0,
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we set

E0 = E(0), Ė
0

=
∂

∂t
E(0).

From (3.1) we can derive the following semidiscrete problem (recursive relations):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∆t)2β curl curlEn+1 + εrE
n+1 = εr

[
En + ∆tvn +

(∆t)2

2
(1 − 2β)Ë

n
]
,

Ë
n+1

=
1

2β

[
2

(∆t)2
(En+1 −En − ∆tĖ

n
) − (1 − 2β)Ë

n
]
,

Ė
n+1

= Ė
n

+ ∆t

[
Ë
n

2
+
Ë
n+1

2

]
.

(3.2)

We note that the first equation in (3.2) is a partial differential equation in terms of
the function En+1, in which the right-hand side is known at the current time step.
The discrete version of the boundary condition on ∂G, as well as some radiation
condition, must be added to (3.2) to complete the statement of the problem. From
an implementation viewpoint, it is beneficial to write these equations in a predictor-
corrector form as follows.

Prediction:

Ẽ
n+1

= En + ∆tĖ
n

+
(∆t)2

2
(1 − 2β)Ë

n
,

˜̇E
n+1

= Ė
n

+
∆t

2
Ë
n
.

Solution:

(Pn+1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∆t)2β curl curlEn+1 + εrE
n+1 = εrẼ

n+1
in Ω,

n̂×En+1 = 0 on S,

n̂×En+1 = n̂× (Es,n+1 +Ei,n+1 +Er,n+1) on Γ,

n̂× curlEn+1 = n̂× curl(Es,n+1 +Ei,n+1 +Er,n+1) on Γ.

Correction:

Ë
n+1

=
1

β(∆t)2
(En+1 − Ẽn+1

),

Ė
n+1

= ˜̇E
n+1

+
∆t

2
Ë
n+1

.

Thus, in addition to the updating performed in the prediction and the correction,
we have to solve in each time step the boundary value problem in the solution. We
also note that the differential operator (curl curl +εrI) in (Pn+1) is independent of
time; hence it need be inverted only once. To solve the sequence of boundary value
problems (Pn+1), n = 0, 1, 2, . . . ,N − 1, we use the standard finite element method
with an appropriate nonlocal boundary condition. We now concentrate on the partial
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differential equation in (Pn+1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl curlEn+1 + α2εrE
n+1 = hn+1 in Ω,

curl curlEs,n+1 + α2Es,n+1 = hs,n+1 in U ,
n̂×En+1 = 0 on S,

n̂×Es,n+1 = 0 on Γc,

n̂× curlEn+1 = n̂× curl(Es +Ei +Er)n+1 on Γ,

n̂×En+1 = n̂× (Es +Ei +Er)n+1 on Γ,

(3.3)

where

α2 =
1

(∆t)2β
,(3.4)

hn+1 = α2εr(x)Ẽ
n+1

in Ω,(3.5)

hs,n+1 = α2Ẽ
s,n+1

in U .(3.6)

In the next subsection, we wish to solve for the scattered field Es,n+1 in (3.3) exactly
by using Fourier transformation. We can then construct a nonlocal boundary operator
which relates the tangential components of curlE and E for E ∈ H(curl,Ω).

3.2. Exterior problem and nonlocal boundary condition. Let Γ̃ be a
closed smooth surface such that Γ̄ ⊂ Γ̃. Let divΓ and curlΓ be the surface diver-
gence and the scalar surface rotational, respectively. For the detailed definitions of
these operators, the reader is referred to [3, 8]. We define the following Sobolev spaces:

H1/2(Γ) = {φ|Γ : φ ∈ H1/2(Γ̃)},
H̃1/2(Γ) = {φ|Γ : φ ∈ H1/2(Γ̃), supp(φ) ⊂ Γ̄},

and

H−1/2(Γ) = (H̃1/2(Γ))′,
H̃−1/2(Γ) = (H1/2(Γ))′.

We also need

H−1/2(divΓ,Γ) = {Φ∈ [H−1/2(Γ)]3 : Φ · x̂3 =0, divΓ Φ∈H−1/2(Γ), and ν ·Φ|∂Γ =0},
H−1/2(curlΓ,Γ):={Φ∈ [H−1/2(Γ)]3 : Φ · x̂3 =0, curlΓ Φ∈H−1/2(Γ), and ν ·Φ|∂Γ =0},
where ν is the norm to the boundary of Γ. Denote

Φn+1(x1, x2) = (−φn+1
2 , φn+1

1 , 0) = x̂3 ×Es,n+1 on {x3 = 0}.
Consider the semidiscrete problem (3.3) in the upper half space U :

Given hs,n+1 ∈ [L2(U)]3 and Φ ∈ H−1/2(divΓ,Γ), find Es,n+1 ∈ H(curl,U),
n = 0, 1, . . . ,N − 1, such that⎧⎪⎪⎨⎪⎪⎩

curl curlEs,n+1 + α2Es,n+1 = hs,n+1 in U ,
x̂3 ×Es,n+1 = Φn+1 on Γ,

x̂3 ×Es,n+1 = 0 on Γc.

(3.7)
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We shall omit the superscript n+ 1 in (3.7) for the rest of this section. We have
the following well-posedness result for the exterior problem. The proof of the result
is based on the construction of the solution to the Fourier transformed equation of
(3.7).

Theorem 1. For each hs ∈ [L2(U)]3 and Φ ∈ H−1/2(divΓ,Γ), there exists a
unique solution Es ∈ H(curl,U) to (3.7).

Proof. In the homogeneous upper half space U , Es is divergence-free (divEs = 0).
By the identity curl curlu = −∆u+ grad(div u), (3.7) becomes⎧⎪⎨⎪⎩

−∆Es + α2Es = hs in U ,
x̂3 ×Es = Φ on Γ,

n̂×Es = 0 on Γc.

Or, for j = 1, 2, ⎧⎪⎨⎪⎩
−∆Esj + α2Esj = hsj in U ,

Esj = φj on {x3 = 0},
lim
r→∞ rEsj = 0,

(3.8)

where

Esj = φj iff

∫
x3=0

Esjψ =

∫
x3=0

φjψ ∀ψ ∈ H̃1/2(Γ).

By the divergence-free property of Es, we only need to solve for the components
Es1 and Es2 . Taking the two-dimensional Fourier transform of the distributions with
respect to (x1, x2) of (3.8), we get, for j = 1, 2,⎧⎪⎨⎪⎩

[
∂2

∂x2
3

− (α2 + ξ21 + ξ22)

]
Êsj (ξ, x3) = −ĥsj(ξ, x3) in {x3 > 0},

Êsj (ξ, 0) = φ̂j(ξ) on {x3 = 0},
(3.9)

where ξ = (ξ1, ξ2).
Remark 2. Since E is real, the Fourier transforms of Esj , h

s
j , and φj are of the

form

f̂(ξ, x3) =
1

2π

∫
R

2

f(x1, x2, x3)e
−i(x1ξ1+x2ξ2)dx1dx2

= 4 Re

{
1

2π

∫
R

2
+

f(x1, x2, x3)e
−i(x1ξ1+x2ξ2)dx1dx2

}
.

The solution of the nonhomogeneous differential equation (3.9) is unique and can
be expressed as the sum of the homogeneous solution and the particular solution

Êsj (ξ, x3) = wj(x3) +

∫ ∞

0

G(x3, x
′
3)(−ĥsj(ξ, x′3))dx′3,(3.10)

where wj is the solution of⎧⎪⎨⎪⎩
w′′
j − η2wj = 0 in {x3 > 0},

wj = φ̂j on {x3 = 0},
lim
x3→∞x3wj = 0,
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where

η =
√
α2 + ξ21 + ξ22 ,

and G(x, x′) is the associated Green function, corresponding to the homogeneous
boundary conditions [17, p. 234]. We now derive wj and G(x, x′). It is easy to see
that the homogeneous solution wj is

wj(x3) = φ̂je
−ηx3 .(3.11)

The Green’s function is defined by

G(x, x′) =

{
φ(x′)ψ(x)W (x′)−1 if x ≤ x′,
ψ(x′)φ(x)W (x′)−1 if x ≥ x′,

where

φ(x′) = e−ηx
′
,

ψ(x′) = eηx
′ − e−ηx

′
= 2 sinh ηx′,

W (x′) = ψ(x′)φ′(x′) − φ(x′)ψ′(x′) = −2η.

Hence,

G(x, x′) =

{ −e−ηx′
sinh(ηx)/η if x ≤ x′,

− sinh(ηx′)e−ηx/η if x ≥ x′.
(3.12)

Taking the partial derivative of G with respect to x yields

∂G(x, x′)
∂x

=

{ −e−ηx′
cosh(ηx) if x ≤ x′,

sinh(ηx′)e−ηx if x ≥ x′.

Hence, ∂3Ê
s
j , j = 1, 2, are

∂3Ê
s
j = −ηφ̂je−ηx3 −

∫ ∞

0

∂G(x3, x
′
3)

∂x3
ĥsj(x

′
3)dx

′
3.

By taking the inverse Fourier transform of (3.10), we obtain, for j = 1, 2,

Esj =
1

2π

∫ ∞

−∞

∫ ∞

−∞
Êsj e

i(x1ξ1+x2ξ2)dξ1dξ2

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
φ̂je

−ηx3ei(ξ1x1+ξ2x2)dξ1dξ2

− 1

2π

∫ ∞

−∞

∫ ∞

−∞

{∫ ∞

0

G(x3, x
′
3)ĥ

s
jdx

′
3

}
ei(ξ1x1+ξ2x2)dξ1dξ2.(3.13)

For the third component, we note that

Ês3 = η−2

(
∂2Ês3
∂x2

3

+ ĥ3

)
.

Since divEs = 0 in U , its Fourier transform also vanishes; thus,

∂Ês3
∂x3

= −i(ξ1Ês1 + ξ2Ê
s
2).
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Hence, we get

Ês3 = η−2

[
−i ∂
∂x3

(ξ1Ê
s
1 + ξ2Ê

s
2) + ĥs3

]
,

=
i

η
(ξ1φ̂1 + ξ2φ̂2)e

−ηx3 +
i

η2

∫ ∞

0

∂G(x3, x
′
3)

∂x3
(ξ1ĥ

s
1 + ξ2ĥ

s
2)dx

′
3 +

1

η2
ĥs3.

Taking the inverse Fourier transform gives

Es3 =
i

2π

∫ ∞

−∞

∫ ∞

−∞

1

η
(ξ1φ̂1 + ξ2φ̂2)e

−ηx3ei(ξ1x1+ξ2x2)dξ1dξ2

+
i

2π

∫ ∞

−∞

∫ ∞

−∞

1

η2

{∫ ∞

0

∂G(x3, x
′
3)

∂x3
(ξ1ĥ

s
1 + ξ2ĥ

s
2)dx

′
3

}
ei(ξ1x1+ξ2x2)dξ1dξ2

+
1

2π

∫ ∞

−∞

∫ ∞

−∞

1

η2
ĥs3e

i(ξ1x1+ξ2x2)dξ1dξ2.(3.14)

Therefore, (3.13) and (3.14) yield the solution Es to (3.7).
From the solution Es, we now construct the nonlocal boundary operator. The

tangential components of curlEs on Γ,

n̂× curlEs = (−(∂3E
s
1 − ∂1E

s
3), ∂2E

s
3 − ∂3E

s
2 , 0) ,

can be expressed in terms of Φ and hs as follows. Denote x = (x1, x2), for x3 = 0,

−∂3E
s
1 + ∂1E

s
3 =

1

2π

∫
R

2

{
ηφ̂1 − 1

η
(ξ1φ̂1 + ξ2φ̂2)ξ1

}
eiξ·xdξ

− 1

2π

∫
R

2

eiξ·xdξ
∫ ∞

0

∂G(x3, x
′
3)

∂x3

[
ĥs1 +

1

η2
(ξ1ĥ

s
1 + ξ2ĥ

s
2)ξ1

]
x3=0

dx′3

+
i

2π

∫
R

2

ξ1
η2
ĥs3|x3=0 e

iξ·xdξ,

(3.15)

and

−∂3E
s
2 + ∂2E

s
3 =

1

2π

∫
R

2

{
ηφ̂2 − 1

η
(ξ2φ̂1 + ξ2φ̂2)ξ2

}
eiξ·xdξ

− 1

2π

∫
R

2

eiξ·xdξ
∫ ∞

0

∂G(x3, x
′
3)

∂x3

[
ĥs2 +

1

η2
(ξ1ĥ

s
1 + ξ2ĥ

s
2)ξ2

]
x3=0

dx′3

+
i

2π

∫
R

2

ξ2
η2
ĥs3|x3=0 e

iξ·xdξ.

(3.16)

We note that only the first term on the right-hand side of (3.15) and (3.16) contains
the boundary function φ. So, we define the operator T by

T (x̂3 × u) = [T (1)(x̂3 × u), T (2)(x̂3 × u)] on Γ,(3.17)

where

T (1)(x̂3 × u)(x) =
1

2π

∫
R

2

{
ηû1 − 1

η
(ξ1û1 + ξ2û2)ξ1

}
eiξ·xdξ,(3.18)

T (2)(x̂3 × u)(x) =
1

2π

∫
R

2

{
ηû2 − 1

η
(ξ1û1 + ξ2û2)ξ2

}
eiξ·xdξ.(3.19)
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Thus, we have

x̂3 × curlEs = T (x̂3 ×Es) +Qhs,(3.20)

where Qhs = [Q(1)hs, Q(2)hs] with

Q(1)hs = − 1

2π

∫
R

2

eiξ·xdξ
∫ ∞

0

∂G(x3, x
′
3)

∂x3

[
ĥs1 +

1

η2
(ξ1ĥ

s
1 + ξ2ĥ

s
2)ξ1

]
dx′3

+
i

2π

∫
R

2

1

η2
ξ1ĥ

s
3e
iξ·xdξ, for x3 = 0,

and

Q(2)hs = − 1

2π

∫
R

2

eiξ·xdξ
∫ ∞

0

∂G(x3, x
′
3)

∂x3

[
ĥs2 +

1

η2
(ξ1ĥ

s
1 + ξ2ĥ

s
2)ξ2

]
dx′3

+
i

2π

∫
R

2

1

η2
ξ2ĥ

s
3e
iξ·xdξ, for x3 = 0.

Lemma 3. The operator T : H−1/2(div,Γ) → [H−1/2(curl,Γ)]∗, the dual space of
H−1/2(curl,Γ), is a linear bounded operator. Furthermore,

〈T (x̂3 × u), x̂3 × x̂3 × u〉Γ ≤ 0.

Proof. We shall prove that

|〈T (x̂3 × u), φ〉| ≤ C‖x̂3 × u‖H−1/2(div,Γ)‖φ‖H−1/2(curl,Γ) ∀φ ∈ H−1/2(curl,Γ).

Recall that

‖x̂3 × u‖2
H−1/2(div,Γ) =

∫
R

2

1√
1 + |ξ|2

[
|û1|2 + |û2|2 + | − ξ1û2 + ξ2û1|2

]
dξ

and

‖φ‖2
H−1/2(curl,Γ) =

∫
R

2

1√
1 + |ξ|2

[
|φ̂1|2 + |φ̂2|2 + |ξ1φ̂2 − ξ2φ̂1|2

]
dξ.

By the definition of T , we have

〈T (x̂3 × u), φ〉 =

∫
Γ

T (x̂3 × u) · φ̄dx

=

∫
x3=0

T (1)(x̂3 × u) · φ̄1dx+

∫
x3=0

T (2)(x̂3 × u) · φ̄2dx

=

∫ [
ηû1 − 1

η
(ξ1û1 + ξ2û2)ξ1

]
v̂1dξ +

∫ [
ηû2 − 1

η
(ξ1û1 + ξ2û2)ξ2

]
v̂2dξ

=

∫
1

η

[
η2(û1v̂1 + û2v̂2) − (ξ1û1 + ξ2û2)(ξ1v̂1 + ξ2v̂2)

]
dξ

=

∫
1

η

[
α2(û1v̂1 + û2v̂2) + ξ22 û1v̂1 + ξ21 û2v̂2 − ξ1ξ2û2v̂1 − ξ1ξ2û1v̂2

]
dξ

=

∫
1

η

[
α2(û1v̂1 + û2v̂2) + (−ξ1û2 + ξ2û1)(ξ2v̂1 − ξ1v̂2)

]
dξ.
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By the Cauchy–Schwarz inequality, we obtain

|〈T (x̂3 × u), φ〉| ≤ C‖x̂3 × u‖H−1/2(div,Γ)‖φ‖H−1/2(curl,Γ).

To show the operator T is nonpositive, we observe that

− (2π)2 〈T (x̂3 × u), x̂3 × x̂3 × u〉Γ
=

∫
Γ

T (1)(x̂3 × u)u1 +

∫
Γ

T (2)(x̂3 × u)u2

=

∫
R

2

{
ηû1 − 1

η
(ξ1û1 + ξ2û2)ξ1

}
û1dξ +

∫
R

2

{
ηû2 − 1

η
(ξ1û1 + ξ2û2)ξ2

}
û2dξ

=

∫
R

2

{
η(û2

1 + û2
2) −

1

η
(ξ1û1 + ξ2û2)

2

}
dξ

=

∫
R

2

1

η

{
η2(û2

1 + û2
2) − (ξ1û1 + ξ2û2)

2
}
dξ.

Recall that η = (α2 + ξ21 + ξ22)1/2; the last integrand is clearly positive. Therefore, we
have

〈T (x̂3 × u), x̂3 × x̂3 × u〉 ≤ 0

as desired.
This lemma will be used in the next section to obtain the existence and uniqueness

of the weak solutions to the variational problem defined in the cavity Ω (Lax–Milgram
theorem).

4. Interior problem and variational formulation. In this section, we con-
sider the problem defined in the cavity Ω:⎧⎪⎪⎨⎪⎪⎩

curl curlEn+1 + α2εrE
n+1 = hn+1 in Ω,

n̂×En+1 = 0 on S,

x̂3 ×En+1 = x̂3 × (Ei +Er +Es)n+1 on Γ,

(4.1)

where hn+1 = α2εrẼ
n+1

as before. We formally multiply the first equation of (4.1)
with a suitable test function φ and integrate by parts over Ω to obtain

(curlEn+1, curlφ) + α2(εrE
n+1,φ) − 〈

x̂3 × curlEn+1, x̂3 × (x̂3 × φ)
〉
Γ

= (hn+1,φ).

We wish to couple the total field En+1 in Ω to the total field in the upper half space
through Γ. This can be accomplished by finding a relation between x̂3 × curlEn+1

and x̂3 ×En+1. Since x̂3 × (Ei,n+1 +Er,n+1) = 0 on Γ, we have

x̂3 × curlEs,n+1 = T (x̂3 × (En+1 −Ei,n+1 −Er,n+1))

+Q(hn+1 − hi,n+1 − hr,n+1)

= T (x̂3 ×En+1) +Qhn+1 −Q(hi,n+1 + hr,n+1).

Hence, we obtain the following relation on Γ:

x̂3 × curlEn+1 = T (x̂3 ×En+1) + x̂3 × (curlEi,n+1 + curlEr,n+1)

+Qhn+1 −Q(hi,n+1 + hr,n+1)

= T (x̂3 ×En+1) +Mn+1,

(4.2)
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where

Mn+1 = x̂3 × (curlEi,n+1 + curlEr,n+1) +Qhn+1 −Q(hi,n+1 + hr,n+1).

The nonlocal boundary condition (4.2) on Γ is exact for each tn+1. Now we can state
the interior problem (4.1) as the following.

Given hn+1 ∈ [L2(Ω)]3, find En+1 ∈ H(curl,Ω), n = 0, 1, . . . ,N − 1, such that⎧⎪⎨⎪⎩
curl curlEn+1 + α2εrE

n+1 = hn+1 in Ω,

n̂×En+1 = 0 on S,

x̂3 × curlEn+1 = T (x̂3 ×En+1) +Mn+1 on Γ.

(4.3)

The semidiscrete problem (4.3) is solved numerically by a variational method.
Define the variational space V ⊂ H(curl,Ω) as

V = {u ∈ H(curl,Ω) : n̂× u|S = 0}.

Then the corresponding variational form of the interior problem is

a(En+1,φ) = bn+1(φ) ∀φ ∈ V, n = 0, 1, . . . ,N − 1,(4.4)

where

a(En+1,φ) = (curlEn+1, curlφ) + α2(εrE
n+1,φ) − 〈

T (x̂3 ×En+1), x̂3 × (x̂3 × φ)
〉
Γ

(4.5)

and

bn+1(φ) = (hn+1,φ) +
〈
Mn+1, x̂3 × (x̂3 × φ)

〉
Γ
.(4.6)

Remark 4. The time-stepping scheme can be described as the following.
1. Form the matrix A defined by the bilinear form a(u, v) in (4.5).

Time-loop: for n = 0, 1, 2 . . .

2. Compute the predicted values Ẽ
n+1

, ˜̇E
n+1

in the interior Ω.

3. Compute the predicted values Ẽ
n+1

, ˜̇E
n+1

in the exterior U .
4. Form the right-hand side vector Fn+1 defined by bn+1(φ) in (4.6).
5. Solve for the unknown expansion coefficients En+1 in AEn+1 = Fn+1

in (4.4).
6. Compute the solution En+1 in the exterior U by (3.6).

7. Correct Ë
n+1

and Ė
n+1

in Ω.
8. Correct Ë

n+1
and Ė

n+1
in U .

Note that the matrix A is defined outside of the time loop; thus it can be precomputed
and reused for each time step. This significantly reduces the storage and computational
time.

We now show that the variational problem (4.4) has a unique solution inH(curl,Ω)
at each time step tn.

Theorem 5. There exists a unique solution u ∈ V such that

a(u,v) = b(v) ∀v ∈ V.
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Proof. Since εr > 0 and T is negative, it is easy to see that

a(u,u) = ‖ curlu‖2
0 + α2(εru,u) − 〈T (x̂3 × u), x̂3 × x3 × u〉Γ

≥ C‖u‖2
H(curl,Ω), C > 0.

The bilinear form a(·, ·) is continuous in V , that is,

|a(u,v)| ≤ C‖u‖H(curl,Ω)‖v‖H(curl,Ω), ∀u,v ∈ V.

In fact, by the property of T and the trace theorem we have

| 〈T (x̂3 × u), x̂3 × x3 × v〉Γ | ≤ C‖x̂3 × u‖H−1/2(divΓ,Γ)‖x̂3 × x̂3 × v‖H−1/2(curlΓ,Γ)

≤ C‖u‖H(curl,Ω)‖v‖H(curl,Ω).

Therefore, by the Lax–Milgram theorem the variational problem has a unique solution
in V .

In the next section, we use finite element methods to numerically solve the varia-
tional problem (4.4). We will also analyze the finite element error in H(curl,Ω)-norm
and the stability of the Newmark time-stepping scheme.

5. Fully discrete problem and finite element analysis. We assume that
the cavity Ω can be decomposed into Lipschitz subregions Ωi, i = 1, 2, . . . ,M , so
that εr|Ωi is Lipschitz continuous and uniformly bounded. Let Ω be covered by a
tetrahedral mesh Th of regular, quasi-uniform finite elements with a maximum diam-
eter h > 0. We will use linear edge elements as approximating functions which can
be defined as follows. Let K̃ denote the reference tetrahedron

K̃ = {x̃ ∈ R
3 : 1 − x̃1 − x̃2 − x̃3 ≥ 0, x̃i ≥ 0}.

Let K be a tetrahedron in Th. Then there exists an affine map FK such that FK(K̃) =
K. We define the set of “linear” functions on the reference tetrahedron

R1 = {ũ : K̃ → C
3 : ũ = a + b × x̃, a,b ∈ C

3},
and using this set we define for each K ∈ Th

R1(K) =
{
u : K → C

3 : u(FK(x̃)) = [DFK
T]−1(x̃)ũ(x̃)

for some ũ ∈ R1 and ∀x̃ ∈ K̃
}
,

where DFK is the Jacobian of the transformation FK . Thus, the linear edge element
space Vh is defined as

Vh := {vh ∈ V : vh|K ∈ R1(K) ∀K ∈ Th}.
The degrees of freedom for this space are the moments of the tangential components
of the field along the edges in the meshes and are defined by, for each tetrahedron K,

Me(u) =

{∫
e

(u · τ e)qds : q ∈ P1(e) on six edges of K

}
,

where τ e is the unit tangential vector on e and P1(e) is the set of polynomial of degree
one defined on e (for more details, see [13, 19]). In order for the integral in Me to
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make sense, it is required that u ∈ W 1,s(Ω)3 for s > 2 [13]. The discrete version of
the variational problem (4.4) is the following. Find Eh ∈ Vh such that

a(En+1
h ,vh) = b(vh) ∀vh ∈ Vh, n = 0, 1, . . . ,N .(5.1)

Again by the Lax–Milgram theorem, we have the following theorem.
Theorem 6. The fully discrete problem (5.1) has a unique solution Eh in Vh.
Approximation properties of Vh: The approximation properties of the finite ele-

ment subspace Vh are well established (see, e.g., [13]) and are summarized as follows.
Let u ∈ [W 1,s(Ω)]3, s > 2 and rh : [W 1,s(Ω)]3 → Vh be the interpolation operator
defined by the moments Me. If u ∈ [H2(Ω)]3,

‖u− rhu‖L2(Ω) + h ‖u− rhu‖H(curl,Ω) ≤ Ch ‖u‖H2(Ω) .

Error estimate in H(curl,Ω) for the finite element method is obtained by Céa’s theo-
rem [6].

Theorem 7. Let En ∈ V and En
h ∈ Vh be the semidiscrete solution and the fully

discrete solution, respectively, to the variational equation. Then there exists C > 0
independent on h such that

‖E −Eh‖H(curl,Ω) ≤ C inf
vh∈Vh

‖E − vh‖H(curl,Ω).

By using the approximation property of the linear edge elements we also have the
following corollary.

Corollary 8. Let E ∈ V be a solution of (4.4) and E ∈ [H2(Ωi)]
3, i =

1, 2, . . . ,M . Then

‖E −Eh‖H(curl,Ωi)
≤ Cih ‖E‖H2(Ωi)

, i = 1, 2, . . . ,M.

We now analyze the stability of the Newmark scheme and the error estimate for
the finite element approximation. With γ = 1/2, the Newmark scheme can also be
expressed in terms of

∂τE
n =

En+1 −En

∆t
, ∂2

τE
n =

En+1 − 2En +En−1

(∆t)2
,

En,β = βEn+1 + (1 − 2β)En + βEn−1,

and (4.3) can be rewritten as

(∂2
τE

n,v) + (curlEn,β , curlv) −
〈
T (x̂3 ×En,β), x̂3 × x̂3 × v

〉
= (hn,β ,v) +

〈
Hn,β , x̂3 × x̂3 × v

〉
, n = 0, 1, . . . ,N ,

where

hn,β =
εr

∆t2β

[
En−1,β + ∆tĖ

n−1,β
+

(1 − 2β)∆t2

2
Ë
n−1,β

]
.

To analyze the stability, we consider the homogeneous equation

(∂2
τE

n,v) + (curlEn,β , curlv) −
〈
T (x̂3 ×En,β), x̂3 × x̂3 × v

〉
= 0 .(5.2)
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We note that

∂2
τE

n =
1

∆t
(∂τE

n − ∂τE
n−1),(5.3)

and we define

δτE
n =

1

2
(∂τE

n + ∂τE
n−1),(5.4)

or equivalently,

δτE
n =

1

2∆t
(En+1 −En−1).(5.5)

By setting v = δτE
n in the homogeneous equation (5.2), we get

0 = (∂2
τE

n, δτE
n) + (curlEn,β , curl δτE

n) −
〈
T (x̂3 ×En,β), x̂3 × x̂3 × δτE

n
〉

≡ I + II + III.

(5.6)

We consider the first term I:

I = (∂2
τE

n, δτE
n) =

1

2∆t
((∂τE

n − ∂τE
n−1), (∂τE

n + ∂τE
n−1))

=
1

2∆t

(‖∂τEn‖2
0 − ‖∂τEn−1‖2

0

)
.

For the second term II, we write

En,β = β(En+1 − 2En +En−1) +En

= β∆t2∂2
τE

n +En,
(5.7)

and denote

En+1/2 =
1

2
(En+1 +En).

So, in terms of En±1/2 we have

δτE
n =

1

∆t
(En+1/2 −En−1/2),(5.8)

En =
En+1/2 +En−1/2

2
− ∆t2

4
∂2
τE

n.(5.9)

Substituting (5.9) into (5.7), we get

En,β = β∆t2∂2
τE

n +
En+1/2 +En−1/2

2
− ∆t2

4
∂2
τE

n

=

(
β − 1

4

)
∆t2∂2

τE
n +

En+1/2 +En−1/2

2
.(5.10)

Hence, II becomes

II = (curlEn,β , curl δτE
n)

=

(
β − 1

4

)
∆t2(curl ∂2

τE
n, curl δτE

n) − 1

2
(curlEn+1/2 + curlEn−1/2, curl δτE

n)

=

(
β − 1

4

)
∆t

2

(‖ curl ∂τE
n‖2

0 − ‖ curl ∂τE
n−1‖2

0

)
+

1

2∆t

(
‖ curlEn+1/2‖2

0 − ‖ curlEn−1/2‖2
0

)
.
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Finally, we consider the boundary term III. From (5.3, 5.4, 5.8, 5.10) we have〈
T (x̂3 ×En,β), x̂3 × x̂3 × δτE

n
〉

=

(
β − 1

4

)
∆t

2

〈
T (x̂3 × (∂τE

n + ∂τE
n−1)), x̂3 × x̂3 × (∂τE

n − ∂τE
n−1)

〉
+

1

2∆t

〈
T (x̂3 × (En+1/2 +En−1/2)), x̂3 × x̂3 × (En+1/2 −En−1/2)

〉
.

Summing (5.6) over n, n = 0, 1, 2, 3, . . . ,N − 1, and by the property of the operator
T we obtain

1

2∆t
‖∂τEN ‖2

0 +

(
β − 1

4

)
∆t

2
‖ curl ∂τE

N ‖2
0 +

1

2∆t
‖ curlEN+1/2‖2

0

−
(
β − 1

4

)
∆t

2

〈
T (x̂3 × ∂τE

N ), x̂3 × x̂3 × ∂τE
N
〉

− 1

2∆t

〈
T (x̂3 ×EN+1/2), x̂3 × x̂3 ×EN+1/2

〉
=

1

2∆t
‖∂τE0‖2

0 +

(
β − 1

4

)
∆t

2
‖ curl ∂τE

0‖2
0 +

1

2∆t
‖ curlE1/2‖2

0

−
(
β − 1

4

)
∆t

2

〈
T (x̂3 × ∂τE

0), x̂3 × x̂3 × ∂τE
0
〉

− 1

2∆t

〈
T (x̂3 ×E1/2), x̂3 × x̂3 ×E1/2

〉
,

which implies

‖∂τEN ‖2
0 +

(
β − 1

4

)
∆t2‖ curl ∂τE

N ‖2
0 + ‖ curlEN+1/2‖2

0

≤ ‖∂τE0‖2
0 +

(
β − 1

4

)
∆t2‖ curl ∂τE

0‖2
0 + ‖ curlE1/2‖2

0

−
(
β − 1

4

)
∆t2

〈
T (x̂3 × ∂τE

0), x̂3 × x̂3 × ∂τE
0
〉

(5.11)

−
〈
T (x̂3 ×E1/2), x̂3 × x̂3 ×E1/2

〉
.

It is clear from the inequality (5.11) that if 1/4 ≤ β ≤ 1, there exists a positive
constant C0 such that

‖∂τEN ‖2
H(curl,Ω) + ‖ curlEN+1/2‖2

0 ≤ C0

(
‖∂τE0‖2

H(curl,Ω) + ‖E1/2‖2
H(curl,Ω)

)
,

where C0 depends only on β,∆t, and Ω. If 0 ≤ β < 1/4, then we will not have an
unconditionally stable scheme. For example, if we choose β = 0, then the scheme is
explicit. Consequently, we need to find a condition imposed on ∆t and h (mesh size)
to guarantee the stability of the scheme. This can be accomplished by the “inverse
assumption” for quasi-uniform triangulations [6],

‖ curlvh‖0 ≤ Ch−1‖vh‖0 ∀vh ∈ Vh, C > 0.
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When β = 0, we have(
1 − C2 ∆t2

4h2

)
‖∂τEN ‖2

0 + ‖ curlEN+1/2‖2
0 ≤ C1(‖∂τE0‖2

H(curl,Ω) + ‖E1/2‖2
H(curl,Ω)).

Hence, if C
∆t

2h
< 1, then the scheme is stable; that is,(

1 − C2 ∆t2

4h2

)
‖∂τEN ‖2

0 + ‖ curlEN+1/2‖2
0

is bounded by the initial data. Therefore, we have shown that the following is true.
Theorem 9. If 1/4 ≤ β ≤ 1, the Newmark scheme is unconditionally stable. If

0 ≤ β ≤ 1, the Newmark scheme is conditionally stable. In particular, if β = 0, we
impose the stability condition

C
∆t

2h
< 1(5.12)

to have a stable scheme. Here, the constant C > 0 is determined by the inverse
assumption.

Therefore, we conclude that if the solution En is assumed to be in [H2(Ωi)]
3 for

i = 1, 2, . . . ,M and the stability of the Newmark scheme (with γ = 1/2) is achieved,
then we obtain the optimal error estimate

max
1≤n≤N

‖E(tn)−En
h‖H(curl,Ω) ≤ max

1≤n≤N

{
‖E(tn)−En‖H(curl,Ω) +‖En−En

h‖H(curl,Ω)

}
= O(∆t2) + O(h).

Remark 10. Readers are referred to [9, 10] for further details on the regularity
property of a solution to Maxwell’s equations.

6. Conclusion. We have presented a finite element/Fourier transform method
for analyzing transient electromagnetic scattering from inhomogeneous cavities em-
bedded in the infinite ground plane. Our method is shown to lead a well-posed semidis-
crete problem in space. Stability conditions are given for the time-marching scheme.
Convergence properties of the finite element scheme for the fully discrete problem
are also discussed. Numerical experiments are performed for two-dimensional cavity
problems that demonstrate the accuracy and stability of the method and are reported
in [24].

We believe this is the first mathematical treatment of time-domain Maxwell’s
equations for scattering problems defined in an unbounded domain. Computationally,
the exact nonlocal boundary condition introduced here has the potential to lead more
accurate hybridization schemes (vs. those using ABC, PML, or the like) coupling
the integral equation solution to the exterior infinite domain and the finite element
treatment of the interior bounded domain.

REFERENCES

[1] H. Ammari, G. Bao, and A. Wood, A cavity problem for Maxwell’s equations, Methods Appl.
Anal., 9 (2002), pp. 249–259.

[2] G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations,
SIAM J. Numer. Anal., 13 (1976), pp. 564–576.



TIME-DOMAIN FINITE ELEMENT METHOD 1609

[3] M. Cessenat, Mathematical Methods in Electromagnetism. Linear Theory and Applications,
World Scientific, River Edge, NJ, 1996.

[4] Z. Chen, Q. Du, and J. Zou, Finite element methods with matching and nonmatching meshes
for Maxwell equations with discontinuous coefficients, SIAM J. Numer. Anal., 37 (2000),
pp. 1542–1570.

[5] P. Ciarlet and J. Zou, Fully discrete finite element approaches for time-dependent Maxwell’s
equations, Numer. Math., 82 (1999), pp. 193–219.

[6] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 4, North-
Holland, New York, 1978, pp. 36–69.

[7] F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM
J. Sci. Comput., 19 (1998), pp. 2061–2090.

[8] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley, New
York, 1983.

[9] M. Costabel, A remark on the regularity of solutions to Maxwell’s equations on Lipschitz
domains, Math. Methods Appl. Sci., 12 (1990), pp. 365–368.

[10] M. Costabel and M. Dauge, Singularities of Electromagnetic Fields in Polyhedral Domains,
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COMPUTING BOUNDS FOR LINEAR FUNCTIONALS OF EXACT
WEAK SOLUTIONS TO POISSON’S EQUATION∗

A. M. SAUER-BUDGE† , J. BONET‡ , A. HUERTA§ , AND J. PERAIRE†

SIAM J. NUMER. ANAL. c© 2004 Society for Industrial and Applied Mathematics
Vol. 42, No. 4, pp. 1610–1630

Abstract. We present a method for Poisson’s equation that computes guaranteed upper and
lower bounds for the values of piecewise-polynomial linear functional outputs of the exact weak solu-
tion of the infinite-dimensional continuum problem with piecewise-polynomial forcing. The method
results from exploiting the Lagrangian saddle point property engendered by recasting the output
problem as a constrained minimization problem. Localization is achieved by Lagrangian relaxation
and the bounds are computed by appeal to a local dual problem. The proposed method computes
approximate Lagrange multipliers using traditional finite element approximations to calculate a pri-
mal and an adjoint solution along with well-known hybridization techniques to calculate interelement
continuity multipliers. The computed bounds hold uniformly for any level of refinement, and in the
asymptotic convergence regime of the finite element method, the bound gap decreases at twice the
rate of the energy norm measure of the error in the finite element solution. Given a finite element
solution and its output adjoint solution, the method can be used to provide a certificate of precision
for the output with an asymptotic complexity that is linear in the number of elements in the finite
element discretization. The elemental contributions to the bound gap are always positive and hence
lend themselves to be used as adaptive indicators, as we demonstrate with a numerical example.

Key words. bounds, PDEs, Poisson, exact solutions, certificates, functional outputs, error
estimation
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1. Introduction. Uncertainty about the reliability of numerical approximations
frequently undermines the utility of field simulations in the engineering design process:
simulations are often not trusted because they lack reliable feedback on accuracy,
or are more costly than necessary because they are performed with greater fidelity
than necessary in an attempt to bolster trust. In addition to devitalized confidence,
numerical uncertainty often causes ambiguity about the source of any discrepancies
when using simulation results in concert with experimental measurements. Can the
discretization error account for the discrepancies, or is the underlying continuum
model inadequate?

While confidence in the precision of a field simulation can be buoyed by performing
convergence studies, such studies are computationally very expensive and in practice
are often not performed at more than a few conditions, if at all, due to cost and time
constraints. For this reason, researchers and practitioners employ adaptive methods to
converge the solution in a manner that costs less in time and resources than uniform re-
finement. Adaptive methods powered by current error estimation technology, however,
provide only asymptotic guarantees of precision, at best, and no guarantees of preci-
sion, at worse, since the convergence of adaptive methods remains an open question [12].
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Our observations of engineering practice inform us that integrated quantities such
as forces and total fluxes are frequently queried quantitative outputs from field simula-
tions and that design and analysis does not always require the full precision available.
The primary objective of our method, therefore, is to certify the precision of inte-
grated outputs for low-fidelity simulations as well as high-fidelity simulations. We
call our bounds uniform to differentiate our goal of obtaining quantitative bounds
for all levels of refinement from the lesser goal of obtaining quantitative bounds only
asymptotically in the limit of refinement. In this regard, the complete procedure
can be viewed as a polynomial time algorithm in the number of mesh elements that
provides a certificate of precision for a predicted output. The certificate guarantees
a minimum level of precision in the output from a particular finite-dimensional ap-
proximation with respect to the output from the infinite-dimensional model that it
is approximating. Furthermore, the procedure provides local information that can
be used in conjunction with adaptive meshing to efficiently drive a solution to an
arbitrary and guaranteed precision.

Verification and a posteriori error analysis have a long history in the development
of the finite element method with many different approaches forwarded and inves-
tigated. Ainsworth and Oden give a detailed overview of many of the approaches
in [2]. Conceptually, our method descends from a long line of complementary energy
methods beginning in the early 1970s when Fraeijs de Veubeke [7] proposed verify-
ing the precision of a simulation by comparing the energy computed from a global
primal approximation with the complementary energy computed from a global dual
approximation. Global primal-dual methods offer a rich context for approximation,
but suffer from the delicate nature of the global dual approximation, relatively high
cost, and for verification, from a lack of relevant measure because the upper and lower
bounding properties hold only for the total energy.

Much more closely related to our work are the works of Ladevèze and Rougeot [10],
Ladeveze and Leguillon [9], Ainsworth and Oden [1], and of Destuynder and Métivet [6],
all of which consider local complementary energy problems for developing estimates
for the energy norm of the error. In contrast to the work of Ladevèze, we endeavor
to compute uniformly guaranteed two-sided bounds on an output, not an estimate
of the error in an abstract norm. While the work of Ainsworth and Oden as well as
the related work of Cao, Kelly, and Sloan [5] require the exact solution of infinite-
dimensional local problems in order to guarantee bounds, our method guarantees
bounds uniformly with the solution of a finite-dimensional local problem. Our method
differs from that of Destuynder and Métivet in that it is not burdened with the explicit
construction of globally conforming approximations to dual admissible vector fields.
The work we present here extends earlier work done by Paraschivoiu, Peraire, and
Patera [14] and Paraschivoiu and Patera [13] on two-level residual based techniques
for computing output bounds.

In this paper, we focus on the overarching structure of the method and do not
consider the details of its implementation, nor extensions to non-piecewise-polynomial
forcing or curved domains, nor more general equations such as nonsymmetric dissipa-
tive operators, which will be presented in a future publication [18]. Section 2 presents
the core concepts in the simpler setting of energy bounds, where the method has
a clear variational meaning and a direct relationship to hybrid methods. Section 3
recasts the energy bound method as a method for linear functional output bounds, si-
multaneously carrying out an explicit extension to more relevant error measures and
an implicit extension to nonvariational problems. Finally, the last section demon-
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strates the method with numerical results for three example problems. The last of
the three examples shows how the method can be used to drive an adaptive refinement
process.

1.1. Poisson’s equation. We consider Poisson’s equation posed on polygonal
domains, Ω, in d spacial dimensions and, only for the sake of simplicity of presentation,
homogeneous Dirichlet boundaries, Γ = ∂Ω. The Poisson problem is formulated
weakly as: find u ∈ U such that∫

Ω

∇u · ∇v dΩ =

∫
Ω

f v dΩ ∀v ∈ U ,(1.1)

where U(Ω) ≡ {u ∈ H1(Ω) | u|Γ = 0 } and the domain Ω is assumed when otherwise
unspecified, that is, U ≡ U(Ω). As a consequence of all the Dirichlet boundaries being
homogeneous, U serves as both the function set and test space in our presentation.
While we present the method for homogeneous Dirichlet data, it can be easily extended
to nonhomogeneous data and Neumann boundary conditions.

2. Computing energy bounds. We begin by developing a lower bound on the
total energy of the system, 1

2

∫
Ω
∇u · ∇u dΩ− ∫

Ω
f udΩ, which in the context of heat

conduction, combines the heat dissipation energy, 1
2

∫
Ω
∇u · ∇u dΩ, and the potential

energy of the thermal loads, − ∫
Ω
f udΩ. There is a well-known physical principle at

work in this problem, related to the symmetric positive definite nature of the diffusion
operator, which states that the solution, u, is the function that minimizes the total
energy with respect to all other candidates in U ,

u = arg inf
w∈U

1

2

∫
Ω

∇w · ∇w dΩ −
∫

Ω

f w dΩ,(2.1)

as can easily be verified by comparing the Euler–Lagrange equation of this minimiza-
tion statement to Poisson’s equation (1.1). This minimization formulation makes it
clear that if we look for a discrete approximation of (1.1) in a finite set of conforming
functions, Uh, for which Uh ⊂ U , then the resulting total energy predicted by the
approximation will approach the exact value from above.

While insightful, this upper bound on the total energy has limited usefulness
for two primary reasons. First, only rarely will the total energy be relevant to the
purpose of solving the original problem. Second, even when it is relevant, the upper
bound will most likely not be helpful for managing approximation uncertainty. In
an engineering design task, the upper bound usually corresponds to the “best case
scenario,” as opposed to the “worst case scenario” which would be required to ensure
feasibility of the design.

Our strategy for obtaining lower bounds on the energy in a cost efficient manner
is to first decompose the global problem into independent local elemental subproblems
by relaxing the continuity of the set U along edges of a triangular partitioning of Ω,
using approximate Lagrange multipliers, then accumulate the lower bound from the
objective values of approximate local dual subproblems.

2.1. Weak continuity reformulation. We begin by partitioning the domain
into a mesh, Th, of nonoverlapping open subdomains, T , called elements, for which⋃
T∈Th

T = Ω̄. We denote by ∂T the edges, γ, constituting the boundary of a single
element T , and by ∂Th the network of all edges in the mesh. We have not yet evoked a
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discretization of U , but merely a domain decomposition represented by a mesh. With
the broken space

Û ≡ { v ∈ L2(Ω) v|T ∈ H1(T ) ∀T ∈ Th
}
,(2.2)

in which the continuity of U is broken across the mesh edges, ∂Th, we can reformulate
the energy minimization statement (2.1) by explicitly enforcing continuity

u = arg inf
ŵ∈Û

1

2

∫
Ω

∇ŵ · ∇ŵ dΩ −
∫

Ω

f ŵ dΩ

s.t.
∑
T∈Th

∫
∂T

σT λ ŵ dΓ = 0 ∀λ ∈ Λ,

(2.3)

where, for T, TN ∈ Th and an arbitrary ordering of the elements,

σT (x) =

{
−1, x ∈ T ∩ TN, T < TN,

+1, otherwise.
(2.4)

Integrals over the broken domain, such as
∫
Ω
∇ŵ · ∇v̂ dΩ, are understood as sums

of integrals over the subdomains, such as
∑
T∈Th

∫
T
∇ŵ|T · ∇v̂|T dΩ. As there is no

ambiguity, we have suppressed the trace operators from our notation for the boundary
integrals to simplify the appearance of the expressions.

To see how the constraint arises, consider a single edge, γ ∈ ∂Th, with neighboring
elements T and TN, for which a strong continuity constraint can be written roughly as
ŵ|T,γ − ŵ|TN,γ = 0 on γ. An integral weak representation is obtained by multiplying
by an arbitrary test function, λγ , taken from an appropriate space, Λ(γ), integrating
along the edge, and ensuring the resulting integrated quantity is zero for all possible
test functions:

∫
γ

(ŵ|T,γ − ŵ|TN,γ)λγ dΓ = 0 ∀λγ ∈ Λ(γ). The constraint used above
is obtained by rewriting the combination of all edge constraints as a combination of
elemental contributions, using σT to track the sign of the contribution. Since ŵ|T is a

member of H1(T ), the trace of ŵ|T on an edge γ is a member of H 1
2 (∂T ). Therefore, λ

on γ is a member of the dual of the trace space, H− 1
2 (γ), and the continuity multiplier

space Λ is the corresponding product space taken over all the edges of the mesh.
Notice that we have relaxed the Dirichlet boundary conditions as well as the inte-

rior continuity. The homogeneous Dirichlet conditions are weakly enforced implicitly
by the continuity constraint. We shall not prove it here, but it is important to know
that the minimizer of the constrained minimization problem (2.3) is indeed u, the
exact solution of Poisson’s equation (1.1) [2, 4].

2.2. Localization by continuity relaxation. Considering the Lagrangian of
the constrained minimization (2.3),

L(ŵ;λ) ≡ 1

2

∫
Ω

∇ŵ · ∇ŵ dΩ −
∫

Ω

f ŵ dΩ −
∑
T∈Th

∫
∂T

σT λ ŵ dΓ,(2.5)

we recall from the saddle point property of Lagrange multipliers and the strong duality
of convex minimizations that ∀λ̃ ∈ Λ there exists a lower energy bound, ε−, satisfying

ε− ≤ inf
ŵ∈Û

L(ŵ; λ̃) ≤ sup
λ∈Λ

inf
ŵ∈Û

L(ŵ;λ) = inf
ŵ∈Û

sup
λ∈Λ

L(ŵ;λ) = ε,
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where the value at optimality is the minimum total energy of the continuum system,
ε = 1

2

∫
Ω
∇u · ∇u dΩ − ∫

Ω
f udΩ. The lower bounding minimization for a given λ̃ is

separable, an important property allowing us to treat each element independently.
In order to obtain a lower bound, λ̃ cannot be chosen arbitrarily. We obtain λ̃ by
approximating the problem using finite elements in a manner that guarantees that
the relaxed minimization is bounded from below.

2.2.1. Continuity multiplier approximation. We now introduce the finite
element approximation of Poisson’s equation (1.1) as means of obtaining an approxi-
mate Lagrange multiplier. We first solve the finite-dimensional Poisson problem: find
uh ∈ Uh such that ∫

Ω

∇uh · ∇v dΩ =

∫
Ω

f v dΩ ∀v ∈ Uh,(2.6)

where Uh ≡ { v ∈ U | v|T ∈ P
p(T ) ∀T ∈ Th } for P

p(T ) is the space of polynomials on
element T (in d spacial dimensions) with degree less than or equal to p. Along with Uh,
we introduce the broken discrete space Ûh ≡ { v ∈ Û | v|T ∈ P

p(T ) ∀T ∈ Th } and the
companion discrete Lagrange multiplier space Λh ≡ {λ ∈ Λ | λ|γ ∈ P

p(γ) ∀γ ∈ ∂Th },
where P

p(γ) is the space of polynomials on element edge γ (in d−1 spacial dimensions)
with degree less than or equal to p.

Once we have obtained uh, we solve the gradient condition of (2.5) to obtain λh:
find λh ∈ Λh such that∑

T∈Th

∫
∂T

σT λh v̂ dΓ =

∫
Ω

∇uh · ∇v̂ dΩ −
∫

Ω

f v̂ dΩ ∀v̂ ∈ Ûh.(2.7)

We call this the equilibration problem, and we call any compatible Lagrange multi-
plier “equilibrating,” since the problem has a nonunique solution. In the context of
hybrid methods [4], this continuity multiplier is often referred to as a hybrid flux.
As mentioned previously, this particular choice for the Lagrange multiplier ensures a
finite lower bound.

Lemma 2.1. If a Lagrange multiplier λh ∈ Λh satisfies the equilibration condi-
tion (2.7), then infŵ∈Û L(ŵ;λh) is bounded from below.

Proof. Recall that the null space for the Poisson operator is the one-dimensional
space of constants, P

0, and let P̂
0 =

∏
T∈Th

P
0(T ) denote the null space of the broken

operator. Considering ĉ ∈ P̂
0 ⊂ Ûh in the equilibration problem (2.7) and that

any ŵ ∈ Û can be represented as ŵ′ + ĉ for ŵ′ ∈ Û \ P̂
0, it is easily shown that

L(ŵ′ + ĉ;λh) = L(ŵ′;λh). For the Poisson equation, equilibration ensures that null
space of the operator does not cause the minimization to become unbounded below.
The existence of a minimum now follows from the coercivity of the Poisson operator
in Û \ P̂

0.
While not part of the classical finite element problem set, the equilibration prob-

lem has been addressed a number of times and in a number of contexts in the finite
element community, not the least of which is in the context of error estimation. For our
implementation, we use a method due to Ladeveze and Leguillon [9] and Ainsworth
and Oden [2] which has an asymptotically linear computational cost in the number
of mesh vertices.

2.3. Local dual subproblem. Now that we have successfully decomposed the
global problem into local elemental subproblems and determined a suitable approxi-
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mation λh for our continuity multiplier λ̃, we can write the lower bounding minimiza-
tion induced by the Lagrange saddle point property as

inf
ŵ∈Û

L(ŵ; λ̃) =
∑
T∈Th

inf
w∈U(T )

JT (w)

for

JT (w) ≡ 1

2

∫
T

∇w · ∇w dΩ −
∫
T

f w dΩ −
∫
∂T

σT λ̃ w dΓ,(2.8)

and consider a representative minimization subproblem. The minimization subprob-
lem simply corresponds to a Poisson problem of the type represented in equation (1.1)
with Neumann boundary conditions posed on a single subdomain. We have done noth-
ing to change the nature of the original problem, but have only acted to decompose
the global problem into a sequence of independent local problems.

We do not require, and in general cannot compute, the exact minimum of the
infinite-dimensional local subproblem, but we do require a lower bound for it and we
proceed now to introduce the primary ingredient for obtaining this local lower bound.

Proposition 2.2. If we define the positive functional

JcT (q) ≡ 1

2

∫
T

q · qdΩ,(2.9)

where q ∈ H(div;T ) and H(div;T ) ≡ {
q | q ∈ (L2(T ))d, ∇ · q ∈ L2(T )

}
for a prob-

lem posed in d spacial dimensions, then we have

JT (w) ≥ −JcT (q) ∀w ∈ H1(T ), ∀q ∈ Q(T ; λ̃),(2.10)

for the set of functions

Q(T ; λ̃) ≡
{

q ∈ H(div;T )

∣∣∣∣∣
∫
T

∇ · q v dΩ −
∫
∂T

q · n v dΓ

= −
∫
T

f v dΩ −
∫
∂T

σT λ̃ v dΓ ∀v ∈ H1(T )

}
.

(2.11)

Proof. We begin by appealing to the following positive expression:

1

2

∫
T

(q −∇w)2 dΩ ≥ 0

for any w ∈ H1(T ) and any q ∈ Q(T ; λ̃). This expression expands to

1

2

∫
T

q · qdΩ +
1

2

∫
T

∇w · ∇w dΩ −
∫
T

q · ∇w dΩ ≥ 0,

in which we apply the Green’s identity − ∫
T

q · ∇w dΩ =
∫
T
∇ · qw dΩ−∫

∂T
q · nw dΓ

to obtain

1

2

∫
T

q · qdΩ +
1

2

∫
T

∇w · ∇w dΩ +

∫
T

∇ · qw dΩ −
∫
∂T

q · nw dΓ ≥ 0.(2.12)
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The constraint contained in Q(T ; λ̃) makes this expression equivalent to

1

2

∫
T

q · qdΩ +
1

2

∫
T

∇w · ∇w dΩ −
∫
T

f w dΩ −
∫
∂T

σT λ̃ w dΓ ≥ 0.(2.13)

Identifying JT (w) and JcT (q) we arrive at the desired expression for the local lower
bound.

The best possible local lower bound can be obtained with the following maxi-
mization problem:

sup
q∈Q(T ;λ̃)

−JcT (q) ≤ inf
w∈U(T )

JT (w),

for which we will obtain equality as a result of the convexity of JT and JcT . It is clear
that we have derived a classic dual formulation1 for our local elemental minimization
problem and essentially transformed a primal minimization problem into a dual feasi-
bility problem. As we have alluded to earlier, the functional JcT (q) is often called the
complementary energy functional [16], when taken over the whole domain, Ω, with a
globally admissible complementary field.

2.3.1. Subproblem approximation. Significantly, we can make these sub-
problems computable by choosing an appropriate finite-dimensional set in which to
search for q. At the very least the set must be chosen so that the divergence of its
functions contain the forcing function, f , in T and the normal traces of its functions
contain the approximate continuity multiplier, λh, on ∂T . In multiple dimensions,
however, the polynomial approximation for the continuity multiplier will nullify any
components of the set with nonpolynomial normal trace. Therefore, we choose the
polynomial approximation subset

Qh(T ) ≡
{

q ∈ (Pq(T ))d

∣∣∣∣∣
∫
T

∇ · q v dΩ −
∫
∂T

q · n v dΓ

= −
∫
T

f v dΩ −
∫
∂T

σTλh v dΓ ∀v ∈ H1(T )

}(2.14)

with q ≥ p. As a consequence, the method as we have presented it is limited to forcing
functions, f |T , that are members of the polynomial space P

r(T ) for q > r on each
elemental domain. While in one dimension we gain no advantage in taking q greater
than r+1, in multiple dimensions we can do so in an attempt to sharpen the bounds.
The interior constraint data, f , and the boundary constraint data, σTλh, cannot be
chosen independently of each other, but must satisfy a compatibility condition in
order to ensure solvability as manifest by the following lemma.

Lemma 2.3. Suppose the forcing function f |T is a member of P
r(T ) and that λh

satisfies (2.7), then there exists at least one dual feasible function, q, that is a member
of Qh(T ) for q ≥ p and q > r.

Proof. We begin by expressing q, a member of (Pq(T ))d, as the combination
q = qD + q0, with qD a normal boundary condition satisfying component, qD · n =

1The classic derivation for the dual of the Poisson problem would begin by letting q = ∇w (a
statement of Fourier’s law in the context of heat conduction) and proceed by eliminating w from the
problem.
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σTλh on ∂T , and q0 a homogeneous normal boundary condition satisfying compo-
nent, q0 · n = 0 on ∂T . With this lifting, we can write the feasibility constraint as

−
∫
T

∇ · q0 v dΩ =

∫
T

f v dΩ +

∫
T

∇ · qD v dΩ.

Recognizing the divergence operator on the left-hand side, which maps (Pq(T ))d into
P
q−1(T ), we note that we need only test against v ∈ P

q−1(T ). Furthermore, finite-
dimensional linear equations are solvable if and only if the right-hand side data lies
in the range of the operator, which is orthogonal to the null space of the adjoint
operator. The adjoint operator is easily found to be

∫
T

q0 · ∇v dΩ which has the null
space v ∈ P

0(T ), and thus the right-hand side data must be in P
q−1(T ) \ P

0(T ).
To prove solvability, we need only to verify that the right-hand side data is or-

thogonal to the constants, since the requirements that q ≥ p and q > r ensure that
the right-hand side data is in P

q−1. Choosing v = const in the right-hand side of the
constraint, rewritten as∫

T

f v dΩ +

∫
T

∇ · qD v dΩ =

∫
T

f v dΩ −
∫
T

qD · ∇v dΩ +

∫
∂T

σTλh v dΓ,

reveals the compatibility condition∫
∂T

σTλh dΓ = −
∫
T

f dΩ,(2.15)

which is satisfied by our choice for λh, as can be seen by choosing v̂ = const on T
in the equilibration condition (2.7). The equilibration condition thus ensures that
the constraint data is compatible and that there exists at least one q satisfying the
constraint.

2.4. Energy bound procedure. In discussing the global procedure and its
properties, we denote the global aggregate of independent elemental quantities by ac-
centing them with a diacritical hat as we did for the global broken quantities, and we
denote the aggregate of local functional forms by dropping the subscript T . In partic-
ular, Q̂h denotes the aggregate approximate dual function space,

∏
T∈Th

Qh(T ), and
Jc(q̂) the aggregate dual energy functional,

∑
T∈Th

JcT (q|T ). The complete method
for the energy bounds consists of three steps.

1. Global approximation: Find uh ∈ Uh such that∫
Ω

∇uh · ∇v dΩ =

∫
Ω

f v dΩ ∀v ∈ Uh,(2.16)

and calculate the upper bound ε+h = − 1
2

∫
Ω
∇uh · ∇uh dΩ.

2. Global equilibration: Find λh ∈ Λh such that∑
T∈Th

∫
∂T

σT λh v̂ dΓ =

∫
Ω

∇uh · ∇v̂ dΩ −
∫

Ω

f v̂ dΩ ∀v̂ ∈ Ûh.(2.17)

3. Local dual approximations: Find ε−h such that

ε−h = sup
q̂h∈Q̂h

−Jc(q̂h).(2.18)
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The last step requires the solution of a series of finite-dimensional quadratic pro-
gramming problems with convex objective functions and linear equality constraints.
The per-element cost remains low due to the small size of the elemental subproblems,
while the total cost of computing the lower bound is asymptotically linear in the
number elements.

2.4.1. Properties of the energy bound. As previously discussed, the upper
bound follows directly from the conforming nature of the finite element approximation
and the lower bound follows directly from Proposition 2.2. We close our presentation
of the energy bound method by showing that the lower bound converges at the same
rate as the upper bound, and thus inherits the well-known a priori finite element
convergence property for the energy norm of the error. We begin by proving an
orthogonality result.

Lemma 2.4. Let p̂ be any dual feasibility correction to ∇uh such that q̂ = ∇uh+p̂
is a member of Q̂(λh), then p̂ satisfies the orthogonality property∑

T∈Th

∫
T

p̂ · ∇v̂ dΩ = 0 ∀v̂ ∈ Ûh.(2.19)

Proof. We begin by examining the condition that the feasibility correction p̂ must
satisfy by substituting ∇uh+p̂ into the constraint contained in the definition of Q̂(λh)
to obtain

(2.20)

∫
Ω

∇ · p̂ v̂ dΩ −
∑
T∈Th

∫
∂T

p̂ · n v̂ dΓ = −
∫

Ω

f v̂ dΩ −
∫

Ω

∇ · ∇uh v̂ dΩ

−
∑
T∈Th

∫
∂T

σTλh v̂ dΓ +
∑
T∈Th

∫
∂T

∇uh · n v̂ dΓ ∀v̂ ∈ Ûh.

Applying Green’s formula to both the p̂ and uh terms yields the equivalent constraint∫
Ω

p̂ · ∇v̂ dΩ =

∫
Ω

f v̂ dΩ −
∫

Ω

∇uh · ∇v̂ dΩ +
∑
T∈Th

∫
∂T

σTλh v̂ dΓ ∀v̂ ∈ Ûh.(2.21)

Restricting v̂ to Ûh produces the sought orthogonality property as a consequence of
equilibration (2.17).

Lemma 2.5. Let p̂∗
h be the dual feasibility correction to ∇uh that maximizes

−Jc(p̂h) such that ∇uh + p̂∗
h is a member of Q̂h, then Jc(p̂∗

h) is bounded from above
by

Jc(p̂∗
h) ≤ C|u− uh|21,(2.22)

for the seminorm |v|21 ≡ ∫
Ω
∇v · ∇v dΩ, if the approximate continuity multiplier λh

computed in (2.17) has the bound∑
T∈Th

h
1
2 ‖λ− λh‖∂T ≤ C|u− uh|1,(2.23)

where λ|∂T ≡ σT
∂u
∂n is the exact continuity multiplier and ‖v‖2

∂T ≡ ∫
∂T
v2 dΓ. Every-

where, C is a generic constant independent of h = diam(T ).
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Proof. Using (2.21), the constrained maximization for the continuous dual feasible
correction p̂∗ can be written as supp̂∈Q̂(λh) − 1

2

∫
Ω

p̂ · p̂dΩ. Explicitly, the constraint
for this maximization problem is written as

−
∫

Ω

p̂ · ∇φ̂dΩ =

∫
Ω

∇uh · ∇φ̂dΩ −
∫

Ω

f φ̂dΩ −
∑
T∈Th

∫
∂T

σTλh φ̂dΓ ∀φ̂ ∈ Û .
(2.24)

The gradient condition then informs us that p̂∗ = ∇φ̂∗.
The approximate solution uh has an associated approximate continuity multiplier

λh satisfying (2.17), while the exact solution u also has an associated exact continuity
multiplier λ satisfying∑

T∈Th

∫
∂T

σT λ v̂ dΓ =

∫
Ω

∇u · ∇v̂ dΩ −
∫

Ω

f v̂ dΩ ∀v̂ ∈ Û ,(2.25)

as can be verified by integration by parts. Adding (2.25) to the constraint of (2.24)

with p̂ = p̂∗ and v̂ = φ̂∗ we find for ‖v̂‖2 =
∑
T∈Th

∫
T
v2 dΩ that∫

Ω

p̂∗ · ∇φ̂∗ dΩ =

∫
Ω

∇(u− uh) · ∇φ̂∗ dΩ −
∑
T∈Th

∫
∂T

σT (λ− λh)φ̂
∗ dΓ

≤ C|u− uh|1‖∇φ̂∗‖ +
∑
T∈Th

C‖λ− λh‖∂T ‖φ̂∗‖∂T

≤ C|u− uh|1‖∇φ̂∗‖ +
∑
T∈Th

Ch
1
2 ‖λ− λh‖∂T ‖∇φ̂∗‖,

in which we applied the inequality ‖w‖∂T ≤ Ch
1
2 |w|1,T , valid for any w ∈ H1(T ) that

has zero mean [11].

We then invoke the bound (2.23) and substitute ∇φ̂∗ = p̂∗ before dividing both
sides by ‖p̂∗‖ and recognizing that ‖p̂∗‖2 = 2Jc(p̂∗) to obtain

Jc(p̂∗) ≤ C|u− uh|21.

The proof is completed by showing that Jc(p̂∗
h) ≤ C̃Jc(p̂∗). This can be done by

noting that p̂∗
h can be obtained from p̂∗ by a bounded projection. A standard scaling

argument can then be used to show that the constant C̃ is independent of h; see
[4, 17].

Ainsworth and Oden prove in [1] that under certain assumptions the flux average
of the finite element solution across the edges is bounded by (2.23) so that, by way of
the triangle inequality, the burden rests in showing that the nonunique equilibrating
corrections required to satisfy (2.17) decrease at the requisite rate. Maday and Patera
give in [11] a basic method for computing approximate continuity multipliers that has
been proven a priori to satisfy (2.23).

Proposition 2.6. Suppose that λh is the solution of the equilibration prob-
lem (2.17) for uh the solution of the finite element approximation problem (2.16),
then

ε− ε− ≤ C|u− uh|21.(2.26)
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Proof. Let p̂∗
h be chosen according to Lemma 2.5, then

−Jc(∇uh + p̂∗
h) ≤ sup

q̂h∈Q̂h

−Jc(q̂h) = −Jc(q̂∗
h)

for q̂∗
h = arg supq̂h∈Q̂h

−Jc(q̂h). From this relationship and from the definition of

p̂∗
h we know that Jc(q̂∗

h) ≤ Jc(∇uh) + Jc(p̂∗
h), because

∑
T∈Th

∫
T

p̂∗
h · ∇uh dΩ = 0

from Lemma 2.4 and the fact that uh is a member of Ûh. Adding the exact energy
ε = −Jc(∇u) to each side and recalling that ε+h = −Jc(∇uh) and ε−h = −Jc(q̂∗

h), we
have our desired result

ε− ε−h ≤ ε− ε+h + Jc(p̂∗
h) ≤ C|u− uh|21,

where we have again evoked Lemma 2.5 in addition to the well-known finite element
energy error bound.

3. Computing output bounds. We will continue to keep the presentation
simple by considering only simple linear functional interior outputs. In particular, we
will develop upper and lower bounds, s±, on the output quantity

s ≡
∫

Ω

fO u dΩ,(3.1)

where u is the exact solution of Poisson’s equation (1.1) and fO|T is a member of
P
r(T ) for all elements T in Th. We stress, however, that more interesting outputs,

such as boundary fluxes, can also be treated using techniques previously employed in
the context of two-level methods (see, for example, the treatment of the normal force
output for linear elasticity in [14]).

3.1. Weak continuity reformulation. To begin, we must formulate a gener-
alized analogue to the minimization statement (2.3). There are two parts to this task.
First, we must replace the intrinsic energy of the variational problem with an energy
reformulation of the linear output functional. Second, now that the minimization of
the objective functional no longer corresponds to the solution of our original equa-
tion, we must explicitly ensure that the minimizer is the solution to our problem by
including it as a constraint. Furthermore, to obtain both upper and lower bounds,
we consider two cases which vary by the sign of the original output. The resulting
pair of constrained minimization statements for the homogeneous2 Dirichlet boundary
problem under consideration are

∓s = inf
ŵ±∈Û

∓
∫

Ω

fO ŵ± dΩ +
κ

2

{∫
Ω

∇ŵ± · ∇(ŵ± − ū) dΩ −
∫

Ω

f (ŵ± − ū) dΩ

}
s.t.

∫
Ω

∇ŵ± · ∇ψ dΩ =

∫
Ω

f ψ dΩ ∀ψ ∈ U ,∑
T∈Th

∫
∂T

σT λ ŵ
± dΓ = 0 ∀λ ∈ Λ,

(3.2)

2The extension to nonhomogeneous Dirichlet boundaries requires choosing ū from the set of ad-
missible functions and weakly enforcing the Dirichlet boundary data, uD, by replacing the continuity
constraint with

∑
T∈Th

∫
∂T σT λ ŵ

± dΓ =
∑

γ∈∂Th

∫
γ σT (γ) λuD dΓ ∀λ ∈ Λ.
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where ū is any element of space U , and κ is a positive real scaling parameter which
serves both as a coefficient providing dimensional consistency in the engineering con-
text and as an additional degree of freedom which we will use to tighten the bounds.
The quadratic objective functional has been constructed so that all terms but the de-
sired output functional vanish when ŵ± is the exact solution, u, while the constraints
enforce equilibrium and interelement continuity.

Paraschivoiu, Peraire, and Patera [14] and Paraschivoiu and Patera [13] origi-
nally proposed this reformulation in the context of two-level output bounding meth-
ods which appeal to a second refined but localized finite element approximation, and
therefore provided bounds only against a refined finite element approximation instead
of the exact infinite-dimensional solution. With this constrained minimization re-
formulation, we can proceed more or less mechanically to apply the ideas from the
energy bound to this more general context. The development of the output bound
is very close to that for the energy bound, but with the extra burden of carrying an
additional Lagrange multiplier for the equilibrium constraint and of managing the
concurrent development of both upper and lower bounds on the output, as neither
arise implicitly from the finite element discretization.

3.2. Localization by continuity relaxation. Considering the Lagrangian of
problem (3.2),

(3.3) L±(ŵ±;ψ±, λ±)

≡ ∓
∫

Ω

fO ŵ± dΩ +
κ

2

{∫
Ω

∇ŵ± · ∇(ŵ± − ū) dΩ −
∫

Ω

f (ŵ± − ū) dΩ

}
+

∫
Ω

f ψ± dΩ −
∫

Ω

∇ŵ± · ∇ψ± dΩ −
∑
T∈Th

∫
∂T

σT λ
± ŵ± dΓ,

we know, as we did for the energy bound, from the saddle point property of Lagrange
multipliers and from the strong duality of convex minimizations that

inf
ŵ±∈Û

L±(ŵ±; ψ̃±, λ̃±) ≤ sup
ψ±∈U
λ∈Λ

inf
ŵ±∈Û

L±(ŵ±;ψ±, λ±) = ∓s

∀(ψ̃±, λ̃±) ∈ U × Λ. The lower bounding minimization for a given λ̃± and ψ̃± is
separable and, for an appropriate choice for λ̃±, provides nontrivial upper and lower
bounds on the exact output s.

3.2.1. Lagrange multiplier approximation. We proceed, as we did for the
energy bound, to obtain approximate Lagrange multipliers with a finite element dis-
cretization of the gradient condition of (3.3). Let ψ±

h = ±ψh, λ±h = κ
2λ

u
h ± λψh , and

ū = uh, all of which we find by solving the following discrete problems:
1. Find uh ∈ Uh such that∫

Ω

∇uh · ∇v dΩ =

∫
Ω

f v dΩ ∀v ∈ Uh.(3.4)

2. Find ψh ∈ Uh such that∫
Ω

∇v · ∇ψh dΩ = −
∫

Ω

fO v dΩ ∀v ∈ Uh.(3.5)
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3. Find λuh ∈ Λh such that∑
T∈Th

∫
∂T

σT λ
u
h v̂ dΓ =

∫
Ω

∇uh · ∇v̂ dΩ −
∫

Ω

f v̂ dΩ ∀v̂ ∈ Ûh.(3.6)

4. Find λψh ∈ Λh such that∑
T∈Th

∫
∂T

σT λ
ψ
h v̂ dΓ = −

∫
Ω

fO v̂ dΩ −
∫

Ω

∇v̂ · ∇ψh dΩ ∀v̂ ∈ Ûh.(3.7)

The first two problems comprise the well-known primal-adjoint pair which occur often
in output oriented a posteriori error estimation techniques [3, 14, 13] as well as in
computational approaches to design optimization [8], while the last two problems
are their independent equilibrations. The first and third problems are identical to
the global approximation problems required for the energy bound. These particular
choices for the Lagrange multipliers ensure a finite lower bound in the saddle point
property.

Lemma 3.1. If the Lagrange multipliers ψ±
h = ±ψh and λ±h = κ

2λ
u
h±λψh satisfy the

equilibration conditions (3.6) and (3.7), then the minimums infŵ±∈Û L(ŵ±;ψ±
h , λ

±
h )

are bounded from below.
Proof. This is true for essentially the same reason that it is true for Lemma 2.1.

The only algebraic difference being that in the present output bounding case the
property L±(ŵ±′

+ ĉ;ψ±
h , λ

±
h ) = L(ŵ±′

;ψ±
h , λh) results from the combined action of

both equilibration conditions.

3.3. Local dual subproblem. Restricting our attention to a single elemen-
tal subproblem, T ∈ Th, we first rewrite our local Lagrangian functional in a form
suitable for applying the ideas developed for the energy bound. Every term other
than the dissipative energy term, κ

2

∫
T
∇w · ∇w dΩ, must not involve derivatives of

ŵ±, which we can do in the present case by application of the Green’s identity,
− ∫

T
∇u · ∇w dΩ =

∫
T

∆uw dΩ − ∫
∂T

∇u · nw dΓ, to obtain the equivalent local La-
grangian functional

(3.8) L±
T (w±;±ψ̃, κ

2
λ̃u ± λ̃ψ) ≡ κ

2

∫
T

∇w± · ∇w± dΩ

− κ

2

{∫
T

(f − ∆ū) w± dΩ +

∫
∂T

(
σT λ̃

u + ∇ū · n
)
w± dΓ +

∫
T

f ū dΩ

}
∓
{∫

T

(
fO − ∆ψ̃

)
w± dΩ +

∫
∂T

(
σT λ̃

ψ + ∇ψ̃ · n
)
w± dΓ +

∫
T

f ψ̃ dΩ

}
.

The functional we wish to minimize over w± can now be defined as

J±
T (w±) ≡ κ

2

∫
T

∇w± · ∇w± dΩ −
∫
T

f± w± dΩ −
∫
∂T

g± w± dΓ(3.9)

for f± ≡ κ
2 {f−∆ū}±{fO−∆ψ̃} and g± ≡ κ

2 {σT λ̃u+∇ū·n}±{σT λ̃ψ+∇ψ̃ ·n}. Thus,
the local relaxed primal minimization once again corresponds to a Poisson problem
of the type represented in (1.1) with Neumann boundary conditions posed on a single
element.

As was the case for the energy bound, we do not require, and in general cannot
compute, the exact minimum of this local infinite-dimensional primal subproblem,
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but we can apply the same technique of dualizing this minimization problem in order
to procure a computable lower bounding approximate to it.

Proposition 3.2. If we define the positive functional

JcT (q) ≡ 1

2

∫
T

q · qdΩ,(3.10)

where q ∈ H(div;T ), then we have

J±
T (w±) ≥ − 1

κ
JcT (q±) ∀w± ∈ H1(T ), ∀q± ∈ Q±(T ),(3.11)

for the set of functions

Q±(T ) ≡
{

q ∈ H(div;T )

∣∣∣∣∣
∫
T

∇ · q v dΩ −
∫
∂T

q · n v dΓ

= −
∫
T

f± v dΩ −
∫
∂T

g± v dΓ, ∀v ∈ H1(T )

}
.

(3.12)

Proof. The local dual problem is derived as it was for the energy bound, but
with modified data and the addition of the scaling parameter, κ. After expanding the
positive expression for q ∈ Q±(T ),

1

2κ

∫
T

(q± − κ∇w)2 dΩ ≥ 0,(3.13)

applying Green’s formula, and substituting the constraint from Q±(T ), we obtain the
expression

1

2κ

∫
T

q± · q± dΩ +
κ

2

∫
T

∇w± · ∇w± dΩ −
∫
T

f± w± dΩ −
∫
∂T

g± w± dΓ ≥ 0.

(3.14)

Identifying J±
T (w±) and JcT (q±) we arrive at the desired expression for the local lower

bound.
As the functional J±

T (w±) contains only the terms from the Lagrangian that
depended on w±, we must reintroduce the constant terms to secure the complete
contributions from the local dual subproblems:

∓s±T =

∫
T

f
(κ

2
uh ± ψh

)
dΩ + sup

q±∈Q±(T )

− 1

κ
JcT (q±).(3.15)

3.3.1. Subproblem approximation. Consider the splitting implied by the
definition qh = κ∇ū + κ

2quh ± qψh . Propagation of this definition into the elemen-
tal subproblem reveals through the linearity of the gradient condition that indeed quh
and qψh can be computed independently. The resulting subproblems are

quh = arg inf
qh∈Qu

h(T )
Jc(qh),

qψh = arg inf
qh∈Qψ

h (T )
Jc(qh),

(3.16)
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for the dual feasible approximation sets

Qu
h(T ) ≡

{
q ∈ (Pq(T ))d

∣∣∣∣ ∫
T

∇ · q v dΩ −
∫
∂T

q · n v dΓ = −
∫
T

(f + ∆uh) v dΩ

−
∫
∂T

(σTλ
u
h −∇uh · n) v dΓ ∀v ∈ H1(T )

}
,

Qψ
h (T ) ≡

{
q ∈ (Pq(T ))d

∣∣∣∣ ∫
T

∇ · q v dΩ −
∫
∂T

q · n v dΓ = −
∫
T

(fO − ∆ψh) v dΩ

−
∫
∂T

(σTλ
ψ
h + ∇ψh · n) v dΓ ∀v ∈ H1(T )

}
,

(3.17)

in which we have again chosen ū = uh commensurate with our choice for the approxi-
mate multipliers. As the additional terms in the data of the dual feasibility constraint
are just polynomial functions in the local finite element basis, there are no difficul-
ties in choosing our dual approximation sets in this manner. The solvability of these
subproblems is addressed by the following result.

Lemma 3.3. Suppose the forcing function f |T and output function fO|T are

members of P
r(T ), that λuh satisfies (3.6), and that λψh satisfies (3.7), then there exists

at least one dual feasible function quh that is a member of Qu
h(T ) and one dual feasible

function qψh that is a member of Qψ
h (T ) for q ≥ p and q > r.

Proof. Applying Green’s formula to the uh Laplacian term in the constraint
data for Qu

h(T ) of (3.17) and duplicating the proof of Lemma 2.3 with the resulting
constraint data reveals the compatibility condition∫

∂T

σTλ
u
h dΓ = −

∫
T

f dΩ,(3.18)

which is satisfied by our choice for λuh as can be seen by choosing v̂ = const on T
in the equilibration condition (3.6). The same argument holds for the adjoint dual
subproblem, yielding the analogous compatibility condition∫

∂T

σTλ
ψ
h dΓ = −

∫
T

fO dΩ(3.19)

for fO and λψh .
With the subproblem splitting just defined, the aggregated contributions to the

upper and lower bounds become

s±h = ∓
∫

Ω

f
(κ

2
uh ± ψh

)
dΩ ± 1

κ
Jc(κ∇uh +

κ

2
q̂uh ± q̂ψh )

= ∓
∫

Ω

f
(κ

2
uh ± ψh

)
dΩ ± κ

2

∫
Ω

∇uh · ∇uh dΩ +

∫
Ω

(
κ

2
q̂uh ± q̂ψh ) · ∇uh dΩ

+
1

2

∫
Ω

q̂uh · q̂ψh dΩ ± κ

4
Jc(q̂uh) ±

1

κ
Jc(q̂ψh )

= −
∫

Ω

f ψh dΩ +
1

2

∫
Ω

q̂uh · q̂ψh dΩ ± κ

4
Jc(q̂uh) ±

1

κ
Jc(q̂ψh ),

in which we have invoked (3.4) with v = uh and we have used orthogonality relation-
ships analogous to that proved in Lemma 2.4 as well.
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3.4. Output bound procedure. The introduction of the scaling parameter κ
allows us to optimize the sharpness of the computed bounds in addition to providing
dimensional consistency. From the previous section we have the expression for the
upper and lower output bounds

s±h = s̄h ± κzuh ± 1

κ
zψh ,

where

s̄h =
1

2

∫
Ω

q̂uh · q̂ψh dΩ −
∫

Ω

f ψh dΩ, zuh =
1

4
Jc(q̂uh), zψh =Jc(q̂ψh ).(3.20)

Maximizing the lower bound and minimizing the upper bound with respect to κ yield
the optimal value κ2 = zψh /z

u
h .

The complete method with optimal scaling for upper and lower bounds on linear
functional outputs can now be written as three steps.

1. Global approximation: Find uh ∈ Uh such that∫
Ω

∇uh · ∇v dΩ =

∫
Ω

f v dΩ ∀v ∈ Uh,(3.21)

and find ψh ∈ Uh such that∫
Ω

∇v · ∇ψh dΩ = −
∫

Ω

fO v dΩ ∀v ∈ Uh.(3.22)

2. Global equilibration: Find λuh ∈ Λh such that∑
T∈Th

∫
∂T

σT λ
u
h v̂ dΓ =

∫
Ω

∇uh · ∇v̂ dΩ −
∫

Ω

f v̂ dΩ ∀v̂ ∈ Ûh,(3.23)

and find λψh ∈ Λh such that∑
T∈Th

∫
∂T

σT λ
ψ
h v̂ dΓ = −

∫
Ω

f v̂ dΩ −
∫

Ω

∇v̂ · ∇ψh dΩ ∀v̂ ∈ Ûh.(3.24)

3. Local dual subproblems: Find q̂uh such that

q̂uh = arg inf
q̂h∈Q̂u

h

Jc(q̂h),(3.25)

find q̂ψh such that

q̂ψh = arg inf
q̂h∈Q̂ψ

h

Jc(q̂h),(3.26)

and, from (3.20) and the optimal κ, calculate

s±h = s̄h ± 2

√
zuhz

ψ
h .(3.27)

The local dual subproblems for the output bounds can be solved in the same
manner as the local energy dual subproblems. The important point being that once
the finite element approximations uh and ψh have been computed, the solutions can be
equilibrated and quantitative bounds computed on the exact output to the infinite-
dimensional continuum equation with asymptotically linear cost in the size of the
finite element discretization and in parallel. In addition, the elemental contribution
to the bound gap, κ4J

c
T (quh) + 1

κJ
c
T (qψh ), can serve as an informative mesh adaptivity

indicator for controlling the error in the output, as was done in [15] for a two-level
error bound method and in [3] for an asymptotic error estimation method.
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3.4.1. Properties of the output bounds. The upper and lower bounding
properties are direct consequences of the saddle point property of the relaxed con-
strained minimization reformulation (3.2) and the local dual property of Proposi-
tion 3.2. The following proposition addresses the accuracy of the computed bounds
by showing that the bounds will converge at the optimal rate when both the primal
and adjoint finite element approximations are in the asymptotic convergence regime.

Proposition 3.4. Suppose that uh, ψh, λ
u
h, and λψh are solutions of the above

finite element approximation problems and equilibration problems, then

s− s−h ≤ C|u− uh|1|ψ − ψh|1,
s+h − s ≤ C|u− uh|1|ψ − ψh|1.

(3.28)

Proof. Applying the definitions from the procedure, we know that the lower a

posteriori bound, for instance, itself has the bound s− s−h ≤ s+h − s−h = 2
√
zuhz

ψ
h . The

arguments of Lemma 2.5 can be applied to the zuh and zψh factors to show that they
are bounded by C|u− uh|21 and C|ψ − ψh|21, respectively.

4. Numerical results. We verify the method numerically for three cases: con-
stant forcing on the unit square, linear forcing on the unit square, and zero forcing
on an L-shaped domain with a corner singularity. Linear finite elements, p = 1,
and quadratic subproblems, q = 2, are employed with the domain average output
s =

∫
Ω
fOu dΩ, where fO = const, for all cases.

All three cases have analytically exact solutions with which we are able to verify
the method and calculate the effectivities of the bounds,

θ± =
|s− s±h |
|s− sh| ,(4.1)

which indicate the sharpness by comparing the error in the bounds to the error in the
finite element approximation.

4.1. Uniformly forced square domain. The first case is a uniformly forced
unit square domain with f = fO =

√
10. The analytical solution is given by

u(x, y) =
16
√

10

π4

∞∑
odd i,j=1

(−1)(i+j)/2−1

ij(i2 + j2)
cos
(
i
π

2
x
)

cos
(
j
π

2
y
)
.

This case is special in that the forcing and output are identical and the boundary
data is homogeneous, leading to primal and adjoint problem data which differ by
only a sign. It is well known that for this special case, called compliance, the finite
element approximation for the output is a lower bound. The numerical results given
in Table 4.1 and Figure 4.1 demonstrate that our method, while more expensive, does
no worse than the inherent bound for this special case. The results for both the finite
element approximation and the output bounds asymptotically approach the optimal
finite element convergence rate of O(h2). This example also evinces that the bound
average, s̄h, can sometimes be a more accurate output approximation than that from
the finite element approximation.

4.2. Linearly forced square domain. The second case is a linearly forced
square domain with fO = 1, and the forcing and nonhomogeneous boundary condi-
tions chosen to produce the exact solution

u(x, y) =
3

2
y2(1 − y) + 4xy.
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Table 4.1

Numerical results for the uniformly forced square domain test case for which s = 0.351.

h sh s− s̄h s+ θ− θ+

1
2

0.156 0.156 0.394 0.632 1.0 1.4
1
4

0.288 0.288 0.367 0.446 1.0 1.5
1
8

0.334 0.334 0.356 0.377 1.0 1.5
1
16

0.347 0.347 0.353 0.358 1.0 1.5

Fig. 4.1. Uniformly forced square domain.

As this test case is not a special case, the convergence histories of Table 4.2 and
Figure 4.2 depict the more general situation in which none of the computed quantities
coincide. Whereas in the first example we saw that the bound average can possibly
be a more accurate output approximation than the finite element approximation, in
this example we see that this is definitely not always true since the finite element
approximation for the output is 0.5% better. As for the first example, the results for
both the finite element approximation and the output bounds asymptotically approach
the optimal finite element convergence rate of O(h2).

4.3. Unforced corner domain. Last, we consider the Laplace equation on a
nonconvex domain with fO = 1. The domain is the standard L-shaped domain with
a reentrant corner that results from removing the lower-right quadrant of the unit
square. The Dirichlet boundary conditions were chosen to produce the solution

u(r, φ) = r
2
3 sin

2

3
φ,

where the distance from the corner point is r(x, y) = {(x− 1/2)2 + (y − 1/2)2} 1
2 and

the angle from the upper surface of the corner is φ(x, y) = arctan( y−1/2
x−1/2 ).

In this example we demonstrate that the bounds are valid even for problems with
singularities. As can be seen from Table 4.3 and Figure 4.3, the results for both
the finite element approximation and the output bounds asymptotically approach the
optimal finite element convergence rate of O(h

4
3 ) for elliptic problems posed on a

domain with right-angled reentrant corner [19]. Once again we see that the bound
average has the potential to be a better output approximation than the finite element
method.
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Table 4.2

Numerical results for the linearly forced square domain test case for which s = 1.125.

h sh s− s̄h s+ θ− θ+

1
2

1.177 0.860 1.068 1.276 5.1 2.9
1
4

1.138 1.050 1.111 1.171 5.7 3.5
1
8

1.128 1.106 1.212 1.137 5.9 3.8
1
16

1.126 1.120 1.124 1.128 6.0 3.8

Fig. 4.2. Linearly forced square domain.

Table 4.3

Numerical results for the unforced corner domain test case for which s = 0.792.

h sh s− s̄h s+ θ− θ+

1
2

0.775 0.702 0.799 0.897 5.1 6.0
1
4

0.785 0.761 0.795 0.829 4.3 5.1
1
8

0.789 0.781 0.793 0.805 3.6 4.4
1
16

0.791 0.788 0.792 0.797 3.1 3.9

Fig. 4.3. Unforced corner domain.
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u:−0.35 −0.05 0.25 0.55

(a) Adaptive solution field.

ψ:−0.035 -0.020 -0.005

(b) Adaptive adjoint field.

∆T :0.02 0.06 0.10 0.14

(c) Intermediate local error in-
dicators.

(d) Final adaptive mesh.

Fig. 4.4. Unforced corner domain adaptive solutions, local indicators and meshes.

We close by demonstrating the use of the previously introduced elemental contri-
butions to the bound gap, ∆T ≡ κ

4J
c
T (quh) + 1

κJ
c
T (qψh ), as a mesh adaptivity indicator

for controlling the error in the output. Figure 4.4 displays the solution field, adjoint
field, intermediate local error indicators, and final adaptive mesh that results from
preferentially refining elements with relatively high contributions to the bound gap.
We initiated the adaptive process on a uniform mesh of 6 elements and adaptively
refined until the output uncertainty was less than 0.005, that is, until we had a cer-
tificate of precision at least as good as s = sh ± 0.005. The adaptive refinement
process met this target by producing the certificate of precision s = 0.791 ± 0.00456
using 1167 elements. Achieving the same certainty with uniform refinement requires
6144 elements.
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Abstract. In this paper we compare various preconditioners for the numerical solution of partial
differential equations. We compare a coarse grid correction preconditioner used in domain decom-
position methods with a so-called deflation preconditioner. We prove that the effective condition
number of the deflated preconditioned system is always, for all deflation vectors and all restrictions
and prolongations, below the condition number of the system preconditioned by the coarse grid
correction. This implies that the conjugate gradient method applied to the deflated preconditioned
system is expected always to converge faster than the conjugate gradient method applied to the sys-
tem preconditioned by the coarse grid correction. Numerical results for porous media flows emphasize
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1. Introduction. It is well known that the convergence rate of the conjugate
gradient (CG) method is bounded as a function of the condition number of the system
matrix to which it is applied. Let A ∈ R

n×n be symmetric positive definite. We
assume that the vector b ∈ R

n represents a discrete function on a grid Ω and that we
are searching for the vector x ∈ R

n on Ω which solves the linear system

Ax = b.

Such systems are encountered, for example, when a finite volume/difference/element
method is used to discretize an elliptic PDE defined on the continuous analogue of Ω.

Let us denote the ith eigenvalue in nondecreasing order by λi(A) or simply by
λi when it is clear to which matrix we are referring. After k iterations of the CG
method, the error is bounded by (cf. [9, Thm. 10.2.6])

‖x− xk‖A ≤ 2 ‖x− x0‖A
(√

κ− 1√
κ+ 1

)k
,(1.1)

where κ = κ(A) = λn/λ1 is the spectral condition number of A and the A-norm of
x is given by ‖x‖A = (xTAx)1/2. The convergence may be significantly faster if the
eigenvalues of A are clustered (see [24]).

If the condition number of A is large it is advisable to solve, instead, a precondi-
tioned system M−1Ax = M−1b, where the symmetric positive definite preconditioner
M is chosen such that M−1A has a more clustered spectrum or a smaller condition
number than that of A. Furthermore, M must be cheap to solve relative to the
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improvement it provides in convergence rate. A final desirable property in a precon-
ditioner is that it should parallelize well, especially on distributed memory computers.
Probably one of the most effective preconditioning strategies in common use is to take
M = LLT to be an incomplete Cholesky (IC) factorization of A (see [16]). We denote
the preconditioned conjugate gradient method as PCG.

With respect to the known preconditioners, at least two problems remain:
• If there are large jumps in the coefficients of the discretized PDE, the con-

vergence of PCG becomes very slow, and
• if a block preconditioner is used in a domain decomposition algorithm the

condition number of the preconditioned matrix deteriorates if the number of
blocks increases.

Both problems can be solved by a deflation technique or a suitable coarse grid
correction. In this section we describe both methods, which are compared in the next
sections. To describe the deflation method we define the projection PD by

PD = I −AZ(ZTAZ)−1ZT , Z ∈ R
n×r,(1.2)

where the column space of Z is the deflation subspace, i.e., the space to be projected
out of the residual, and I is the identity matrix of appropriate size. We assume
that r � n and that Z has rank r. Under this assumption E ≡ ZTAZ may be easily
computed and factored and is symmetric positive definite. Since x = (I−PTD)x+PTDx
and because

(I − PTD)x = Z(ZTAZ)−1ZTAx = ZE−1ZT b(1.3)

can be immediately computed, we only need to compute PTDx. In light of the identity
APTD = PDA, we can solve the deflated system

PDAx̃ = PDb(1.4)

for x̃ using the CG method, premultiply this by PTD , and add it to (1.3).
Obviously (1.4) is singular. What consequences does the singularity of (1.4) imply

for the CG method? Kaasschieter [12] notes that a positive semidefinite system can
be solved as long as the right-hand side is consistent (i.e., as long as b = Ax for some
x). This is certainly true for (1.4), where the same projection is applied to both sides
of the nonsingular system. Furthermore, he notes (with reference to [24]) that because
the null space never enters the iteration, the corresponding zero eigenvalues do not
influence the convergence. Motivated by this fact, we define the effective condition
number of a positive semidefinite matrix C ∈ R

n×n with r zero eigenvalues to be the
ratio of its largest to smallest positive eigenvalues:

κeff(C) =
λn
λr+1

.

It is possible to combine both a standard preconditioning and preconditioning
by deflation (for details, see [8]). The convergence is then described by the effective
condition number of M−1PDA.

The deflation technique has been exploited by several authors. For nonsymmetric
systems, approximate eigenvectors can be extracted from the Krylov subspace pro-
duced by GMRES. Morgan [17] uses this approach to improve the convergence after
a restart. In this case, deflation is not applied as a preconditioner, but the deflation
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vectors are augmented with the Krylov subspace and the minimization property of
GMRES ensures that the deflation subspace is projected out of the residual (for re-
lated references, we refer the reader to [8] and [7]). A comparable approach for the
CG method is described in [22]. Mansfield [14] shows how Schur complement-type
domain decomposition methods can be seen as a series of deflations. Nicolaides [19]
chooses Z to be a piecewise constant interpolation from a set of r subdomains and
points out that deflation might be effectively used with a conventional preconditioner.
Mansfield [15] uses the same “subdomain deflation” in combination with damped Ja-
cobi smoothing, obtaining a preconditioner which is related to the two-grid method.
In [13] Kolotilina uses a twofold deflation technique for simultaneously deflating the
r largest and the r smallest eigenvalues using an appropriate deflating subspace of
dimension r. Other authors have attempted to choose a subspace a priori that effec-
tively represents the slowest modes. In [27] deflation is used to remove a few stubborn
but known modes from the spectrum. This method is used in [3] to solve electromag-
netic problems with large jumps in the coefficients. Thereafter this method has been
generalized to other choices of the deflation vectors (see [26, 28]). Finally, an analysis
of the effective condition number and a parallel implementation is given in [8, 25].

We compare the deflation preconditioner with a well-known coarse grid correction
preconditioner of the form

PC = I + ZE−1ZT(1.5)

and in the preconditioned case

PCM−1 = M−1 + ZE−1ZT .(1.6)

In the multigrid or domain decomposition language the matrices Z and ZT are
known as restriction and prolongation or interpolation operator. Moreover, the matrix
E = ZTAZ is the Galerkin operator.

The above coarse grid correction preconditioner belongs to the class of additive
Schwarz preconditioner. It is called the two-level additive Schwarz preconditioner. If
used in domain decomposition methods, typically M−1 is the sum of the local (exact
or inexact) solves in each domain. To speed up convergence a coarse grid correction
ZE−1ZT is added.

These methods are introduced by Bramble, Pasciak, and Schatz [2], Dryja and
Widlund [5, 6], and Dryja [4]. They show under mild conditions that the convergence
rate of the PCG method is independent of the grid sizes.

For more details about this preconditioner we refer the reader to the books of
Quarteroni and Valli [21] and Smith, Bjørstad, and Gropp [23]. A more abstract
analysis of this preconditioner is given by Padiy, Axelsson, and Polman [20]. To
make the condition number of PCM−1A smaller, Padiy, Axelsson, and Polman used a
parameter σ > 0 and considered

PC = I + σZE−1ZT(1.7)

and

PCM−1 = M−1 + σZE−1ZT .(1.8)

If M = I, Z consists of eigenvectors, and λmax is known, then a good choice is
σ = λmax, which implies that κ(PCA) ≤ 2λmax

λr+1
(see [20]). If M �= I and/or Z consists

of general vectors, and λmax is not known, it is not clear how to choose σ.
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More abstract results about Schwarz methods applied to nonsymmetric problems
are given by Benzi et al. [1] and Nabben [18].

In this paper we prove that the effective condition number of the deflated pre-
conditioned system M−1PDA is always below the condition number of the system
preconditioned by the coarse grid correction PCM−1A. This implies that for all ma-
trices Z ∈ R

n×r and all positive definite preconditioners M−1 the CG method applied
to the deflated preconditioned system is expected always to converge faster than the
CG method applied to the system preconditioned by the coarse grid correction. These
results are stated in section 2. In section 3 we compare other properties of the de-
flation and coarse grid preconditioner. These properties are scaling, approximation
of E−1, and an estimate of the smallest eigenvalue. Section 4 contains our numerical
results for porous media flows and parallel problems.

2. Spectral properties. In this section we compare the effective condition num-
ber for the deflation and coarse grid correction preconditioned matrices. In section 2.1
we give some definitions and preliminary results. Thereafter a comparison is made if
the projection vectors are equal to eigenvectors in section 2.2 and for general projec-
tion vectors in section 2.3.

2.1. Notations and preliminary results. In the following we denote by λi(M)
the eigenvalues of a matrix M . If the eigenvalues are real, the λi(M)’s are ordered
increasingly.

For two Hermitian n× n matrices A and B we write A � B, if A−B is positive
semidefinite.

Next we mention well-known properties of the eigenvalues of Hermitian matrices.
Lemma 2.1. Let A,B ∈ C

n×n be Hermitian. For each k = 1, 2, . . . , n we have

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B).

From the above lemma we easily obtain the next lemma.
Lemma 2.2. If A,B ∈ C

n×n are positive semidefinite with A � B, then λi(A) ≥
λi(B).

Moreover, we will use the following lemma.
Lemma 2.3. Let A,B ∈ C

n×n be Hermitian, and suppose that B has rank at
most r. Then

• λk(A+B) ≤ λk+r(A), k = 1, 2, · · ·n− r,
• λk(A) ≤ λk+r(A+B), k = 1, 2, · · ·n− r.

Lemmas 2.1, 2.2, and 2.3 can be found, e.g., as Theorem 4.3.1, Corollary 7.7.4.,
and Theorem 4.3.6, respectively, in [10].

2.2. Projection vectors chosen as eigenvectors. In this section we compare
the effective condition number of PDA and PCA if the projection vectors are equal to
eigenvectors of A.

Definition 2.4. Choose the eigenvectors vk of A such that vTk vj = δkj, and
define Z = [v1 . . . vr].

Theorem 2.5. Using Z as given in Definition 2.4, the spectra of PDA and PCA
given in (1.2) and (1.7) are

spectrum(PDA) = {0, . . . , 0, λr+1, . . . , λn} and

spectrum(PCA) = {σ + λ1, . . . , σ + λr, λr+1, . . . , λn}.
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Proof. For this choice of Z we have that

E = ZTAZ = diag(λ1, . . . , λr).(2.1)

To prove the first part we note that (2.1) implies PD = I − AZE−1ZT = I − ZZT .
Consider PDAvk = (I − ZZT )λkvk for k = 1, . . . , n. Since ZZT vk = vk, for k =
1, . . . , r and ZZT vk = 0 for k = r + 1, . . . , n it is easy to show that

PDAvk = 0, for k = 1, . . . , r, and PDAvk = λkvk, for k = r + 1, . . . , n,

which proves the first part.
Second, we consider PCAvk. For k = 1, . . . , r we obtain

PCAvk =

(
I + σZ diag

(
1

λ1
, . . . ,

1

λr

)
ZT
)
λkvk = (σ + λk)vk,

whereas for k = r + 1, . . . , n it appears that

PCAvk =

(
I + σZ diag

(
1

λ1
, . . . ,

1

λr

)
ZT
)
λkvk = λkvk

since ZT vk = 0 for k = r + 1, . . . , n. This proves the second part (cf. Theorem 2.6
in [20]).

In order to compare both approaches we note that

κeff (PDA) =
λn
λr+1

(2.2)

and

κ(PCA) =
max{σ + λr, λn}

min{σ + λ1, λr+1} .(2.3)

From (2.2) and (2.3) it follows that κ(PCA) ≥ κeff (PDA), so the convergence
bound based on the effective condition number implies that deflated CG converges
faster than CG combined with coarse grid correction if both methods use the eigen-
vectors corresponding to the r smallest eigenvalues as projection vectors.

2.3. Projection vectors chosen as general vectors. In the last section we
showed that the deflation technique is better than a coarse grid correction, if eigenvec-
tors are used. However, computing the r smallest eigenvalues is, in general, very ex-
pensive. Moreover, in multigrid methods and domain decomposition methods special
interpolation and prolongation matrices are used to obtain grid independent conver-
gence rates. So a comparison only for eigenvectors is not enough. But in this section
we generalize the results of section 2.2. We prove that the effective condition number
of the deflated preconditioned system is always, for all matrices Z ∈ R

n×r, below the
condition number of the system preconditioned by the coarse grid correction.

Theorem 2.6. Let A ∈ R
n×n be symmetric positive definite. Let Z ∈ R

n×r with
rank Z = r. Then the preconditioner defined in (1.2) and (1.7) satisfies

λ1(PDA) = · · · = λr(PDA) = 0,(2.4)

λn(PDA) ≤ λn(PCA),(2.5)

λr+1(PDA) ≥ λ1(PCA).(2.6)
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Proof. Obviously all eigenvalues of PCA are real and positive. By Lemma 2.1
of [8], PDA is positive semidefinite. Thus, all eigenvalues of PDA are real and non-
negative. Since PDAZ = 0, statement (2.4) holds.

We obtain

A
1
2PCA

1
2 − PDA = AZE−1ZTA+ σA

1
2ZE−1ZTA

1
2 .

The right-hand side is positive semidefinite. Thus, we have with Lemma 2.2 that

λi(PCA) = λi(A
1
2PCA

1
2 ) ≥ λi(PDA).

Hence, (2.5) holds. Next consider

PCAPC − PDA = A+ σZE−1ZTA+ σAZE−1ZT + σ2ZE−1ZTAZE−1ZT

−A+AZE−1ZTA

= σZE−1ZTA+ σAZE−1ZT + σ2ZE−1ZT +AZE−1ZTA

= (A+ σI)ZE−1ZT (A+ σI).

Thus, PCAPC − PDA is symmetric and of rank r. Using Lemma 2.3 we obtain

λr+1(PDA) ≥ λ1(PCAPC) = λ1(P
2
CA).

But since PC − I is positive semidefinite, P 2
C − PC and A

1
2P 2

CA
1
2 − A

1
2PCA

1
2 are

positive semidefinite also. Hence,

λi(P
2
CA) = λi(A

1
2P 2

CA
1
2 ) ≥ λi(A

1
2PCA

1
2 ) = λi(PCA).

Thus,

λr+1(PDA) ≥ λ1(P
2
CA) ≥ λ1(PCA).

It follows from Theorem 2.6 that

κ(PCA) ≥ κeff (PDA),

so the convergence bound based on the effective condition number implies that de-
flated CG converges faster than CG combined with coarse grid correction for arbitrary
matrices Z ∈ R

n×r.
In Theorem 2.11 we will extend this result to the preconditioned versions of the

deflation and coarse grid correction preconditioners.
Before that, we will show how the deflated preconditioner behaves if we increase

the number of deflation vectors. In detail we will show that the effective condition
number decreases if we use a matrix Z2 in (1.2) satisfying ImZ ⊆ ImZ2 rather than
Z. To do so we need several lemmas.

The first lemma is probably well known, but for completeness we give the proof
here.

Lemma 2.7. Let A ∈ R
n×n be nonsingular and be partitioned as

A =

[
A11 A12

A21 A22

]
,

where A11 ∈Mr(R) and A22 ∈Mn−r(R). Assume that A11 is nonsingular. Define

Ã−1
11 :=

[
A−1

11 0
0 0

]
.
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Then, rank (A−1 − Ã−1
11 ) = n− r.

Proof. The inverse of A is given by

A−1 =

[
A−1

11 +A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]
,

where S = A22 −A21A
−1
11 A12. Hence

A−1 − Ã−1
11 =

[
A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]
=

[
A−1

11 A12S
−1

−S−1

] [
A21A

−1
11 ,−I

]
.

Since S and the n− r× n− r identity matrix I have rank n− r, we get rank (A−1 −
Ã−1

11 ) = n− r.
In the next lemma we compare the preconditioned matrices if a different number

of deflation vectors is used.
Lemma 2.8. Let A ∈ R

n×n be symmetric positive definite. Let Z1 ∈ R
n×r

and Z2 ∈ R
n×s with rank Z1 = r and rank Z2 = s. Define E1 := ZT1 AZ1 and

E2 := ZT2 AZ2. If ImZ1 ⊆ ImZ2, then

(I −AZ1E
−1
1 ZT1 )A � (I −AZ2E

−1
2 ZT2 )A.

Proof. It suffices to prove that

Z2E
−1
2 ZT2 � Z1E

−1
1 ZT1 .

Since ImZ1 ⊆ ImZ2, there exists a matrix T ∈Ms×r(R) such that

Z1 = Z2T.

Therefore,

Z2E
−1
2 ZT2 − Z1E

−1
1 ZT1 = Z2(E

−1
2 − TE−1

1 TT )ZT2

= Z2E
− 1

2
2 (I − E

1
2
2 TE

−1
1 TTE

1
2
2 )E

− 1
2

2 ZT2 .

Moreover, we have

(E
1
2
2 TE

−1
1 TTE

1
2
2 )2 = E

1
2
2 TE

−1
1 TTE2TE

−1
1 TTE

1
2
2

= E
1
2
2 TE

−1
1 TTZT2 AZ2TE

−1
1 TTE

1
2
2

= E
1
2
2 TE

−1
1 ZT1 AZ1E

−1
1 TTE

1
2
2

= E
1
2
2 TE

−1
1 E1E

−1
1 TTE

1
2
2

= E
1
2
2 TE

−1
1 TTE

1
2
2 .

Hence, E
1
2
2 TE

−1
1 TTE

1
2
2 is an orthogonal projection. Thus E

1
2
2 TE

−1
1 TTE

1
2
2 has only

the eigenvalues 0 and 1. Hence, I−E 1
2
2 TE

−1
1 TTE

1
2
2 is positive semidefinite. Therefore,

Z2E
−1
2 ZT2 � Z1E

−1
1 ZT1 .
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In the next lemma we show that PD1A = PD2A, if ImZ1 = ImZ2.
Lemma 2.9. Let A ∈ R

n×n be symmetric positive definite. Let Z1 ∈ R
n×r and

Z2 ∈ R
n×r with rankZ1 = rankZ2 = r. Define E1 := ZT1 AZ1 and E2 := ZT2 AZ2. If

ImZ1 = ImZ2, then

(I −AZ1E
−1
1 ZT1 )A = (I −AZ2E

−1
2 ZT2 )A.

Proof. We can follow the proof of Lemma 2.8. Since ImZ1 = ImZ2, the matrix
T is nonsingular. Hence,

Z2E
−1
2 ZT2 − Z1E

−1
1 ZT1 = Z2(E

−1
2 − TE−1

1 TT )ZT2

= Z2E
− 1

2
2 (I − E

1
2
2 TE

−1
1 TTE

1
2
2 )E

− 1
2

2 ZT2 .

= Z2E
− 1

2
2 (I − E

1
2
2 T (TTE2T )−1TTE

1
2
2 )E

− 1
2

2 ZT2

= Z2E
− 1

2
2 (I − E

1
2
2 TT

−1E−1
2 T−TTTE

1
2
2 )E

− 1
2

2 ZT2

= 0.

Using the above lemmas, we can prove the following theorem.
Theorem 2.10. Let A ∈ R

n×n be symmetric positive definite. Let Z1 ∈ R
n×r and

Z2 ∈ R
n×s with rankZ1 = r and rankZ2 = s. Let E1 := ZT1 AZ1 and E2 := ZT2 AZ2.

If ImZ1 ⊆ ImZ2, then

λn((I −AZ1E
−1
1 ZT1 )A) ≥ λn((I −AZ2E

−1
2 ZT2 )A),(2.7)

λr+1((I −AZ1E
−1
1 ZT1 )A) ≤ λs+1((I −AZ2E

−1
2 ZT2 )A).(2.8)

Proof. With Lemmas 2.2 and 2.8 we obtain inequality (2.7).
Next, we will prove (2.8). Observe that Z1E

−1
1 ZT1 and Z2E

−1
2 ZT2 are invariant

under permutations of the columns of Z1 and Z2, respectively.
Thus, using Lemma 2.9, we can assume without loss of generality that Z2 =

[Z1, D] with D ∈ R
n×s−r.

Moreover, define the s× s matrix

Ẽ−1
1 =

[
E−1

1 0
0 0

]
.

Obviously, we then obtain

Z1E
−1
1 ZT1 = Z2Ẽ

−1
1 ZT2 .

Thus,

(I −AZ2E
−1
2 ZT2 )A− (I −AZ1E

−1
1 ZT1 )A = A(Z1E

−1
1 ZT1 − Z2E

−1
2 ZT2 )A

= A(Z2Ẽ
−1
1 Z2 − Z2E

−1
2 ZT2 )A

= AZ2(Ẽ
−1
1 − E−1

2 )ZT2 A.

But since E1 is the leading principal r× r submatrix of E2, we can apply Lemma
2.7. Thus (I − AZ2E

−1
2 ZT2 )A − (I − AZ1E

−1
1 ZT1 )A is of rank s − r. Hence, with

Lemma 2.3,

λr+1((I −AZ1E
−1
1 ZT1 )A) ≤ λs+1((I −AZ2E

−1
2 ZT2 )A).
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Theorem 2.10 states that the effective condition number decreases if we increase
the number of deflation vectors. However, the dimension of the system ZTAZ which
has to be solved increases also.

Next, we include an additional symmetric positive definite preconditioner M−1.
Then we consider the coarse grid preconditioner

PCM−1 := M−1 + σZE−1ZT .(2.9)

This type of preconditioner includes many well-known preconditioners. It belongs
to the class of additive Schwarz preconditioners and is called the two-level additive
Schwarz preconditioner. If used in domain decomposition methods, typically M−1 is
the sum of the local (exact or inexact) solves in each domain. To speed up convergence
a coarse grid correction ZE−1ZT is added. Notice that the Bramble–Pasciak–Schatz
(BPS) preconditioner introduced in [2] and by Dryja and Widlund [5, 6] and Dryja
[4] are of the same type. They show under mild conditions that the convergence rate
of the PCG method is independent of the grid sizes.

We compare the preconditioner (2.9) with the corresponding deflated precondi-
tioner

M−1PD.(2.10)

We obtain the following theorem.
Theorem 2.11. Let A ∈ R

n×n and M ∈ R
n×n be symmetric positive definite.

Let Z ∈ R
n×r with rankZ = r. Then

λn(M
−1PDA) ≤ λn(PCM−1A),(2.11)

λr+1(M
−1PDA) ≥ λ1(PCM−1A).(2.12)

Proof. First observe that Theorem 2.6 still holds if we replace A everywhere by
L−1AL−T with an arbitrary nonsingular matrix L. Here, we will considerM− 1

2AM− 1
2 .

The idea is to transform PD and PC to this form. We start with

M−1PDA = M−1(A−AZE−1ZTA).

The eigenvalues of this matrix are the same as the eigenvalues of

M− 1
2PDAM

− 1
2 = M− 1

2 (A−AZE−1ZTA)M− 1
2 .

Define the matrix G such that G = M
1
2Z and thus Z = M− 1

2G. Substituting this in
the previous matrix leads to E = ZTAZ = GTM− 1

2AM− 1
2G and

M− 1
2PDAM

− 1
2 = M− 1

2 (A−AM− 1
2GE−1GTM− 1

2A)M− 1
2

= (I −M− 1
2AM− 1

2GE−1GT )M− 1
2AM− 1

2 ,

which is in the required form.
In the same way we can transform PCM−1A = (M−1 + σZE−1ZT )A to

PCM−1A = M−1A+ σM− 1
2GE−1GTM− 1

2A,

which has the same eigenvalues as

M− 1
2AM− 1

2 + σGE−1GTM− 1
2AM− 1

2 = (I + σGE−1GT )M− 1
2AM− 1

2 ,
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which is also in the required form.
Thus, Theorem 2.6 gives the desired result.
For the case L−1AL−T the same result can be proved if one chooses G = LTZ.
Theorem 2.11 describes the most general case. Arbitrary vectors or matrices

Z ∈ R
n×r combined with arbitrary preconditioners are considered. The effective con-

dition number of the deflated CG method is always below the condition number of
the CG method preconditioned by the coarse grid correction. Thus, the interpola-
tion or prolongation matrices Z used, for example, in the BPS method give a better
preconditioner if used in a deflation technique.

At the end of this section we generalize Theorem 2.10.
Theorem 2.12. Let A,M ∈ R

n×n be symmetric positive definite. Let Z1 ∈
R
n×r and Z2 ∈ R

n×s with rankZ1 = r and rankZ2 = s. Let E1 := ZT1 AZ1 and
E2 := ZT2 AZ2. If ImZ1 ⊆ ImZ2, then

λn(M
−1(I −AZ1E

−1
1 ZT1 )A) ≥ λn(M

−1(I −AZ2E
−1
2 ZT2 )A),(2.13)

λr+1(M
−1(I −AZ1E

−1
1 ZT1 )A) ≤ λs+1(M

−1(I −AZ2E
−1
2 ZT2 )A).(2.14)

Proof. The proof is almost the same as the proof of Theorem 2.10.

3. Other properties of deflation and coarse grid correction. In this sec-
tion we compare other properties of deflation and coarse grid correction. These prop-
erties are scaling, inaccurate solution, and an estimate of the smallest eigenvalue.

Scaling. Note that PDA is scaling invariant, whereas PCA is not scaling invariant.
This means that if deflation is applied to a system γAx = γb, the effective condition
number of PDγAγA = (I − γAZ(ZT γAZ)−1ZT )γA is independent of the scalar γ,
i.e.,

κeff (PDγAγA) =
γλn(PDAA)

γλr+1(PDAA)
= κeff (PDAA).

Whereas the condition number of PCγA depends on the choice of γ,

κ(PCγAγA) �= κ(PCAA).

Inaccurate solution. If the dimension matrix E becomes large (i.e., many projec-
tion vectors are used), it seems to be good to compute E−1 approximately (by an
iterative method or by doing the procedure recursively). It appears that the coarse
grid correction operator is insensitive to the accuracy of the approximation of E−1,
while the deflation is sensitive to it. A proof of this property if the projection vectors
are eigenvectors is given in the next lemma.

Lemma 3.1. Use Z as given in Definition 2.4, and assume that

Ẽ−1 = diag

(
1

λ1
(1 − ε1), . . . ,

1

λr
(1 − εr)

)
is an approximation of E−1, where |εi| is small. The spectra of P̃DA and P̃CA given
in (1.2) and (1.5), where E−1 is replaced by Ẽ−1, are

spectrum(P̃DA) = {λ1ε1, . . . , λrεr, λr+1, . . . , λn} and

spectrum(P̃CA) = {λ1 + σ(1 − ε1), . . . , λr + σ(1 − εr), λr+1, . . . , λn}.
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Proof. The proof of this lemma is almost the same as the proof of Theorem
2.5.

For general vectors a similar situation appears. Assume that Ẽ−1 = (I−F )E−1(I−
F ) is a symmetric approximation (F = FT ) of E−1. Let H := −FE−1 − E−1F +
FE−1F . Then we have

P̃DA = PDA+AZHZTA.

Hence, using Lemma 2.1 we obtain

λk(PDA) + λ1(AZHZ
TA) ≤ λk(P̃DA) ≤ λk(PDA) + λn(AZHZ

TA).

Since the first r eigenvalues of λk(PDA) are 0, we get for i = 1, . . . , r,

λ1(AZHZ
TA) ≤ λi(P̃DA) ≤ λn(AZHZ

TA).

If all eigenvalues of AZHZTA are small, the first r eigenvalues λi(P̃DA) also are
very small. Observe that λ1(P̃DA) can be negative if the perturbation H is negative
definite.

For the coarse grid correction

P̃CA = PCA+ ZHZTA,

we obtain

λk(PCA) + λ1(ZHZ
TA) ≤ λk(P̃CA) ≤ λk(PCA) + λn(ZHZ

TA).

Thus, if all eigenvalues of ZHZTA are small, the perturbation does not have
much effect.

Hence, the coarse grid correction operator is insensitive for the accuracy of the
approximation, whereas deflation is sensitive.

To illustrate this we consider two problems. The first one is motivated by a porous
media flow with large contrasts in the coefficients (ratio 10−6; see the seven-layer
problem in section 4), and the second one is a Poisson problem. In both examples
r = 7 algebraic projection vectors are used (see [28, Def. 4]). We replace E−1 by
Ẽ−1 = (I + εR)E−1(I + εR), where R is a symmetric r × r matrix with random
elements chosen from the interval [− 1

2 ,
1
2 ]. From Figure 3.1 (porous media flow) it

follows that the convergence of the error remains good for |ε| < 10−12. For larger
values of |ε| we see that the convergence stagnates. For the Poisson problem it appears
that the convergence is good as long as |ε| < 10−6 (see Figure 3.2). For the coarse
grid correction operator, there is no difference in the convergence behavior. Using
the coarse grid correction operator we need 75 iterations for the porous media flow
problem and 70 iterations for the Poisson problem.

We also have investigated the convergence behavior of deflation if a perturbed
Cholesky decomposition of E is used. For this experiment we compute the Cholesky
factor L of E and use in the deflation method the matrix L̃ which is such that
L̃ij = Lij(1 + εij) and |εij | < ε. In Figure 3.3 the results are given. We observe again
that the convergence stagnates if ε is too large.

Estimate of smallest eigenvalue. In this paragraph we restrict ourselves to the case
that the deflation vectors approximate the eigenvectors corresponding to the smallest
eigenvalues. In practice it is very important to have a reliable stopping criterion,
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Fig. 3.3. DICCG for the straight layers problem with a perturbed Cholesky decomposition.

especially for a porous media flow problem, because for such a problem the linear
system is ill conditioned. The following stopping criterion

‖rk‖2 ≤ λ1‖xk‖2ε(3.1)

gives that

‖x− xk‖2

‖xk‖2
≤ ε,

which implies that the relative error is small. To use this criterion, an estimate of the
smallest eigenvalue should be available. From the CG method an approximation of
the extreme eigenvalues can be obtained from the Ritz values (see [11]). However, for
the deflated operator PDA this leads to an estimate of λr+1 instead of λ1. The same
holds for the preconditioned system. In order to estimate λ1 we note that

λ1(M
− 1

2AM− 1
2 ) ≤ min

y∈R
r

yTGTM− 1
2AM− 1

2Gy

yTGTGy
= min
y∈R

r

yTZTAZy

yTZTMZy
.

This means that the smallest eigenvalue µmin of the generalized eigenvalue problem

Ey = µZTMZy
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is an upper bound for the smallest eigenvalue of M− 1
2AM− 1

2 , whereas the smallest
eigenvalue µmin of the generalized eigenvalue problem

Ey = µZTZy

is an upper bound for the smallest eigenvalue of A. From experiments for the porous
media flow problem, it appears that the estimates are reasonably sharp (see Table 3.1),
so they can be used in stopping criterion (3.1).

Table 3.1

The estimated smallest eigenvalue using matrix E.

Matrix λ1 λ1(estimated)

M− 1
2AM− 1

2 0.7 · 10−8 3.1 · 10−8

A 3.3 · 10−9 9.9 · 10−9

4. Numerical experiments. All numerical experiments are done by using the
SEPRAN FEM package developed at Delft University of Technology. The multipli-
cation y = E−1b is always done by solving y from Ey = b, where E is decomposed in
its Cholesky factor. The choice of the boundary conditions is such that all problems
have as exact solution the vector with components equal to 1. In order to make the
convergence behavior representative for general problems, we chose a random vector
as starting solution, instead of the zero start vector.

4.1. Porous media flows. In this section we consider problems motivated by
porous media flow (see [27]). Our first problem is a simple two-dimensional model
problem, whereas our second problem mimics the flow of oil in a reservoir. In both
problems physical projection vectors are used (see [28, Def. 2]), which approximate
the eigenvectors corresponding to the small eigenvalues.

Seven-layer problem. We solve the equation

div (σ∇p) = 0

with p the fluid pressure and σ the permeability. At the earth’s surface the fluid
pressure is prescribed. At the other boundaries we use homogeneous Neumann con-
ditions. In this two-dimensional problem we consider seven horizontal layers. We use
linear triangular elements, and the number of grid points is equal to 22,680. The top
layer is sandstone, then a shale layer, etc. We assume that σ in sandstone is equal
to 1 and σ in shale is equal to 10−7. From [26] it follows that the IC preconditioned
matrix has three eigenvalues of order 10−7, whereas the remaining eigenvalues are of
order 1. Computing the solution with three projection vectors, we observe that in
every iteration the norm of the residual using deflation or coarse grid correction is
comparable. In Figure 4.1 the norm of the error for both methods is given. Note that
the error using deflation stagnates at a lower level than that of coarse grid correction.
This surprises us because the results presented in section 3 suggested that deflation
can be more sensitive to rounding errors than coarse grid correction.

An oil flow problem. In this paragraph we simulate a porous media flow in a
three-dimensional layered geometry, where the layers vary in thickness and orientation
(see Figures 4.2 and 4.3 for a four-layer problem). Figure 4.2 shows a part of the
earth’s crust. The depth of this part varies between three and six kilometers, whereas
horizontally its dimensions are 40 x 60 kilometers. The upper layer is a mixture of
sandstone and shale and has a permeability of 10−4. Below this layer, shale and
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Fig. 4.2. The geometry of an oil flow problem.

sandstone layers are present with permeabilities of 10−7 and 10, respectively. We
consider a problem with nine layers. Five sandstone layers are separated by four shale
layers. At the top of the first sandstone/shale layer a Dirichlet boundary condition
is posed, so the IC preconditioned matrix has four small eigenvalues. We use four
physical projection vectors and stop if ‖rk‖2 ≤ 10−5. Trilinear hexahedral elements
are used, and the total number of gridpoints is equal to 148,185. The results are given
in Table 4.1 and correspond well with our theoretical results.

4.2. Parallel problems. In this section we consider a Poisson equation on a
two-dimensional rectangular domain. On top a Dirichlet boundary condition is posed,
whereas at the other boundaries a homogeneous Neumann condition is used. We use
linear triangular elements. We stop the iteration if ‖rk‖2 ≤ 10−8.

As a first test we solve a problem, in which the grid is decomposed into seven
layers with various gridsizes per layer. The results are given in Table 4.2. In this table
the symbol “No” means that there is no projection method used. Note that in the
parallel case we use a block IC preconditioner. Deflation again needs fewer iterations
than coarse grid correction. However, both projection methods lead to a considerable
gain in the number of iterations. Note that the number of iterations increases if the
gridsize per layer increases.

Second, we consider the parallel performance for an increasing number of layers
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Table 4.1

The results for the oil flow problem.

Method Deflation CGC
Iterations 36 47
CPU time 5.9 8.2

Table 4.2

The effect of the gridsize per layer.

Sequential Parallel
Grid points Deflation CGC No Deflation CGC No

10 × 10 21 29 35 25 38 50
20 × 20 36 48 65 42 61 90
40 × 40 62 82 125 80 103 168
80 × 80 106 131 244 128 161 321
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Fig. 4.4. The number of iterations for a layered
domain decomposition.
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domain decomposition.

or blocks. The gridsize per layer is 80 × 80 and per block is 100 × 100. This im-
plies that the total number of grid points increases proportionally to the number of
layers/blocks. In Figures 4.4 and 4.5 the results are given. Note that initially both
projection methods show a small increase in the number of iterations if the number of
layers/blocks increases but thereafter the number of iterations is constant (scalable).
If no projection method is used, the number of iterations keep increasing.
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5. Conclusions. We have compared various preconditioners used in the numer-
ical solution of partial differential equations. On one hand we considered a coarse grid
correction preconditioner. On the other hand a so-called deflation preconditioner was
studied. It turned out that the effective condition number of the deflated precondi-
tioned system is always, for all deflation vectors and all restrictions and prolongations,
below the condition number of the system preconditioned by the coarse grid correc-
tion. This implies that the CG method applied to the deflated preconditioned system
converges always faster than the CG method applied to the system preconditioned
by the coarse grid correction. Numerical results for porous media flows and parallel
preconditioners emphasized the theoretical results.
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RENÉ PINNAU†

SIAM J. NUMER. ANAL. c© 2004 Society for Industrial and Applied Mathematics
Vol. 42, No. 4, pp. 1648–1668

Abstract. We analyze an exponentially fitted finite element scheme for the unipolar quantum
drift diffusion model in one-dimensional space. The existence of discrete solutions is shown under
very mild assumptions, and convergence of a subsequence is proved by compactness arguments. The
scheme is constructed in such a way that it reduces in the semiclassical limit to the well-known
Scharfetter–Gummel discretization for the classical drift diffusion model. We derive uniform error
bounds which allow for the semiclassical limit on the discrete level. Numerical tests underlining the
analytical results are presented.
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finite elements, exponential fitting, uniform convergence, semiclassical limit, semiconductor
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1. Introduction. From the earliest days of semiconductor industry there has
been a never-ending drive towards increased miniaturization. The original aim was to
produce more devices per unit area, but now scientists and engineers are exploiting
quantum size effects to introduce new electronic properties into existing materials.
Many devices, like MOSFETs or resonant tunneling structures, already reached the
decanano length scale [19]. The Semiconductor Industry Association (SIA) projects
that by 2009 the leading edge MOS device will employ a 0.05 µm length scale and
an oxide thickness of 1.5 nm or less. But already today quantum mechanical effects,
like confinement in barrier structures or inversion layers as well as direct tunneling
through the oxide causing gate leakage in MOS structures are no longer negligible
[18]. Hence, scientists are in charge to develop “correct” models which can be easily
incorporated into existing modern simulation tools.

During the last years much effort has been spent on the derivation and analysis
of macroscopic quantum models, which allow for an accurate description of the un-
derlying physics of the devices by reasonable numerical costs. Nowadays, there exists
a whole hierarchy of macroscopic models leading from the quantum hydrodynamic
(QHD) models [25, 20] over the quantum energy transport (QET) model to the quan-
tum drift diffusion (QDD) model, which can be derived from a moment expansion of
the Wigner–Poisson system (see [26, 31] and the references therein for a comprehen-
sive overview). Recently, extensions of these models were derived, which are better
suited to deal with quantum tunneling and coherence effects [21, 22, 13, 17].

In this work we analyze a new numerical scheme for the QDD model. The math-
ematical analysis and numerical understanding of this model is in a rather mature
state [31]. Essentially, this model is a dispersive regularization of the classical drift
diffusion (DD) model of Van Roosbroeck [29], which accounted for the immense suc-
cess of the macroscopic theory of charge transport in semiconductors and is commonly
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used (with all its enhancements) in modern simulation tools. First, Ancona [8], An-
cona and Tiersten [5], and Ancona and Iafrate [10] proposed a quantum correction
of this well-understood system. This density-gradient theory is impressively capable
of describing the correct device behavior in the vicinity of strong inversion layers in
MOS structures when compared to one-electron quantum mechanic simulations [8].
But already the shrinking device size poses severe numerical problems, since the local
field strength increases and interior layers in the solution become more abrupt [14].
The QDD model was employed for the simulation of many quantum semiconductor
devices and has proved its numerical efficiency, especially in several space dimensions
[7, 11, 37]. Due to its numerical robustness it is already programmed into the 2d/3d
PROPHET simulation code from Lucent Technologies as well as into various commer-
cial device simulators, e.g., those from ISE and Silvaco. Encouraging comparisons
with Schrödinger–Poisson simulations can be found in [3, 37].

The unscaled QDD model equations stated on a bounded domain Ω ⊂ R
d, d =

1, 2, or 3, read as

∂n

∂t
+

1

q
div J = 0,(1.1a)

q kB T0

m
∇n+

q2

m
n∇V − q �

2

2m2
n∇

(
∆
√
n√
n

)
= − J

τ0
,(1.1b)

which are self-consistently coupled with the Poisson equation for the electrostatic
potential

−ε∆V = q (n− Cdop) .(1.1c)

The variables are the electron density n = n(x, t), the current density J = J(x, t), and
the electrostatic potential V = V (x, t). The physical constants are the elementary
charge q, the Boltzmann constant kB , the effective electron mass m, and the reduced
Planck constant �. For the values of these constants we refer the reader to [29].
Physical parameters are the permittivity ε, the relaxation time τ0, and the lattice
temperature T0. The time-independent doping profile Cdop = Cdop(x) represents the
distribution of charged background ions.

In this paper we consider the stationary QDD model for unipolar devices in one-
dimensional space. We introduce the diffusion scaling, where the new dimensionless
quantities are marked by a tilde:

n→ Cm ñ, Cdop → Cm C̃dop, x→ L x̃,

t→ mL2

kB T0 τ0
t̃, V → kB T0

q
Ṽ , J → q kB T0 Cm τ0

Lm
J̃.

Here, Cm denotes the maximal absolute value of the doping profile Cdop and L is a
characteristic device length, e.g., the diameter. Defining the scaled Planck constant
ε and the scaled Debye length λ,

ε2 =
�

2

2mkB T0 L2
, λ2 =

ε kB T0

q2 Cm L2
,

and introducing the quantum quasi-Fermi level F via J = n∂xF , we can divide
equation (1.1b) by n and integrate once. This yields the scaled QDD model stated
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on the bounded domain Ω = (0, 1):

∂x (n∂xF ) = 0,(1.2a)

−ε2 ∂xx
√
n√

n
+ log(n) + V = F,(1.2b)

−λ2∂xxV = n− Cdop.(1.2c)

Throughout the paper we assume that Cdop ∈ L∞(Ω). In (1.2) the electron den-
sity n = n(x) ≥ 0, the quantum quasi-Fermi level F = F (x), and the electrostatic
potential V = V (x) are unknown.

The model equations (1.2) are supplemented with Dirichlet boundary conditions
modeling the Ohmic contacts of the device:

n = nD > 0, V = VD
def
= Veq + Vext, F = FD

def
= Feq + Vext on ∂Ω,(1.3)

where Vext is the applied biasing voltage. This set of boundary conditions is motivated
by its analogy to the classical DD model [30, 27, 28]. Nevertheless, the correct choice
of the Dirichlet data is still an open problem. A recent discussion can be found in
[6]. Clearly, the thermal equilibrium density neq is a possible candidate for nD. The
built-in potential is given by Veq, and Feq is chosen accordingly.

Remark 1. The restriction to the unipolar case is just to keep the notation
simple. In fact, Ben Abdallah and Unterreiter [1] proved existence of solutions and
considered the semiclassical limit for the bipolar case. The results of this paper are
easily extendable to the bipolar setting.

So far, only standard discretization schemes were employed, which require very
fine meshes to ensure an adequate resolution of the desired quantities. To account for
this problems we want to generalize the classical Scharfetter–Gummel (SG) discretiza-
tion for the DD equations [35] to this quantum model. A first step in this direction
can be found in [9, 4] where a nonlinear discretization scheme is suggested. Here, we
follow a different approach [33] since we are moreover interested in a scheme which is
stable in the semiclassical limit ε → 0 recovering the classical SG scheme. However,
the SG method relies on the introduction of the so-called Slotboom variable which
allows for the symmetrization of the continuity equation [29]. This is impossible in
the formulation (1.2) of the QDD model, since we have the additional quantum Bohm
potential. Nevertheless, we can deal with this problem by interpreting the Bohm
potential as a correction of the classical electrostatic potential V and introducing the
corrected potential G via

G = −ε2 ∂xx
√
n√

n
+ V

which yields for the current density J = ∂xn + n∂xG; i.e., the drift is now given by
G. Then, system (1.2) can be written as

∂xJ = 0, J = ∂xn+ n∂xG,(1.4a)

−ε2 ∂xx
√
n√

n
+ V = G,(1.4b)

−λ2∂xxV = n− Cdop.(1.4c)

We introduce the generalized Slotboom variable u = eGn, which yields for the current
density J = e−G∂xu. Assuming vanishing quantum effects and vanishing quantum
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current at the boundary, we get

G = VD, u = eVDnD on ∂Ω.(1.5)

This nonlinear system is discretized using a mixed finite element discretization for
the current density J and the Slotboom variable u, and standard linear elements for
n and V . For an overview of stabilized discretization schemes for the classical DD
model see [23] and the references therein.

We prove under very mild assumptions that the resulting nonlinear discrete sys-
tem possesses a solution and that at least a subsequence of the sequence of discrete
solutions converges to a continuous solution. Since we have no uniqueness for the
QDD model in general, we cannot expect convergence of the full sequence. The proof
is based on a variational argument similar to the one used in [1] and the derivation of
appropriate a priori bounds. Especially, we can show that a discrete solution fulfills
the same maximum principle as a continuous solution.

Our mixed finite element scheme is chosen in such a way that in the case of
vanishing quantum effects (ε = 0) one recovers the classical SG discretization of
the DD model. By deriving a priori bounds on the discrete solutions which are
independent of ε, we can even perform the semiclassical limit ε → 0 on the discrete
level and derive estimates on the convergence rate, which are uniform in ε.

We present simulations of a ballistic diode and a resonant tunneling structure
which exactly reproduce the predicted accuracy results underlining the feasibility of
our approach. Moreover, these simulations show that the asymptotic constant in the
error estimate for the current density seems to be almost independent of the size of the
scaled Planck constant ε, which is essential from the engineering point of view, since
it allows for an accurate computation of the current density also in the semiclassical
limit.

The paper is organized as follows. In section 2 we introduce our nonlinear dis-
crete scheme and section 3 is devoted to the proof of the existence and convergence
of discrete solutions. The semiclassical limit is performed in section 4, where also
uniform convergence rates are given. Finally, simulations of a ballistic diode and a
resonant tunneling structure are presented in section 5. Concluding remarks are given
in section 6.

2. A generalized SG discretization. In this section we present a discretiza-
tion of system (1.4) in the spirit of the well-known SG discretization for the classical
DD model [35]. Here the drift is given by the generalized potential G, such that we
have to take additional care about (1.4b) which involves the quantum Bohm potential.

First, we write (1.4) in a weak form. For notational convenience we define the
spaces

X = H1
0 (Ω), Σ = L2(Ω),

and testing appropriately we get the following:

Find n ∈ nD +X, V ∈ VD +X, G ∈ GD +X, and J ∈ Σ such that∫
Ω

eG J · τ dx−
∫

Ω

∂x
(
eGn

) · τ dx = 0,(2.1a) ∫
Ω

J · ∂xφ dx = 0,(2.1b)
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ε2
∫

Ω

∂x
√
n∂x

(
φ√
n

)
dx =

∫
Ω

(G− V )φ dx,(2.1c)

λ2

∫
Ω

∂xV ∂xφ dx =

∫
Ω

(n− Cdop)φ dx(2.1d)

for all φ ∈ X and τ ∈ Σ.
We discretize (2.1) on the possibly nonuniform grid 0 = x0 < x1 < · · · < xN = 1

defining the subintervals and the grid spacing by

Ii = (xi−1, xi], hi = xi − xi−1, h = max
i
hi.

We employ finite-dimensional spaces of linear and constant finite elements:

Xh =
{
w ∈ H1

0 (Ω) : w|Ii ∈ P1, i = 1, . . . , N
}
,

Σh =
{
w ∈ L2(Ω) : w|Ii ∈ P0, i = 1, . . . , N

}
.

For every function w ∈ C0(Ω̄) let wI denote the linear interpolant verifying
wI(xi) = w(xi) for i = 0, . . . , N . We will make frequent use of the following interpo-
lation result [23].

Proposition 2.1. There exists a constant c > 0, independent of h, such that

∣∣w − wI
∣∣
H1(Ω)

≤ c h

(∑
i

|w|2H2(Ii)

)1/2

,

∣∣w − wI
∣∣
L2(Ω)

≤ c h2

(∑
i

|w|2H2(Ii)

)1/2

for all w ∈ H1(Ω) ∩ {H2(Ii), for all i = 1, . . . , N
}
.

Let (·, ·) denote the standard inner product on L2(Ω). We define its discrete
analogue using the trapezoidal rule

(u, v)h
def
=

∫
Ω

(uv)I dx =

N∑
i=0

ωi u(xi)v(xi),

where ωi > 0 denotes the corresponding weights of the quadrature formula. We have
the following consistency result for the discrete inner product.

Lemma 2.2. Let f, g ∈ Xh. Then there exists a constant c > 0, independent of
h, such that

|(f, g) − (f, g)h| ≤ ch2 ‖∂xf‖L2(Ω) ‖∂xg‖L2(Ω) .

The corresponding discretization of (2.1) reads as follows:
Find nh ∈ nD +Xh, Vh ∈ VD +Xh, Gh ∈ GD +Xh, and Jh ∈ Σh such that(

eGh Jh, τh
)− (∂x (eGh nh

)I
, τh

)
= 0,(2.2a)

(Jh, ∂xφh) = 0,(2.2b)

ε2

(
∂x(

√
nh)

I , ∂x

(
φh√
nh

)I)
= (Gh − Vh, φh)h ,(2.2c)

λ2 (∂xVh, ∂xφh) = (nh − Cdop, φh)h(2.2d)
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for all φh ∈ Xh and τh ∈ Σh.
The discretization of the generalized Slotboom variable u is given by uh =(

eGh nh
)I

.
We define the piecewise constant function Ḡh by

eḠh |Ii =
1

hi

∫
Ii

eGh dx.

Using that the discrete current density Jh is constant on each element and the identity

Gh = log

(
uh
nh

)I
= log(uh)

I − log(nh)
I ,

we can rewrite (2.2) equivalently as follows:
Find nh ∈ nD +Xh, Vh ∈ VD +Xh, uh ∈ uD +Xh, and Gh ∈ GD +Xh such that

(
e−Ḡh∂xuh, ∂xφh

)
= 0,(2.3a)

ε2

(
∂x(

√
nh)

I , ∂x

(
φh√
nh

)I)
+
(
log(nh)

I , φh
)
h

=
(
log(uh)

I − Vh, φh
)
h
,(2.3b)

λ2 (∂xVh, ∂xφh) = (nh − Cdop, φh)h .(2.3c)

Remark 2. Formally, we deduce from (2.2c) that for ε = 0 it holds that Gh ≡ Vh
and the mixed finite element scheme reduces to the classical one. Note that in contrast
to the classical SG scheme, (2.3a) determines the unknown corrected potential Gh,
while (2.3b) is now the one for the electron density nh.

Remark 3. The nonlinear discretization scheme developed in [9, 4] is based on
finite differences and differs in the discretization of (2.3b). There, additionally some
kind of exponential fitting is used for this equation; i.e., the electron density is approx-
imated by an exponential function on each element. The scheme performs extremely
well especially for large grid-spacings, but so far no numerical analysis is available. It
is worth noting that an exponential transformation (n = exp(w)) was also employed
in the study of the transient problem [27, 28], but a numerical analysis for the fully
discrete tranformed system is left for future research.

3. Existence and convergence of discrete solutions. We show that the
nonlinear discrete system (2.3) possesses at least one solution and we derive a priori
bounds on the sequence of discrete solution which ensure that there exists a sub-
sequence converging to the continuous solution. The existence proof is based on a
variational argument, which also allows to derive the desired a priori bounds.

We state the main theorem of this section establishing existence of a discrete
solution and its convergence.

Theorem 3.1. For each h > 0 there exists a discrete solution (nh, Vh, Gh, uh) ∈
(nD, VD, GD, uD) + X4

h of (2.3). Further, there exists a subsequence, again denoted
by (nh, Vh, Gh, uh), such that(

(
√
nh)

I
, Vh, Gh, uh

)
→ (√

n, V,G, u
)

in
[
H1(Ω)

]4
,

for h→ 0, where (n, V,G, u) ∈ (nD, VD, GD, uD) +X4 solves the continuous problem
(2.1).
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Corollary 3.2. The sequence of discrete current densities (Jh) possesses a
subsequence such that Jh → J in L2(Ω) for h→ 0.

Remark 4. Generally, we cannot expect convergence of the whole sequence, since
the continuous as well as the discrete QDD model may admit for multiple solutions.
Uniqueness can only be proven near to the thermal equilibrium state, i.e., for small
applied biasing voltages Vext [34].

For the existence proof we employ Brouwer’s fixed point theorem. We define the
closed, bounded, and convex set

Uh def
= {uh ∈ uD +Xh : u ≤ uh ≤ u} ,

where the lower and upper bound are given by

u
def
= min

∂Ω
eVDnD, u

def
= max

∂Ω
eVDnD.

On this set we define the fixed point mapping Th : Uh → Uh, where uh = Th(wh)
is calculated via the following iteration:

1. Find (nh, Vh) ∈ (nD, VD) +X2
h as the solution of

ε2

(
∂x(

√
nh)

I , ∂x

(
φh√
nh

)I)
+
(
log(nh)

I , φh
)
h

=
(
log(wh)

I − Vh, φh
)
h
,

(3.1a)

λ2 (∂xVh, ∂xφh) = (nh − Cdop, φh)h(3.1b)

for all φh ∈ Xh.
2. Set Gh = log(wh)

I − log(nh)
I .

3. Find uh ∈ uD +Xh as the solution of(
e−Ḡh∂xuh, ∂xφh

)
= 0(3.2)

for all φh ∈ Xh.

3.1. Well-posedness of the fixed point mapping. The well-posedness of the
first step is the content of the following result, which also provides uniform bounds
on the electron density nh and the potential Vh.

Lemma 3.3. Let wh ∈ Uh be given. Then there exists a unique solution (nh, Vh) ∈
(nD, VD)+X2

h of the nonlinear system (3.1). Further, there exists a constant θ ∈ (0, 1),
independent of h, such that

θ ≤ nh ≤ 1/θ,
∥∥∥(√nh)I∥∥∥

H1(Ω)
≤ 1/θ, ‖Vh‖H1(Ω) ≤ 1/θ.(3.3)

Proof. For the proof we employ a variational argument following the ideas in [36].
Let H(s) be a primitive of log(s)I with H ≥ 0. We introduce the auxiliary variable

ρh
def
=

√
nh. On the closed set

Rh
def
=
{
ρh : ρ2

h ∈ nD +Xh, ρh ≥ 0
}
,

we define the functional

E(ρ)
def
= ε2

∫
Ω

∣∣∂xρI ∣∣2 dx+

N∑
i=0

ωiH(ρ2
i )

+
λ2

2

∫
Ω

∣∣∂xVh[ρ2 − Cdop]
∣∣2 dx−

N∑
i=0

ωi log(wi) ρ
2
i ,
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where Vh
def
= Vh[ρ

2 − Cdop] ∈ VD + Xh is the unique discrete solution of Poisson’s
equation λ2(∂xVh, ∂xφh) = (ρ2 − Cdop, φh)h for all φh ∈ Xh. Identifying ρ with its
vector of nodal values in R

N+1 one easily verifies that E possesses a unique minimizer
ρh ∈ Rh, since E is bounded from below, continuous, and convex with respect to ρ2

h

[34]. The minimizer also satisfies the Euler–Lagrange equation

ε2
(
∂xρ

I
h, ∂xφh

)
+
(
ρh log(ρ2

h)
I , φh

)
h

=
(
ρh(log(wh)

I − Vh[ρ
2 − Cdop]), φh

)
h

(3.4)

for all φh ∈ Xh.
Now we derive uniform estimates on the solution. In the following let θ ∈ (0, 1)

denote not necessarily identical constants, which are assumed to be independent of h.

Choosing ρD
def
=

√
nD ∈ Rh as a comparison function we clearly have E(ρh) ≤ E(ρD),

from which we deduce

ε2
∫

Ω

∣∣∂xρIh∣∣2 dx+
λ2

2

∫
Ω

∣∣∂xVh[ρ2
h − Cdop]

∣∣2 dx+

N∑
i=0

ωiH(ρ2
i )

≤ E(ρD) + |log(u)| (ρh, ρh)h .
This yields immediately the existence of a constant θ ∈ (0, 1), independent of h, such
that ∥∥∂xρIh∥∥L2(Ω)

≤ 1/θ and ‖∂xVh‖L2(Ω) ≤ 1/θ.

Employing Sobolev’s embedding theorem in one-dimensional space [2], i.e., H1(Ω) ↪→
C0,β(Ω̄), β ∈ [0, 1/2), we find a uniform constant θ ∈ (0, 1) with∥∥ρIh∥∥C0,β(Ω̄)

≤ 1/θ and ‖Vh‖C0,β(Ω̄) ≤ 1/θ.

A direct calculation finally yields ‖nh‖L∞(Ω) ≤ 1/θ, for some uniform constant θ ∈
(0, 1).

Next we prove the uniform positivity of ρh. Let [φ]− denote the linear interpolant

of φ− def
= min(0, φ). Testing (3.4) with φh = [ρh − ρ]− for ρ > 0 yields

ε2
(
∂xρ

I
h, ∂x[ρh − ρ]−

)
=
([− log(ρ2

h)
I + log(wh)

I − Vh[ρ
2
h − Cdop]

]
ρh, [ρh − ρ]−

)
h
,

which can be estimated as follows:

ε2
(
∂xρ

I
h, ∂x[ρh − ρ]−

) ≤ N∑
i=0

[
ωi(− log(ρ2

i ) + log(u) − 1/θ)ρi(ρi − ρ)−
]

≤ 0

if we choose ρ2 = e−1/θu. Further we calculate

(
∂xρ

I
h, ∂x[ρh − ρ]−

)
=

N∑
i=0

hi(ρi+1 − ρi)
[
(ρi+1 − ρ)− − (ρi − ρ)−

]
≥

N∑
i=0

hi
∣∣(ρi+1 − ρ)− − (ρi − ρ)−

∣∣2 .



1656 RENÉ PINNAU

Hence,

N∑
i=0

hi
∣∣(ρi+1 − ρ)− − (ρi − ρ)−

∣∣2 ≤ 0,

which implies (ρi+1 − ρ)− = (ρi − ρ)−, i ∈ {0, . . . , N − 1} , and due to the positivity
of ρD we have

(ρi − ρ)− ≡ 0 for all i ∈ {0, . . . , N} .

Thus, it holds that, ρh ≥ ρ and nh ≥ ρ2, respectively.
An easy consequence of Lemma 3.3 is the following result, which establishes uni-

form L∞(Ω)-bounds on the discrete generalized potential Gh.
Corollary 3.4. Let wh ∈ Uh be given. Then there exist uniform bounds G,G >

0, independent of h, such that

G ≤ Gh ≤ G.(3.5)

Further, Corollary 3.4 and standard results from elliptic theory [16, 24] yield the
unique solvability of (3.2).

Lemma 3.5. Let Gh ∈ GD+Xh be given with Gh > G uniformly in h. Then there
exists a unique solution uh ∈ Uh of (3.2). Further, there exists a constant θ ∈ (0, 1),
independent of h, such that

‖uh‖H1(Ω) ≤ 1/θ.(3.6)

3.2. Proof of the existence theorem. The results derived so far ensure the
well-posedness of the fixed point mapping and we are now in the position to prove
the convergence theorem.

Proof of Theorem 3.1. First we note that the fixed point mapping Th is well
defined and continuous due to Lemma 3.3, Corollary 3.4, and Lemma 3.5.

Identifying uh with its vector of nodal values in R
N+1 we deduce the existence of

a fixed point uh ∈ Uh from Brouwer’s fixed point theorem [38], since Uh is a closed,
convex and compact subset of R

N+1.
The uniform bounds given in Lemma 3.3, Corollary 3.4, and Lemma 3.5 imply

the existence of a subsequence (ρhk
, Vhk

, Ghk
, uhk

) such that(
ρIhk

, Vhk
, Ghk

, uhk

)
⇀ (ρ, V,G, u) weakly in

[
H1(Ω)

]4
,

for hk → 0, where (ρ2, V,G, u) ∈ (nD, VD, GD, uD) +X2
h.

These convergences are by far sufficient to pass to the limit in (2.3): due to
Sobolev’s embedding theorem we have ρIhk

→ ρ and also ρhk
→ ρ in L∞(Ω), such

that we can deduce the strong H1(Ω) convergence of (ρIhk
) from (3.4). Standard

results from elliptic theory [24] yield

Vhk
→ V in H1(Ω),

uhk
→ u in H1(Ω),

and finally Ghk
→ G in H1(Ω) for hk → 0.

Hence, (ρ2, V,G, u) is in fact a solution of (2.3), which ends the proof.
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3.3. Convergence rates. For completeness we also state a result establishing
convergence rates for the finite element discretization (2.2). Since we consider a fully
nonlinear system of equations which may admit multiple solutions, we have to impose
an additional assumption on the isolatedness of the continuous solution.

Theorem 3.6. Let (n, V,G, u) ∈ [H2(Ω)
]4

be a solution of the continuous prob-
lem and assume that the Fréchet derivative (I−DT )(u) ∈ L(H1(Ω), H1(Ω)) of I−T :
H1(Ω) → H1(Ω) at u is boundedly invertible. Then there exists a constant h0 > 0
such that for h < h0 there exists a solution (nh, Vh, Gh, uh) of the discrete problem
(2.3). Further, there exists a constant c > 0, independent of h, such that

‖n− nh‖H1(Ω) + ‖V − Vh‖H1(Ω) + ‖u− uh‖H1(Ω) ≤ c h.(3.7)

The proof can be found in [32]. Note that here the constant c generally depends
on ε, such that the performance of the semiclassical limit is not possible on this level.
In the next section we will use different techniques to overcome this problem.

4. Semiclassical limit—Uniform convergence. In this section we provide
estimates independent of the parameter ε, which allow to perform the semiclassical
limit in the numerical scheme recovering the classical SG discretization.

We need estimates on the discrete solution, which are independent of ε and h,
generalizing the estimates given in section 3. Examining carefully the proofs of that
section, we conclude that they crucially depend on ε, since we exploited the mono-
tonicity of the quantum Bohm potential. But in fact we can introduce a different fixed
point mapping. The key idea is to reinterpret the equation for n as the one for G and
vice versa. This yields the fixed point map N : nD +X → nD +X with N(m) = n,
where given m ∈ nD +X the solution n is calculated via the following iteration:

1. Find V ∈ VD +X such that

λ2

∫
Ω

∂xV ∂xφ dx =

∫
Ω

(m− Cdop)φ dx(4.1a)

for all φ ∈ X.
2. Find (n,G) ∈ (nD, GD) +X2 such that

−
∫

Ω

n∂xG∂xφ dx−
∫

Ω

∂xn∂xφ dx = 0,(4.1b)

ε2
∫

Ω

∂x
√
n∂x

(
φ√
n

)
dx =

∫
Ω

(G− V )φ dx(4.1c)

for all φ ∈ X.
Remark 5. The reader easily verifies that the fixed point mapping N is well

defined and possesses a fixed point exploiting the relation G = F − log(n). Hence,
(4.1) is just a reformulation of (1.2).

Also the discrete system (2.2) can be reformulated in the former manner:
Find nh ∈ nD +Xh, Vh ∈ VD +Xh, and Gh ∈ GD +Xh such that,

−
∫

Ω

∂xnh ∂xφh dx−
∫

Ω

nh ∂xGh∂xφh dx = 〈fh, φh〉 ,(4.2a)

ε2
∫

Ω

∂x(
√
nh)

I ∂x

(
φh√
nh

)I
dx = (Gh − Vh, φh)h,(4.2b)

λ2

∫
Ω

∂xVh ∂xφh dx = (nh − Cdop, φh)h(4.2c)
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for all φh ∈ Xh.
Here, the right-hand side fh is given by

〈fh, φh〉 def
=

∫
Ω

e−Gh∂x
(
eGhnh

)
∂xφh dx−

∫
Ω

e−Ḡh∂x
(
eGhnh

)I
∂xφh dx.

The main result of this section reads as follows.
Theorem 4.1. Let (n, V,G, u) ∈ [H2(Ω)

]4
be a solution of the continuous prob-

lem (1.2) and assume that the Fréchet derivative (I −DN)(n) ∈ L(H1(Ω), H1(Ω)) of
the mapping I −N : H1(Ω) → H1(Ω) at a solution n is uniformly bounded invertible,
i.e., ∥∥(I −DN)−1

∥∥
L(H1(Ω),H1(Ω))

≤M,

where M > 0 is independent of ε.
Then there exists a constant c > 0 such that for each 0 < ε < ε0 with ε0 =

ε0(h) > 0 we have the uniform estimates

‖n− nh‖H1(Ω) ≤ c h,(4.3a)

‖V − Vh‖H1(Ω) ≤ c h,(4.3b)

‖G−Gh‖H1(Ω) ≤ c h,(4.3c)

‖u− uh‖H1(Ω) ≤ c h,(4.3d)

‖J − Jh‖L2(Ω) ≤ c h.(4.3e)

The proof of Theorem 4.1 is done in several steps.

4.1. Regularity of weak solutions. First, we show that a weak solution of

system (2.1) is in fact in
[
H2(Ω)

]4
and that the stronger norm is also uniformly

bounded in ε. This generalizes the results given in [1].
Theorem 4.2. Let (n, V,G, J) be a weak solution of (2.1). Then it holds that

(n, V,G) ∈ [H2(Ω)
]3

and there exists a constant K > 0, independent of ε, such that

‖n‖H2(Ω) + ‖V ‖H2(Ω) + ‖G‖H2(Ω) ≤ K.

Proof. We eliminate G and J in (1.4) and introduce the auxiliary ρ =
√
n, which

yields the fourth-order equation

ε2ρxxxx − ε2
ρ2
xx

ρ
− 2ρxx − 2

ρ2
x

ρ
− 2ρxVx − ρVxx = 0

supplemented with boundary conditions

ρ = ρD, ρxx = 0 on ∂Ω.

This equation possesses a unique weak solution ρ ∈ H4(Ω) (see [27]). Testing the
fourth-order equation with φ = −ρxx we get

ε2
∫

Ω

ρ2
xxx dx+ ε2

∫
Ω

ρ3
xx

ρ
dx+ 2

∫
Ω

ρ2
xx dx+ 2

∫
Ω

ρ2
x

ρ
ρxx dx

+ 2

∫
Ω

ρxVxρxx dx+

∫
Ω

ρVxxρxx dx = 0.
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From the Gagliardo–Nierenberg inequality [24] we derive

‖ρx‖L4(Ω) ≤ c1 ‖ρ‖1/4
H2(Ω) ‖ρ‖3/4

H1(Ω) ,

with c1 = c1(Ω) > 0, which yields, using Poincaré’s inequality,

2

∫
Ω

ρ2
x

ρ
ρxx ≤ 2

ρ
‖ρx‖2

L4(Ω) ‖ρxx‖L2(Ω)

≤ 2
c2(Ω)

ρ
‖ρ‖3/2

H2(Ω) ‖ρ‖3/2
H1(Ω)

≤ 1

2
‖ρ‖2

H2(Ω) + 2
c22
ρ2

‖ρ‖6
H1(Ω) .

Note that the upper and lower bounds ρ ≤ ρ ≤ ρ are also uniform in ε (see [1]).
Further, the Gagliardo–Nierenberg inequality gives

‖ρxx‖L3(Ω) ≤ c3(Ω) ‖ρ‖7/12
H3(Ω) ‖ρ‖5/12

H1(Ω) ,

which yields

ε2
∫

Ω

ρ3
xx

ρ
≤ ε2

ρ
‖ρxx‖3

L3(Ω)

≤ ε2c3
ρ

‖ρ‖7/4
H3(Ω) ‖ρ‖5/4

H1(Ω)

≤ ε2

2
‖ρ‖2

H3(Ω) +
ε2c23
2ρ

‖ρ‖10
H1(Ω) .

Finally, we derive from Sobolev’s embedding theorem and standard regularity results
[24]

2

∫
Ω

ρxVxρxx ≤ 2 ‖ρx‖L2(Ω) ‖ρxx‖L2(Ω) ‖Vx‖L∞(Ω)

≤ 1

4
‖ρxx‖2

L2(Ω) + c4 ‖ρ‖2
H1(Ω) ‖V ‖2

H2(Ω)

≤ 1

4
‖ρxx‖2

L2(Ω) + c4 ‖ρ‖4
H1(Ω)

and ∫
Ω

ρVxxρxx = − 1

λ2

∫
Ω

ρρxx(ρ
2 − Cdop)

≤ 1

λ2
‖ρ‖L∞(Ω) (‖ρ‖2

L∞(Ω) + ‖Cdop‖L∞(Ω)) ‖ρxx‖L2(Ω)

≤ 1

8
‖ρxx‖2

L2(Ω) + c5(λ, ρ, Cdop).

Combining these estimates and using Poincaré’s inequality we get

ε2

2

∫
Ω

ρ2
xxx +

1

4

∫
Ω

ρ2
xx ≤ c6(Ω, λ, ρ, ‖ρ‖H1(Ω)),
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where c6 is independent of ε.
Hence, we established ‖ρ‖H2(Ω) ≤ K̃ for some K̃ > 0 uniformly in ε and due

to the uniform upper and lower bounds, it even holds that ‖n‖H2(Ω) ≤ K. The

uniform boundedness of ‖V ‖H2(Ω) and ‖G‖H2(Ω) follows now from the standard elliptic
theory.

4.2. Uniform bounds on the discrete solution. Secondly, we derive uniform
bounds for the discrete solution of system (2.2).

Lemma 4.3. There exist constants K > 0 and θ ∈ (0, 1), independent of ε and
h, such that∥∥(√nh)I∥∥H1(Ω)

+ ‖Vh‖H1(Ω) + ‖uh‖H1(Ω) + ‖Gh‖H1(Ω) ≤ K,

θ ≤ nh, uh ≤ 1/θ.

Proof. By construction we have u ≤ uh ≤ u. Further, infRh
E is also uniformly

bounded in ε, such that each term of E(ρh) is uniformly bounded. This implies
‖Vh‖H1(Ω) ≤ K, where the constant K > 0 is independent of ε and h. Mimicking the

proof of Lemma 3.3 we get θ ≤ nh, where θ ∈ (0, 1) is independent of ε and h. This
yields Gh ≤ 1/θ, which in turn implies ‖uh‖H1(Ω) ≤ K.

Now let ξh ∈ Rh be the unique minimizer of the classical energy functional

Eclass(ξ) =

∫
Ω

H(ξ2) dx+
λ2

2

∫
Ω

∣∣∂xVh[ξ2 − Cdop]
∣∣2 dx−

∫
Ω

log(uh)
I ξ2 dx.

For ρh =
√
nh it holds that E(ρh) ≤ E(ξh) and Eclass(ξh) ≤ Eclass(ρh), which implies∫

Ω

∣∣∂xρIh∣∣2 dx ≤
∫

Ω

∣∣∂xξIh∣∣2 dx.

In fact, we can calculate ξh explicitly from ξ2h = (uh e
−Vh)I . The bounds derived so

far ensure the uniform boundedness of ξh in H1(Ω) with respect to ε and h.
Hence, we finally get

∥∥(√nh)I∥∥H1(Ω)
≤ K and nh ≤ 1/θ as well as −1/θ ≤ Gh.

From Gh = log(uh)
I − log(nh)

I we deduce that ‖Gh‖H1(Ω) ≤ K by a direct calcula-
tion.

4.3. Consistency of the discrete fixed point operator. Third, we introduce
some auxiliary problems, which allow to derive the consistency of the two steps of the

fixed point mapping N . Let n̂
def
= N(nh) ∈ nD +X and define n̂h ∈ nD +X as the

solution of

−
∫

Ω

∂xn̂h ∂xφ dx−
∫

Ω

n̂h ∂xGh ∂xφ dx = 〈fh, φ〉

for all φ ∈ X. The functions V̂ and Ĝ as well as V̂h and Ĝh are defined in analogy.
Standard results for finite element approximations of linear elliptic equations di-

rectly yield the following result [16].
Lemma 4.4. Let (n̂h, V̂h) be defined as above and (nh, Vh) is a discrete solution

of (4.2). Then there exists a constant c > 0, independent of ε and h, such that

‖n̂h − nh‖H1(Ω) +
∥∥∥V̂h − Vh

∥∥∥
H1(Ω)

≤ ch.
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Further, we introduce the auxiliary variables û
def
= eĜn̂ ∈ uD + X and ûh

def
=

eGh n̂h ∈ uD +X, which fulfill

−
∫

Ω

e−Ĝ∂xû ∂xφ dx = 0 and −
∫

Ω

e−Gh∂xûh ∂xφ dx = 〈fh, φ〉

for all φ ∈ X.

Taking the difference of these two equations and testing with φ = û − ûh ∈ X
yield

e−Ĝ ‖∂x(û− ûh)‖L2(Ω) ≤
∥∥∥e−Ĝ − e−Gh

∥∥∥
L∞(Ω)

‖∂xûh‖L2(Ω) + ‖fh‖L2(Ω) ,

from which we deduce

‖û− ûh‖H1(Ω) ≤ c

{∥∥∥Ĝ−Gh

∥∥∥
H1(Ω)

+ h

}
.(4.4)

Further, we have by a direct calculation

‖∂x(n̂− n̂h)‖L2(Ω) ≤ c

(
‖∂x(û− ûh)‖L2(Ω) +

∥∥∥Ĝ−Gh

∥∥∥
H1(Ω)

)
(4.5)

for some constant c > 0.

We need the following consistency result, which can be easily derived by cumber-
some calculations and thus are omitted here for the sake of a compact presentation.

Lemma 4.5. There exists a constant c > 0, independent of ε and h, such that

sup
‖φ‖H1(Ω)=1

|〈fh, φ〉| ≤ ch.

Next, we prove the key estimate, which will finally allow for the derivation of the
uniform convergence rates.

Lemma 4.6. Let Ĝ be defined as above and Gh a solution of (4.2). Then there
exists a constant c = c(n̂, V̂ , Ĝ) > 0, independent of ε and h, such that∥∥∥Gh − ĜI

∥∥∥
L2(Ω)

≤ c
(
h2 + h−1ε2 ‖n̂− nh‖H1(Ω) + ε2

)
.

Proof. We define

〈A(n), φ〉 def
= ε2

∫
Ω

∂x(
√
n) ∂x

(
φ√
n

)
dx,

〈Ah(nh), φ〉 def
= ε2

∫
Ω

∂x(
√
nh)

I ∂x

(
φ√
nh

)I
dx.

First, we estimate the difference Gh − ĜI . Due to (4.1) it holds that

〈Ah(nh), φh〉 = (Gh − Vh, φh)h for all φh ∈ Xh,

〈A(n̂), φ〉 =

∫
Ω

(Ĝ− V̂ )φ dx for all φ ∈ X.
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Testing the difference of these two equations with φ = Gh − ĜI ∈ Xh yields

〈Ah(nh) −A(n̂), φ〉
=
(
Gh − Ĝ− (Vh − V̂ ), φ

)
+ (Gh − Vh, φ) − (Gh − Vh, φ)h

=
(
Gh − ĜI , φ

)
+
(
ĜI − Ĝ, φ

)
−
(
Vh − V̂ , φ

)
+ (Gh − Vh, φ) − (Gh − Vh, φ)h ,

which implies, due to Lemma 2.2,

∥∥∥Gh − ĜI
∥∥∥2

L2(Ω)
≤
∥∥∥ĜI − Ĝ

∥∥∥
L2(Ω)

‖φ‖L2(Ω) +
∥∥∥Vh − V̂

∥∥∥
L2(Ω)

‖φ‖L2(Ω)

+ c1h
2 ‖∂x(Gh − Vh)‖L2(Ω) ‖∂xφ‖L2(Ω) + 〈Ah(nh) −Ah(n̂), φ〉

+ 〈Ah(n̂) −A(n̂), φ〉 .

We estimate termwise. First,

|〈Ah(nh) −Ah(n̂), φ〉| = ε2
∫

Ω

∂x

(√
nh −

√
n̂
)I
∂x

(
φ√
n̂

)I
dx

+ ε2
∫

Ω

∂x (
√
nh)

I
∂x

(
φ√
nh

− φ√
n̂

)I
dx

≤ ε2
∥∥∥∥∂x (√nh −√

n̂
)I∥∥∥∥

L2(Ω)

∥∥∥∥∥∂x
(
φ√
n̂

)I∥∥∥∥∥
L2(Ω)

+ ε2
∥∥∥∂x (

√
nh)

I
∥∥∥
L2(Ω)

∥∥∥∥∥∂x
(

φ√
nh

− φ√
n̂

)I∥∥∥∥∥
L2(Ω)

which can be estimated using Proposition 2.1 by

|〈Ah(nh) −Ah(n̂), φ〉| ≤ ε2c2

∥∥∥∂x (√nh −√
n̂
)∥∥∥

L2(Ω)

∥∥∥∥∂x( φ√
n̂

)∥∥∥∥
L2(Ω)

+ ε2c3 ‖∂x (
√
nh)‖L2(Ω)

∥∥∥∥∂x( φ√
nh

− φ√
n̂

)∥∥∥∥
L2(Ω)

and employing the uniform bounds derived so far

|〈Ah(nh) −Ah(n̂), φ〉| ≤ ‖nh − n̂‖H1(Ω)

{
ε2c4 ‖φ‖H1(Ω) + ε2c5 ‖∂xφ‖L2(Ω)

}
≤ ε2c6 ‖nh − n̂‖H1(Ω) ‖φ‖H1(Ω)

for some uniform constants ci > 0, i = 1, . . . , 6.
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Second, employing successively Proposition 2.1 we get

|〈Ah(n̂) −A(n̂), φ〉| = ε2
∫

Ω

∂x

((√
n̂
)I

−
√
n̂

)
∂x

(
φ√
n̂

)
dx

+ ε2
∫

Ω

∂x

(√
n̂
)I
∂x

[(
φ√
n̂

)I
−
(
φ√
n̂

)]
dx

≤ ε2
∥∥∥∥∂x((√n̂)I −√

n̂

)∥∥∥∥
L2(Ω)

∥∥∥∥∂x( φ√
n̂

)∥∥∥∥
L2(Ω)

+ ε2
∥∥∥∥∂x (√n̂)I∥∥∥∥

L2(Ω)

∥∥∥∥∥∂x
[(

φ√
n̂

)I
−
(
φ√
n̂

)]∥∥∥∥∥
L2(Ω)

≤ ε2c7h
∥∥∥√n̂∥∥∥

H2(Ω)
‖φ‖H1(Ω) + ε2c8h

∥∥∥∥ φ√
n̂

∥∥∥∥
H2(Ω)

≤ c9 ε
2h ‖n̂‖H2(Ω) ‖φ‖H1(Ω)

for some uniform constants ci > 0, i = 7, 8, 9.

Combining the estimates derived so far we have∥∥∥Gh − ĜI
∥∥∥
L2(Ω)

≤ ε2c6h
−1 ‖nh − n̂‖H1(Ω) + c9 ε

2

+
∥∥∥ĜI − Ĝ

∥∥∥
L2(Ω)

+
∥∥∥Vh − V̂

∥∥∥
L2(Ω)

+ c1h ‖∂x(Gh − Vh)‖L2(Ω) ,

where we employed the inverse estimate ‖φh‖H1(Ω) ≤ ch−1 ‖φh‖L2(Ω) for all φh ∈ Xh.
Finally, we use again Proposition 2.1 to end with∥∥∥Gh − ĜI

∥∥∥
L2(Ω)

≤ c10

{
ε2h−1 ‖nh − n̂‖H1(Ω) + ε2 + h2 + h

}
.

Next, we estimate the remaining difference nh − n̂.

Lemma 4.7. Let n̂ be defined as above and nh a solution of (4.2). Then there
exist constants c = c(n̂, V̂ , Ĝ, û) > 0, independent of ε and h, and ε0 = ε0(h) > 0
such that for ε < ε0 it holds that

‖nh − n̂‖H1(Ω) ≤ ch.

Proof. We estimate

‖nh − n̂‖H1(Ω) ≤ ‖nh − n̂h‖H1(Ω) + ‖n̂h − n̂‖H1(Ω)

and using Lemma 4.4 as well as (4.4) and (4.5)

‖nh − n̂‖H1(Ω) ≤ c1

{
‖û− ûh‖H1(Ω) +

∥∥∥Gh − Ĝ
∥∥∥
H1(Ω)

+ h

}
≤ c2

{∥∥∥Gh − Ĝ
∥∥∥
H1(Ω)

+ h

}
≤ c2

{∥∥∥Gh − ĜI
∥∥∥
H1(Ω)

+
∥∥∥ĜI − Ĝ

∥∥∥
H1(Ω)

+ h

}
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and employing Proposition 2.1 and the inverse estimate ‖φh‖H1(Ω) ≤ ch−1 ‖φh‖L2(Ω)

for all φh ∈ Xh, we have using Lemma 4.6

‖nh − n̂‖H1(Ω) ≤ c3

{
h
∥∥∥Ĝ∥∥∥

H2(Ω)
+ h−1

∥∥∥Gh − ĜI
∥∥∥
L2(Ω)

+ h

}
≤ c4

{
h+ h−2ε2 ‖nh − n̂‖H1(Ω) + h−1ε2

}
for some uniform constants ci > 0, i = 1, . . . , 4. Now we assume

ε2 ≤ ε20
def
=

h2

2c4
,

which yields the desired estimate ‖nh − n̂‖H1(Ω) ≤ ch, with c = 2c4 + 1.

4.4. Proof of the uniform convergence result. Now we are in the position
to prove the main theorem of this section.

Proof of Theorem 4.1. We have the identity

nh − n+N(n) −N(nh) = (I −DN(ξ))(nh − n) = nh − n̂h + n̂h − n̂,

which yields

‖n− nh‖H1(Ω) ≤
∥∥(I −DN)−1

∥∥
L(H1(Ω),H1(Ω))

‖nh − n̂‖H1(Ω) .

Hence, we have due to Lemma 4.7

‖n− nh‖H1(Ω) ≤ ch

for some constant c > 0, independent of ε and h. Finally, the other uniform estimates
follow from standard results for the approximation of elliptic equations.

5. Numerical results. In this section we present numerical simulations under-
lining the feasibility of the previously analyzed extended SG discretization. We study
a ballistic n+–n–n+ diode fabricated of GaAs and a resonant tunneling structure.
Both devices consist of a channel and source and drain contact regions, which are
assumed to be equally long. The channel is moderately doped with a doping density
of 5 · 1021 m−3, while the drain and source are highly doped with 1024 m−3. The res-
onant tunneling diode has the same underlying structure, but the channel is replaced
by a quantum well sandwiched between two barriers. This resonant barrier structure
is itself sandwiched between two spacer layers (see Figure 5.1). The physical effect
of the barriers is a shift in the Fermi level, which can be modeled by an additional
step function B added to the electrostatic potential; i.e., V is replaced by V + B.
Since, we need more smoothness of B for the numerical analysis, we used instead a
smoothed function B, which is depicted together with the doping profile in Figure 5.2.
We choose a scaled Debye length of λ2 = 10−2 and set the scaled biasing voltage to
Vext = 5. To emphasize the large gradients occurring in the electron density in the
case of the resonant tunneling diode, we show in Figure 5.2 also the computed den-
sities for the different values of the scaled Planck constant ε. These are in fact a
consequence of the barrier function and can only be smoothed for large ε. Note that
for ε2 = 10−5 there is already no visible difference to the classical solution.

Remark 6. There is numerical evidence that the QDD model shows negative
differential resistance for some resonant tunneling diodes [34, 15], but one has to admit
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Fig. 5.1. Diode structure (left: ballistic, right: RTD).
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Fig. 5.2. RTD (left: doping profile, barriers, right: electron densities).

that the model is far from giving accurate quantitative results for this application.
This stems from the fact that the model is mainly designed for scattering dominated
transport and no quantum coherence is included. Nevertheless, this device is a good
test example due to the large gradients in the electron density near to the barriers.

For the computations we used several uniform grids of variable size and the dis-
cretization (2.2). To investigate the semiclassical limit numerically we decreased the
scaled squared Planck constant ε2 from 10−1 to 0. The discrete nonlinear system is
solved with a damped Newton iteration, which proved to be stable. In Figure 5.3 to
Figure 5.5 we present the errors in the electron densities n, the electrostatic potentials
V , and the generalized potentials G measured in the H1(Ω)-seminorm. Further, we
depict in Figure 5.6 the error of the current densities J in the L2(Ω)-norm. The left
picture always corresponds to the ballistic diode, while the right one shows the error
for the resonant tunneling structure. Since in both cases an analytical solution is not
available, we take the solution on the finest grid (h = 1/4096) as the “exact” solution.

The numerical results show in both cases that the error behaves like O(h) for
all independent variables. Further, the scheme is stable in the semiclassical limit
since the convergence rate is not affected by the size of ε. Note that the error in
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Fig. 5.3. Error of the electron density (left: ballistic, right: RTD).

10
–4

10
– 3

10
– 2

10
– 1

10
– 3

10
– 2

10
– 1

10
0

h

|V
 –

V
h
| 1

,2

ε2 = 10– 1

ε2 = 10– 3

ε2 = 10– 5

ε2 = 0

10
–4

10
– 3

10
– 2

10
– 1

10
– 3

10
– 2

10
– 1

10
0

h

|V
–
 V

h
| 1

,2

ε2 = 10– 1

ε2 = 10– 3

ε2 = 10– 5

ε2 = 0

Fig. 5.4. Error of the potential (left: ballistic, right: RTD).
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Fig. 5.6. Error of the current density (left: ballistic, right: RTD).

the electron density and the generalized potential of the RTD is much more affected
by the size of ε, which is a consequence of the additional barrier function B. Most
interestingly, in both cases the error in the current density even does not depend on
ε. This observation is essential from the engineering point of view, since it allows for
an accurate computation of current voltage characteristics also in the semiclassical
limit.

6. Conclusions. We presented and analyzed a new stabilized finite element dis-
cretization for the quantum drift diffusion model, which is a generalization of the
well-known Scharfetter–Gummel discretization for the classical drift diffusion model.
The scheme yields the expected approximation errors and allows for the performance
of the semiclassical limit on the discrete level, in such a way that the error estimates
hold uniformly. The extension to bipolar devices is straightforward. Further, the
numerical scheme can be easily extended to space dimensions larger than one using,
e.g., the finite element spaces described in [12]. However, the proofs in this paper are
not directly extendible, since we employed embedding theorems and inverse estimates,
which crucially depend on the space dimension.
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[28] A. Jüngel and R. Pinnau, A positivity-preserving numerical scheme for a nonlinear fourth
order parabolic system, SIAM J. Numer. Anal., 39 (2001), pp. 385–406.

[29] P. A. Markowich, C. A. Ringhofer, and C. Schmeiser, Semiconductor Equations, 1st ed.,
Springer-Verlag, Wien, 1990.

[30] R. Pinnau, A note on boundary conditions for quantum hydrodynamic models, Appl. Math.
Lett., 12 (1999), pp. 77–82.

[31] R. Pinnau, A review on the quantum drift diffusion model, Transport Theory Statist. Phys.,
31 (2002), pp. 367–395.

[32] R. Pinnau, Convergence of a generalized Scharfetter–Gummel discretization for the quantum
drift diffusion model, submitted.

[33] R. Pinnau, A Scharfetter–Gummel type discretization of the quantum drift diffusion model,
Proc. Appl. Math. Mech., 2 (2003), pp. 37–40.

[34] R. Pinnau and A. Unterreiter, The stationary current-voltage characteristics of the quantum
drift-diffusion model, SIAM J. Numer. Anal., 37 (1999), pp. 211–245.

[35] D. Scharfetter and H. Gummel, Large signal analysis of a silicon read diode oscillator,
IEEE Trans. Elect. Devices, 15 (1969), pp. 64–77.

[36] A. Unterreiter, The thermal equilibrium solution of a generic bipolar quantum hydrodynamic
model, Comm. Math. Phys., 188 (1997), pp. 69–88.

[37] A. Wettstein, A. Schenk, and W. Fichtner, Quantum device-simulation with the density-
gradient model on unstructured grids, IEEE Trans. Elect. Devices, 48 (2001), pp. 279–284.

[38] E. Zeidler, Nonlinear Functional Analysis and Its Applications, 1st ed., Vol. II/A and II/B,
Springer-Verlag, Berlin, 1990.



ON GENERALIZING THE ALGEBRAIC MULTIGRID
FRAMEWORK∗

ROBERT D. FALGOUT† AND PANAYOT S. VASSILEVSKI†

SIAM J. NUMER. ANAL. c© 2004 Society for Industrial and Applied Mathematics
Vol. 42, No. 4, pp. 1669–1693
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1. Introduction. The algebraic multigrid (AMG) method was originally devel-
oped to solve general matrix equations using multigrid principles [6, 17, 3, 18]. The
fact that it used only information in the underlying matrix made it attractive as a
potential black box solver, a notion that has largely been abandoned. Instead, a wide
variety of AMG algorithms have been developed that target different problem classes
and have different robustness and efficiency properties.

In recent years, much work has been done to increase the robustness of AMG
methods. The classical AMG method of Ruge and Stüben [18] was built upon heuris-
tics based on properties of M-matrices. Although this algorithm works remarkably
well for a wide variety of problems [10], the M-matrix assumption still limits its appli-
cability. To address this, a new class of algorithms was developed based on multigrid
theory: AMGe (element-based AMG) [7, 14], element-free AMGe [12], and spectral
AMGe [9]. All of these algorithms (including Ruge–Stüben AMG) assume a basic
framework in their construction: they assume that relaxation is a simple pointwise
method, then they build the coarse-grid correction step to eliminate the so-called al-
gebraically smooth error left over by the relaxation process. In the AMGe methods,
this is done with the help of a measure and an associated approximation property
that, if satisfied, implies uniform multigrid convergence. The approximation property
induces a new heuristic that relates the accuracy of interpolation to the spectrum of
the system matrix, namely, that eigenmodes with small associated eigenvalue must
be interpolated well.

In this paper, we present a theory that generalizes the AMG framework to ad-
dress even broader classes of problems. For example, the eddy current formulation
of Maxwell’s equations (when discretized using the common Nédélec finite elements)
has a particularly large (near) null space. In the previous framework, it would be
necessary to take all O(N) of the null-space components to the coarse grid, yield-
ing a nonoptimal method. This difficulty can be overcome by using non-pointwise
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smoothers that damp some of the null space components on the fine grid, leaving a
more manageable system to solve on the coarse grid. Examples include overlapping
block relaxation [1] and a form of Brandt’s distributive relaxation [5, 19] described
by Hiptmair in [13].

The theory presented here allows for more general smoothing processes, and
changes the above AMGe heuristic in a subtle but important way. It also allows for
general coarsening approaches, including vertex-based, cell-based, and agglomeration-
based approaches. Yet another aspect of the new theory and framework is compatible
relaxation, an idea originally proposed by Brandt [4]. We introduce several variants
of compatible relaxation and give theoretical justification for its use. The hope is
that this work will provide guidance in the development of new AMG methods able
to handle difficult problems such as Maxwell’s equations.

We assume that the reader is somewhat familiar with AMG research, as numerous
comparisons will be made to AMGe and other methods such as smoothed aggregation
[20]. In section 2, we introduce two new measures and provide two-level convergence
theory. In section 3, we analyze the min-max problem for the new measures. In sec-
tion 4, we discuss the process of building interpolation, and provide additional theory
to support this approach. In section 5, we show how to use compatible relaxation to
evaluate the measure and select coarse grids. In section 6, we present two examples
illustrating the application of the theory to real problems.

2. New measures and convergence theory. We begin with some notation.
Capital italic Roman letters (A,M,P,R) denote matrices and bold lowercase Roman
and Greek letters denote vectors (u,v, ε). Other lowercase letters denote scalars,
while capital calligraphic letters denote sets and spaces (C,F ,S). We represent the
standard Euclidean inner product by 〈·, ·〉 with associated norm ‖ · ‖ := 〈·, ·〉1/2. The
A-norm (also called the energy norm) is defined by ‖ · ‖A := 〈A·, ·〉1/2.

Consider solving via AMG the linear system

Au = f ,(2.1)

where A is a real symmetric positive definite (SPD) matrix, with u, f ∈ R
n. We

consider smoothers (relaxation methods) of the form

uk+1 = uk +M−1rk,(2.2)

where rk = f − Auk is the residual at the kth iteration. The error propagation for
this iteration is given by

ek+1 = (I −M−1A)ek.(2.3)

We also assume that (M+MT−A) is SPD. It is easy to see that this is a necessary and
sufficient condition for convergence (e.g., see the first line in the proof of Theorem 2.2),
and hence a reasonable assumption.

Let P : R
nc → R

n be the interpolation (or prolongation) operator, where R
nc is a

lower-dimensional (coarse) vector space, and define Q : R
n → R

n to be a projection
onto range (P ),

Q = PR,(2.4)

for some restriction operator R : R
n → R

nc such that RP = Ic, the identity on R
nc .

Note that R is not the multigrid restriction operator (we will use PT and the Galerkin
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procedure). Also note that the form of R will be important in the remaining sections
of the paper.

Define the following measure (we will introduce a second, simpler measure later):

µ(Q, e) :=
〈M(M +MT −A)−1MT (I −Q)e, (I −Q)e〉

〈Ae, e〉 .(2.5)

This measure differs from the AMGe measure in [7] by the inclusion of the term
M(M+MT −A)−1MT in the numerator. The additional term takes into account the
general relaxation process in (2.2). It also provides a natural scaling that eliminates
the need to pre-scale A to have diagonal equal one, as in the theory for AMGe.

We now prove that if the measure in (2.5) is bounded by a constant, then two-
level multigrid converges uniformly. Furthermore, a smaller measure yields faster
convergence. Denote the A-orthogonal projector onto range (P ) by

QA := P (PTAP )−1PTA,(2.6)

so that I −QA represents the error propagation matrix for the coarse-grid correction
step. We first prove the following lemma.

Lemma 2.1. Let Q be any projection onto range (P ). Assume that the following
approximation property is satisfied for some constant K:

µ(Q, e) ≤ K ∀e ∈ R
n \ {0}.(2.7)

If 〈Ae,v〉 = 0 ∀v ∈ range (P ), then

‖(M +MT −A)1/2M−1Ae‖2 ≥ 1

K
〈Ae, e〉.(2.8)

Proof. Note that range (Q) = range (P ), hence

〈Ae, Qv〉 = 0 ∀v ∈ R
n.(2.9)

Assume that (2.7) holds. From (2.9) and the Cauchy–Schwartz inequality, we have

〈Ae, e〉 = 〈Ae, (I −Q)e〉
= 〈(M +MT −A)1/2M−1Ae, (M +MT −A)−1/2MT (I −Q)e〉
≤ ‖(M +MT −A)1/2M−1Ae‖‖(M +MT −A)−1/2MT (I −Q)e‖
≤ ‖(M +MT −A)1/2M−1Ae‖K1/2〈Ae, e〉1/2.

The result (2.8) now follows by dividing through by 〈Ae, e〉K1/2 and squaring the
result.

Theorem 2.2. Assume that approximation property (2.7) is satisfied for some
constant K. Then K ≥ 1 and

‖(I −M−1A)(I −QA)e‖A ≤
(

1 − 1

K

)1/2

‖e‖A .(2.10)

Proof. We have the following identity:

‖(I −M−1A)e‖2
A= 〈Ae, e〉 − 〈Ae,M−1Ae〉

− 〈M−1Ae, Ae〉 + 〈AM−1Ae,M−1Ae〉
= 〈Ae, e〉 − 〈(M +MT −A)(M−1A)e, (M−1A)e〉.
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Replacing e with (I −QA)e and applying the result in Lemma 2.1 yield

‖(I −M−1A)(I −QA)e‖2
A ≤

(
1 − 1

K

)
‖(I −QA)e‖2

A

≤
(

1 − 1

K

)
‖e‖2

A .

To show that K ≥ 1, note that the identity at the beginning of the proof implies
(since norms are nonnegative)

‖(M +MT −A)1/2M−1Ae‖2 ≤ 〈Ae, e〉 .

The result follows by restricting e 	= 0 to be A-orthogonal to range (P ) and applying
Lemma 2.1.

The result in Theorem 2.2 is similar to the AMGe result in [7], but applies to
more general relaxation methods (than Richardson relaxation). As in AMGe, the
bound on the convergence factor approaches 1 as K becomes large, while a smaller K
yields a smaller bound on the convergence factor. Note, however, that neither the new
measure µ nor the corresponding convergence result reduces to the AMGe measure or
convergence result in the case of Richardson relaxation. To complete the connection
between the two theories, we now introduce a second, simpler measure,

µσ(Q, e) :=
〈σ(M)(I −Q)e, (I −Q)e〉

〈Ae, e〉 ,(2.11)

where σ(M) := 1
2 (M +MT ) is the symmetric part of M . Note that the term σ(M)

can be replaced equivalently by M , but the symmetric form of this measure is more
natural in the theory that follows. The relationship between the measures µ and µσ
is given in the next lemma.

Lemma 2.3. Assume that (M +MT −A) is SPD. Then,

µ(Q, e) ≤ ∆2

2 − ω
µσ(Q, e),(2.12)

where ∆ ≥ 1 measures the deviation of M from its symmetric part in the sense that

〈Mv,w〉 ≤ ∆〈σ(M)v,v〉1/2〈σ(M)w,w〉1/2,(2.13)

and where

0 < ω := λmax(σ(M)−1A) < 2.(2.14)

Proof. Note that since (M +MT −A) is SPD, then both σ(M) and σ(M−1) are
also SPD. From (2.13), letting v = M−1x and w = σ(M)−1x, we have that

〈σ(M)−1x,x〉2 ≤ ∆2〈σ(M)M−1x,M−1x〉〈σ(M)−1x,x〉.

Dividing both sides by 〈σ(M)−1x,x〉 yields

〈σ(M)−1x,x〉 ≤ ∆2〈MM−1x,M−1x〉
= ∆2〈M−Tx,x〉
= ∆2〈σ(M−1)x,x〉.
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From this and (2.14), we then have

µ(Q, e) =
〈M(M +MT −A)−1MT (I −Q)e, (I −Q)e〉

〈Ae, e〉
≤ max

x

〈M(M +MT −A)−1MTx,x〉
〈σ(M)x,x〉 µσ(Q, e)

≤
(

min
x

〈(M(M +MT −A)−1MT )−1x,x〉
〈σ(M−1)x,x〉

)−1

∆2µσ(Q, e)

=
∆2

λmin(σ(M−1)−1(2σ(M−1) −M−TAM−1))
µσ(Q, e)

=
∆2

2 − ω
µσ(Q, e).

Lemma 2.3 provides an obvious corollary to Theorem 2.2 for measure µσ. This
corollary is the analogue to the AMGe two-level convergence theory in [7]. To see
this, note that for a weighted Richardson iteration with weight ωr, we have that
M−1 = ωr‖A‖−1I. If we assume that the AMGe measure is bounded by some constant
Kr, then the lemma implies that ∆ = 1 and ω = ωr, and hence

µ(Q, e) ≤ ω−1
r (2 − ωr)

−1 ‖A‖Kr.

Applying Theorem 2.2 then yields the AMGe convergence result.

In order for µσ to be a useful measure in practice, we need the constants ω
and ∆ to be “good” constants. In particular, we want both constants to be mesh
independent, and we want ω to be bounded away from two. Bounding ω away from two
is always possible by using appropriate weighting factors in the relaxation method. In
the classical setting, this requirement is equivalent to satisfying a smoothing property;
in general, it means that the smoother must damp large eigenmodes of A. Note that
this does not preclude the smoother from also damping small eigenmodes (e.g., as
required for Maxwell’s equations).

To further elaborate on the constants ω and ∆, consider the discrete Laplacian
on a uniform grid in one, two, or three dimensions, i.e., the standard 3-pt, 5-pt, and
7-pt operators that arise from finite difference discretizations. First, define m :=
λmax(D

−1A), where D is the diagonal of A. For weighted Jacobi relaxation with
weighting factor 2/3, we have that ω = (2/3)m. Since m ≤ 2 for the Laplacian, then
ω ≤ 4/3. For Gauss–Seidel relaxation, let A = D + L + LT , where L is the strictly
lower-triangular part of A. Then, M = D + L implies that σ(M) = 1

2 (D + A), and
hence

ω = λmax[2(D +A)−1A] =
2

1 +m−1
.(2.15)

For the Laplacian, this again implies that ω ≤ 4/3. We can also use (2.15) to estimate
ω in more general settings. For example, in the case of finite elements, one can
show that m is not larger than the maximum number of element degrees of freedom.
Likewise for any sparse matrix A, one can show thatm is not larger than the maximum
number of nonzeros per row (column) of A.

The constant ∆ is equal to 1 when M is symmetric. As an example of a nonsym-
metric M , again, consider Gauss–Seidel. With m equal to the maximum number of
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nonzeros in a row (column) of A, and letting v = (vi), w = (wi), and A = (aij), we
have

〈Mv,w〉 ≤
∑

j≤i:aij �=0

|aij | |vj | |wi|

≤
∑

j≤i:aij �=0

√
ajj

√
aii|vj | |wi|

≤
⎡⎣ ∑
j≤i:aij �=0

ajj(vj)
2

⎤⎦1/2 ⎡⎣ ∑
j≤i:aij �=0

aii(wi)
2

⎤⎦1/2

≤ 1/2(m+ 1)〈Dv,v〉1/2〈Dw,w〉1/2
≤ 1/2(m+ 1)〈(D +A)v,v〉1/2〈(D +A)w,w〉1/2
= (m+ 1)〈σ(M)v,v〉1/2〈σ(M)w,w〉1/2.

3. The min-max problem. In this section, we analyze the optimal min-max
solution of the measures (2.5) and (2.11), and use the results as a discussion point for
relating and comparing the new theory to existing methods such as AMGe, spectral
AMGe, and smoothed aggregation [20]. We also introduce generalized notions of the
C-pt (coarse point) and F -pt (fine point) terminology used in the classical Ruge–
Stüben AMG algorithm. The material in this section serves as a launching pad for
the ideas and results in the remainder of the paper.

To analyze the min-max solution of (2.5) and (2.11), we analyze the following
base measure:

µ
X

(Q, e) :=
〈X(I −Q)e, (I −Q)e〉

〈Ae, e〉 ,(3.1)

where, here again, Q has the formQ = PR for some restriction operator R : R
n → R

nc

such that RP = Ic, and where X represents any given SPD matrix. In the remainder
of the paper, it will be important that we fix R so that it does not depend on P (as
in spectral AMGe). This operator defines the coarse-grid variables [4], uc = Ru, and
specifies, for example, whether they are a subset of the fine-grid variables (vertex-
centered), averages of fine-grid variables (cell-centered), or coefficients of fine-grid
basis functions (agglomeration, e.g., as in spectral AMGe or smoothed aggregation).
The coarse-grid variables, Ru, are analogous to C-pts in Ruge–Stüben AMG.

Now, define S : R
ns → R

n, where ns = n − nc, such that RS = 0. Think
of range (S) as the “smoother space”, i.e., the space on which the smoother must
be effective. Note that S is not unique (but range (S) is). The variables STu are
analogous to F -pts. Note also that S and RT define an orthogonal decomposition of
R
n. That is, any vector e can be written as e = Ses +RTec for some es and ec. We

will see in Theorem 3.1 below that the min-max problem of this section also induces
an A-orthogonal decomposition of R

n involving the operator S.
Theorem 3.1. Assume we are given a coarse grid Ωc, and define

µ�
X

:= min
P

max
e �=0

µ
X

(PR, e).(3.2)

The arg min of (3.2), P�, satisfies

PT� AS = 0.(3.3)
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The minimum is given by

µ�
X

=
1

λmin((STXS)−1(STAS))
.(3.4)

Proof. Note that since Q = PR, RP = Ic, and RS = 0, we have

(I −Q)P = 0; (I −Q)S = S.(3.5)

Also note that e − PRe = (I − Q)e ∈ range (S) since R(I − Q) = 0. Hence e =
Ses + Pec for some es and ec = Re. From (3.2), using (3.5), we then have that

µ�
X

= min
P

max
ec,es

〈XSes, Ses〉
〈ASes, Ses〉 + 2 〈ASes, Pec〉 + 〈APec, Pec〉(3.6)

= min
P

max
es

〈XSes, Ses〉
minec

(〈STASes, es〉 + 2 〈PTASes, ec〉 + 〈PTAPec, ec〉) .(3.7)

The denominator in (3.7) is a quadratic form in the variable ec with solution

ec = −(PTAP )−1PTASes.(3.8)

Plugging (3.8) back into (3.7) gives

µ�
X

= min
P

max
es �=0

〈XSes, Ses〉
〈STASes, es〉 − 〈(PTAP )−1PTASes, PTASes〉 .(3.9)

Since the second term in the denominator of (3.9) is nonnegative for any es, the
arg min must satisfy PT� AS = 0. Hence,

µ�
X

= max
es �=0

〈STXSes, es〉
〈STASes, es〉 =

1

λmin((STXS)−1(STAS))
.

Theorem 3.1 is used to motivate the main result in section 4. It will also be used
to prove many of the results in sections 4 and 5. Note that P� is unique, even though
S is not, since R is fixed and RP = Ic. An interesting corollary to the theorem is the
following.

Corollary 3.2. The optimal P� in Theorem 3.1 is given by the formula

P� =
[
S RT

] [−(STAS)−1(START )
I

]
= (I − S(STAS)−1STA)RT .(3.10)

Proof. This is obtained by solving the equation STAP� = 0. For any v consider
w = P�vc and use its decomposition w = Sws + RTwc. We have vc = RP∗vc =
Rw = RRTwc = wc. On the other hand, since STAw = 0 one arrives at

STASws + STARTwc = 0.

That is, ws = −(STAS)−1STARTwc = −(STAS)−1STARTvc. Thus

P�vc = (−S(STAS)−1STA+ I)RTvc,

which completes the proof.
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Remark 3.3. The first expression in (3.10) can be viewed as a generalization of
the optimal interpolation for the AMGe measure (see Corollary 3.4 below). Alterna-
tively, the second expression in (3.10) can be viewed as a kind of smoothed aggregation
method. That is, the operator RT is a type of tentative prolongator, and the term
(I − S(STAS)−1STA) is a type of smoother (because it removes error components
in the “smoother space” spanned by S). The interpolation operator in the smoothed
aggregation method is formed similarly by smoothing a tentative prolongation op-
erator, except that a simpler, local smoother is used. Another similarity is that the
smoothed aggregation smoother is designed to leave unchanged the kernel components
in range (RT ) (those kernel components that are representable on the coarse grid). In
(3.10), the fact that range (S) is A-orthogonal to range (P�) also insures this.

The following two corollaries specialize the results in Theorem 3.1 and Corol-
lary 3.2 to the particular cases of AMGe and spectral AMGe. These results are useful
primarily because of the insight and guidance they provide for developing algorithms
in these settings.

Corollary 3.4. Assume that P and R are as in AMGe and have the specific
forms

P =

[
W
I

]
, R =

[
0 I

]
,(3.11)

where we have reordered the equations so that

A =

[
Aff Afc
Acf Acc

]
.(3.12)

Let X = ‖A‖I in (3.1). Then, the arg min and minimum of (3.2) are given by

P� =

[−A−1
ffAfc
I

]
, µ�

X
=

‖A‖
λmin(Aff )

.(3.13)

Proof. Let S = [I 0]T . Then RS = 0 and STAS = Aff . The result then follows
trivially from (3.10) and (3.4).

Corollary 3.5. Assume that R has the form

RT = [p1, . . . ,pc],(3.14)

where the pi, 1 ≤ i ≤ n, are the orthonormal eigenvectors of A with corresponding
eigenvalues λ1 ≤ · · · ≤ λc ≤ · · · ≤ λn. Let X = ‖A‖I in (3.1). Then, the arg min and
minimum of (3.2) are given by

P� = RT , µ�
X

=
‖A‖
λc+1

=
λn
λc+1

.(3.15)

Proof. Let S = [pc+1, . . . ,pn]. Then RS = 0 and STAS = diag(λc+1, . . . , λn).
The result then follows trivially from (3.10) and (3.4).

Now, consider tailoring the base min-max problem (3.2) to the case of the new
measures in (2.5) and (2.11). Assume again that Q has the form Q = PR for some
fixed restriction operator R : R

n → R
nc such that RP = Ic. As before, define

S : R
ns → R

n such that RS = 0, and assume we are given a coarse grid Ωc. Define,
based on (2.5) and (2.11),

µ� := min
P

max
e �=0

µ(PR, e),(3.16)

µ�σ := min
P

max
e �=0

µσ(PR, e).(3.17)
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The quantities µ� and µ�σ measure the ability of the coarse grid to represent alge-
braically smooth error, where algebraically smooth error is defined to be error com-
ponents that are not being effectively damped by the more general relaxation process
in (2.2). Strictly speaking, this interpretation of µ� and µ�σ assumes that the interpo-
lation operator is the optimal one; i.e., that P = P�. Hence, given a coarse grid, small
quantities indicate that there exists some interpolation operator that can interpolate
smooth error. Whether or not there exists a practical (e.g., local) interpolation oper-
ator is an important research question that is not addressed in this paper. However,
empirical evidence so far indicates that µ� and µ�σ are useful measures in practice,
particularly for PDE problems.

4. Building interpolation. In the previous section, we defined the quantities
µ� and µ�σ as indicators of the ability of the coarse grid to represent smooth error. As-
suming that either of these quantities is “small” (we will present an efficient approach
for estimating µ� and µ�σ in the next section), we then need to build an interpolation
operator. In practice, this means that we must somehow localize the new measure.
However, note that the result (3.3) in Theorem 3.1 does not depend on the X in (3.1).
This suggests the possibility that, once an adequate coarse grid has been chosen, the
procedure for building an interpolation operator can be done without knowledge of
the relaxation process. This is quantified in the next lemma and theorem.

Lemma 4.1. The following statements are equivalent, where Q = PR, P , R, and
S are as before, and where η ≥ 1 is some constant:

〈AQe, Qe〉 ≤ η 〈Ae, e〉 ∀e;(4.1)

〈A(I −Q)e, (I −Q)e〉 ≤ η 〈Ae, e〉 ∀e;(4.2)

〈APec, Ses〉2 ≤
(

1 − 1

η

)
〈APec, Pec〉〈ASes, Ses〉 ∀ec, es.(4.3)

Proof. We first show that the approximate harmonic property of P , (4.1), implies
the strengthened Cauchy–Schwarz inequality (4.3). Letting e = tSes + Pec for any
ec, es and any real t, and noting that Qe = Pec, then (4.1) leads to the following
quadratic inequality for t:

t2〈ASes, Ses〉 + 2t〈APec, Ses〉 +

(
1 − 1

η

)
〈APec, Pec〉 ≥ 0.

This implies that the discriminant of the above quadratic form is nonpositive, which
is exactly the strengthened Cauchy–Schwarz inequality (4.3). In the same way, we
can also show that (4.2) implies (4.3) by noting that (I −Q)e = tSes.

To show that the strengthened Cauchy–Schwarz inequality (4.3) implies the ap-
proximate harmonic property (4.1), let e = Ses+RTec and note that R(I−Q)e = 0.
Therefore, there is an ês such that (I−Q)e = Sês. That is, e = Sês+Pec, and one has

〈Ae, e〉 = 〈ASês, Sês〉 + 2 〈ASês, Pec〉 + 〈APec, Pec〉 .
Using (4.3) implies

〈Ae, e〉 ≥ 〈ASês, Sês〉 − 2

√
1 − 1

η
〈ASês, Sês〉1/2 〈APec, Pec〉1/2 + 〈APec, Pec〉

=
1

η
〈APec, Pec〉 +

[
〈ASês, Sês〉1/2 −

√
1 − 1

η
〈APec, Pec〉1/2

]2
≥ 1

η
〈AQe, Qe〉 .

In the same way, we can also show that (4.3) implies (4.2).
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Theorem 4.2. Define µ
X

and µ�
X

as in (3.1) and (3.2) for any SPD matrix X.
Assume that a coarse grid has been chosen such that the following condition holds:

C1: µ�
X
≤ K for some constant K.

Assume also that an interpolation operator P has been defined, and satisfies the fol-
lowing additional condition:

C2: (4.1), (4.2), or (4.3) holds for some constant η ≥ 1.

Then, the following weak approximation property holds:

µ
X

(Q, e) ≤ ηK ∀e ∈ R
n \ {0}.(4.4)

Proof. From Lemma 4.1, we can assume the strengthened Cauchy–Schwarz in-
equality (4.3). Now, consider the left-hand side of the desired inequality (4.4) and
decompose e = Ses + RTec. Note that R(I −Q)e = 0, which implies there is an ês
such that (I −Q)e = Sês. Hence, using (4.3) and Theorem 3.1, we have

max
e

µ
X

(Q, e) = max
ês

max
ec

〈XSês, Sês〉
〈A(Sês + Pec), (Sês + Pec)〉

= max
ês

max
ec

max
t∈R

〈XSês, Sês〉
〈A(Sês + tPec), (Sês + tPec)〉

= max
ês

max
ec

〈XSês, Sês〉
mint∈R〈A(Sês + tPec), (Sês + tPec)〉

= max
ês

max
ec

〈XSês, Sês〉
〈ASês, Sês〉 − 〈APec,Sês〉2

〈APec,Pec〉

≤ max
ês

〈XSês, Sês〉
〈ASês, Sês〉 − (1 − 1

η )〈ASês, Sês〉

= ηmax
ês

〈XSês, Sês〉
〈ASês, Sês〉

= ηµ�
X

≤ ηK.

The corollaries to Theorem 4.2 for measures µ and µσ separate coarse-grid correc-
tion into two distinct parts: C1 insures the quality of the coarse grid, i.e., its ability to
represent algebraically smooth error components; and C2 insures that these smooth
components are adequately interpolated. Hence, once an adequate coarse grid is cho-
sen, it is sufficient to build interpolation based on any one of the three statements in
C2. In fact, the following result holds.

Corollary 4.3. The statements in C2 are necessary conditions for obtaining a
uniformly convergent method.

Proof. To see this in the case of measure µσ, note that our assumption that
(M +MT −A) is SPD implies that 2〈σ(M)e, e〉 ≥ 〈Ae, e〉. Hence, an approximation
property that bounds the measure µσ (with constant Kσ) also implies (4.2) (with
η = 2Kσ).

The significance of the above result is that the statements in C2 nowhere involve
the relaxation process. This implies that we can construct interpolation coefficients
(again, assuming a coarse grid has already been chosen) using previously developed
methods, even those methods that assumed a pointwise smoother. For example, in
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AMGe, a local procedure is used for constructing interpolation that produces an
approximation property of the form

‖A‖‖(I −Q)e‖2 ≤ η 〈Ae, e〉 .(4.5)

But, it is obvious that this also implies (4.2), which in turn implies the more general
result in Theorem 4.2. Note that, even if the constant η is sharp in (4.5), this may
be an extremely pessimistic constant for (4.2). See section 6.1 for an example.

5. Compatible relaxation. In this section, we introduce the idea of compatible
relaxation and show how its convergence rate may be used to estimate the quantities
µ� and µ�σ in (3.16) and (3.17). That is, we will show how compatible relaxation may
be used to insure C1 of Theorem 4.2. We will present four variants of compatible
relaxation, each having its own advantages and disadvantages, and suggest a simple
algorithm for using these techniques to choose coarse grids in AMG methods.

Compatible relaxation, as defined by Brandt [4], is a modified relaxation scheme
that keeps the coarse-level variables invariant. Consider the following compatible
relaxation iteration (represented here by its corresponding error propagation):

ek+1 = (I − S(STMS)−1STA)ek,(5.1)

where S : R
ns → R

n is defined, as before, in terms of some restriction operator R.
Recall that the coarse-grid variables are defined by uc = Ru. Since RS = 0, we see
from (5.1) that Rek+1 = Rek; that is, the coarse-grid variables are invariant under this
iteration. Hence, we need only consider compatible relaxation in the complementary
space via the following iteration:

ek+1 = (I − (STMS)−1(STAS))ek.(5.2)

Brandt states that a general measure for the quality of the set of coarse variables is
the convergence rate of compatible relaxation. In the next theorem, we will make this
statement rigorous by relating the convergence of the compatible relaxation process
in (5.2) to the measure µ� in (3.16) (equivalently, µ�σ in (3.17)).

Theorem 5.1. Assume that (M +MT −A) is SPD. Then,

µ� ≤ ∆2

2 − ω
· 1

1 − ρs
,(5.3)

where constants ∆ and ω are as in Lemma 2.3, and where

ρs = ‖(I −M−1
s As)‖As

(5.4)

with Ms = (STMS) and As = (STAS). Note that, although we use ρ to represent
the spectral radius of a matrix, the quantity ρs is in general only an upper bound for
the spectral radius of compatible relaxation; it is equal to the spectral radius when M
is symmetric.

Proof. From (3.16), (3.17), and Lemma 2.3, we have that

µ� ≤ ∆2

2 − ω
µ�σ.
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But, from (2.11) and Theorem 3.1,

µ�σ =
1

λmin(σ(Ms)−1As)

= max
vs

〈Msvs,vs〉
〈Asvs,vs〉

≤ ‖A−1/2
s MsA

−1/2
s ‖.

Hence, we have

µ� ≤ ∆2

2 − ω
‖A−1/2

s MsA
−1/2
s ‖,

and it remains to show that

‖A−1/2
s MsA

−1/2
s ‖ ≤ (1 − ρs)

−1.(5.5)

Consider the following symmetric compatible relaxation matrix:

Hss = (I −M−1
s As)(I −M−T

s As).

We have that

ρ(Hss) = ρ(A1/2
s HssA

−1/2
s )

= ρ((I −A1/2
s M−1

s A1/2
s )T (I −A1/2

s M−1
s A1/2

s ))

= ‖(I −A1/2
s M−1

s A1/2
s )‖2

= ‖(I −M−1
s As)‖2

As

= ρ2
s.

Noting that Hss can also be written as I −M−1
ss As, where

M−1
ss = (M−1

s +M−T
s −M−1

s AsM
−T
s ),

we have that

ρ2
s = ρ(Hss) = max

λ
|1 − λ(M−1

ss As)| ≥ 1 − λmin(M−1
ss As).

Letting Y −1
s = A

1/2
s M−1

s A
1/2
s , one arrives at the coercivity estimate

(1 − ρ2
s)〈vs,vs〉 ≤ 〈M−1

ss A
1/2
s vs, A

1/2
s vs〉

= 〈(Y −T
s + Y −1

s − Y −1
s Y −T

s )vs,vs〉(5.6)

= 2〈Y −T
s vs,vs〉 − 〈Y −T

s vs, Y
−T
s vs〉.

Using the Cauchy–Schwarz inequality,

〈Y −T
s vs,vs〉 ≤ 〈vs,vs〉1/2〈Y −T

s vs, Y
−T
s vs〉1/2,

in (5.6), we arrive at

(〈vs,vs〉1/2 − 〈Y −T
s vs, Y

−T
s vs〉1/2)2 ≤ ρ2

s〈vs,vs〉.
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That is,

(1 − ρs)
2〈vs,vs〉 ≤ 〈Y −T

s vs, Y
−T
s vs〉.

Adding the left- and right-hand sides of the last estimate and estimate (5.6), one gets

(1 − ρs)〈vs,vs〉 ≤ 〈Y −T
s vs,vs〉.

This implies, letting vs := Ysvs, that

‖Ysvs‖2 = 〈Ysvs, Ysvs〉
≤ (1 − ρs)

−1〈vs, Ysvs〉
≤ (1 − ρs)

−1‖Ysvs‖‖vs‖.

Therefore, ‖Ysvs‖ ≤ (1− ρs)
−1‖vs‖, which implies (5.5), and hence, the result.

Theorem 5.1 shows that if compatible relaxation is fast to converge (i.e., ρs is
small), then µ� is small (similarly for µ�σ). To use this result in practice as a means of
measuring the quality of a given coarse grid, we must be able to efficiently estimate
the value of ρs in (5.4). One obvious approach for doing this is to run the compatible
relaxation iteration in (5.2) and monitor its convergence. In some cases, this may
not be feasible. However, in the case where M is derived from a matrix splitting,
A = M − N , such that M is explicitly available, the iteration in (5.2) is at least
computable.

5.1. Compatible relaxation via subspace correction. Another practical
form of compatible relaxation is based on the general subspace correction method
framework [21], which encompasses both additive and multiplicative Schwarz. Of
particular interest is the question of how to define a compatible relaxation variant of
overlapping Schwarz. The iteration in (5.2) does not readily admit how to achieve
this. In fact, the question of how to define compatible relaxation variants of general
subspace correction methods requires some care.

Consider the following additive method:

I −M−1A; M−1 =
∑
i

Ii(I
T
i AIi)

−1ITi ,(5.7)

where Ii : R
ni → R

n has full rank, ni < n, and R
n =

⋃
i range (Ii). Define full rank

normalized operators Si and RTi such that

range (Si) = range (ITi S),(5.8)

range (RTi ) = range (ITi R
T ).(5.9)

In order to define a usable additive version of compatible relaxation, the Ii must be
chosen so that the local spaces Si and RTi are orthogonal, i.e., RiSi = 0. Compatible
relaxation is then defined as follows:

I −M−1
cr As; M−1

cr =
∑
i

ST Is,i(I
T
s,iAIs,i)

−1ITs,iS; Is,i = IiSi.(5.10)

One natural relaxation method that is represented by (5.10) is additive Schwarz. We
will discuss this method in more detail below. First, we prove the following lemma
and theorem.
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Lemma 5.2. Assume that we are given the decomposition

v = Svs +RTvc =
[
S RT

] [vs
vc

]
,

such that RS = 0 and STS = I. For any matrix M, we have that

(STM−1S)−1 = MSchur := STMS − STMRT (RMRT )−1RMS.

If M is SPD, then the following also holds:

〈(STM−1S)−1vs,vs〉 = min
vc

〈M(Svs +RTvc), (Svs +RTvc)〉.

Proof. Define the hierarchical basis matrix

M :=
[
S RT

]T
M
[
S RT

]
=

[
Mss Msc

M cs M cc

]
.(5.11)

One has STMS = Mss by definition. Again, from the definition of M ,[
S RT

]
M

−1 [
S RT

]T
= M−1.

Hence,

STM−1S = ST
[
S RT

]
M

−1 [
S RT

]T
S.

Now, using the fact that RS = 0 and STS = I, one gets

STM−1S =
[
I 0

]
M

−1 [
I 0

]T
.

Finally, since

M
−1

=

[
(MSchur)

−1 �
� �

]
,

one gets

STM−1S =
[
I 0

]
M

−1 [
I 0

]T
= (MSchur)

−1,

which implies the first result. The second result follows trivially by noting that

min
vc

〈M(Svs +RTvc), (Svs +RTvc)〉

is a quadratic form in the variable vc. The minimum is 〈MSchurvs,vs〉.
Theorem 5.3. Let M−1 and M−1

cr be as in (5.7) and (5.10), respectively. Define
ω as in Theorem 5.1, and define

ρcr = ‖(I −M−1
cr As)‖As

= ρ(I −M−1
cr As).(5.12)

Then,

µ� ≤ 1

2 − ω
· 1

1 − ρcr
.(5.13)
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Proof. As before, we can write any vector e as e = Ses + RTec for some es and
ec. From (5.8) and (5.9), there exist vectors es,i and ec,i such that Sies,i = ITi Ses
and RTi ec,i = ITi R

Tec. Using this, together with the result in Lemma 5.2 (replacing
M−1 by (ITi AIi), and R and S by Ri and Si, respectively), we have

〈M−1
cr es, es〉 =

∑
i

〈(STi ITi AIiSi)−1STi I
T
i Ses, S

T
i I

T
i Ses〉

=
∑
i

〈(STi ITi AIiSi)−1es,i, es,i〉

≤
∑
i

〈
(ITi AIi)

−1
[
Si RTi

] [es,i
ec,i

]
,
[
Si RTi

] [es,i
ec,i

]〉
=
∑
i

〈
(ITi AIi)

−1ITi
[
S RT

] [es
ec

]
, ITi

[
S RT

] [es
ec

]〉
=
∑
i

〈Ii(ITi AIi)−1ITi e, e〉

= 〈M−1e, e〉.
Since ec was arbitrary, this implies (again, using Lemma 5.2) that

〈M−1
cr es, es〉 ≤ min

ec

〈M−1e, e〉 = 〈(STMS)−1es, es〉 = 〈M−1
s es, es〉.

Hence, from (3.16), (3.17), and Lemma 2.3, we have that

µ� ≤ (2 − ω)−1µ�σ

= (2 − ω)−1 1

λmin(M−1
s As)

≤ (2 − ω)−1 1

λmin(M−1
cr As)

≤ (2 − ω)−1(1 − ρcr)
−1.

When the coarse-grid variables are a subset of the fine-grid variables, then we
have that R = [0 I] and S = [I 0]T , and the additive Schwarz method satisfies the
criteria for the compatible relaxation in (5.10). To see this, note that, for additive
Schwarz, each Ii is a characteristic function over some local subdomain Ωi. That is,
Iiw = wi on Ωi and zero outside of Ωi. From the construction of Si and RTi in (5.8)
and (5.9), it is clear that they are also just characteristic functions: RTi over the C-pts
in Ωi; and Si over the F -pts in Ωi. Hence, RiSi = 0 ∀i.

Multiplicative versions of compatible relaxation are also possible but more dif-
ficult to construct, and may not be necessary anyway. Standard Gauss–Seidel and
block Gauss–Seidel methods have straightforward compatible relaxation variants, but
a general form for multiplicative subspace correction or multiplicative Schwarz (with
overlap) is not apparent.

Multiplicative methods are not as practical in the parallel setting, but have better
smoothing properties in the sense that ω is usually bounded away from two without
the need for additional damping factors. In practice, a good smoother to use is the
natural generalization of F -C relaxation. That is, (post) smoothing should consist of
the above additive compatible relaxation process followed by the analogous additive
compatible relaxation process on the RT space. Since STAS and RART are well-
conditioned in some sense, the additive compatible relaxation methods should work
well.
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5.2. A more general form of compatible relaxation. Although the com-
patible relaxation methods presented so far cover many of the traditional relaxation
methods, there are still some that may not be represented. In particular, the iteration
in (5.2) requires that the matrix M is available and that the matrix STMS is easily
inverted. This may not always be feasible. Additive Schwarz is one such example,
albeit one that fortunately has a remedy as described in (5.10). In general, the action
of M−1 is always available, and motivates us to consider the following compatible
relaxation process:

ek+1 = (I − (STM−1S)(STAS))ek,(5.14)

where, here, S must be normalized so that STS = Is, the identity on R
ns . This

method is always computable, but must be used with care, as we describe below.
First, we state the following result.

Theorem 5.4. Assume that the smoother (SPD) M is stable w.r.t. the decom-
position v = Svs +RTvc in the sense that for some constant γ ∈ [0, 1) the following
strengthened Cauchy–Schwarz inequality holds:

〈MSvs, R
Tvc〉 ≤ γ〈MSvs, Svs〉1/2〈MRTvc, R

Tvc〉1/2 ∀vs,vc.(5.15)

Then, the following estimates hold for all vs:

〈(STMS)−1vs,vs〉 ≤ 〈STM−1Svs,vs〉 ≤ 1

1 − γ2
〈(STMS)−1vs,vs〉.

In other words, the modified compatible relaxation matrix, (STM−1S), is spectrally
equivalent to the true one, (STMS)−1.

Proof. Define M as in (5.11) in the proof of Lemma 5.2. From the lemma, one
trivially has

〈(STM−1S)−1vs,vs〉 = 〈MSchurvs,vs〉 ≤ 〈STMSvs,vs〉.
Replacing M by M−1 yields the first inequality. The second inequality follows from
the corollary to the strengthened Schwarz inequality,

〈Mssvs,vs〉 ≤ 1

1 − γ2
min
vc

〈
M

[
vs
vc

]
,

[
vs
vc

]〉
=

1

1 − γ2
〈MSchurvs,vs〉.

Here again, replace M by M−1 to get the result.
The above theorem implies the following about the eigenvalues of the correspond-

ing iteration matrix (5.14) and the original compatible relaxation matrix in (5.2):

λ(I − (STM−1S)As) ≤ λ(I − (STMS)−1As)

≤ γ2 + (1 − γ2)λ(I − (STM−1S)As).

Hence, if ρg is the spectral radius of (I − (STM−1S)As), we arrive at the following
result, analogous to the results of Theorems 5.1 and 5.3:

µ� ≤ 1

2 − ω
· 1

1 − γ2
· 1

1 − ρg
.(5.16)

From this, we see that in order to use the compatible relaxation method in (5.14), we
must first have an estimate for the size of γ.
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In practice, γ can often be estimated locally. This is the case, for example,
when M is assembled from small matrices. That is, let 〈Mv,v〉 =

∑
e〈Meve,ve〉 =∑

e〈Me(Ie)
Tv, (Ie)

Tv〉. Here, ve := v|e. Similarly, for a given ve on e, Ieve is the
extension of ve as zero outside e. Let also (Ie)

TS = Se(Is,e)
T and (Ie)

TR = Re(Ic,e)
T

for Se, Is,e, Re, and Ic,e supported in e. Then,

〈STMSvs,vs〉 =
∑
e

〈(Se)TMeSevs,e,vs,e〉.

If one can say something about the local matrices (Se)
TMeSe and the local Schur

complement Me,Schur of Me = [Se R
T
e ]TMe[Se R

T
e ], the maximum of all local γe’s

gives an upper bound for the global γ. This technique is well known in the two-level
hierarchical basis literature; cf., e.g., Bank [2].

A similar approach can be used to estimate γ in the case where M−1 is obtained
by assembling local matrices. As an example, for additive Schwarz, we have that

M−1 =
∑
i

Ii(I
T
i AIi)

−1ITi ,

where, as described near the end of the previous section, Ii is the characteristic func-
tion over some local subdomain Ωi. If we have a local estimate of the form

〈STi (ITi AIi)
−1Sies,i, es,i〉 ≤ 1

1 − γ2
i

〈(STi ITi AIiSi)−1es,i, es,i〉,

then, using the proof of Theorem 5.3 for the last inequality below, we can show that〈
M−1Ses, Ses

〉
=
∑
i

〈Ii(ITi AIi)−1ITi Ses, Ses〉

=
∑
i

〈STi (ITi AIi)
−1Sies,i, es,i〉

≤ 1

1 − maxi γ2
i

∑
i

〈(STi ITi AIiSi)−1es,i, es,i〉

≤ 1

1 − maxi γ2
i

〈(STMS)−1es, es〉.

The compatible relaxation method in (5.14) is similar to the habituated compat-
ible relaxation scheme in [15]. The latter has the error propagation

ek+1 = (I − STM−1AS)ek.(5.17)

The theoretical result is similar to (5.16). We have the following theorem.
Theorem 5.5. Assume that the smoother (SPD) M is stable w.r.t. the decompo-

sition v = Svs+RTvc in the sense that for some constant γ ∈ [0, 1) the strengthened
Cauchy–Schwarz inequality in (5.15) holds. Assume that for some constant ρh < 1
the following convergence estimate holds:

〈Asek+1, ek+1〉 ≤ ρ2
h〈Asek, ek〉.

Then, the following coercivity estimate holds:

δ〈Mges, es〉 ≤ 〈Ases, es〉,
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where Mg = (STM−1S)−1 and δ ≥ 1
2 (1− ρh)

2. The latter coercivity estimate implies
convergence of the compatible relaxation method in (5.14) with convergence factor
ρg = (1 − δ).

Proof. Given es, consider the solution x of the problem

Mx = ASes.

The following inequality then follows:

〈Mx,x〉 = 〈M−1/2ASes,M
1/2x〉

≤ 〈M−1ASes, ASes〉1/2 〈Mx,x〉1/2 .

This implies that 〈Mx,x〉 ≤ 〈M−1ASes, ASes〉 which, from Lemma 5.2 and the fact
that 2M −A is SPD, leads to

〈Mgxs,xs〉 = min
xc

〈M(Sxs +RTxc), (Sxs +RTxc)〉
(5.18) ≤ 〈Mx,x〉 ≤ 〈M−1ASes, ASes〉 ≤ 2〈Ases, es〉.

Now, using Cauchy–Schwarz and the fact that the habituated compatible relaxation
is convergent, one has

〈Mges, es − xs〉 = 〈A−1/2
s Mges, A

1/2
s (I − STM−1AS)es〉

≤ ρh〈A−1
s Mges,Mges〉1/2〈Ases, es〉1/2.

This inequality, using Cauchy–Schwarz and estimate (5.18), implies

〈Mges, es〉 ≤ 〈xs,Mges〉 + ρh〈A−1
s Mges,Mges〉1/2〈Ases, es〉1/2

≤
√

2〈Ases, es〉1/2〈Mges, es〉1/2
+ ρh〈A−1

s Mges,Mges〉1/2〈Ases, es〉1/2.

Dividing through by 〈Ases, es〉1/2〈Mges, es〉1/2, one ends up with the inequality√
〈Mges, es〉
〈Ases, es〉 ≤

√
2 + ρh

√
〈A−1

s Mges,Mges〉
〈Mges, es〉 .

Now, let

1

δ
= sup

es

〈Mges, es〉
〈Ases, es〉 = sup

es

〈A−1
s es, es〉

〈M−1
g es, es〉

.

Then, the following inequality is obtained:

1√
δ
≤

√
2 + ρh

1√
δ
.

That is,

1

δ
≤ 2

(1 − ρh)2
.
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From the theorem and (5.16), we have the following result for habituated com-
patible relaxation:

µ� ≤ 1

2 − ω
· 1

1 − γ2
· 2

(1 − ρh)2
.(5.19)

This result is weaker than the previous results for the other compatible relaxation
methods. However, as with the method in (5.14), habituated compatible relaxation
is always computable. In fact, it is the easiest to implement in practice because it
directly involves the global smoother I −M−1A. To see this, note that since S is
normalized, the ST and S in (5.17) can be pulled outside of the parentheses.

5.3. A coarsening algorithm. The above results suggest that compatible re-
laxation may serve as a useful tool for selecting coarse grids in AMG methods. We
now present a prototype for such a coarsening algorithm in the case where the coarse
grid is a subset of the fine grid. That is, consider the case where R = [0 I] and
S = [I 0]T . In the coarsening algorithm, one may apply any of the compatible relax-
ation methods above, i.e., either (5.2), (5.10), (5.14), or (5.17) to the homogeneous
equations

(STAS)x = 0(5.20)

with some initial guess, say x0 = (x0
i ), where x0

i = 1 or random positive numbers.

Initialize U = Ω; C = ∅(5.21a)

While U 	= ∅(5.21b)

Do ν compatible relaxation sweeps(5.21c)

U = {i : (|xνi |/|xν−1
i |) > θ}(5.21d)

C = C ∪ {independent set of U}(5.21e)

This algorithm is similar to what Livne [15] and Brandt [4] use. Note that the
pointwise convergence factor in step (5.21d) is not a meaningful measure when ν
is large, and the question of how to choose the candidate set C is an active area of
research.

6. Examples. In this section, we present two examples illustrating the theoret-
ical results of the paper. The first example is a simple anisotropic diffusion problem
that demonstrates the ability of the theory (and compatible relaxation) to account
for a more general relaxation process; in this case, line relaxation. The example also
demonstrates the use of previously developed methods (here, AMGe) for defining ad-
equate interpolation operators in the sense of satisfying C2 in Theorem 4.2. The
second example illustrates how a nontrivial geometric multigrid method for H(div)
fits into the new framework.

6.1. Compatible line relaxation for anisotropic diffusion. Consider the
grid-aligned anisotropic problem

−εuxx − uyy = f, (x, y) ∈ Ω = (0, 1)2,

with Dirichlet boundary conditions, discretized on a uniform rectangular grid with
mesh size hx = hy = h = 2−� as in Figure 6.1. Using piecewise linear elements on
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Fig. 6.1. Uniform grid with triangular elements and standard coarse grid.

triangles, the resulting macroelement matrix for each rectangle is given by

Ae = ε

⎡⎢⎢⎣
1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

⎤⎥⎥⎦+

⎡⎢⎢⎣
1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎤⎥⎥⎦ .
The vertices (nodes) of every rectangle are assumed to have the ordering (xi, yj),
(xi+1, yj), (xi, yj+1), (xi+1, yj+1); where xi = ihx, yj = jhy, i, j = 0, 1, . . . , 2�.

Consider a block smoother, where the blocks are given by vertical lines of nodes
in the grid. That is, consider a line smoother, where the lines are in the “strong”
vertical direction. We note that M can be assembled from the same element matrices
as A by zeroing some couplings in Ae (namely, the ones in the x-direction), yielding

Me = ε

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦+

⎡⎢⎢⎣
1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎤⎥⎥⎦ .
Assume standard coarsening, so that S = [I 0]T , where the zero block corresponds to
the coarse nodes. We now analyze the convergence rate of the compatible relaxation
process in (5.2). Note that STMS and STAS can also be assembled from local
matricesMs,e and As,e; namely, those obtained from the above matrices in which a row
and a column are deleted corresponding to the only coarse node in each rectangular
element. Due to symmetry, we delete the last row and last column to get

As,e = ε

⎡⎣ 1 −1 0
−1 1 0
0 0 1

⎤⎦+

⎡⎣ 1 0 −1
0 1 0
−1 0 1

⎤⎦(6.1)

and

Ms,e = ε

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦+

⎡⎣ 1 0 −1
0 1 0
−1 0 1

⎤⎦ .
It is sufficient to compute the eigenvalues of the generalized eigenvalue problem

As,ex = λMs,ex.
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This leads to the following cubic equation for λ:∣∣∣∣∣∣
(1 − λ)(1 + ε) −ε −(1 − λ)

−ε (1 − λ)(1 + ε) 0
−(1 − λ) 0 (1 − λ)(1 + ε)

∣∣∣∣∣∣ = 0.

The roots are

λ = 1, 1 ±
√

ε

2 + ε
.

Hence, the spectrum of the compatible relaxation iteration matrix (I −M−1
s As) is

contained in the interval [
−
√

ε

2 + ε
,

√
ε

2 + ε

]
.

For ε ∈ (0, 1], this implies that ρs ≤ 1/
√

3. It is well known that linear interpolation
is bounded in energy; i.e., it satisfies (4.1) for some constant η independent of ε. In
fact, for right-angled triangles, one has η = 1

1−γ2 with γ2 = 1
2 ; cf. [16]. Hence, from

Theorems 4.2 and 2.2, we can conclude that the two-grid method with the above line
smoother converges with a rate bounded independent of ε (also a well-known fact).

Now, consider the AMGe measure η in (4.5). We know from Corollary 3.4 that

η ≥ ‖A‖ 1

λmin(Aff )
(6.2)

for any interpolation operator P . Again, because of symmetry, we can bound the
minimum eigenvalue of Aff by considering the eigenvalues of the local stiffness matrix
with the first and last rows deleted. That is, we can look at the eigenvalues of As,e
in (6.1), which satisfy the following cubic equation for λ:∣∣∣∣∣∣

(1 + ε− λ) −ε −1
−ε (1 + ε− λ) 0
−1 0 (1 + ε− λ)

∣∣∣∣∣∣ = 0.

The roots are

λ = (1 + ε), (1 + ε) ±
√

1 + ε2.(6.3)

Hence,

λmin(Aff ) = (1 + ε) −
√

1 + ε2 ≤ ε,(6.4)

which implies that

η ≥ ‖A‖ 1

ε
(6.5)

for any interpolation operator P . But, as mentioned earlier in this example, linear
interpolation satisfies (4.1) for a constant η independent of ε. Hence, although the
AMGe measure η in (4.5) also implies (4.1), it is clearly a poor estimate for the latter.
Note, however, that we may still use (4.5) to construct good interpolation operators.
In particular, the AMGe method can produce linear interpolation for this example;
the method is just unable to judge the quality of this interpolation operator when the
smoother is line relaxation.
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Fig. 6.2. Coarse rectangle and its refinement. The DOFs of the respective Raviart–Thomas
elements are associated with the midpoints of the edges of the elements.

6.2. Geometric two-grid method for H(div). The space H(div) is spanned
by vector functions χ in (L2(Ω))d (d = 2 in the present example) whose divergence is
also in L2(Ω). Consider the Raviart–Thomas finite element discretization [11] of the
H(div) bilinear form

(k−1χ, θ) + (∇ · χ, θ).(6.6)

Here, k = k(x) is a given positive coefficient and (·, ·) stands for the L2(Ω) inner
product. The two-dimensional domain Ω is formed from rectangular fine-grid elements
of mesh size h. The elements are obtained by successive steps of uniform refinement
of an initial rectangular coarse mesh. The Raviart–Thomas finite element space of
lowest order is spanned locally on every fine-grid rectangle by vector polynomials of
the form [

ax+ b
cy + d

]
.(6.7)

It is clear that by specifying χ ·n on every edge of the rectangles, then every rectangle
has four degrees of freedom, and hence the four coefficients a, b, c, and d are uniquely
determined. One also notices that χ · n on every edge is constant. Hence, χ · n is
continuous across every edge of the fine-grid elements and the vector function χ is
globally contained in H(div).

Consider now two triangulations: fine-grid rectangles of mesh size h and coarse-
grid rectangles of mesh size H = 2h. The degrees of freedom are shown in Figure 6.2.
A standard “Lagrangian” basis of Vh is constructed by choosing, for every fine-grid
edge, a function φ which has normal component equal to 1 and zero normal compo-
nents at the remaining edges. Let T be a coarse rectangle formed by four fine-grid
ones. The degrees of freedom (DOFs) of a fine-grid vector v (w.r.t. the chosen La-
grangian basis) restricted to T can be partitioned into two groups: interior (to T )
DOFs and boundary DOFs. The boundary DOFs on every edge of T are given by[

v · n1

v · n2

] } first fine-grid edge
} second fine-grid edge,

and can be decomposed as follows:[
v · n1

v · n2

]
=

1

2

[
v · n1 − v · n2

v · n2 − v · n1

]
+

1

2

[
v · n1 + v · n2

v · n1 + v · n2

]
.

Introduce now the operators acting on vectors spanned by the boundary DOFs,

RB =
1√
2

[
I I

]
and SB =

1√
2

[
I −I]T .(6.8)



ON GENERALIZING THE AMG FRAMEWORK 1691

Next, partition the stiffness matrix A into a 2×2 block form with blocks corresponding
to the interior and boundary DOFs. That is,

A =

[
AII AIB
ABI ABB

] } interior fine-grid edges w.r.t. to coarse elements
} boundary fine-grid edges w.r.t. to coarse elements.

Note that AII is block-diagonal with blocks of size 4× 4. Denote the reduced matrix
(obtained by “static condensation”) AB = ABB − ABI(AII)

−1AIB . Note that AB
is sparse and explicitly available. For every coarse element edge, fix an ordering of
the underlying fine-grid edges. This induces a natural partitioning of the boundary
DOFs into two groups, corresponding to the above block structure (6.8) of RB and
SB . Finally, introduce the global decomposition operators

S =

[
I −A−1

II AIBSB
0 SB

]
(6.9)

and

R =
[
0 RB

]
.(6.10)

Clearly, RS = 0 and RRT = RB(RB)T = I.
We now choose the following smoother:

M =

[
AII 0
ABI diag(AB)

] [
I −A−1

II AIB
0 I

]
(6.11)

=

[
AII AIB
ABI diag(AB) +ABIA

−1
II AIB

]
.

Since M is in a factored form, it is straightforward to implement its inverse action;
it involves two actions of the block-diagonal matrix (AII)

−1 and one solves with the
scalar diagonal matrix diag(AB).

One can see that

STMS =

[
AII 0
0 STB diag(AB)SB

]
.

Similarly,

STAS =

[
AII 0
0 STBABSB

]
.

The compatible relaxation in (5.2) tells us to look at the matrix

(STMS)−1(STAS) =

[
I 0
0 (STB diag(AB)SB)−1STBABSB

]
.

Based on a result by Cai, Goldstein, and Pasciak [8], one can show that STBABSB is
spectrally equivalent to a diagonal matrix. In particular, it is spectrally equivalent to
the matrix const·IB , where const is piecewise constant w.r.t. the coarse element edges.
This verifies that the respective compatible relaxation gives rise to a well-conditioned
matrix (STMS)−1(STAS).

It remains to construct a bounded in energy (“approximate harmonic”) interpola-
tion operator P . We choose here the P which is naturally defined from the embedding
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VH ⊂ Vh. In operator form, P is the identity. However, in matrix form, its action is
computed as follows. Given vH , consider its four DOFs of the form vH ·n for the four
edges of every coarse element. These are four constants. Based on these DOFs, one
finds the polynomial representation of vH on every coarse element. It has the form
(6.7). That is, one determines the four constants a, b, c, and d. Then one computes
vH · n for all interior fine-grid edges. These, as mentioned above, are also constants
(four). Then on every fine-grid edge we have specified the fine-grid DOFs v ·n which
are used in the computation.

To prove the energy boundedness of P we proceed as follows. Given v ∈ Vh. Com-
pute Rv. This takes into account only the DOFs which correspond to the boundary
(w.r.t. the coarse elements) fine-grid edges. Using function notation it means that we
have computed the coarse edge integrals

∫
F

v · n d� for every coarse edge F . Based
on the four values for every coarse element we construct the unique coarse vector
vH = P (Rv). It has the property that

∫
F

vH · n d� =
√

2
∫
F

v · n d�. In other words,
for any constant function w on a given coarse element T , we get∫

∂T

wvH · n d� =
√

2

∫
∂T

wv · n d�.

Using the fact that ∇w = 0 on T and the divergence theorem, we get∫
T

w∇ · vH dx dy =
√

2

∫
T

w∇ · v dx dy.

If one introduces the elementwise L2-projection QH onto the space of piecewise con-
stant functions (w.r.t. the coarse elements), the above identity shows that ∇·(PRv) =√

2QH∇ · v. This immediately implies the inequality

(∇ · (PRv),∇ · (PRv)) = 2(QH∇ · v, QH∇ · v) ≤ 2(∇ · v,∇ · v).

It remains to bound the L2-norm of (PRv),

(PRv, PRv) ≤ η(v,v),

for a mesh-independent constant η. We note that∫
T

v · v dxdy � h2
∑

f : edge of fine-grid element τ⊂T
(v · nf )2.

Similarly, ∫
T

vH · vH dxdy � H2
∑

F : edge of T

(vH · nF )2.

Let F = f1 ∪ f2. Since vH · nF = 1√
2
(v · nf1 + v · nf2), hence

(vH · nF )2 =
1

2
(v · nf1 + v · nf2)2 ≤ (v · nf1)2 + (v · nf2)2.

This shows that there exists a mesh-independent constant η such that∫
T

vH · vH dxdy ≤ η

∫
T

v · v dxdy,

which after summation over all coarse elements leads to the required L2-boundedness
of PR. Thus, we get the desired result that PR is bounded in H(div)-norm.
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Abstract. A general framework for constructing constraint-preserving numerical methods is
presented and applied to a multidimensional divergence-constrained advection equation. This equa-
tion is part of a set of hyperbolic equations that evolve a vector field while locally preserving either
its divergence or its curl. We discuss the properties of these equations and their relation to ordi-
nary advection. Due to the constraint, such equations form model equations for general evolution
equations with intrinsic constraints which appear frequently in physics.

The general framework allows the construction of numerical methods that preserve exactly the
discretized constraint by special flux distribution. Assuming a rectangular, two-dimensional grid as a
first approach, application of this framework leads to a locally constraint-preserving multidimensional
upwind method. We prove consistency and stability of the new method and present several numerical
experiments. Finally, extensions of the method to the three-dimensional case are described.

Key words. multidimensional hyperbolic equations, advection, constraints, finite-volume method,
stability
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1. Introduction. Many evolution equations in physics and engineering come
with intrinsic constraints, i.e., local differential constraints that follow directly from
the evolution operator. Such evolutions will be called constraint-preserving. The
most popular example is the evolution of the magnetic flux density B in electrody-
namics: The divergence of B must be zero for the initial conditions; afterwards the
analytic evolution will keep the divergence of the field untouched. The same property
is present in the system of magnetohydrodynamics of plasma flows (e.g., [6]), and
a similar operator arises in the vorticity equation of incompressible flow (e.g., [12]).
Vorticity-preserving equations are used, e.g., in meteorological flows [19], while in [20]
a vorticity-preserving system is investigated, which may be related to the linearized
Euler equations. Furthermore, the evolution equations of general relativity possess
constraints whose properties are lively discussed; see, e.g., [22].

Intrinsic constraints are also expected to hold in numerical calculations of the
corresponding evolution, at least in a discrete manner. The discrete approximation
of the evolution operator should mimic the analytic properties as far as possible in
order to obtain a most physical discrete solution. Nevertheless, the construction of
commonly available numerical methods ignores constraints and indeed those meth-
ods generally introduce disturbances to the constraints. These disturbances may be
argued to be small due to consistency: Since the constraint is an analytic property
of the evolution operator it will be respected in a converged solution (see [3] in the
context of general relativity). But this argument holds only for smooth solutions,
where the disturbances of the constraint are of the order of the truncation error.
For discontinuous solutions the error of the constraint becomes so large that compu-
tations completely fail (see, e.g., [6] in the context of magnetohydrodynamics). In
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general, relativity errors in the constraints can excite instabilities [22]. It becomes
obvious that controlling intrinsic constraints in numerical methods is required in the
construction of accurate and reliable schemes. Even if the constraint is not preserved
by the complete evolution operator but only by a part of it, a corresponding partial
constraint-preserving discretization is most desirable. This yields that the constraint
is numerically only affected by those causes which arose from the discretization of the
nonpreserving part in the equations. A similar statement may also be found in [27].

The literature provides many works which deal with the divergence-constraint in
the equations of magnetohydrodynamics. Global approaches like in [2] solve elliptic
equations each time step in order to correct the solution. A popular approach uses a
local correction procedure with the help of a staggered grid (see [1], [5], and [8]) which
is applied after a time step of a usual finite-volume method. A third approach modifies
the evolution equation (see [21], [6]) so that the error in the constraint is advected or
diffused away. The common idea of these approaches is to correct an existing error
of the constraint. See also [26] for a collection and comparison of methods and [7] for
an approach on unstructured grids.

The staggered approach is equivalent to the mimetic discretizations as presented
in [13] and [14] if applied to a rectangular grid. These schemes store different variables
at different locations in the grid, like edges and vertices. The starting point is to
derive discrete vector-analytic identities using special div-, curl-, and grad-definitions.
These identities are responsible for discrete constraint preservation. The results of
[13] are used in computational electrodynamics; see [14]. The application in finite-
volume schemes is complicated since the usage of cell averages for the variables is
then mandatory. Examples for a staggered grid scheme in meteorological flows and
in vorticity methods are given in [19] and [12], respectively.

This paper will present a general framework for constructing genuine locally
constraint-preserving finite-volume methods. We aim at explicit methods that use
only a primary finite-volume grid. All variables will be stored in the cell centers
and considered as cell mean values. The constraints as well as the flux operator will
be discretized with this single grid using the cell averaged values. As an example
we will consider so-called constraint-preserving advection equations. These advection
equations must be seen as model equations for general evolution equations with con-
straints. Besides this they also provide interesting aspects of the advection of vector
fields. The application of the presented general framework to constraint-preserving
advection leads to an upwind method which exactly preserves the local values of the
discrete constraint. This is the discrete imitation of the analytic property. The main
idea is the usage of a special discrete operator for the constraint. Since the constraint
and its preservation are relevant only in more than one dimension the resulting scheme
is necessarily multidimensional. We obtain a method that is second order in time and
space and is stable for Courant numbers |c| ≤ 1. Consistency and stability are proven.
Several numerical experiments with smooth and discontinuous solutions demonstrate
the performance of the scheme. Within the framework we could also re-derive two
methods that are known in the literature but which are inappropriate for solving
constraint-preserving advection due to instabilities. The main part of the paper con-
siders a two-dimensional setting on a rectangular grid. The presented framework also
applies to general grids at the cost of more involved calculations. Methods on un-
structured grids are the subject of future work. In the last section we give a sketch
of the method in three dimensions.

The paper is organized as follows: In the next section we introduce constrained
advection equations for vector fields and discuss their properties and their relation to
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ordinary advection as well as to real physical models. In section 3 the general frame-
work is presented that describes how numerical constraint-preserving methods may
be constructed. The application of this framework to constraint-preserving advection
follows in section 4. In the beginning of that section we discuss discrete constraint
operators and deduce some instructive methods, while the final upwind method and
its properties are presented in section 4.3. Section 5 is devoted to the numerical ex-
periments and considers smooth as well as discontinuous solutions. Finally, we give
details of the three-dimensional case in section 6 and draw conclusions in the last
section.

2. Constrained advection equations. We consider a given velocity field v in
a domain Ω of the three-dimensional space

v : Ω ⊆ R
3 → R

3(1)

which remains constant in time. A second vector field u : Ω → R
3 is said to be

advected in the velocity field v if it obeys the evolution equation

∂tu + div(u ⊗ v) = 0 in Ω,(2)

where the divergence acts on the rows of the tensorial product u ⊗ v, i.e., in the
components of v. Hence, (2) represents scalar advection equations for each component
of u. In components the vector field u and the advection velocity v are written as

u = (u(x), u(y), u(z))T , v = (v(x), v(y), v(z))T .(3)

An evolution like (2) represents a raw model for virtually any physical transport
process. Correspondingly there exists a vast amount of work concerning analytical and
numerical aspects of (2) in the literature. Note that advection of type (2) decouples
the components of the vector field u and each component is advected separately. We
will call this ordinary advection.

2.1. div / curl-preserving advection. There are two more evolution equations
which we shall show to be closely related to ordinary advection. They follow formally
from (2) by replacing the differential operator and the tensorial product. We write

∂tu + grad(u · v) = 0,
∂tu + curl(u × v) = 0,

(4)

where u · v and u × v denote the scalar product and the cross product, respectively.
Note that the components of u are now coupled in the equations (4).

Since for any function ψ we have curl gradψ ≡ 0 and div curlψ ≡ 0 we can
deduce an accompanying equation for both types of evolutions in (4) which may be
integrated. We obtain for the considered domain Ω

for (4)grad → curlu = const in time,
for (4)curl → div u = const in time

(5)

as additional equations. These equations state that the curl of the vector field in the
case of (4)grad or its divergence in the case of (4)curl stays locally (hence globally)
unaffected from the evolution. The initial fields of curl or divergence in the particular
cases are frozen and their values stay locally the same. We therefore denote the
evolution equation (4)grad by curl-preserving advection and (4)curl by div-preserving
advection.



CONSTRAINT-PRESERVING UPWIND METHODS 1697

The equations (5) may be viewed as intrinsic or inherent constraints to the evo-
lution equations in (4). In the language of [4] these constraints form involutions of the
equations (4). We stress that these constraints are intrinsic to the evolution equations
since they must not be additionally imposed to the solution. They are an inherent
property of the transport operator. Any analytic solution of (4) fulfills the constraints
of (5) automatically. However, this might not be true in a numerical setting where
the equations are discretized. Furthermore, the apparently elliptic character of the
constraints do not influence the character of the evolution. We will show later that
the equations in (4) are purely hyperbolic.

2.2. Physical examples. Though less frequently than ordinary advection, the
constraint-preserving evolution equations in (4) may be found in physical models as
well. Furthermore, both equations should be viewed as special cases of more general
models where the differential evolution operators act on general functions of u.

A well-known example is the Maxwell equations of electrodynamics

∂tB + curlE = 0,
∂tD − curlH = j,

(6)

where B is the magnetic flux density and D the electric displacement. Both evolutions
have the structure of (4)curl. Since div B = 0 is stated in the third Maxwell equation,
the intrinsic constraint of (6)1 establishes the solenoidality of the B-field during the
entire evolution. The second equation (6)2 together with the fourth Maxwell equation
div D = ρ yields the conservation law for the charge density ρ. This additional law
must be viewed as a constraint to the evolution (6)2.

In ideal magnetohydrodynamics of plasma flows only the first Maxwell equation
(6)1 plays a role and E is given by E = −v×B, where v is the plasma velocity. Thus
we have

∂tB + curl(B × v) = 0(7)

as evolution equation for the B-field which is identical to (4)curl. Due to the intrin-
sic constraint of (7), the divergence of B remains zero if it is zero initially. Since
this property is spoiled in an ordinary numerical calculation, the preservation of the
divergence is a major issue in computational magnetohydrodynamics; see, e.g., [6].

The Navier–Stokes equations for incompressible flow read as

∂tv + v · gradv + grad p = ∆v,

div v = 0,
(8)

where v is the flow velocity and p is the pressure. Note that the second equation
is not an intrinsic constraint. It does not follow from the evolution equation for v;
instead it is an equation to determine the pressure. In some approaches (see, e.g., [12])
the system of Navier–Stokes is rewritten in terms of the vorticity Ω = curlv. The
evolution equation for the vorticity may then be found from (8)1 using the identity
v · gradv = grad 1

2v
2 − v × curlv and is given by

∂tΩ + curl(Ω × v) = ∆Ω.(9)

This represents again a div-preserving evolution like (4)curl.
An evolution like (4)grad appears to be less frequent. It is encountered, for exam-

ple, in meteorological models where it originates from the system for shallow water
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flows, and the preservation of curlv is a concern in numerical meteorology; see, e.g.,
[19]. The shallow water system is usually written in conservation laws

∂th+ div(hv) = 0,
∂thv + div

(
hv ⊗ v + ( 1

2g h
2)I
)

= 0
(10)

for the water height h and the flow velocity v. The gravitational constant is g. In
meteorology the flow is assumed to be smooth and the momentum balance (10)2
is reduced to an equation for v. Using the first equation and again the identity
v · gradv = grad 1

2v
2 − v × curlv we obtain

∂tv + grad(1
2v

2 + g h) = v × Ω,(11)

where again Ω = curlv is introduced. In this equation the curl-preserving operator
of (4)grad is present. Here, the vector field u coincides with the advection velocity
v. The shallow water system is a two-dimensional model (∂z ≡ 0) with vanishing
z-component of v. Hence, the vorticity Ω has only one nonvanishing component

Ω = ∂xv
(y) − ∂yv

(x) and the right-hand side of (11) has the form
(
Ω v(y),−Ω v(x)

)T
.

2.3. Identification as degenerated advection. We return to the equations
in (4) to discuss more of its properties. So far it is not obvious that these equations are
related to a kind of advection. Clearly, they state processes different from ordinary
advection. We proceed to uncover the relation. A first inspection leads to the fact
that both equations in (4) may be transformed into the form of a conservation law
∂tu + div f(u) = 0 with appropriate definition of the matrix f(u). We obtain

for (4)grad → ∂tu + div ((u · v) I) = 0,
for (4)curl → ∂tu + div(u ⊗ v − v ⊗ u) = 0,

(12)

where I represents the identity matrix. Thus, in both processes each component of u
is conserved and the evolution equations are conservation laws. Now, to investigate
(12) the matrix A(n) of linear combinations of the directional Jacobians of the flux
function f is formed. We have

A(n) = Df(u)n,(13)

where n is a space direction to be chosen. This matrix is used to classify a con-
servation law; see, e.g., [23]. An equation is hyperbolic if A(n) has real eigenvalues
and a complete set of eigenvectors for any direction of n. The eigenvalues are then
interpreted as characteristic velocities. The eigenvectors represent the part of the
conserved vector u which is transported with the corresponding velocity.

We recall that in case of ordinary advection we have f(u) = u ⊗ v and

A(ordinary)(n) = (n · v) I ⇒ λ1,2,3 = n · v, V1,2,3 = R
3(14)

with eigenvalues λi and corresponding eigenspaces Vi. The eigenvalue n · v is real
and threefold and the complete 3-space is the eigenspace for this eigenvalue. The
process of advection may be defined by the presence of an eigenvalue n · v. This
follows from the Friedrichs diagram (see, e.g., [16]), which displays the propagation of
a point disturbance associated to a certain characteristic velocity. In case of advection,
the point disturbance remains a point and is simply propagated with the advection
velocity v. Due to the eigenspace in this case any vector from 3-space can be advected
which corresponds to the decoupling of the advection equations in (2).
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For the evolution equation of type (4)grad we obtain

A(grad)(n) = n ⊗ v ⇒
{
λ1 = n · v, V1 = [n],
λ2,3 = 0, V2,3 = [v]⊥(15)

for the eigenvalues and eigenspaces. One eigenvalue is given by n · v which identifies
the process as advection. However, there exists a second eigenvalue which is zero,
and this leads to a splitting of the 3-space into two eigenspaces. That is, not all
components of a vector u are advected in the Friedrichs diagram. Indeed, according
to V2,3 any vector orthogonal to the advection velocity will stay in place. Any other
vector is simply advected. This behavior must be viewed against the background
of the constraint-preserving property: The eigenvalue λ2,3 represents the constraint
mode (see also [22]) which keeps the curl of u locally untouched.

The evolution of type (4) shows the analogous behavior. Eigenvalues and eigen-
spaces are given by

A(curl)(n) = (n · v) I − v ⊗ n ⇒
{
λ1 = 0, V1 = [v],
λ2,3 = n · v, V2,3 = [n]⊥.(16)

Again we can identify the process as advection due to the eigenvalue λ2,3. The first
eigenvalue is zero and represents the constraint mode. In this case vectors parallel to
v remain untouched due to the eigenspace V1. This corresponds to the preservation
of the divergence of u.

Note that it is not possible to decouple the equations in (12) since the spatial
derivatives do not diagonalize simultaneously. Furthermore, though only real eigen-
values exists, the hyperbolicity of the evolution equations in (12) degenerates due to
the lack of eigenvectors in certain cases. Indeed, in both cases of the evolutions (4),
directions n orthogonal to the advection velocity give only V1 ⊂ V2,3 ⊂ R

3.

2.4. Special cases. It is instructive to consider some special cases of curl-
preserving and div-preserving advection. They will emphasize the advection character
of the equations.

If the value of the curl or of the divergence of u is assumed to vanish initially in
Ω, i.e.,

for (4)grad → curlu ≡ 0,
for (4)curl → div u ≡ 0,

(17)

then their value will stay zero for all times. For div-preserving advection in case of u
being a magnetic flux this is the physically relevant case. If we additionally assume a
constant advection velocity

gradv = 0,(18)

all evolution equations (2), (4)grad, and (4)curl are reduced to the form

∂tu + v · gradu = 0.(19)

Hence, all types of advection become indistinguishable from constant advection.
If, still under the assumption of vanishing constraints, the velocity field is purely

rotational, we have

gradv = −(gradv)T .(20)
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In such a case the advection given in (4) differs from ordinary advection. However, if
we consider the 2-norm of u, we obtain the ordinary advection equation

∂t ‖u‖2
+v · grad ‖u‖2

= 0(21)

for both curl-preserving and div-preserving advection. Hence, ‖u‖2
is rotated as scalar

quantity. The components of u, however, are not advected as scalar quantities. In
fact, the vector u is advected as a whole preserving its position relative to the rotating
velocity.

2.5. Two-dimensional equations. The numerical methods in the next sec-
tions are mainly developed for the two-dimensional case, that is, ∂z → 0. We proceed
to display the two-dimensional equations.

For the div-preserving advection (4)curl the equation for the component u(z) de-
couples from the first two equations for (u(x), u(y)). Furthermore, the constraint divu
is no longer influenced by u(z). Hence, we will discard the equation for u(z) in the
following. The remaining equations are given by

∂tu
(x) + ∂y(u

(x)v(y) − v(x)u(y)) = 0,
∂tu

(y) − ∂x(u
(x)v(y) − v(x)u(y)) = 0

(22)

for the components (u(x), u(y)). Note that u(z) is not zero, nor is its evolution trivial.
The component u(z) and its evolution simply does not play a role in the following
construction of div-preserving methods.

In the two-dimensional case of (4)grad it follows u(z) = const in time; however, the
equations for (u(x), u(y)) still depend on u(z). In the most important application of
curl-preserving advection—the shallow water system—the additional condition v(z) =
0 holds, which yields decoupled equations. Having in mind this kind of application,
the remaining equations for the components (u(x), u(y)) are written as

∂tu
(x) + ∂x(u

(x)v(x) + v(y)u(y)) = 0,
∂tu

(y) + ∂y(u
(x)v(x) + v(y)u(y)) = 0

(23)

for the two-dimensional version of (4)grad. As in the case of (22) the component u(z)

is not further considered.
Correspondingly the constraints are written

for (4)grad → ∂xu
(y) − ∂yu

(x) = const,
for (4)curl → ∂xu

(x) + ∂yu
(y) = const

(24)

in two dimensions. Note that the constraint of type (4)grad, which was a vectorial
quantity in (5), became a scalar equation.

The dual behavior of curl-preserving and div-preserving advection already ob-
servable in the previous section becomes perfect in the two-dimensional case. By
substituting the two-dimensional vector u by its orthogonal complement(

u(x)

u(y)

)
↔
(

u(y)

−u(x)

)
⇐⇒ (23) ↔ (22),(25)

we can transform curl-preserving and div-preserving advection into each other. Hence,
in what follows, any statement or numerical method for the system (23) can be trans-
formed into a statement or numerical method for (22) with the same properties and
vice versa.
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3. General framework. A numerical solution of equations like curl-preserving
and div-preserving advection should respect the intrinsic constraints in a numerical
way. That is, a discrete version of the constraint should follow directly from the
numerical discretization of the evolutions. Ordinary numerical schemes, however, do
not care about the constraints which leads to well-known problems, e.g., in calculat-
ing magnetohydrodynamical flows [6]. We propose that a numerical scheme has to
be constructed on the basis given by a discretization of the constraints. Since the
equations of interest are hyperbolic with local domain of dependency we expect that
the constraint can be controlled locally as well. In this section we set up a general
framework for locally constrained transport schemes.

We consider u ∈ Ω ⊆ R
D (D: space-dimension) and a generic evolution

∂tu + F (u;x) = 0(26)

with a transport operator F depending explicitly on the space variable x. The generic
constraint C is assumed to be linear and intrinsic for (26), that is, the relation

C (F (u;x)) ≡ 0(27)

holds independently of u and x, which directly implies

C (u) = const in time(28)

for any solution of (26); see also [4]. The computational domain Ω is covered by a
grid T = {Ki}i=1,2,... with nonoverlapping polygonal cells Ki whose inner diameter
is bounded by h. Two cells are called neighbors if they have a common edge or if
they only share a vertex. The set N (K) gives all neighbors of the cell K. A time
discretization by ∆t leads to a cell-wise constant grid function ũm : T → R

D which
approximates u after m time steps by cell mean values.

3.1. Flux distribution formulation. The central quantity of this paper is
the so-called flux distribution. It will be the structure of the flux distribution that
determines whether a certain scheme is constraint-preserving.

Definition 3.1 (flux distribution). Given the space of vector-valued grid func-
tions denoted by V =

{
g : T → R

D
}
, we define a “flux distribution” ΦK : V → V

which is attached to a grid cell and maps the grid function ũ into another grid func-
tion, that is,

ΦK (ũ) : T → R
D(29)

with supp(ΦK (ũ)) = K ∪⋃K̂∈N (K) K̂. The evaluation ΦK (ũ)|K̂ gives the change of

ũ at cell K̂ caused by cell K during a time step, that is, the flux.
A flux distribution is assigned to each cell of the grid and may depend on the

value of ũ in this particular cell but also on that in other cells. The definition is more
general than that of usual intercell fluxes, since it admits fluxes to any neighboring
cell, especially across corners. This incorporates multidimensionality from the very
beginning. Conservation of ũ may be expressed by the statement that the integral of
ΦK (ũ) vanishes.

A certain form of the flux distribution and its dependency on ũ is usually con-
structed from consistency with the transport equation. Once the flux distribution is
defined, an explicit evolution scheme follows by simply collecting contributions of all
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flux distributions. Written in complete grid functions we have

ũm+1 = ũm +
∑

K̂
ΦK̂ (ũm)(30)

as an update for the complete grid. The restriction to a certain cell yields a local
formulation, viz.,

ũm+1|K = ũm
∣∣
K

+
∑

K̂∈{K}∪N (K)

ΦK̂ (ũm) |K .(31)

Here the value of ũ in a cell K is updated by contributions of all neighboring cells
which are given by evaluations of flux distributions. Note that virtually any finite-
volume scheme can be written in the form (31), and the flux distribution may then
be identified.

To approximate the transport equation given in (26) consistency is required in
the form of cell mean values, viz.,

F (u;x) |K = − lim
∆t,h→0

1

∆t

∑
K̂∈{K}∪N (K)

ΦK̂ (ũ) |K ,(32)

where ũ is the projection of u onto the grid.
In order to clarify the notion of a flux distribution, we briefly present a possible

flux distribution for one-dimensional constant advection ut + a ux = 0 on a uniform
mesh. The flux distribution given by

Φi (ũ
m) =

⎧⎪⎨⎪⎩
max(0,a)∆t

h ũmi for cell i+ 1,

−(max(0,a)∆t
h + min(0,a)∆t

h )ũmi for cell i,
min(0,a)∆t

h ũmi for cell i− 1

(33)

has entries in cell i and its neighbors i± 1. The evolution (31) may then be written

ũm+1
i = ũmi − max (0, a) ∆t

h
(ũmi − ũmi−1) +

min (0, a) ∆t

h
(ũmi+1 − ũmi ),(34)

which represents the donor cell scheme for constant advection.

3.2. Constraint preservation. Since the constraint is linear we expect a dis-
cretization which may be written as matrix operation

C (u)|K = C̃K ũ +O (hn)(35)

on the grid function ũ which is obtained from the function u by cell-wise constant
projection. If preservation of the constraint should be achieved for the scheme (30),
the following quite obvious statement leads the way.

Lemma 3.2 (constraint preservation). If the condition

C̃K ΦK̂(ũ) = 0 ∀K, K̂, ũ(36)

holds for a specific discrete constraint and a flux distribution, it follows for the evolu-
tion scheme given in (30)

C̃K ũm+1 = C̃K ũm,(37)

i.e., the discrete operator is preserved locally by this scheme.
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Note that condition (36) is sufficient only for constraint preservation, since the flux
distribution is completely unspecified. Contributions of different flux distributions in
(30) could interact in such a way that the discrete constraint is preserved even if (36)
is not valid. However, we will not consider such schemes.

Since the condition is difficult to control for any grid function ũ, we assume a
decomposition

ΦK (ũ) = ϕK (ũ) Φ̂K(38)

into a factor ϕK (ũ) ∈ R and a skeleton or shape function Φ̂K . As indicated, only the
factor depends on the field ũ. Due to the linearity of the constraint this factor drops
out of the condition in (36) and we obtain

C̃K Φ̂K̂ = 0 ∀K, K̂(39)

as a purely geometric condition. To some extent this is the discrete analogon to (27)
which states that the constraint is intrinsic. Indeed, for the case of div-preserving
advection the curl in (4)curl must be discretized in an update Φ̂K̂ such that a discrete

divergence C̃K gives exactly zero. This is also the approach in [13], [14], where discrete
analogons of vector-analytic relations are considered and used to discretize Maxwell’s
equations. The work of [13], [14], however, relies on using different locations, i.e., cell-
center, face, edge, and vertex, to discretize vector functions and define the differential
operators. The operators div and curl are then defined on different grids and for
differently stored variables. For a finite-volume approach with exclusive use of cell
mean values this is unsatisfactory. The condition in (39) aims at discrete operators
and updates that use only cell centered variables. However, at least one of the resulting
schemes may be translated in a “mimetic” scheme described in [14] by appropriate
averaging. This will be demonstrated at the end of section 4.2.2.

If a generic cell K̂ is fixed, (39) gives a homogeneous linear system of equations
and the flux distributions are elements of its kernel. The system will be finite if the
discrete constraint has a finite stencil since then evaluations of (39) for cells K far off
the support of ΦK̂ will vanish identically. The crucial task of designing constrained
transport schemes is to find nontrivial solutions of (39) for a given discrete constraint
operator. A nontrivial solution of (39) is expected to exist if functions with compact
support exist for which the analytic constraint vanishes. The structure of the solutions
depends strongly on the discretization used of the constraint operator.

The system (39) for a fixed cell K̂ is homogeneous and possesses more equations
than unknowns since the evaluation of C̃K on cells neighboring the support of Φ̂K̂ will
yield nontrivial expressions. Experience with concrete examples showed that due to
symmetry most equations are linear dependent and the entire system has a rank less
than the number of unknowns. However, a proof of the general statement that the
system (39) always has a rank less than the number of equations is not yet available.
We expect a solution space for (39) from which we only consider an appropriate basis

set of flux distributions {Φ̂(g)
K } with g = 1, 2, . . . which are all constraint-preserving.

The final flux distribution has to be assembled from these solutions,

ΦK (ũ) =
∑

g
ϕ

(g)
K (ũ) Φ̂

(g)
K(40)

with unknown coefficients ϕ
(g)
K . Note that the choice of ϕ

(g)
K does not affect the

preservation of the constraint which is already established by the skeletons of the
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flux distributions. The expression for ΦK enters the scheme (31), and the remaining

coefficients ϕ
(g)
K have to follow from consistency (32) and stability as well.

The local character of the constraint is crucial at this point. If the constraint has
a global influence, like the divergence condition in the elliptic Stokes problem, it will
not be possible to find a flux distribution which is consistent and locally constraint-
preserving. In the case of the elliptic Stokes problem either the constraint condition
(39) for a consistent flux distribution or the consistency condition (32) for a preserving
one would result in a global problem accounting for the ellipticity.

4. Rectangular grid in two dimensions. We proceed with applying the gen-
eral framework of the preceding section to the system (22), thus concentrating on
div-preserving advection. Both equations in (22) are governed by a single flux func-
tion which we denote by

F (u,v) = u(x)v(y) − v(x)u(y).(41)

As indicated in section 2.3, a numerical scheme for (22) can be directly transformed
into a scheme for (23) by duality. Further investigations will be presented in the case
of a rectangular grid with cells K = (i, j) at positions (xi, yj) and size ∆x×∆y. The
geometry factor of the grid α = ∆x

∆y shall be bounded from above and below. In cases

of accuracy considerations we refer to h = max (∆x,∆y).
Note that the general framework is valid for any kind of polygonal grid. However,

the construction and investigation of discrete constraint operators on triangular or
quadrilateral grids become complicated. The extension to more general grids is subject
to future work.

4.1. Discrete constraints. Since the discrete version of the constraint operator
influences the structure of the flux distribution, we present a certain class of discrete
divergence operators. Each operator is obtained from a discretization of the first
derivative in a finite difference approach. We require a symmetric 3×3 stencil and an
approximation of second order. The following lemma gives all possible approximations
of this type.

Lemma 4.1 (discrete first derivatives). Any second order approximation of the
first derivative of a smooth function ψ in the center cell (i, j) of a symmetric 3 × 3
Cartesian stencil has the form

∂ψ

∂x

∣∣∣∣
i,j

= D̃i,j (α, β, γ) ψ̃ +O
(
h2
)

(42)

with arbitrary values for α, β, γ and

D̃i,j (α, β, γ) =
1

2∆x

0 0 0

−1 0 1

0 0 0

+
α

∆x

−1 0 1

2 0 −2

−1 0 1

+
β

∆x

1 −2 1

0 0 0

−1 2 −1

+
γ

∆x

1 −2 1

−2 4 −2

1 −2 1

(43)

as weights in the grid. In the tables the middle cell corresponds to the cell (i, j).
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Proof. In the case α = β = γ = 0 the operator (43) reduces to the classical sym-
metric finite differences which are visible in the first block of (43). Assuming sufficient
smoothness of ψ, this gives a second order approximation to the first derivative of ψ.
We need only to show that the additional blocks in (43) do contribute only terms of
O
(
h2
)
. Indeed, since these blocks are discretizations of higher order cross derivatives,

evaluation yields

D̃ (α, β, γ) ψ =
∂ψ

∂x
+O

(
∆x2

)
+

α

∆x

(
2∆x∆y2 ∂3ψ

∂x∂y2
+O

(
h3
))

+
β

∆x

(
2∆x2∆y

∂3ψ

∂x2∂y
+O

(
h3
))

+
γ

∆x

(
∆x2∆y2 ∂4ψ

∂x2∂y2
+O

(
h4
))

=
∂ψ

∂x
+O

(
h2
)
.

Finally, we observe that it is not possible to include more discrete cross derivatives.
They would be built from at least third order derivatives with respect to x or y which
have no representation with a 3 × 3 stencil.

In the following, we will evaluate discrete derivatives via (43) by using cell mean
values instead of point values, which introduces only an error of second order.

The constraint for (4)curl in (24) is now to be replaced with a discrete formulation.
By the lemma on discrete first derivatives given above a discrete divergence operator
C̃i,j has the form

div u|i,j = D̃i,j (α, β, γ) ũ(x) − D̃T
i,j (α, β, γ) ũ(y) +O

(
h2
)

≡ C̃i,j (α, β, γ) ũ +O
(
h2
)
,(44)

which leads to a three parameter family of operators. We mention that if any operator
taken from (44) by specifying α, β, γ vanishes, all other operators give a result of
O
(
h2
)

for smooth functions. Hence, if a numerical scheme respects one operator
exactly, all others will give only a discretization error. Even in the discontinuous case
the control of a single operator is sufficient to avoid nonphysical solutions. See, e.g.,
[5], where a staggered operator is controlled.

4.2. Flux distributions. In order to derive divergence-preserving flux distri-
butions we have to look for nontrivial solutions of (39) for a specific operator chosen
from (44). The flux distribution skeleton Φ̂i,j in the two-dimensional rectangular case
covers a region of 3 × 3 cells and gives a two-vector in each cell, thus consisting of
2× 9 = 18 unknown entries. If we fix K̂ in (39) and evaluate the divergence operator
around the flux distribution in the cells of a 5 × 5 area with center K̂, we obtain a
system of 25 equations which describes the skeleton entries. The divergence of more
remote cells is not influenced by the flux distribution at cell K̂ and need not to be
considered. The resulting system, of course, depends on the chosen operator.

4.2.1. Classical operator. The classical discrete divergence operator C̃(0)
i,j is

obtained from (44) by setting α = β = γ = 0, which leads to

C̃(0)
i,j ũ = C̃i,j (0, 0, 0) ũ =

ũ
(x)
i+1,j − ũ

(x)
i−1,j

2∆x
+
ũ

(y)
i,j+1 − ũ

(y)
i,j−1

2∆y
.(45)
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Fig. 1. Several shape functions for flux distributions that are divergence-preserving. All of
them share the same physical interpretation: They have to approximate closed curves in order to
avoid introducing sources into the vector field u and thus they preserve the divergence. In terms of
differential forms, these flux distributions are minimal co-cycles of the discrete outer derivative.

In general, this operator represents the best second order approximation to divu in
the sense that the constant hidden in O

(
h2
)
, i.e., the residual of the second order

Taylor expansion, is minimal. The linear system (39) for this operator has rank 17,
thus it has a one-dimensional null space. We choose a representative of this kernel

and denote it by Φ̂
(0)
i,j . The nonvanishing entries are given by

Φ̂
(0)
i,j

∣∣∣
i+1,j

= (0,∆y), Φ̂
(0)
i,j

∣∣∣
i,j+1

= (−∆x, 0),

Φ̂
(0)
i,j

∣∣∣
i,j−1

= (∆x, 0), Φ̂
(0)
i,j

∣∣∣
i−1,j

= (0,−∆y),
(46)

and all other elements of the kernel follow by multiplication with a constant factor.
This flux distribution is sketched in the upper left corner of Figure 1. The picture
has to be interpreted as follows: A flux originating in K may change the value of ũ
in the right neighboring cell only in the y-direction. Furthermore, if this neighbor is
changed in that way, all other neighboring cells have to be changed correspondingly
as depicted in the figure in order to obey the constraint. Of course, the value ũ(x) in
the right neighbor of K does not remain constant, since it may be changed by flux
distributions originating from other cells. This kind of flux distribution results in a
coupling of fluxes into neighboring cells, and it is this coupling that is responsible for
the local preservation of the divergence.

The divergence-preserving flux distributions also have interpretations in the the-
ory of differential forms. They represent minimal discrete co-cycles of the correspond-
ing discrete outer derivatives; see [7], [15], [24].

In order to construct the final scheme we assemble the shape function Φ̂i,j of the
flux distribution according to

Φ
(0)
i,j (ũ) = ϕ

(0)
i,j (ũ) Φ̂

(0)
i,j(47)

with an unknown function ϕ. Note that Φ̂i,j = O(h) and, since Φi,j has to be O(1), it
follows that ϕi,j = O(h−1). The final scheme is obtained by following (31) with (46)



CONSTRAINT-PRESERVING UPWIND METHODS 1707

and reads as(
ũ(x)

ũ(y)

)m+1

i,j

=

(
ũ(x)

ũ(y)

)m
i,j

+

(
(ϕ

(0)
i,j−1(ũ) − ϕ

(0)
i,j+1(ũ))∆x

(ϕ
(0)
i+1,j(ũ) − ϕ

(0)
i−1,j(ũ))∆y

)m
.(48)

By Taylor expansion and comparison with the original equation (22), we deduce

ϕ
(0)
i,j (ũ) = − ∆t

2∆x∆y
F (ũi,j ,vi,j) ,(49)

which makes (48) consistent up to second order. This scheme solves for div-preserving
advection while exactly preserving the value of the classical divergence operator (45).
The scheme introduces central differences for the derivatives in (22) and was proposed

ad hoc by Toth [26] in a magnetohydrodynamic setting. Since Φ̂
(0)
i,j is the only flux

distribution respecting condition (39) with the classical operator, we conclude that
this scheme is the only second order scheme which preserves the divergence via the
classical operator (45).

However, the scheme (48) is unconditionally unstable due to central differences.
For the investigation of stability we have to look for the maximal spectral radius of
the amplifier matrix

ρmax = max
ξ,η∈(−π.π)

ρ (Tξ,η)(50)

(see section 4.3.2 for more details). Assuming a constant advection velocity and
defining the Courant numbers

a =
∆t v(x)

∆x
, b =

∆t v(y)

∆y
(51)

we obtain the result

ρ(0)
max = max

ξ,η∈(−π,π)
|1 − i (a sin ξ + b sin η)| > 1(52)

unless a = b = 0 for the case of (48). The imaginary unit is denoted by i =
√−1.

In spite of this instability the scheme (48) could be used in [26] in the context of
magnetohydrodynamics due to the use of predictor values for u.

4.2.2. Extended operator. In order to design a more flexible scheme we look
for a different divergence operator which leads to a larger null space of (39) and thus
provides more nontrivial solutions. Empirical evaluations of the family given in (43)
by computer algebra software suggest that the choice α = 1

8 , γ = 0 admits a four-
dimensional kernel for any value of β; i.e., the system (39) has rank 14. The best
approximation is then given by β = 0, and the resulting operator is called extended

operator C̃(�)
i,j . Operators with larger kernels could not be found. The extended

operator is defined by

C̃(�)
i,j ũ = C̃i,j

(
1
8 , 0, 0

)
ũ

=
{ũ(x)

i+1,j}y − {ũ(x)
i−1,j}y

2∆x
+

{ũ(y)
i,j+1}x − {ũ(y)

i,j−1}x
2∆y

,(53)
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where curled brackets stand for

{ψi,j}y = 1
4 (ψi,j+1 + 2ψi,j + ψi,j−1) ,

{ψi,j}x = 1
4 (ψi+1,j + 2ψi,j + ψi−1,j) ,

(54)

i.e., averaging in x- and y-direction. The four admissible skeletons of flux distributions
are displayed in the lower row of Figure 1. In detail, the nonvanishing entries of the
first one are given by

Φ̂
(1)
i,j

∣∣∣
i+1,j+1

= (−∆x,∆y), Φ̂
(1)
i,j

∣∣∣
i,j+1

= (−∆x,−∆y),

Φ̂
(1)
i,j

∣∣∣
i,j

= (∆x,−∆y), Φ̂
(1)
i,j

∣∣∣
i+1,j

= (∆x,∆y)
(55)

and the remaining three flux distributions follow by translation. Note that the classical
operator applied to these flux distributions will not vanish. We remark further that
any scheme built upon these flux distribution skeletons will be conservative, since the
cell-wise sum of all flux distribution components, i.e., the integral, gives zero.

As first choice for a flux distribution, we choose the symmetric distribution Φ̂
(�)
i,j

which is given by

Φ̂
(�)
i,j = Φ̂

(1)
i,j + Φ̂

(2)
i,j + Φ̂

(3)
i,j + Φ̂

(4)
i,j(56)

and shown in the upper right corner of Figure 1. Like in the preceding section this
flux distribution is assembled with an unknown function ϕ to give

Φ
(�)
i,j (ũ) = ϕ

(�)
i,j (ũ) Φ̂

(�)
i,j .(57)

For the resulting scheme we obtain(
ũ(x)

ũ(y)

)m+1

i,j

=

(
ũ(x)

ũ(y)

)m
i,j

+

(
({ϕ(�)

i,j−1(ũ)}x − {ϕ(�)
i,j+1(ũ)}x)∆x

({ϕ(�)
i+1,j(ũ)}y − {ϕ(�)

i−1,j(ũ)}y)∆y

)m
,(58)

where again the curled brackets denote the averaging of (54). The demand for second
order consistency with (22) leads to

ϕ
(�)
i,j (ũ) = − ∆t

2∆x∆y
F (ũi,j ,vi,j) .(59)

This scheme exactly preserves the value of the extended divergence operator (53).
However, as in the case of the Φ(0)-scheme, this scheme is unconditionally unstable.
For the maximal spectral radius of the amplifier matrix we calculate with constant
advection and Courant numbers from (51)

ρ(�)
max = max

ξ,η∈(−π,π)

∣∣∣1 − i
(
a sin ξ 1+cos η

2 + b sin η 1+cos ξ
2

)∣∣∣ ≥ 1,(60)

where equality holds only if a = b = 0. The instability of schemes (58) as well as (48)
could also be observed in our numerical experiments.

Equivalence with staggered approach. In the context of magnetohydrodynamics
one approach of controlling the divergence is to store the components of u in the
edges of the cells, the so-called staggered grid. This idea was proposed in [8] and
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further developed by [5], [1]. We follow the presentation in [26]. In our notation the
resulting staggered grid scheme reads⎛⎝ ũ

(x)

i+ 1
2 ,j

ũ
(y)

i,j+ 1
2

⎞⎠m+1

=

⎛⎝ ũ
(x)

i+ 1
2 ,j

ũ
(y)

i,j+ 1
2

⎞⎠m

+

(
∆t
∆y (Fi+ 1

2 ,j+
1
2
− Fi+ 1

2 ,j− 1
2
)

∆t
∆x (Fi+ 1

2 ,j+
1
2
− Fi− 1

2 ,j+
1
2
)

)m
(61)

for the normal components ũ
(x)

i+ 1
2 ,j

and ũ
(y)

i,j+ 1
2

on each edge and the function Fi+ 1
2 ,j+

1
2

evaluated at the vertices. This scheme corresponds to the so-called mimetic discretiza-
tion of [13], [14] for the equation (4)curl if it is applied in the case of a rectangular
grid.

In the context of computational magnetohydrodynamics and in this paper all vari-
ables are represented as mean values located in the cell centers. Hence, the staggered
variables in (61) have to be substituted; see [26]. The flux function at the vertices is
obtained by averaging

Fi+ 1
2 ,j+

1
2

=
1

4
(Fi,j + Fi+1,j + Fi,j+1 + Fj+1,i+1) ,(62)

where the expression Fi,j corresponds to the evaluation of the flux function (41) in
the cell (i, j). Finally, the edge values of u(x) and u(y) are averaged via

ũ
(x)
i,j =

1

2

(
ũ

(x)

i+ 1
2 ,j

+ ũ
(x)

i− 1
2 ,j

)
, ũ

(y)
i,j =

1

2

(
ũ

(y)

i,j+ 1
2

+ ũ
(y)

i,j− 1
2

)
(63)

after each time step (61). In [26] it was noted that this averaging procedure can be
done explicitly with the scheme (61), which leads to a scheme where staggered values
of u are eliminated. The resulting scheme (formerly staggered) is equivalent to the
symmetric Φ(�)-scheme in (58).

Furthermore, this shows that the extended operator C̃(�)
i,j is exactly preserved

on the primary grid cells in a staggered grid calculation. This also suggests a close

relation between the present extended divergence operator C̃(�)
i,j and the DIV -operator

which is preserved in the mimetic schemes of [14]. The DIV -operator for the normal
components on the edges is written

DIV u|i,j =
ũ

(x)

i+ 1
2 ,j

− ũ
(x)

i− 1
2 ,j

∆x
−
ũ

(y)

i,j+ 1
2

− ũ
(y)

i,j− 1
2

∆y
(64)

in the rectangular case; see [13]. This is exactly the C̃(�)
i,j -operator if the edge values

are obtained from the cell centered variables by averaging

ũ
(x)

i+ 1
2 ,j

=
ũ

(x)
i+1,j+1 + 2ũ

(x)
i+1,j + ũ

(x)
i+1,j−1 + ũ

(x)
i,j+1 + 2ũ

(x)
i,j + ũ

(x)
i,j−1

8
,(65)

and analogously for ũ
(y)

i,j+ 1
2

. This is also the same averaging formula which is used in

[19] to switch from cell centered variables to normal edge components.
The symmetric scheme in (58) as well as the staggered approach is unstable, since

these schemes do not take upwind directions into account. As in the case of (48) the
staggered grid scheme is stabilized in magnetohydrodynamics calculations by use of
predictors; see [1], [5], and [26].
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4.3. Upwind scheme. The symmetric flux distribution (56) uses the same coef-
ficient ϕ(�) for all basis elements Φ(g). This results in central differences and instability
of the final scheme. To construct an upwind scheme we propose

Φ
(up)
i,j (ũ) =

4∑
g=1

ϕ
(g)
i,j (ũ) Φ̂

(g)
i,j(66)

as flux distribution with four coefficients ϕ(g) yet to be specified. The final scheme
reads as

(
ũ(x)

ũ(y)

)m+1

i,j

=

(
ũ(x)

ũ(y)

)m
i,j

+

⎛⎝ δ
(y)

i− 1
2 ,j− 1

2

(ϕ(1))∆x

−δ(x)
i− 1

2 ,j− 1
2

(ϕ(1))∆y

⎞⎠+

⎛⎝ δ
(y)

i+ 1
2 ,j− 1

2

(ϕ(2))∆x

−δ(x)
i+ 1

2 ,j− 1
2

(ϕ(2))∆y

⎞⎠
(67)

+

⎛⎝ δ
(y)

i+ 1
2 ,j+

1
2

(ϕ(3))∆x

−δ(x)
i+ 1

2 ,j+
1
2

(ϕ(3))∆y

⎞⎠+

⎛⎝ δ
(y)

i− 1
2 ,j+

1
2

(ϕ(4))∆x

−δ(x)
i− 1

2 ,j+
1
2

(ϕ(4))∆y

⎞⎠,
where we used the abbreviations

δ
(x)

i+ 1
2 ,j+

1
2

(ϕ) = ϕi+1,j+1 + ϕi+1,j − ϕi,j+1 − ϕi,j ,

δ
(y)

i+ 1
2 ,j+

1
2

(ϕ) = ϕi+1,j+1 + ϕi,j+1 − ϕi+1,j − ϕi,j ,
(68)

which represent finite differences. The next two subsections specify the coefficients
ϕ(g) by requiring consistency and stability of the scheme (67).

4.3.1. Consistency. The following lemma gives expressions for ϕ(g) such that
a first or second order method is obtained. A weight function ω(g) which controls the
influence of the different basis flux distributions remains unspecified.

Theorem 4.2 (consistency). Let the values ω(g) (g = 1, 2, 3, 4) be weights such

that
∑4
g=1 ω

(g) = 1. In general these weights depend on ũ and v. Furthermore let the

expressions ∆t
∆x and ∆t

∆y be O(1), the geometry factor α = ∆x
∆y be bounded from above

and below, and h = max(∆x,∆y). Then the scheme displayed in (67) is consistent
with the constrained advection equation (22) in smooth regions of the solution up to

(i) first order in space and time, if the flux distribution factor in (66) is given by

ϕ
(g)
i,j (ũ) = − ∆t

2∆x∆y
ω(g)(ũi,j ,vi,j)F (ũi,j ,vi,j) ;(69)

(ii) second order in space and time, if the flux distribution factor in (66) is given
by

ϕ
(g)
i,j (ũ) = − ∆t

2∆x∆y
ω(g)(ũi,j ,vi,j)

(
F − ∆t

2
(v(x)∂xF + v(y)∂yF ) + Λ

)
i,j

(70)

with Λ =
∑4
g=1(

∆x
2 rg ∂x(ω

(g)F )+ ∆y
2 lg ∂x(ω

(g)F )) and coefficients rg and lg as given
in the table (71).

We remark that the second order result (70) uses derivatives of the weight func-
tion ω. Hence, ω considered as a function in the domain Ω needs to have at least one
continuous derivative in order to obtain second order accuracy. We will present nu-
merical experiments where second order is not recovered due to a nonsmooth weight
function.
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Proof. We consider the flux distribution factor ϕi,j as function ϕi,j ≡ ϕ(xi, yj)
whose evaluations in different grid cells can be expanded in a Taylor series. Second
order expansion of the scheme (67) gives(

ũ(x)

ũ(y)

)m+1

i,j

=

(
ũ(x)

ũ(y)

)m
i,j

+

(
∂
∂y

∑4
g=1

(
2ϕ(g) − ∆x rg ∂xϕ

(g) − ∆y lg ∂yϕ
(g)
)
∆x∆y

− ∂
∂x

∑4
g=1

(
2ϕ(g) − ∆y lg ∂yϕ

(g) − ∆x rg ∂xϕ
(g)
)
∆y∆x

)
i,j

+ O
(
h3
)
,

where lg and rg are defined by the table

g = 1 g = 2 g = 3 g = 4
lg 1 1 –1 –1
rg 1 –1 –1 1

(71)

and ϕx, ϕy are derivatives of ϕ. Note that we changed the interpretation of ũi,j
from cell mean value to point value in the middle of the cell. This switch introduces
only an error of O(h2) on both the left-hand and the right-hand sides of the equation.
However, the leading expression within O(h2) cancels on both sides and the remaining
error is O(h3).

By use of (22) with the definition of the flux function F in (41) we obtain the
expansion of the exact solution

ui,j (t+ ∆t) = ui,j (t) − ∆t

(
∂yF
−∂xF

)
i,j

+
∆t2

2

(
∂y
(
v(x)∂xF + v(y)∂yF

)
−∂x

(
v(x)∂xF + v(y)∂yF

))
i,j

+O
(
∆t3

)
.

Since the Courant numbers are bounded we have O(h3) = O(∆t3). Hence, the direct
comparison of exact and numerical increments of ui,j yields the consistency condition

4∑
g=1

(
2ϕ(g) − ∆x rg ∂xϕ

(g) − ∆y lg ∂yϕ
(g)
)

∆x∆y

= −∆t F +
∆t2

2

(
v(x)∂xF + v(y)∂yF

)
.

This relation can be solved for ϕ(g) by means of an ansatz with a first order and a
second order contribution to ϕ(g), viz.,

ϕ(g) =
∆t

∆x∆y
ϕ(g,1) +

∆t2

∆x∆y
ϕ(g,2).

Introducing this into the consistency condition and comparison of coefficients of ∆t-
expressions leads us to

4∑
g=1

ϕ(g,1) = −1

2
F,
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which, of course, can be satisfied in many ways. We propose weights ω(g), yet un-
specified, which sum up to unity and write

ϕ(g,1) = −ω(g) 1

2
F

as first order flux distribution factor. By using this in our ansatz and further com-
parison of ∆t2-coefficients in the consistency condition, the second order factor

ϕ(g,2) = ω(g) 1

4

(
v(x)∂xF + v(y)∂yF −

4∑
g=1

(
∆x

∆t
rg ∂x(ω

(g)F ) +
∆y

∆t
lg ∂y(ω

(g)F )

))

is obtained.
In implementations we substitute the x- and y-derivatives in (70) by appropriate

finite differences. Following the TVD analysis of one-dimensional methods, these finite
differences need a limiting procedure in order to obtain nonoscillatory solutions. In
the numerical experiments with discontinuous solutions we used the so-called WENO-
limiter (see [17]), which is given by

WENO(d1, d2) =

d1√
d21+ε

+ d2√
d22+ε

1√
d21+ε

+ 1√
d22+ε

,(72)

where d1 and d2 are left- and right-hand side finite differences and ε is a small number
(ε ≈ 10−8). With use of this limiter we have

∂ψ

∂x

∣∣∣∣
i

=
WENO(ψi − ψi−1, ψi+1 − ψi)

∆x
(73)

for the limited derivative of a grid function ψ.

4.3.2. Stability. The weights which have been introduced during the proof of
consistency control the activation of the different basis flux distributions shown in
Figure 1 (lower row). Their value should be chosen according to the direction of the
advection. Clearly, one would not activate the first flux distribution Φ̂(1) which is
oriented towards the upper right if the wind is pointing in opposite direction. This
would yield an unstable scheme. Indeed, stability is the issue that will specify the
right choice of weights.

To investigate the stability we consider the one-sided scheme which uses only the
first and the fourth flux distribution. Hence, it follows for the weights

ω(1) ≡ ω, ω(2,3) = 0, ω(4) = 1 − ω(74)

with unknown ω. An impression of how different choices of ω influences the stability
of the scheme is given in Figure 2. It shows the contours of the maximal eigenvalue of
the amplifier matrix ρmax for different choices of ω and different directions of the flow.
The contour values and their shape have been obtained numerically for the first order
scheme. We can see that a flow pointing exactly in the direction of a flux distribution
(θ1 = 0 or θ4 = 0) requires the activation of only the corresponding flux distribution
(ω1 = 1 or ω4 = 1) to yield stability. Furthermore ω1 = ω4 = 1/2 gives a stable
scheme only for flows in the x-direction. This corresponds to the intuitive choices
in these cases. In between these extreme cases Figure 2 indicates the existence of a
single stable choice ω̄(θ) for the weight.
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Fig. 2. Left: A sketch of the elements of the one-sided scheme to clarify the notation used.
Right: Numerical evaluations of the maximal spectral radius of the amplifier matrix in the (θ1, ω1)-
plane for the first order one-sided scheme. The plot exhibits a distinct function ω̄(θ) which yields
stability.

The following lemma specifies this weight and the stability conditions of the one-
sided scheme.

Theorem 4.3 (stability). Assume the advection velocity to be constant and∣∣v(x)
∣∣ �= 0. Then, the one-sided, first order scheme consisting of flux distribution Φ(1)

and Φ(4) with single weight ω, time step ∆t, and cells ∆x×∆y is stable in the sense
of a von Neumann analysis under the conditions(

∆t v(y)

∆y

)2

≤ ∆t v(x)

∆x
≤ 1 and ω ≡ ω̄ =

1

2

(
1 +

∆x

∆y

v(y)

v(x)

)
.(75)

Under these stability conditions we have, furthermore, for the maximal spectral radius
ρmax of the amplifier matrix

ρmax(ω̄ + δω) = 1 + c δω2 +O(δω3) with c > 0,(76)

i.e., the weight ω̄ is a local minimum of ρmax.
Proof. We follow the stability analysis of von Neumann (see, e.g., [11]). The

Fourier transform of the grid function ui,j is denoted by

ûi,j = û0 e
i(i ξ+j η)

and introduced into the scheme (67) with (69) and (74), which leads to

ûm+1
0 = Tξ,η ûm0 .

Here, Tξ,η is the amplifier matrix of the scheme. The imaginary unit is denoted by
i =

√−1. Since the advection velocity is assumed to be constant the amplifier matrix
has the form

Tξ,η =

(
1 − b t(x) (ξ, η, ω) aα t(x) (ξ, η, ω)
−b 1

α t
(y) (ξ, η, ω) 1 + a t(y) (ξ, η, ω)

)
with the Courant numbers a = ∆t v(x)

∆x and b = ∆t v(y)

∆y as well as α = ∆x
∆y . The

functions t(x) and t(y) depend on ξ, η, and ω and follow from the scheme. For stability
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the maximal spectral radius

ρmax(a, b, ω) = max
ξ,η∈(−π,π)

ρ (Tξ,η)

has to be smaller or equal to unity. The geometry factor α drops out during the
calculation. Obviously, Tξ,η has the eigenvector (v(x), v(y))T with eigenvalue λ1 = 1,
which corresponds to the first eigenvalue and eigenvector of the Jacobian given in (16)
if the identity matrix is added. The second eigenvalue of Tξ,η varies with ξ and η. It
has the form λ2 = τ1(η) + τ2(η) e

i ξ with τ1,2(η) ∈ R, thus its maximal absolute value
|λ2| = |τ1(η)| + |τ2(η)| depends only on η. A straightforward calculation leads to

ρmax(a, β, ω) = max
η∈(−π,π)

(√(
1− a+ a(1 + β − 2ω β) 1−cos η

2

)2
+ a2

4 (1 + β − 2ω)
2
sin2η

+

√(
a− a(1 − β + 2ω β) 1−cos η

2

)2
+ a2

4 (1 − β − 2ω)
2
sin2 η

)
,

where we assumed |a| > 0 and defined the ratio β = b
a .

The stable weight as defined in (75) can be written as

ω̄ =
a+ b

2a
=

1 + β

2
,

which may be introduced into ρmax, yielding

ρmax(a, β, ω̄) = max
η∈(−π,π)

(∣∣1 − a
(
1 − (1 − β2) 1−cos η

2

)∣∣+ |a| (1 − (1 − β2) 1−cos η
2

))
after some calculation. The expression in large brackets is a positive quantity with
the bounds

0 ≤ min
(
1, β2

) ≤ 1 − (1 − β2) 1−cos η
2 ≤ max

(
1, β2

)
.

Especially, for a given value of β there exists an η such that this expression is non-
vanishing. From this fact we conclude for ρmax (a, β, ω̄)

a < 0 ⇒ ρmax > 1;

hence a ≥ 0 is necessary for stability. The conditions for ρmax ≤ 1 now follow from
the condition that the modulus expression in ρmax should be nonnegative. Thus we
obtain

a
(
1 − (1 − β2) 1−cos η

2

) ≤ 1 ⇒ amax
(
1, β2

) ≤ 1,

which, since β = b/a, finally gives b2 ≤ a ≤ 1 as stated in the lemma.
For the second part of the lemma we consider the Taylor expansion

ρmax(a, β, ω̄ + δω) = ρmax|ω=ω̄ +
∂ρmax

∂ω

∣∣∣∣
ω=ω̄

δω +
∂2ρmax

∂ω2

∣∣∣∣
ω=ω̄

δω2 + O(δω3)

for the maximal spectral radius. Under the conditions b2 ≤ a ≤ 1 we have shown
ρmax|ω=ω̄ = 1. Starting with the general formula for ρmax(a, b, ω) as given above,
computer algebra software easily gives

∂ρmax

∂ω
(a, β, ω̄) = 0
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and

∂2ρmax

∂ω2
(a, β, ω̄) =

2 a sin2 η

|1 + β2 + (1 − β2) cos η| +
2 a2 sin2 η

|2 − a(1 + β2) − (1 − β2) cos η|
for the derivatives, which justifies the expansion with positive constant c.

Note that stability of the one-sided scheme is given also for specific flows with
θ1 < 0 or θ4 < 0 (according to Figure 2), which point outside the range given by the
two flux distributions. Intuitively, we would expect |b| ≤ a for the Courant numbers,
but the lemma states only |b| ≤ √

a. This condition becomes more and more restrictive
if the angles θ1,4 approach −π/4. For the extreme cases θ1,4 = −π/4 we would obtain
a flow in a negative (respectively, positive) y-direction and the condition |b| ≤ √

a = 0.
Furthermore, one of the weights becomes negative if θ1 < 0 or θ4 < 0 holds.

Lemma 4.1 investigates the first order scheme. The analysis for the second order
scheme becomes much more involved and hardly solvable by hand. But numerical
experiments suggest that the second order scheme appears to remain stable under
the same conditions. Furthermore the numerical exploration of the amplifier ma-
trix results in a picture very similar to the right-hand side of Figure 2. A detailed
investigation of the second order scheme remains for future work.

Finally, we generalize the result for the one-sided scheme to the full upwind scheme
with four flux distributions. The one-sided scheme may easily be formulated for all
four possible coordinate directions. For a general scheme, we propose a superposition
of these four one-sided schemes in order to obtain a full upwind scheme. Hence, for any
flow the weights are chosen such that two flux distributions are activated according to
the appropriate one-sided case. The resulting weights may be constructed from the
direction vector each skeleton is associated with. These vectors are given by

n1 = (1, 1) , n2 = (−1, 1), n3 = (−1,−1), n4 = (1,−1),(77)

following the numbering of the sketch in Figure 1. Based on these vectors the general
local weights ω(1,2,3,4) have the representation

ω(g) (vi,j) =
max(ng · vi,j , 0)∑4
γ=1 max(nγ · vi,j , 0)

,(78)

which may be verified to coincide with the appropriate one-sided case depending on
the direction of v. In addition we define ω(g) (0) = 0. By extrapolation of Lemma 4
we may draw the conclusion that the scheme (67) with the weights (78) will be stable
provided we have

max
x,y∈Ω

(|ai,j |) ≤ 1 and max
x,y∈Ω

(|bi,j |) ≤ 1,(79)

where ai,j and bi,j are local Courant numbers. One of the weights of (78) is displayed
in Figure 3 as the dark curve. Note the correspondence of the shapes between the
curve in this figure and the contour in Figure 2. Unfortunately, the weight given in
(78) is not differentiable at points where v is orthogonal to any of the ng due to the
function max(·, 0). However, at least one continuous derivative is needed for second
order accuracy as stated in the remark following Lemma 3.2. As regularization of
max(·, 0), we propose

maxε(x, 0) =
1

2
(x+

√
x2 + 4ε)(80)
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Fig. 3. The nonsmooth weight function ω̄ obtained from Lemma 4 (dark curve) and two possible
regularizations ωε and ω̃. The angle θ is the angle between the flow and the direction of the flux
distribution. Compare this plot with the stability contours in Figure 2.

for use in (78) resulting in a regularized weight ω̄ε. The curve of ω̄ε is also shown
in Figure 3. Note that this weight gives a deviation from the weight ω̄ obtained in
Lemma 4.1. However, if we choose ε = h = max(∆x,∆y) we have

ρmax(ω̄ε) ≈ ρmax(ω̄ +
√
h) ≈ 1 + c h(81)

according to the second statement in Lemma 4.1. This increases the error constant
of the scheme but still gives stability; see, e.g., [11].

Another possible regularization is given by

ω̃(g) (v) =
max(ng · v, 0)2

2 ‖v‖2 ,(82)

which is also depicted in Figure 3. This weight deviates considerably from ω̄ and
stability is not assured by Lemma 4.1. However, we want to remark that in our
numerical calculations with this weight instabilities did not occur. This fact needs
further investigation. It could be possible that error modes considered by the von
Neumann analysis are not excited in the numerical evaluations due to the constraint-
preserving property.

5. Numerical experiments. We proceed to present numerical experiments for
two-dimensional div-preserving advection (22) calculated with the upwind scheme
given in (67). This scheme exactly preserves the extended divergence operator C̃(�).
The symmetric schemes (48), which preserves the classical operator and (58) are
not considered due to their instability. For the scheme (67) we write FD, which is
an abbreviation of “flux distribution.” FD(2) stands for the second order scheme
(70) with weight ω̄, while FD

(2)
ε uses the regularized weight ω̄ε. Analogously, FD(1)

denotes the first order scheme (69) with weight ω̄. For the smooth test cases we
used central finite differences to approximate the derivatives in the second order flux
distribution coefficient given by (70).

5.1. Smooth test cases. In order to obtain empirical orders of convergence we
considered smooth initial conditions

u0(x, y) =

(−1 + 1
2 sin(πx) + 1

4 cos(πy)
1 + 1

2 cos(πx) + 1
4 sin(πy)

)
(83)
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Fig. 4. Empirical order of convergence for a smooth solution and the divergence of the solution;
for problem specification see section 5.1. From above, the three curves in the left plot refer to the
first order upwind scheme, the second order upwind scheme with nonregularized weight, and the
second order upwind scheme with regularized weight. On the right, the upper (lower) curve shows
evaluations of the classical (extended) discrete divergence operator. Beside the error curves, averaged
empirical orders of convergence are displayed.

in the computational domain Ω = [−1, 1]2. To eliminate the influence of boundary
conditions periodic boundaries were furnished in both dimensions. The initial vector
field u0 has a nonvanishing divergence which will be frozen under div-preserving
advection. The vector field is advected by the velocity field

v(x, y) =

(
1 + 1

4 cos(πx) + 1
2 sin(πy)

1 + 1
4 sin(πx) + 1

2 cos(πy)

)
,(84)

which is periodic as u0. As end time, t = 0.5 was chosen. Since an analytic solution is
not available for this case, a reference solution has been calculated on a uniform grid
with 1200× 1200 points and 540 constant time steps. The maximal Courant number

cmax = max
x,y∈Ω

(
v(x)∆t

∆x
,
v(y)∆t

∆y

)
(85)

for this solution was approximately 0.97.
The reference solution is used to calculate empirical orders of convergence for

calculations on N × N grids with N = 10, 20, 30, 40, 50, 60, 80, 100, 120, 150, 200. All
these calculations were performed with constant time steps such that cmax ≈ 0.875.
For the coarsest grid with 10×10 this results in five time steps. The left-hand side
of Figure 4 shows the L1-errors of second order schemes with regularized and non-
regularized weight as well as the L1-errors of the first order scheme. As predicted in
the preceding section, the FD(2)-scheme does not achieve full second order. Only due

to the regularization (80) full second order is obtained with the FD
(2)
ε -scheme. The

errors and the order of convergence depend slightly on the regularization parameter
ε. In Figure 4, ε = 5∆x was chosen. Higher values give a slightly improved order of
convergence. FD(1) exhibits first order independently of the regularity of the weight.

The right-hand side of Figure 4 displays the L∞-error of discrete divergences of

the FD
(2)
ε -solution at t = 0.5. The curves refer to evaluations with the classical

and the extended operator, C̃(0) and C̃(�) as given in (45) and (53), respectively.
Due to the constraint preservation of all FD-schemes, the evaluation of the extended
operator C̃(�) yields the same numerical value for the divergence during the entire
calculation. This value is given by the discrete initial conditions. Hence, the lower
curve in Figure 4 (right) simply represents the increasing resolution of the initial
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Fig. 5. Numerical results for the box test case (see section 5.1.1) for three different grids. The
initial conditions and the direction of the constant advection velocity are shown in the upper left
corner.

conditions and demonstrates second order for the extended operator. In contrast,
the value of the classical operator is affected during the numerical calculation (not
shown). However, since the solution is smooth the evaluation of C̃(0) at t = 0.5 is
converging, which is visible in the right plot (upper curve) of Figure 4.

5.1.1. Box test case. If initial conditions for the div-preserving advection (22)
are given in the form

u0 (x, y) = (0, g′ (x) g′ (y))(86)

with derivatives of a function g and the velocity field by v (x, y) = (1, 0), i.e., pointing
constantly in the x-direction, the exact solution has the form

u (x, y, t) = (g′′ (y) (g (x) − g (x− t)) , g′ (x− t) g′ (y)) .(87)

As an example we choose

g (x) =

{
16
5 s

5 − 8
3s

3 + s, − 1
2 < s < 1

2 ,± 4
15 else,

(88)
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Fig. 6. Numerical errors of the solution of the box test case at t = 0.5 with different grids.
Left: L1-error of u. The upper curve is obtained with the first order scheme FD(1), the lower
curve refers to FD(2). Note that regularity of the weight does not play a role in this example due
to constant advection velocity. Right: L∞-error for the extended (lower curve) and classical (upper
curve) divergence operator. Beside the error curves averaged empirical orders of convergence are
displayed.

so that the initial field u0 is nonvanishing only inside the box (−1/2, 1/2)2. The
initial condition has a nonvanishing divergence; hence, the advection will differ from
ordinary advection, though the advection velocity is constant.

In the numerical test the system given by these initial conditions is rotated by 45◦

such that advection takes place in a diagonal grid direction. The initial conditions
are displayed in the upper left corner of Figure 5. The center of the box is moved
to (−0.1,−0.1). The contour shading represents values of ‖ũ‖, which ranges form
zero to 1.36, while the lines in the plots represent field lines of ũ (the flow which is
induced by ũ). The calculation is conducted in the domain [−1, 1]2 with constant
extrapolation in the boundary cells. Besides the initial conditions, Figure 5 displays
numerical results at t = 0.5 for three uniform meshes with different resolutions. All
results were obtained with the FD(2) scheme with constant time steps such that the
maximal courant number cmax ≈ 0.884. Note that the weight is constant in this
example since the advection velocity is constant. In the exact solutions the field lines
are bent outside the box due to the advection. Since the divergence of ũ does not
vanish initially, the field lines fill up the way and their starting and ending points stay
inside the initial box. In other words, the nonvanishing divergence inside the box acts
as source and sink for the field lines.

On the coarse grid the solution is spoiled at the sides by artificial field lines. These
field lines correspond to values of ũ in the magnitude of the truncation error which
are introduced by the finite stencil of the scheme at the boundary of the box. Note
that outside the initial box erroneous field lines appear as closed lines which indicates
the solenoidal character of the scheme. On the fine mesh the solution is well resolved.

In Figure 6 we display the L1-error of the variable u and the L∞-error of the
divergence for the box test case together with averaged empirical orders of conver-
gence. Second order is well obtained, while the FD(1)-scheme shows a slight super-
convergence for this example. The irregularities in the second order error curve might
be due to the nonsmooth gradient of the solution (87) with (88) along the lines y = ± 1

2 .
This is also the reason that the convergence of the divergence on the right-hand side of
the figure is reduced to first order. Like in the smooth test case, the divergence error
for the extended operator gives the same value during the entire simulation since this
value is locally preserved by the scheme. The method freezes the discrete divergence
of the initial conditions like the analytical system does.
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Fig. 7. Initial conditions and grid convergence study for the box test case of curl-free advection.
The initial conditions and the result are dual to that of div-free advection and should be compared
to the corresponding results in Figure 5.

Box test case for curl-preserving advection. It is interesting to ask for the dual
solution of the box test case in the sense of the duality of curl-preserving and div-
preserving advection as indicated in (25). The solution is depicted in Figure 7, which
should be directly compared with Figure 5. The dual solution is obtained by taking
the orthogonal complement of the initial conditions (86) as well as of the solution
(87). The result is a solution of the curl-preserving advection (23). Accordingly, the
field lines in Figures 5 and 7 are orthogonal.

The plots in Figure 7 can be obtained equivalently in two ways: either by taking
the orthogonal vector in each cell of the result of the scheme for div-preserving advec-
tion or by constructing the corresponding flux distribution scheme for curl-preserving
advection and applying it to the dual initial conditions. In fact, this scheme would
differ from the div-preserving scheme only in the structure of the flux distribution
shape functions in (55). These shape functions are substituted by their orthogonal
complement, yielding outward pointing arrows instead of the approximate loops in
Figure 1. The resulting scheme preserves perfectly the discrete value of the curl but
has the same properties in consistency and stability as its dual counterpart, which
was constructed in the preceding sections. Indeed the plot of errors and the empirical
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Fig. 8. Calculation of a smooth hump rotating around the origin on two different grids. Both

results were obtained with the second order method FD
(2)
ε . The plots show the calculation for t = π.

The loss of height compared to the exact solution is also displayed.

order of convergence in Figure 6 also hold identically for the curl-preserving scheme.

5.1.2. Rotating hump. The advection velocity v(x, y) = (−y, x)T results in a
rotational flow around the origin. As mentioned in section 2.4, the components of u
are not ordinarily advected in such a flow if div-preserving advection is considered.
Indeed, the exact solution for divergence-preserving advection given in (22) with a
rotational flow is given by

u (x, t) = R (t)
−1

u0 (R (t)x) ,(89)

where R (t) is a orthogonal matrix which rotates a vector by the angle t and u0 is
the initial condition. In the case of ordinary advection the inverse R−1 would be
missing in the solution. However, if u has initially vanishing divergence, the 2-norm
‖u‖ satisfies an ordinary advection equation, which follows directly from (89).

We consider the initial condition

u0(x, y) =
1

5ε

( −y
x− 1

2

)
exp

(
− (x− 1

2 )2 + y2

ε

)
(90)

with ε = 1
20 . This vector field is easily verified to be solenoidal. It produces field lines

circling around (1
2 , 0) and a smooth but distinct hump in ‖u‖ with an essential radius

of approximately 1
2 . Note that in the center of this hump, ‖u‖ is zero. The computa-

tions are conducted in the domain [−1, 1]2, where the exact solution is prescribed in
the ghost cells of the boundary.

Two numerical solutions of the problem calculated with FD
(2)
ε are depicted in

Figure 8 at time t = π. The Courant number in these calculations was 0.963. The
figure shows contours and contour lines of the absolute value ‖ũ‖ for results obtained
with two different grids, 20×20 and 80×80 cells. It also displays the loss of height of
the hump compared to the exact solution. The fine grid calculation exhibits a good
preservation of symmetry and height.

5.2. Calculating discontinuities. Finally, we present numerical experiments
with discontinuous solutions. Discontinuities are most challenging for divergence-
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Fig. 9. Cuts through two-dimensional calculations of advected discontinuities. The upper and
lower rows show the results for horizontal and diagonal advection, respectively. Both problems have
been computed with and without limited finite differences in the second order scheme.

preserving methods in the context of magnetohydrodynamics where the magnetic
field jumps across shock waves; see, e.g., [6], [26].

5.2.1. Horizontal and diagonal direction. We consider constant advection
in the x-direction, i.e.,v(x, y) = ( 3

4 , 0)T . The initial vector field is given by

u0(x, y) =

(
1.0

0.3 + 1.2h(x)

)
(91)

with the Heaviside function h(x), which is zero for x ≤ 0 and unity if x is positive. In
both half spaces x ≶ 0 the vector field is smooth and its divergence is zero. Further-
more, across the discontinuity the normal component of u0 remains constant, which
leads to zero divergence in the weak sense. The vector field u0 mimics the behavior of
the magnetic field in a magnetohydrodynamic shock wave. As the divergence vanishes
and the advection is constant, the discontinuity will be linearly advected. The setting
will be varied by rotation with an angle θ. Horizontal advection corresponds to θ = 0.

The problem at hand is calculated in Ω = [−1, 1]2 with the second order scheme
FD(2) on a grid with 100×100 cells up to time t = 0.9. Ghost cells at the boundary are
filled by constant extrapolation and adjustment according to the angle θ. In Figure
9 we display the results for horizontal (θ = 0) and diagonal (θ = 45◦) advection.
Both problems have been computed either with central finite difference or limited
differences (73). The time step for both horizontal and diagonal advection was chosen
after a Courant number of approximately 0.96; hence the horizontal advection took
more time steps due to a more restrictive stability condition. The figure shows the
absolute value ‖ũ‖ by following cuts of the solutions normal to the discontinuities.
The solutions with central finite differences exhibit familiar oscillations which are
eliminated by the use of the limiter. The discontinuities are well resolved. Note the
slight asymmetry in the profiles of the discontinuities compared to the exact solution,
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Fig. 10. Divergence-cleaned and uncleaned solutions of the discontinuous test example in the
case of a rotation with θ = 26.6 (upper row). Below, the discrete initial divergence of both cases are
displayed. The strong deviation from zero leads to a misfit of the computed solution. A divergence
cleaning procedure applied to the initial conditions removes the disagreement. Both computations
are conducted with use of WENO limitation.

which is drawn as a thin line in Figure 9. This is due to displaying ‖ũ‖ instead of the
components ũ(x) or ũ(y).

5.2.2. Oblique directions and initial divergence cleaning. The evaluations
of both the extended and the classical divergence operator give exactly zero for the
initial conditions of the horizontal or diagonal discontinuity. This comes due to sym-
metry. For discontinuities in all other noncoordinate and nondiagonal directions this
is no longer true. Though the analytic initial condition is divergence-free, the discrete
evaluation of the divergence in the vicinity of the discontinuity leads to significant
deviations from zero.

The left-hand side of Figure 10 shows the result of the computation with θ ≈
26.6, ◦ which corresponds to tan θ = 1

2 . The upper right plot displays the run of ‖ũ‖
along a normal cut and exhibits a complete disagreement with the exact solution (thin
line). The plot below shows the evaluation of the extended divergence operator C̃(�)

along the same cut of the initial conditions. Due to the constraint preservation this
curve stays the same for all time steps. The strong deviations of the divergence from
zero are responsible for the disagreement of the computed with the exact solution.
Hence, the upper right plot does not represent a failure of the method, but rather
indicates the high quality of the constraint preservation. In fact, the computed result
belongs to a solution for analytic initial conditions whose divergence is disturbed
according to the curve in the lower right plot.

In order to get rid of the divergence in the initial conditions, the discrete field
has to be corrected as proposed, e.g., in [2]. We stress that this cleaning procedure is
only needed for initial conditions with nonvanishing divergence due to discontinuities.
Hence, the procedure is only applied once in the beginning of the calculation. If the
discrete initial divergence is zero, it stays zero due to the properties of our scheme.
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Fig. 11. Maximal value of the discrete divergence obtained with the classical operator during
the two calculations of the discontinuous test example. Independent of the grid size, the classical
operator gives decreasing value due to the smoothing of the numerical method.

The cleaning procedure solves the elliptic equations

div gradψ = div ũ in Ω,
ψ = 0 on ∂Ω

(92)

for the auxiliary discrete field ψ. The discrete initial field ũ is afterwards corrected
by ũ → ũ − gradψ which gives a discrete solenoidal field. This procedure represents
the projection onto the divergence-free space (Hodge projection). The differential
operator divgrad ≡ � has to be built from the extended divergence operator (53)
since the result should give a divergence-free field according the extended operator.
The use of the traditional discretization of Laplace operator will not lead to this
property. The construction of the Laplace operator by applying an appropriate discrete
gradient and afterwards C̃(�) to the field ψ results in a special discrete Laplace operator
which assures that the evaluation of C̃(�) on the corrected solution will be zero. The
discretized form of (92) may be solved by using iterative linear solvers.

The discrete divergence of the corrected initial condition (91) in the case of θ =
26.6◦ is shown in the lower right plot of Figure 10. Note the scale of the ordinate.
Finally, the approximation ability of the scheme is fully revealed as can be seen in
the upper right plot of Figure 10. The small fluctuations visible in the solution are
introduced by the initial cleaning procedure, they vanish with grid refinement.

Note that during the cleaning procedure based on the extended operator C̃(�) we
have no control over the value of the classical operator (45). Correspondingly, the
value of the divergence obtained with this operator is not vanishing if evaluated for
the initial conditions. It will also vary during the time steps of the flux distribution
scheme. However, the maximal value remains finite during the calculation indepen-
dent of the grid size as is visible in Figure 11. Moreover, the value of the classical
operator decreases due to the numerical smoothing of the discontinuous solution.

6. Sketch of the method in 3 dimensions. We will shortly give a sketch
how to extend the constraint-preserving method to the three-dimensional case. The
presentation will not be exhaustive but will provide evidence that three-dimensional
methods may be constructed from the presented framework as well.

We restrict ourself to div-preserving advection, given in (4)curl. In three dimen-
sions, methods for curl-preserving advection cannot be obtained by duality but need
extra considerations. Furthermore, the most important application of curl-preserving
advection is the shallow water system which is restricted to two dimensions.
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Fig. 12. Possible sets of shape functions for flux distributions in three dimensions. This figure
is to be compared with Figure 1. Again the flux distributions has to approximate closed lines which
are overstated as tubes in the figure. The right-hand side shape functions result from appropriate
averaging.

6.1. Flux distributions. For discrete divergence operators in three dimensions
a representation similar to that of Lemma 2 may be found. However, in this case there
exists a family of operators with 17 parameters which is quite involved. Inspired by
the two-dimensional results, we proceed by generalizing the extended operator (53)
directly to three dimensions, obtaining

C̃(�)
K ũ =

{ũ(x)
i+1,j,k}y,z − {ũ(x)

i−1,j,k}y,z
2∆x

+
{ũ(y)

i,j+1,k}x,z − {ũ(y)
i,j−1,k}x,z

2∆y
+

{ũ(z)
i,j,k+1}x,y − {ũ(z)

i,j,k−1}x,y
2∆z

,(93)

where curled brackets this time stand for

{ψi,j,k}y,z = 1
16 (4ψi,j,k + 2ψi,j+1,k + 2ψi,j−1,k + 2ψi,j,k−1 + 2ψi,j,k+1

+ψi,j+1,k+1 + ψi,j+1,k−1 + ψi,j−1,k+1 + ψi,j−1,k−1),
{ψi,j,k}x,z = 1

16 (4ψi,j,k + 2ψi+1,j,k + 2ψi−1,j,k + 2ψi,j,k−1 + 2ψi,j,k+1

+ψi+1,j,k+1 + ψi+1,j,k−1 + ψi−1,j,k+1 + ψi−1,j,k−1),
{ψi,j,k}x,y = 1

16 (4ψi,j,k + 2ψi+1,j,k + 2ψi−1,j,k + 2ψi,j−1,k + 2ψi,j+1,k

+ψi+1,j+1,k + ψi+1,j−1,k + ψi−1,j+1,k + ψi−1,j−1,k),

(94)

i.e., plane-wise averaging. Solving the linear system (39) now gives possible shape
functions for flux distributions. All the resulting skeletons have essentially the two-
dimensional shape given in (55) and depicted in Figure 1, except they now come with
three possible orientations, approximating a circle either in the (x, y)-plane, the (x, z)-
plane, or the (y, z)-plane. Hence, there are 36 possible flux distributions altogether,
four circles in each cut of the 3 × 3 × 3 grid box. Three of them are sketched on the
left-hand side of Figure 12.

Note that it is necessary to take at least three flux distributions to construct a
three-dimensional method, since the flux F = u×v in (4)curl now has three indepen-
dent components.

6.2. Possible methods. The dimensionally split character of the three-dimen-
sional flux distributions leads to a method which uses directly the two-dimensional
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results. Indeed, the evolution equation (4)curl may be split into three two-dimensional
operators as well. We write

∂

∂t

⎛⎝u(x)

u(y)

u(z)

⎞⎠+

⎛⎝ ∂yF
(z)

−∂xF (z)

0

⎞⎠+

⎛⎝−∂zF (y)

0
∂xF

(y)

⎞⎠+

⎛⎝ 0
∂zF

(x)

−∂yF (x)

⎞⎠ = 0,(95)

where F = (F (x), F (y), F (z))T = u × v represents the flux function. It becomes
obvious that each bracket can be discretized by the two-dimensional method (67).
The resulting flux across a corner is represented by the left picture in Figure 12.
The procedure is similar to the operator splitting approach where each flux in a
multidimensional conservation law is discretized in a one-dimensional manner (see
e.g., [11]), except here we use two-dimensional methods for the single operators. Nev-
ertheless, we expect loss of stability since the cell directly across the corner (see Figure
12, left) is not affected in a single time step. Possible and straightforward help would
be to use a fractional time step method, e.g., with Strang splitting, which updates
the brackets in (95) successively.

To circumvent the use of splitting it is possible to construct a fully three-dimen-
sional flux distribution as sketched in Figure 12 (right). These flux distributions
result from averaging each flux distribution on the left-hand side of the figure with its
counterpart in the neighboring parallel grid plane (not shown). A scheme using this
single set of flux distributions has the form⎛⎝ ũ(x)

ũ(y)

ũ(z)

⎞⎠m+1

i,j

=

⎛⎝ ũ(x)

ũ(y)

ũ(z)

⎞⎠m

i,j

+

⎛⎜⎜⎜⎝
δ
(y)

i+ 1
2 ,j+

1
2 ,k+

1
2

(ϕ(z,1))∆x− δ
(z)

i+ 1
2 ,j+

1
2 ,k+

1
2

(ϕ(y,1))∆x

−δ(x)
i+ 1

2 ,j+
1
2 ,k+

1
2

(ϕ(z,1))∆y + δ
(z)

i+ 1
2 ,j+

1
2 ,k+

1
2

(ϕ(x,1))∆y

δ
(x)

i+ 1
2 ,j+

1
2 ,k+

1
2

(ϕ(y,1))∆z − δ
(y)

i+ 1
2 ,j+

1
2 ,k+

1
2

(ϕ(x,1))∆z

⎞⎟⎟⎟⎠ ,(96)

where we used the abbreviations

δ
(x)

i+ 1
2 ,j+

1
2 ,k+

1
2

(ϕ) = ϕi+1,j+1,k + ϕi+1,j,k + ϕi+1,j+1,k+1 + ϕi+1,j,k+1

−ϕi,j+1,k − ϕi,j,k − ϕi,j+1,k+1 − ϕi,j,k+1,

δ
(y)

i+ 1
2 ,j+

1
2 ,k+

1
2

(ϕ) = ϕi+1,j+1,k + ϕi,j+1,k + ϕi+1,j+1,k+1 + ϕi,j+1,k+1

−ϕi+1,j,k − ϕi,j,k − ϕi+1,j,k+1 − ϕi,j,k+1,

δ
(z)

i+ 1
2 ,j+

1
2 ,k+

1
2

(ϕ) = ϕi,j+1,k+1 + ϕi+1,j,k+1 + ϕi+1,j+1,k+1 + ϕi,j,k+1

−ϕi,j+1,k − ϕi+1,j,k − ϕi+1,j+1,k − ϕi,j,k .

(97)

Analogously one has to incorporate the flux distributions for the rest of the corners
of the grid cell. First order consistency for the single set of flux distributions in (96)
leads to ⎛⎝ϕ(x,1)

ϕ(y,1)

ϕ(z,1)

⎞⎠ = − ∆t

4∆x∆y∆z

⎛⎝∆xF (x)

∆y F (y)

∆z F (z)

⎞⎠ ,(98)

which gives a method for div-free advection in three dimensions which exactly pre-
serves the discrete value of the divergence evaluated by (93). The flux distributions
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of the rest of the corners could be incorporated by weights as in the two-dimensional
case. The elaboration of the details of the three-dimensional method remains for
future work.

7. Conclusions. In this paper we drew attention to constraint-preserving ad-
vection equations. These equations are characterized by the existence of an intrinsic
differential constraint which holds locally during the evolution. They form models for
general evolution equations with constraints which can be found in various fields of
physics and engineering.

Starting from the hypothesis that numerical methods should respect the con-
straints, we proposed a general framework for constructing constraint-preserving
schemes. Based on this framework a multidimensional upwind method was devel-
oped. Consistency and stability were proven, and various numerical experiments
demonstrated the ability and reliability of the new scheme. We also re-derived for-
mer numerical schemes within our framework. The new method relies on special flux
distribution and does not require staggered grids, time-step-wise global correction
procedures, or modified evolution equations as proposed in former approaches, e.g.,
[8], [2], [6].

In [18] a precursor of the present method was used in the context of the method
of transport [9], [10] to solve the magnetic evolution part of a magnetohydrodynamic
computation. In [25] the results of this paper are used to derive general divergence-
preserving finite-volume schemes for magnetohydrodynamics. Future work will also
include applications to electrodynamics, meteorological flows, and Einstein equations.

In this work we considered a rectangular mesh as a first approach. The treatment
of more general grids, e.g., triangular or quadrilateral, is a major issue for future work.
The framework given in this paper allows for constraint-preserving methods on such
grids. The main problem is to find an appropriate discretization of the constraint on
the given grid. In [25] divergence-preserving methods on triangular grids are derived
using the framework of this paper. In [7] an approach to triangular grids is presented
based on staggered grids.

The discrete constraint preservations also requires further investigations on dis-
crete data treatment. Implementations of boundary conditions as well as restriction
and prolongation in an adaptive grid (see [27]) should be revised from the angle of
constraint preservation.

Acknowledgment. The authors would like to thank Prof. S. Noelle (RWTH
Aachen, Germany) and his group for valuable discussions.
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1. Introduction. Our purpose in this paper is to study the Galerkin finite el-
ement method for a quasi-linear elliptic problem whose classical formulation is as
follows: Find u ∈ C(Ω) such that u|Ω ∈ C2(Ω) and

−∇ · (A(x, u)∇u) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ R
d, d ∈ {1, 2, 3}, is an open bounded polyhedral domain with a Lipschitz

boundary, f ∈ L2(Ω), and A = (aij)
d
i,j=1 is a bounded uniformly positive definite

matrix, i.e.,

max
x∈Ω

max
ξ∈R

|aij(x, ξ)| ≤ C ∀i, j ∈ {1, . . . , d},(1.2)

C0η
T η ≤ ηTA(x, ξ)η ∀η ∈ R

d, ∀x ∈ Ω, ∀ξ ∈ R,(1.3)
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where C and C0 are positive constants. In addition, we assume that the derivatives
∂aij/∂ξ, ∂

2aij/∂ξ
2, and ∂2aij/∂ξ∂x� are bounded and continuous on Ω × R for all

i, j, � ∈ {1, . . . , d}. However, the matrix A is not necessarily symmetric.
Unlike nonlinear problems of other types, for d > 1 problem (1.1) cannot be

converted, in general, by the well-known Kirchhoff transformation (see [14]) to a
linear problem even if A would be independent of x, since A is a matrix function.
This makes its theoretical and numerical analysis much more difficult.

As mentioned in [19], since an analogue of the well-known Céa’s lemma holds for
those nonlinear elliptic problems whose associated operators are strongly monotone
and Lipschitz continuous (see, for example, [4, 14]), it is easy for these problems to
derive the rate of convergence O(hk) in the H1-norm for the Lagrange elements of
degree k. Thus, their finite element approximations have been extensively studied.
See, for instance, [7, 8, 24]. In [10, 13] some one-dimensional examples are presented
to illustrate that problem (1.1) is of a nonmonotone and nonpotential type.

There are some results available for problem (1.1). For example, the uniqueness
of the classical and weak solutions was proven in [12, 13], respectively. In [13], the
existence of the weak solution was derived as a weak limit of Galerkin approximations.
Other existence results for various kinds of boundary conditions are presented in
[9, 10, 13, 21]. As to numerical methods, Douglas and Dupont [6] proved an optimal
rate of convergence of the finite element approximation for problem (1.1) in the case
that

A(x, u) = λ(x, u)I,(1.4)

where I is the identity matrix and λ is a smooth scalar function. Nitsche [22] derived
an asymptotic error estimate of the finite element method in the L∞-norm for the
case (1.4). In [20], a mixed finite element method was studied which also has an
optimal rate of convergence in the Lp-norm for the case (1.4). Similar results were
also obtained in [1, 2].

In [19], the result from [6] was generalized to any smooth uniformly positive
definite matrix A(x, u) satisfying (1.2) and (1.3), which represents a practically inter-
esting case, since problem (1.1) describes a steady-state heat conduction in nonlinear
inhomogeneous anisotropic media (e.g., in magnetic cores of large transformers [14]),
where the unknown function u stands for the temperature, A is the matrix of heat
conductivities, and f is the density of volume heat sources (in that case A is sym-
metric). In fact, for finite elements of degree k ≥ 1, [19] shows that optimal rates of
convergence of O(hk) in the H1-norm and O(hk+1) in the L2-norm, provided that the
weak solution of (1.1) is sufficiently smooth.

There are several papers dealing with superconvergence of finite element methods
for nonlinear elliptic boundary value problems, see survey paper [15, pp. 319–320].
They usually require that the operator associated with a given nonlinear elliptic prob-
lem be (strongly) monotone, which is not our case. Also, Wahlbin [23, Chapter 9]
presents a linearization technique to examine superconvergence phenomena for non-
linear elliptic problems. However, our technique introduced in this paper is totally
different from his. In [3], a superconvergence at the Gauss points of rectangular bi-
quadratic elements is proved for a class of semilinear problems. This class contains
nonlinearities only in the absolute term, whereas the nonlinearities of problem (1.1)
stand at the second derivatives.

Our aim in this paper is to investigate the global superconvergence and a pos-
teriori error estimators of finite element methods for problem (1.1). By means of an



GLOBAL SUPERCONVERGENCE AND A POSTERIORI ESTIMATORS 1731

optimal partition and an optimal interpolation technique, we first establish the super-
approximation between the finite element solution and an interpolation function of
the weak solution of problem (1.1). Then, we obtain global superconvergent approx-
imations by virtue of a class of interpolation postprocessing methods. On the basis
of global superconvergent approximations, efficient a posteriori error estimators are
provided to assess the accuracy of finite element solutions in applications.

2. Weak formulation and finite element approximation. In this paper
we employ the standard Sobolev space notation. The norm in the product Sobolev
space (W k

p (Ω))n, k ∈ {0, 1, . . .}, p ∈ [1,∞], n ∈ {1, 2, . . .}, is denoted by ‖ · ‖k,p. In

particular, if p = 2, then we set Hk(Ω) = W k
2 (Ω) and ‖ · ‖k = ‖ · ‖k,2. By H1

0 (Ω) we
mean the space of functions from H1(Ω) whose traces vanish on ∂Ω. The symbol (·, ·)
stands for the usual scalar product in L2(Ω).

The weak formulation of problem (1.1) consists of finding u ∈ H1
0 (Ω) such that

a(u;u, v) = (f, v) ∀v ∈ H1
0 (Ω),(2.1)

where

a(z; v, w) =

∫
Ω

(∇w)TA(x, z)∇v dx, v, w ∈ H1(Ω), z ∈ L2(Ω).

The variable x will be sometimes omitted from now on. It follows from (1.3), (1.2),
and Friedrichs’ inequality that there exist positive constants C0 and C1 such that

a(z; v, v) ≥ C0‖v‖2
1 ∀z ∈ L2(Ω), ∀v ∈ H1

0 (Ω),

and

|a(z;w, v)| ≤ C1‖v‖1‖w‖1 ∀z ∈ L2(Ω), ∀w, v ∈ H1(Ω).

This means that a(·; ·, ·) is uniformly H1
0 (Ω)-elliptic and continuous. In [13], it has

been proven that the weak solution of (2.1) exists uniquely.
Let {Th} be a regular family of finite element partitions of Ω (see [4]) and let

Vh ⊂ H1
0 (Ω) be associated finite element spaces. The finite element solution of (1.1)

or (2.1) is then defined as the function uh ∈ Vh such that

a(uh;uh, vh) = (f, vh) ∀vh ∈ Vh.(2.2)

The space Vh can consist of, for example, the Lagrange elements.
The existence of at least one solution uh of (2.2) can be proven by the Brouwer

fixed-point theorem (see [13]). Sufficient conditions guaranteeing the uniqueness of uh
have been presented in [11, 13]. However, the uniqueness of uh, in general, remains
an open problem.

3. Global superconvergence. From now on, all generic constants C will possi-
bly depend on the weak solution u, but they will be independent of the discretization
parameter h.

In [13], the convergence of finite element solutions uh to the weak solution u of
(1.1) in theH1-norm is proven. However, no attempt to derive any rate of convergence
is made there. Optimal convergence rates in the H1-norm and in the L2-norm are
derived in [19]. They are based on the following adjoint problem: Find ϕ ∈ H2(Ω) ∩
H1

0 (Ω) such that

L∗ϕ ≡ −∇ · (AT (x, u)∇ϕ) + (∇u)TATu (x, u)∇ϕ = θ in Ω,(3.1)
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where u is the unique solution of (2.1), θ ∈ L2(Ω), Au = ((aij)u)
d
i,j=1, and the

subscript u means the differentiation with respect to the last variable, i.e., (aij)u =
∂aij(x, u)/∂u. In [19], a sufficient condition guaranteeing the existence and uniqueness
of the weak (generalized) solution of linear problem (3.1) is given. Moreover, we
assume the following elliptic regularity:

‖ϕ‖2 ≤ C‖θ‖0.(3.2)

Using this, we have the optimal error estimates [19] for problem (1.1).
Theorem 3.1. Let u ∈ Hk+1(Ω) for k ≥ 1 be the weak solution of (1.1), let the

second derivatives ∂2aij/∂u
2 be bounded and continuous on Ω×R, and let (3.2) hold.

Let Vh contain polynomials up to degree k. If uh is a solution of (2.2), then there exist
C, h0 > 0 such that for any h ∈ (0, h0) we have

‖u− uh‖0 + h‖u− uh‖1 ≤ Chk+1,

where C = C‖u‖k+1(1 + ‖u‖k+1) and C is independent of u (see [18, p. 48]).
Throughout the paper generic constants C may depend on derivatives of u up

to order k + 1. In this section, we shall investigate the global superconvergence of
the finite element approximation to problem (1.1). To this end, we employ a class of
projection interpolation operators and integral identities proposed in [16, 17] to estab-
lish the supercloseness between the finite element solution and an interpolant of the
exact solution of (1.1). On the basis of this supercloseness, we utilize an interpolation
postprocessing technique to prove the global superconvergence.

For simplicity, we assume from now on that the domain Ω is an open rectangle
and Th is a rectangular partition over Ω. In fact, our analysis here is also true for
d = 1 and d = 3. The finite element space Vh will be constructed by means of spaces
Qk(e), e ∈ Th; i.e., for k = 1, 2, 3, . . . we shall use bilinear, biquadratic, bicubic,
. . . elements, respectively. For k > 1 we shall define a special type of projection
interpolation operators ikh as we have mentioned above, rather than the usual nodal
Lagrange interpolation operators, of degree not exceeding k (≥ 2) in x1 and x2. Let
e ∈ Th be any rectangular element, and let li and pi (i = 1, 2, 3, 4) be its edges
and vertices, respectively. Then, the bi-kth interpolation operator ikh is defined for
u ∈ H2(Ω) according to the following so-called vertex-edge-element conditions (see
[16, p. 28]): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ikhu ∈ Qk(e),

ikhu(pi) = u(pi), i = 1, 2, 3, 4,∫
li

(ikhu− u)v ds = 0, ∀v ∈ Pk−2(li), i = 1, 2, 3, 4,∫
e

(ikhu− u)v dx = 0, ∀v ∈ Qk−2(e),

(3.3)

where Pk−2(li) are the polynomial spaces of degree no more than k − 2 on li. In
our further analysis, the notation i1h stands for the usual nodal Lagrange bilinear
interpolation operator.

By the standard interpolation theory (based on the Bramble–Hilbert lemma) we
find that

‖u− ikhu‖0 ≤ Chk+1‖u‖k+1,

‖u− ikhu‖0,∞ ≤ Chk+1‖u‖k+1,∞.
(3.4)
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Employing an integral identity technique, we obtain the following lemma [16] (for
a special case see also [17]).

Lemma 3.2. In (1.1), assume that entries of the uniformly positive definite matrix
A are in W 1,∞(Ω). Then there exists a constant C > 0 such that for all vh ∈ Vh we
have the following estimates:

a(u;u− ikhu, vh) ≤
{
Chk+1‖u‖k+2‖vh‖1, k ≥ 1,

Chk+2‖u‖k+2|‖vh‖|2,h, k ≥ 2,

where |‖vh‖|2,h := (
∑
e ‖vh‖2

2,e)
1/2.

Now we are in a position to get our main theorems on supercloseness of this
section.

Theorem 3.3. Let u ∈ Hk+2(Ω) be the weak solution of (1.1) for k ≥ 1 and let
uh be the corresponding finite element solution. Then we have under the assumptions
of Theorem 3.1 and Lemma 3.2 that

‖uh − ikhu‖1 ≤ Chk+1‖u‖k+2,

where C depends on ‖u‖k+1.
Proof. It follows from the uniform H1

0 (Ω)-ellipticity of a(·; ·, ·), (2.1), and (2.2)
that

C0‖uh − ikhu‖2
1 ≤ a(uh;uh − ikhu, uh − ikhu)

= a(uh;uh, uh − ikhu) − a(uh; i
k
hu, uh − ikhu)

= a(u;u, uh − ikhu) − a(uh; i
k
hu, uh − ikhu)

= a(u;u− ikhu, uh − ikhu)

+[a(u; ikhu, uh − ikhu) − a(uh; i
k
hu, uh − ikhu)]

=: I1 + I2.

(3.5)

From Lemma 3.2 we obtain that

|I1| = |a(u;u− ikhu, uh − ikhu)|
≤ Chk+1‖u‖k+2‖uh − ikhu‖1.

(3.6)

For any x ∈ Ω we have by the mean value theorem that

A(x, u) −A(x, uh) = (u− uh)

∫ 1

0

Au(x, u+ t(uh − u)) dt

= (u− uh)Au(x),

(3.7)

where Au = ((aij)u)
2
i,j=1 and (aij)u = (aij)u(u+ θij(uh − u)) for some θij = θhij(x) ∈

[0, 1]. This, together with Theorem 3.1, leads to

‖A(x, u) −A(x, uh)‖0 ≤ C‖u− uh‖0 ≤ Chk+1.(3.8)

By the interpolation theorem (see, for example, [4]) and the Sobolev imbedding the-
orem,

‖ikhu‖1,∞ ≤ ‖u− ikhu‖1,∞ + ‖u‖1,∞ ≤ C‖u‖k+2.
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From this, by means of the Cauchy–Schwarz inequality and (3.8) we have

|I2| = |a(u; ikhu, uh − ikhu) − a(uh; i
k
hu, uh − ikhu)|

=

∣∣∣∣∫
Ω

(∇(uh − ikhu))
T [A(x, u) −A(x, uh)]∇ikhu dx

∣∣∣∣
≤ ‖ikhu‖1,∞‖A(x, u) −A(x, uh)‖0‖uh − ikhu‖1

≤ Chk+1‖u‖k+2‖uh − ikhu‖1.

(3.9)

Combining (3.6) and (3.9) with (3.5) yields

C0‖uh − ikhu‖2
1 ≤ Chk+1‖u‖k+2‖uh − ikhu‖1,

and hence

‖uh − ikhu‖1 ≤ Chk+1‖u‖k+2.

Thus, the proof of the theorem is complete.
Theorem 3.4. Under the assumptions of Theorem 3.3 we have for k ≥ 2 that

‖uh − ikhu‖0 ≤ Chk+2‖u‖k+2,

where C depends on ‖u‖k+1.
Proof. We use a duality argument based on the Aubin–Nitsche trick to prove the

theorem. Let ϕ ∈ H1
0 (Ω) ∩H2(Ω) be the weak solution of the linear adjoint problem

(3.1) with

θ = uh − ikhu.

Then, we have by the Green formula that

‖θ‖2
0 =

∫
Ω

θ2 dx =

∫
Ω

θ(L∗ϕ) dx

=

∫
Ω

[(∇θ)TAT (u)∇ϕ+ θ(∇u)TATu (u)∇ϕ] dx

=

∫
Ω

[(∇ϕ)TA(u)∇θ + θ(∇u)TATu (u)∇ϕ] dx

=

∫
Ω

[(∇(ϕ− vh))
TA(u)∇θ + (∇vh)TA(u)∇θ + θ(∇u)TATu (u)∇ϕ] dx

for some vh ∈ Vh. Therefore,

‖θ‖2
0 =

∫
Ω

(∇(ϕ− vh))
TA(u)∇θ dx+

∫
Ω

(∇vh)TA(u)∇(u− ikhu) dx

+

∫
Ω

[(∇vh)TA(u)∇(uh − u) + θ(∇ϕ)TAu(u)∇u] dx

=

∫
Ω

(∇(ϕ− vh))
TA(u)∇θ dx+ a(u;u− ikhu, vh)

+

∫
Ω

[(∇vh)TA(u)∇(uh − u) + θ(∇ϕ)TAu(u)∇u] dx

=: II1 + II2 + II3,

(3.10)
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where vh ∈ V̂h = {ψ ∈ H1
0 (Ω) ∩H2(Ω) : ψ|e ∈ Qk(e), e ∈ Th} ⊂ Vh. The space V̂h

for a fixed k possesses the following approximation properties:

min
vh∈V̂h

{‖ϕ− vh‖0 + h‖ϕ− vh‖1 + h2‖ϕ− vh‖2} ≤ Chl‖ϕ‖l,
ϕ ∈ H1

0 (Ω) ∩H l(Ω), 2 ≤ l ≤ k + 1,
(3.11)

which leads to

‖vh‖2 ≤ ‖vh − ϕ‖2 + ‖ϕ‖2 ≤ C‖ϕ‖2(3.12)

for vh being the best approximation to ϕ in V̂h in the sense of (3.11). Therefore, from
(3.11) and Theorem 3.3 we know that

|II1| ≤ C‖ϕ− vh‖1‖θ‖1 ≤ Chk+2‖ϕ‖2‖u‖k+2.(3.13)

From Lemma 3.2 and (3.12) we find that

|II2| ≤ Chk+2‖vh‖2‖u‖k+2 ≤ Chk+2‖ϕ‖2‖u‖k+2.(3.14)

Setting Au = Au(u), it follows from (3.10), (2.1), (2.2), and (3.7) that

II3 =

∫
Ω

[(∇vh)TA(u)∇uh − (∇vh)TA(u)∇u+ θ(∇ϕ)TAu∇u] dx

=

∫
Ω

[(∇vh)T (A(u) −A(uh))∇uh + θ(∇ϕ)TAu∇u] dx

=

∫
Ω

[(∇vh)T (u− uh)Au∇uh + θ(∇ϕ)TAu∇u] dx

=

∫
Ω

[(∇vh)T (u− ikhu)Au∇uh − θ(∇vh)TAu∇uh + θ(∇ϕ)TAu∇u] dx

=

∫
Ω

[(∇vh)T (u− ikhu)Au∇(uh − u) + (∇vh)T (u− ikhu)Au∇u] dx

+

∫
Ω

[−θ(∇vh)TAu∇uh + θ(∇ϕ)TAu∇u] dx,

that is,

II3 =

∫
Ω

(∇vh)T (u− ikhu)Au∇(uh − u) dx

+

∫
Ω

(∇(vh − ϕ))T (u− ikhu)Au∇u dx

+

∫
Ω

(∇ϕ)T (u− ikhu)Au∇u dx+

∫
Ω

θ(∇vh)TAu∇(u− uh) dx

+

∫
Ω

θ(∇(ϕ− vh))
TAu∇u dx+

∫
Ω

θ(∇ϕ)T (Au −Au)∇u dx

=:
6∑
i=1

IIi3.

(3.15)
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According to (3.12), (3.4), Theorem 3.1, and the imbedding H2(Ω) ↪→ C(Ω), we
obtain

|II1
3 | =

∣∣∣∣∫
Ω

(∇vh)T (u− ikhu)Au∇(uh − u) dx

∣∣∣∣
≤ C‖u− ikhu‖0,∞‖vh‖1‖u− uh‖1

≤ Ch2‖u‖2,∞‖ϕ‖2‖u− uh‖1

≤ Ch2‖u‖4‖ϕ‖2 h
k‖u‖k+1

≤ Chk+2‖ϕ‖2‖u‖k+2.

(3.16)

From (3.11) and the interpolation theorem again, we get

|II2
3 | =

∣∣∣∣∫
Ω

(u− ikhu)(∇(vh − ϕ))TAu∇u dx
∣∣∣∣

≤ C‖u− ikhu‖0‖vh − ϕ‖1

≤ Chk+2‖ϕ‖2‖u‖k+2.

(3.17)

Let

α(x) = (∇ϕ)TAu∇u and α|e =
1

|e|
∫
e

α(x) dx,

where |e| is the area of the element e.
It is well known (see [5]) that

‖α− α‖0 ≤ Ch‖α‖1.(3.18)

Using the fact that the derivatives
∂2aij
∂u∂x1

,
∂2aij
∂u∂x2

, and
∂2aij
∂u2 are bounded, we shall

prove now that

‖α‖1 ≤ C‖ϕ‖2.

In fact, it follows from

α(x) = (∇ϕ)TAu∇u = (ϕx1 ϕx2)

∫ 1

0

Au(x, u+ t(uh − u))dt

(
ux1

ux2

)
= ϕx1

ux1

∫ 1

0

(a11)u(x, u+ t(uh − u))dt+ ϕx2
ux1

∫ 1

0

(a21)u(x, u+ t(uh − u))dt

+ϕx1ux2

∫ 1

0

(a12)u(x, u+ t(uh − u))dt+ ϕx2ux2

∫ 1

0

(a22)u(x, u+ t(uh − u))dt

=
4∑
i=1

Yi

that

αx1(x) =

4∑
i=1

∂Yi
∂x1

.
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Moreover, we have

∂Y1

∂x1
= (ϕx1x1ux1 + ϕx1ux1x1)

∫ 1

0

(a11)u(x, u+ t(uh − u))dt

+ϕx1ux1

∫ 1

0

(a11)ux1(x, u+ t(uh − u))dt

+ϕx1
ux1

∫ 1

0

(a11)uu(x, u+ t(uh − u)) · (ux1
+ t(uh − u)x1

)dt,

which, together with the boundedness of ∂2a11

∂u∂x1
and ∂2a11

∂u2 as well as the estimate
‖u− uh‖1 ≤ Ch‖u‖2 in Theorem 3.1, leads to∫

Ω

(
∂Y1

∂x1

)2

dx ≤ C

∫
Ω

(ϕ2
x1x1

+ ϕ2
x1

)dx.

By the same argument, we can obtain the similar estimates for ∂Yi

∂x1
(i = 2, 3, 4). Thus,

we have ∫
Ω

(
∂α

∂x1

)2

dx ≤ C‖ϕ‖2
2,

and analogously we have ∫
Ω

(
∂α

∂x2

)2

dx ≤ C‖ϕ‖2
2,

which yields

‖α‖1 ≤ C‖ϕ‖2.

From the definition of the interpolation operator ikh given by (3.3) we know that∫
Ω

(u− ikhu)αdx =
∑
e

∫
e

(u− ikhu)αdx = 0,

which yields by (3.18) that

|II3
3 | =

∣∣∣∣∫
Ω

(u− ikhu)α(x) dx

∣∣∣∣
=

∣∣∣∣∫
Ω

(u− ikhu)αdx+

∫
Ω

(u− ikhu)(α− α) dx

∣∣∣∣
≤ ‖u− ikhu‖0‖α− α‖0

≤ Chk+2‖α‖1‖u‖k+2

≤ Chk+2‖ϕ‖2‖u‖k+2.

(3.19)

As to II4
3 we have by means of the Hölder inequality that

|II4
3 | =

∣∣∣∣∫
Ω

θ(∇vh)TAu∇(u− uh) dx

∣∣∣∣
≤ C‖θ‖0,3‖∇vh‖0,6‖∇(u− uh)‖0.
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Since

‖θ‖0,3 ≤ C‖θ‖1 and H2(Ω) ↪→W 1
6 (Ω),

we further have according to (3.12) and Theorems 3.1 and 3.3 that

|II4
3 | ≤ Ch‖θ‖1‖vh‖2 ≤ Chk+2‖ϕ‖2‖u‖k+2.(3.20)

It follows from the Hölder inequality again, the fact that ∇u ∈ (H3(Ω))2 ↪→ (C(Ω))2,
and estimates (3.11) and (3.12) that

|II5
3 | =

∣∣∣∣∫
Ω

θ(∇(ϕ− vh))
TAu∇u dx

∣∣∣∣
≤ C‖θ‖0,3‖∇(ϕ− vh)‖0‖∇u‖0,6

≤ C‖θ‖1‖ϕ− vh‖1

≤ Ch‖θ‖1‖ϕ‖2 ≤ Chk+2‖ϕ‖2‖u‖k+2.

(3.21)

Using similar arguments as before and the differentiability of A with respect to u
up to order two and the substitution z = st, we find for any x ∈ Ω that

Au(x, u) −Au(x) =

∫ 1

0

[Au(x, u) −Au(x, u+ t(uh − u))] dt

=

∫ 1

0

(∫ 1

0

Auu(x, u+ st(uh − u))t(u− uh) ds

)
dt

= (uh − u)

∫ 1

0

(∫ t

0

Auu(x, u+ z(uh − u)) dz

)
dt

= (uh − u)

∫ 1

0

(∫ 1

z

Auu(x, u+ z(uh − u)) dt

)
dz

= (uh − u)

∫ 1

0

(1 − z)Auu(x, u+ z(uh − u)) dz

=: (uh − u)Auu(x).

Therefore, we have by the Hölder inequality, the relation ∇u ∈ (H3(Ω))2 ↪→ (C(Ω))2,
and Theorems 3.1 and 3.3 that

|II6
3 | =

∣∣∣∣∫
Ω

θ(∇ϕ)T (Au −Au)∇u dx
∣∣∣∣

=

∣∣∣∣∫
Ω

θ(uh − u)(∇ϕ)TAuu∇u dx
∣∣∣∣

≤ C‖θ‖0,3‖uh − u‖0‖∇ϕ‖0,6

≤ Ch‖θ‖1‖ϕ‖2 ≤ Chk+2‖ϕ‖2‖u‖k+2

which, together with (3.15)–(3.21), leads to

|II3| ≤ Chk+2‖ϕ‖2‖u‖k+2.(3.22)

Combining (3.13), (3.14), and (3.22) with (3.10) implies

‖θ‖2
0 ≤ Chk+2‖ϕ‖2‖u‖k+2
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e4 e3

e1 e2

τ =
i = 1

4
eiU

Fig. 3.1.

which, together with (3.2), leads to

‖θ‖0 ≤ Chk+2‖u‖k+2.

Thus, the proof of the theorem is complete.
In order to improve the accuracy of the finite element approximation in the whole

domain, a simple postprocessing method is proposed [16, 17]. To this end, we need to
define a postprocessing interpolation operator Ik+1

2h of degree at most k+1 in x1- and
x2-direction. Thus, we assume that Th has been obtained from T2h with mesh size 2h
by subdividing each element of T2h into four congruent rectangles (see Figure 3.1).

Let τ :=
⋃4
i=1 ei ∈ T2h with ei ∈ Th.

To express this idea clearly, we first consider the one-dimensional case, where
Ik+1
2h (k ≥ 3) is determined by the following “vertex-interval” conditions [16]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ik+1
2h u(pi) = u(pi), i = 1, 2, 3,∫
li

Ik+1
2h u ds =

∫
li

u ds, i = 1, 2,∫
L

Ik+1
2h uv ds =

∫
L

uv ds ∀v ∈ Pk−3(L)/P0(L).

Here, L := l1 ∪ l2 ∈ T2h, li ∈ Th, and pi (i = 1, 2, 3) are the vertices of l1 and l2. If
k < 3, then I2

2h is defined by I2
2hu(pi) = u(pi) (i = 1, 2, 3), and I3

2h by I3
2hu(pi) = u(pi)

(i = 1, 2, 3) and
∫
l1
I3
2hu ds =

∫
l1
u ds (or

∫
l2
I3
2hu ds =

∫
l2
u ds). The operator Ik+1

2h

in the two-dimensional case is now constructed by the tensor product of the two one-
dimensional interpolation operators Ik+1

2h (x1) and Ik+1
2h (x2) of degree not exceeding

k + 1 in x1- and x2-direction, respectively, as follows:

Ik+1
2h (x1, x2) := Ik+1

2h (x1) ⊗ Ik+1
2h (x2).

Moreover, the following properties can be checked [16, 17]:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ik+1
2h ikh = Ik+1

2h ,

‖Ik+1
2h vh‖q ≤ C‖vh‖q ∀vh ∈ Vh, q = 0, 1,

‖Ik+1
2h u− u‖q ≤ Chk+2−q‖u‖k+2 ∀u ∈ Hk+2(Ω), q = 0, 1.

(3.23)

Then, on the basis of Theorems 3.3 and 3.4 we obtain the following global supercon-
vergence theorem.
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Theorem 3.5. Let the assumptions of Theorem 3.3 hold. Then we have

‖Ik+1
2h uh − u‖1 ≤ Chk+1‖u‖k+2, k ≥ 1,(3.24)

‖Ik+1
2h uh − u‖0 ≤ Chk+2‖u‖k+2, k ≥ 2.(3.25)

Proof. We find from the first property of the operator Ik+1
2h in (3.23) that

Ik+1
2h uh − u = Ik+1

2h (uh − ikhu) + (Ik+1
2h u− u).

Therefore, it follows from (3.23) and Theorem 3.3 that

‖Ik+1
2h uh − u‖1 ≤ C‖uh − ikhu‖1 + Chk+1‖u‖k+2

≤ Chk+1‖u‖k+2,

and thus (3.24) is proven.
Estimate (3.25) can also be derived from Theorem 3.4 and the same arguments

as those for deriving (3.24).

4. A posteriori error estimators. It is of great importance for a finite element
method to have a computable a posteriori error estimator by which we can assess the
accuracy of the finite element solution in applications. One way to construct error
estimators is to employ certain superconvergent approximations properties of finite
element solutions. In fact, the following theorem holds.

Theorem 4.1. Under the assumptions of Theorem 3.3 we have

‖u− uh‖1 = ‖Ik+1
2h uh − uh‖1 +O(hk+1), k ≥ 1,(4.1)

‖u− uh‖0 = ‖Ik+1
2h uh − uh‖0 +O(hk+2), k ≥ 2.(4.2)

In addition, if there exist positive constants C1, C2 and ε1, ε2 ∈ (0, 1) such that

‖u− uh‖1 ≥ C1h
k+1−ε1 ,(4.3)

‖u− uh‖0 ≥ C2h
k+2−ε2 ,(4.4)

then for the effectivity index we have

lim
h→0

‖Ik+1
2h uh − uh‖1

‖u− uh‖1
= 1,(4.5)

lim
h→0

‖Ik+1
2h uh − uh‖0

‖u− uh‖0
= 1.(4.6)

Proof. It follows from Theorem 3.5 and the equality

u− uh = (Ik+1
2h uh − uh) + (u− Ik+1

2h uh)

that

‖u− uh‖1 = ‖Ik+1
2h uh − uh‖1 +O(hk+1).

Thus, by (4.3) we have

‖Ik+1
2h uh − uh‖1

‖u− uh‖1
+ Chε1 ≥ 1
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or

lim
h → 0

‖Ik+1
2h uh − uh‖1

‖u− uh‖1
≥ 1.(4.7)

Similarly, it follows from (4.3) and

‖Ik+1
2h uh − uh‖1 = ‖u− uh‖1 +O(hk+1)

that

lim
h→0

‖Ik+1
2h uh − uh‖1

‖u− uh‖1
≤ 1,

which, together with (4.7), leads to (4.5).
Analogously, we can obtain (4.2) from Theorem 3.5 and (4.6) from condition

(4.4).
Remark 4.2. We know from (4.1) that the computable error estimate ‖Ik+1

2h uh −
uh‖1 is the principal part of the finite element error ‖u − uh‖1, and can be used as
an a posteriori error estimator to assess the accuracy of the finite element solution.
Estimate (4.3) seems to be a reasonable assumption, because O(hk) is the optimal
convergence rate of the finite element solution in H1-norm by Theorem 3.1, and from
(4.5) we can further see that ‖Ik+1

2h uh − uh‖1 is a quite reliable a posteriori error
estimator. The same comments are valid also for (4.2), (4.4), and (4.6).

5. Numerical experiments. In this section, we present some typical results
obtained with numerical experiments carried out for the following boundary value
problem:

−∇ · (A(x, u)∇u) = f, x = (x1, x2) ∈ Ω,

u|∂Ω = 0,

where Ω = (0, 1) × (0, 1),

A(x1, x2, u) =

(
1 + x2

1 + x4
2 +

1

2
sinu

)
I,

(cf. (1.4)) and f is chosen such that

u(x1, x2) = sin(πx1) sin(2πx2)

is the exact solution. The nonlinear problem is obtained with the aid of the stan-
dard Gauss quadrature formulae exact for all quintic polynomials and it is solved by
Kačanov’s method [14]. In the postprocessing we use again use the Gauss quadrature
formulae. In the tables below listing the numerical results, we will use

E0(u, v) =

√∫
Ω

(u− v)2 dx,

E1(u, v) =

√∫
Ω

(∇(u− v))T∇(u− v) dx

to denote the difference between two functions u and v. Obviously, E0(u, v) measures
the difference in the usual L2-norm, while E1(u, v) measures the difference in the
usual H1-seminorm.
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Table 5.1

H1-errors of the bilinear FE solutions and the corresponding postprocessed FE solutions.

h E1(uh, u) Reduction factor E1(I22huh, u) Reduction factor

1/10 6.50e-1 None 2.30e-1 None

1/20 3.09e-1 2.1036 5.34e-2 4.3071

1/40 1.51e-1 2.0464 1.27e-2 4.2047

1/80 7.43e-2 2.0323 3.10e-3 4.0968

1/160 3.69e-2 2.0136 7.66e-4 4.0470

Table 5.2

L2-errors of the biquadratic FE solutions and the corresponding postprocessed FE solutions.

h E0(uh, u) Reduction factor E0(I32huh, u) Reduction factor

1/10 9.76e-4 None 5.40e-4 None

1/20 1.05e-4 9.2952 1.64e-5 32.927

1/40 1.21e-5 8.6777 7.81e-7 20.999

1/80 1.46e-6 8.2877 4.48e-8 17.433

1/160 1.79e-7 8.1564 2.95e-9 15.186

Table 5.3

H1-errors of the biquadratic FE solutions and the corresponding postprocessed FE solutions.

h E1(uh, u) Reduction factor E1(I32huh, u) Reduction factor

1/10 5.72e-2 None 1.60e-2 None

1/20 1.28e-2 4.4341 1.61e-3 9.9379

1/40 3.06e-3 4.2157 1.86e-4 8.6559

1/80 7.46e-4 4.1019 2.23e-5 8.3408

1/160 1.84e-4 4.0543 2.74e-6 8.1387

Table 5.1 lists the results for the approximations generated by the bilinear finite
element (FE) solutions. We also calculated the problem for h = 1/10, h = 1/20,
h = 1/30, . . ., h = 1/150, h = 1/160. Using the linear regression, we find that the
obtained data satisfy the following relations:

E1(uh, u) ≈ 6.7634 h1.0284,

E1(I
2
2huh, u) ≈ 24.8825 h2.0498.

These approximations and the reduction factors in Table 5.1 confirm the theoretical
results of Theorem 3.5 for the case in which k = 1.

Tables 5.2 and 5.3 list the results for the approximations generated by the bi-
quadratic finite element basis functions (k = 2). Applying linear regression to the
obtained data for h = 1/10, h = 1/20, h = 1/30, . . . , h = 1/150, h = 1/160, we find
that

E0(uh, u) ≈ 1.1007 h3.0858,

E0(I
3
2huh, u) ≈ 6.8671 h4.2865,

E1(uh, u) ≈ 6.2018 h2.0577,

E1(I
3
2huh, u) ≈ 18.0236 h3.1004,

These and the reduction factors in Tables 5.2 and 5.3 corroborate the predictions of
Theorem 3.5 for the case in which k = 2.
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Table 5.4

H1-errors of the bilinear FE solutions and their estimates by the postprocessed FE solutions.

h E1(uh, u) E1(uh, I
2
2huh) Effectivity index

1/10 6.499e-1 6.704e-1 1.0315

1/20 3.089e-1 3.098e-1 1.0029

1/40 1.506e-1 1.506e-1 1.0000

1/80 7.434e-2 7.434e-2 1.0000

1/160 3.694e-2 3.694e-2 1.0000

Table 5.5

Errors of the biquadratic FE solutions and their estimates by the postprocessed FE solutions.

h E0(uh, u) E0(uh, I
3
2huh) Eff. index E1(uh, u) E1(uh, I

3
2huh) Eff. index

1/10 9.762e-4 1.043e-3 1.0684 5.724e-2 5.477e-2 0.95685

1/20 1.046e-4 1.039e-4 0.99331 1.289e-2 1.273e-2 0.98759

1/40 1.211e-5 1.208e-5 0.99752 3.062e-3 3.053e-3 0.99706

1/80 1.458e-6 1.456e-6 0.99863 7.463e-4 7.457e-4 0.99920

1/160 1.788e-7 1.788e-7 1.0000 1.842e-4 1.842e-4 1.0000

Table 5.4 compares the actual errors in the bilinear finite element solutions with
their estimates by the postprocessed finite element solutions. Not only we can see that
the computable quantity E1(uh, I

2
2huh) yields an accurate assessment of the actual

error, but also, by applying linear regression to the data for h = 1/10, h = 1/20,
h = 1/30, . . . , h = 1/150, h = 1/160, we can see that the difference between the
actual error and the estimated one satisfies the following relation:

|E1(uh, u) − E1(uh, I
2
2huh)| ≈ 6.3438 h3.2954,

which is within the prediction of Theorem 4.1.
Table 5.5 compares the actual errors in the biquadratic finite element solutions

and their estimates by the postprocessed finite element solutions. Again, we can
see that both computable quantities E0(uh, I

3
2huh) and E1(uh, I

3
2huh) yield accurate

assessments of the actual errors, and by applying linear regression to the data for h =
1/10, h = 1/20, h = 1/30, . . . , h = 1/150, h = 1/160, we can see that the difference
between the actual errors and those estimated satisfies the following relations:

|E0(uh, u) − E0(uh, I
3
2huh)| ≈ 3.0081 h4.9526,

|E1(uh, u) − E1(uh, I
3
2huh)| ≈ 13.0755 h3.8155,

which are again within the prediction of Theorem 4.1.
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[12] I. Hlaváček and M. Kř́ıžek, On a nonpotential and nonmonotone second order elliptic prob-
lem with mixed boundary conditions, Stability Appl. Anal. Contin. Media, 3 (1993), pp. 85–
97.
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Abstract. In this paper, a local minimax-Newton method is developed to solve for multiple
saddle points. The local minimax method [SIAM J. Sci. Comput., 23 (2001), pp. 840–865]. is
used to locate an initial guess and a version of the generalized Newton method is used to speed up
convergence. When a problem possesses a symmetry, the local minimax method is invariant to the
symmetry. Thus the symmetry can be used to greatly enhance the efficiency and stability of the local
minimax method. But such an invariance is sensitive to numerical error and the Haar projection has
been used to enforce the symmetry [SIAM J. Numer. Anal., submitted]. In this paper, we prove
that the Newton method is invariant to symmetries and that such an invariance is insensitive to
numerical error. When a symmetric degeneracy takes place, it is proved that the Newton direction
can be easily solved in an invariant subspace. Thus the Newton method can be used not only to
speed up convergence but also to avoid using the Haar projection if the symmetric degeneracy is
removable by a discretization. Finally, numerical examples are presented to illustrate the theory.
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1. Introduction. Let H be a Hilbert space with inner product 〈·, ·〉 and J ∈
C2(H,R), J ′ : H → H∗ be its Frechet derivative and ∇J : H → H be the gradient,
and J ′′ : H → L(H,H∗) its second Fréchet derivative. Since there is a canonical
identification between H∗ and H, ∇J(u) is the identification of J ′(u). We may also
use the identification of J ′′(u) so J ′′(u) is seen as in L(H,H). A point u ∈ H is a
critical point of J if u solves the Euler–Lagrange equation J ′(u) = 0. Many boundary
value problems in nonlinear elliptic PDEs can be converted to solving its Euler–
Lagrange equation for a critical point. A critical point u is nondegenerate if J ′′(u)
is invertible. The first candidates for a critical point are the local extrema which are
well studied in the classical calculus of variation. Traditional numerical (variational)
methods focus on finding such stable solutions. Critical points that are not local
extrema are unstable and are called saddle points. In physical systems, saddle points
appear as unstable equilibria or transient excited states. A huge number of papers
exist in the literature on the existence of multiple saddle points in various nonlinear
problems [1, 5, 6, 8, 9, 10, 17, 21, 24, 25, 26, 28].

To theoretical and computational physics and chemistry, saddle points between
two stable states on the potential hypersurface are of great interests and lie in the
theme of the so-called Transition State Theory or Activated Complex Theory, as they
correspond to the transition states or the minimum energy paths between reactant
molecules and product molecules [13]. A large literature can be found in this area.

∗Received by the editors July 16, 2003; accepted for publication (in revised form) May 6, 2004;
published electronically December 27, 2004. The U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or allow others to do
so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by these
rights.

http://www.siam.org/journals/sinum/42-4/43167.html
†Department of Mathematics and Statistics, Utah State University, Logan, UT 84322 (wang@

math.usu.edu).
‡Department of Mathematics, Texas A&M University, College Station, TX 77843 (jzhou@math.

tamu.edu). The research of this author was supported in part by NSF grant DMS-0311905.

1745



1746 ZHI-QIANG WANG AND JIANXIN ZHOU

Solitons arise in many fields, such as condensed matter physics, dynamics of
biomolecules, nonlinear optics, etc. Among them, solutions which are not ground
states, are the so-called excited states. In the study of self-guided light waves in
nonlinear optics [11, 12, 19], excited states are of great interests. All those solitons
are saddle points, thus unstable solutions.

On the other hand, symmetries exist in many natural phenomena, such as in
crystals, elementary particle physics, symmetry of the Schrödinger equation for the
atomic nucleus and the electron shell with respect to permutations and rotations,
energy conservation law for systems which are invariant with respect to time trans-
lation, etc. Symmetries described by compact group actions in variational problems
have been used in the literature to prove the existence of multiple critical points, typ-
ically, in the Ljusternik–Schnirelman theory (see, e.g., [14] and others). It is known
that symmetries in a nonlinear variational problem can lead to the existence of many
solutions of saddle type and can also cause (symmetric) degeneracy.

Due to the unstable nature, finding multiple saddle points numerically in a stable
way is very challenging. There is virtually no theory in the literature to devise such a
numerical algorithm until recently a local minimax method was developed in [15, 16]
to find multiple saddle points in a sequential order of their Morse indices and its
convergence was established in [16]. Techniques to enhance efficiency and stability of
this method for computing saddle points with symmetries by using the Haar projection
are developed in [27].

Since the local minimax method [15, 16] is a gradient type, first-order algorithm,
to speed up convergence, it is quite natural to consider a Newton’s method. Due
to the instability and multiplicity nature of our problems, we consider a Newton’s
method of the form

uk+1 = uk − skνk with νk = (J ′′(uk))−1J ′(uk),

where νk is the Newton direction and sk > 0 is a stepsize to enhance the stability of
the algorithm; e.g., in Armijo’s rule, sk > 0 is chosen such that

‖∇J(uk+1)‖ − ‖∇J(uk)‖ < −1

2
sk‖∇J(uk)‖.(1.1)

For the algorithm to converge to a desirable critical point, two basic conditions are
assumed:

(a) a good initial guess to start with, otherwise it can be extremely slow or
divergent, or can lead to an unwanted trivial or known critical point;

(b) the problem has to be nondegenerate; i.e., J ′′(uk) is invertible along the
trajectory of a Newton’s method.

When J ′′(uk) is not invertible, a generalized Newton’s method is suggested in
the literature by using the generalized (Moore–Penrose) inverse J ′′(uk)†, where the
Newton direction νk = J ′′(uk)†J ′(uk) is the least-norm solution to the minimization
problem

min
ν∈H

‖J ′′(uk)ν − J ′(uk)‖.(1.2)

Under standard conditions and sk ≡ 1, the generalized Newton method converges
locally and quadratically [20]. This approach seems to be very general but also too
complicated to apply to solve an infinite-dimensional problem. Therefore people tend
to avoid using the generalized Newton method in solving variational problems. It is
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also very difficult for us to examine its response to the effects of a symmetry in a
problem.

Although attempts have been made by several researchers, e.g., [18, 22], to use
a Newton’s method to find multiple saddle points in various problems, the answer to
how to deal with those two basic issues (a) and (b) remains largely unsatisfactory.
Locating a good initial guess in an infinite-dimensional space is itself a challenging
problem, in particular, when multiple solutions are involved. By using the local
minimax method [15, 16], a good initial guess can be provided. However, degeneracy
exists in every multiple saddle point problem due to a sign change of the eigenvalues
of J ′′(u). Either a solution to be found is degenerate or J ′′(u) is not invertible at a
point u along the Newton trajectory. How to handle such a case within the framework
of a Newton’s method remains a very interesting problem. On the other hand, when
the problems possess some symmetries, they may create symmetric degeneracy; see
Example 2.5. How a Newton’s method responds to symmetries of the problems is, in
general, still unknown. In this paper we shall try to address these questions. To do
so, we use an approach somewhat between the standard and the generalized Newton
method. When J is C2 and J ′′(u) has a closed range, for given u ∈ H, we consider a
solution ν to

J ′′(u)ν = J ′(u).(1.3)

In the following we assume that J ′′(u) is a Fredholm operator with index zero. Since
J ′′(u) is self-adjoint, it has a finite-dimensional kernel, ker(J ′′(u)), and a closed range.
Then it is known that (1.3) may have none, unique, or infinitely many solutions, and
(1.3) has a solution if and only if ∇J(u) ⊥ ker(J ′′(u)). In this case, the Newton
direction is just the least-norm solution to the linear system (1.3). Note that in
general, with the Armijo rule (1.1), the Newton method may approximate a critical
point u∗ of the function g(u) = ‖∇J(u)‖, i.e.,

〈g′(u∗), v〉 =
〈J ′′(u∗)v,∇J(u∗)〉

‖∇J(u∗)‖ = 0 ∀v ∈ H.

If we choose v = ν, a solution to (1.3), we have J ′′(u∗)ν = ∇J(u∗) and 〈g′(u∗), ν〉 =
‖∇J(u∗)‖ = 0. Thus a critical point u∗ of g(u) = ‖∇J(u)‖ where (1.3) is solvable
must be a critical point of J .

In this paper, we assume that a solution u∗ to be found possesses certain symmetry
and that the degeneracy of u∗ is created only by the symmetry. Our method will be
particularly useful in situations where there are multiple-saddle-point-type solutions
due to symmetries. Our analysis uncovers the effects of symmetries in the problems
on the Newton method. In summary, we shall undertake the following steps towards
giving a theoretical strategy and implementing a numerical algorithm for computing
multiple-saddle-point-type solutions when symmetries are present:

(1) prove the invariance of the Newton direction under symmetries;
(2) prove the solvability of (1.3) under symmetric degeneracies;
(3) show that the invariance of the Newton direction to symmetries is insensitive

to numerical error, which contrasts to the fact that the invariance of the local minimax
method to symmetries is sensitive to numerical error [27].

Due to the invariance of the local minimax method to symmetries, symmetries can
be used to greatly enhance the efficiency and stability of the method [27]. However,
such an invariance is sensitive to numerical error. Thus the Haar projection has to
be used to enforce the symmetry. When a symmetry is associated with a continuous
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group of actions, the corresponding Haar projection is an integral over the group. It
becomes very difficult to compute. On the other hand, in many applications such
as those examples in this paper, such a symmetric degeneracy is removable when a
discretization of the problem is used. After the analysis in this paper we realize that
with a least-norm solution linear solver, the Newton method can be used, following
the local minimax method, to not only speed up convergence but also avoid using
the Haar projection when the symmetric degeneracy is removable by a discretization.
This is the local minimax-Newton method we shall describe in this paper. In the last
section, we present several numerical examples to illustrate the theory.

2. The Newton method. We will need some preliminaries from transformation
groups and invariant functionals [2]. Let H be a Hilbert space, G be a compact Lie
group that acts isometrically on H, and J ∈ C2(H,R) be G-invariant, i.e., J(gu) =
J(u), ∀g ∈ G and u ∈ H, and J ′′(u) have a closed range for each u ∈ H. For a
subgroup G of G, let HG = {u ∈ H | gu = u ∀g ∈ G} be the invariant subspace of H
under the group actions of G. For u ∈ H, the G-orbit of u is the set Gu = {gu : g ∈ G}
and the isotropy subgroup of u is Gu = {g ∈ G : gu = u}. When Gu is differentiable
at u, we denote by Tu(Gu) the tangent space of Gu at u.

2.1. Invariance and solvability of the Newton direction.
Lemma 2.1.

(a) ∇J is G-equivariant, i.e., ∇J(gu) = g−1∇J(u) ∀u ∈ H, g ∈ G;
(b) ∇J(u) ∈ HG for any subgroup G ⊂ G and u ∈ HG;
(c) 〈J ′′(u)w, v〉 = 〈J ′′(gu)gw, gv〉 ∀u, v, w ∈ H, g ∈ G, and in particular, we

have J ′′(u)(HG) ⊂ HG for any subgroup G ⊂ G and u ∈ HG.
Proof. By using the invariance of J , 〈J ′(gu), v〉 = 〈J ′(u), gv〉 = 〈g−1J ′(u), v〉.

This shows ∇J(gu) = g−1∇J(u), which implies (a) and (b). Let G be a subgroup of G.
To prove (c), differentiating again we have 〈J ′′(u)w, v〉 = 〈J ′′(gu)gw, gv〉 ∀u, v, w ∈ H.
For u ∈ HG and w ∈ HG, we obtain 〈J ′′(u)w, v〉 = 〈g−1J ′′(u)w, v〉. Thus J ′′(u)w =
g−1J ′′(u)w ∀g ∈ G, and we conclude J ′′(u)w ∈ HG, i.e, J ′′(u)(HG) ⊂ HG.

Lemma 2.1(a) states that if u∗ is a critical point, i.e., ∇J(u∗) = 0, then ∇J(gu∗) =
0 ∀g ∈ G. This implies that when G has a continuous subgroup G and u∗ /∈ HG, the
continuous orbit Gu∗ is a critical point set continuous at u∗. Thus u∗ is not isolated
and therefore degenerate, i.e., ker(J ′′(u∗)) �= {0}. If G is differentiable subgroup of
G, we have the following lemma.

Lemma 2.2. Let G be a differentiable subgroup of G and u �∈ HG be a critical
point of J . Then Tu(Gu) ⊂ ker(J ′′(u)). Here Tu(Gu) is the tangent space of Gu at u.

Proof. Let v ∈ Tu(Gu) and consider a one-parameter curve γ : (−ε, ε) → Gu
such that γ(0) = u and γ′(0) = v. Then J ′(γ(t)) = 0 ∀t ∈ (−ε, ε). For any fixed w
let g : (−ε, ε) → R be defined by g(t) = (J ′(γ(t)), w). Then g′(0) = 0, but g′(0) =
(J ′′(u)v, w). Since w is arbitrary we have J ′′(u)v = 0.

If u∗ is a nondegenerate critical point of J , that is, ker(J ′′(u∗)) = {0}, then
ker(J ′′(u)) = {0} for u close to u∗. When the degeneracy of a critical point u∗ is
caused only by differentiable group actions of G, i.e., ker(J ′′(u∗)) = Tu∗(Gu∗), we
must have u∗ �∈ HG. Thus it is reasonable to assume that for u close to u∗ and
u ∈ H \HG, ker(J ′′(u)) ⊂ Tu(Gu) holds. Then we have the following lemma.

Lemma 2.3. Let G be a differentiable subgroup of G and u ∈ H \ HG. If
ker(J ′′(u)) ⊂ Tu(Gu), then (1.3) is always solvable.

Proof. If ∇J(u) = 0, the lemma is obvious. Let v ∈ Tu(Gu) and consider a
one-parameter curve γ : (−ε, ε) → Gu such that γ(0) = u and γ′(0) = v. Let
g(t) = J(γ(t)). Then g′(0) = 0 due to the invariance of the functional J . Since
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g′(0) = (∇J(u), v), we have ∇J(u) ⊥ Tu(Gu) and therefore ∇J(u) ⊥ ker(J ′′(u))
when ker(J ′′(u)) ⊂ Tu(Gu). So (1.3) is always solvable.

The above result implies that the Newton direction ν of J at u can be solved
from (1.3) instead of the much more complicated problem (1.2) when u is close to a
critical point u∗ whose degeneracy is caused only by differentiable subgroup actions
of G. Can (1.3) be uniquely solved? Will the Newton direction ν of J at u have
the same symmetry as that of u? These two uniqueness and invariance problems are
actually closely related.

Lemma 2.4. Let G be a subgroup of G and u ∈ HG. If w ∈ H is a solution
to (1.3), then wG ∈ HG is a solution of (1.3) where wG =

∫
G
g(w)dg is the Haar

projection of w onto HG. Thus the Newton direction is always in HG. Furthermore,
if (1.3) is uniquely solvable in HG, then wG is the Newton direction.

Proof. Since ∇J(u) ∈ HG by Lemma 2.1(b) and wG ∈ HG by the Haar projection,
we only have to prove that wG is a solution to (1.3). By Lemma 2.1(c), we have

〈∇J(u), v〉 = 〈J ′′(u)w, v〉 = 〈J ′′(gu)gw, gv〉 ∀v ∈ H, g ∈ G.
Taking v ∈ HG and g ∈ G, we obtain 〈J ′′(gu)gw, gv〉 = 〈J ′′(u)gw, v〉. Thus

〈J ′′(u)gw −∇J(u), v〉 = 0 or (J ′′(u)gw −∇J(u)) ⊥ HG ∀g ∈ G.

Since the Haar integral is linear and normalized, and ∇J(u) ∈ HG, it follows that∫
G

(J ′′(u)gw −∇J(u)) dg = (J ′′(u)wG −∇J(u)) ⊥ HG

as well. Then by Lemma 2.1(c), wG ∈ HG implies J ′′(u)wG−∇J(u) ∈ HG. We must
have J ′′(u)wG −∇J(u) = 0. When (1.3) is solvable, the Newton direction ν must be
a solution to (1.3). It has been shown in [27] that the Haar projection νG of ν is the
orthogonal projection of ν onto HG and νG is also a solution to (1.3) by the previous
part. We have ‖νG‖ ≤ ‖ν‖ and the equality holds if and only if ν ∈ HG.

If (1.3) is uniquely solvable in HG, which means for all solutions w of (1.3),
their orthogonal projections wG onto HG are the same, then wG is the Newton direc-
tion.

We conclude here that finding wG by the Haar projection is equivalent to solving
the least-norm solution to the linear system (1.3).

2.2. Implementation of the Newton method. Let G be a differentiable
subgroup of G and u∗ ∈ H \HG be a critical point to be found whose degeneracy is
created only by the group actions of G. Thus u∗ ∈ HGu∗ . Assume that each u ∈ HGu∗
is an isolated point in HGu∗ ∩Gu.1 Thus the degeneracy caused by the group actions
of G does not take place in HGu∗ . It follows that the equation J ′′(u)ν = v has a
unique solution ν in HGu∗ ∀u, v ∈ HGu∗ . Therefore the uniqueness and invariance
problems can be solved by confining our problem to the subspace HGu∗ . This implies
that we have to enforce the symmetries defined by the isotropy subgroup Gu∗ . For
numerical implementation, it can be easily done as follows.

Choose an initial guess u0 ∈ HGu∗ close to u∗ (such that u0 has the same symmetry
as u∗). This can be done by the local minimax method due to its invariance to
symmetries (see [27]). Then by Lemma 2.1, J ′(u0) ∈ HGu∗ and (1.3) or J ′′(u0)ν =
J ′(u0) has a unique solution ν0 ∈ HGu∗ which can be found through solving (1.3) for

1For most applications this assumption will be satisfied.
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the least-norm solution. The updated solution u1 = u0 − s0v0 ∈ HGu∗ where s0 > 0
is a stepsize determined by, e.g., Armijo’s rule, has the same symmetry as that of
u0. Thus the symmetry of u0 is preserved and passed to u1 and we can continue this
way to obtain the uniqueness and invariance of the Newton direction in HGu∗ . The
local convergence of the generalized Newton method is then applied. When numerical
error is considered, to overcome the symmetric degeneracy problem, in general, the
Haar projection is needed to ensure the solvability of (1.3). The following example is
instructional.

Example 2.5. Let J(x, y) = 1
2r

2 − 1
4r

4 where r2 = x2 + y2. Then

J ′(x, y) =

[
x(1 − r2)
y(1 − r2)

]
, J ′′(x, y) =

[
1 − 2x2 − r2 −2xy

−2xy 1 − 2y2 − r2

]
,

det(J ′′(x, y)) = (1 − r2)(1 − 3r2).

Thus (0, 0) is the local minimum-type critical point and (xs, ys) with x2
s + y2

s = 1
are the saddle points. Let G = O(2) = Z2 × S

1 where O(2) is the group of all 2 × 2
orthogonal matrices, Z2 is generated by the matrix [01

1
0 ] and S

1 is the group of all

matrices [ cos θ
− sin θ

sin θ
cos θ ], 0 ≤ θ < 2π. Thus the subgroup Z2 represents the reflection

about the line x = y and the subgroup S
1 represents all rotations. The subgroup

G = S
1 is differentiable and creates degeneracy of a critical point not in HG. We

have (0, 0) ∈ HG and (xs, ys) /∈ HG. It is clear that (0, 0) is a nondegenerate critical
point with det(J ′′(0, 0)) = 1 and all the saddle points (xs, ys) are degenerate. For
each u = (xs, ys), Gu = {(x, y) : x2 + y2 = 1} and Tu(Gu) = {(x, y) : xsx + ysy =
0} = {(x,−xsx

ys
) : x ∈ R}. By Lemma 2.2, Tu(Gu) ⊂ ker(J ′′(xs, ys)). Indeed we have

J ′′(xs, ys)(x,−xsx
ys

)T = (0, 0)T .

Although for all (x, y) with x2 + y2 �= 1, 1
3 , J ′′(x, y) is invertible, the condition

number of the matrix J ′′(x, y) gets worse as (x, y) → (xs, ys). The usual Newton
method will fail to provide any reliable solution. If we consider the saddle point u∗ =

(
√

2
2 ,

√
2

2 ), the isotropy subgroup at u∗ is Z2. The corresponding invariant subspace

is HZ2 = {(x, y)T } such that [xy ] = [01
1
0 ][xy ], i.e., HZ2 = {(x, x)T }. By confining

the problem in the subspace HZ2 , we have J(x) = x2 − x4, J ′(x) = 2x(1 − 2x2),

and J ′′(x) = 2(1 − 6x2). At the saddle point x =
√

2
2 , J ′′(

√
2

2 ) = −4 is invertible. In
implementation, for each u = (z, z)T ∈ HZ2

, we haveHZ2∩Gu = {u,−u}. Thus G will
not cause any degeneracy in HZ2 . With J ′(z, z) = (z(1 − 2z2), z(1 − 2z2))T ∈ HZ2 ,
the equation J ′′(z, z)(x, y)T = J ′(z, z) has a unique solution (x, y) ∈ HZ2 where

x = y = z(1−2z2)
1−6z2 and −

√
6

6 < z <
√

6
6 .

2.3. Insensitivity of invariance of Newton’s method to numerical error.
In [27], the invariance of the local minimax method to a symmetry is proved; i.e., if
an initial guess u0 is chosen in an invariant subspace HG under a subgroup G ⊂ G,
then the sequence generated by the algorithm will remain in HG. However, such
an invariance is sensitive to numerical error in computing saddle points, because it
searches a saddle point through a min-max method. The minimization process keeps
J strictly descending along the sequence {uk} generated by the algorithm. To see the
significant differences, let uk ∈ HG be a point close to a saddle point u∗ ∈ HG. Thus
∇J(uk) is small, the numerical errors in computing ∇J(uk) dominate the symmetry
of ∇J(uk). This leads to uk+1 ∈ H \ HG. For the minimax method, since u∗ is
a saddle point, the minimization search finds a slider (a descent direction) outside
HG away from u∗. Then ‖∇J(uk+1)‖ increases and the asymmetric part of ∇J(uk+1)
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gets larger. Consequently the invariance of the sequence {uk} collapses and the search
fails to reach u∗. The Haar projection has to be used (see [7, 27]) to preserve the
symmetry of ∇J(uk). In contrast to the local minimax method, the Newton method
does not assume or use a variational structure. It finds a local minimum point u∗, not
a saddle point, of ‖∇J(u)‖. Once uk is in a local basin of ‖∇J(u)‖ around u∗, due
to Armijo’s rule, it keeps ‖∇J(uk)‖ strictly descending. Although uk+1 ∈ H \ HG,
‖∇J(uk+1)‖ is closer to 0. Thus uk+1 is still in the local basin around u∗ and is a
better approximation to u∗ ∈ HG. The asymmetric part of uk will be kept within the
norm of the numerical errors. In conclusion, the invariance of the Newton method is
insensitive to numerical errors, therefore the Haar projection (an averaging formula)
as suggested and used for the local minimax method in [27] is not necessary for the
Newton method to preserve a symmetry.

The insensitivity of the invariance of the Newton method to numerical errors is
double edged. If one knows the symmetry of a solution u∗ to be found, then it is
advantageous to use. One can choose an initial guess u0 with the same symmetry of
u∗ to obtain an easy implementation for finding the Newton direction and preserve
its invariance. Otherwise, it becomes a trap, when an initial guess u0 has a symmetry
different from that of u∗, the whole sequence generated by the Newton method will be
trapped in the invariant subspace defined by the symmetry of u0 and fails to reach u∗.

When a symmetry is associated with a continuous group G of actions, it causes
degeneracy and the corresponding Haar projection is an integral over G and very
difficult to compute. To overcome the symmetric degeneracy problem with numeri-
cal error, the Haar projection is needed in general. However, in many applications
such as the examples in section 3, such a symmetric degeneracy is removable when
a discretization is used, because after a discretization, G is approximated by a finite
group. The truncation error is unpredictable, but it is in a much high order than the
discretization error, which actually makes (1.3) more solvable. The above analysis
suggests that in this case, the Haar projection is not needed to overcome the symmet-
ric degeneracy problem with numerical error. Thus the Newton method can be used
not only to speed up convergence but also to avoid using the Haar projection. This
leads to the following local minimax-Newton algorithm.

2.4. A local minimax-Newton algorithm.

Step 1: Given εM > εN > 0 and n−1 previously found critical points w1, . . . , wn−1,
of which wn−1 has the highest critical value. Set the support space L =
span{w1, . . . , wn−1}. Let v1 ∈ L⊥ be an ascent direction at wn−1. Let
t00 = 1, v0

L = wn−1 and set k = 0;
Step 2: Using the initial guess w = tk0v

k + vkL, solve for wk = arg maxu∈[L,vk] J(u)

and denote wk = tk0v
k + vkL where tk0 , vkL have been updated;

Step 3: Compute the negative gradient dk = −∇J(wk);
Step 4: If ‖dk‖ ≤ εM , then set w0 = wk, k = 0 and goto Step 7; else goto Step 5;

Step 5: Set vk(sk) = vk+skdk

‖vk+skdk‖ where sk satisfies certain stepsize rule (see [15, 16]);

Step 6: Set vk+1 = vk(sk) and update k = k + 1 then goto Step 2;
Step 7: Solve J ′′(wk)ν = J ′(wk) for the least-norm solution νk;
Step 8: Set wk+1 = wk − skνk where sk satisfies, e.g., the Armijo’s rule (1.1);
Step 9: Compute the gradient ∇J(wk+1);
Step 10: If ‖∇J(wk+1)‖ < εN , then output wk+1 and stop; else set k = k + 1, goto

Step 7.

Steps 1–6 represent the local minimax method [15, 16] to locate an initial guess
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that is sufficiently close to a desirable saddle point and Steps 7–10 represent the
Newton method described in this paper to speed up the convergence.

When a symmetry is involved in a saddle point u∗ to be found, we
(1) identify the symmetry of u∗ by defining an invariant subspace HG. Let

LG = L ∩ HG and replace L by LG in the algorithm; In many cases, such as those
examples in section 3, we have LG = {0};

(2) choose an initial guess v1 ∈ HG;
(3) do iterations from Step 2 to Step 6.
Case 1. If we do not want to enforce the symmetry, we should choose εM = 10ε

where ε represents the order of the numerical error in computing ∇J(wk), e.g., ε =
10−2. Since the minimax method is invariant to a symmetry, when ‖∇J(wk)‖ > εM ,
the symmetry of ∇J(wk) still dominates the numerical error in ∇J(wk). Usually the
numerical error starts to dominate the symmetry of ∇J(wk) when ‖∇J(wk)‖ is close
to ε.

Case 2. If we want to enforce the symmetry, we only have to change Step 3 as
dk = −H(∇J(wk)) where H is the Haar projection defined in Lemma 2.4. In this
case, we can choose εM = 10ε or smaller.

(4) For Steps 7–10, if a degeneracy caused by a continuous group G of actions
is removable by a discretization, then no Haar projection is needed, otherwise do the
Haar projection.

3. Applications to semilinear elliptic equations.

3.1. Problems and setting up. The model equation we look at is the following
semilinear elliptic equation:{−∆u(x) = f(x, u(x)) in Ω,

u = 0 on ∂Ω,
(3.1)

where Ω ⊂ R
N is bounded, f is a C1 function satisfying certain growth and regularity

conditions [23] and we seek weak solutions in H = W 1,2
0 (Ω). The energy functional is

J(u) =

∫
Ω

{
1

2
|∇u(x)|2 − F (x, u(x))

}
dx, where F (x, t) =

∫ t

0

f(x, τ)dτ.(3.2)

Then critical points of J(u) correspond to weak solutions of (3.1). Problems of this
type appear as models in many applied areas. Mathematically, people have been inter-
ested in understanding the solution structures in terms of existence and nonexistence,
the number of solutions as well as in obtaining qualitative property of solutions such
as the geometric, symmetric, and nodal properties. Though great progress has been
made, still many important open questions remain unsettled. Here, we are mainly
concerned in uncovering new phenomena by numerically examining the qualitative be-
havior of both positive solutions and nodal solutions of this type of elliptic boundary
value problem. For u,w ∈ H, we have

〈J ′(u), w〉H∗×H =
d

dt

∣∣∣∣t=0J(u+ tw) =

∫
Ω

∇u∇w − f(x, u(x))w dx.

Thus d = ∇J(u) = u− (−∆)−1f(x, u) ∈ H. Taking the second derivative, we have

〈J ′′(u)ν, w〉 =
d

dt

∣∣∣∣t=0〈J ′(u+ tν), w〉 =

∫
Ω

∇ν∇w − f ′u(x, u(x))νw dx ∀ν ∈ H,



A LOCAL MINIMAX-NEWTON METHOD 1753

which implies that J ′′(u) = I − (−∆)−1f ′u(·, u). Under standard conditions [23] on f ,
(−∆)−1f ′u(·, u) is a compact operator and J ′′(u) is a Fredholm operator with index
zero. By setting 〈J ′(u), w〉 = 〈J ′′(u)ν, w〉 ∀w ∈ H, the Newton direction ν as defined
in (1.3) can be obtained from weakly solving

{−∆ν(x) − f ′u(x, u(x))ν(x) = −∆u(x) − f(x, u(x)), x ∈ Ω,
ν(x) = 0, x ∈ ∂Ω.

(3.3)

Remark 3.1. (a) Newton’s method has been applied to variational problems in
the literature usually by solving a discretized Euler–Lagrange equation. This ap-
proach requires to solve for J ′(u) and J ′′(u), then compute ν = (J ′′(u))−1J ′(u), or,
ν = (J ′′(u))†J ′(u) when J ′′(u) is not invertible, and therefore is much more compu-
tationally expensive and difficult. While solving the Newton direction ν directly from
(3.3) is much simpler and less expensive. In many cases when J ′′(u) is not invertible,
ν is still solvable from (3.3), such as the case where the singularity of J ′′(u) is caused
only by a continuous group of actions.

(b) When an initial guess u0 and its Laplacian ∆u0 are given, the Newton direction
ν0 is solved from (3.3) and s0 is determined by, e.g., the Armijo rule. Then u1 = u0 −
s0ν0 and ∆u1 = ∆u0−s0∆ν0 where ∆ν0(x) = ∆u0(x)+f(x, u0(x))−f ′u(x, u0(x))ν0(x)
is known. Thus no computation of the Laplacian of the updated numerical solution
u1 is required.

3.2. Numerical examples. In this section, we apply the local minimax method
(MM), the Newton method (NM) and the local minimax-Newton method (MM+NM)
to numerically solve the Henon equation

{−∆u(x) = |x|qu3(x) in Ω,
u(x) = 0 on ∂Ω

(3.4)

for multiple solutions in H = H1
0 (Ω) where Ω is either the unit disk or an annulus. We

are interested in finding new phenomena in symmetry breaking and nodal property
of solution structure. The symmetries of the problem can be described by the group
actions G = O(2) = Z2 × S

1 where O(2) is the set of all 2× 2 orthogonal matrices, Z2

and S
1 represent, respectively, the reflection about the x-axis and all the rotations.

For u ∈ H, g ∈ S
1, and the generator h̄ ∈ Z2, we define g(u)(x) = u(gx) and

h(u)(x) = ±u(h̄x), where +1 and −1 represent, respectively, the even and the odd
reflections, and the odd reflection is applicable if an even n-rotationally symmetry
is considered. Then G becomes a compact Lie group that acts isometrically on H
and G = S

1 is a differentiable subgroup that creates degeneracy for a critical point
u∗ /∈ HG, i.e., u∗ is radially asymmetric (or nonradial).

For a radially asymmetric but n-rotationally symmetric solution u∗, the isotropy
subgroup of G at u∗ is Gu∗ = {higi, i = 0, 1, . . . , n − 1} where gi = [ cos θi

− sin θi

sin θi
cos θi

]

and θi = i 2πn , i = 0, 1, . . . , n − 1, and for each u ∈ HGu∗ , HGu∗ ∩ Gu = {giu, i =
0, 1, . . . , n − 1}. Thus the differentiable subgroup G causes no degeneracy in HGu∗ .
By confining the problem in HGu∗ , the Newton direction can be uniquely solved from
(3.3) in HGu∗ . For implementation, this means that we need only to take an initial
guess u0 in HGu∗ and close to u∗. In the following numerical examples, ε = ‖∇J(uk)‖
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Fig. 1. q = 0.5. The radially symmetric ground state with J = 21.5347.
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Fig. 2. q = 2. A radially asymmetric ground state with J = 70.9280.

and u0 is computed from solving the linear equation

{−∆u0(x) = c(x), x ∈ Ω,
u0(x) = 0, x ∈ ∂Ω,

where c(x) =

⎧⎪⎨⎪⎩
+1 if u0 is concave down at x,

−1 if u0 is concave up a x,

0 otherwise.

(3.5)

Case 1: Ω = {(x1, x2) : x2
1 + x2

2 < 1}.
(1) Let q = 0.5 in (3.4). It is known that the equation has a unique positive

solution which is radially symmetric as shown in Figure 1.
(a) Using an initial guess u0 which is radially asymmetric but symmetric about

the x-axis with c(x1, x2) = −1 if |(x1, x2)−(0.5, 0)| ≤ 0.5 and c(x1, x2) = 0 otherwise.
Then NM failed to converge in 120 iterations and 35 MM iterations yield ε < 10−4.
While 6 MM iterations give ε < 10−1 and then followed by 5 NM iterations, it yields
ε < 10−8.

(b) Using a radially symmetric initial guess u0 from c(x1, x2) = −1. Then 5 NM
iterations yield ε < 10−12 and 8 MM iterations reach ε < 10−4.

(2) Next let q = 2 in (3.4). Then the equation has a radially symmetric positive
solution and other radially asymmetric positive solutions (see [3]). Rotating a radially
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Fig. 3. q = 2. Another radially asymmetric ground state with J = 70.8941.
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Fig. 4. q = 2. The radially symmetric solution with J = 88.1740.

asymmetric solution for any angle gives a radially asymmetric solution as well. Thus
such a solution is degenerate. The radially symmetric positive solution has the highest
energy among all the positive solutions. Without using the symmetry, such a solution
is extremely elusive to capture.

(a) Using a radially asymmetric initial guess u0 from c(x1, x2) = −1 if |(x1, x2)−
(0.5, 0)| ≤ 0.5 and c(x1, x2) = 0 otherwise. Then 11 MM iterations get the solution
as in Figure 2 with ε < 5 ∗ 10−3 and 7 NM iterations find the same solution with
ε < 10−7.

(b) Using a radially symmetric initial guess u0 from c(x1, x2) = −1. Then 21
MM iterations obtain the solution as in Figure 3 with ε < 3∗10−3, which is a rotation
of the solution in Figure 2 and 4 NM iterations find the radially symmetric solution
as in Figure 4 with ε < 10−7. Such a solution cannot be captured by MM without
enforcing the symmetry.

(c) Using an initial guess u0 from c(x1, x2) = −sign(x1). u0 is odd 2-rotation
y-axis symmetric. NM failed to converge. Then first 2 MM iterations followed by 8
NM iterations yield a sign-changing solution as in Figure 5 with ε < 10−7. Note that
the solution in Figure 5 has the same symmetries as that of the initial guess u0.

(d) To show that the invariance of NM is very insensitive to numerical error,
using an initial guess u0 from c(x1, x2) = +1 if − 1

4π < tan−1(x2

x1
) < 1

4π or 3
4π <
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Fig. 5. q = 2. An odd 2-rotationally symmetric sign-changing solution with J = 182.9987.
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Fig. 6. q = 2. An odd 4-rotationally symmetric sign-changing solution with J = 489.2240.

tan−1(x2

x1
) < 5

4π and g(x1, x2) = −1 otherwise. u0 is odd 4-rotationally symmetric.
The corresponding invariant subspace is much smaller. Again NM failed to converge.
First 2 MM iterations followed by 9 NM iterations yield a solution as in Figure 6 with
ε < 10−11.

Case 2: Ω = {(x1, x2) : 0.4 < x2
1 + x2

2 < 1} and q = 2 in (3.4).

The equation has a radially symmetric and other radially asymmetric positive
solutions (see [4]). Rotating a radially asymmetric solution for any angle is still
a radially asymmetric solution. Thus such a solution is degenerate. The radially
symmetric positive solution has the highest energy among all the positive solutions.
Without using the symmetry, such a solution is extremely elusive to capture.

(a) Using a radially asymmetric initial guess u0 from c(x1, x2) = −1 if |(x1, x2)−
(0.7, 0)| ≤ 0.3 and c(x1, x2) = 0 otherwise. Then 17 MM iterations get the solution
as in Figure 7 with ε < 3 ∗ 10−3 and 9 NM iterations yield the same solution with
ε < 10−9.

(b) Using an initial guess u0 from c(x1, x2) = −1 if − 1
4π < tan−1(x2

x1
) < 1

4π

or 3
4π < tan−1(x2

x1
) < 5

4π and c(x1, x2) = 0 otherwise. u0 is even 2-rotationally
symmetric. First 2 MM iterations followed by 6 NM iterations yield a solution as in
Figure 8 with ε < 10−11.

(c) Using an initial guess u0 from c(x1, x2) = −1 if − 1
6π < tan−1(x2

x1
) < 1

6π,
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Fig. 7. q = 2. A radially asymmetric ground state with J = 143.9674.
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Fig. 8. q = 2. An even 2-rotationally symmetric solution with J = 288.5556.
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Fig. 9. q = 2. A 3-rotationally symmetric solution with J = 429.9529.

1
2π < tan−1(x2

x1
) < 5

6π or − 5
6π < tan−1(x2

x1
) < − 1

2π and c(x1, x2) = 0 otherwise. u0

is even 3-rotationally symmetric. First 2 MM iterations followed by 7 NM iterations
yield a solution as in Figure 9 with ε < 10−10.

(d) Using a radially symmetric initial guess u0 by setting c(x1, x2) ≡ −1. Then
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Fig. 10. q = 2. The radially symmetric solution with J = 631.9575.

4 NM iterations yield the radially symmetric solution as in Figure 10 with ε < 10−7.
But MM fails to find the solution without enforcing the symmetry.

For all numerical examples in this section, the Matlab PDE Toolbox is used to
generate the domains and finite-element meshes and do computations. The Matlab
function assempde is used to solve (3.3) for the Newton direction. Note that the de-
generacy caused by symmetries in the examples is removable when a discretization is
used. Since when the disk or annulus is discretized into finite-element grids, the contin-
uous subgroup S1 is approximated by a finite subgroup S1

n = {gi, i = 0, 1, . . . , n− 1}
and the radial symmetry of the problem is approximated by the n-rotationally symme-
try. With this approximation, the symmetric degeneracy of the problem is removed.
Without a degeneracy, (3.3) is uniquely solvable and yields the Newton direction ν.
By our analysis in section 2, (3.3) is solvable without numerical error and now it is
also solvable with numerical error, therefore such an approximation or a refinement
of discretization (finite-element grids) should be stable. Thus no Haar projection is
needed.

With the local minimax-Newton algorithm, we are able to carry out many numer-
ical investigations for examining the qualitative behavior and finding new phenomena
of both positive and nodal solutions of nonlinear elliptic boundary value problems,
e.g., the symmetry breaking and bifurcation phenomena, and the dependency of solu-
tions on boundary approximation. We will address those new findings in subsequential
papers.
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Abstract. This paper studies the error bounds of multivariate integration in weighted function
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1. Introduction. The computation of high-dimensional integrals plays a central
role in many applications. Consider an integral over the d-dimensional unit cube

Id(f) =

∫
[0,1)d

f(x)dx.

We are mostly interested in cases where the dimension d is large. For large d, classical
methods based on the Cartesian product of a one-dimensional integration rule (trape-
zoidal rule, Simpson’s rule, Gaussian rule, etc.) are not practical because of the curse
of dimensionality: the computational cost grows exponentially with the dimension.
High-dimensional integrals are usually approximated by Monte Carlo or quasi-Monte
Carlo (QMC) algorithms of the form

Qn,d(f ; IPn) =
1

n

n−1∑
k=0

f(xk),

where IPn = {x0, . . . ,xn−1} ⊂ [0, 1)d is a set of random points in Monte Carlo, or a
set of points chosen in some deterministic way in QMC.

In the present work we consider only the special class of QMC algorithms known
as rank-1 lattice rules (see [15, 19]) having the form

Qn,d(f ; IPn) =
1

n

n−1∑
k=0

f

({
kz

n

})
,(1)
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where z = (z1, . . . , zd), called the “generating vector,” is an integer vector with no
factor in common with n, and the notation {x} means that each component of x
is replaced by its fractional part. The accuracy of a lattice rule depends on the
generating vector z and on the functions f .

How should the vector z in (1) be chosen? In this paper we present new algorithms
for choosing z, in the setting of the “weighted” spaces of functions introduced by Sloan
and Woźniakowski in [22, 23], and with the choice of z restricted to the very classical
form introduced by Korobov [12, 13]: if n is prime,

z := (1, a, . . . , ad−1) (modn),(2)

where a is a suitable integer from the set {1, . . . , n−1}. The role of the corresponding
algorithm is then to make a “good” choice of a. The theory to be developed here
guarantees that the worst-case error of the resulting algorithm in an appropriately
weighted space grows only slowly with the dimension d.

The results to be obtained here will be compared to those for the recently proposed
“component-by-component” (or CBC) constructions for the vector z, investigated in
[14, 21]. The present theoretical results are almost, but not quite, as good as those
for the CBC constructions. (For the CBC construction the bound for the worst-case
error in an appropriately weighted space does not grow at all with d, whereas for the
present construction a polynomial growth with d is the best we can prove.)

On the other hand, the present algorithm is both simpler and faster if the al-
gorithm is needed only for a single value of dimension d. (The cost of the present
algorithm is O(dn2), whereas the cost of the CBC algorithm is O(d2n2).) Moreover,
the observed performance in the two cases (see section 6) turns out to be quite similar,
in spite of the difference between the theoretical bounds.

It should be emphasized that the resulting vector z, though of the classical Ko-
robov form (2), will almost always be quite different from that produced by the
classical algorithm. In the classical theory of lattice rules (see [15, 19]) the function
f is assumed to be a periodic function in the Korobov class Eα,d(c), for c > 0 and

α > 1, which is the class of functions with Fourier coefficients f̂(h) satisfying

|f̂(h)| ≤ c

(h̄1 · · · h̄d)α
,

where h = (h1, . . . , hd) with integers hj ,

f̂(h) =

∫
[0,1]d

exp(−2πih · x)f(x)dx,

h · x = h1x1 + · · · + hdxd, and hj = max(1, |hj |). The classical quality measure for
rank-1 lattice rules is the worst-case quadrature error Pα in the Korobov class Eα,d(1):

Pα := sup{|Id(f) −Qn,d(f ; IPn)| : f ∈ Eα,d(1)} =
∑

h·z≡0 (modn)

′ 1

(h1 · · ·hd)α
,

where the prime on the sum indicates that the term h = 0 is omitted. For a function
f ∈ Eα,d(c), a simple error bound for a rank-1 lattice rule is (see [15, 19])∣∣∣∣∣Id(f) − 1

n

n−1∑
k=0

f

({
kz

n

})∣∣∣∣∣ ≤ c Pα.
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It has been known for many years [15, 19] that there exists a “good” generating
vector z such that

Pα = O(n−α(log n)β)

for some β of the order of d (this is nearly the best possible, since Sarygin [18] proved
a general lower bound which shows that Pα is at least of the order of magnitude
O(n−α(log n)d−1)). For fixed dimension d, this convergence is asymptotically much
faster than the Monte Carlo convergence O(n−1/2). The problem for larger values of
d is that the error bound for functions from the classical Korobov classes, even for the
optimal lattice rules, is exponentially dependent on d. Integration problems where the
dimension d is large occur commonly in practice, for example, in finance [1, 17]. For
large d (say, d > 10), the advantage of the classical Korobov lattice rules disappears in
this setting. In fact, in high dimensions the optimal Korobov lattice rules constructed
in the classical way (using Pα as the measure) may lead to error bounds that are
worse, or much worse, than those for the Monte Carlo algorithm. The possible poor
quality of Pα as a criterion was already pointed out in [6]. Generalizations of Pα were
studied in [8].

In many applications the importance of successive variables decreases (see [27]
for examples in finance, where it was shown that the sensitivity indices of successive
variables decrease). It is also common that the lower-order “interactions” among
variables are more important than higher-order “interactions.” Such properties of
functions often lead to small effective dimension in truncation or in superposition
sense (see [1, 16, 26]). The problem of why high-dimensional problems in finance are
often of low effective dimension was investigated in [28]. Intuitively, functions of small
effective dimension might be easier to integrate by QMC methods.

To quantify the different importance of variables, Sloan and Woźniakowski [22, 23]
introduced weighted spaces, where a sequence of weights is introduced to characterize
the relative importance of successive variables, with the products of the weights for
a group of variables relating to the importance of that group. They proved noncon-
structively that there exists a lattice rule for which the worst-case error is bounded in
d, or grows only slowly with d, provided the weights decay sufficiently rapidly. In this
setting the CBC constructions (see above) achieve the same bound, which is known
(see [23]) to be optimal.

This paper is organized as follows. In the next section, we introduce weighted
Korobov spaces. In section 3, we study the error bounds in those spaces of the QMC
algorithms based on the optimal Korobov lattice rules when n is prime. In section 4,
we generalize the results to the case of n being a product of several distinct primes. A
brief investigation on weighted Sobolev spaces of nonperiodic functions is presented
in section 5. A numerical comparison of the worst-case errors is given in section 6.
Concluding remarks are presented in the last section.

2. Weighted Korobov spaces. Let Hd be a Hilbert space of functions defined
on [0, 1)d with norm || · ||Hd

. Define the worst-case error of the algorithm Qn,d(f ; IPn)
as the worst-case error over the unit ball of Hd:

e(IPn;Hd) = sup{|Id(f) −Qn,d(f ; IPn)| : f ∈ Hd, ||f ||Hd
≤ 1}.

The worst-case error e(IPn;Hd) is a natural quality measure of an algorithm.
We now briefly describe the “weighted Korobov spaces” introduced in [23]. They

are (weighted) L2 versions of the classical Korobov spaces.
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Let Z = {. . . ,−1, 0, 1, . . .} be the set of integers and let Zd be the Cartesian
product of d copies of Z. We define a weighted Korobov space H(Kd,α,γ) with the
following reproducing kernel:

Kd,α,γ(x,y) =

d∏
j=1

(
1 + γj

∑
h∈Z

′ e
2πih(xj−yj)

|h|α
)
, α > 1, i =

√−1,(3)

where γ := {γj} is a sequence of positive numbers, which quantify the relative impor-
tance of successive variables. These function spaces are spaces of periodic functions
with absolutely convergent Fourier series. The smoothness parameter α > 1 charac-
terizes the rate of decay of the Fourier coefficients. If γj = 1 for all j, then the space
H(Kd,α,γ) is the L2 version of the classical (unweighted) Korobov space. The space
H(Kd,α,γ) is equipped with the inner product

〈f, g〉 =
∑
h∈Zd

⎡⎣ d∏
j=1

rα(γj , hj)

⎤⎦ f̂(h) ĝ(h),

where

rα(γ, h) =

{
1 if h = 0,
γ−1|h|α if h �= 0.

Note that if a weight γj is small, then a function f(x) with a norm at most 1 can
depend only weakly on the jth variable. In this sense, the weights characterize the
relative importance of variables.

For the lattice points (1) with the generating vector z, the corresponding squared
worst-case error can be expressed as (see [23])

e2n,d(z) := e2(IPn;H(Kd,α,γ)) = −1+
1

n

n−1∑
k=0

d∏
j=1

(
1 + γj

∑
h∈Z

′ exp(2πihkzj/n)

|h|α
)
.(4)

For the case where α is an even integer, it is known that

∑
h∈Z

′ e
2πihx

|h|α =
(2π)α

(−1)
α
2 +1α!

Bα(x), x ∈ [0, 1],(5)

where Bα(x) is the Bernoulli polynomial of degree α. In particular, B2(x) = x2 −x+
1/6. Thus the infinite sum in the formula of the worst-case error (4) can be computed
easily when α is even.

3. The error bounds for optimal Korobov lattice rules. Suppose initially
that n is prime. Consider the generators of Korobov form:

z1(a) := (1, a, . . . , ad−1) (modn) with a ∈ {1, 2, . . . , n− 1}.(6)

Such generators have been used in the classical unweighted Korobov spaces, as men-
tioned in the introduction. Here we use these generators in the weighted Korobov
spaces. The quality measure used is the worst-case error instead of the classical quan-
tity Pα. The algorithm to find the optimal Korobov lattice rules in the weighted
Korobov spaces is as follows.
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Algorithm 1 (for prime n). For each fixed dimension d and given weights {γj},
the optimal Korobov generator is found by minimizing the squared worst-case error

e2n,d(z1(a)) = −1 +
1

n

n−1∑
k=0

d∏
j=1

(
1 + γj

∑
h∈Z

′ exp
(
2πikhaj−1/n

)
|h|α

)

with respect to a ∈ {1, 2, . . . , n− 1}, where z1(a) is a vector in Korobov form (6).
We emphasize that the optimal Korobov generator depends on the weights γj .

The number of operations needed to find the optimal Korobov lattice rule for even α
and a single dimension d is O(dn2).

Let a∗ be a minimizer of e2n,d(z1(a)). To see how small en,d(z1(a∗)) might be, we
define

Mn,d(α) :=
1

n− 1

n−1∑
a=1

e2n,d (z1(a)) ,(7)

the average of the squared worst-case error over all lattice rules of the Korobov form
(6). We have the following results.

Theorem 1. Suppose n is a prime number and Mn,d(α) is defined by (7); then

Mn,d(α) ≤ d

n− 1
exp

⎛⎝2ζ(α)
d∑
j=1

γj

⎞⎠ ,
where ζ is the Riemann zeta function, ζ(α) =

∑∞
h=1 h

−α (for α > 1). Hence, the op-
timal Korobov generator z1(a∗) = (1, a∗, . . . , ad−1

∗ ) (modn) obtained from Algorithm 1
satisfies

e2n,d(z1(a∗)) ≤ d

n− 1
exp

⎛⎝2ζ(α)
d∑
j=1

γj

⎞⎠ .(8)

For the proof it is convenient to make use of the following two lemmas. The
first lemma gives an equivalent expression for the worst-case error en,d(z). Similar
expressions appeared in [19, 23].

Lemma 2. For the rank-1 lattice points (1), the squared worst-case error in the
weighted Korobov spaces H(Kd,α,γ) can be written as

e2n,d(z) =
∑
h∈Zd

′ δn(h · z)∏d
j=1 rα(γj , hj)

,

where

δn(m) =

{
1 if m ≡ 0 (modn),
0 if m �≡ 0 (modn).

It is clear that if γj = 1 for all j, then e2n,d(z) = Pα. Thus the worst-case error is
a natural generalization of the classical quality measure Pα.

The next lemma is well known in number theory (see [5]). It is significant when n
is much larger than d (which is usually true in numerical integration) and is important
for establishing the error bounds.
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Lemma 3. Suppose that n is prime. Let g(x) := h1 + h2x + · · · + hdx
d−1 =

h · (1, x, . . . , xd−1) be a polynomial with integer coefficients h1, . . . , hd. Let An(h) be
the number of integers x with 0 ≤ x ≤ n − 1 satisfying g(x) ≡ 0 (modn). Let D be
the greatest common divisor of h1, . . . , hd. Then

An(h)

{
= n if D ≡ 0 (modn),
≤ (d− 1) if D �≡ 0 (modn).

Proof of Theorem 1. From Lemma 2 and the definition of Mn,d(α), we have

Mn,d(α) =
1

n− 1

n−1∑
a=1

∑
h∈Zd

′ δn(h · z1(a))∏d
j=1 rα(γj , hj)

=
1

n− 1

∑
h∈Zd

′
d∏
j=1

[rα(γj , hj)]
−1

n−1∑
a=1

δn
(
h · (1, a, . . . , ad−1)

)
=: S1 + S2,

where in the last step the sum over h is split into two sums S1 and S2, with S1 being
the sum over all those h such that at least one component of h is not a multiple of n,
and S2 being the sum over all those nonzero h such that each component is a multiple
of n.

For the first sum S1, since at least one of the components of h is not a multiple
of n, and since n is prime, we have gcd(h1, . . . , hd) �≡ 0 (modn). From Lemma 3, it
follows that

n−1∑
a=1

δn
(
h · (1, a, . . . , ad−1)

) ≤ n−1∑
a=0

δn
(
h · (1, a, . . . , ad−1)

)
= An(h) ≤ d− 1,

where An(h) is defined in Lemma 3. Thus we have

S1 ≤ d− 1

n− 1

∑
h∈Zd

′
d∏
j=1

[rα(γj , hj)]
−1

<
d− 1

n− 1

d∏
j=1

(
1 + γj

∑
h∈Z

′ |h|−α
)

=
d− 1

n− 1

d∏
j=1

(1 + 2ζ(α)γj)

=
d− 1

n− 1
exp

⎛⎝ d∑
j=1

log(1 + 2ζ(α)γj)

⎞⎠
≤ d− 1

n− 1
exp

⎛⎝2ζ(α)
d∑
j=1

γj

⎞⎠ .
For the second sum S2, since each component of the corresponding h is a multiple

of n, i.e., h = (nm1, . . . , nmd) for some nonzero integer vector m = (m1, . . . ,md) ∈
Zd, we have for arbitrary a = 1, . . . , n− 1 that

δn
(
h · (1, a, . . . , ad−1)

)
= δn

(
nm · (1, a, . . . , ad−1)

)
= 1.
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Therefore,

S2 =
1

n− 1

∑
m∈Zd

′
d∏
j=1

[rα(γj , nmj)]
−1

n−1∑
a=1

δn
(
nm · (1, a, . . . , ad−1)

)
=
∑

m∈Zd

′
d∏
j=1

[rα(γj , nmj)]
−1

=

d∏
j=1

(
1 + γj

∑
m∈Z

′ n−α|m|−α
)

− 1

=

d∏
j=1

(
1 +

2ζ(α)γj
nα

)
− 1

≤ 1

nα

d∏
j=1

(1 + 2ζ(α)γj)

≤ 1

nα
exp

⎛⎝2ζ(α)

d∑
j=1

γj

⎞⎠
<

1

n− 1
exp

⎛⎝2ζ(α)
d∑
j=1

γj

⎞⎠ .
Finally, we obtain

Mn,d(α) = S1 + S2 ≤ d

n− 1
exp

⎛⎝2ζ(α)

d∑
j=1

γj

⎞⎠ .
This completes the proof of the first part.

The second assertion is obvious: the squared worst-case error corresponding to
the optimal Korobov generator z1(a∗) is no larger than the average Mn,d(α); thus the
bound (8) is satisfied.

Note that the bound (8) is significant only when n is much larger than d (which
is usually the case in numerical integration). If γj = 1 for all j as in the classical
case, the upper bound (8) depends on d exponentially, whereas if

∑∞
j=1 γj <∞, then

it depends only linearly on d. The factor of d is not present in the error bound for
the global optimal rank-1 lattice rule in weighted Korobov spaces (see [23]). The
convergence order shown in Theorem 1 is only O(n−1/2) for fixed d, the same as that
of the Monte Carlo algorithm. A higher convergence order can be proved if the weights
decay sufficiently fast. In the optimal case, the convergence order can be O(n−α/2+δ)
(for any δ > 0), with the implied constant depending at worst polynomially on d.

Before we state and prove the next theorem, we recall Jensen’s inequality:∑
k

Ak ≤
(∑

Aβk

)1/β

for 0 < β ≤ 1,

where Ak are nonnegative numbers.
Theorem 4. Let n be a prime and z1(a∗) be the optimal Korobov generator found

by Algorithm 1.
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(i) For arbitrary τ ∈ [1, α), we have

en,d(z1(a∗)) ≤ Cd(α, τ)

(
d

n− 1

)τ/2
,(9)

where

Cd(α, τ) = exp

⎛⎝τζ(α/τ) d∑
j=1

γ
1/τ
j

⎞⎠ .(10)

(ii) Suppose the weight sequence {γj} satisfies
∑∞
j=1 γj <∞. Let τ0 be defined by

τ0 := sup

⎧⎨⎩τ :

∞∑
j=1

γ
1/τ
j <∞

⎫⎬⎭ .
Then for any τ ∈ [1,min(τ0, α)) (or if τ0 = 1, put τ = 1), we have

Cd(α, τ) ≤ C∞(α, τ) := lim
d→∞

Cd(α, τ) <∞;

i.e., Cd(α, τ) is uniformly bounded in d and the bound (9) is polynomial in dimension
d.

(iii) Suppose that

B∗ := lim sup
d→∞

∑d
j=1 γj

log d
<∞.

Then for any δ > 0, there exists a constant Cδ independent of d and n, such that

en,d(z1(a∗)) ≤ Cδ d
1/2+ζ(α)(B∗+δ)(n− 1)−1/2.

Proof. We introduce temporarily an alternative notation en,d(z, α, γ) for the
worst-case error en,d(z) to stress its dependence on the parameter α and the weight
sequence {γj}. According to Lemma 2, we have

e2n,d(z, α, γ) =
∑
h∈Zd

′ δn(h · z)∏d
j=1 rα(γj , hj)

=
∑

h·z≡0 (modn)

′
d∏
j=1

[rα(γj , hj)]
−1.

By applying the Jensen inequality to the sum on the right-hand side, we have

e2n,d(z, α, γ) ≤
⎛⎝ ∑

h·z≡0 (modn)

′
d∏
j=1

[rα(γj , hj)]
−β

⎞⎠1/β

=
(
e2n,d(z, αβ, γ

β)
)1/β

(11)

for 1
α < β ≤ 1, where γβ means the weight sequence with values γβj , and we use the

relation that [rα(γ, h)]β = rαβ(γ
β , h).

We see from Theorem 1, with α replaced by αβ and γj replaced by γβj , that there

exists a generator of Korobov form zβ = (1, a, . . . , ad−1) (modn) such that

e2n,d(zβ , αβ, γ
β) ≤ d

n− 1
exp

⎛⎝2ζ(αβ)

d∑
j=1

γβj

⎞⎠ .
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(Note that since 1
α < β, we have αβ > 1 and thus ζ(αβ) is finite.) Thus for this zβ ,

we have from (11)

e2n,d(zβ , α, γ) ≤
(

d

n− 1

)1/β

exp

⎛⎝ 2

β
ζ(αβ)

d∑
j=1

γβj

⎞⎠ .
Therefore, for the optimal Korobov form generator z1(a∗) we have for any 1

α < β ≤ 1
that

e2n,d(z1(a∗), α, γ) ≤
(

d

n− 1

)1/β

exp

⎛⎝ 2

β
ζ(αβ)

d∑
j=1

γβj

⎞⎠ .(12)

For any τ ∈ [1, α), putting β = 1/τ in (12), the error bound (9) follows immediately.
Now we prove (ii). Since

∑∞
j=1 γj < ∞, we have τ0 ≥ 1. If τ0 = 1, the result is

trivial. If τ0 > 1, then for any τ ∈ [1,min(τ0, α)), we have

Cd(α, τ) ≤ exp

⎛⎝τζ(α/τ) ∞∑
j=1

γ
1/τ
j

⎞⎠ := C∞(α, τ).

Clearly, C∞(α, τ) is a constant independent of d and n. It is well defined: ζ(α/τ) is

finite since τ < α, and
∑∞
j=1 γ

1/τ
j converges since τ < τ0. Thus the constant Cd(α, τ)

is uniformly bounded in d, and the bound (9) is polynomial in d.
Now we prove (iii). Since B∗ is finite, we have that for any δ > 0 there exists dδ

such that

d∑
j=1

γj ≤ (B∗ + δ) log d ∀d ≥ dδ.

Hence, from Theorem 1 we have for d ≥ dδ that

Mn,d(α) ≤ d

n− 1
exp (2ζ(α)(B∗ + δ) log d) =

1

n− 1
d1+2ζ(α)(B∗+δ).

Thus there exists a constant C2
δ such that for all d ≥ 1

Mn,d(α) ≤ C2
δ d

1+2ζ(α)(B∗+δ)(n− 1)−1.

Therefore, the optimal Korobov lattice rule satisfies

e2n,d(z1(a∗)) ≤ C2
δ d

1+2ζ(α)(B∗+δ)(n− 1)−1.

This concludes the proof.

4. Korobov lattice rules with nonprime number of points. The number
of operations to find an optimal Korobov lattice rule needed in Algorithm 1 is O(dn2).
For large n, this is expensive. The search cost can be substantially reduced if we allow
the number of points to be a nonprime number. In this section we study the cases
where the number of points n is large and is the product of distinct primes. We first
consider the case of two distinct prime numbers, then we generalize to the case of an
arbitrary number of distinct primes.
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4.1. The case of two distinct primes. Consider the case where n= pq, with p
and q being two distinct primes. The Korobov construction [13] can also be generalized
to the weighted Korobov spaces. The algorithm is as follows.

Algorithm 2 (for n = pq).
(i) Find the optimal a∗ ∈ {1, 2, . . . , p− 1} by using Algorithm 1 in section 3, but

with n replaced by p.
(ii) Let the generating vector z2(b) be of the form

(13)

z2(b) :=
(
p (1, b, . . . , bd−1) + q (1, a∗, . . . , ad−1

∗ )
)
(mod pq), b ∈ {1, 2, . . . , q − 1},

where a∗ ∈ {1, 2, . . . , p − 1} is the number obtained in step (i). Find the optimal
b∗ ∈ {1, . . . , q − 1} such that the squared worst-case error

e2pq,d(z2(b)) = −1 +
1

pq

pq−1∑
k=0

d∏
j=1

(
1 + γj

∑
h∈Z

′ exp[2πihk(pbj−1 + qaj−1
∗ )/(pq)]

|h|α
)

is minimized with respect to b. We obtain the optimal Korobov generator z2(b∗).
In order to study the worst-case error corresponding to the optimal Korobov

generator z2(b∗), we define

M̃n,d(α) :=
1

q − 1

q−1∑
b=1

e2n,d (z2(b)) ,(14)

which is the average (over all b) of the squared worst-case error of the lattice rules
with the generators of the form (13). We have the following bound.

Theorem 5. Suppose n= pq, with p and q being two distinct primes. Let M̃n,d(α)
be defined by (14); then

M̃n,d(α) ≤ d2

(p− 1)(q − 1)
exp

⎛⎝2ζ(α)
d∑
j=1

γj

⎞⎠ .
The squared worst-case error e2n,d(z2(b∗)) corresponding to the optimal Korobov gen-
erator z2(b∗) satisfies the same upper bound.

Proof. From Lemma 2 we have

e2n,d(z2(b)) =
∑
h∈Zd

′ δpq(h · z2(b))∏d
j=1 rα(γj , hj)

.(15)

Note that for integers n1 and n2, if gcd(p, q) = 1 (which is certainly satisfied if p
and q are distinct prime numbers), then n1p + n2q ≡ 0 (mod pq) is equivalent to
n1 ≡ 0 (mod q) and n2 ≡ 0 (mod p). Thus

δpq(h · z2(b)) = δpq
(
p h · (1, b, . . . , bd−1) + q h · (1, a∗, . . . , ad−1

∗ )
)

= δp
(
h · (1, a∗, . . . , ad−1

∗ )
)
δq
(
h · (1, b, . . . , bd−1)

)
.

Based on this equality, from (14) and (15) we have

M̃n,d(α) =
1

q − 1

q−1∑
b=1

∑
h∈Zd

′ δn(h · z2(b))∏d
j=1 rα(γj , hj)
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=
1

q − 1

∑
h∈Zd

′ δp
(
h · (1, a∗, . . . , ad−1

∗ )
)∏d

j=1 rα(γj , hj)

q−1∑
b=1

δq
(
h · (1, b, . . . , bd−1)

)
=: R1 +R2,

where in the last step the sum over h is split into R1 and R2, with R1 being the sum
over all those h ∈ Zd such that at least one component of h is not a multiple of q,
and R2 being the sum over all those nonzero h ∈ Zd such that each component is a
multiple of q.

Consider the first sum R1. Since q is a prime number, according to Lemma 3 we
have

q−1∑
b=1

δq
(
h · (1, b, . . . , bd−1)

) ≤ Aq(h) ≤ d− 1.

Thus

R1 ≤ d− 1

q − 1

∑
h∈Zd

′ δp
(
h · (1, a∗, . . . , ad−1

∗ )
)∏d

j=1 rα(γj , hj)

=
d− 1

q − 1
e2p,d(z1(a∗)),

where z1(a∗) = (1, a∗, . . . , ad−1
∗ ) (mod p) is the optimal generator found in step (i) of

Algorithm 2.
For the second sum R2, each component of the corresponding h is a multiple of

q; i.e., h = (qm1, . . . , qmd) for some nonzero integer vector m = (m1, . . . ,md) ∈ Zd.
So for arbitrary b = 1, . . . , q − 1, we have

δq
(
h · (1, b, . . . , bd−1)

)
= 1.

Thus

R2 =
∑

m∈Zd

′ δp
(
m · (1, a∗, . . . , ad−1

∗ )
)∏d

j=1 rα(γj , qmj)

≤ 1

qα

∑
m∈Zd

′ δp
(
m · (1, a∗, . . . , ad−1

∗ )
)∏d

j=1 rα(γj ,mj)

≤ 1

q − 1
e2p,d(z1(a∗)).

Finally, we have

M̃n,d(α) = R1 +R2 ≤ d

q − 1
e2p,d(z1(a∗)),(16)

and therefore,

e2n,d(z2(b∗)) ≤ d

q − 1
e2p,d(z1(a∗)).(17)

Since z1(a∗) is the optimal Korobov generator found in step (i) of Algorithm 2 with
the number of points p (which is a prime), from Theorem 1 it follows that

e2p,d(z1(a∗)) ≤ d

(p− 1)
exp

⎛⎝2ζ(α)

d∑
j=1

γj

⎞⎠ .



KOROBOV LATTICE RULES 1771

Combining this inequality with (16) and (17), the results follow immediately.
From (17) one can see that there is a guarantee that epq,d(z2(b∗)) is less than

ep,d(z1(a∗)) only if q > d+ 1.
Remark 1. From the nature of the proof, the relations (16) and (17) can be

generalized as follows: Let p be an integer and q be a prime. If gcd(p, q) = 1,
then for an arbitrary vector z = (z1, . . . , zd) with zj ∈ {1, . . . , p − 1}, there exists
b ∈ {1, . . . , q − 1} such that

e2pq,d

((
p
(
1, b, . . . , b

d−1
)

+ qz
)

(mod pq)
)
≤ d

q − 1
e2p,d(z).

This relation will be useful in the next subsection.
Based on Theorem 5, similar error bounds to those in Theorem 4 can be proved

for the optimal Korobov lattice rules constructed by Algorithm 2.
Theorem 6. Let n = pq, with p and q being two distinct primes, and let z2(b∗)

be the optimal Korobov generator found by Algorithm 2.
(i) For arbitrary τ ∈ [1, α), we have

en,d(z2(b∗)) ≤ Cd(α, τ)d
1+τ/2(p− 1)−τ/2(q − 1)−1/2,(18)

where Cd(α, τ) is defined in (10). The quantity Cd(α, τ) is uniformly bounded in d
under the same conditions as in Theorem 4(ii).

(ii) Let B∗ be the same as in Theorem 4(iii). Then the optimal Korobov generator
z2(b∗) satisfies

en,d(z2(b∗)) ≤ Cδ d
1+ζ(α)(B∗+δ)(p− 1)−1/2(q − 1)−1/2 ∀δ > 0,

where Cδ is a constant independent of d and n.
Proof. From Theorem 4(i), for any τ ∈ [1, α) we have (with n replaced by p in

(9))

ep,d(z1(a∗)) ≤ Cd(α, τ)d
τ/2(p− 1)−τ/2,(19)

where the constant Cd(α, τ) is given in (10). Combining this inequality with (17), the
error bound (18) follows immediately. The conclusion (ii) can be proved by combining
Theorem 4(iii) with the relation (17).

Remark 2. From Theorem 6, for fast decaying weights the improved convergence
(or even nearly the optimal convergence) for the case of n = pq can only be achieved
by the first factor p. For the other factor q, the low convergence order O(q−1/2)
remains the same as in Theorem 5. The same happens in the CBC construction of
lattice rules [3].

4.2. The case of multiple distinct primes. Now we consider the case of
n =

∏t
j=1 pj , with p1, p2, . . . , pt being distinct primes (t ≥ 2). Algorithm 2 in the

previous subsection can be generalized as follows.
Algorithm 3 (for n =

∏t
j=1 pj).

(i) Find the optimal a1 ∈ {1, . . . , p1 − 1} using Algorithm 1 in section 3, but with
n replaced by p1. We obtain a vector z1(a1) := (1, a1, . . . , a

d−1
1 ) (mod p1).

(ii) For fixed � = 2, . . . , t, let p :=
∏�−1
j=1 pj and q := p�. Let the generating vector

z�(a) be of the form

z�(a) :=
(
p (1, a, . . . , ad−1) + q z�−1(a�−1)

)
(mod pq),
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where z�−1(a�−1) is the vector found in the previous step. Find the optimal a� ∈
{1, . . . , p� − 1}, such that the following squared worst-case error is minimized with
respect to a:

e2pq,d(z�(a)) = −1 +
1

pq

pq−1∑
k=0

d∏
j=1

⎛⎝1 + γj
∑
h∈Z

′
exp
(
2πihk(paj−1 + qaj−1

�−1)/(pq)
)

|h|α

⎞⎠ .
At the last step, we obtain the optimal generator zt(at). We shall still call the

resulting lattice rule an optimal Korobov lattice rule (though it is not of the original
Korobov form any more).

Theorem 7. Suppose n =
∏t
j=1 pj, with p1, . . . , pt being distinct primes (t ≥ 2).

Let zt(at) be the final optimal generator found by Algorithm 3. Then

e2n,d(zt(at)) ≤
dt∏t

j=1(pj − 1)
exp

⎛⎝2ζ(α)

d∑
j=1

γj

⎞⎠ .
Proof. Let a1, a2, . . . , at be the integers found in successive steps of Algorithm 3

and let z1(a1), z2(a2), . . . , zt(at) be the corresponding vectors. For any fixed � with

2 ≤ � ≤ t, let p =
∏�−1
j=1 pj and q = p�. Since p1, . . . , p� are distinct primes, we

have gcd(p, q) = 1 and q is prime. Similar arguments as those presented in Theo-
rem 5, which led to relation (17), are applicable here (see Remark 1 in the previous
subsection). Thus we have a recursive relation

e2pq,d(z�(a�)) ≤
d

q − 1
e2p,d(z�−1(a�−1)), � = 2, . . . , t.

Using this recursive relation, we have

e2p1···pt,d(zt(at)) ≤
dt−1∏t

j=2(pj − 1)
e2p1,d(z1(a1))

≤ dt∏t
j=1(pj − 1)

exp

⎛⎝2ζ(α)

d∑
j=1

γj

⎞⎠ .
In the second step we used Theorem 1.

Based on this theorem, similar error bounds to those in Theorems 4 and 6 can
be established for the optimal Korobov lattice rules constructed by Algorithm 3. For
example, for arbitrary τ ∈ [1, α), we have

en,d(zt(at)) ≤ Cd(α, τ) d
t−1+τ/2(p1 − 1)−τ/2

t∏
j=2

(pj − 1)−1/2,(20)

where Cd(α, τ) is given in (10), which is uniformly bounded in d under the same
conditions as Theorem 4(ii).

The advantage of Algorithm 3 over Algorithm 1 is that the construction cost of
Algorithm 3 is much cheaper (for approximately the same n). Indeed, in dimension
d the total number of operations needed to find the final optimal generator zt(at) for
even α by Algorithm 3 is

O
(
d(p2

1 + p1p
2
2 + p1 · · · pt−1p

2
t )
)
.
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By choosing

pt−1 ≈ p2
t , pt−2 ≈ p2

t−1 ≈ p4
t , . . . , p1 ≈ p2

2 ≈ p2t−1

t ,

the number of operations needed to find the final generator is O(dn1+(2t−1)−1

). For
example, for t = 2 (corresponding to Algorithm 2) or t = 3, the number of operations
needed is O(dn4/3) or O(dn8/7), respectively. Note that even one evaluation of the
worst-case error en,d(z) requires O(dn) operations. Thus the number of operations
needed in Algorithms 2 or 3 is much smaller than that in Algorithm 1 (for prime n),
for which the number of operations is O(dn2).

In general, the larger the value of t, the cheaper the construction. However, there
is a trade-off—for larger values of t the convergence order is worse, and the dependence
on the dimension is stronger, which implies that the quality of the resulting lattice
rules might be worse. For example, by choosing p1, . . . , pt as above, if α = 2 and τ0 ≥
2, then from (20) the convergence order is approximately O

(
n−(2t+2t−1−1)/(2t+1−2)

)
,

with the implied constant depending at worst polynomially on d. For a large value t, it
is approximately O(n−3/4). For t = 2 or t = 3, the convergence order is approximately
O(n−5/6) or O(n−11/14), respectively. In general, if the required number of points n
is relatively small, one may use Algorithm 1; if n is very large, then one may use
Algorithm 2 or 3. It is not recommended to use Algorithm 2 or 3 if n is relatively
small and d is large.

Remark 3. The theoretical bounds on the worst-case errors for Korobov lattice
rules in sections 3 and 4 grow polynomially with the dimension d even for rapidly
decaying weights, so the theoretical properties of such lattice rules are worse than those
of the CBC lattice rules, for which the corresponding errors can be bounded uniformly
in d for fast decaying weights [14]. However, the bounds are established by “averaging
arguments” and are in general quite conservative. The numerical comparison of the
worst-case errors in section 6 suggests that the true dependence of the worst-case error
of the optimal Korobov lattice rules on the dimension is almost the same as that of
the CBC lattice rules.

5. Weighted Sobolev spaces. In this section, we briefly study multivariate
integration in weighted Sobolev spaces of nonperiodic functions using shifted Korobov
lattice rules. We use a similar technique to that in [23]. However, we consider a more
general class of weighted Sobolev spaces H(Ksob

d,γ ) with the following reproducing
kernels (see [7, 24]):

Ksob
d,γ (x,y) =

d∏
j=1

[1 + γjη(xj , yj)],

where

η(x, y) =
1

2
B2({x− y}) + (x− 1/2)(y − 1/2) + µ(x) + µ(y) +M.

Here B2(x) is the Bernoulli polynomial of degree 2, µ(x) is a function with bounded

derivative in [0, 1) such that
∫ 1

0
µ(x)dx = 0, and the constantM is equal to

∫ 1

0
(µ′(x))2dx.

Several common choices of µ(x) are

(A) µ(x) =
1

6
− x2

2
; (B) µ(x) = −1

2
B2({x− 1/2}); (C) µ(x) = 0.
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For example, for the first choice of µ(x) the kernel is

Ksob
d,γ (x,y) =

d∏
j=1

[1 + γj min(1 − xj , 1 − yj)].

The tractability of multivariate integration in the corresponding Hilbert space is stud-
ied in a nonconstructive way in [22], and in constructive ways in [10, 20, 25]. For the
third choice of µ(x) the reproducing kernel is

Ksob
d,γ (x,y) =

d∏
j=1

[
1 + γj

(
1

2
B2({x− y}) + (x− 1/2)(y − 1/2)

)]
,

which has been studied in [4, 24]. In this third case there is a good property for the
functions in the corresponding Hilbert space: the Hilbert space decomposition of a
function coincides with the ANOVA (analysis of variance) decomposition [4].

The shift-invariant kernel Kshift
d,γ (x,y) associated with the kernel Ksob

d,γ (x,y) is

Kshift
d,γ (x,y) :=

∫
[0,1)d

Ksob
d,γ ({x + ∆}, {y + ∆})d∆

=
d∏
j=1

[1 + γj(B2({x− y}) +M)]

=

d∏
j=1

(1 +Mγj)

d∏
j=1

[1 + 2π2γ̂jB2({x− y})]

with

γ̂j =
γj

2π2(1 +Mγj)
.(21)

Different choices of the function µ(x) correspond to similar shift-invariant kernels; only
the constant M and the weights γ̂j are different. Note that the Bernoulli polynomial
of degree 2 can be expressed as (see (5))

B2(x) =
1

2π2

∑
h∈Z

′ e
2πihx

h2
, x ∈ [0, 1).

Therefore, apart from the factor
∏d
j=1(1 + Mγj), the kernel Kshift

d,γ (x,y) is just the
Korobov reproducing kernel K

d,2,̂γ
(x,y) in (3) with α = 2 and the weight sequence

γ̂ := {γ̂j}, i.e.,

Kshift
d,γ (x,y) =

d∏
j=1

(1 +Mγj) Kd,2,̂γ
(x,y).

It is shown in [8, 11] that for a point set IPn = {x0,x1, . . . ,xn−1} ⊂ [0, 1)d,∫
[0,1)d

e2(IPn + ∆;H(Ksob
d,γ ))d∆ = e2(IPn;H(Kshift

d,γ ))

=
d∏
j=1

(1 +Mγj) e
2(IPn;H(K

d,2,̂γ
)),
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where IPn+∆ denotes the shifted point set {{x0 +∆}, . . . , {xn−1 +∆}}. Clearly, the
square of the initial integration error in the space H(Ksob

d,γ ) is

e2(0;H(Ksob
d,γ )) :=

d∏
j=1

(1 +Mγj).

Thus there exists a shift ∆ ∈ [0, 1)d such that

e(IPn + ∆;H(Ksob
d,γ )) ≤ e(0;H(Ksob

d,γ )) e(IPn;H(K
d,2,̂γ

)).

Therefore, in order to reduce the worst-case error in the weighted Sobolev space
H(Ksob

d,γ ) by a factor of ε from its initial error, it is sufficient to reduce the worst-case
error in the weighted Korobov space H(K

d,2,̂γ
) to ε, where the weights γ̂j are given

by (21). The error bounds in the space H(K
d,2,̂γ

) have been studied in the previous

sections (corresponding to α = 2 and the weights γ̂j). Thus similar error bounds for
randomly shifted optimal Korobov lattice rules can be established in weighted Sobolev
spaces. We only state the case for prime n and omit the proof.

Theorem 8. Suppose n is a prime. Let IPn be the lattice point set corresponding
to the optimal Korobov lattice rule found by Algorithm 1 (with γj replaced by γ̂j).

(i) There exists a shift ∆ ∈ [0, 1)d such that

e2(IPn + ∆;H(Ksob
d,γ )) ≤ d

n− 1
exp

⎛⎝1

6

d∑
j=1

γj

⎞⎠ e(0;H(Ksob
d,γ )).

(ii) There exists a shift ∆ ∈ [0, 1)d such that for arbitrary τ ∈ [1, 2)

e(IPn + ∆;H(Ksob
d,γ )) ≤ C ′

d(τ)

(
d

n− 1

)τ/2
e(0;H(Ksob

d,γ )),

where

C ′
d(τ) = exp

⎛⎝τζ(2/τ)√
2π

d∑
j=1

γ
1/τ
j

⎞⎠ .
(iii) Suppose that the weights γj satisfy

∑∞
j=1 γj < ∞. Let τ0 be the same as in

Theorem 4. Then for any τ ∈ [1,min(τ0, 2)) (or if τ0 = 1, then put τ = 1), we have

C ′
d(τ) ≤ C ′

∞(τ) := lim
d→∞

C ′
d(τ) <∞;

i.e., C ′
d(τ) is uniformly bounded in d.

(iv) Let B∗ be the same as in Theorem 4. Then there exists a shift ∆ ∈ [0, 1)d

such that the shifted optimal Korobov lattice point set IPn + ∆ satisfies

e(IPn + ∆;H(Ksob
d,γ )) ≤ Cδ

(n− 1)1/2
d

1
2+ 1

12 (B∗+2π2δ)e(0;H(Ksob
d,γ ))

for any δ > 0, where Cδ is a constant independent of d and n.
Note that it is not necessary to determine the optimal “shift” for practical use.

Instead, we may choose it randomly [2, 21], since for fixed IPn, the family of QMC
algorithms with points {IPn + ∆} (where ∆ is uniformly distributed on ∈ [0, 1]d) is
an unbiased family. This approach allows a probabilistic error estimation.
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6. Numerical comparisons of the worst-case errors. We perform a com-
parison of the worst-case errors in weighted Korobov spaces. Two kinds of lattice rules
are considered: the optimal Korobov lattice rules and the CBC lattice rules. The root
mean square worst-case errors over random points and the root mean square worst-
case errors over all lattice rules are also included as benchmarks. We are mainly
interested in the effect of the dimension and the convergence order. We focus our
attention only on the case where α = 2 and n is prime. The mean square worst-case
error averaged over random points is defined and calculated as

(Eav
n,d)

2 :=

∫
[0,1)nd

e2({xk};H(Kd,α,γ))dx0 · · · dxn−1 =
1

n

⎛⎝ d∏
j=1

(1 + 2ζ(α)γj) − 1

⎞⎠ .
For prime n, the mean square worst-case error over all rank-1 lattice rules is (see [23])

M
(LR)
n,d (α) :=

1

(n− 1)d

n−1∑
z1=1

· · ·
n−1∑
zd=1

e2n,d((z1, . . . , zd))

= −1 +
1

n

d∏
j=1

(1 + 2ζ(α)γj) + (1 − n−1)

d∏
j=1

(
1 − 2γjζ(α)(1 − n1−α)

n− 1

)
.

We consider weights of the form

γj = aθj , j = 1, . . . , d,

where a and θ are parameters. We intend to use a to mainly characterize the rela-
tive importance of different orders of “interaction” and use θ to reflect the relative
importance of successive variables. We consider the following three choices:

(A) a = 1, θ = 1; (B) a = 0.098, θ = 0.98; (C) a = 0.25, θ = 0.75.

The first case corresponds to the classical unweighted case. The latter two choices are
found to be “suitable” for some problems in finance (see [27]).

Computational results are given in Tables 1–3 in the appendix. The rate of
convergence of the worst-case error (i.e., the value r in an expression of the form
O(n−r) for convergence, estimated from linear regression on the empirical data) is also
given. Note that the root mean square worst-case error over random points converges
as O(n−1/2). The root mean square worst-case error over all rank-1 lattice rules has
convergence O(n−1) for d= 1 and O(n−1/2) for d> 1. These serve as benchmarks.

Table 1, for the unweighted case (A), draws attention to the importance of in-
corporating weights into our function spaces: in this unweighted case the worst-case
errors for both the Korobov and CBC lattice rules grow exponentially in d. This is, of
course, expected from the known intractability of the problem in this case (see [23]).
For large d, neither method is significantly better than the two root mean square
values (which are essentially the same). For all values of d, there is little difference
between the two constructions. Tables 2 and 3 show a dramatic reduction in the
worst-case errors produced by decaying weights. This is especially true for the latter
case, where the rapid decay of the weights leads to essentially no change in the worst-
case errors beyond d = 32, and a high convergence is achieved by the Korobov and
CBC constructions even in high dimensions. The worst-case errors of the two kinds
of lattice rules are here smaller or much smaller than the mean values.
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7. Concluding remarks. The striking conclusion from all the numerical results
in section 6 is that the worst-case errors for the Korobov construction are always
comparable with those for CBC construction. In particular, the worst-case errors for
the Korobov construction do not seem to show the faster growth with d predicted
by the theoretical error bounds in Theorem 4. Thus there remains a gap between
theory and observation. We mentioned that the theoretical bounds are established by
averaging arguments and are in general conservative.

The Korobov construction has the advantage of speed and simplicity over the
CBC construction, in that Algorithm 1 requires a time of order only O(dn2) if n
is prime and only a single n-point lattice rule is needed. (And the time is further
reduced if n is a product of primes as in Algorithms 2 and 3). On the other hand,
the CBC algorithm is extensible in dimension, whereas the Korobov construction is
not. The existence of good rank-1 lattice rules that are extensible both in d and n is
proved in [9], but no construction is given.

The weighted Korobov spaces are characterized by the weights, which are sup-
posed for our theoretical analysis to be given. The weights have a strong influence on
the properties (e.g., effective dimensions) of the functions in the weighted spaces (see
[26, 27]). An important problem for practical application is: What weights should be
used? Some attempts have been made in [4, 27] to choose the weights to reflect the
characteristics of the functions to be integrated. In [27] it is shown that the perfor-
mance of lattice rules strongly depends on the weights, and that blind use of lattice
rules based on classical weights may lead to estimates that are worse than Monte
Carlo estimates, especially in high dimensions (it is shown in [27] that the classical
weights γj = 1 are “too large” for some typical high-dimensional problems in finance).
Thus the problem of choosing the weights must be considered hand-in-hand with the
problem addressed here, that of choosing the algorithm.

Appendix. Comparisons of the worst-case errors.

Table 1

The comparison of the worst-case errors in weighted Korobov spaces and the apparent con-
vergence order in dimensions up to 64 for the case (A) : γj = 1. (The abbreviations “Mean” and
“Mean LR” denote root mean square worst-case errors over all random points and root mean square
worst-case errors over all rank-1 lattice rules, respectively.)

n Method d = 1 d = 2 d = 4 d = 8 d = 16 d = 32 d = 64

Mean 1.14e-1 2.63e-1 1.16e00 2.14e+1 7.24e+3 8.30e+8 1.09e+19
251 Mean LR 7.23e-3 2.08e-1 1.14e00 2.14e+1 7.24e+3 8.30e+8 1.09e+19

Korobov 7.23e-3 5.10e-2 7.93e-1 2.08e+1 7.24e+3 8.30e+8 1.09e+19
CBC 7.23e-3 5.10e-2 7.75e-1 2.04e+1 7.09e+3 8.21e+8 1.09e+19
Mean 5.71e-2 1.31e-1 5.79e-1 1.07e+1 3.61e+3 4.14e+8 5.45e+18

1009 Mean LR 1.80e-3 1.04e-1 5.67e-1 1.07e+1 3.61e+3 4.14e+8 5.45e+18
Korobov 1.80e-3 1.41e-2 2.94e-1 9.98e00 3.61e+3 4.14e+8 5.45e+18
CBC 1.80e-3 1.41e-2 3.04e-1 1.01e+1 3.49e+3 4.03e+8 5.35e+18
Mean 2.87e-2 6.60e-2 2.91e-1 5.35e00 1.81e+3 2.08e+8 2.74e+18

4001 Mean LR 4.53e-4 5.20e-2 2.85e-1 5.35e00 1.81e+3 2.08e+8 2.74e+18
Korobov 4.53e-4 3.80e-3 1.06e-1 4.75e00 1.81e+3 2.08e+8 2.74e+18
CBC 4.53e-4 3.80e-3 1.07e-1 4.89e00 1.73e+3 2.03e+8 2.71e+18

r Korobov 1.00 0.94 0.73 0.53 0.50 0.50 .50
CBC 1.00 0.94 0.71 0.52 0.51 0.50 .50
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Table 2

The same as Table 1 but for the case (B) : γj = aθj with a = 0.098, θ = 0.98.

n Method d = 1 d = 2 d = 4 d = 8 d = 16 d = 32 d = 64

Mean 3.55e-2 5.37e-2 8.73e-2 1.66e-1 4.29e-1 1.83e00 1.17e+1
251 Mean LR 2.24e-3 2.00e-2 5.26e-2 1.35e-1 4.09e-1 1.82e00 1.17e+1

Korobov 2.24e-3 5.70e-3 2.21e-2 9.15e-2 3.63e-1 1.80e00 1.17e+1
CBC 2.24e-3 5.70e-3 2.10e-2 8.91e-2 3.64e-1 1.80e00 1.17e+1
Mean 1.77e-2 2.68e-2 4.36e-2 8.26e-2 2.14e-1 9.13e-1 5.84e00

1009 Mean LR 5.57e-4 9.88e-3 2.61e-2 6.71e-2 2.04e-1 9.09e-1 5.84e00
Korobov 5.57e-4 1.53e-3 6.89e-3 3.60e-2 1.71e-1 8.88e-1 5.83e00
CBC 5.57e-4 1.53e-3 6.93e-3 3.50e-2 1.68e-1 8.87e-1 5.83e00
Mean 8.89e-3 1.34e-2 2.19e-2 4.15e-2 1.08e-1 4.58e-1 2.93e00

4001 Mean LR 1.40e-4 4.95e-3 1.31e-2 3.67e-2 1.02e-1 4.56e-1 2.93e00
Korobov 1.40e-4 4.08e-4 2.38e-3 1.41e-2 7.81e-2 4.39e-1 2.92e00
CBC 1.40e-4 4.08e-4 2.21e-3 1.38e-2 7.66e-2 4.39e-1 2.92e00

r Korobov 1.00 0.95 0.80 0.68 0.55 0.51 0.50
CBC 1.00 0.95 0.81 0.67 0.56 0.51 0.50

Table 3

The same as Table 1 but for the case (C) : γj = aθj with a = 0.25, θ = 0.75.

n Method d = 1 d = 2 d = 4 d = 8 d = 16 d = 32 d = 64

Mean 4.96e-2 7.37e-2 1.10e-1 1.49e-1 1.70e-1 1.7194e-1 1.7196e-1
251 Mean LR 3.13e-3 3.40e-2 7.30e-2 1.16e-1 1.38e-1 1.4076e-1 1.4079e-1

Korobov 3.13e-3 9.10e-3 3.25e-2 7.36e-2 9.61e-2 9.9042e-2 9.9080e-2
CBC 3.13e-3 9.10e-3 3.02e-2 6.86e-2 9.08e-2 9.3658e-2 9.3687e-2
Mean 2.47e-2 3.68e-2 5.47e-2 7.45e-2 8.46e-2 8.5755e-2 8.5767e-2

1009 Mean LR 7.78e-4 1.69e-2 3.63e-2 5.80e-2 6.88e-2 7.0098e-2 7.0111e-2
Korobov 7.78e-4 2.47e-3 1.03e-2 2.77e-2 4.08e-2 4.2040e-2 4.2068e-2
CBC 7.78e-4 2.47e-3 1.02e-2 2.62e-2 3.63e-2 3.7654e-2 3.7668e-2
Mean 1.24e-2 1.85e-2 2.74e-2 3.74e-2 4.25e-2 4.3065e-2 4.3071e-2

4001 Mean LR 1.96e-4 8.45e-3 1.82e-2 2.91e-2 3.45e-2 3.5189e-2 3.5195e-2
Korobov 1.96e-4 6.62e-4 3.56e-3 1.05e-2 1.58e-2 1.6624e-2 1.6634e-2
CBC 1.96e-4 6.62e-4 3.23e-3 9.73e-3 1.45e-2 1.5063e-2 1.5070e-2

r Korobov 1.00 0.95 0.80 0.70 0.65 0.64 0.64
CBC 1.00 0.95 0.81 0.71 0.66 0.66 0.66
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Abstract. Superconvergence of order O(h1+ρ), for some ρ > 0, is established for the gradient
recovered with the polynomial preserving recovery (PPR) when the mesh is mildly structured. Con-
sequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori
error estimator.
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1. Introduction. Adaptive control based on a posteriori error estimates have
become standard in finite element methods since the pioneering work by Babuška
and Rheinboldt [2]. The field of the a posteriori error estimators attracted many
researchers and has become the focus of intensive investigations. For the literature,
the reader is referred to recent books by Ainsworth and Oden [1] and Babuška and
Strouboulis [3], a conference proceeding [8], a survey article by Bank [4], and an earlier
book by Verfürth [10].

Generally speaking, error estimators can be classified under two categories. The
residual type estimators (for example, see [5]) constitute the first category, while
recovery based error estimators (for example, see [14]) constitute the second one. In
recovery based estimators, the finite element solution (or its gradient) is postprocessed
as a first step. For example, Zienkiewicz and Zhu [15] introduced the superconvergence
patch recovery (SPR) that is used to recover a gradient from the gradient of the finite
element solution. In another strategy, Wiberg and Li [11] and Li and Wiberg [9] used
the finite element solution to build another solution. If the recovered quantity better
approximates the exact one, then it can be used in building an asymptotically exact a
posteriori error estimator (see [1] and [3] for some general discussion and literature).

In this work, we consider a posteriori error estimators that are based on gradient
recovery. As is shown in [1], if the recovered gradient superconverges to the exact
one, the corresponding a posteriori error estimator is asymptotically exact. A good
example of such estimators is the Zienkiewicz–Zhu error estimator based on the SPR-
recovered gradient (see [16]). The polynomial preserving recovery (PPR) is a new
gradient recovery technique introduced in [13]. The PPR-recovered gradient, as we
shall soon see, has superconvergence properties in mildly structured meshes. Con-
sequently, it can be used in constructing an asymptotically exact a posteriori error
estimator.
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1.1. Model problem. To fix the ideas, consider the boundary value problem⎧⎨⎩
−∇(D∇u+ bu) + cu = f in Ω,
n · (D∇u+ bu) = g on ΓN ,
u = 0 on ΓD,

(1.1)

where Ω ⊂ R
2 is a bounded domain with Lipschitz boundary ∂Ω = ΓN ∪ ΓD, the

boundary segments ΓN and ΓD are disjoint, n is the unit outward normal vector to
∂Ω, and D is a 2×2 symmetric positive definite matrix. If ΓN = ∂Ω, b = 0, and c = 0,
the compatibility condition

∫
Ω
f +

∫
∂Ω
g = 0 must be satisfied and the condition∫

Ω
u = 0 is used to ensure the uniqueness. For simplicity, Ω is assumed to be a

polygonal domain.
As usual, Wm

p (Ω) and Hm(Ω) are the classical Sobolev spaces equipped with the
norms ‖ ‖m,p,Ω, and ‖ ‖m,Ω, respectively.

The variational form of this problem is to find u ∈ V such that

B(u, v) = L(v) for all v ∈ V,(1.2)

where

V = {v ∈ H1(Ω) : v|ΓD
= 0},

B(u, v) =

∫
Ω

[(D∇u+ bu)∇v + cuv]dxdy,

and

L(v) =

∫
Ω

fvdxdy +

∫
ΓN

gvds.

If ΓD is empty, we take V = H1(Ω). We assume that the bilinear operator B is
continuous and V -elliptic, and the linear operator L is bounded. (Of course, this
requires the problem data to satisfy some conditions.) Under these assumptions, the
variational problem in (1.2) has a unique weak solution u ∈ V .

Let Th be a triangular partition of Ω, and let Nh denote the set of the mesh nodes.
The area of a mesh triangle T ∈ Th will be denoted by |T |. A mesh node z is called
an internal (boundary) mesh node if z ∈ Ω (z ∈ ∂Ω). Consider the C0 linear finite
element space Sh ⊂ H1(Ω) associated with Th and defined by

Sh = {v ∈ H1(Ω) : v ∈ P1(T ) for every triangle T,∈ Th},
where Pr(A) denotes the set of all polynomials defined on A ⊆ R

2 of total degree
≤ r. The basis functions for Sh are the standard Lagrange basis functions and Ih will
denote the Lagrange interpolation operator associated with Sh. The finite element
solution of (1.2) is uh ∈ Sh ∩ V such that

B(uh, v) = L(v) for all v ∈ Sh ∩ V.(1.3)

1.2. The SPR and PPR techniques. In general, ∇uh is inherently discontin-
uous across elements boundaries, and a postprocessing operation is needed to correct
this problem. Recovery techniques such as the SPR and the PPR can be used for
this purpose. The recovered gradient definition in both the SPR and the PPR relies
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on the following simple observation: The basis functions of Sh are the Lagrange basis
functions. Hence, every function in Sh is uniquely defined by its values at the mesh
nodes. Let {vz : z ∈ Nh} be the Lagrange basis of Sh, and let Rh denote the gradient
recovery operator associated with either the SPR or the PPR. Assuming that Rhuh
is defined at every mesh node z ∈ Nh, the recovered gradient Rhuh on Ω is defined
to be

Rhuh =
∑
z∈Nh

Rhuh(z)vz.

According to this definition, Rhuh ∈ Sh × Sh, and it remains to define Rhuh at the
mesh nodes. This is where the SPR and the PPR are different.

Remark 1.1. The definition of the SPR- and the PPR-recovered gradients at
mesh nodes involves best fitting operations. In this paper, the best fitting is carried
out in a discrete least-squares sense.

The definition of the SPR-recovered gradient at z ∈ Nh depends on the location
of z.

If z ∈ Ω, let Kz denote the patch consisting of the triangles attached to z as
shown in Figure 1(a). Let px ∈ P1(Kz) be the linear polynomial that best fits ∂xuh
at the triangle centroids in Kz. The recovered x-derivative at z is defined to be px(z).
Similarly, we can define the recovered y-derivative at z.

If z ∈ ∂Ω is directly connected to no internal mesh nodes, the recovered gradient
at z is defined to be ∇uh(z).

If z ∈ ∂Ω is directly connected to the internal mesh nodes z1, z2, . . . , zNz , let Kzi
be the patch associated with zi. Again, Kzi consists of the mesh triangles that are
directly attached to zi. Let px,zi ∈ P1(Kzi) be the linear polynomial that best fits
∂xuh at the triangle centroids in Kzi . The recovered x-derivative at z is defined to be

1

Nz

Nz∑
i=1

px,zi(z).

Similarly, we can define the recovered y-derivative at z.
Next, we turn our attention to the definition of the PPR-recovered gradient at

z ∈ Nh. Starting with a patch Kz, let p ∈ P2(Kz) be the quadratic polynomial that
best fits uh at the mesh nodes in Kz. The PPR-recovered gradient at z is defined to
be ∇p(z). The construction of Kz is not straightforward as in the SPR. As we will
soon see, Kz must have at least six mesh nodes that are not on a conic section. This
is to guarantee the existence and the uniqueness of p. Indeed, the construction of Kz
starts by the patch Kz,0 that consists of the mesh triangles directly attached with z.
The next construction step depends on the location of z.

If z ∈ Ω and Kz,0 has at least five mesh triangles, then Kz = Kz,0 as shown in
Figure 1(a).

If z ∈ Ω and Kz,0 has three or four mesh triangles, then

Kz = Kz,0 ∪ {T ∈ Th : T ∩ Kz,0 is an edge of T}

as shown in Figure 1(b).
If z ∈ ∂Ω and Kz,0 has at least one internal mesh node, then

Kz = Kz,0 ∪ {Kẑ : ẑ ∈ Kz,0 is an internal mesh node}(1.4)
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Fig. 1. Patches used in gradient recovery at an internal mesh node z. Sampling points for the
SPR are marked with �, while those needed for the PPR are marked with •.
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z  

z
*z
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z
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z
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Fig. 2. Examples for patches used in the PPR at a boundary mesh node z.

as shown in Figure 2(a). If Kz,0 has no internal mesh nodes, replace Kz,0 in (1.4) by
a bigger patch

Kz,1 =
⋃

{Kẑ,0 : ẑ ∈ Kz,0 is a mesh node }.(1.5)

An example of this situation is depicted in Figure 2(b). Practically, Kz,1 must have
at least one internal mesh node. If this is not the case, iterate the extension process
in (1.5).

Having introduced the definitions of the SPR and the PPR, we have the following
remarks.

1. The main difference between the SPR and the PPR is that the SPR works on
∇uh while the PPR works on uh.

2. The PPR has good approximation properties as it satisfies the consistency
condition. A recovery operator Rh is said to satisfy the consistency condition if

Rh(Ihp) = ∇p for all p ∈ P2(Ω).(1.6)

If Rh satisfies (1.6), the Bramble–Hilbert lemma can be used to show that

‖∇u−RhIhu‖L∞(Ω) ≤ Ch2|u|3,∞,Ω for all u ∈W 3
∞(Ω),

where C > 0 is some constant independent of u and h (see [13] for more details). The
PPR satisfies (1.6) because the best fit polynomials over individual patches and the
original polynomial are typically the same. On the other hand, the SPR does not
satisfy the consistency condition unless Th has some special structure.

3. Basically, the PPR can be viewed as a dynamic way to generate difference
formulas for first order partial derivatives. The generated formulas can recover the
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exact derivatives of quadratic polynomials. Babuška and Strouboulis [3] proposed a
technique to generate this kind of difference formulas a priori (see Example 4.8∗.4 in
[3]), but this technique is not suitable for real time computations on real meshes.

4. The idea of best fitting the nodal values of uh by a quadratic polynomial
is well known in engineering applications. For example, Wiberg and Li [11] and
Li and Wiberg [9] used this idea in constructing a recovered solution ũh from uh.
According to their strategy, the true error ‖u−uh‖L2(T ) on T ∈ Th is estimated using
‖ũh − uh‖L2(T ). Indeed, Wiberg and Li were mainly concerned about estimating the
error and not recovering the gradient.

5. The PPR gradient recovery can be easily extended to higher order elements
and to problems in R

3. This will be the topic of a future work.

1.3. Gradient recovery and the superconvergence property. As men-
tioned previously, if the recovered gradient enjoys the superconvergence property,
then it can be used in building an asymptotically exact a posteriori error estimator.
Ainsworth and Oden [1] established a general framework that can be used in proving
the superconvergence property, if it exists. Let Rh denote the recovery operator as-
sociated with a gradient recovery technique. According to this framework, there are
three main requirements to show that Rhuh superconverges to ∇u:

1. Rh satisfies the consistency condition.
2. The recovery operator Rh is bounded in the following sense:

‖Rhv‖L2(T ) ≤ C|v|1,KT
for all T ∈ Th and for all v ∈ Sh,(1.7)

where KT is a patch of triangles containing T .
3. ∇uh enjoys superconvergence in the following sense:

‖∇(Ihu− uh)‖L2(Ω) ≤ Ch1+ρ(1.8)

for some ρ ∈ (0, 1] and some constant C > 0 that is independent of h.
If uh and Rh satisfy the above requirements, then it is possible to prove that

‖∇u−Rhuh‖L2(Ω) ≤ Ch1+ρ.(1.9)

With this result in hand, it is straightforward to prove that the a posteriori error
estimator

ηh = ‖Rhuh −∇uh‖L2(Ω)(1.10)

is asymptotically exact.
From this point on, we will concentrate on the PPR and its corresponding op-

erator, which we will denote by Gh. Our target in this paper is to show that Ghuh
superconverges to ∇u following the above framework. By construction, and as ex-
plained previously, Gh satisfies the first requirement. For the third requirement, Xu
and Zhang [12] had recently established (1.8) for a wide range of meshes that are
mildly structured in the sense of the following definition.

Definition 1.2. The triangulation Th is said to satisfy the condition (α, σ) if
there exist a partition Th,1 ∪Th,2 of Th and positive constants α and σ such that every
two adjacent triangles in Th,1 form an O(h1+α) parallelogram and∑

T∈Th,2

|T | = O(hσ).
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An O(hα+1) parallelogram is a quadrilateral in which the difference between the
lengths of any two opposite sides is O(hα+1). When α = ∞, every pair of adjacent
triangles in Th,1 form a parallelogram. When α = σ = ∞, Th is uniformly generated
by lines parallel to three fixed directions. This case was handled in [7], where u− uh
was expanded at mesh nodes, and the case in which α = 1 was handled in [6]. For
general α and σ, Xu and Zhang [12] proved the following theorem.

Theorem 1.3. Let u be the solution of (1.2), let uh ∈ Sh be the finite element
solution of (1.3), and let Ihu ∈ Sh be the linear interpolation of u. If the triangulation
Th satisfies the condition (α, σ) and u ∈ H3(Ω) ∩W 2

∞(Ω), then

‖uh − Ihu‖1,Ω ≤ h1+ρ(‖u‖3,Ω + |u|2,∞,Ω),

where ρ = min(α, 1
2 ,

σ
2 ).

Remark 1.4. The condition(α, σ) is sufficient to guarantee the superconvergence
result in (1.8), although it is not necessary, as we shall see in the numerical examples.
Nevertheless, this condition is satisfied for meshes generated by many automatic mesh
generators as described in [12].

The second requirement is somewhat easy to establish when the recovery tech-
nique works directly on the gradient as in weighted average recovery and the SPR.
However, the situation is much harder for the PPR as it works on function values.
It is not even clear how to relate Ghv to ∇v, where v ∈ Sh. Actually, the core of
this paper is devoted to showing that Gh satisfies the third requirement. Having this
result paves the way to show that Gh enjoys the superconvergence property in (1.9)
and that the error estimator ηh is asymptotically exact. At the end of the paper,
some numerical examples are provided to practically show that the PPR-recovered
gradient superconverges to the exact gradient.

2. Definition and existence of Gh. As mentioned previously, the construction
of Ghv ∈ Sh × Sh for a function v ∈ Sh is complete if (Ghv)(z) is defined for every
z ∈ Nh. Therefore, it suffices to address the definition and existence questions at the
level of mesh nodes.

Consider a mesh node z, and let Kz denote its corresponding patch. In the
patch Kz, let T1, T2, . . . , Tm denote the mesh triangles and let z0 = (x0, y0), z1 =
(x1, y1), . . . , zn = (xn, yn) denote the mesh nodes. Without loss of generality, let
z = z0. Let hz = max{‖zi − z0‖ : 1 ≤ i ≤ n}. To avoid the computational instability
associated with small hz, the computations will be carried out on the patch

ωz = Fz(Kz), where Fz : (x, y) → (x̂, ŷ) =
(x, y) − (x0, y0)

hz
.(2.1)

The patch ωz will be called the reference patch associated with z. For 0 ≤ i ≤ n,
let ẑi = (x̂i, ŷi) = F (zi) and set vi = (v ◦ F−1

z )(ẑi) = v(zi). Let pz ∈ P2(ωz) be
the quadratic polynomial that best fits the data points {(ẑi, vi) : 0 ≤ i ≤ n}. For
(x̂, ŷ) ∈ ωz, pz(x̂, ŷ) can be written in the form

pz(x̂, ŷ) = x̂T cz,

where cz is the coefficients vector
[
cz,1 cz,2 cz,3 cz,4 cz,5 cz,6

]T
and x̂ is

the monomials vector
[

1 x̂ ŷ x̂2 x̂ŷ ŷ2
]T
. Since we are using discrete least-

squares fitting, the coefficients vector cz is determined by the linear system

ATz Azcz = ATz vz,
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where

Az =

⎡⎢⎢⎢⎢⎢⎣
x̂T0
x̂T1
x̂T2
...

x̂Tn

⎤⎥⎥⎥⎥⎥⎦ , x̂i =

⎡⎢⎢⎢⎢⎢⎢⎣
1
x̂i
ŷi
x̂2
i

x̂iŷi
ŷ2
i

⎤⎥⎥⎥⎥⎥⎥⎦ for 0 ≤ i ≤ n, and vz =

⎡⎢⎢⎢⎢⎢⎣
v0
v1
v2
...
vn

⎤⎥⎥⎥⎥⎥⎦ .(2.2)

Set

Bz = ATz Az,

then, assuming the existence of B−1
z ,

cz = B−1
z ATz vz.

By definition,

Ghv(z) =
1

hz

[
∂x̂pz(0, 0) ∂ŷpz(0, 0)

]T
.

Therefore,

Ghv(z) =
1

hz

[
cz,2 cz,3

]T
=

1

hz

[
vTz AzB

−1
z e2 vTz AzB

−1
z e3

]T
,(2.3)

where e2 and e3 are the second and third columns, respectively, of the identity matrix
I6×6.

To this end, it is important to address the following question: Are there any
sufficient conditions that guarantee the existence of B−1

z ? The answer to this question
relies on the following simple proposition.

Proposition 2.1.

1. If Bz is not invertible, then there is a conic section passing through the mesh
nodes in Kz.

2. Any tangent to a branch of a hyperbola cannot intersect with the other branch.
Proof. If Bz is not invertible, then cz has infinitely many solutions. Therefore,

there are infinitely many polynomials in P2(ωz) that pass through the data points
{(ẑi, vi) : 0 ≤ i ≤ n}. Let pz,1 and pz,2 be two such polynomials, and let q =
pz,1 − pz,2. Then, q(ẑi) = 0 for 0 ≤ i ≤ n, and the conic section {(x̂, ŷ) : qz(x̂, ŷ) = 0}
passes through {ẑi : 0 ≤ i ≤ n}. Since conic sections are invariant under affine
mappings, the proof of the first part is complete. The proof of the second part is
elementary.

Definition 2.2. The patch Kz (or ωz) is said to satisfy the angle condition if
the sum of any two adjacent angles inside Kz is at most π, and is said to satisfy the
line condition if its mesh nodes are not lying on two lines.

Let n1 denote the number of mesh nodes that are directly connected to z, and set
n2 = n − n1. If z ∈ Ω, then n1 ≥ 3. Practically, a good mesh generator can detect
any node z for which n1 = 3 and remove it. So, we may assume that n1 ≥ 4. It is
obvious that for an internal mesh node z with n1 > 4, Kz automatically satisfies the
line condition. If n1 = 4, Kz may violate this condition as shown in Figure 4.

The following theorem plays the crucial part in proving the boundedness of Gh.
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Theorem 2.3. Let z be an internal mesh node with n1 ≥ 4, and let Kz be its
corresponding patch that satisfies the angle condition. In addition, let Kz satisfy the
line condition when n1 = 4. Then, Bz is invertible.

Proof. By the first part of Proposition 2.1, it suffices to show that Kz has six
distinct nodes that are not on a conic section. Since z ∈ Ω, the sum of the angles at
z is 2π. Hence, the nodes in Kz cannot lie on a circle, on a parabola, on an ellipse, or
on one branch of a hyperbola. Since Kz satisfies the line condition, the nodes cannot
be on two lines. The remaining possibility is to have the nodes distributed on two
branches of a hyperbola. Depending on n1, we can have one of the following two
cases.

Case 1: n1 = 4. In this case the triangles attached to z0 form a quadrilateral as
shown in Figure 4. Since Kz satisfies the angle condition, z0 must be the intersection
point of the quadrilateral diagonals. Hence, the nodes in Kz cannot be distributed
on two branches of a hyperbola as a line intersects with a hyperbola at no more than
two points.

Case 2: n1 > 4. Proceed by contradiction and assume that the nodes in Kz are
distributed on two branches of a hyperbola. Without loss of generality, assume that
the real axis of the hyperbola is horizontal and that z0 is on the right branch of the
hyperbola. The left branch cannot have more than two mesh nodes. If it has three
nodes as in Figure 3(a), then the sum of the angles at z2 is more than π.

If the left branch has two nodes, then Kz must have nodes z3 and z4 on the right
branch as shown in Figure 3(b). We claim that Kz cannot have any more nodes on
the right branch. If this claim is true, Kz will have n1 = 4 and this is a contradiction
as n1 > 4 by assumption. To prove the previous claim, assume that Kz has another
node z5 as in Figure 3(b). Then, the sum of the angles at node z3 is greater than π
unless the nodes z1, z3, and z5 lie on a line that is tangent to the right branch of the
hyperbola, which is impossible by the second part of Proposition 2.1.

The only remaining possibility is to have exactly one node on the left branch of
the hyperbola as in Figure 3(c). Again, by an argument similar to the one used in
previous case, this leads to a contradiction.

Corollary 2.4. Consider a boundary mesh node z, and let Kz be its correspond-
ing patch. Suppose that Kz contains another patch Kẑ corresponding to an internal
mesh node ẑ. If Kẑ satisfies the angle and the line conditions, then Bz is invertible.

3. Boundedness of Gh. Let v ∈ Sh, let Kz be the patch associated with z ∈ Nh,
and consider the mesh triangle Tk ⊂ Kz for some 1 ≤ k ≤ m. Let the vertices of Tk be
(xk,1, yk,1), (xk,2, yk,2), and (xk,3, yk,3), where the numbering is in a counterclockwise
direction. Since v ∈ P1(Tk), it is easy to verify that

∂xv(x, y) =

3∑
j=1

ak,jvk,j and ∂yv(x, y) =

3∑
j=1

bk,jvk,j for (x, y) ∈ Tk,(3.1)

where

ak,j =
1

2|Tk| (yk,j+1 − yk,j+2), bk,j =
1

2|Tk| (xk,j+2 − xk,j+1), vk,j = v(xk,j , yk,j),

and the addition in indices is mod 3. Equivalently,

∂xv(x, y) = vTk ak and ∂yv(x, y) = vTk bk for (x, y) ∈ Tk,

where ak =
[
ak,1 ak,2 ak,3

]T
, bk =

[
bk,1 bk,2 bk,3

]T
, and vk =

[
vk,1 vk,2 vk,3

]T
.
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Fig. 3. Nodes in ωz cannot be distributed on two branches of a hyperbola when ωz satisfies the
angle condition.

Let Ek be an (n+ 1) × 3 Boolean matrix defined for Tk, where

Ek(i, j) =

{
1 if the node i in Kz is the vertex j in Tk,
0 otherwise.

Then,

vk = ETk vz

and (3.1) can be simplified to the form

∂xv(x, y) = vTz Ekak and ∂yv(x, y) = vTz Ekbk for (x, y) ∈ Tk.(3.2)

Let ωz be the reference patch associated with z, and let Fz be the affine mapping
from Kz to ωz. Let T̂k = Fz(Tk), and let (x̂k,j , ŷk,j) = Fz(xk,j , yk,j) for 1 ≤ j ≤ 3. It
is easy to verify that

ak,j =
âk,j
hz

and bk,j =
b̂k,j
hz

,

where

âk,j =
1

2|T̂k|
(ŷk,j+1 − ŷk,j+2) and b̂k,j =

1

2|T̂k|
(x̂k,j+2 − x̂k,j+1).
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Let âk =
[
âk,1 âk,2 âk,3

]T
and b̂k =

[
b̂k,1 b̂k,2 b̂k,3

]T
. Then (3.2) can be

rewritten in the form

∂xv(x, y) =
vTz Ekâk
hz

and ∂yv(x, y) =
vTz Ekb̂k
hz

for (x, y) ∈ Tk.(3.3)

Let Gh
1 v and Gh

2 v stand for the recovered x- and y-derivatives, respectively.
Establishing the boundedness of Gh in the sense of (1.7) would be easy if Gh

l v(z)
can be expressed as a linear combination of the first partial derivatives of v on
the triangles of ωz for l = 1, 2. So, we will try to find a set of bounded values
αz,l,1, . . . , αz,l,m, βz,l,1, . . . , βz,l,m such that

Gh
l v(z) =

m∑
k=1

[αz,l,k(∂xv)k + βz,l,k(∂yv)k] for l = 1, 2,(3.4)

where (∂xv)k and (∂yv)k are the first partial derivatives of v in Tk. Using (2.3) and
(3.3) in (3.4), we get

vTz

m∑
k=1

[αz,l,kEkâk + βz,l,kEkb̂k] = vTz AzB
−1
z el+1 for l = 1, 2.

Setting

Mz =
[
E1â1 · · · Emâm E1b̂1 · · · Emb̂m

]
(3.5)

and

γz,l =
[
αz,l,1 · · · αz,l,m βz,l,1 · · · βz,l,m

]T
,

we get

vTzMzγz,l = vTz AzB
−1
z el+1 for l = 1, 2.

Since this is true for all v ∈ Sh,

Mzγz,l = AzB
−1
z el+1 for l = 1, 2.(3.6)

Note that the order of Mz is (n+ 1) × (2m).
Lemma 3.1. Consider z ∈ Nh. If the patch Kz corresponding to z has no

degenerate triangles and Bz is invertible, then RankMz = n and the system in (3.6)
has infinitely many solutions.

Proof. Since Kz is simply connected, then, using Euler’s theorem, (n+1)−e+m =
1, where e is the number of edges in Kz. Hence, (n + 1) − 2m = e − 3m + 1. By a
simple induction argument on m, we can show that e− 3m+1 < 0 for m ≥ 3. Hence,
the system in (3.6) is underdetermined.

To prove that RankMz = n, consider the homogeneous linear system

MT
z w = 0(3.7)

with w =
[
w0 w1 · · · wn

]T
. We can view w0, w1, . . . , wn as the nodal values

of some function w ∈ Sh at the nodes z0, z1, . . . , zn in Kz. With this in mind, the
homogeneous system in (3.7) implies that ∇w = 0 in Tk for k = 1, 2, . . . ,m. Hence,
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w is constant on Kz, as w ∈ Sh, and w0 = w1 = · · · = wn in any solution w of
(3.7). Consequently, the dimension of the null space of MT

z is 1 and RankMT
z =

RankMz = n. Moreover, the only row operation on Mz that leads to a row of zeros is
adding all the rows together. Since Gh recovers the exact gradient for any polynomial
p ∈ P2(ωz), it is easy to verify that the row sum of AzB

−1
z el+1 is 0 for l = 1, 2.

Therefore, the homogeneous system in (3.6) is consistent for l = 1, 2.
Among all the solutions of (3.6), we consider the one with the minimum length

given by

γ∗
z,l = M†

zAzB
−1
z el+1 for l = 1, 2,(3.8)

where M†
z is the pseudoinverse of Mz. For every mesh triangle T , define the patch

KT =
⋃

{Kz : z is a vertex of T}.

For any matrix K ∈ R
k1×k2 , let σ1(K) and σmin(k1,k2)(K) denote the largest and

the smallest singular values of K, respectively. Recall that σ2
l (K) = σl(K

TK) for
l = 1, 2, . . . ,min(k1, k2).

Theorem 3.2. Let 0 < C1 ≤ σ6(Az) ≤ σ1(Az) ≤ C2 and 0 < C3 ≤ σn(Mz) for
every mesh node z ∈ Nh and for some constants C1, C2, and C3 that are independent
of h. Then, there exists a constant C, independent of h, such that

‖Ghv‖L2(T ) ≤ C|v|1,KT
(3.9)

for all T ∈ Th and for all v ∈ Sh.
Proof. Consider a mesh triangle T , and let KT be the patch corresponding to T .

Let z be a vertex of T and consider any v ∈ Sh. Using (3.4) and (3.8) we get

|Gh
l v(z)| ≤ ‖γ∗

l ‖1|v|1,∞,Kz ≤ c1‖γ∗
l ‖2|v|1,∞,KT

≤ c2‖M†‖2‖A‖2‖B−1‖2|v|1,∞,KT

≤ c2C2

C3C2
1

|v|1,∞,KT

for l = 1, 2. Since Ghv ∈ P1(T ) × P1(T ),

‖Ghv‖L∞(T ) ≤ C|v|1,∞,KT
.

Hence,

‖Ghv‖L2(T ) ≤
√
|T |‖Ghv‖L∞(T ) ≤ C diam(T )|v|1,∞,KT

≤ C
diam(T )

diam(KT )
|v|1,KT

≤ C|v|1,KT
.(3.10)

The inequality in (3.10) is obtained using an inverse estimate.
It is obvious that the bounds assumed about the singular values of Az and Mz in

Theorem 3.2 depend on the mesh geometry as shown in the following theorem.
Theorem 3.3. Let Th be a triangular partition of Ω that satisfies the following

conditions.
1. There exists a finite positive integer N such that n1 ≤ N for all z ∈ Nh, and
n1 ≥ 4 if z ∈ Ω.

2. The sum of any two adjacent angles at z ∈ Nh is π if z ∈ Ω with n1 = 4, and
is at most π if z ∈ ∂Ω or if z ∈ Ω with n1 > 4.
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Fig. 4. An example for patch Kz, corresponding to an internal mesh node z, that does not
satisfy the line condition.

3. If z ∈ Ω with n1 = 4, then the sum of the two adjacent angles in Kz at one of
the mesh nodes directly connected to z is at most π − φ for some 0 < φ < π.

4. If θmin,h and θmax,h are the smallest and the largest angles in Th, respectively,
then there exist constants φ and φ < π such that

0 < φ ≤ θmin,h ≤ θmax,h ≤ φ < π.

5. Every boundary mesh node z is connected to an internal mesh node z̄ either
directly or indirectly through at most one boundary mesh node.

Then, there exist constants C1, C2, and C3, independent of h, such that

0 < C1 ≤ σ6(Az) ≤ σ1(Az) ≤ C2 and 0 < C3 ≤ σn(Mz) for all z ∈ Nh.

Remark 3.4. The third condition in Theorem 3.3 is imposed to avoid the singular
situation shown in Figure 4. Also, the fifth condition can be relaxed.

Proof. Let z ∈ Nh, and let D denote the closed unit disk centered at (0,0). Since
the reference patch ωz ⊂ D, |Bz(i, j)| ≤ (n+ 1) for 1 ≤ i, j ≤ 6. Hence,

σ1(Az) =
√
σ1(Bz) ≤

√
σ1(|Bz|) ≤

√
6(n+ 1).

By the first and the fifth conditions, it is easy to verify that n ≤ N if z ∈ Ω,
n ≤ N2 − 5N + 10 if z ∈ ∂Ω and z is directly attached to an internal node, and
n ≤ 3N − 2 if z ∈ ∂Ω and z is indirectly attached to an internal node through a third
boundary node. Hence, there exists C2 = C2(N) such that σ1(Az) ≤ C2.

To establish the existence of C1, let us first consider the internal nodes. Let ωz
be a reference patch associated with an internal mesh node z. By definition, ωz ⊂ D,
ωz has a node at (0, 0), and ωz has at least one node on ∂D. The first four conditions
imply that ωz has no degenerate triangles and that ωz satisfies the line and the angle
conditions. To show that inf {σ6(Az) : z ∈ Nh ∩ Ω} ≥ C1 > 0 for any h > 0, proceed
by contradiction and assume that there exists a sequence of reference patches {ωi}∞i=1

such that ωi has all the properties of ωz for all i ≥ 1 and σ6(Ai) → 0, where Ai is the
matrix defined for ωi as in (2.2). Without loss of generality, and by the first condition,
one may assume n and n1 are the same for any patch ωi; otherwise, we may pass to a
subsequence. For i ≥ 1, the nodes in ωi are z̃i,0 = (0, 0), z̃i,1, z̃i,2, . . . , z̃i,n. According
to n1, we have two cases.

Case 1: n1 > 4. By compactness of D, one may assume that z̃i,j → z̃j ∈ D for 0 ≤
j ≤ n; otherwise, one may pass to a subsequence. The nodes z̃0 = (0, 0), z̃1, z̃2, . . . , z̃n
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Fig. 5. The possible patterns for a patch Kz corresponding to an internal mesh node z.

can be viewed as the nodes of a patch ω whose pattern is similar to the one shown
in Figure 5(a). Using the properties of ωi, none of the triangles in ω is degenerate,
ω has at least one node on ∂D, and the sum of any two adjacent angles in ω cannot
exceed π. Hence, ω satisfies the angle and the line conditions. If A denotes the matrix
defined for ω as in (2.2), then σ6(A) = 0. Since z̃i,j → z̃j for all 0 ≤ j ≤ n, Ai → A in
any matrix norm. Hence, 0 = σ6(A) = limi→∞ σ6(Ai) = 0, which is a contradiction.

Case 2: n1 = 4. Since ωi satisfies the angle condition, it contains four nodes that
are corners of a convex quadrilateral whose diagonals intersect at z̃i,0 = (0, 0). Denote
the quadrilateral in ωi by Qi and denote the set of its diagonals by �i. Since one of
the nodes in ωi is on ∂D, it is easy to verify that Qi inscribes a circle whose radius is
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at least δ = δ(φ) for some δ > 0 and for all i ≥ 1. Consequently,

max{dist(z̃i,j , �i) : 0 ≤ j ≤ n} ≥ δ sin(φ) > 0.(3.11)

Since D is compact, assume that z̃i,j → z̃j for 0 ≤ j ≤ n. The nodes z̃0 =
(0, 0), z̃1, z̃2, . . . , z̃n can be viewed as the nodes of a patch ω similar to one of the
patterns shown in Figure 5(b)–(e). The patch ω has a quadrilateral denoted by Q,
and the diagonals of Q are denoted by �. The corners Q are the limits of the corners
in Qi. Hence, (3.11) leads to

max{dist(z̃j , �) : 0 ≤ j ≤ n} ≥ δ sin(φ),

and ω satisfies the line and the angle conditions. As in the previous case, this leads
to a contradiction.

Let us turn our attention to the boundary mesh nodes, and let Kz be the patch
corresponding to a boundary mesh node z. By construction, Kz contains, at least,
one patch Kẑ corresponding to an internal mesh node z̄. By the fifth condition, z̄ is
either connected to z directly or indirectly through a third boundary mesh node z̃.
As before, Kz is a subset of a disk centered at z and its radius is hz. Hence, and
without loss of generality, there exists a mesh node z∗ ∈ Kz̄, as shown in Figure 2,
such that

‖z − z̄‖ + ‖z̄ − z∗‖ ≥ ‖z − z∗‖ = hz.

This implies that max(‖z − z̄‖, ‖z̄ − z∗‖) ≥ hz/2. If z is directly connected to z̄ as in
Figure 2(a), then diam(Kz̄) ≥ hz. If z is indirectly connected to z̄ as in Figure 2(a),
then we have two situations depending on whether ‖z̄−z∗‖ ≥ hz/2 or ‖z− z̄‖ ≥ hz/2.
In the former situation diam(Kz̄) ≥ hz, and for the later situation consider the triangle
zz̃z̄. In this triangle the angle at z is at least φ/2 by the fourth condition, and
hence ‖z̄ − z̃‖ ≥ hz sin(φ/2)/2. If not, we can use the triangle zźz̄. Consequently,
diam(Kz̄) ≥ hz sin(φ/2).

Hence, the reference patch ωz contains a patch ω̄ that is a scaled translation of the
reference patch ωz̄ with diam(ω̄) ≥ sin(φ/2). We may write Az = [ATz,1A

T
z,2]

T , where
A1,z corresponds to the nodes in ω̄ and Az,2 corresponds to the rest of the nodes in
ωz. Hence, Bz = ATz,1Az,1 + ATz,2Az,2. Set Bz,1 = ATz,1Az,1. Since ω̄ satisfies both
the line and the angle conditions, both Bz and Bz,1 are positive definite. Moreover,
σ6(Bz) ≥ σ6(Bz,1). Hence,

σ6(Az) =
√
σ6(Bz) ≥

√
σ6(Bz,1) = σ6(Az,1).

Using the results established for internal nodes, σ6(Az) ≥ C̃1 > 0 for all z ∈ ∂Ω.
Next, we prove the second inequality about σn(Mz). Again, let z ∈ Nh, and let

Kz be its corresponding patch. By the fourth condition, none of the mesh triangles in
Kz is degenerate. Since σ6(Az) ≥ C1 > 0, Bz is invertible. Hence, and by Lemma 3.1,
RankMz = n. Since the rank of a matrix can be viewed as the number of its nonzero
singular values, σn(Mz) > 0. Using this fact and an argument similar to the one used
to establish σ6(Az) ≥ C1 > 0, one can show that σn(Mz) ≥ C3 > 0.

4. Superconvergence property of the PPR-recovered gradient. The fol-
lowing theorem establishes the superconvergence property for the PPR-recovered gra-
dient.
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Theorem 4.1. Let Th be a triangulation of Ω that satisfies the condition (α, σ)
and the assumptions in Theorem 3.3. If u ∈W 3

∞(Ω), then

‖∇u− Ghuh‖L2(Ω) ≤ Ch1+ρ‖u‖3,∞,Ω,

where ρ = min(α, 1
2 ,

σ
2 ).

Proof. Since

∇u− Ghuh = (∇u− Gh(Ihu)) + (Gh(Ihu− uh)),(4.1)

estimating (∇u−Gh(Ihu)) and Gh(Ihu−uh) establishes the proof. To estimate (∇u−
Gh(Ihu)), recall that Gh preserves polynomials in P2(Ω). Hence, and as was shown in
[13],

‖∇u− Gh(Ihu)‖L∞(Ω) ≤ Ch2|u|3,∞,Ω.(4.2)

Therefore,

‖∇u− Gh(Ihu)‖L2(Ω) ≤ Ch2
√
|Ω|‖u‖3,∞,Ω.(4.3)

To estimate Gh(Ihu−uh), Theorems 3.2 and 3.3 imply the boundedness of Gh. Thus,

‖Gh(Ihu− uh)‖L2(T ) < C1‖∇(Ihu− uh)‖L2(ωT ) for all T ∈ Th.(4.4)

Consequently,

‖Gh(Ihu− uh)‖2
L2(Ω) =

∑
T∈Th

‖Gh(Ihu− uh)‖2
L2(T )

≤
∑
T∈Th

C2
1‖∇(Ihu− uh)‖2

L2(ωT )

≤ C‖∇(Ihu− uh)‖2
L2(Ω).(4.5)

Since Th satisfies the condition (α, σ),

‖∇(Ihu− uh)‖L2(Ω) ≤ C2h
1+ρ‖u‖3,∞,Ω,(4.6)

where ρ = min(α, 1
2 ,

σ
2 ). Using (4.6) in (4.5), we have

‖Gh(Ihu− uh)‖L2(Ω) ≤ Ch1+ρ‖u‖3,∞,Ω.(4.7)

Using (4.3) and (4.7) in (4.1) completes the proof.
Remark 4.2. The conclusion of Theorem 4.1 is true if the condition (α, σ) is

replaced by any other condition that guarantees superconvergence in ∇(Ihu − uh).
But, the condition (α, σ) covers a wide range of meshes used in practice.

Consider the global a posteriori error estimator ηh defined by

ηh = ‖Ghuh −∇uh‖L2(Ω).

Corollary 4.3. If, in addition to the assumptions in Theorem 4.1,

‖∇(u− uh)‖L2(Ω) ≥ c(u)h,(4.8)

then ∣∣∣∣ ηh
‖∇(u− uh)‖L2(Ω)

− 1

∣∣∣∣ ≤ Chρ.

Proof. By Theorem 4.1, and the assumption in (4.8), we have∣∣∣∣ ηh
‖∇(u− uh)‖L2(Ω)

− 1

∣∣∣∣ ≤ ‖Ghuh −∇uh‖L2(Ω)

‖∇(u− uh)‖L2(Ω)
≤ Ch1+ρ‖u‖3,∞,Ω

c(u)h
= Chρ.



A POSTERIORI ERROR ESTIMATES BASED ON THE PPR 1795

5. Numerical results. In this section we will go over some numerical examples
that demonstrate the superconvergence property of Ghand the asymptotic exactness of
the Gh-based a posteriori error estimator. As it is known, the SPR is one of the best
gradient recovery techniques. Moreover, the computer-based theory, developed by
Babuška and Strouboulis [3], showed that the SPR-based a posteriori error estimator
is the most robust one. Hence, quality of the PPR can be measured using the SPR
as a reference.

As before, the gradient recovery operator associated with either the SPR or the
PPR is denoted by Rh. The examples considered in this section are based on the
model problem

−�u = f in Ω and u = g on ∂Ω.

In general, the quality of Rhuh deteriorates near ∂Ω. Therefore, we should study
separately the behavior of Rhuh inside Ω and near ∂Ω . To distinguish between the
regions inside Ω and the ones adjacent to ∂Ω, Nh is partitioned into Nh,1 ∪ Nh,2,
where

Nh,1 = {z ∈ Nh : dist(z, ∂Ω) ≥ H}
for some H > 0. Next, Ω is partitioned into Ω1 ∪ Ω2, where

Ω1 =
⋃

{T ∈ Th : T has all of its vertices in Nh,1}.

Let A ⊆ Ω be the union of a set of mesh triangles in Th. The Rh-based a posteriori
error estimator in A is

ηh,A = ‖Rhuh −∇uh‖L2(A).

To measure the accuracy of ηh,A, we use the effectivity index θh,A defined by

θh,A =
ηh,A

‖∇(u− uh)‖L2(A)
.

It is customary to use colorful pictures to trace the accuracy of the a posteriori error
estimator in each of the mesh triangles in A. Instead, we will trace the mean, µh,A,
and the standard deviation, σh,A, of the effectivity indices in these triangles. If the
estimator is asymptotically exact in each of the triangles in A, then µh,A → 1 and
σh,A → 0 as h→ 0. Note that

µh,A =
1

Nh,A

∑
T⊂A

θh,T

and

σ2
h,A =

1

Nh,A

∑
T⊂A

(θh,T − µh,A)2,

where Nh,A is the number of mesh triangles in A.
Example 1. In this example Ω = (0, 1)2, the solution is u = sin(πx) sin(πy), and

H is 1/8. For mesh generation we consider two cases.
In the first case, we start with an initial mesh generated by the Delaunay tri-

angulation with h = 0.1 as shown in Figure 6(a). From this figure, it is clear that
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(a) Initial Mesh 

(b) Properties of Rhuh 

(c) Properties of θ h 

Fig. 6. Example 1 (Delaunay triangulation).
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the Delaunay-generated mesh satisfies the condition (α, σ) with α close to 1 and σ
relatively large.
Moreover, this mesh satisfies the conditions in Theorem 3.3. Hence, Gh is bounded,
Theorem 1.3 is applicable, and the PPR-recovered gradient enjoys superconvergence.
In successive iterations, the new mesh is obtained from the old one by regular refine-
ment. The results are shown in Figure 6(b) and 6(c), where we can note two things.
First, although the PPR and the SPR have almost the same global behavior in Ω1, the
statistics show that the PPR is slightly better when we consider the local behavior.
Second, the global and local properties of the PPR are much better when it comes to
Ω2.

In the second case, the successive meshes are obtained by decomposing the unit
square into N×N equal squares and then dividing every square into two triangles such
that the mesh triangles are arranged in the Chevron pattern. This is done for N =
16, 32, and 64. The mesh for N = 16 is shown in Figure 7(a). Before we go over the
results for this case, note that Gh is bounded and that Theorem 1.3 is not applicable
as any pair of triangles sharing a vertical edge form a bigger triangle. As shown in
Figure 7(b), we can see that ∇(Ihu − uh) has superconvergence that enables Gh to
produce superconvergent recovered gradient as mentioned in Remark 4.2. This is not
the case with the SPR as it does not preserve polynomials of order 2. Consequently,
the behavior of the a posteriori error estimator based on the SPR is inferior to that
based on the PPR as shown in Figure 7(c). We can see that the error estimator
based on the SPR is underestimating the actual error in Ω1 and is overestimating
it in Ω2. However, the PPR error estimator is asymptotically exact in both Ω1 and
Ω2. Moreover, the statistics in Figure 7(c) show that the PPR error estimator is
asymptotically exact in each of the mesh triangles.

Example 2. In this example

Ω = (−1, 1)2 \ [1/2, 1)2.

Using a polar coordinate system at (1/2,1/2), the solution is

u = r
1
3 sin

(
2θ − π

3

)
,

where

π/2 ≤ θ ≤ 2π.

As before, H is 1/8, and we start with an initial mesh generated with the Delaunay
triangulation at h = 0.2. Since we have singularity at the re-entrant corner (1/2,1/2),
we have to refine the triangles near this point in the initial mesh so that the pollu-
tion effect is minimized. So, after getting the Delaunay triangulation we use regular
refinement for the triangles that are within 0.1 from (1/2,1/2). This will serve as our
initial mesh, which is shown in Figure 8(a). In the successive iterations, the mesh is
regularly refined. The numerical results for this example are shown in Figure 8(b)
and Figure 8(c). We should note that the mesh in this example, even after the re-
finement near the re-entrant corner, is not as good as the one in Figure 7(a). We can
see many pairs of triangles that do not form “good” quadrilaterals, i.e., σ is relatively
small. Also, because of the singularity at the re-entrant corner (1/2,1/2), we expect
both the PPR and the SPR to behave badly near this point. Of course, this affects
the convergence rates for the recovered gradients, especially in Ω1, but still the PPR
yields some what better results, even on individual mesh triangles.
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(a) Initial Mesh 

(b) Properties of Rhuh 

(c) Properties of θ h 

Fig. 7. Example 1 (Chevron mesh).
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(a) Initial Mesh 

(b) Properties of Rhuh 

(c) Properties of θ h 

Fig. 8. Example 2.
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In conclusion, under mild conditions, we have shown that Gh can detect any su-
perconvergence in ∇(Ihu−uh) and reflects it in the recovered gradient. Consequently,
the PPR error estimator is asymptotically exact, at least globally. The numerical ex-
amples indicate that the PPR is, at least, as good as the SPR both inside Ω and near
the ∂Ω.
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Abstract. We consider linear first order scalar equations of the form ρt +div(ρv)+aρ = f with
appropriate initial and boundary conditions. It is shown that approximate solutions computed using
the discontinuous Galerkin method will converge in L2[0, T ;L2(Ω)] when the coefficients v and a and
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1. Introduction.

1.1. Overview. In 1989 DiPerna and Lions [5] proved that weak solutions ρ :
[0, T ) × Ω → R of the convection equation

ρt + div(ρv) + aρ = f in Ω, ρ|t=0 = ρ0,(1.1)

are unique when the velocity field v is in certain Sobolev spaces; in particular, v need
not be continuous. While weak solutions exist under much weaker hypotheses, the
uniqueness result is subtle. They also proved the following remarkable stability result
(specialized here to L2(Ω)).

Theorem 1.1 (see DiPerna and Lions [5]). Let {ρk}∞k=0 ⊂ L∞[0, T ;L2(Ω)] be
weak solutions of

ρkt + div(ρvk) + akρk = fk in Ω

with initial data ρk(0) = ρk0. Assume that
• {vk} ⊂ L1[0, T ;H1

0 (Ω)], vk → v in L1[0, T ;L2(Ω)], and div(vk) → div(v) in
L1[0, T ;L∞(Ω)] with v ∈ L1[0, T ;H1

0 (Ω)], and
• ak → a in L1[0, T ;L∞(Ω)], fk → f in L1[0, T ;L2(Ω)], and ρk0 → ρ0 in
L2(Ω).

Then ρk → ρ in L2[0, T ;L2(Ω)], where ρ is the unique solution of (1.1).
In this paper we prove an analogue of this theorem for approximate solutions

computed using the discontinuous method.
While the original motivation of DiPerna and Lions concerned the Bolzman equa-

tion, their results provided the tools needed to establish existence of solutions for the
incompressible Navier–Stokes equations with variable density and viscosity. In model-
ing the flow of incompressible immiscible fluids the density is discontinuous, and both
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the density and viscosity, µ = µ(ρ), appear as coefficients multiplying the principle
terms of the momentum equation. To obtain existence of the coupled system the
strong convergence guaranteed by Theorem 1.1 is used in an essential fashion [14].

Similarly, to prove convergence of numerical approximations to the equations
modeling incompressible, immiscible fluids, or flows containing particles, strong con-
vergence of the approximate densities ρh will be required when the velocity fields are
also computed approximately, and this is what is addressed here. Below we show that
approximate solutions of the density equation converge strongly in L2[0, T ;L2(Ω)]
when the coefficients and data satisfy the minimal hypotheses required to obtain
existence and uniqueness of the continuous problem.

While many numerical schemes have been proposed for the solution of first order
hyperbolic equations, the discontinuous Galerkin method stands out as one of the
best schemes in practice. In his introductory text [7] Johnson states “the discontin-
uous Galerkin method performs remarkably well and we know of no (linear) finite
difference method that is better.” Another advantage is that discontinuous Galerkin
approximations of the density equation couple correctly with natural approximations
of the momentum equation so that the discrete system inherits estimates on the ki-
netic energy ρ(|v|2/2). To recover such energy estimates it is natural to multiply the
density equation by |v|2/2. Since stable approximations of the momentum equation
typically approximate v with piecewise quadratic functions, this suggests that piece-
wise quartic functions are a natural choice of discrete spaces for the discontinuous
Galerkin approximation of the balance of mass. Our results below show that the dis-
continuous Galerkin scheme will converge when piecewise polynomial approximations
of arbitrary degree in the spatial variables are used; however, for technical reasons the
degree of the piecewise polynomial temporal variation is restricted to be zero or one.

1.2. Discontinuous Galerkin method. The discontinuous Galerkin method
was introduced to simulate neutron transport, and in this context the coefficients v
and a are constant. Most of the analysis of this method concerns rates of convergence
[8, 11, 12] and requires the solution to be smooth, so is not applicable to problems
involving discontinuous solutions. One exception is the work of Lin and Zhou [13],
who consider equations in the form V.∇ρ+aρ = f, which is slightly more general than
the evolution equation considered here (put V = (1, v) and ∇ = (∂t,∇x) to recover
the evolution form). Lin and Zhou require V ∈W 1,1(Ω) and show that if the solution
is in H1/2(Ω), then piecewise constant solutions of the discontinuous Galerkin method
will converge to certain weak solutions (the definition of a weak solution in [13] is not
standard). Below we exploit the evolution structure of the equation in an essential
fashion. This allows us to avoid any smoothness assumptions on v with respect to the
time variable, v ∈ L1[0, T ;H1

0 (Ω)]. Under this assumption ρ will not be of bounded
variation and typically will not belong to the fractional Sobolev space H1/2.

Since (1.1) is a conservation law in divergence form, it is natural to consider the
substantial literature concerning numerical schemes developed for nonlinear conser-
vation laws of the form ρt+div(F (ρ)) = f . Essentially all the methods (including the
discontinuous Galerkin method) and theory developed in this context assume that F
is independent of x and t, the exception being Kruzkov’s original work [10], which
allows F to depend on x and t in a C1 fashion. In this context solutions of the conser-
vation laws are regular in the sense that they have bounded variation and frequently
stability of numerical schemes is ensured by flux limiters, which limit the variation
[3, 4, 6, 9]. The best regularity one can expect for the velocity field of immiscible
fluids is v ∈ L2[0, T ;H1

0 (Ω)] and the variation of the corresponding density will fail
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to be bounded, so any scheme that limits the variation of the discrete solution could
not converge strongly.

The level set method has also been used to solve certain hyperbolic equations [15].
If a = f = div(v) = 0, then (1.1) can be written as ρt/|∇ρ| = −v.(∇ρ/|∇ρ|), showing
that the level sets of ρ move with normal velocity −v. Frequently it is possible to
find a smooth function φ0 having the same level sets as ρ0 with ρ0 = β(φ0), where
β : R → R is a discontinuous function. Since ρ = β(φ) for all subsequent times, this
eliminates the need to deal with discontinuous functions. This approach has been
applied to problems in fluid mechanics [2].

1.3. Notation. In this paper, Ω ⊂ R
d is a bounded domain with unit outward

normal n. We consider a regular family of finite element meshes {Th}h>0 each of
which we assume triangulates Ω exactly. It is assumed that the finite elements have
uniformly bounded aspect ratio. The parameter h > 0 represents the diameter of the
largest element in Th and |K| denotes the area (two dimensions) or volume (three
dimensions) of an element K ∈ Th. Similarly, if e ⊂ K is an edge or face, then |e|
denotes the length or area of e, respectively. The discontinuous Galerkin method is
constructed using space-time elements of the form K×(tm−1, tm) with K ∈ Th, where
{tm}Mn=0 is a partition of [0, T ]. The space of polynomials of degree k on an element K
is denoted Pk(K). For simplicity we assume that for each h > 0 a uniform partition
of [0, T ] used with tm = mτ where τ = T/M is assumed to converge to zero as h tends
to zero. We denote the approximate solutions by ρh; in particular, the dependence
on τ is implicit. If a ∈ R, the positive and negative parts are denoted by a± with
a+ = max(a, 0) and a− = min(a, 0).

The traces of functions ρh play an important role in the discontinuous Galerkin
method and give rise to a lot of notation. In general, ρh denotes a discontinu-
ous piecewise polynomial approximate solution of the convection equation, and an-
notations of the form ρm, ρ−, etc., refer to various traces of ρh (i.e., the sub-
script h is omitted). We write ρm = ρh(t

m
− ) = limt↗tm ρh(t), and the trace from

above is denoted by ρm+ = limt↘tm ρh(t). The jump in ρh at tm is denoted by
[ρm] = ρm+ − ρm. Integrals of the form

∫
∂K

(ρh . . .) compute the trace of ρh from
within K: ρh|∂K(t, x) = limε↘0 ρh(t, x− εn), where n is the unit outward normal to
∂K. An orientation of each edge, e, (face in three dimensions) between two finite
elements is selected by arbitrarily selecting one of its normals, which is denoted by N
(see Figure 2.1). We write e = K+ ∩K−, where N points from K− to K+, and write
[ρe] = ρ+ − ρ−, where ρ± are the traces taken from within K±.

Standard notation is adopted for the Lebesgue spaces, Lp(Ω), and the Sobolev
spaces, Wm,p(Ω) or Hm(Ω). The dual exponent to p is denoted by p′, 1/p+1/p′ = 1.
Solutions of the evolution equation will be functions from [0, T ] into these spaces,
and we adopt the usual notion, L2[0, T ;H1(Ω)], C[0, T ;H1(Ω)], etc., to indicate the
temporal regularity of such functions. The space of C∞ test functions having compact
support in Ω is denoted by D(Ω). For vector valued quantities, such as the velocity v,
we write v ∈ L2(Ω), to indicate that each component lies in the specified space. The
space H(div; Ω) is the set of vector valued functions in L2[0, T ;L2(Ω)] with divergence
in L2[0, T ;L2(Ω)]. Strong convergence of a sequence is indicated as ρh → ρ and weak
convergence by ρh ⇀ ρ.

2. Background. In this section we recall the essential results developed by
DiPerna and Lions [5] for (1.1) and recall the discontinuous Galerkin method for
approximating solutions of (1.1). Our proof of convergence is essentially a verification
of the old adage “a stable consistent scheme is convergent.” To make this rigorous
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n

e

NK

Fig. 2.1. (a) The outward normal vector of a triangle (tetrahedra in three dimensions) is
denoted by n. (b) A normal to each edge (face in three dimensions) is arbitrarily chosen and
denoted by N .

we use Theorem 2.2, taken from [14], in a crucial fashion. This theorem states that
certain elementary relations that hold for classical solutions of (1.1) continue to hold
for weak solutions. As stated above, our convergence results require the approximate
solutions to be either piecewise constant or piecewise linear in time. This can be di-
rectly attributed to a lack of stability; in general, there are no estimates for the time
derivative of the discrete solution. Lacking bounds on the time derivative we can’t
show that natural piecewise constant approximations converge weakly to the same
limit as higher degree piecewise polynomial approximations; see Corollary 3.2.

2.1. DiPerna–Lions theory. For technical reasons DiPerna and Lions [5] con-
sidered velocity fields v which vanished on the boundary, and for this reason we always
require v(t) ∈ H1

0 (Ω). In this situation no boundary conditions are required for ρ;
otherwise, ρ would be specified on the inflow boundary, where v.n < 0. The following
definition of a weak solution of (1.1) is standard and allows us to admit the possibility
of discontinuous solutions.

Definition 2.1. Let v|∂Ω = 0; then ρ : [0, T )×Ω → R is a weak solution of (1.1)
if

−
∫ T

0

∫
Ω

ρ(ψt + v.∇ψ − aψ) =

∫
Ω

ρ0ψ(0) +

∫ T

0

∫
Ω

fψ(2.1)

for all ψ ∈ D([0, T ) × Ω).

If β : R → R is differentiable, then multiplying (1.1) by β′(ρ) and formally
rearranging the derivatives shows that β(ρ) satisfies

β(ρ)t + div(β(ρ)v) +
(
ρβ′(ρ) − β(ρ)

)
div(v) + aρβ′(ρ) = fβ′(ρ).(2.2)

The following theorem by DiPerna and Lions [5] states that weak solutions of (1.1)
will also be weak solutions of (2.2) provided each term is integrable.

Theorem 2.2. Let 1 ≤ p ≤ ∞ and suppose that

v ∈ L1[0, T,W 1,p′
0 (Ω)], a,div(v) ∈ L1[0, T ;L∞(Ω)], f ∈ L1[0, T ;Lp(Ω)].

Then for each ρ0 ∈ Lp(Ω) there exists a unique weak solution ρ ∈ L∞[0, T, Lp(Ω)] of
(1.1). This solution satisfies as follows:

• ρ ∈ C[0, T ;Lp(Ω)] if p <∞.
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• If β ∈ C1(R) satisfies β′(t) ≤ C(1 + |t|r) for C > 0, and r = p − 1 if
p < d/(d − 1), r < p − 1 if p = d/(d − 1), and r = p/d if p > d/(d − 1) (r
arbitrary if p = ∞), then (2.2) is satisfied weakly.

• If β ∈ C1(R) satisfies β′(t) ≤ C(1+ |t|r) for C > 0 and r ≤ p−1 (β arbitrary
if p = ∞), then

d

dt

∫
Ω

β(ρ) +

∫
Ω

div(v)(ρβ′(ρ) − β(ρ)) + aρβ′(ρ) =

∫
Ω

fβ′(ρ).(2.3)

Remark. The restrictions on r in the second statement of the theorem and the
Sobolev embedding theorem guarantee that the term β(ρ)v.∇ψ is integrable. Simi-
larly, the restriction r ≤ p − 1 in the third statement guarantees that each term is
integrable.

2.2. Discontinuous Galerkin method. We allow for the possibility that the
coefficients are computed only approximately on each mesh; v � vh and a � ah. Since
div(vh) may not be bounded in L1[0, T ;L∞(Ω)], care is required to construct a stable
approximation scheme. Let

Rh = {ρh ∈ L2[0, T ;L2(Ω)] | ρh|K×(tm−1,tm) ∈ Pk(K) ⊗ P�(tm−1, tm),

K ∈ Th, m = 1, 2, . . .}.
The discontinuous Galerkin method requires ρh ∈ Rh to satisfy∫

K

(
ρmψ(tm− ) − ρm−1ψ(tm−1

+ )
)

−
∫ tm

tm−1

∫
K

ρh
(
ψt + vh.∇ψ + (1/2)(div(vh) − div(v))ψ − ahψ

)
+

∫ tm

tm−1

∫
∂K

ρin(vh.n)ψ =

∫ tm

tm−1

∫
K

fψ(2.4)

for each K ∈ Th, m = 1, 2, . . . , and ψ ∈ Rh. Since functions in Rh are discontinuous
at the boundary of each space-time element, K × (tm−1, tm), we specify how the
traces are to be evaluated. In all instances traces of ρh are taken from the upwind
direction, and traces of ψ are taken from within K × (tm−1, tm). That is, ρm and
ρm−1 are the traces taken from below, ρm = lims↗tm ρh(s), ρin is the inflow trace,
ρin(x) = limε↘0 ρh(x− εvh), and the subscripts t± are used to indicate the traces of
ψ at each end of the time interval.

If (v.n) = (v.n)++(v.n)− is the decomposition of v.n|∂K into positive and negative
parts and e = K ∩K− is an edge (face in three dimensions) common to K and K−,
then the upwind term can be written as

ρin(v.n) = ρh|∂K−(v.n)− + ρh|∂K(v.n)+.

If a global orientation of e is determined by (arbitrarily) selecting one of its
normals N (see Figure 2.1), then the weak statement on each element can be summed
to give∫

Ω

ρmψ(tm− )−
m−1∑
k=0

∫
Ω

ρk[ψk]−
∫ tm

0

∫
Ω

ρh
(
ψt+vh.∇ψ+(1/2)(div(vh)−div(v))ψ−ahψ

)
−
∑
e

∫ tm

0

∫
e

(
ρ−(vh.N)+ +ρ+(vh.N)−

)
[ψe]=

∫
Ω

ρ0ψ(t0−)+

∫ tm

0

∫
Ω

fψ.(2.5)



1806 NOEL J. WALKINGTON

The jump in ψ on the element boundaries is denoted by [ψe] = ψ+ − ψ− with ψ±
determined by the orientation N on an edge and the positive time direction at a tem-
poral interface. We abused the notation by writing

∑
K

∫
K

(.) =
∫
Ω
(.) for integrands

involving gradients and similarly for temporal integrals. When ψ is continuous the
above expression reduces to a standard weak statement of (1.1).

Remarks. The variant of the discontinuous Galerkin scheme presented here is
formulated to be convergent when the velocity field v was known only approximately
but the divergence of the v was known precisely. The canonical example of this
would be when vh is an approximation of the velocity of an incompressible fluid for
which div(v) = 0. Typically vh → v in L2[0, T ;L2(Ω)], but div(vh) 
= 0 since it is
difficult to construct divergence free subspaces of H1

0 (Ω); in particular, div(vh) 
→ 0
in L1[0, T ;L2(Ω)].

The assumptions v ∈ L1[0, T ;H1
0 (Ω)] and div(v) ∈ L1[0, T ;L∞(Ω)] are required

for uniqueness of the solution of (1.1); however, the approximation vh of v used in
the computations need not converge to v in these spaces. For the scheme to be well
defined, traces of vh.n must exist on element boundaries and the traces from each side
must agree. For these reasons we require vh to lie in the space

Vh = {vh ∈ L1[0, T ;H(div; Ω)] | vh(t)|K ∈ Pk(K)}
for some fixed integer k ≥ 0. Note that uniqueness of the continuous problem requires
v ∈ L2[0, T ;H1

0 (Ω)], but we do not require vh ∈ L2[0, T ;H1
0 (Ω)].

3. Stability. The following stability result is standard.
Theorem 3.1 (stability). Let ρh ∈ Rh be the approximate solution of (1.1)

obtained with the discontinuous scheme (2.4) and suppose that ρ0 ∈ L2(Ω), vh ∈ Vh,

v ∈ L1[0, T ;H1
0 (Ω)], ah, div(v) ∈ L1[0, T ;L∞(Ω)], f ∈ L1[0, T ;L2(Ω)];

then

(1/2)‖ρm‖2
L2(Ω) + (1/2)

m−1∑
k=0

‖[ρk]‖2
L2(Ω) + (1/2)

∑
e

∫ tm

0

∫
e

|vh.n|[ρh]2

+

∫ tm

0

∫
Ω

(div(v)/2 + ah)ρ
2
h = (1/2)‖ρ0‖2

L2(Ω) +

∫ tm

0

∫
Ω

fρh.(3.1)

(1) If (div(v)/2 + ah) ≥ c > 0 and f ∈ L2[0, T ;L2(Ω)], then

‖ρm‖2
L2(Ω) +

m−1∑
k=0

‖[ρk]‖2
L2(Ω) +

∑
e

∫ tm

0

∫
e

|vh.n|[ρh]2 + c

∫ tm

0

‖ρh(s)‖2
L2(Ω) ds

≤ ‖ρ0‖2
L2(Ω) + (1/c)

∫ tm

0

‖f(s)‖2
L2(Ω) ds.

(2) If ρh is piecewise constant in time or piecewise linear in time (	 = 0 or 1 in
the definition of Rh), and τ is sufficiently small, then

‖ρm‖2
L2(Ω) +

m−1∑
k=0

‖[ρk]‖2
L2(Ω) +

∑
e

∫ tm

0

∫
e

|vh.n|[ρh]2 ≤ C1‖ρ0‖2
L2(Ω) exp(C2t

m),

where C1 and C2 depend on the coefficients v and ah and the data f .
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Remark. When div(v) and a are bounded it is possible to introduce a change of
variables to guarantee that div(v)/2 + a ≥ c > 0. Specifically, if ρ = reαt, then r
satisfies

rt + div(rv) + (α+ a)r = e−αtf.

Proof. Selecting ψ = ρh in (2.4) gives

(1/2)

∫
K

(ρm)2 + [ρm−1]2− (ρm−1)2 +

∫ tm

tm−1

∫
K

(div(v)/2+ah)ρ
2
h

+ (1/2)

∫ tm

tm−1

∫
∂K

ρ2
h(vh.n)+ +ρ2

−(vh.n)−− [ρh]
2(vh.n)− =

∫ tm

tm−1

∫
K

fρh.

Summing this expression and collecting terms establishes (3.1), and if (div(v)/2 +
ah) ≥ c > 0, statement (1) follows immediately.

If ρh is piecewise constant in time, then∫ tm

0

∫
Ω

fρh − (div(v)/2 + ah)ρ
2
h ≤ Fm max

1≤k≤n
‖ρk‖L2(Ω) +

m∑
k=1

γk‖ρk‖2
L2(Ω),

where

γk =

∫ tk

tk−1

(
(1/2)‖div(v(s))‖L∞(Ω) +‖ah(s)‖L∞(Ω)

)
ds, Fm =

∫ tm

0

‖f(s)‖L2(Ω) ds.

If ρh is piecewise linear in time, then for s ∈ (tm−1, tm)

‖ρh(s)‖L2(Ω) = ‖ρm(s− tm−1)/τ + ρm−1
+ (tm − s)/τ‖L2(Ω)

= ‖ρm(s− tm−1)/τ + ([ρm−1] − ρm−1)(tm − s)/τ‖L2(Ω)

≤ ‖ρm‖L2(Ω)(s− tm−1)/τ + ‖[ρm−1] − ρm−1‖L2(Ω)(t
m − s)/τ.

Then

‖ρh‖L∞[0,tm;L2(Ω)] ≤ max
0≤k≤m

‖ρk‖L2(Ω) + max
0≤k≤m−1

‖[ρk]‖L2(Ω)

and

‖ρh(s)‖2
L2(Ω) ≤ ‖ρm‖2

L2(Ω) + 2‖ρm−1‖2
L2(Ω) + 2‖[ρm−1]‖2

L2(Ω).

It follows that∫ tm

0

∫
Ω

fρh − (div(v)/2 + ah)ρ
2
h ≤ Fm

(
max

0≤k≤m
‖ρk‖L2(Ω) + max

0≤k≤m−1
‖[ρk]‖L2(Ω)

)
+
(
γm‖ρm‖2

L2(Ω) +2γ1‖ρ0‖2
L2(Ω)

)
+

m−1∑
k=1

(
(γk + 2γk+1)‖ρk‖2

L2(Ω) +2γk‖[ρk−1]‖2
L2(Ω)

)
.

In each instance an estimate of the form

‖ρm‖2
L2(Ω) + (1 − γ̂)

m−1∑
k=0

‖[ρk]‖2
L2(Ω) +

∑
e

∫ tm

0

∫
e

|vh.n|[ρe]2

≤ (1 + γ̂0)‖ρ0‖2
L2(Ω) + (C/c)(Fm)2 +

m∑
k=1

(
γ̂k‖ρk‖2

L2(Ω)

)
+ c

(
max

0≤k≤m
‖ρk‖2

L2(Ω) + max
0≤k≤m−1

‖[ρk]‖2
L2(Ω)

)
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t

Vh

ρhρ̄h

Fig. 3.1. ρ̄h is piecewise constant time and is equal to ρh(tm− ) on (tm−1, tm].

holds, where c > 0 is arbitrary and γ̂ and γ̂k are bounded by integrals of functions in
L1[0, T ] over intervals of length τ . If τ is sufficiently small, all these constants will be
less than 1/2, and statement (2) follows from the discrete Gronwall inequality.

When div(v)/2 + ah = 0 the stability estimate only bounds ρh at the discrete
times {tm}Mn=0. If ρ̄h(t) = ρm on (tm−1, tm] (see Figure 3.1), the lemma shows that
ρ̄h can be bounded in L∞[0, T ;L2(Ω)]. Clearly ρ̄h = ρh when ρh is piecewise constant
in time (	 = 0); however, when 	 > 1 it may happen that ρ̄h and ρh have different
weak limits. The following corollary shows that this will not happen when 	 = 1.

Corollary 3.2. Let ρh ∈ Rh be piecewise linear in time (	 = 1) and let ρ̄h ∈ Rh

be the function piecewise constant in time equal to ρm = ρh(t
m
− ) on (tm−1, tm].

• If ψ ∈ L2[0, T ;L2(Ω)], then∣∣∣∣∣
∫ T

0

∫
Ω

(ρ̄h − ρh)ψ

∣∣∣∣∣ ≤ ‖ρ̄h‖L2[0,T ;L2(Ω)]‖ψ − ψ(.+ τ)‖L2[0,T−τ ;L2(Ω)]

+
√

(τ/2)

⎛⎝‖ρM‖L2(Ω) +‖ρ0‖L2(Ω) +

(
M−1∑
m=0

‖[ρm]‖2
L2(Ω)

)1/2
⎞⎠‖ψ‖L2[0,T ;L2(Ω)].

• ‖ρh‖L∞[0,T ;L2(Ω)] ≤ ‖ρ̄h‖L∞[0,T ;L2(Ω)] + max0≤m≤M−1 ‖[ρmh ]‖L2(Ω) and

‖ρ̄h − ρh‖2
L2[0,T ;L2(Ω)]

≤ (2/3)

(
‖ρ̄h − ρ̄h(.+ τ)‖L2[0,T−τ ;L2(Ω)] + τ

M−1∑
m=0

‖[ρm]‖2
L2(Ω)

)
.

Proof. On the interval (tm−1, tm] we have ρ̄h−ρh = (ρm−ρm−1
+ )(tm−t)/τ (recall

that ρm = ρm− ). Then∫ T

0

∫
Ω

(ρ̄h − ρh)ψ =

∫
Ω

M∑
m=1

∫ τ

0

(ρm − ρm−1
+ )(1 − s/τ)ψ(tm−1 + s) ds

=

∫
Ω

∫ τ

0

(
ρMψ(tM−1 + s) − ρ0

+ψ(s)

+

M−1∑
m=1

(ρmψ(tm−1 + s) − ρm+ψ(tm + s))

)
(1 − s/τ) ds
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=

∫
Ω

∫ τ

0

(
ρMψ(tM−1 + s) − ρ0ψ(s)

+
M−1∑
m=1

ρm(ψ(tm−1 + s) − ψ(tm + s))

+

M−1∑
m=0

(ρm − ρm+ )ψ(tm + s)

)
(1 − s/τ) ds.

The first statement then follows upon observing that the last term can be bounded
by

∫
Ω

∫ τ

0

M−1∑
m=0

(ρm−ρm+ )ψ(tm+s)(1−sτ)≤
√

(τ/2)

(
M−1∑
m=0

‖[ρm]‖2
L2(Ω)

)1/2

‖ψ‖L2[0,T ;L2(Ω)].

To establish the second statement we compute

‖ρ̄h−ρh‖2
L2[0,T ;L2(Ω)] =

M∑
m=1

∫ τ

0

‖ρm−ρm−1
+ ‖2(1−s/τ)2 ds

≤
M∑
m=1

(τ/3)‖ρm−ρm−1 +[ρm−1]‖2

≤(2/3)

(
‖ρ̄h−ρ̄h(.+τ)‖L2[0,T−τ ;L2(Ω)]+τ

M−1∑
m=0

‖[ρm]‖2
L2(Ω)

)
.

4. Consistency. The bounds established above show that subsequences of the
approximate solutions converge weakly-star in L∞[0, T ;L2(Ω)]. In this section we
show that the limits of these sequences are weak solutions of (1.1). This is easy to
show when the space Rh contains the continuous finite element spaces; however, when
k = 0 the only continuous functions are constants, which complicates the proof. We
begin with a technical lemma.

Lemma 4.1. Let K ⊂ R
d be a simplex, v ∈ H1(K)d, and ψ ∈ W 1,p(K) with

p ≥ 4d/(d + 4). Then there exists a constant C depending only on d and the aspect
ratio of K such that∫

∂K

|v.n||ψ − ψ̄|2 ≤ C|K|(1/2−2/p)hK‖v‖H1(K)‖ψ‖2
W 1,p(K),

where ψ̄ = (1/|K|) ∫
K
ψ is the average of ψ on K and hK is the diameter of K.

If each component of v is a polynomial of degree k, then∫
∂K

|v.n||ψ − ψ̄|2 ≤ C|K|(1/2−2/p)hK‖v‖L2(K)‖ψ‖2
W 1,p(K),

where C may now depend additionally on k.

Proof. Let K̂ be the usual reference simplex and χ(ξ) = x0 + Bξ be an affine
mapping of K̂ to K. We use a hat to denote the natural correspondence between
functions defined on K and K̂, ψ̂ = ψ ◦ χ. Writing the integral over the boundary as
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the sum over the faces e ⊂ ∂K, the trace theorem with p ≥ 4d/(d+ 4) enables us to
write ∫

∂K

|v.n||ψ − ψ̄|2 =
∑
e⊂∂K

∫
e

|v.n||ψ − ψ̄|2

=
∑
ê⊂∂K̂

|e|
|ê|
∫
ê

|v̂.n||ψ̂ − ψ̄|2

≤ C
∑
ê⊂∂K̂

|e|‖v̂‖H1(K̂)‖ψ̂ − ψ̄‖2
W 1,p(K̂)

≤ C
∑
ê⊂∂K̂

|e|‖v̂‖H1(K̂)|ψ̂|2W 1,p(K̂)
.

We used the fact that the average of ψ is the average of ψ̂ and the Poincaré inequality
to pass to the W 1,p seminorm in the last line. Notice that if v ∈ Pk(K)d, then
‖v̂‖H1(K̂) is equivalent to ‖v̂‖L2(K̂) since Pk(K̂) is finite dimensional.

Recalling that ‖v̂‖L2(K̂) = (|K̂|/|K|)1/2‖v̂‖L2(K)), |B| ≤ ChK ,

|ψ̂|W 1,p(K̂) ≤ (|K̂|/|K|)1/p|B||ψ|W 1,p(K) ≤ C(|K̂|/|K|)1/phK |ψ|W 1,p(K),

and |∇v̂|L2(K̂) ≤ C(|K̂|/|K|)1/2hK‖∇v‖L2(K), we deduce that

∫
∂K

|v.n||ψ − ψ̄|2 ≤ C
∑
e⊂∂K

|e|
|K|(1/2+2/p)

h2
K‖v‖H1(K)|ψ|2W 1,p(K)

(with ‖v‖L2(K) replacing ‖v‖H1(K) if v ∈ Pk(K)d). Since

|K| = (1/d)|e| × (perpendicular height) ≥ c|e|hK ,

where c depends on the aspect ratio of K, it follows that |e|hK ≤ C|K|, and the proof
follows.

The following lemma provides sufficient conditions on the coefficients vh and ah
that suffice to establish consistency of the discontinuous Galerkin method.

Lemma 4.2. Let {ρh} be a (sub-) sequence of solutions of the discontinuous
Galerkin scheme (2.4) computed on a sequence of quasi-regular meshes and suppose
that ρh⇀

∗ ρ in L∞[0, T ;L2(Ω)]. Assume that f ∈L1[0, T ;L2(Ω)], v ∈L1[0, T ;H1
0 (Ω)],

vh(t) ∈ Vh, ρ
0 ⇀ ρ0 in L2(Ω),

vh → v, and ah → a, in L1[0, T ;L2(Ω)],

and either (1) div(vh) → div(v) in L1[0, T ;L2(Ω)] or (2) (div(vh)−div(v))|K ⊥ Pk(K)
in L2(K) for each K ∈ Th. Then ρ is a weak solution of (1.1).

Proof. When k, 	 > 0 Rh contains the usual continuous finite element spaces, so
if ψ ∈ D([0, T )×Ω), then the classical Lagrange interpolant ψh ∈ Rh ∩C([0, T ]× Ω̄)
converges to ψ in W 1,∞((0, T ) × Ω). When ψh is substituted into (2.5) all the jump
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terms vanish to give

−
∫ T

0

∫
Ω

ρh
(
ψht+vh.∇ψh+(1/2)(div(vh)−div(v))ψh−ahψh

)
=

∫
Ω

ρ0ψ(0)+

∫ T

0

∫
Ω

fψh.

If div(vh) → div(v) in L1[0, T ;L2(Ω)] the hypotheses suffice to pass to the limit
term by term in the above equation to show that ρ is a weak solution of (1.1). If
(div(vh) − div(v)|K ⊥ Pk(K) for K ∈ Th the term involving div(vh) − div(v) still
vanishes since∫ T

0

∫
Ω

ρh(div(vh) − div(v))ψh =

∫ T

0

∫
Ω

ρh(div(vh) − div(v))(ψh − ψ̄)

≤ ‖ρh‖L∞[0,T ;L2(Ω)]‖div(vh) − div(v)‖L1[0,T ;L2(Ω)]Ch

→ 0,

where ψ̄(t, x) is the average of ψh(t, .) over the element K containing x.

When 	 = 0 or k = 0, functions in Rh are piecewise constant in time or space,
respectively. In this situation the terms involving ψht or ∇ψh vanish and it is necessary
to show that the corresponding jump terms in (2.5) approximate the missing terms:

−∑M−1
k=0

∫
Ω
ρk[ψk] ∼ − ∫ T

0

∫
Ω
ρψt and

−
∑
e

∫ T

0

∫
e

(
ρ−(vh.N)+ + ρ+(vh.N)−

)
[ψh] ∼

∫ T

0

∫
Ω

ρv.∇ψ.

If 	 = 0 and ψ ∈ D([0, T ) × Ω), let ψk be a projection of ψ(tk) onto the (spa-

tial) finite element space {ψh ∈ L2(Ω) | ψh|K ∈ Pk(K), K ∈ Th}, and let ψ̂h de-

note the piecewise linear interpolant of {ψk} in time. Then ψ̂h converges to ψ in
W 1,∞[0, T ;L∞(Ω)] and temporal jump terms become

−
M−1∑
k=0

∫
Ω

ρk[ψk] = −
M−1∑
k=0

∫
Ω

ρk(ψk+1 − ψk) = −
∫ T

0

∫
Ω

ρhψ̂ht → −
∫ T

0

∫
Ω

ρψt

as required.

Finally consider the spatial jump terms when k = 0. Let ψ be piecewise poly-
nomial of degree 	 in time with values in D(Ω). Selecting ψh(t)|K to be the spatial
average of ψ(t) over each element the spatial jump terms in (2.5) become

−
∑
e

∫ T

0

∫
e

(
ρ−(vh.N)+ + ρ+(vh.N)−

)
[ψh]

= −
∑
e

∫ T

0

∫
e

(
ρ−(vh.N)+ + ρ+(vh.N)−

)
[ψh − ψ]

= −
∫ T

0

∑
K

∫
∂K

(
ρK−(vh.n)− + ρK(vh.n)+

)
(ψK − ψ),

where ψK is the average value of ψ on K, ρK is the value of ρh on K, and ρK− is the
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value of ρh on the upwind element K−. Then

−
∑
e

∫ T

0

∫
e

(
ρ−(vh.N)+ + ρ+(vh.N)−

)
[ψh]

= −
∫ T

0

∑
K

∫
∂K

(
(ρK− − ρK)(vh.n)− + ρK(vh.n)

)
(ψK − ψ)

= −
∫ T

0

∑
K

∫
K

div(ρKvh(ψK − ψ)) +

∫
∂K

[ρh](vh.n)−(ψK − ψ)

= −
∫ T

0

∫
Ω

(
ρhvh.∇ψ + ρh div(vh)(ψh − ψ)

)
+

∫ T

0

∑
K

∫
∂K

[ρh](vh.n)−(ψK − ψ).

Clearly the first term converges to
∫ ∫

ρv.∇ψ; we need to show that the second term
vanishes in the limit. Using Lemma 4.1, with p = 4, we obtain∫ T

0

∑
K

∫
∂K

[ρh](vh.n)−(ψK − ψ)

≤
(∫ T

0

∑
K

∫
∂K

|vh.n|[ρh]2
)1/2(∫ T

0

∑
K

∫
∂K

|vh.n|(ψK − ψ)2

)1/2

≤
(∫ T

0

2
∑
e

∫
e

|vh.N |[ρh]2
)1/2(∑

K

ChK

∫ T

0

‖vh‖L2(K)‖ψ‖2
W 1,4(K)

)1/2

≤
(∫ T

0

∑
e

∫
e

|vh.N |[ρh]2
)1/2

C
√
h ‖vh‖1/2

L1[0,T ;L2(Ω)]‖ψ‖L∞[0,T ;W 1,4(Ω)].

Theorem 3.1 shows that the first term is bounded so the expression above vanishes
as h→ 0.

Remark. The second hypotheses on the divergence in Lemma 4.2 is useful in the
context of finite element approximations of incompressible fluids. If ṽh ∈ L1[0, T ;
H1

0 (Ω)] is a classical finite element approximation of v, then typically ṽh → v in
L1[0, T ;L2(Ω)], but div(ṽh) will only converge weakly to div(v) in L2[0, T ;L2(Ω)].
However, we can construct vh satisfying the hypothesis of the Lemma as follows. At
each time t let vh(t) be the L2(Ω) projection of ṽh(t) onto the space

V̄h(v) =

{
vh ∈ RT kh (Ω) |

∫
K

div(vh)p(x) =

∫
K

div(v)p(x), p ∈ Pk(K), K ∈ Th
}
.

Here RT kh (Ω) is the Raviart–Thomas subspace of H(div; Ω) constructed using piece-
wise polynomials of degree k on Th [1].

By construction div(vh)− div(v) is orthogonal to Pk(K) for each element K. To
see that vh also converges to v first observe that

(ṽh − vh, wh)L2(Ω) = 0 ∀ wh ∈ V̄h ≡ V̄h(0).

Then

‖ṽh − vh‖2
L2(Ω) = (ṽh − vh, ṽh − Ihv + Ihv − vh)L2(Ω)

= (ṽh − vh, ṽh − Ihv)L2(Ω),
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where Ihv is the interpolant of v onto the Raviart–Thomas space [1]. The degrees of
freedom of Ih are constructed to guarantee that Ihv − vh ∈ V̄h. Then

‖ṽh − vh‖L2(Ω) ≤ ‖ṽh − v‖L2(Ω) + ‖v − Ihv‖L2(Ω)

≤ ‖ṽh − v‖L2(Ω) + Ch‖v‖H1
0 (Ω),

so vh → v if ṽh → v and v is bounded in L1[0, T ;H1
0 (Ω)].

5. Convergence. When ρh is piecewise constant or linear in time (	 = 0 or 1)
the stability estimate guarantees that it is possible to pass to a subsequence for which

ρ̄h ⇀
∗ ρ̄ and ρh ⇀

∗ ρ in L∞[0, T ;L2(Ω)],

and Corollary 3.2 shows that the weak limits coincide, ρ = ρ̄. (Recall that ρ̄h is
piecewise constant in time and assumes the values ρm in (tm−1, tm] (see Figure 3.1).)
If additionally v ∈ L1[0, T ;H1

0 (Ω)], then Theorem 2.2 shows that ρ is unique. In this
situation the whole sequence {ρh} converges weakly, and in the following theorem we
establish strong convergence in L2[0, T ;L2(Ω)].

Theorem 5.1. Let {ρh}h>0 be the sequence of solutions of the discontinuous
Galerkin scheme (2.4) with either 	 = 0 or 	 = 1 (ρh piecewise constant or linear in
time) computed on a sequence of quasi-regular meshes. Assume ρ0 ∈ L2(Ω),

v ∈ L1[0, T ;H1
0 (Ω)], a, div(v) ∈ L1[0, T ;L∞(Ω)], f ∈ L1[0, T ;L2(Ω)],

and div(v)/2 + a ≥ 0. If ρ0 → ρ0 in L2(Ω), ah → a in L1[0, T ;L∞(Ω)], and vh ∈
Vh is an approximation of v for which vh → v in L2[0, T ;L2(Ω)] and either (1)
div(vh) → div(v) in L1[0, T ;L2(Ω)] or (2) (div(vh) − div(v))|K ⊥ Pk(K) in L2(K)
for each K ∈ Th, then ρh converges in L2[0, T ;L2(Ω)] to ρ, the weak solution of (1.1).
Moreover, the jump term

JMh = (1/2)

M−1∑
k=0

‖[ρk]‖2
L2(Ω) + (1/2)

∑
e

∫ T

0

∫
e

|vh.n|[ρe]2

converges to zero.
Proof. The idea of the proof is to show that

lim inf
h

‖ρ̄h‖L2[0,T ;L2(Ω)] ≤ ‖ρ‖L2[0,T ;L2(Ω)].(5.1)

If 	 = 0, then ρ̄h = ρh and strong convergence of ρh follows. When 	 = 1, the
first estimate in Corollary 3.2 shows that ρ̄h and ρh have the same weak limit so
ρ̄h converges strongly to ρ. The second estimate in Corollary 3.2 shows that strong
convergence of ρ̄h implies strong convergence of ρh.

To establish (5.1), the key step is to observe that (2.3) in Theorem 2.2 is an
equation instead of the usual inequality. The hypotheses on v allow us to select
β(s) = (1/2)s2 in Theorem 2.2 to obtain

(1/2)‖ρ(t)‖2
L2(Ω) +

∫ t

0

∫
Ω

((1/2)div(v)+a)ρ2 = (1/2)‖ρ0‖2
L2(Ω) +

∫ t

0

∫
Ω

fρ

= lim inf
h→0

(
(1/2)‖ρ0‖2

L2(Ω) +

∫ t

0

∫
Ω

fρh

)
.(5.2)
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Integrating both sides with respect to t and using the dominated convergence theorem
to interchange the limit and integral gives

(1/2)‖ρ‖2
L2[0,T ;L2(Ω)] +

∫ T

0

γ(t; ρ) dt = lim inf
h→0

∫ T

0

(
(1/2)‖ρ0‖2

L2(Ω) +

∫ t

0

∫
Ω

fρh

)
dt,

where

γ(t; ρ) =

∫ t

0

∫
Ω

((1/2)div(v) + a)ρ2.

Below we use (3.1) to show that

lim inf
h→0

∫ T

0

(
(1/2)‖ρ0‖2

L2(Ω) +

∫ t

0

∫
Ω

fρh

)
dt(5.3)

≥ lim inf
h→0

(
(1/2)‖ρ̄h‖2

L2[0,T ;L2(Ω)] +

∫ T

0

γ(t; ρh) dt

)
,

so that

(1/2)‖ρ‖2
L2[0,T ;L2(Ω)]+

∫ T

0

γ(t; ρ) dt ≥ lim inf
h→0

(
(1/2)‖ρ̄h‖2

L2[0,T ;L2(Ω)] +

∫ T

0

γ(t; ρh) dt

)
.

Since 0 ≤ (div(v)/2 + a) ∈ L1[0, T ;L∞(Ω)] it follows that γ(t, .) is nonnegative and
lower semicontinuous with respect to weak-star convergence in L∞[0, T ;L2(Ω)]. Then
applying Fatou’s lemma to the right-hand side of the above expression shows that
‖ρ‖L2[0,T ;L2(Ω)] ≥ lim infh ‖ρ̄h‖L2[0,T ;L2(Ω)], which establishes (5.1).

To verify inequality (5.3), multiply (3.1) by τ and sum to obtain∫ T

0

(
(1/2)‖ρ0‖2

L2(Ω) +

∫ t

0

∫
Ω

fρh

)
dt= (1/2)‖ρ̄h‖2

L2[0,T ;L2(Ω)] +

∫ T

0

γ(t, ρh)+

M∑
m=1

τJmh

+

∫ T

0

∫ t

0

∫
Ω

fρh−
M∑
m=1

τ

∫ tm

0

∫
Ω

fρh

+

M∑
m=1

τγ(tm; ρh)−
∫ T

0

γ(t, ρh) dt

+

M∑
m=1

τ

∫ tm

0

∫
Ω

(a−ah)ρ2
h.

To complete the convergence proof we show that the terms in the last three lines
vanish as h→ 0.

• The terms involving f can be combined as∫ T

0

∫ t

0

∫
Ω

fρh−
M∑
m=1

τ

∫ tm

0

∫
Ω

fρh =

M∑
m=1

∫
Ω

(∫ tm

tm−1

∫ t

0

fρh− τ

∫ tm

0

fρh

)

=
M∑
m=1

∫
Ω

(∫ tm

tm−1

∫ t

tm−1

fρh− τ

∫ tm

tm−1

fρh

)

=
M∑
m=1

∫
Ω

∫ tm

tm−1

(tm − s− τ)f(s)ρh(s) ds,
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where the last line follows on interchanging the order of integration. It follows
that∣∣∣∣∣
∫ T

0

∫ t

0

∫
Ω

fρh −
M∑
m=1

τ

∫ tm

0

∫
Ω

fρh

∣∣∣∣∣ ≤ 2τ‖f‖L1[0,T ;L2(Ω)]‖ρh‖L∞[0,T ;L2(Ω)].

• A similar calculation is used to estimate the terms involving γ(.; ρh),

M∑
m=1

τγ(tm; ρh)−
∫ T

0

γ(t, ρh) dt =

M∑
m=1

∫
Ω

∫ tm

tm−1

(tm−s−τ)(div(v)/2 + a
)
ρ2
h ds,

so that∣∣∣∣∣
∫ T

0

∫ t

0

γ(s; ρh) ds dt −
M∑
m=0

τ

∫ tm

0

γ(s; ρh) ds

∣∣∣∣∣
≤ 2τ‖(1/2)div(v) + a‖L1[0,T ;L∞(Ω)]‖ρh‖2

L∞[0,T ;L2(Ω)].

• The last term is bounded by T‖a− ah‖L1[0,T ;L∞(Ω)]‖ρh‖2
L∞[0,T ;L2(Ω)].

To show that the jump terms converge to zero we combine (5.2) and (3.1) to get

‖ρ(t)‖2
L2(Ω) + γ(t, ρ) = lim

h→0

(‖ρm‖L2(Ω) + γ(tm, ρh) + Jmh
)
,

where m = m(h) is chosen so that t ∈ (tm−1, tm]. With this choice ρm = ρ̄h(t), and
since ‖ρ̄h(t)‖L2(Ω) converges to ‖ρ(t)‖L2(Ω) in L2[0, T ], selecting t to be a Lebesgue
point and noting that γ(., .) is continuous on R×L2[0, T ;L2(Ω)] shows that limh→0 J

m
h

= 0. Since Jmh ≥ JMh for m ≥ M , and observing that the final time can be chosen
arbitrarily, we can choose a Lebesgue point t ≥ T to conclude that JMh → 0.

6. Monotonicity of the piecewise constant scheme. As stated above, the
form of the discontinuous Galerkin method proposed in section 2 was chosen to guar-
antee convergence when the velocity field was known only approximately. In par-
ticular, the factor of 1/2 in the term (1/2)(div(vh) − div(v)) guarantees stability in
L2(Ω); however, Lp(Ω) estimates would require a different weight. In particular, the
piecewise constant scheme, k = 	 = 0, may fail to be monotone.

When k = 	 = 0, the discontinuous Galerkin scheme (2.4) can be written as

|K|(ρmK − ρm−1
K ) +

∫ tm

tm−1

∫
K

(
ah + (1/2)(div(v) + div(vh))

)
ρmK

+

∫ tm

tm−1

∫
∂K

(ρm− − ρm)(vh.n)− =

∫ tm

tm−1

∫
K

f.

Notice that if K is selected so that ρmK is maximal/minimal, then the boundary term
in nonnegative/positive so

max(ρm) ≤ max(ρm−1) + Fm

1 − Cm
and min(ρm) ≥ min(ρm−1)

1 + Cm
− Fm

1 − Cm
,

where

Fm =

∫ tm

tm−1

‖f‖L∞(Ω) and Cm =

∫ tm

tm−1

‖ah + (1/2)(div(v) + div(vh))‖L∞(Ω),
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and we have assumed that min(ρm−1) ≥ 0 and τ is sufficiently small to guarantee
that Cm < 1. Defining

γ(t) =

∫ t

0

‖ah + (1/2)(div(v) + div(vh))‖L∞(Ω)

then, assuming max(ρ0) ≥ 0, we compute

(1 − o(τ)) max(ρm) ≤ eγ(t
m) max(ρ0) +

∫ tm

0

eγ(t
m)−γ(s)‖f(s)‖L∞(Ω) ds,

and if min(ρ0) ≥ 0

(1 + o(τ)) min(ρm) ≥ e−γ(t
m) min(ρ0) −

∫ tm

0

eγ(t
m)−γ(s)‖f(s)‖L∞(Ω) ds,

whenever the right-hand side is nonnegative. The terms 1 ± o(τ) arise when prod-
ucts of the form

∏m
i=1 1/(1 − Ci) are approximated by exponentials of the form

exp(
∑m
i=1 C

i) = exp(γ(tm)). Specifically, if 0 ≤ Ci ≤ 1, then

1 −
m∑
i=1

(Ci)2 ≤
(

m∏
i=1

(1 − Ci)

)
exp

(
m∑
i=1

Ci

)
.

Since
∑m
i=1 C

i = γ(tm) is bounded and Ci → 0 as τ → 0, it follows that

1 −
m∑
i=1

(Ci)2 ≥ 1 −
(

max
1≤i≤m

Ci
) m∑
i=1

Ci = 1 − o(τ).

Since it is unlikely that div(vh) is bounded in L1[0, T ;L∞(Ω)], this estimate is
not particularly useful as it stands. For example, typically it will not be possible to
choose τ sufficiently small to guarantee that Cm < 1. However, if the construction
at the end of section 4 is used to guarantee that div(vh) and div(v) have the same
average on each element, then the piecewise constant discontinuous Galerkin scheme
becomes

|K|(ρmK−ρm−1
K )+

∫ tm

tm−1

∫
K

(ah+div(v))ρmK+

∫ tm

tm−1

∫
∂K

(ρm−−ρm)(vh.n)− =

∫ tm

tm−1

∫
K

f.

In this situation the scheme will be monotone and convergent. The following theorem
summarizes these observations.

Theorem 6.1. Let {ρh}h>0 be the sequence of solutions of the piecewise constant
(k = 	 = 0) discontinuous Galerkin scheme (2.4). Assume that v ∈ L1[0, T ;H1

0 (Ω)],
vh ∈ Vh and that the averages of div(vh) and div(v) agree on each element K ∈ Th.
If ah, div(v), and f are bounded in L1[0, T ;L∞(Ω)], 0 ≤ α ≤ ρ0 ≤ β, and τ is
sufficiently small, then

(1 − o(τ)) max(ρm) ≤ eγ(t
m) max(ρ0) +

∫ tm

0

eγ(t
m)−γ(s)‖f(s)‖L∞(Ω) ds

and

(1 + o(τ)) min(ρm) ≥ e−γ(t
m) min(ρ0) −

∫ tm

0

eγ(t
m)−γ(s)‖f(s)‖L∞(Ω) ds,
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provided the right-hand side is nonnegative. Here

γ(t) =

∫ t

0

‖ah + div(v)‖L∞(Ω),

and τ sufficiently small is interpreted to mean γ(tm+τ)−γ(tm) < 1 for m = 0, 1, . . . .
Remark. The monotonicity estimates above can be improved slightly if one-

sided bounds are used instead of absolute values. For example, in the upper bound
‖ah + div(v))‖L∞(Ω) can be replaced by ‖(ah + div(v))−‖L∞(Ω) and ‖f‖L∞(Ω) by
‖f+‖L∞(Ω).
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Abstract. It is shown—for the first time, to the best of the author’s knowledge—that when
the finite dimensional space sequence is generated by using Nedelec’s edge elements of any order
and of both families defined on tetrahedra, the so-called discrete compactness property holds true
for Lipschitz polyhedra even in the presence of mixed boundary conditions. The family of meshes
is not required to be quasi-uniform but just regular. A standard way to deal with general dielectric
permittivities completes the picture.
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1. Introduction. The importance of the discrete compactness property [1] has
recently become evident in computational electromagnetics [2], [3], [4]. In particular,
it plays a crucial role in proving the convergence of Galerkin finite element approxi-
mations for both eigenproblems [5], [2], [6], [7] and driven problems [8], [9], [4].

It is well known that the discrete compactness property was first proved for first-
order Nedelec tetrahedral edge elements of the first family [10] by Kikuchi in 1989
[1]. This fundamental first proof was carried out under some regularity assumptions
which are not always satisfied when material properties are discontinuous or when
different boundary conditions are given on submanifolds having a common boundary
[11], [12]. In other contributions [4], [2] the same property was proved for all Nedelec
edge elements (of both families for tetrahedra [10], [13] and of the first family for
hexahedra), but the indicated limitations of the original proof were retained. Some
results in the presence of boundary conditions of different types are actually available
but just for problems where the indicated lack of regularity does not arise. This is
the case of [7], where eigenproblems with mixed boundary conditions are introduced
to exploit the domain symmetry, or when different boundary conditions are given on
different connected components of the boundary [9]. On the contrary, the technique
introduced in [6] makes it possible to generalize quite easily all known proofs of discrete
compactness to cover cases involving all materials of practical interest [7], [9]. Thus,
thanks to this result, today “truly” mixed boundary conditions are one of the main
obstacles to be overcome in order to obtain a general proof of the discrete compactness
property for edge elements.

Unfortunately, in several models of practical interest different boundary condi-
tions are given on submanifolds having a common boundary. This is the case, for
example, for the classical model introduced in [14, pp. 299–301] to deal with aperture
coupled rectangular waveguides. Another example is provided in [15, p. 593], where
the problem of radiation by apertures is considered. In such cases n×E = 0 on part
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of a plane, and n × H �= 0 on the complementary part of the plane belonging to the
boundary. For these and for many other simple and important models the regularity
of solenoidal fields is not enough [11] for all known proofs of discrete compactness
to hold true. Thus, at present, no convergence result is available for finite element
approximations of these practically important problems.

The purpose of this paper is to prove that edge elements of any order and of both
families defined on tetrahedra [10], [13] satisfy the discrete compactness property,
provided that the family of triangulations is regular [16], independent of the presence
of mixed boundary conditions (and, of course, of material inhomogeneities). Thus,
as a by-product, a convergence result for edge-based finite element approximations of
electromagnetic problems can be established independently of the presence of mixed
boundary conditions.

This paper is organized as follows. In section 2 some assumptions on the domain,
its boundary, material properties, and the family of triangulations are introduced. In
section 3, a set of four conditions is proved to be sufficient for the discrete compactness
property to hold true even in the presence of mixed boundary conditions. In carrying
out the proof, vector fields are thought of as elements of H(curl; Ω) and just for the
solenoidal fields of this space a standard regularity result is exploited. Then, in section
4, Nedelec’s edge elements of any order and of both families defined on tetrahedra are
proved to satisfy the sufficient conditions reported in section 3.

2. Assumptions and notations. Let Ω ⊂ R
3 be a simply connected Lipschitz

polyhedral domain [17]. Let Γ = ∂Ω be its connected boundary and suppose that
it splits into two disjoint open submanifolds Γτ and Γν satisfying Γτ ∪ Γν = Γ and
Γτ ∩ Γν �= ∅. Hence, Γτ and Γν have a nonempty common boundary. Moreover, we
assume that this common boundary is a piecewise straight simple closed curve. The
outward unit vector normal to Γ will be denoted by n. Notice that the limit cases
where one of the above submanifolds is empty are not allowed since the result we are
looking for is already known [1] in these cases. For the same reason [9], the case of an
empty common boundary is also excluded. The above assumptions on Ω, Γ, Γτ , and
Γν are useful to simplify the following discussion, but not all of them are necessary;
our result can be stated under very general topological assumptions [18] (see also [6]
for an analogous approach).

It would be possible to introduce some notations to deal with material properties.
However, as pointed out in the introduction, Proposition 2.27 of [6] provides a clear
indication that material properties are no longer an obstacle. This proposition was
exploited in [6] and [7] for proving the convergence of finite element approximations of
electromagnetic eigenproblems and, for example, in [9] to deal with electromagnetic
driven problems. Thus, we will consider only problems involving homogeneous media.

A consequence of the previous assumptions is that we can use many of the symbols
introduced in [6]. For the sake of clarity, however, we report the most important spaces
[18] for the next developments:

U = H(curl; Ω),(2.1)

U0 = {u ∈ U | curlu = 0},(2.2)

U1 = {u ∈ U | (u,u0)0,Ω = 0 ∀u0 ∈ U0},(2.3)

V = {v ∈ U | v × n|Γτ
= 0},(2.4)
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V0 = V ∩ U0,(2.5)

V1 = {v ∈ V | (v,v0)0,Ω = 0 ∀v0 ∈ V0},(2.6)

where (u,v)0,Ω =
∫
Ω

u · v∗ denotes the usual scalar product in (L2(Ω))3 for com-
plex valued vector functions. The scalar product in U is denoted by ( , )curl,Ω
((u,v)curl,Ω = (curlu, curlv)0,Ω + (u,v)0,Ω), and the norms in (L2(Ω))3 and U are
denoted by ‖ ‖0,Ω and ‖ ‖curl,Ω, respectively.

Let us now introduce a sequence of finite dimensional subspaces of V . In order
to do so, let us introduce a family of triangulations {Th}h∈I of Ω and a specific finite
element on the triangulation Th, thus defining a family {Vh}h∈I (or simply {Vh}) of
finite dimensional subspaces of V [16]. We will assume, as usual, that h denotes the
maximum diameter of all elements of the triangulation Th, that I is a denumerable
and bounded set of strictly positive numbers having zero as the only limit point, that
the family of triangulations is regular [16], that, for every h, Th exactly covers Ω (i.e.,
Ω = ∪K∈Th

K, where K denotes as usual a generic element of the triangulation Th),
and, finally, that, for every h, Γν and Γτ are the union of faces of elements of Th. Due
to their practical importance, in this paper we will be particularly interested in the
properties of Nedelec’s tetrahedral edge elements. With this aim, let us consider the
following spaces [10], [13], [7] (l ∈ N, l > 0, m ∈ N,m > 0):

Rl,hV = {uh ∈ U : uh|K ∈ Rl ∀K ∈ Th} ∩ V,(2.7)

Ql,hV = {uh ∈ U : uh|K ∈ Ql ∀K ∈ Th} ∩ V,(2.8)

Fl,hV = {uh ∈ U : uh|K ∈ Fl ∀K ∈ Th} ∩ V,(2.9)

El+1,hV = {uh ∈ U : uh|K ∈ El+1 ∀K ∈ Th} ∩ V,(2.10)

Pm,1,hV = {uh ∈ U : uh|K ∈ Pm,1 ∀K ∈ Th} ∩ V
= R1,hV ⊕ E2,hV ⊕ E3,hV ⊕ · · · ⊕Em+1,hV ,(2.11)

where Rl and Ql are defined in [10] and [13] and are usually referred to as the first
and second family of Nedelec’s elements, respectively. Fl, El+1, and Pm,1 are defined
in definitions 1 and 2, p. 340, for Fl and El+1, respectively, and Remark 6, p. 345,
for Pm,1, of [7] as

Fl = {u ∈ Ql : all degrees of freedom defined for Rl vanish} ,(2.12)

El+1 = {u ∈ Rl+1 : all degrees of freedom defined for Ql vanish} ,(2.13)

Pm,1 = R1 ⊕ E2 ⊕ E3 ⊕ · · · ⊕Em+1,(2.14)

being the indicated degrees of freedom defined, for example, in [10], [13], [9], and [7].
These spaces will be used, as already pointed out, to define Vh. We will also make
use of the following spaces:

P1,h =
{
ph ∈ H1(Ω) : ph|K ∈ P1 ∀K ∈ Th

}
,(2.15)

P1,hV = P1,h ∩H1
0,Γτ

(Ω),(2.16)

where Pn is the space of polynomials of degree at most n (n ∈ N, n ≥ 0) [16].
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Finally, by using the notation

V0h = Vh ∩ V0,(2.17)

V1h = {vh ∈ Vh | (vh,v0h)0,Ω = 0 ∀v0h ∈ V0h},(2.18)

let us recall the conditions on {Vh} with which we will mainly work:

(DCP) “discrete compactness property”
Any sequence {vh} such that vh ∈ V1h, ‖vh‖curl,Ω ≤ C ∀h ∈ I contains a
subsequence (still denoted by {vh}) such that ∃v ∈ (L2(Ω))3 such that

lim
h→0

‖vh − v‖0,Ω = 0;

(CDK) “completeness of the discrete kernel”

lim
h→0

inf
vh∈V0h

‖v − vh‖curl,Ω = 0 ∀v ∈ V0.

In the next section we prove that a sequence {Vh} satisfies (DCP) in the presence of
mixed boundary conditions, provided that a set of sufficient conditions is satisfied. In
order to simplify the notation we will use the same symbols for sequences and their
subsequences.

3. Sufficient conditions on {Vh} for discrete compactness. The following
proposition provides a first abstract result. The main idea is to avoid the problems
due to the lack of regularity of the solenoidal fields in V by thinking of an element of
V as an element of U .

Proposition 3.1. Suppose that the hypotheses reported in section 2 concerning
the domain, its boundary, the homogeneous material, and the triangulation of the
domain are satisfied. Then (DCP) is satisfied for any sequence of subspaces {Vh}
satisfying

H1. Vh ⊂ V ∀h ∈ I,
H2. vh|K ∈ (H1(K))3 ∀h ∈ I, ∀vh ∈ Vh, and ∀K ∈ Th,
H3. ∃C ∈ R, C > 0, C independent of h, vh, and K such that ‖vh|K‖1,K ≤

C‖vh|K‖curl,K ,
H4. grad(P1,hV ) ⊂ V0h ∀h ∈ I.
Proof. The proof is split into five steps.
Step 1. Definition of a new sequence. Let us consider a sequence {vh} such that

vh ∈ V1h, ‖vh‖curl,Ω ≤ C0 ∀h ∈ I, C0 ∈ R, C0 > 0.
Since V ⊂ U = U0 ⊕ U1, by using H1 we deduce

vh = u0ch + u1ch,(3.1)

where u0ch ∈ U0, u1ch ∈ U1, and, by the orthogonality in U of the decomposition and
the boundedness of the sequence {vh}, ‖u0ch‖curl,Ω ≤ C0 ∀h ∈ I and ‖u1ch‖curl,Ω ≤
C0 ∀h ∈ I.

The sequence we will mainly work with is {u0ch}. Since we are considering a
topologically trivial situation we have that

∃!pch ∈ H1(Ω) : grad pch = u0ch,

∫
Ω

pch = 0.(3.2)
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Step 2. Approximation of the new sequence. Since u1ch ∈ U1 ⊂ U ∩H0(div0; Ω) =
U ∩

{
v ∈ H(div; Ω) : divv = 0, v · n|Γ = 0

}
, we obtain u1ch ∈ (Hs(Ω))3, s > 1/2,

‖u1ch‖s,Ω ≤ C1‖u1ch‖curl,Ω [19, Proposition 3.7], being ‖ ‖s,Ω, the natural norm in
(Hs(Ω))3, and C1, a positive constant depending only on Ω. Moreover, by using H2
we have vh|K ∈ (H1(K))3 ∀K ∈ Th. Then we deduce u0ch|K ∈ (Hs(K))3 ∀K ∈ Th,
s > 1/2, which implies pch|K ∈ H1+s(K) ∀K ∈ Th, s > 1/2. Thus, by Lemma 4
of [1],

pch ∈ C0(Ω) ∀h ∈ I,(3.3)

and if πh denotes the standard [16] global P1 interpolation operator for scalar fields
(on tetrahedra), ∃ph = πhpch ∈ P1,h,∃C2 ∈ R, C2 > 0, C2 independent of pch and h:

‖grad pch − grad ph‖0,Ω ≤ C2h
s

( ∑
K∈Th

‖grad pch|K‖2
s,K

)1/2

= C2h
s

( ∑
K∈Th

‖vh|K − u1ch|K‖2
s,K

)1/2

≤ C2h
s

( ∑
K∈Th

(2‖vh|K‖2
s,K + 2‖u1ch|K‖2

s,K)

)1/2

≤ 2C2h
s

(
‖u1ch‖2

s,Ω +
∑
K∈Th

‖vh|K‖2
1,K

)1/2

≤ 2C2h
s

(
C2

1‖u1ch‖2
curl,Ω +

∑
K∈Th

‖vh|K‖2
1,K

)1/2

≤ 2C2h
s

(
C2

1C
2
0 +

∑
K∈Th

‖vh|K‖2
1,K

)1/2

.(3.4)

Further, by using H3 we obtain

‖grad pch − grad ph‖0,Ω ≤ 2C2h
s

(
C2

1C
2
0 + C2

∑
K∈Th

‖vh|K‖2
curl,K

)1/2

≤ 2C2h
s(C2

1C
2
0 + C2C2

0 )1/2 ≤ C4h
s.(3.5)

Step 3. Behavior of pch|Γτ . By using (3.2), inequality |pch|1,Ω = ‖u0ch‖0,Ω ≤
C0, and Poincaré’s inequality for functions with vanishing mean value, we deduce
‖pch‖2

0,Ω ≤ C2
5C

2
0 . Then we immediately obtain ‖pch‖2

1,Ω ≤ C2
6 and, consequently,

‖pch|Γ‖1/2,Γ ≤ C7, which in turn implies ‖pch|Γτ ‖1/2,Γτ
≤ C8. Thus we can conclude

that

‖pch|Γτ ‖0,Γτ ≤ C8.(3.6)

Since by H1 vh ∈ V , we have that on Γτ

n × u0ch|Γτ = n × (grad pch)|Γτ = n × vh|Γτ − n × u1ch|Γτ = −n × u1ch|Γτ .(3.7)

Let Γj , j = 1, . . . , J , denote the faces of the polyhedron Ω and let Γτj = Γj ∩ Γτ .
We assume that if j ∈ M ⊂ {1, . . . , J}, then Γτj is not empty. On each face Γj the
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outward unit vector n normal to Γ is a constant vector. Thus, by using (3.7) and the
regularity of u1ch, we deduce

‖(n×(grad pch)|Γτj
)×n‖s−1/2,Γτj

= ‖(n × u1ch|Γτj
) × n‖s−1/2,Γτj

= ‖n × u1ch|Γτj
‖s−1/2,Γτj

≤ ‖n × u1ch|Γτ ‖s−1/2,Γτ

≤ ‖n × u1ch|Γ‖s−1/2,Γ ≤ C9‖u1ch‖s,Ω ≤ C10, j ∈M.(3.8)

Finally, by using the fact that (n× (grad pch)|Γτj
)×n is equal to the surface gradient

of pch|Γτj
on Γτj [9], [20], by definition 1.3.2.1 of [21], and by inequalities (3.6) and

(3.8), we deduce

pch|Γτj
∈ H1/2+s(Γτj ), ‖pch|Γτj

‖1/2+s,Γτj
≤ C11, j ∈M.(3.9)

Let us define ej1,j2 = (Γτj1 ∩Γτj2 )◦, j1, j2 ∈M , and denote by γ2D,j the trace operator

from H1/2+s(Γτj ) to Hs(∂Γτj ). By (3.3) we deduce

pch|Γτ ∈ C0(Γτ ) ∀h ∈ I.(3.10)

Then, by (3.9) and (3.10) we obtain

γ2D,j1(pch|Γτj1
)|ej1,j2

= γ2D,j2(pch|Γτj2
)|ej1,j2

, j1, j2 ∈M,(3.11)

in the sense of Hs(ej1,j2) when ej1,j2 is not empty (if this is not the case condition
(3.11) is trivial). When (3.9) and (3.11) are satisfied, in order to simplify the notation
we will say that

pch|Γτ
∈ H1/2+s(Γτ )(3.12)

and

‖pch|Γτ ‖2
1/2+s,Γτ

=
∑
j∈M

‖pch|Γτj
‖2
1/2+s,Γτj

,(3.13)

and the same notation will be adopted for spaces of functions with domain Γ [22].
By using Sobolev’s imbedding theorem [23] for each pch|Γτj

, j ∈ M , we deduce

that

∃ptj ∈ H1+δ(Γτj ), 0 < δ < s− 1/2,(3.14)

and for a subsequence of {pch|Γτj
}

lim
h→0

‖pch|Γτj
− ptj‖1+δ,Γτj

= 0, j ∈M.(3.15)

By using (3.15), the continuity and the linearity of each trace operator γ2D,j from
H1+δ(Γτj ) to H1/2+δ(∂Γτj ), j ∈M , and (3.11), we deduce

∃pt : pt|Γτj
= ptj ∈ H1+δ(Γτj ), j ∈M,

γ2D,j1(pt|Γτj1
)|ej1,j2

= γ2D,j2(pt|Γτj2
)|ej1,j2

, j1, j2 ∈M(3.16)

(the last condition being trivial when ej1,j2 = ∅); that is, according to our notation

pt ∈ H1+δ(Γτ ).(3.17)
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Moreover, by using (3.15), (3.16) and the norm indicated in (3.13), we obtain

lim
h→0

‖pch|Γτ − pt‖1+δ,Γτ = 0.(3.18)

Step 4. Some auxiliary scalar fields. By using Poincaré’s inequality and the
Lax–Milgram lemma, we define qch ∈ H1

0,Γτ
(Ω) by

find qch ∈ H1
0,Γτ

(Ω) : (grad qch, grad t)0,Ω

= −(grad pch, grad t)0,Ω ∀t ∈ H1
0,Γτ

(Ω)(3.19)

and rch = pch + qch ∈ H1(Ω). Note that, ∀h ∈ I, rch is the unique field in H1(Ω)
satisfying rch|Γτ

= pch|Γτ
and (grad rch, grad t)0,Ω = 0 ∀t ∈ H1

0,Γτ
(Ω).

The same decomposition of ph is possible. Thus we define qh ∈ P1,hV by

find qh ∈ P1,hV : (grad qh, grad th)0,Ω

= −(grad ph, grad th)0,Ω ∀th ∈ P1,hV(3.20)

and rh = ph + qh ∈ P1,h. For all h ∈ I, rh is the unique field in P1,h satisfying
rh|Γτ = ph|Γτ and (grad rh, grad th)0,Ω = 0 ∀th ∈ P1,hV .

Step 5. A sufficient condition for (DCP) holds true. The orthogonal decomposi-
tion V = V0 ⊕ V1 and hypothesis H1 imply

vh = v0ch + v1ch,(3.21)

v0ch ∈ V0, v1ch ∈ V1, ‖v0ch‖curl,Ω ≤ C0 ∀h ∈ I and ‖v1ch‖curl,Ω ≤ C0 ∀h ∈ I. Since
V1 is compactly imbedded in (L2(Ω))3 [18, Proposition 7.3], a sufficient condition for
the convergence in (L2(Ω))3 of vh is the convergence in (L2(Ω))3 of v0ch.

But note that grad qch = v0ch. As a matter of fact, grad qch is the V0 (=
grad(H1

0,Γτ
(Ω))) component of grad pch = u0ch = vh − u1ch, and u1ch ∈ U1 is or-

thogonal to U0 ⊃ V0. Thus inequality (3.5) implies

‖grad rch − v0ch − grad rh + grad qh‖0,Ω ≤ C4h
s.(3.22)

The following sufficient condition for (DCP),

lim
h→0

‖grad rch − grad rh‖0,Ω = 0,(3.23)

would imply limh→0 ‖v0ch−grad qh‖0,Ω = 0, which, in turn, implies limh→0 ‖v0ch‖0,Ω =
0 since v0ch is orthogonal (in (L2(Ω))3) to V0h ∀h ∈ I and by H4 to grad qh ∈
grad(P1,hV ) ∀h ∈ I (as vh ∈ V1h and v1ch ∈ V1).

The next two lemmas prove that condition (3.23) is satisfied.
Remark 3.2. The sequences appearing in condition (3.23) have peculiar prop-

erties. As a matter of fact, one could note that on one hand, rch is the weak solu-
tion of a problem for the Laplace operator with mixed boundary conditions given by
rch|Γτ = pch|Γτ on Γτ and the homogeneous Neumann condition on Γν , with pch|Γτ

satisfying (3.18). On the other hand, rh is its standard finite element approximation
(see, for example, [17, p. 147]) obtained by setting rh(bih) = pch(bih), where bih are
the nodes of the triangulation Th belonging to Γτ (the above conditions make sense
since rch|Γτ = pch|Γτ ∈ C0(Γτ ) (see (3.10)). As a matter of fact, rh|Γτ = ph|Γτ and
by definition ph = πhpch.
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Remark 3.3. A result analogous to the one provided by the next lemma can be
found, for example, in [24, exercise 5.x.10, p. 132]. However, for the sake of complete-
ness we provide a proof.

Lemma 3.4. If pch|Γτ = pt ∀h ∈ I, then condition (3.23) is satisfied.
Proof. We use a continuous linear extension operator R1 from H1+δ(Γτ ) into

H1+δ(Γ) to define ept = R1(pt) such that ept|Γτ
= pt and ‖ept‖1+δ,Γ ≤ C1‖pt‖1+δ,Γτ .

This is possible [21] since Γτ is a Lipschitz submanifold of Γ which, in turn, is the
Lipschitz continuous boundary of a polyhedron. The same notation as that used in
Step 3 of the proof of Proposition 3.1 for spaces of functions with domain Γτ or Γ is
here adopted.

Now, by using Theorem 2 of [22] there exists a continuous inverse R2 of the first-
order trace operator γ(1) [22] such that r02 = R2(ept) ∈ H3/2+δ(Ω), r02|Γ = ept,
r02|Γτ

= pt, and ‖r02‖3/2+δ,Ω ≤ C2‖ept‖1+δ,Γ ≤ C2C1‖pt‖1+δ,Γτ
.

By using Poincaré’s inequality and the Lax–Milgram lemma, we define φ2 ∈
H1

0,Γτ
(Ω) by

find φ2 ∈ H1
0,Γτ

(Ω) : (gradφ2, grad t)0,Ω = −(grad r02, grad t)0,Ω ∀t ∈ H1
0,Γτ

(Ω)
(3.24)

and r2 = φ2 + r02 ∈ H1(Ω). Note that |φ2|1,Ω ≤ |r02|1,Ω ≤ ‖r02‖3/2+δ,Ω ≤ C2C1

‖pt‖1+δ,Γτ
and that |r2|1,Ω ≤ |r02|1,Ω + |φ2|1,Ω ≤ 2C2C1‖pt‖1+δ,Γτ

. Note, moreover,
that r2 is the unique field in H1(Ω) satisfying r2|Γτ

= r02|Γτ
= pt and (grad r2,

grad t)0,Ω = 0 ∀t ∈ H1
0,Γτ

(Ω). The decomposition r2 = φ2 + r02 is useful since the
irregular component φ2 satisfies homogeneous boundary conditions on Γτ .

Since r02 ∈ H3/2+δ(Ω) with δ > 0 we can define r02h = πhr02. By Theorem 5.48
of [9] we deduce

‖r02h − r02‖1,Ω ≤ C4‖r02‖3/2+δ,Ω h
1/2+δ ≤ C4C2C1‖pt‖1+δ,Γτ h

1/2+δ.(3.25)

By definition we have r02h(bih) = pt(bih), where bih are the nodes of the triangulation
Th belonging to Γτ ∀h ∈ I.

Now we define φ2h as follows:

find φ2h ∈ P1,hV : (gradφ2h, grad th)0,Ω = −(grad r02h, grad th)0,Ω ∀th ∈ P1,hV .
(3.26)

We define also φ2h,1 and φ2h,2 by substituting r02h with r02h − r02 and r02h with
r02 in the above problem, respectively. Thus φ2h = φ2h,1 + φ2h,2 and we have that
|φ2h,1|1,Ω ≤ |r02h − r02|1,Ω ≤ C4C2C1‖pt‖1+δ,Γτ h

1/2+δ. Moreover, it is well known
[17, Theorem 18.2] that ‖gradφ2 − gradφ2h,2‖0,Ω = 0.

Finally, let us define r2h = φ2h + r02h. We have r2h(bih) = pt(bih), ∀bih ∈ Γτ ,
∀h ∈ I and (grad r2h, grad th)0,Ω = 0 ∀th ∈ P1,hV . Thus, on one hand, r2h is the
unique field in P1,h having these properties and, on the other hand,

|r2 − r2h|1,Ω = |φ2 + r02 − φ2h − r02h|1,Ω
≤ |φ2 − φ2h,1 − φ2h,2|1,Ω + |r02 − r02h|1,Ω
≤ |φ2 − φ2h,2|1,Ω + |φ2h,1|1,Ω + |r02 − r02h|1,Ω
≤ |φ2 − φ2h,2|1,Ω + 2C4C2C1‖pt‖1+δ,Γτ h

1/2+δ.(3.27)

We can conclude the proof by observing that r2 and r2h can be easily identified with
rch and rh of Proposition 3.1, respectively, subject to the boundary conditions stated
in the present lemma.
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Lemma 3.5. Condition (3.23) is satisfied whenever condition (3.18) holds true.
Proof. This is a trivial consequence of Lemma 3.4. Let us consider pch|Γτ =

pch|Γτ − pt + pt = pth1 + pt ∀h ∈ I.
Consider first just the part of the boundary condition given by pth1. Let us

denote by r1ch (∀h ∈ I) the unique field in H1(Ω) corresponding to r2 in the proof of
Lemma 3.4. This means that r1ch is defined by the same procedure we used to define
r2 in the proof of Lemma 3.4, but, in this case, the boundary conditions are given
by pth1 instead of pt. Then |r1ch|1,Ω ≤ 2C2C1‖pth1‖1+δ,Γτ . The components φ1ch

and r01ch corresponding to φ2 and r02 of Lemma 3.4, respectively, satisfy |φ1ch|1,Ω ≤
C2C1‖pth1‖1+δ,Γτ

and ‖r01ch‖3/2+δ,Ω ≤ C2C1‖pth1‖1+δ,Γτ
. Finally, the discrete field

r01h corresponding to r02h satisfies ‖r01h − r01ch‖1,Ω ≤ C4C2C1‖pth1‖1+δ,Γτ
h1/2+δ.

Condition (3.18) means that ‖pth1‖1+δ,Γτ → 0 as h → 0. Thus |r1ch|1,Ω → 0 and
|r01ch|1,Ω → 0 as h → 0 and therefore |r01h|1,Ω → 0 as h → 0. Finally, by (3.26)
even φ1h (corresponding to φ2h) is such that |φ1h|1,Ω → 0 as h → 0 so that r1h
(corresponding to r2h) is such that |r1h|1,Ω → 0 as h → 0. We deduce that |r1ch −
r1h|1,Ω → 0 as h→ 0.

Now, we consider the part of the boundary condition given by pch|Γτ = pt. By
Lemma 3.4 we deduce |r2 − r2h|1,Ω → 0 as h→ 0.

Since rch and rh of Proposition 3.1 are such that rch = r1ch+r2 and rh = r1h+r2h
we deduce condition (3.23).

In the next section we prove that when the sequence of subspaces {Vh} is defined
by using Nedelec’s tetrahedral edge elements (i.e., Vh = Rl,hV ∀h ∈ I for any fixed
l ∈ N, l > 0, or Vh = Ql,hV ∀h ∈ I for any fixed l ∈ N, l > 0), conditions H1, H2,
H3, and H4 are satisfied.

4. Discrete compactness property for all elements of the two Nedelec
families defined on tetrahedra. In this section we simply try to verify that con-
ditions H1, H2, H3, and H4 hold true for the elements of interest.

First, let us point out that H4 is satisfied, provided that Vh ⊃ R1,hV . This is
trivially true for Vh = Rl,hV and Vh = Ql,hV , l ∈ N, l > 0, as is well known. However,
the same is true by definition (2.11) when Vh = Pm,1,hV , m ∈ N,m > 0 [7, pp.
338–342 and p. 345].

Second, again by definitions (2.7), (2.8), and (2.11), condition H1 is satisfied for
all the above spaces.

Moreover, condition H2 simply requires H1 regularity on an element-by-element
basis. Thus H2 is trivially satisfied by all standard elements and by the elements of
interest in particular.

Thus we have to work just on H3. When first-order edge elements of the first
Nedelec family are considered, this condition is satisfied by Lemma 5 of [1].

In order to obtain the same result for all other elements we work on the spaces
Vh = Pm,1,hV , m ∈ N, m > 0. Suppose, for a moment, that we know that the space
sequence so generated satisfies (DCP), for any fixed m > 0. Since, as already pointed
out, Pm,1,hV ⊃ R1,hV ∀m ∈ N, m > 0 [7, p. 345], a standard result [17] implies that
(CDK) is satisfied. Now observe that ∀h ∈ I

• Q1,hV = R1,hV ⊕ F1,hV [7, Lemma 19],
• Rl,hV = Pl−1,1,hV ⊕ F1,hV ⊕ F2,hV ⊕ · · · ⊕ Fl−1,hV , l > 1, [7],
• Ql,hV = Pl−1,1,hV ⊕ F1,hV ⊕ F2,hV ⊕ · · · ⊕ Fl,hV , l > 1, [7],

and Fl,hV ⊂ V0 ∀l > 0 [7, Lemma 20]. Then a direct application of Lemma 27 of [7]
implies that the sequences generated by Vh = Rl,hV ∀h ∈ I or by Vh = Ql,hV ∀h ∈ I
satisfies (DCP) for any fixed l ∈ N, l > 0.
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It just remains to prove (DCP) for the space sequence generated by Pm,1,hV
∀m∈N, m > 0. This is done by exploiting the following slight modification of Lemma
30 of [7] (ẑ = 0 in the original statement is replaced by grad ẑ = 0 in the following
lemma).

Lemma 4.1. If Z is a finite dimensional subspace of (H1(K̂))3 such that ∀ẑ ∈
Z curl ẑ = 0 implies grad ẑ = 0, then ∃C > 0, C independent of ẑ, such that |ẑ|1,K̂ ≤
C ‖curl ẑ‖0,K̂ .

Proof. Let Z0c = {z ∈ Z | curl z = 0} and Z0g = {z ∈ Z | grad z = 0}. One of
the hypotheses easily implies Z0c = Z0g. In order to simplify the notation we denote
this space by Z0. The scalar products ( , )0,Ω, ( , )1,Ω, and ( , )curl,Ω are all exactly
the same when at least one of the two fields involved belongs to Z0.

Let us now define Z⊥
0 = {z ∈ Z | (z, z0)0,Ω = (z, z0)1,Ω = (z, z0)curl,Ω = 0 ∀z0 ∈

Z0}. We have that in the finite dimensional space Z⊥
0 (subspace of Z) the seminorms

| |1,K̂ and | |curl,K̂ are actually norms, since Z0∩Z⊥
0 = {0}. Thus they are equivalent;

i.e., ∃C > 0, C independent of z1, such that |z1|1,K̂ ≤ C ‖curl z1‖0,K̂ ∀z1 ∈ Z⊥
0 .

Since any component z0 ∈ Z0 of any z ∈ Z (z = z0 + z1) is not able to affect the
two seminorms appearing on the left- and right-hand sides of the last inequality, the
lemma is proved.

Then Lemma 33 and Corollary 2 of [7] hold true with the same modification. This
modified version of Corollary 2 of [7] is the statement we needed since, provided its
hypotheses are verified, it implies H3. To help the reader, we report below such a
corollary with its original hypotheses.

Corollary. Let us suppose K ∈ Th is affine equivalent to K̂. Moreover, let
σ > 0 be such that hK

ρK
≤ σ ∀K ∈ Th, ∀h ∈ I. If Z ⊂ H1(K)3 is finite dimensional,

Ẑ = BTK(Z) and ∀ẑ ∈ Ẑ, curl ẑ = 0 implies ẑ = 0, then ∃C > 0, C independent of z,
K, and h such that ‖z‖1,K ≤ C ‖z‖curl,K ∀z ∈ Z.

But we always consider a regular family of meshes, so that, by using the notation
of the above corollary, there exists σ > 0 such that hK

ρK
≤ σ ∀K ∈ Th, ∀h ∈ I [17].

Moreover, ∀wh ∈ Pm,1,hV we have wh|K ∈ Pm,1 = R1⊕E2⊕· · ·⊕Em+1 ∀K ∈ Th,∀h ∈
I, and by Lemma 18 of [7] (see also [23]) the spaces Rl and El+1 are invariant ∀l > 0
under the usual affine transformation [23] so that, with the notation of the corollary,
Ẑ = BTK(Z)∀K ∈ Th affine equivalent to K̂. Finally, if ẑ = ŷ1 + ŷ2 + · · · + ŷm+1,
ẑ ∈ Pm,1 ⊂ Rm+1, ŷ1 ∈ R1 ⊂ Q1, ŷi ∈ Ei ⊂ Qi, i = 2, . . . ,m+ 1, satisfies curl ẑ = 0,
we have by Lemma 9 of [7] that ẑ ∈ Qm. But ŷi ∈ Ei ⊂ Qi ⊂ Qm, i = 2, . . . ,m,
and ŷ1 ∈ R1 ⊂ Q1 ⊂ Qm. Then also ŷm+1 ∈ Qm. Since by Lemma 16 of [7]
Em+1 ∩Qm = {0}, we obtain ŷm+1 = 0. In an analogous way we can prove ŷi = 0,
2 ≤ i ≤ m. Thus ẑ ∈ R1, which implies ẑ ∈ P 3

0 , i.e., grad ẑ = 0. Then all hypotheses
of the modified version of Corollary 2 of [7] are satisfied and we thus have proved the
following proposition.

Proposition 4.2. Suppose that the hypotheses reported in section 2 concerning
the domain, its boundary, the homogeneous material, and the triangulation of the
domain are satisfied. Then (DCP) is satisfied for the sequence of subspaces {Vh}
defined by Vh = Rl,hV ∀h ∈ I for any fixed l ∈ N, l > 0 or by Vh = Ql,hV ∀h ∈ I for
any fixed l ∈ N, l > 0.

Remark 4.3. With the above procedure we have also proved (DCP) for many
other sequences of spaces.

Remark 4.4. By using Proposition 2.27 of [6] we could remove the hypothesis
concerning the homogeneous material from the statement of Propositions 3.1 and 4.2.
As a matter of fact, a generalization of Proposition 2.27 of [6] can be proved when the
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dielectric permittivity is a matrix-valued complex function which satisfies conditions
H1 and H2 of [25, section 2] (see [9] for a result in this direction). Thus, for the first
time, to the best of the author’s knowledge, we have proved that (DCP) holds true
for all Nedelec edge elements (of any order and of both families defined on tetrahedra)
in most cases of interest in engineering applications.

Acknowledgment. The author would like to thank three anonymous reviewers
for their very helpful comments.
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Abstract. The paper presents a new affine invariant theory on asymptotic mesh independence
of Newton’s method for discretized nonlinear operator equations. Compared to earlier attempts, the
new approach is both much simpler and more intuitive from the algorithmic point of view. The
theory is exemplified at finite element methods for elliptic PDE problems.
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Introduction. The term “mesh independence” characterizes the observation
that finite dimensional Newton methods, when applied to a nonlinear PDE on suc-
cessively finer discretizations with comparable initial guesses, show roughly the same
convergence behavior on all sufficiently fine discretizations. The “mesh independence
principle” has been stated and even exploited for mesh design in papers by Allgower
and Böhmer [1] and McCormick [19]. Further theoretical investigations of the phe-
nomenon have been given in [2] by Allgower, Böhmer, Potra, and Rheinboldt. Those
papers, however, lacked certain important features in the theoretical characterization
that made their application to discretized PDEs difficult. This drawback has been
avoided in the affine invariant theoretical study by Deuflhard and Potra in [8]; from
that analysis, the modified term “asymptotic mesh independence” naturally emerged.
The present paper suggests a different approach, which is also affine invariant but
much simpler and more natural from the algorithmic point of view.

In a number of papers subsequent to [2], mesh independence principles for different
problem settings or different algorithms were established; we mention generalized
equations [11, 3], SQP methods [20, 21], shape design [18], constrained Gauss–Newton
methods [15], Newton-like methods [16], and gradient projection [17].

The paper is organized as follows. In section 1 we first revisit the theoretical
approaches given up to now to treat mesh independence for operator equations. In
section 2 we compare discrete versus continuous Newton methods, again in affine
invariant terms; in contrast to the earlier treatment in [8], we use only terminology
that naturally arises from the algorithmic point of view, such as Newton sequences and
approximation errors. The new theory is then exemplified at finite element methods
(FEM) for elliptic PDEs (section 3).

1. Preliminary considerations. Let a nonlinear operator equation be denoted
by

F (x) = 0,
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where F : D → Y is defined on a convex domain D ⊂ X of a Banach space X with
values in a Banach space Y . Throughout the paper we assume the existence of a
unique solution x∗ of this operator equation. The corresponding ordinary Newton
method in Banach space may be written as

F ′(xk)∆xk = −F (xk), xk+1 = xk + ∆xk, k = 0, 1, . . . ,(1.1)

assuming, of course, that the derivatives are invertible. In each Newton step, the
linearized operator equation must be solved, which is why this approach is often also
called quasilinearization. For F , we assume that Theorem 1 from [7] holds, an affine
invariant version of the classical Newton–Mysovskikh theorem, whose essence we recall
here for the purpose of later reference.

Theorem 1.1. Let F : D → Y be a continuously differentiable mapping with
D ⊂ X convex. Let ‖ · ‖ denote the norm in the domain space X. Suppose that F ′(x)
is invertible for each x ∈ D. Assume that, for collinear x, y, z ∈ D, the following
affine invariant Lipschitz condition holds:∥∥F ′(z)−1

(
F ′(y) − F ′(x)

)
v
∥∥ ≤ ω‖y − x‖ ‖v‖.(1.2)

For the initial guess x0 ∈ D assume that

h0 = ω‖∆x0‖ < 2

and that S̄(x0, ρ) ⊂ D for ρ = ‖∆x0‖
1−h0/2

.

Then the sequence {xk} of ordinary Newton iterates remains in S(x0, ρ) and con-
verges to a unique solution x∗ ∈ S̄(x0, ρ). Its convergence speed can be estimated
as

‖xk+1 − xk‖ ≤ 1
2ω‖xk − xk−1‖2.

In actual computation, we can solve only discretized nonlinear equations of finite
dimension, at best on a sequence of successively finer mesh levels, say,

Fj(xj) = 0, j = 0, 1, . . . ,(1.3)

where Fj : Dj → Yj denotes a nonlinear mapping defined on a convex domain Dj ⊂
Xj of a finite dimensional subspace Xj ⊂ X with values in a finite dimensional
space Yj . We assume Fj results from a Petrov–Galerkin discretization, such that
Fj(xj) = rjF (xj) with some linear restriction rj : Y → Yj . The corresponding finite
dimensional ordinary Newton method reads

F ′
j(x

k
j )∆x

k
j = −Fj(xkj ), xk+1

j = xkj + ∆xkj , k = 0, 1, . . . .

In each Newton step, a system of linear equations must be solved. Since (Fj)
′ = rjF

′,
this system can equally well be interpreted either as a discretization of the linearized
operator equation (1.1) or as a linearization of the discrete nonlinear system (1.3).
Again we assume that Theorem 1.1 holds, this time for the finite dimensional mapping
Fj . Let ωj denote the corresponding affine invariant Lipschitz constant. Then the
quadratic convergence of this Newton method is governed by the relation

‖xk+1
j − xkj ‖ ≤ 1

2ωj‖xkj − xk−1
j ‖2.
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Under the assumptions of Theorem 1.1 there exist unique discrete solutions x∗j on
each level j. Of course, we want to choose appropriate discretization schemes such
that

lim
j→∞

x∗j = x∗.(1.4)

From the synopsis of the discrete and the continuous Newton method, we immediately
see that any comparison of the convergence behavior on different discretization levels
j will direct us toward a comparison of the affine covariant Lipschitz constants ωj . Of
particular interest is the connection with the Lipschitz constant ω of the underlying
operator equation.

In the earlier papers [1, 2] on mesh independence two assumptions of the kind

‖F ′
j(xj)

−1‖ ≤ βj , ‖F ′
j(xj + vj) − F ′

j(xj)‖ ≤ γj‖vj‖

have been made in combination with the uniformity requirements

βj ≤ β, γj ≤ γ.(1.5)

Obviously, these assumptions lack affine invariance. More important, however, and as
a consequence of the noninvariance, these conditions are phrased in terms of operator
norms, which, in turn, depend on the relation of norms in the domain and the image
space of the mappings Fj and F , respectively. For typical PDEs and typical choices
of norms we would obtain

lim
j→∞

βj → ∞,

which clearly contradicts the uniformity assumption (1.5). Consequently, an analysis
in terms of βj and γj would not be applicable to this important case.

The situation is different with the affine invariant Lipschitz constants ωj : They
depend only on the choice of norms in the domain space. It is easy to verify that

ωj ≤ βjγj .

In section 2 below we will show that the ωj remain bounded in the limit j → ∞,
as long as ω is bounded—even if either βj or γj blow up. Moreover, even when the
product βjγj remains bounded, the Lipschitz constant ωj may be considerably lower,
i.e.,

ωj � βjγj .

A prerequisite for the asymptotic property (1.4) to hold is that the elements
of the infinite dimensional space X can be well approximated by elements of the
finite dimensional subspaces Xj . In general, however, the solution x∗ has “better
smoothness properties” than the generic elements of the space X. For this reason,
the earlier papers [2, 8] had restricted their analysis to some smoother subset W ∗ ⊂ X
and explicitly assumed that

x∗, xk,∆xk, xk − x∗ ∈W ∗, k = 0, 1, . . . .



ASYMPTOTIC MESH INDEPENDENCE OF NEWTON’S METHOD 1833

However, such an assumption is hard to confirm in the concrete case. That is why we
will drop it for our analysis to be presented.

Next, we revisit the paper [8] in some necessary detail. In that paper a family of
linear projections

πj : X → Xj , j = 0, 1, . . . ,

was introduced, assumed to satisfy the stability condition

qj = sup
x∈W∗,x �=0

‖πjx‖
‖x‖ ≤ q <∞, j = 0, 1, . . . .(1.6)

The projection property π2
j = πj immediately gives rise to the lower bound

qj ≥ 1.(1.7)

As a measure of the approximation quality that paper defined

δj = sup
x∈W∗,x �=0

‖x− πjx‖
‖x‖ , j = 0, 1, . . . .(1.8)

The rather natural idea that a refinement of the discretization improves the approxi-
mation quality was expressed by the asymptotic assumption

lim
j→∞

δj = 0.(1.9)

The triangle inequality and (1.6) supplied the upper bound

qj ≤ 1 + δj .(1.10)

By combination of (1.7), (1.9), and (1.10), asymptotic stability arose as

lim
j→∞

qj = 1.(1.11)

However, as has been pointed out by Braess [6], the above theory has some weak
points. In fact, from (1.6) we conclude that x = 0 implies πjx = 0. The reverse, how-
ever, will not be true in general. Hence, one must be aware of pathological elements
x 	= 0 with corresponding approximations πjx = 0. On a uniform one-dimensional
grid, such a pathological element might look just like x(t) represented graphically in
Figure 1.1. Insertion of such elements into (1.8) would yield

δj ≥ 1

on each level j, on which such pathological elements exist. If one were to accept such
an occurrence on all levels, then this would be in clear contradiction to the desired
asymptotic property (1.9) and its consequence (1.11).

In order to close this gap of that theory, one would have to relate the subset
W ∗ and the projections πj such that the occurrence of pathological elements would
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x

t

Fig. 1.1. Pathological element x �= 0 with πjx = 0 (•: mesh nodes).

be asymptotically excluded. As an example, assume we have nested subspaces Xj ,
e.g., constructed by uniform mesh refinement. Suppose we begin with a “sufficiently
good” initial projection π0 on a “sufficiently” fine mesh, which already captures the
main qualitative behavior of the solution x∗ correctly. Then “pathological” elements
would no longer be expected to occur on finer meshes in actual computation. Thus,
upon carefully choosing appropriate subsets of W ∗, the theory from [8] could, in
principle, be repaired. However, the technicalities of such a theory tend to obscure
the underlying simple idea.

For this reason, here we abandon that approach and turn to a different one, which
seems to us both simpler and more intuitive from the algorithmic point of view: We
will avoid the (anyway computationally unavailable) projections πj and define the
approximation quality δj differently, just exploiting usual approximation results for
discretization schemes.

2. Discrete versus continuous Newton sequences. In this section, we study
the comparative behavior of discrete versus continuous Newton sequences. If not
explicitly stated otherwise, the notation is taken from the previous section.

We will consider the phenomenon of mesh independence of Newton’s method in
two steps. First, we will show that the discrete Newton sequence tracks the continuous
Newton sequence closely, with a maximal distance bounded in terms of the mesh size;
both of the Newton sequences behave nearly identically until, eventually, a small
neighborhood of the solution is reached. Second, we prove the existence of affine
invariant Lipschitz constants ωj for the discretized problems, which approach the
Lipschitz constant ω of the continuous problem in the limit j → ∞; again, the distance
can be bounded in terms of the mesh size. Upon combining these two lines, we finally
establish the existence of locally unique discrete solutions x∗j in a vicinity of the
continuous solution x∗.

To begin with, we prove the following nonlinear perturbation lemma.
Lemma 2.1. Consider two Newton sequences {xk}, {yk} starting at initial guesses

x0, y0 and continuing as

xk+1 = xk + ∆xk, yk+1 = yk + ∆yk,

where ∆xk,∆yk are the corresponding ordinary Newton corrections. Assume the
affine invariant Lipschitz condition (1.2) is satisfied. Then the following contraction
result holds:

‖xk+1 − yk+1‖ ≤ ω
(

1
2‖xk − yk‖ + ‖∆xk‖) ‖xk − yk‖.(2.1)
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Proof. Dropping the iteration index k, we start with

x+ ∆x− y − ∆y

= x− F ′(x)−1F (x) − y + F ′(y)−1F (y)

= x− F ′(x)−1F (x) + F ′(x)−1F (y) − F ′(x)−1F (y) − y + F ′(y)−1F (y)

= x− y − F ′(x)−1
(
F (x) − F (y)

)
+ F ′(x)−1

(
F ′(y) − F ′(x)

)
F ′(y)−1F (y)

= F ′(x)−1

(
F ′(x)(x− y) −

∫ 1

t=0

F ′(y + t(x− y))(x− y) dt

)
+ F ′(x)−1(F ′(y) − F ′(x))∆y.

Upon using assumption (1.2), we conclude that

‖xk+1 − yk+1‖ ≤
∫ 1

t=0

‖F ′(xk)−1
(
F ′(xk) − F ′(yk + t(xk − yk))

)
(xk − yk)‖ dt

+ ‖F ′(xk)−1(F ′(yk) − F ′(xk))∆yk‖
≤ ω

2
‖xk − yk‖2 + ω‖xk − yk‖ ‖∆yk‖,

which confirms (2.1).
With the above auxiliary result, we are now ready to study the relative behavior

of discrete versus continuous Newton sequences.
Theorem 2.2. In addition to the notation as already introduced, let x0 = x0

j ∈ Xj

denote a given starting value such that the assumptions of Theorem 1.1 hold for the
continuous Newton iteration, including

h0 = ω‖∆x0‖ < 2.

For the discrete mapping Fj and all arguments xj ∈ Dj = D ∩Xj define

F ′
j(xj)∆xj = −Fj(xj), F ′(xj)∆x = −F (xj).(2.2)

Assume that the discretization is fine enough such that

‖∆xj − ∆x‖ ≤ δj ≤ min{1, 2 − h0}
2ω

(2.3)

uniformly for xj ∈ Dj. Assume furthermore S̄
(
x0, ρj

) ∩Xj ⊂ Dj for

ρj :=
‖∆x0‖

1 − h0/2
+

2δj
min{1, 2 − h0} .

Then the sequence of the discrete Newton iterates xkj remains in B(x0, ρj) ∩Xj and
the following error estimates hold:

‖xkj − xk‖ ≤ 2δj
min{1, 2 − h0} ≤ 1

ω
for all k ∈ N,(2.4)

lim sup
k→∞

‖xkj − xk‖ ≤ 2δj .(2.5)

Proof. In [14, pp. 99, 160], Hairer, Nørsett, and Wanner introduced “Lady
Windermere’s fan” as a tool to prove discretization error results for evolution problems
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x2,0

x1,0

x3,0

δj δj δj

x0
j = x0,0 x1

j = x1,1 x2
j = x2,2 x3

j = x3,3

x∗

x2,1 x3,2

Fig. 2.1. “Lady Windermere’s fan” for the discrete and the continuous Newton method.

based on some linear perturbation lemma. We may copy this idea and exploit our
nonlinear perturbation Lemma 2.1 in the present case. The situation is represented
graphically in Figure 2.1.

The discrete Newton sequence starting at the given initial point x0
j = x0,0 is

written as {xk,k}. The continuous Newton sequence, written as {xk,0}, starts at the
same initial point x0 = x0,0 and runs toward the solution point x∗. In between we
define further continuous Newton sequences, written as {xi,k}, k = i, i+ 1, . . . , which
start at the discrete Newton iterates xij = xi,i and also run toward x∗. Note that
the existence or even uniqueness of a discrete solution point x∗j is not implied by the
assumptions of the theorem.

For the purpose of repeated induction, we assume that

‖xk−1
j − x0‖ < ρj ,

which certainly holds for k = 1. In order to characterize the deviation between discrete
and continuous Newton sequences, we introduce the two majorants

ω‖∆xk‖ ≤ hk, ‖xkj − xk‖ ≤ εk.

Recall from Theorem 1.1 that

hk+1 =
1

2
h2
k.(2.6)

For the derivation of a second majorant recursion, we apply the triangle inequality in
the form

‖xk+1,k+1 − xk+1,0‖ ≤ ‖xk+1,k+1 − xk+1,k‖ + ‖xk+1,k − xk+1,0‖.
The first term can be treated using assumption (2.3) so that

‖xk+1,k+1 − xk+1,k‖ = ‖xkj + ∆xkj −
(
xk,k + ∆xk,k

) ‖ = ‖∆xkj − ∆xk,k‖(2.7)

≤ δj .

For the second term, we may apply our nonlinear perturbation Lemma 2.1 (see the
shaded regions in Figure 2.1) to obtain

‖xk+1,k − xk+1,0‖ ≤ ω

(
1

2
‖xk,k − xk,0‖ + ‖∆xk,0‖

)
‖xk,k − xk,0‖.
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a− a+

Fig. 2.2. Fixed point recursion ak.

Combining these results then leads to

‖xk+1,k+1 − xk+1,0‖ ≤ δj +
ω

2
ε2k + hkεk.

The above right-hand side may be defined to be εk+1. Hence, together with (2.6), we
arrive at the following set of majorant equations:

hk+1 =
1

2
h2
k, h0 = ω‖∆x0‖,

εk+1 = δj +
1

2
ωε2k + hkεk, ε0 = 0.

Now for β ≥ 1 we multiply the second recursion by βω and add both recursions. This
yields the following recursion for βωεk + hk:

βωεk+1 + hk+1 = βωδj +
1

2
(βωεk + hk)

2 − [ 1
2 (β − 1)βω2ε2k

]
.

Since the term in squared brackets is positive, the sequence ak defined by

ak+1 = βωδj +
1

2
a2
k, a0 = h0,(2.8)

is a majorant to βωεk + hk. Solving (2.8) yields the equilibrium points

a± = 1 ±√1 − 2βωδj(2.9)

if 2βωδj ≤ 1, which is always possible to guarantee by choosing 1 ≤ β ≤ (2ωδj)
−1

due to (2.3). The sequence converges monotonically toward the stable fixed point a−
in case h0 < a+ (see Figure 2.2). We consider the two cases h0 ≤ 1 and h0 > 1
separately. If h0 ≤ 1, we choose

β =
1

2ωδj
,
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such that h0 ≤ a− = 1. Due to monotonicity the sequence ak is bounded from above
by a− = 1. We then derive the upper bound

εk ≤ a−
βω

≤ 2δj .

Both (2.4) and (2.5) are covered by this result. For 1 < h0 < 2, we choose σ > 0
sufficiently small and

β =
h0(2 − h0)

(2 + σ)ωδj
,

such that both β ≥ 1 and h0 < a+ are satisfied. Due to monotonicity, the sequence
ak is bounded from above by a0 = h0, and we obtain

εk ≤ h0

βω
=

(2 + σ)δj
2 − h0

.(2.10)

Since (2.10) holds for all sufficiently small σ > 0, we obtain

εk ≤ 2δj
2 − h0

,

which proves (2.4). The asymptotic result (2.5) is now an immediate consequence of
ak → a−.

Finally, with application of the triangle inequality

‖xk+1
j − x0‖ ≤ ‖xk+1 − x0‖ + εk+1 <

‖∆x0‖
1 − h0/2

+
2δj

min{1, 2 − h0} = ρj ,

the induction and therefore the whole proof are completed.
We are interested in the question of whether a discrete solution point x∗j exists.

The above tracking theorem, however, states only that the discrete Newton sequence
stays close to the continuous Newton sequence and therefore has an accumulation
point close to the continuous solution.

Corollary 2.3. Under the assumptions of Theorem 2.2, there exists at least
one accumulation point

x̂j ∈ S̄ (x∗, 2δj) ∩Xj ⊂ S

(
x∗,

1

ω

)
∩Xj ,

which need not be a solution point of the discrete equations Fj(xj) = 0.
In order to prove more, Theorem 1.1 directs us to study whether a Lipschitz

condition of the kind (1.2) additionally holds.
Lemma 2.4. Assume Theorem 1.1 holds for the mapping F : X → Y . For

collinear xj , yj , zj ∈ Xj, define uj ∈ Xj and u ∈ X according to

F ′(xj)u = (F ′(zj) − F ′(yj)) vj ,(2.11)

F ′
j(xj)uj =

(
F ′
j(zj) − F ′

j(yj)
)
vj(2.12)

for arbitrary vj ∈ Xj. Assume that the discretization method satisfies

‖u− uj‖ ≤ σj‖zj − yj‖ ‖vj‖.(2.13)
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Then there exist constants

ωj ≤ ω + σj ,(2.14)

such that the affine invariant Lipschitz condition

‖uj‖ ≤ ωj‖zj − yj‖ ‖vj‖
holds.

Proof. The proof is a simple application of the triangle inequality:

‖uj‖ ≤ ‖u‖ + ‖uj − u‖ ≤ ω‖zj − yj‖ ‖vj‖ + σj‖zj − yj‖ ‖vj‖
= (ω + σj) ‖zj − yj‖ ‖vj‖.

Finally, the existence of a unique discrete solution x∗j close to the continuous
solution x∗ is a direct consequence.

Corollary 2.5. Under the assumptions of Theorem 2.2 and Lemma 2.4 the
discrete Newton sequence {xkj }, k = 0, 1, . . . , converges q-quadratically to a unique
discrete solution point

x∗j ∈ S̄ (x∗, 2δj) ∩Xj ⊂ S

(
x∗,

1

ω

)
∩Xj .

Proof. We just need to apply Theorem 1.1 to the finite dimensional mapping
Fj with the starting value x0

j = x0, and the affine invariant Lipschitz constant ωj
from (2.14).

Summarizing, we come to the following conclusion, at least in terms of the ana-
lyzed upper bounds: If the asymptotic properties

lim
j→∞

δj = 0, lim
j→∞

σj = 0,

can be shown to hold, then the convergence speed of the discrete ordinary Newton
method is asymptotically just the same as that of the continuous ordinary Newton
method. Moreover, if related initial guesses x0 and x0

j and a common termination
criterion are chosen, then even the number of iterations will be nearly the same.

3. Application to discretization schemes. In order to apply the abstract
mesh independence principles of section 2 to discretization schemes for differential
equations, we have to show two features. First,

‖∆x− ∆xj‖ ≤ δj , lim
j→∞

δj = 0,(3.1)

where ∆x is the exact and ∆xj is the approximate solution of the Newton equa-
tions (2.2), respectively.

Second,

‖u− uj‖ ≤ σj‖zj − yj‖ ‖vj‖, lim
j→∞

σj = 0,(3.2)

where u and uj are the solutions of the Lipschitz equations (2.11) and (2.12), respec-
tively.

The structure of the argumentation will be straightforward. The first step is to
apply classical error estimates for the numerical method under consideration. These
estimates usually depend on the regularity of the exact solution y of the linear cor-
rection problems. The second step is then to show appropriate regularity results for
y.

We concentrate on FEM for elliptic PDEs. Collocation methods for ODEs are
discussed in [22].
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FEM for semilinear elliptic PDEs. Assume f : R → R is monotonically increasing
and locally Lipschitz continuously differentiable with

|f ′(x) − f ′(y)| ≤ L(1 + max(|x|, |y|))|x− y|.(3.3)

This implies the growth condition f = O(|x|3), which in turn implies that the nonlin-
ear superposition (or Nemyckii) operator f generated by f maps H1

0 (Ω) continuously
into L2(Ω) on some convex polygonal domain Ω ⊂ R

d, d ≤ 3, via the embedding
H1

0 (Ω) ↪→ L6(Ω) (cf. [4, 12]). We define the continuous problem F (x) = 0 as the
boundary value problem

F (x) = −div(κ∇x) + f(x) = 0, x ∈ H1
0 (Ω),(3.4)

with 0 < κ ≤ κ ≤ κ. The discretizations Fj are provided by finite element approxi-
mations on shape-regular triangulations Tj with mesh size τj = maxT∈Tj diamT . We
consider piecewise linear finite element spaces Xj ⊂ H1

0 (Ω) on the triangulations Tj .
Theorem 3.1. Let a bounded set D ⊂ H1

0 (Ω) be given. Then there exist constants
M1,M2 < ∞ depending only on D and the problem setting P = (Ω, κ, f), such that
the Newton-FEM discretizations Fj satisfy the Newton approximation condition (3.1)
with δj = M1τj,

‖∆x− ∆xj‖H1 ≤M1τj uniformly for xj ∈ D ∩Xj ,(3.5)

and the Lipschitz approximation condition (3.2) with σj = M2τj,

‖u− uj‖H1 ≤M2τj‖zj − yj‖H1‖vj‖H1(3.6)

uniformly for all yj , zj ∈ D ∩Xj and vj ∈ Xj.
Proof. First we prove (3.5). Let ∆x satisfy F ′(xj)∆x = −F (xj) and let ∆xj

be its FEM approximation. Returning to (2.7) we notice that xk+1,k is more regular
than ∆xk,k. Thus we introduce w = xj + ∆x, which satisfies

−div(κ∇w) + f ′(xj)w = −f(xj) + f ′(xj)xj .(3.7)

The growth condition (3.3) implies f(xj) ∈ L2 and f ′(xj) ∈ L3, such that the right-
hand side of (3.7) is contained in L2. We may estimate

‖f(xj) − f ′(xj)xj‖L2 =

∥∥∥∥∫ 1

t=0

(f ′(txj) − f ′(xj))xj dt+ f(0)

∥∥∥∥
L2

≤
∫ 1

t=0

L(1 − t)‖(1 + |xj |)x2
j‖L2 dt+ c

≤ L

2
(‖x2

j‖L2
+ ‖x3

j‖L2
) + c

= c(‖xj‖2
L4

+ ‖xj‖3
L6

+ 1)

≤ c(‖xj‖2
H1 + ‖xj‖3

H1 + 1)

≤ c,

where c denotes a generic constant independent of the discretization and xj . Since
the Helmholtz term in (3.7) is positive semidefinite due to the monotonicity of f , the
inverse of the differential operator can be bounded in terms of the ellipticity constant
of its main part only, which is independent of xj . Thus we obtain

‖w‖H1 ≤ c‖f(xj) − f ′(xj)xj‖L2 ≤ c.
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Using Hölder’s inequality and the embedding H1
0 (Ω) ↪→ L6(Ω), we estimate

‖f ′(xj)w‖L2
≤ ‖w‖L6

‖f ′(xj)‖L3
≤ ‖w‖H1 c(1 + ‖xj‖2

L6
) ≤ c.

We now rewrite (3.7) as

−div(κ∇w) = −f(xj) + f ′(xj)xj − f ′(xj)w.

Since the right-hand side is contained in L2, the solution w is H2-regular (cf. [13])
with

‖w‖H2 ≤ c‖f(xj) − f ′(xj)xj + f ′(xj)w‖L2 ≤ c.

We thus obtain an approximation error

‖wj − w‖H1 ≤ cτj‖w‖H2 ≤ cτj

for its FEM approximation wj = xj + ∆xj (cf. [5, p. 79]), uniformly for all xj . For
the approximation error ∆xj − ∆x we now obtain

‖∆xj − ∆x‖H1 = ‖wj − w‖H1 ≤ cτj .

Second, we prove (3.6). u is defined by

F ′(xj)u = (F ′(zj) − F ′(yj))vj = (f ′(zj) − f ′(yj))vj .

As before, the right-hand side is contained in L2 and the solution u is H2-regular,
such that we obtain

‖uj − u‖H1 ≤ cτj‖(f ′(zj) − f ′(yj))vj‖L2 .

Upon using Hölder’s inequality twice we conclude that

‖(f ′(zj) − f ′(yj))vj‖L2
≤ ‖L2(1 + max(|yj |, |zj |))2(zj − yj)

2v2
j ‖1/2
L1

≤ (‖L2(1 + max(|yj |, |zj |))2‖L3
‖(zj − yj)

2‖L3
‖v2
j ‖L3

)1/2
= L‖1 + max(|yj |, |zj |)‖L6‖zj − yj‖L6‖vj‖L6 ≤ c,

which completes the proof.
Combining Theorem 2.2 and Lemma 2.4 with Theorem 3.1 we obtain asymptotic

mesh independence for FEM approximations of semilinear elliptic equations.
Corollary 3.2. Assume that there exists a convex and bounded set D ⊂ H1,

such that on D the assumptions of Theorem 1.1 (in particular ω < ∞) and Theo-
rem 3.1 are satisfied for the nonlinear equation (3.4).

Then there exists a constant M1 and a mesh size τ0 > 0, such that for all dis-
cretizations Xj with corresponding mesh size τj < τ0 and starting values x0 = x0

j ∈ Xj

with

h0 = ω‖∆x0‖H1 < 2(3.8)

and

S̄

(
x0,

‖∆x0‖ + 2M1τj
1 − h0/2

)
⊂ D,(3.9)
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the discrete Newton sequence remains in D, and its distance to the continuous Newton
sequence is bounded by

‖xkj − xk‖H1 ≤ 2M1τj
1 − h0/2

.(3.10)

Moreover, both sequences converge q-quadratically to solutions x∗j and x∗, respectively,
with

‖x∗j − x∗‖H1 ≤ 2M1τj .(3.11)

Proof. Application of Theorem 3.1 on D yields constants M1,M2 <∞ such that
‖∆x−∆xj‖H1 ≤M1τj and ‖u−uj‖H1 ≤M2τj‖zj−yj‖H1‖vj‖H1 hold for all xj ∈ D
in terms of (3.1) and (3.2). We will verify Corollary 3.2 for

τj < τ0 := min

⎧⎨⎩1 − h0/2

2ωM1
,

1

2M2

⎛⎝√ω2 +
M2(1 − h0/2)

M1
− ω

⎞⎠⎫⎬⎭ .

Note that the continuous Newton sequence satisfying (3.8) and (3.9) remains in

S(x0,
‖∆x0‖H1

1−h0/2
) ⊂ D due to Theorem 1.1. Because of

τj < τ0 ≤ 1 − h0/2

2ωM1
≤ min{1, 2 − h0}

2ωM1
,

condition (2.3) is clearly satisfied, such that we can apply Theorem 2.2 and ob-
tain (3.10), (3.11), and xkj ∈ D.

Now we turn to q-quadratic convergence of the discrete Newton sequence. A
direct consequence of (3.10) is the estimate

‖∆xkj ‖H1 ≤ ‖xk+1
j − xk+1‖H1 + ‖∆xk‖H1 + ‖xk − xkj ‖H1

≤ 4M1τj
1 − h0/2

+ ‖∆xk‖H1 .

As limk→∞ ‖∆xk‖H1 = 0 by Theorem 1.1 we can find an index k0 such that

‖∆xkj ‖H1 ≤ 8M1τj
1 − h0/2

for all k ≥ k0.

Application of Lemma 2.4 yields ωj ≤ ω + τjM2 and therefore

hkj := ωj‖∆xkj ‖H1 ≤ (ω + τjM2)
8M1τj

1 − h0/2
for all k ≥ k0.

Now

τj < τ0 ≤ 1

2M2

⎛⎝√ω2 +
M2(1 − h0/2)

M1
− ω

⎞⎠
implies hk0j < 2, such that Theorem 1.1 yields q-quadratic convergence of the discrete

Newton iteration starting at xk0j .
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FEM for strongly nonlinear elliptic PDEs. For strongly nonlinear PDEs with a
second order differential operator depending on the solution, the analytic treatment of
the approximation conditions (3.1) and (3.2) is considerably more difficult. The global
regularity of the right-hand side is, in general, only H−1, which results in sharp edges
in the Newton correction. These bucklings, however, coincide geometrically with the
edges of the triangulation, such that the finite element approximation quality does
not deteriorate. This effect is indeed observed in actual computation.

The regularity theory necessary for addressing such problems is beyond the scope
of the present paper. As a substitute, we give a numerical example from [10], where
the phenomenon of asymptotic mesh independence may be studied.

Example: Parametric minimal surface. Consider the variational problem

min

∫
Ω

√
1 + |∇u|2 dx

subject to the boundary conditions

u = cos(x) cos(y) on ΓD = ∂Ω\ΓN ,

∂u

∂n
= 0 on ΓN

on Ω = [−π/2, 0]2. The functional gives rise to the first and second order expressions

〈F (u), v〉 =

∫
Ω

(
1 + |∇u|2)−1/2∇uT∇v dx,

〈F ′(u)v, w〉 =

∫
Ω

(
− (1 + |∇u|2)−3/2∇wT (∇u∇uT )∇v
+
(
1 + |∇u|2)−1/2∇wT∇v

)
dx.

We define two different problem settings by choosing
(a) ΓN = [−π/2, 0] × {0},
(b) ΓN = [−π/2, 0] × {0} ∪ {0} × [−π/4, 0].

Note that by symmetry, problem (a) represents a Dirichlet problem on a convex do-
main, whereas the deliberate choice of boundary conditions (b) leads to a Dirichlet
problem on a highly nonconvex slit domain, on which no physically meaningful solu-
tion exists.

The adaptive Newton-multilevel code Newton-KASKADE [9, 10] has been run on
both problems, providing affine invariant computational estimates [ωj ] ≤ ωj on each
mesh refinement level j. On each level, a few Newton steps have been computed using
the approximation from the level before, and the maximum estimate encountered in
these steps has been selected as [ωj ]. As can be seen from Table 3.1, the Lipschitz
constants for the well-defined problem (a) remain bounded and rather independent
of the refinement level, apart from some fluctuation due to the finite sampling of
ωj . In contrast to that, the estimates for the Lipschitz constant of problem (b) are
dramatically increasing by five orders of magnitude. This indicates that the problem
has finite dimensional solutions on each of the successive meshes, each unique within
the corresponding finite dimensional Kantorovich ball with radius ρj ∼ 1/ωj ; however,
these balls shrink from radius ρ0 ≈ 1 to ρ12 ≈ 10−5. Frank extrapolation of this
effect insinuates the conjecture that there exists no continuous unique solution of the
underlying minimization problem.
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Table 3.1

Estimated Lipschitz constants [ωj ] on different refinement levels j.

Problem (a) Problem (b)
j �nodes [ωj ] �nodes [ωj ]
0 4 1.32 5 7.5
1 7 1.17 10 4.2
2 18 4.55 17 7.3
3 50 6.11 26 9.6
4 123 5.25 51 22.5
5 158 20.19 87 50.3
6 278 19.97 105 1486.2
7 356 9.69 139 2715.6
8 487 8.47 196 5178.6
9 632 11.73 241 6837.2

10 787 44.21 421 12040.2
11 981 49.24 523 167636.0
12 1239 20.10 635 1405910.0
13 1610 32.93
14 2054 37.22
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[2] E. L. Allgower, K. Böhmer, F. A. Potra, and W. C. Rheinboldt, A mesh-independence
principle for operator equations and their discretizations, SIAM J. Numer. Anal., 23 (1986),
pp. 160–169.

[3] W. Alt, Mesh-independence of the Lagrange-Newton method for nonlinear optimal control
problems and their discretizations, Ann. Oper. Res., 101 (2001), pp. 101–117.

[4] J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge University
Press, Cambridge, UK, 1990.

[5] D. Braess, Finite Elements, 2nd ed., Cambridge University Press, Cambridge, UK, 2001.
[6] D. Braess, private communication, 2002.
[7] P. Deuflhard and G. Heindl, Affine invariant convergence theorems for Newton’s method

and extensions to related methods, SIAM J. Numer. Anal., 16 (1979), pp. 1–10.
[8] P. Deuflhard and F. Potra, Asymptotic mesh independence of Newton–Galerkin methods

via a refined Mysovskii theorem, SIAM J. Numer. Anal., 29 (1992), pp. 1395–1412.
[9] P. Deuflhard and M. Weiser, Local inexact Newton multilevel FEM for nonlinear ellip-

tic problems, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen,
W. Fitzigibbon, J.-L. Lions, J. Periaux, and M. Wheeler, eds., Wiley-Interscience, New
York, 1997, pp. 129–138.

[10] P. Deuflhard and M. Weiser, Global inexact Newton multilevel FEM for nonlinear elliptic
problems, in Multigrid Methods V, Lect. Notes Comput. Sci. Eng. 3, W. Hackbusch and
G. Wittum, eds., Springer-Verlag, Berlin, 1998, pp. 71–89.

[11] A. Dontchev, W. Hager, and V. Veliov, Uniform convergence and mesh independence of
Newton’s method for discretized variational problems, SIAM J. Control Optim., 39 (2000),
pp. 961–980.

[12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Grundlehren Math. Wiss. 224, Springer-Verlag, Berlin, New York, 1977.

[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathe-
matics 24, Pitman, Boston, 1985.

[14] E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff
Problems, Springer Ser. Comput. Math. 8, 2nd ed., Springer-Verlag, Berlin, 1993.



ASYMPTOTIC MESH INDEPENDENCE OF NEWTON’S METHOD 1845

[15] M. Heinkenschloss, Mesh independence for nonlinear least squares problems with norm con-
straints, SIAM J. Optim., 3 (1993), pp. 81–117.

[16] C. Kelley and E. Sachs, Mesh independence of Newton-like methods for infinite dimensional
problems, J. Integral Equations Appl., 3 (1991), pp. 549–573.

[17] C. T. Kelley and E. W. Sachs, Mesh independence of the gradient projection method for
optimal control problems, SIAM J. Control Optim., 30 (1992), pp. 477–493.

[18] M. Laumen, Newton’s mesh independence principle for a class of optimal shape design prob-
lems, SIAM J. Control Optim., 37 (1999), pp. 1070–1088.

[19] S. McCormick, A revised mesh refinement strategy for Newton’s method applied to nonlin-
ear two-point boundary value problems, in Numerical Treatment of Differential Equations
Applications, Lecture Notes in Math. 679, Springer-Verlag, Berlin, 1978, pp. 15–23.

[20] S. Volkwein, Mesh-independence for an augmented Lagrangian-SQP method in Hilbert spaces,
SIAM J. Control Optim., 38 (2000), pp. 767–785.

[21] S. Volkwein, Mesh-independence of Lagrange-SQP methods with Lipschitz-continuous La-
grange multiplier updates, Optim. Methods Softw., 17 (2002), pp. 77–111.

[22] M. Weiser, A. Schiela, and P. Deuflhard, Asymptotic Mesh Independence of Newton’s
Method Revisited, preprint, ZIB Report 03-13, Zuse Institute Berlin, Berlin, Germany,
2003.



ON COMPARING THE WRITHE OF A SMOOTH CURVE TO THE
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JASON CANTARELLA†

SIAM J. NUMER. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 42, No. 5, pp. 1846–1861

Abstract. We find bounds on the difference between the writhing numbers of a smooth curve
and a polygonal curve inscribed within. The proof is based on an extension of Fuller’s difference
of writhe formula to the case of polygonal curves. The results establish error bounds useful in the
numerical computation of writhe in terms of bounds on the edge lengths of the polygon and the
derivatives of the curve. The bounds are “adaptive” in the sense that they improve when regions of
the smooth curve with larger derivatives are approximated by shorter edges of the polygon.

Key words. writhing number, numerical quadrature
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1. Introduction. The writhing number measures the wrapping and coiling of
space curves. Writhe has proved useful in molecular biology, where it is used to study
the geometry of tangled strands of DNA [19]; often with the famous Călugăreanu–
White formula for a curve C in space with a normal field V [5, 6, 21, 15]:

Lk(C,C + εV ) = Tw(C, V ) + Wr(C).

Writhe has proved important in the study of elastic rods in biology [20] and has even
been used as the basis for a system for automatically classifying protein structures [16].

In these applications, and in numerical simulations performed by biologists and
mathematicians, it is often required to compute writhing numbers using numerical
methods.

For polygonal curves, there is a well-developed set of algorithms for computing
writhe. These methods range from Banchoff’s original exact sum formula for the
writhe of a polygonal curve [3], to Agarwal, Edelsbrunner, and Wang’s fast sweepline
algorithm [1], which is based on deep results from computational geometry. Many
other methods are surveyed by Klenin and Langowski in [13] (see also [9, 19]).

For smooth curves, the only existing methods are the standard tools for numerical
integration, such as adaptive quadrature. It would be desirable to apply the sophis-
ticated algorithms developed for the polygonal case in this setting, but there is a
missing ingredient: We must be able to bound the error introduced in approximating
a smooth curve by an inscribed polygonal curve. The purpose of this paper is to
bridge this gap by proving the following theorem.

Theorem 1. Suppose C(t) is a simple, closed curve of class C4. We assume
C(t) is parametrized so that |C ′(t)| ≥ 1, and that we have upper bounds B1, . . . , B4

on |C ′(t)|, . . . , |C(4)(t)|. Let Cn(t) be any n-edge polygonal curve inscribed in C with
maximum edge length x and 1/x > 5B2.
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If the ribbon formed by joining Cn(t) to C(t) for every t is embedded,

|Wr(C) − Wr(Cn)| < αnx3 + nO(x4),(1)

where α is a numerical constant less than B2(5B
2
2 +B3).

That is, if the lengths of the edges of Cn are approximately constant, the error is
bounded by a multiple of 1/n2. We also derive a “local” version of these bounds which
is useful when the derivatives of the curve are large in some regions and small in others.
In this case, we may split the curve and derive independent bounds on each region’s
contribution to the overall approximation error (see Corollary 17). This allows us to
use more edges of Cn to approximate regions where C has large derivatives.

The proof is based on Fuller’s ∆Wr formula, which gives the difference in writhing
number between two curves as the spherical area of the ribbon bounded by the curves
on S2 swept out by their unit tangent vectors [11]. (Following Solomon [18], we will
refer to such curves as tantrices, though they are classically referred to as tangent
indicatrices.)

We begin by defining the writhing number in section 2. Sections 3 and 4 then
introduce the original form of Fuller’s ∆Wr formula. In sections 5 and 6 we extend
Fuller’s formula to the case where one curve is polygonal and the other is of class C2

using a natural geometric idea: The tantrix of a polygonal curve should be defined to
be the chain of geodesic segments on S2 joining the (isolated) tangent vectors of the
curve (this was pointed out by Chern in [8]). In the process, we discover a surprising
fact: The writhe of a polygonal curve is equal to the writhe of any smooth curve
obtained by carefully rounding off its corners!

Section 8 contains the remainder of our work: estimating the terms in our im-
proved version of the ∆Wr formula to obtain Theorem 13. We test our error bounds
in section 9 by computing the writhe of a collection of polygonal curves inscribed in
a smooth curve of known writhe.

The last section contains a discussion of some open problems inspired by the
present work. We state the most important of them now: Like most of the theory of
writhing numbers, the proof of our main theorem depends essentially on the fact that
C is closed. Can these methods be extended to open curves?

2. Definitions. The writhing number of a space curve is defined by the following
definition.

Definition 2. The writhe of a piecewise differentiable curve C(s) is given by

Wr(C) =
1

4π

∫
C×C

C ′(s) × C ′(t) · (C(s) − C(t))

|C(s) − C(t)|3 dsdt.(2)

Definition 2 is inspired by the Gauss formula for the linking number of two space
curves, A(s) and B(s) (see Epple [10] for a fascinating discussion of the history of this
formula):

Lk(A,B) =
1

4π

∫
A×B

A′(s) ×B′(t) · (A(s) −B(t))

|A(s) −B(t)|3 dsdt.(3)

When the two curves A and B become a single curve, their linking number be-
comes the writhing number. This introduces a potential singularity on the diagonal
of C×C, but a careful calculation shows that the integral still converges. In fact, the
integrand of (2) approaches 0 on the diagonal of C × C, even when the curve C has
a corner.
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Fig. 1. Changing the projection direction within a cell can only alter the diagram by one of
these two moves. Neither changes the signed crossing number of the diagram, as we can see by
counting the + and − markers at the crossings of C.

From now on, we will assume that C is simple. With this assumption, another
way to look at the integral of Definition 2 is to observe that the integrand is the
pullback of the area form on S2 under the Gauss map C × C → S2 defined by

(C(s), C(t)) �→ C(s) − C(t)

|C(s) − C(t)| .(4)

From this perspective, we can see that the (signed) multiplicity of the Gauss map
at any point p on S2 is just the number of self-crossings of the projection of C in
direction p.

3. Fuller’s ∆Wr formula. Suppose we have a differentiable curve C(t), with
unit tangent vector T (t). As we mentioned in section 1, the curve T (t) on the unit
sphere is known as the tantrix of C. This curve divides the unit sphere into a number
of cells. Within each cell, the signed crossing number of the projection of C is constant:
Changing projection directions within the cell amounts to altering the projection of
the knot by a regular isotopy consisting of Reidemeister moves of types II and III
(pictured in Figure 1). Neither of these moves changes the signed crossing number of
the knot.

This observation motivates the idea that the writhe of a closed space curve is
related to the fraction of the sphere’s area enclosed by its tantrix. In 1978, Brock
Fuller stated the following formula.

Theorem 3 (Fuller’s spherical area formula). For any closed space curve C(s)
of class C3, let A be the spherical area enclosed by the tantrix of C. Then

1 + Wr(C) =
A

2π
mod 2.(5)

Fuller used this formula to conclude that the difference in writhe between two
curves X0 and X1 whose tantrices T0 and T1 are sufficiently close is given by a certain
formula, which represents the spherical area of the ribbon between T0 and T1.

To be more specific, suppose that X0 and X1 are simple closed space curves of
class C2, with regular parametrization (that is, parametrized so that X ′

0 and X ′
1 never

vanish), and unit tangent vectors T0 and T1. Let F :S1 × [0, 1] → R3 be a continuous
deformation of X0 into X1, where F (t, λ) = Xλ(t) and the Xλ are simple curves of
class C1, with unit tangent vectors Tλ(t) continuous in (t, λ).

Theorem 4 (Fuller’s ∆Wr formula). If T1(t) and Tλ(t) are not antipodal for all
(t, λ), then

Wr(X1) − Wr(X0) =
1

2π

∫
C

T0(t) × T1(t)

1 + T0(t) · T1(t)
· [T ′

0(t) + T ′
1(t)] dt.(6)
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We observe that this formula does not require an arc-length parametrization of
X0 and X1.

4. Justifying Fuller’s interpretation of the ∆Wr formula. While Fuller
stated both of these theorems in 1978, he did not provide complete proofs for either.
The first rigorous proofs of Theorems 3 and 4 were given by Aldinger, Klapper, and
Tabor [2] in 1995. While these authors proved both theorems as stated, they did
not show that the formula in Theorem 4 represents the spherical area of the ribbon
between T0 and T1 (in [2], the right-hand side of (6) describes the difference between
the twist of two frames on X0 and X1.)

In the spirit of their paper, we now justify Fuller’s original intuition about (6).

Proposition 5. Given two curves T0(t), T1(t) : [0, 1] → S2, where T0(t) and T1(t)
are never antipodal, the area of the spherical region R bounded by T0, T1 and the great
circle arcs joining their endpoints is given by

Area(R) =

∫
T0(t) × T1(t)

1 + T0(t) · T1(t)
· (T ′

0 + T ′
1) dt.(7)

Proof. We let

u(θ, t) = cos θ T0(t) + sin θ T1(t)

and parametrize the region R by

v(θ, t) =
u(θ, t)

|u(θ, t)| ,

where θ ranges from 0 to π/2. Plugging this parametrization into the area form on
S2 and using the properties of the triple product, we find

d Area =
1

|u|3
(
∂u

∂θ
× ∂u

∂s
· u
)

dθ ∧ dt.

Using the definition of u(θ, t), this simplifies to

d Area = T0 × T1 ·
(

cos θ

(1 + 2 cos θ sin θ T0 · T1)
3
2

T ′
0 +

sin θ

(1 + 2 cos θ sin θ T0 · T1)
3
2

T ′
1

)
dθ ∧ dt.

Using the formula sin 2θ = 2 cos θ sin θ and the fact that the definite integrals of each
of the trigonometric expressions above from 0 to π/2 are equal, we have

Area(R) =

∫ 1

0

T0 × T1 ·
[∫ π/2

0

cos θ

(1 + sin 2θ T0 · T1)3/2
dθ

]
(T ′

0 + T ′
1) dt.

This can be solved by the general integration formula∫
cos θ

(1 + a sin 2θ)3/2
dθ =

−a cos θ − sin θ

(a2 − 1)
√

1 + a sin 2θ
,(8)

which yields the formula in the statement of the proposition.
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Fig. 2. The family of almost-planar curves on the left converge in any Ck norm to the planar
figure eight curve on the right. However, the writhe of the curves on the left approaches one, while
the writhe of the planar figure eight is zero. This shows that writhe is not continuous in any Ck

norm on curves.

5. Extending Fuller’s formulas to polygonal curves: I. To measure the
difference in writhe between a smooth curve and a polygonal curve inscribed in the
smooth curve, we must extend Theorem 4 to polygonal curves. This raises an imme-
diate objection: Theorem 4 deals with the area enclosed by a curve’s tantrix, while
the set of tangent vectors of a polygon is a collection of isolated points!

To make sense of Fuller’s theorem in this context, we recall the following definition
from Chern [8].

Definition 6. The tantrix of a piecewise C1 curve C(s) with positive corner
angles is the image of T (s) on the unit sphere, together with the great circle arcs
joining the pairs of tangent vectors at each corner of the curve.

We will show that Theorem 4 holds for polygons under this definition. To do so,
we intend to approximate each polygonal curve with a family of smooth curves so
that the writhe of the smooth curves converges to the writhe of the polygonal curve.

Examining Definition 2, it might seem that this would be easy. For instance, one
might conjecture that Wr was continuous in the C1 norm on curves and hope to obtain
an approximating family using standard techniques. Unfortunately, the situation is
not so simple; as the example in Figure 2 shows, writhe is not continuous in any Ck

norm on curves. Thus, our proof depends explicitly on the hypothesis that the limit
curve is polygonal; it cannot be easily extended to the case where the limit curve is
merely piecewise C2.

To prepare for the proof, we establish some notation for polygonal curves. Let
C(t) be a polygonal curve with corners at cyclically ordered parameter values t0 <
t1 < · · · < tn = t0. We let T (t) denote the unit tangent to C and set up the convention
that T (ti) will be the tangent vector leaving C(ti).

We now construct a family of smooth curves approximating our polygonal curve.
Proposition 7. Given an embedded polygonal curve C with corners at t0, . . . , tn−1,

tn = t0, there exists a family of smooth curves Ci converging pointwise to C with
1. Ci = C outside a neighborhood of each corner point C(tj) of radius 1/i;
2. near each corner, the tangent vectors of Ci interpolate between T (tj−1) and
T (tj);

3. Wr(Ci) → Wr(C).
Proof. It is easy to construct a family of Ci → C obeying conditions 1 and 2 by

rounding off each corner of C. We claim that this can be done in such a way that the
writhe integrand has a uniform upper bound on all the Ci. Since condition 1 implies
that the Ci → C pointwise in the C1 norm, the bounded convergence theorem [17,
p. 81] will then yield condition 3.

Since any pair of adjacent edges is planar, we can choose the Ci so that the region
of each Ci approximating a pair of adjacent edges is also planar. This means that for
some universal ε, the writhe integrand of each Ci vanishes in an ε-neighborhood of
the diagonal of Ci × Ci.
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Since C has no self-intersections and the angle at each corner of Ci is positive,
the distance between any pair of nonadjacent edges of C is bounded below by some
constant. Since the Ci converge to C pointwise, we may assume the same for the
portions of the Ci approximating any pair of disjoint edges. Throwing away finitely
many of the Ci if necessary, this means that for any δ > 0, there exists a universal
lower bound (depending on δ) on the distance between any pair of points in Ci × Ci
outside an δ-neighborhood of the diagonal.

But for any pair of points on Ci, the writhe integrand is bounded above by the
inverse square of the distance between them. Thus, our lower bound on self-distances
yields a universal upper bound on the writhe integrand for C and all the Ci outside
a δ-neighborhood of the diagonal. Choosing δ < ε, this completes the proof of the
proposition.

6. Extending Fuller’s formulas to polygonal curves: II. We now state
our extension of Fuller’s theorem. Our formula will apply to the following situation
(cf. section 3): Suppose that X0 and X1 are simple closed space curves, with X0 of
class C2 and X1 polygonal, with regular parametrization (that is, parametrized so
that X ′

0 and X ′
1 never vanish where they are defined), and unit tangent vectors T0

and T1.
Let F :S1×[0, 1] → R3 be a C0 deformation ofX0 intoX1, where F (t, λ) = Xλ(t),

so that the Xλ are simple curves of class C1 for λ ∈ [0, 1), with unit tangent vectors
Tλ(t) continuous in (t, λ). As above, we take the corners of X1 to be at parameter
values t0, t1, . . . , tn = t0. We let T1 denote the unit tangent vector to X1, and let
T1(ti) be the tangent vector leaving X1(ti).

Theorem 8. If each corner angle of X1 is strictly greater than π/2 and each
T1(t) and Tλ(t) are at an angle less than π/2, then

Wr(X1) − Wr(X0) =
1

2π
AreaR(T0, T1),

where R(T0, T1) is the spherical region bounded by the tantrices of X0 and X1 (using
Definition 6) and great circle segments joining their endpoints, and Area represents
oriented area on S2.

Corollary 9. If each corner angle of X1 is strictly greater than π/2 and each
T1(t) and Tλ(t) are at an angle less than π/2, then

Wr(X1) − Wr(X0) =
1

2π

n∑
i=1

AreaR(T0(ti), T0(ti+1), T1(ti))

+ Area�T0(ti)T1(ti−1)T1(ti).

Here R(T0(ti), T0(ti+1), T1(ti)) is the spherical region bounded by geodesics from T1(ti)
to T0(ti) and T0(ti+1) and the portion of T0 between ti and ti+1, �T0(ti)T1(ti−1)T1(ti)
is the spherical triangle with these three vertices, and Area represents oriented area
on S2.

Proof. Construct a sequence of smooth curves Cj → X1 using Proposition 7. For
large enough j, each of these curves can be homotoped to X1 through a family of
simple C1 curves with a continuous family of tangent vectors, as in the setup for the
statement of Theorem 8.

Joining these homotopies to the homotopy from X1 to X0 assumed by our hy-
potheses generates a family of (nonsmooth) homotopies from the X0 to each of the
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Fig. 3. This figure shows the two types of regions in the sum in the statement of Theorem 8.
The top (dotted) curve shows the great circle arcs joining the tangent vectors T (ti) of the polygonal
curve X1. The bottom curve shows the continuous curve of unit tangents T0 to the smooth curve
X0. The light gray regions show the first terms in the sum, while the dark gray spherical triangles
show the second terms.

Cj . We wish to smooth each of these to obtain homotopies from X0 to Cj which obey
the conditions of Fuller’s ∆Wr formula (Theorem 4).

We first prove that the tangent vectors of each of the intermediate curves in each
homotopy from X0 to Cj are never antipodal to the corresponding tangent vectors
Tj of Cj . By hypothesis, for each t and λ, � Tλ(t), T1(t) < π/2. On the other hand,
since the difference between the tangent vectors to X1 at any corner is less than π/2,
for large enough j, � T1(t), Tj(t) < π/2. Putting these equations together, we see that
� Tλ(t), Tj(t) < π, and so these vectors are never antipodal.

It is easy to smooth the combined homotopy from X0 to Cj so that each of the
intermediate curves is of class C1 while preserving this condition. Since the smoothed
homotopy satisfies the hypotheses of Fuller’s ∆Wr formula (Theorem 4), Proposition 5
tells us that the difference between Wr(X0) and Wr(Cj) is the spherical area of the
ribbon joining T0 and Tj .

For each i, the contribution to the spherical area from the straight part of Cj
between ti and ti+1 comes from the ribbon between T1(ti) and the portion of T0 with
t ∈ (ti + 1/j, ti+1 − 1/j). As j → ∞, this area converges to the area of the ribbon
between the portion of T0 with t ∈ (ti, ti+1) and T1(ti). This is the first term in our
sum above.

At each vertex ti of X1, the contribution to our spherical area from the curved
part of Cj comes from the ribbon between the great circle arc connecting T1(ti−1) and
T1(ti) and a portion of T0 of parameter length 2/j. As j → ∞, the area of this ribbon
converges to the area of the spherical triangle with vertices T0(ti), T1(ti), T1(ti−1).
This is the second term in our sum above. Figure 3 shows both of these terms on the
unit sphere.

We have shown that the right-hand side of the statement of this theorem is equal
to the limit limj→∞(Wr(Cj)−Wr(X0)). However, by Proposition 7, limj→∞ Wr(Cj) =
Wr(X1). Thus

lim
j→∞

Wr(Cj) − Wr(X0) = Wr(X1) − Wr(X0),(9)

which is the left-hand side in the statement of this theorem. This completes the
proof.
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We now make a surprising observation: Since the tantrices of the Cj differ as
curves on S2 only in parametrization, the area between each of these curves and the
tantrix of X0 is constant. Thus, by Fuller’s formula, each Cj has the same writhe!
And since (by Proposition 7) these writhing numbers converge to the writhe of X1,
each Wr(Cj) is equal to Wr(X1) as well! So we have the following corollary.

Corollary 10. If Cn is a polygonal curve, and C is a smooth curve obtained
by rounding off the corners of Cn under the conditions of Proposition 7, then

Wr(Cn) = Wr(C).(10)

7. Extending Fuller’s formulas to polygonal curves: III. Corollary 10 al-
lows us to close this circle of ideas by observing that we have also extended Theorem 3
to polygons (cf. Proposition 3 in Cimasoni [9]).

Theorem 11 (Fuller’s spherical area formula for polygons). For any closed space
polygon P , let A be the spherical area enclosed by the tantrix of P , where we define
this tantrix by Definition 6. Then

1 + Wr(P ) =
A

2π
mod 2.(11)

Proof. Round off the corners of P under the conditions of Proposition 7 to obtain
a C3 curve C. The tantrices of C and of P have the same spherical image, and so
enclose the same area, while C and P have the same writhe by Corollary 10. But the
classical form of Fuller’s spherical area formula applies to C.

Our proof of Fuller’s difference of writhe formula above also applies to a pair of
polygons (one simply approximates each by smooth curves and constructs a three-
stage homotopy between pairs of smooth curves), under somewhat stricter hypotheses,
as seen in the following theorem.

Theorem 12. Suppose X0 and X1 are polygons, and let F :S1 × [0, 1] → R3 be
a C0 deformation of X0 into X1, where F (t, λ) = Xλ(t), so that the Xλ are simple
curves of class C1 for λ ∈ (0, 1), with unit tangent vectors Tλ(t) continuous in (t, λ).

If each corner angle of Xi is strictly greater than π/4 and each Ti(t) and Tλ(t)
are at an angle less than π/2, then

Wr(X1) − Wr(X0) =
1

2π
AreaR(T0, T1),

where R(T0, T1) is the spherical region bounded by the tantrices of X0 and X1 (using
Definition 6) and great circle segments joining their endpoints, and Area represents
oriented area on S2.

8. Bounding the ∆Wr formula. We now prove our main theorem by finding
asymptotic bounds for Fuller’s ∆Wr formula. Our theorem deals with the following
situation: Assume that C(t) is a simple closed curve of class C4, parametrized so
that |C ′(t)| ≥ 1. (Given any initial parametrization, this can be accomplished by
rescaling.) Further, assume we have upper bounds B1, . . . , B4 on the norms of the
first four derivatives of C. In particular, we do not require that C be parametrized by
arclength and state our bounds in terms of curvature and torsion because in practice
it is very difficult to obtain an arc-length parametrization of a given curve, while it is
comparatively easy to obtain values for these derivative bounds.

Let Cn(t) be any n-edge polygonal curve inscribed in C. We assume that the
maximum edge length of C is bounded by x.
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Theorem 13. If the ribbon formed by joining Cn(t) to C(t) for every t is em-
bedded and 1/x > 5B2,

|Wr(C) − Wr(Cn)| < αnx3 + nO(x4),(12)

where α is a numerical constant less than B2(5B
2
2 +B3).

We make a few comments on this theorem before diving into the proof. First, we
observe that if the lengths of the edges of Cn are all of the same order of magnitude,
the difference between the writhe of C and the writhe of Cn is of order 1/n2.

Next, we discuss the role of the additional hypotheses in the statement above,
that is, that the ribbon between C and Cn be embedded and that 1/x be greater than
5B2. Both are intended to exert enough control over the approximation to guarantee
the existence of a homotopy from C to Cn obeying the requirements of Theorem 8.

We can guarantee that Cn satisfies the first hypothesis by proving that Cn lies
in an embedded tubular neighborhood of C. Since C is of class C4, and has no self-
intersections, such a neighborhood is guaranteed to exist: For a discussion of how
to compute the radius of this tube (which is known as the thickness of C), see the
literature on ropelength of knots (e.g., [12, 7, 14]).

Proof. We begin by reparametrizing our curve by arclength. This forces us to
recompute our bounds for the derivatives of C(t) (a standard computation), arriving
at

|C ′(s)| = 1, |C ′′(s)| < K := 2B2, |C ′′′(s)| < T := 2B3 + 10B2
2 ,(13)

while C(4)(s) is again bounded above. To remind ourselves of the connection between
these bounds and the curvature and torsion of our curve, we will refer to the bound
for the second derivative as K and the bound for the third derivative as T . Further,
we note that the curvature κ(s) of our curve is bounded above by K and that our
hypotheses imply that 1/x > (5/2)K.

We also establish the convention that the corners of Cn are at parameter values
cyclically ordered as s0, . . . , sn−1, sn = s0.

By smoothing the linear interpolation between C and Cn, we can construct a
homotopy between C and Cn according to the conditions of Theorem 8 as long as the
following hold:

1. the ribbon joining C to Cn is embedded,
2. the angle at each corner of Cn is at least π/2,
3. the angle between T (s) and Tn(s) is at most π/2 for any s.

Borrowing from Lemma 16 (below), we see that our assumption that 1/x >
(5/2)K is enough to bound the angle in condition 3 by 0.20402 < π/4. At any corner
si, the same lemma implies that the corner angle is the supplement of at most twice
0.20402, so this is enough to ensure that condition 2 holds as well.

Theorem 8 now tells us that

(14) |Wr(C) − Wr(Cn)| ≤ 1

2π

n∑
i=1

|AreaR (T (si) , T (si+1) , Tn (si))|

+ |Area�T (si)Tn (si−1)Tn (si)| ,
where the first term is the area of the spherical region bounded by the geodesics from
Tn(si) to T (si) and T (si+1) and the portion of T between si and si+1, and the second
term is the area of the spherical triangle. Our job now is to estimate the areas of
these regions. To do so, we first recall Taylor’s theorem.
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Theorem 14 (Taylor’s theorem). Suppose C(s) is a curve of class C4, with
fourth derivative bounded by B′

4. Then (choosing coordinates so that C(0) is at the
origin),

C(s) = sC ′(0) +
s2

2
C ′′(0) +

s3

6
C ′′′(0) +R4(s),(15)

where |R4(s)| < s4B′
4.

We will use this expression for C(s) frequently in our work below.
Lemma 15. For any s, we have

|s− |C(s)|| < K2

24
|s3| + 1

120
|s5| and |C(s)| ≤ |s|.(16)

Further, for any edge of Cn, the difference |si+1 − si| is at most 1.01x.
Proof. We assume without loss of generality that s is positive. By Schur’s lemma

[8], since the curvature of C is bounded above by K, |C(x)| is at least the length of
a chord across an arc of length s on a circle of radius 1/K, or (2/K) sin(K/2)s. This
means that we have

2

K
sin

K

2
s = s− K2

24
s3 +R5(s),

where R5(s) is the term of order s5 which comes from the usual Taylor expansion of
sin s. In particular,

|s− |C(s)|| < s− 2

K
sin

K

2
s

<
K2

24
s3 −R5(s),

where R5(s) <
1

120s
5. The upper bound on |C(s)| comes from the fact that C is

unit-speed.
The second statement is another Schur’s lemma calculation, this time invoking

our hypothesis that x > (5/2)K and observing that 1.01 sin y > y for y between 0
and 1/5.

We will also need an upper bound on the angle between T (s) and Cn(s).
Lemma 16. The angle between the tangent vector T (s) and the corresponding

tangent vector Tn(s) to Cn is bounded above by

� T (s)Tn(s) < 0.51005Kx.(17)

Proof. Assume that s is between si and si+1. Then

sin � T (s)Tn(s) =
|[C(si+1) − C(si)] × T (s)|

|C(si+1) − C(si)| .(18)

But we have

C(si+1) − C(si) =

∫ si+1

si

T (t) dt,

and for any t, we have

T (t) = T (s) +

∫ t

s

T ′(u) du.
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This means that

[C(si+1) − C(si)] × T (s) =

∫ si+1

si

T (t) × T (s) dt(19)

=

∫ si+1

si

∫ t

s

T ′(u) × T (s) du dt.(20)

Since |T ′(u) × T (s)| ≤ |T ′(u)||T (s)| ≤ κ(u) < K, and s is between si and si+1, a
small computation reveals that this integral is bounded by K

2 (si+1 − si)
2.

Since the length |C(si+1) − C(si)| is bounded below by (1/1.01)(si+1 − si) by
Lemma 15, we get

sin � T (t)Tn(t) <
1.01

2
Kx.(21)

Since 1/x > (5/2)K, this is always bounded above by 1.01/5, and so

� T (t)Tn(t) <
1.012

2
Kx.(22)

We are now ready to embark on the main work of the proof: estimating the areas
in (14). We begin with the first term: the area bounded by the portion of T (s)
between si and si+1, together with the great circle arcs joining T (si) and T (si+1) to
Tn(si). Without loss of generality, we may assume that i = 0, that s0 = 0, and that
C(0) = 0, and apply the Taylor expansion of (15) to C at 0. Our strategy is to prove
that this region is contained in a neighborhood of the great circle arc joining T (0) and
T (s1). Suppose s is between 0 and s1. We want to bound the height of T (s) above
the T (0), T (s1) plane, or

h(s) :=
C ′(s) · C ′(0) × C ′(s1)

|C ′(0) × C ′(s1)| .(23)

First, we have

C ′(s1) = C ′(0) + s1C
′′(0) +

s21
2
C ′′′(0) +R3(s1),

C ′(s) = C ′(0) + sC ′′(0) +
s2

2
C ′′′(0) +R3(s).

Using the triple product identities, we can rewrite h(s) in terms of the inner product
of C ′(0) and the cross product of these vectors. For the triple product, we get

[
s21s

2
− s2s1

2

]
C ′(0) · C ′′(0) × C ′′′(0) + C ′(0) · [R3(s1) × C ′(s) + C ′(s1) ×R3(s)] .

(24)

Expanding the last term, we see that it is the sum of a term of order s1s
3 and a term

of order ss31. Thus, to leading order, the norm of the entire triple product is bounded
above by

|h(s)| < H :=
KT

2|C ′(0) × C ′(s1)|s
3
1 +O(s41),(25)



COMPARING THE WRITHE OF SMOOTH CURVES AND POLYGONS 1857

since s ∈ [0, s1]. We now consider the height of Tn(0) above the T (0), T (s1) plane.
Since Tn(0) is the normalization of C(s1) − C(0) = C(s1), this height is given by

C(s1)

|C(s1)| ·
C ′(0) × C ′(s1)
|C ′(0) × C ′(s1)| .(26)

As before, we get

C ′(0) × C ′(s1) = s1C
′(0) × C ′′(0) +

s21
2
C ′(0) × C ′′′(0) +O(s31).(27)

Taking the dot product with the Taylor expansion of C(s1), we get only terms of
order O(s41) and higher. Thus, to leading order, this region is contained in a rectangle
based on the great circle arc joining C ′(0) and C ′(s1) of height H. We now estimate
the area of this rectangle.

First, we note that the length of the great circle joining C ′(0) and C ′(s1) is given
by the angle θ between C ′(0) and C ′(s1). Since s1 < 1.01x by Lemma 15, this length
is bounded above by 1.01Kx, which is less than 0.404 by our hypotheses on x. Since
H is small compared to s, we may assume that the entire rectangle is contained within
a spherical disk of radius 0.5.

We project the rectangle to the plane by central projection: This map is increasing
on lengths and areas, and increases length by at most a factor of 1.01. The area of the
rectangle in the plane is overestimated by the product 1.01 θH. On the other hand,
we have |C ′(0) × C ′(s1)| = sin θ. And for θ < 0.404, 1.02 sin θ > θ. Keeping track of
the various constants involved, and using the fact that s1 < 1.01x again, the area of
this spherical region is overestimated by

AreaR(T (si), T (si+1), Tn(si)) < KT x3 +O(x4).(28)

We now turn to the second term in (14): the area of the spherical triangle bounded
by T (si), Tn(si−1), and Tn(si). Without loss of generality we assume that i = 1, that
s1 = 0, and that C(0) = 0, and we expand C around 0 using (15). We wish to
compute

Area�
(
C(s0)

|C(s0)| ,
C(s2)

|C(s2)| , C
′(0)

)
=

∣∣∣∣( C(s0)

|C(s0)| − C ′(0)

)
×
(
C(s2)

|C(s2)| − C ′(0)

)∣∣∣∣ .
(29)

If we factor out 1/|C(s0)||C(s2)|, we are left with the norm of the cross product of
two terms:

C(s0) − |C(s0)|C ′(0) = (s0 − |C(s0)|)C ′(0) +
s20
2
C ′′(0) +

s30
6
C ′′′(0) +R4(s0),

C(s2) − |C(s2)|C ′(0) = (s2 − |C(s2)|)C ′(0) +
s22
2
C ′′(0) +

s32
6
C ′′′(0) +R4(s2).

Using Lemma 15, we see that |s− |C(s)|| < (K2/24)s3 +O(s5), and we see that the
leading term of this expression contains fifth powers of s0 and s2, and is bounded by

s20s
2
2

(
K3

48
+
KT

12

)
(s0 + s2).(30)

However, we must still divide by |C(s0)||C(s2)|. By Lemma 15, we see that the ratios
s0/|C(s0)| and s2/|C(s2)| are bounded above by 1.01. Thus, using the same lemma to
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conclude that s2 and s0 are less than 1.01x, and making a central projection argument
as before, we are left with

Area�(Tn(si), Tn(si−1), T (si)) <
K3 +KT

3
x3 +O(x4).(31)

Summing over i and dividing by 2π, then writing K and T in terms of B2 and B3, we
obtain the statement of Theorem 13. Note that we have overestimated the numerical
constants to simplify the resulting formula.

If a curve has a small region of high curvature and larger regions of low curvature,
it may be desirable to approximate the curve more carefully in the regions of high
curvature in order to save time in the computation of writhe. Since our error bound
is additive along the curve, these methods are well suited to this case. We have the
following corollary.

Corollary 17. Suppose C is a C4 curve and Cn is a curve inscribed in C so
that C and Cn obey the hypotheses of Theorem 13.

If C and Cn are divided into regions Ri, each containing ni edges which are
bounded above in length by xi, and so that the derivatives of C are bounded by
B1i, . . . , B4i and 1/xi > 5B2i, then

|Wr(C) − Wr(Cp)| <
∑
i

αi nix
3
i + niO(x4

i ),

where each αi is a numerical constant less than B2i(5B
2
2i +B3i).

We make one more observation.
Proposition 18. Let C be a simple, closed space curve of class C2 and let Cp be

a polygonal approximating curve as in Theorem 13 or Corollary 17.
If the arc joining the endpoints of a sequence of n edges of Cp is planar, then

the n − 2 edges interior to this region contribute nothing to the error bound in the
theorem.

In particular, this means that the derivative bounds in both statements can be
taken to be bounds on the derivatives of the nonplanar regions of the curve C.

Proof. On these edges, the tantrix of the smooth curve and the polygonal curve
parametrize the same great circle arc on S2. Thus, the ribbon between these curves
has zero area.

9. Example computations. We are now prepared to test Theorem 1 by com-
puting the writhing numbers of various polygonal approximations of a smooth curve
and comparing the results to the exact writhe of the smooth curve. To control the
numerical error introduced in these calculations, all of these computations were per-
formed using an arbitrary-precision implementation of Banchoff’s formula [3] for the
writhing number of a polygonal curve. The initial runs were performed with 45 dec-
imal digits of precision. They were checked against runs performed with 54 digits
of precision. Since the results agreed, we feel confident that roundoff error does not
affect the computations reported on below.

The curve whose writhe we computed is an example of Fuller [11] (see Figure 4).
Using Theorem 3 and the Călugăreanu–White formula, it is easy to see that the

writhe of this curve is 3(1− sin 0.33) 
 2.0278709. After all, the area enclosed by the
tantrix of this curve C is that of a hemisphere, plus three enclosures of a spherical cap
of radius π/2− 0.33. Thus the writhe of the curve is equal to 1− sin 0.33 mod 2. To
complete the computation, one sets up a frame on the curve and computes its twist
and linking number. (Details for this computation can be found in [11].)
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Fig. 4. This example of Fuller’s “closed helix” is composed of 3 turns of a helix of radius 1
with pitch angle 0.33, with ends joined by a planar curve.

Fig. 5. This graph shows a log-log plot of the actual error in computing the writhing number
for one of Fuller’s “closed helices” with various numbers of edges (lower solid line), together with
our error bounds (upper dotted line). The fact that the lines are parallel shows that the convergence
is of order n2, as predicted by Theorem 13.

We now take a series of polygonal approximations to C and compare the difference
between their writhing numbers and the writhe of C to the bounds of Theorem 13.

We begin by finding bounds on the derivatives of C and the edge length of our
approximations. By Proposition 18, it suffices to find derivative bounds for the helical
region of C. Since the helix has unit radius, both B2 and B3 can be taken to be one.
The curve is parametrized so that |C ′(s)| ≥ 1, and we can take α = 6.

Here are the results of computing writhe with various numbers of edges:

n Wr(Cn) |Wr(Cn) − Wr(C)| x αnx3

100 2.00541 0.02246 0.506 77.73
250 2.02434 0.00353 0.203 12.55
500 2.02697 0.0009 0.101 3.09

1000 2.02763 0.00024 0.051 0.786

It is worth examing a graph of these results (see Figure 5).

10. Discussion of results and further directions. In this paper, we have
given a set of asymptotic error bounds that allow us to compute the writhe of a
closed space curve with defined accuracy by computing the writhe of a polygonal
approximation to this curve. The example we computed in section 9 shows that our
bounds are of the right order of magnitude: Roughly speaking, the writhe converges
quadratically in the number of edges of the approximation.
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We have now built a new family of algorithms for computing the writhe integral
with bounded error: Estimate the number of edges required using Theorem 1 and then
compute the writhe of that inscribed polygon using any of the methods mentioned in
the introduction.

To test one of these algorithms in practice, we implemented the most basic of
the polygonal writhe computation algorithms (Banchoff’s exact sum formula [3]) and
tested it against the well-developed adaptive quadrature routine CUHRE [4]. Our tests
reveal that our simple method does not yet outperform CUHRE, but the routines can
be comparable. For instance, on a sample computation of Fuller’s closed helix, CUHRE
made 11895 evaluations of the writhe integrand for an actual error of 0.0014732694,
while our algorithm computed 44850 terms in an exact sum for an actual error of
0.00150432 (the error estimates for each algorithm were 0.2052 and 0.5121, respec-
tively). Since the more advanced algorithms for computing the writhe of polygonal
curves are often orders of magnitude faster than Banchoff’s algorithm, this holds out
the hope that a better method based on our theorem may improve significantly on
adaptive quadrature. Clearly, more work is required in this area.

We have proved versions of Fuller’s spherical area formula (Theorem 11) and
Fuller’s difference of writhe formula (Theorem 12). But it is puzzling that our ap-
proximation theorem for curves with corners (Proposition 7) should depend on the
hypothesis that the limit curve is polygonal.

We suspect that the following conjecture holds.
Conjecture 19. Fuller’s spherical area formula (Theorem 3) and Fuller’s ∆Wr

formula (Theorem 4) hold for piecewise C2 curves with the extended definition of
tantrix given by Definition 6.

The proofs of both of these theorems depend on the Călugăreanu–White formula,
which applies only to closed curves. Thus all of our results are restricted to closed
curves. This leaves open the following much more important problem.

Problem 20. Extend all these theorems (the Călugăreanu–White formula, Fuller’s
spherical area formula, and Fuller’s ∆Wr formula) to open curves.

In particular, extending the results of this paper to open curves would be useful
for applications in biology, where the curves of interest are not necessarily closed. We
note that while Fuller’s ∆Wr formula makes sense for open curves, computational
examples show that it does not give the correct answer: Boundary terms must be
added to account for the ends of the curves.
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Abstract. A numerical method for solving the fractional diffusion equation, which could also
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1. Introduction. The study of fractional differential equations has been a highly
specialized and isolated field of mathematics for many years [1]. However, in the last
decade there has been increasing interest in the description of physical and chemical
processes by means of equations involving fractional derivatives and integrals. This
mathematical technique has a broad potential range of application [2]: relaxation in
polymer systems, dynamics of protein molecules, and the diffusion of contaminants in
complex geological formations are some of the most recently suggested applications
[3].

Fractional kinetic equations have proved particularly useful in the context of
anomalous slow diffusion (subdiffusion) [4]. Anomalous diffusion is characterized by
an asymptotic long-time behavior of the mean square displacement of the form

〈
x2(t)

〉 ∼ 2Kγ

Γ(1 + γ)
tγ , t→ ∞,(1.1)

where γ is the anomalous diffusion exponent. The process is usually referred to
as subdiffusive when 0 < γ < 1. Ordinary (or Brownian) diffusion corresponds to
γ = 1 with K1 = D (the diffusion coefficient). From a continuous point of view, the
diffusion process is described by the diffusion equation ut(x, t) = Duxx(x, t), where
u(x, t) represents the probability density of finding a “particle” at x at time t, and
where uηζ... is the partial derivative with respect to the variables η,ζ . . . . It turns out
that the probability density function u(x, t) that describes anomalous (sub)diffusive
particles follows the fractional diffusion equation [4, 5, 6, 7]:
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∂

∂t
u(x, t) = Kγ 0D

1−γ
t

∂2

∂x2
u(x, t), t ≥ 0,(1.2)

where 0D
1−γ
t is the fractional derivative defined through the Riemann–Liouville op-

erator (see section 2). Fractional subdiffusion-advection equations, and fractional
Fokker–Planck equations, have also been proposed [8, 9, 10, 11], and even subdiffusion-
limited reactions have been discussed within this framework [12, 13]. These equations
are also referred to as parabolic integrodifferential equations with weakly singular
kernels [14].

These current applications of fractional differential equations, and many others
that may well be devised in the near future, make it imperative to search for methods
of solution. Some exact analytical solutions for a few cases, although important, are
already known in terms of special functions such as the Wright function and Fox’s H-
function [6, 7, 15, 16]. Some of these results have been obtained by means of the Mellin
transform [6, 7] and the method of images [16]. The powerful method of separation
of variables can also be applied to fractional equations in the same way as for the
usual diffusion equations (an example is given in section 4). Another route to solving
fractional equations is through the integration of the product of the solution of the
corresponding nonfractional equation (the Brownian counterpart obtained by setting
γ → 1) and a one-sided Lévy stable density [4, 17]. However, as also for the Brownian
case, the availability of numerical methods for solving (1.2) would be most desirable,
especially for those cases where no analytical solution is available. One possibility
was discussed recently by Gorenflo and Mainardi [18], Gorenflo, De Fabritiis, and
Mainardi [19], and Gorenflo et al. [20], who presented a scheme for building discrete
models of random walks suitable for the Monte Carlo simulation of random variables
with a probability density governed by fractional diffusion equations. Another, more
standard, approach is to build difference schemes of the type used for solving Volterra-
type integrodifferential equations [14]. Along this line, some implicit (backward Euler
and Crank–Nicholson) methods have been proposed [14, 21, 22, 23, 24, 25].

In this paper we shall use the forward Euler difference formula for the time deriva-
tive ∂u/∂t in (1.2) to build an explicit method that we will call the fractional forward
time centered space (FTCS) method. For Brownian (γ = 1) diffusion equations, this
explicit procedure is the simplest numerical methods workhorse [26, 27]. However,
for fractional diffusion equations, this explicit method has been overlooked, perhaps
because of the difficulty in finding the conditions under which the procedure is stable.
This problem is solved here by means of a new stability analysis procedure close to the
usual Fourier–von Neumann method for nonfractional partial differential equations.

The plan of the paper is as follows. In section 2 we give a short introduction
to some results and definitions in fractional calculus. The numerical procedure for
solving the fractional diffusion equation (1.2) by means of the explicit FTCS method
is given in section 3. In this section we also discuss the stability and the truncating
errors of the FTCS scheme. In section 4 we compare exact analytical solutions with
numerical ones and check the reliability of the analytical stability condition. Some
concluding remarks are given in section 5.

2. Basic concepts of fractional calculus. The notion of fractional calculus
was anticipated by Leibniz, one of the founders of standard calculus, in a letter written
in 1695 [1, 4]. But it was in the next two centuries that this subject fully developed
into a field of mathematics with the work of Laplace, Cayley, Riemann, Liouville, and
many others.
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There are two alternative definitions for the fractional derivative 0D
1−γ
t of a

function f(t). On the one hand, there is the Riemann–Liouville operator definition

0D
1−γ
t f(t) =

1

Γ(γ)

∂

∂t

∫ t

0

dτ
f(τ)

(t− τ)1−γ
,(2.1)

with 0 < γ < 1. For γ = 1 one recovers the identity operator and for γ = 0 the
ordinary first-order derivative. On the other hand, the fractional derivative of order
1 − γ of a function f(t) in the Grünwald–Letnikov form is

0D
1−γ
t f(t) = lim

h→0

1

h(1−γ)

[t/h]∑
k=0

ω
(1−γ)
k f(t− kh), t ≥ 0,(2.2)

where [t/h] means the integer part of t/h and ω
(1−γ)
k = (−1)k

(
1−γ
k

)
. The Grünwald–

Letnikov definition is simply a generalization of the ordinary discretization formulas
for integer order derivatives [1]. The Riemann–Liouville and the Grünwald–Letnikov
approaches coincide under relatively weak conditions: if f(t) is continuous and f ′(t)
is integrable in the interval [0, t], then for every order 0 < 1 − γ < 1 both the
Riemann–Liouville and the Grünwald–Letnikov derivatives exist and coincide for any
time inside the interval [0, t] [1, sect. 2.3.7]. This theorem of fractional calculus ensures
the consistency of both definitions for most physical applications, where the functions
are expected to be sufficiently smooth.

The Grünwald–Letnikov definition is important for our purposes because it allows
us to estimate 0D

1−γ
t f(t) numerically in a simple and efficient way:

0D
1−γ
t f(t) =

1

h(1−γ)

[t/h]∑
k=0

ω
(1−γ)
k f(t− kh) +O(hp) .(2.3)

This formula is not unique because there are many different valid choices for ω
(α)
k

that lead to approximations of different order p [28]. Let ω(z, α) be the generating

function of the coefficients ω
(α)
k , i.e.,

ω(z, α) =
∞∑
k=0

ω
(α)
k zk.(2.4)

If the generating function is

ω(z, α) = (1 − z)α,(2.5)

then we get the backward difference formula of order p = 1 (BDF1) [1, 28]. This is
also called the backward Euler formula of order 1 or, simply, the Grünwald–Letnikov

formula. These coefficients are ω
(α)
k = (−1)k

(
α
k

)
and can be evaluated recursively:

ω
(α)
0 = 1, ω

(α)
k =

(
1 − α+ 1

k

)
ω

(α)
k−1.(2.6)

The generating function for the backward difference formula of order p = 2 (BDF2)
is [1, 28]

ω(z, α) =

(
3

2
− 2z +

1

2
z2

)α
.(2.7)
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These coefficients can be easily calculated using fast Fourier transforms [1]. However,
for the fractional FTCS method discussed in this paper, we will show in the next
section that nothing is gained by using second-order approximations for the fractional
derivative. Additionally, the stability bound is smaller if one uses the BDF2 formula.
Finally, it is important to note that the error estimates given in (2.3) are valid only
if either t/h� 1 [1] or u(x, t) is sufficiently smooth at the time origin t = 0 [29].

3. Fractional FTCS method. We will use the customary notation xj = j∆x,

tm = m∆t, and u(xj , tm) ≡ u
(m)
j � U

(m)
j , where U

(m)
j stands for the numerical

estimate of the exact value of u(x, t) at the point (xj , tm). In the usual FTCS method,
the diffusion equation is replaced with a difference recurrence system for the quantities

u
(m)
j :

u
(m+1)
j − u

(m)
j

∆t
= D

u
(m)
j−1 − 2u

(m)
j + u

(m)
j+1

(∆x)2
+ T (x, t),(3.1)

with T (x, t) being the truncation term [26]. In the same way, the fractional equation
is replaced with

u
(m+1)
j − u

(m)
j

∆t
= Kγ 0D

1−γ
t

u
(m)
j−1 − 2u

(m)
j + u

(m)
j+1

(∆x)2
+ T (x, t).(3.2)

The estimate of the truncation term will be given in section 3.2. Inserting the
Grünwald–Letnikov definition of the fractional derivative given in (2.3) into (3.2),
neglecting the truncation term, and rearranging the terms, we finally get the explicit
FTCS difference scheme

U
(m+1)
j = U

(m)
j + Sγ

m∑
k=0

ω
(1−γ)
k

[
U

(m−k)
j−1 − 2U

(m−k)
j + U

(m−k)
j+1

]
,(3.3)

where Sγ = Kγ∆t/[h
1−γ(∆x)2]. In this scheme, U

(m+1)
j , for every position j, is

given explicitly in terms of all the previous states U
(n)
j , n = 0, 1, . . . ,m. Because the

estimates U
(m)
j of u(xj , tm) are made at the times m∆t, m = 1, 2, . . . , and because

the evaluation of 0D
1−γ
t u(xj , t) by means of (2.3) requires knowing u(xj , t) at the

times nh, n = 0, 1, 2, . . . , it is natural to choose h = ∆t. In this case,

Sγ = Kγ
∆tγ

(∆x)2
.(3.4)

We assume that the system is prepared in an initial state u
(0)
j = U

(0)
j with u

(n)
j = 0

if n ≤ −1. The iteration process described by (3.3) is easily implementable as a
computer algorithm, but the resulting program is far more memory hungry than

the elementary Markov diffusive analogue because, in evaluating U
(m+1)
j , one has to

save all the previous estimates U
(n)
j−1, U

(n)
j , and U

(n)
j+1 for n = 0, 1, . . . ,m. However,

the use of the short-memory principle [1] or the nested mesh procedure [30] could
alleviate this burden. Regardless, before tackling (3.3) seriously we must first discuss
two fundamental questions concerning any integration algorithm: its stability and
the magnitude of the errors committed by the replacement of the continuous equation
with the discrete algorithm.
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3.1. Stability of the fractional FTCS method. Here we will show that
the stability of the fractional numerical schemes can be analyzed very easily and
efficiently with a method close to the well-known Von Neumann (or Fourier) method
of nonfractional partial differential equations. In this section, we will apply it to the
fractional FTCS difference scheme (3.3).

We start by assuming a solution (a subdiffusion mode or eigenfunction) with the

form u
(m)
j = ζme

iqj∆x, where q is a real spatial wave number. Inserting this expression
into (3.3) one gets

ζm+1 = ζm − 4S sin2

(
q∆x

2

) m∑
k=0

ω
(1−γ)
k ζm−k.(3.5)

It is interesting to note that this equation is the discretized version of

dψ(t)

dt
= −4C sin2

(
q∆x

2

)
0D

1−γ
t ψ(t)(3.6)

(with C = S(∆t)γ) whose solution can be expressed in terms of the Mittag–Leffler
function Eγ(−λtγ) [2, 4]. This result is not unexpected because the subdiffusion
modes of (1.2) decay as Mittag–Leffler functions [4] (e.g., see (4.4)).

The stability of the solution is determined by the behavior of ζm. Unfortunately,
solving (3.5) is much more difficult than solving the corresponding equation for the
diffusive case. However, let us write

ζm+1 = ξζm,(3.7)

and let us assume for the moment that ξ ≡ ξ(q) is independent of time. Then (3.5)
implies a closed equation for the amplification factor ξ of the subdiffusion mode:

ξ = 1 − 4Sγ sin2

(
q∆x

2

) m∑
k=0

ω
(1−γ)
k ξ−k .(3.8)

If |ξ| > 1 for some q, the temporal factor of the solution grows to infinity according
to (3.7) and the mode is unstable. Considering the extreme value ξ = −1, we obtain
from (3.8) the following stability bound on Sγ :

Sγ sin2

(
q∆x

2

)
≤ 1/2∑m

k=0(−1)kω
(1−γ)
k

≡ S×
γ,m .(3.9)

The bound expressed in (3.9) depends on the number of iterations m. Nevertheless,
this dependence is weak: S×

γ,m approaches S×
γ ≡ limm→∞ S×

γ,m in the form of os-
cillations with small decaying amplitudes (see Figure 3.1). The value of S×

γ can be

deduced from (3.9) by taking into account that
∑∞
k=0(−1)kω

(1−γ)
k ≡ ω(−1, 1−γ) (see

(2.4)). Therefore, we find that the FTCS method is stable as long as

Sγ sin2

(
q∆x

2

)
≤ S×

γ(3.10)

with

S×
γ =

1

2ω(−1, 1 − γ)
.(3.11)
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γ

Fig. 3.1. First values of Sγ,m versus m for γ = 1/2 when the first-order coefficients (circles)

and second-order coefficients (squares) are used. The lines mark the corresponding limit values S×
γ

given by (3.12) and (3.13).

In particular, when the BDF1 coefficients given by (2.5) are used, one gets

S×
γ =

1

2(1 − ξ)1−γ |ξ→−1

=
1

22−γ .(3.12)

Similarly, when the BDF2 coefficients given by (2.7) are used, one gets

S×
γ =

1

2
(

3
2 − 2ξ + 1

2ξ
2
)1−γ∣∣∣

ξ→−1

=
1

43/2−γ .(3.13)

We will verify numerically in section 4 that the explicit integration method as given
by (3.3) is stable when

Sγ ≤ S×
γ

sin2
(
q∆x

2

)(3.14)

and unstable otherwise. As the maximum value of the square of the sine function
is bounded by 1, we can give a more conservative but simpler bound: the fractional
FTCS method will be stable when

Sγ = Kγ
∆tγ

(∆x)2
≤ S×

γ .(3.15)

The physical interpretation of this restriction is the same as for the diffusive case,
namely, (3.15) means that the maximum allowed time step ∆t is, up to a numerical
factor, the (sub)diffusion time across a distance of length ∆x (cf. (1.1)).
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Notice that the value of S×
γ = 1/43/2−γ given by (3.13) is smaller than 1/22−γ

for any γ < 1 (if γ = 1, we recover the bound S× = 1/2 of the usual explicit FTCS
method for the ordinary diffusion equation [26, 27]). Consequently, the fractional
FTCS method that uses a second-order approximation in the fractional derivative is
“less robust” than the fractional FTCS method that uses the first-order coefficients
ω

(1−γ)
k . Taking into account that the two methods (BDF1 and BDF2) have the same

precision (see section 3.2) we note that nothing is gained by using the fractional
derivative with higher precision. Therefore, in practical applications, here we will use
only the first-order coefficients (2.6).

3.2. Truncating error of the fractional FTCS method. The truncating
error T (x, t) of the fractional FTCS difference scheme is (see (3.2))

T (x, t) =
u

(m+1)
j − u

(m)
j

∆t
−Kγ D

1−γ
t

[
u

(m)
j−1 − 2u

(m)
j + u

(m)
j+1

(∆x)2

]
.(3.16)

But

u
(m+1)
j − u

(m)
j

∆t
= ut +

1

2
utt∆t+O(∆t)2(3.17)

and

0D
1−γ
t

[
u

(m)
j−1 − 2u

(m)
j + u

(m)
j+1

]
=

1

h1−γ

m∑
k=0

w1−γ
k

[
uxx +

1

12
uxxxx (∆x)

2
+ · · ·

]
+O (hp)

(3.18)

so that, taking into account that u(x, t) is the exact solution of (1.2), we finally get
from (3.16), (3.17), and (3.18) the following result:

T (x, t) = O(hp) +
1

2
utt∆t− Kγ(∆x)

2

12
0D

1−γ
t uxxxx + · · ·(3.19)

= O(hp) +O(∆t) +O(∆x)2 .(3.20)

Therefore, (i) assuming that the initial boundary data for u are consistent (as
assumed for the usual FTCS method [26]) and (ii) assuming that u is sufficiently
smooth at the origin t = 0 (see the remark below (2.7)), we conclude that the method
discussed in this paper is unconditionally consistent for any order p because T (x, t) →
0 as h, ∆t, ∆x → 0. As remarked above, in practical calculations it is convenient to
use h = ∆t so that, due to the term O(∆t) in (3.20), no improvements are achieved
by considering higher orders than p = 1 in the fractional derivative. It is interesting
to note that for the diffusion equation (γ = 1) it is possible to cancel out the last two
terms in (3.19) with the choice ∆t = (∆x)2/(6Kγ), thereby obtaining a scheme that
is “second-order accurate” [26]. This is not possible for the fractional case because of
the fractional operator.

4. Numerical solutions and the stability bound on Sγ . The objective of
this section is twofold: first, we want to test the reliability of the numerical algorithm
defined in (3.3) by applying it to two fractional problems with known exact solutions
and, second, we want to check the stability bounds obtained in section 3.1.
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Fig. 4.1. Numerical solution of the subdiffusion equation for the problem defined in the un-
bounded space, −∞ < x <∞ with initial condition u(x, t = 0) = δ(x) for γ = 1/4 (squares), γ = 1/2
(circles), γ = 3/4 (triangles), and γ = 1 (crosses), and t = 10. The lines correspond to the exact
analytical solution.

4.1. Numerical solution versus exact solution: Two examples. The fun-
damental solution of the subdiffusion equation in (1.2) corresponds to the problem
defined in the unbounded space, −∞ < x < ∞, where the initial condition is
u(x, t = 0) = δ(x). This solution is called the propagator, or Green’s function,
and can be expressed in terms of Fox’s H-function [4]:

u(x, t) =
1√

4πKγtγ
H10

11

[
|x|√
Kγtγ

∣∣∣∣∣ (1 − γ/2, γ/2)

(0, 1)

]
.(4.1)

In our numerical solution we used the boundary conditions u(−L, t) = u(L, t) = 0
with a sufficiently large L in order to avoid finite size effects. In Figure 4.1 we compare
the numerical integration results with the exact solution (4.1) for γ = 1/4, 1/2, 3/4, 1
at t = 10. The time step used was ∆t = 0.01 and ∆x =

√
Kγ(∆t)γ/Sγ with Kγ = 1

and Sγ = 0.28, 0.33, 0.4, and 0.5. All these values of Sγ are just below the stability
bound S×

γ (see (3.12)). The agreement is excellent except for γ = 1/4 and x = 0, but
this minor discrepancy is surely due to the large spatial cell ∆x � 1.06 used in this
case.

We have also considered a problem with absorbing boundaries, u(0, t) = u(1, t) =
0, and initial condition u(x, t = 0) = x(1 − x), with 0 ≤ x ≤ 1. The exact analytical
solution of (1.2) is easily found by the method of separation of variables: u(x, t) =
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Fig. 4.2. Numerical solution of the subdiffusion equation for the problem with absorbing bound-
ary conditions u(0, t) = u(1, t) = 0 and initial condition u(x, 0) = x(1 − x), 0 ≤ x ≤ 1, for t = 0.5.
The solution u(x, t) is shown for γ = 0.5 (triangles), γ = 0.75 (squares), and γ = 1 (circles). The
lines correspond to the exact analytical solution.

X(x)T (t). We thus find Xn(x) = sin(nπx) and

dT

dt
= −Kγ λ

2
n 0D

1−γ
t T ,(4.2)

where λn = nπ, n = 1, 2, . . . . The solution of (4.2) is found in terms of the Mittag–
Leffler function [4]:

Tn(t) = Eγ(−Kγn
2π2tγ) .(4.3)

Imposing the initial condition we obtain

u(x, t) =
8

π3

∞∑
n=0

1

(2n+ 1)3
sin[(2n+ 1)πx]Eγ [−K(2n+ 1)2π2tγ ] .(4.4)

In Figure 4.2 we compare this exact solution with the results of the numerical inte-
gration scheme for γ = 0.5, γ = 0.75, and γ = 1 for t = 0.5 and Kγ = 1. The values
of Sγ used were Sγ = 0.33, 0.4, and 0.5 with ∆x = 1/10, 1/20, and 1/50, respectively.
The values of ∆t for fixed Sγ and ∆x stem from the definition of Sγ :

∆t =

[
Sγ(∆x)

2

Kγ

]1/γ
.(4.5)

Excellent agreement is observed for the three values of γ, it being slightly poorer
for the smallest value, which is not surprising because in this case the mesh size
∆x = 1/10 used is the largest.
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Fig. 4.3. Values of S×
γ corresponding to the onset of instability versus the subdiffusion exponent

γ. The solid line is the prediction of the Fourier–von Neumann analysis and the symbols denote
the results of the numerical tests with the criterion in (4.6): stars, triangles, and squares for the
absorbing boundary problem with u(x, 0) = x(1 − x) with M = 50, 100 and 1000, respectively, and
circles for the propagator with M = 1000.

4.2. Numerical check of the stability analysis. We checked the stability
bound on the value of the Sγ given in (3.12) in the following way. For a set of
values of γ in the interval [0, 1], and for values of Sγ starting at Sγ = 0.98S×

γ (in
particular, for Sγ = 0.98/22−γ + 0.001n, n = 0, 1, 2, . . . ) we applied the fractional
FTCS integration until step M . We say that the resulting integration for given values
of γ and Sγ is unstable when the following condition is satisfied at any position j:∣∣∣∣um−1

j

umj
− Ξ

∣∣∣∣ > Ξ for any m = M − ∆M,M − ∆M + 1, . . . ,M,(4.6)

where Ξ = 5 and ∆M = 10. This means that the numerical solution is considered
unstable if the quotient um−1

j /umj becomes negative or larger than 2Ξ at any of the last
∆M steps. (Of course, this criterion is arbitrary; however, the results do not change
substantially for any other reasonable choice of Ξ and ∆M .) Let Smin

γ be the smallest
value of Sγ = 0.98/22−γ + 0.001n that verifies the criterion (4.6). For the absorbing
boundary problem we calculate these values using ∆x = 1/2N with N = 5, M = 50,
M = 100, and M = 1000. For the propagator, we calculate Smin

γ using M = 1000 and
∆t = 5×10−4 in a lattice with absorbing frontiers placed at x = −N∆x and x = N∆x
with N = 50. It is well known that for a lattice with 2N + 1 points (including the
absorbing boundaries) the maximum value of sin(q∆x/2) in (3.10) occurs for q∆x =
(2N−1)π/(2N), so that in Figure 4.3 we plot Smin

γ sin2[(2N−1)π/(4N)]. We observe
that for large M the stability bound predicted by (3.12) agrees with the result of the
numerical test. The larger values obtained for smaller M mean that the method must
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Fig. 4.4. Unstable numerical solution of the subdiffusion equation for the problem defined in
the unbounded space with initial condition u(x, t = 0) = δ(x) for γ = 1/2, Kγ = 1, S = 0.36 and
t = 0.005 (squares), and t = 0.05 (circles). The time step is ∆t = 0.0005 and the spatial mesh ∆x
is obtained according to (4.5). The lines are plotted as a visual guide.

be “very unstable” to fulfill our instability criterion in so few steps. The success of the
numerical test is truly remarkable and supports the application of our Fourier–von
Neumann-type stability analysis to the fractional FTCS scheme made in section 3.1.

In Figure 4.4 we plot the numerical solution when Sγ = 0.36 > S×
γ in the case

of the propagator with γ = 1/2. This kind of awkward oscillatory behavior in the
unstable domain is also typical for ordinary partial differential equations.

5. Concluding remarks. The availability of efficient numerical algorithms for
the integration of fractional equations is important, as these equations are becoming
essential tools for the description of a wide range of systems [3]. In this paper we
have discussed a numerical algorithm for the solution of the fractional (sub)diffusion
equation (1.2). Although we have dealt with this particular equation, our proce-
dure could be extended to any fractional integrodifferential equation (for example,
to fractional diffusion-wave equations) by means of an obvious combination of the
Grünwald–Letnikov definition of the fractional derivative [1, 2, 4] with standard dis-
cretization algorithms used in the context of ordinary partial differential equations
[26]. Furthermore, the method (given its explicit nature) can be trivially extended to
d-dimensional problems, which is not such an easy task when implicit methods are
considered.

In our numerical method the state of the system at a given time t = m∆t
is given explicitly in terms of the previous states at t = (m − 1)∆t, . . . ,∆t, 0 by
means of the FTCS scheme (3.3). We verified that for some standard initial con-
ditions with exact analytical solution, namely, (a) the propagator in an unlimited
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system with u(x, t = 0) = δ(x), and (b) a system with absorbing boundaries and
u(x, t = 0) = x(1 − x), the present algorithm leads to numerical solutions which are
in excellent agreement with the exact solutions. Using a Fourier–von Neumann tech-
nique we have provided the conditions for which the fractional FTCS method is stable
(cf. (3.10) and (3.11)). For γ = 1 the well-known bound S = D∆t/(∆x)2 ≤ 1/2 of
the ordinary explicit method for the diffusion equation is recovered.

Concerning the implementation of the method, we must remark that the evalua-
tion of the state of the system at a given time step m∆t requires information about all
previous states at t = (m−1)∆t, (m−2)∆t, . . . ,∆t, 0 and not merely the immediately
preceding state as in ordinary diffusion. This is a consequence of the non-Markovian
nature of subdiffusion and implies the need for massive computer memory in order to
store the evolution of the system, which is especially cumbersome in computations of
long-time asymptotic behaviors. This could be palliated by using the “short-memory”
principle [1] or the nested mesh procedure [30]. Another feature of the explicit nu-
merical scheme is the interdependence of the temporal and spatial discrete steps for
a fixed Sγ . If, as usual, one intends to integrate an equation with a given mesh ∆x,
then the corresponding step size ∆t for a given Sγ < S×

γ is of the order (∆x)2/γ . As
a consequence, ∆t could become extremely small even for no too small values of ∆x,
especially when the problem is far from the diffusion limit, i.e., for small values of
γ, so that the number of steps needed to reach even moderate times would become
prohibitively large. In this case, resorting to other methods (e.g., implicit methods
[14, 21, 22, 23, 24, 25]) that are stable for larger values of ∆t is compulsory.
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Abstract. We study the equation describing the motion of a nonparametric surface according
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1. Introduction. The objective of this article is the derivation of reliable a pos-
teriori error estimates for the mean curvature flow (MCF) of a d-dimensional time-
dependent submanifold Γ(t) of the Euclidean space R

d+1. We pay special attention
to the physically relevant cases (d = 1, 2, 3), and we refer to Γ(t) simply as a moving
surface. A geometric definition of the MCF, whose details can be found in Huisken
[15] and the references therein, is given by

V (x, t) = −κ(x, t) for x ∈ Γ(t), t ∈ R,(1.1)

where V and κ are respectively the velocity and the vector mean curvature of Γ.
More general definitions of MCF are found in the literature [5, 11, 4], but will not be
used.

In this paper we are interested in the graph (also called nonparametric) description
in which the moving surface is described as the graph of a function u defined on a
space-time domain Ω× [0, T ] ⊂ R

d ×R. This description leads to the following PDE,
referred to as the mean curvature flow of graphs (MCFG):

∂tu(x, t)

Qu(x, t)
− 1

d
div

∇u(x, t)
Qu(x, t)

= 0 for x ∈ Ω, t ∈ [0, T ],(1.2)

where ∇ denotes the derivative with respect to x and Q the elementary area operator
defined by

Qw := (1 + |∇w|2)1/2.(1.3)
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We drop the factor 1/d, through a time rescaling by d, and we study the following
initial-boundary value problem associated with (1.2).

Problem 1.1 (Cauchy–Dirichlet problem for the MCFG). Given functions f :
Ω × (0, T ] → R and g : ∂p (Ω × (0, T )) → R, find u : Ω × [0, T ] → R such that

∂tu(x, t)

Qu(x, t)
− div

∇u(x, t)
Qu(x, t)

= f(x, t) for (x, t) ∈ Ω × (0, T ],(1.4)

u(x, t) = g(x, t) for (x, t) ∈ ∂p (Ω × (0, T )),(1.5)

where ∂p (Ω × (0, T )) is the parabolic boundary defined as Ω × {0} ∪ ∂Ω × [0, T ].
Arguably the MCF plays the role of model geometric motion, in the same way

as the heat equation plays the role of model diffusion equation. For more than two
decades the MCF has been the object of mathematical analysis [1, 4, 5, 11, 15, 16] as
well as computer simulations [5, 8, 23, 20] and numerical analysis [6, 7, 8, 28]. It has
also attracted the interest of practitioners, especially in the fields of materials science
and phase transition where the MCF, or some closely related geometric motion, often
models the motion of a free boundary [3, 13, 24].

A straightforward way to approximate numerically the solution of Problem 1.1 is
first to discretize the spatial variable through a finite element method—which comes
naturally, as (1.4) is written in “divergence form”—and secondly to discretize the
time variable with a finite difference scheme known as semi-implicit, in which the
nonlinearity is treated explicitly and the linear part implicitly [8]. The first stage
of this process, discussed in sections 2.1–2.5, is referred to as the spatial (semi-)
discretization. Deckelnick and Dziuk [7] and Dziuk [8] have derived a priori error
estimates for both the spatially discrete and the semi-implicit fully discrete scheme.

The study of a posteriori error estimates for evolution equations, which has de-
veloped in the last 15 years, is mainly motivated by their successful use in deriving
adaptive mesh refinement algorithms. The lack of such estimates in the case of the
MCFG and the interest in adaptive methods for this problem are the driving motives
behind this article. Our main results, discussed in section 3, are a posteriori upper
bounds on the error for the spatially discrete approximation. A posteriori error esti-
mates have been established for linear parabolic problems [9, 19] and used to derive
adaptive mesh refinement algorithms. Analogous results have also been derived for
certain nonlinear elliptic [12, 26] and parabolic [10, 17, 18] equations, but these cannot
be applied to the MCFG.

As observed since the early days of adaptive finite element methods (FEM) [2], an
adaptive mesh refinement algorithm must satisfy two fundamental properties: relia-
bility and efficiency. These two algorithmic concepts are closely related to the nature
of the error bounds. Indeed, an algorithm is called reliable if the error between its
output and the exact solution is bounded from above by a given tolerance; in terms of
estimators, reliability is achieved if the error/estimator ratio—known as the effectivity
index in the literature—is bounded from above by a positive constant. On the other
hand, an algorithm is called efficient if it produces a result with a prescribed error in
the least amount of computational time; the efficiency of an algorithm translates, in
the language of estimators, into the effectivity index being bounded from below. For
an estimator to be both reliable and efficient, it is necessary for it to be sharp, meaning
that the order of convergence of the error and that of the estimator must be equal, as
the meshsize goes to zero. In particular, sharpness allows the estimators to be used
in stopping criteria for adaptive algorithms. In this paper, besides proving reliable
error estimates (upper error bounds), we will also conduct numerical experiments to
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understand whether these estimates are also sharp. For this, the numerical examples
we shall present in section 7 are mainly designed toward comparing the numerical
asymptotic convergence rates of the error and of the estimators.

The MCFG is an example of an evolution equation that is not covered by any of
the general techniques developed so far for the derivation of a posteriori error estimates
for nonlinear equations [10, 17, 27]. This is mainly due to the nonuniformly parabolic
nature of the equation and, more philosophically, to the fact that general nonlinear
theories end up being less reliable and harder to apply. In this paper we employ an
ad hoc energy technique to derive the estimates. To the best of our knowledge, the
energy technique is the only practical way to achieve our aim. A distinctive feature
of this paper is the use of special quantities to quantify the error. Like in most
nonuniformly parabolic equations, the Sobolev norms are extremely hard to handle
in the MCFG context, and we are naturally led to use the geometric errors, which are
introduced next. These are not Sobolev norms of the error u − uh, where u and uh
are respectively the exact and approximate solutions, but more specialized measures
of the error (see section 2.5). The geometric errors are not even symmetric in u and
uh, yet they satisfactorily quantify the error and are easy to use.

Definition 1.2 (geometric error). Let u be the solution of Problem 1.1 and uh
be the finite element solution given by Problem 2.5. For each t ∈ [0, T ], define

A(t) :=

∫
Ω

|Nuh(x, t) −Nu(x, t)|2Qu(x, t) dx,(1.6)

B(t) :=

∫ t

0

∫
Ω

(V uh(x, s) − V u(x, s))
2
Qu(x, s) dxds,(1.7)

where

W1(Ω) � w �→Nw :=
(∇w;−1)

Qw
∈ L∞(Ω)d+1

and W1
1(Ω × (0, T )) � w �→ V w :=

∂tw

Qw
∈ Lloc

1 (Ω × (0, T ))

(1.8)

are, respectively, the normal vector and the normal velocity operators. We will de-
note by Ck(Ω) (resp., Wk(Ω)) the space of k times continuously (resp., weakly) dif-
ferentiable functions, by Wk

p(Ω) the usual Sobolev space of functions in Wk(Ω) with

derivatives in Lp(Ω), and by
◦

Wk
p(Ω) the subspace of functions with vanishing trace.

The functions of time A and B are the building blocks of the total geometric error E
defined by

E(t)2 := B(t) + sup
[0,t]

A(s) =

∫ t

0

∫
Ω

(V uh − V u)
2
Qu+ sup

(0,t)

∫
Ω

|Nuh −Nu|2Qu.
(1.9)

We refer to sup[0,t]A
1/2 and B1/2 as the geometric energy error and normal velocity

error, respectively.

The integrals of the form ∫Ω ·Qu(x, t) dx in (1.9) can be interpreted as integrals
over the moving surface Γ(t), which give us the L2(Γ) norm of the difference of normals
and the difference of normal velocities. A comparison with the integrals appearing on
the left-hand side of (2.6) explains in part why they “fit” the problem.
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We point out that, despite the natural relation between our notion of error and
the MCFG, no related concept of error has yet been used in the context of a pos-
teriori error control for parabolic equations. In fact, the geometric nature contrasts
sharply with the pure analytic setting found, for instance, in Verfürth’s monograph
[26]. A related, symmetric, geometric error is employed by Fierro and Veeser for the
stationary case [12].

It is important to observe that the sharpest estimate in this article, given by
Theorem 3.6, is a conditional estimate. By conditional we mean that the estimate is
valid only if a certain condition on how close the approximate solution is to the exact
solution is satisfied. A relevant feature of our result in this respect is that the condition
can be machine-checked since it entails computable quantities. This is of paramount
importance for a result to be fully “a posteriori” (see Remark 3.7). In this sense,
to the best of our knowledge, our result is the first conditional a posteriori estimate
for nonlinear parabolic equations. Conditional results have also been derived for the
prescribed mean curvature (elliptic) equation by Fierro and Veeser [12]. We notice
that Verfürth has also established conditional results, but the conditions are not fully
a posteriori and cannot be machine-checked [26]. In order to appreciate the sharpness
of the conditional result of Theorem 3.6, an unconditional estimate is given in Theorem
3.4 for the sake of comparison. Our numerical results provide a practical comparison
between the two theoretical bounds and show that the conditional estimate is sharp
while the unconditional estimate is not.

Dziuk has shown an a priori error bound of rate O(h) on the geometric error in
the spatially discrete case [8]. The geometric error introduced in Definition 1.2 is
similar to the one used by Dziuk, but in his case the integrals are evaluated on the
discrete surface, while we compute them on the exact surface. In this respect our
a posteriori viewpoint can be seen, roughly speaking, as dual to the a priori approach.
We notice, however, that our results are valid under weaker regularity assumptions
on the exact solution u (see Example 7.5). Our analysis also includes time-dependent
boundary value g and nonhomogeneous right-hand side f , while Dziuk’s analysis is
limited to the homogeneous and time-independent boundary value case.

The rest of this paper is organized as follows. In section 2 we discuss some
properties of Problem 1.1 and introduce the associated spatial finite element method.
In section 3 we state the main results and make some observations. Next, in sections
4–6 we prove these results. Finally, numerical tests are discussed in section 7.

2. The Cauchy–Dirichlet problem and its spatial discretization.
Assumption 2.1 (solvability and regularity). Unless otherwise stated, the fol-

lowing conditions will be assumed to hold:
(a) Classical solvability: Problem 1.1 admits a unique classical solution u in

C2,1(Ω × (0, T ]) ∩ C0(Ω × [0, T ]) for some T > 0.
(b) Boundary regularity of contact angle:1

∇u(t)
Qu(t)

∈ W1
d(Ω) ∀t ∈ [0, T ].(2.1)

(c) Regularity of normal velocity:

V u(t) =
∂tu(t)

Qu(t)
∈ Ld(Ω) ∀t ∈ [0, T ].(2.2)

1We use the following convention throughout this article: whenever a space-time function w :
Ω× [0, T ] → R

N (N = 1, d) is written with only one argument, it means that the argument is a time
variable and that its value—e.g., w(t) or w(1/2)—is a function with domain Ω.
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(d) Regularity of vertical velocity:

∂tu(t) ∈ W1
1(Ω) ∩ L2(Ω) ∀t ∈ [0, T ].(2.3)

Remark 2.2 (about the regularity assumptions). Assumption 2.1(a) is backed
up by the fact that Problem 1.1 admits classical solutions under certain sufficient
conditions relating the mean-convexity of ∂Ω and the function |f | [16, section 12.8].
Solutions, which are classical up to blow-up, can also exist in more general situations
where the domain is non–mean-convex or compatibility conditions are violated [25].
There are two implicit assumptions that are immediate consequences of Assumption
2.1(a): we necessarily have f ∈ C0(Ω × (0, T ]) and g ∈ C0(∂p (Ω × (0, T ])). Although
a “weak form” of Problem 1.1 will be derived in section 2.3, we do not know of any
satisfactory concept of a “weak solution” for it.

The reason that we assume (2.3) is technical: this assumption will be needed
to test (1.4) by ∂tu (see sections 2.3, 2.4, and 4.3). Notice that for d ≤ 2, in view
of the Sobolev embedding, this assumption can be simplified to ∂tu ∈ W1

1(Ω) and
implies (2.2). Notice also that, for d ≥ 1, the Sobolev embedding and (2.3) imply
that ∂tu ∈ Ld′(Ω) for d′ = d/(d− 1).

Proposition 2.3 (weak form). Let u ∈ C2,1(Ω × (0, T ]) ∩ C0(Ω × [0, T ]) be a
given function that satisfies (2.1) and (2.2). The function u is a classical solution of
Problem 1.1 if and only if〈

∂tu(t)

Qu(t)
, φ

〉
+

〈∇u(t)
Qu(t)

,∇φ
〉

= 〈f(t), φ〉 ∀φ ∈
◦

W1
1(Ω), t ∈ (0, T ],(2.4)

u(t) − g̃(t) ∈
◦

W1
1(Ω) ∀t ∈ (0, T ], and u(0) = g(0),(2.5)

where g̃(t) is an extension of g(t) to all of Ω.
We use the notation 〈v, w〉D :=

∫
D
v(x)w(x) dµ(x) for functions v and w such

that vw ∈ L1(D,µ), D ⊂ R
d, and dµ is the Lebesgue measure “ d·” or the (d − 1)-

dimensional Hausdorff measure, depending on the Hausdorff dimension of D. If D =
Ω, we omit the subscript in the brackets.

The proof of Proposition 2.3 follows basic PDE techniques and is omitted. We
observe that the existence of g̃, for g(t) ∈ L1(∂Ω), is guaranteed in view of [22,
eq. (5.5)].

Lemma 2.4 (stability estimate). If we have f ∈ L2(0, T ; L∞(Ω)) and g ∈
W1

1(∂p (Ω × (0, T ))), then

1

2

∫ t

0

∫
Ω

|V u|2Qu+

∫
Ω

Qu(t)

≤ exp

(
1

2

∫ t

0

‖f‖2
L∞(Ω)

)(
‖Qg(0)‖L1(Ω) + ‖∂tg‖L1(∂Ω×(0,t))

)
.

(2.6)

Proof. Test (1.4) by ∂tu ∈ Ld′(Ω) and, owing to (2.1) and (2.3), apply the
integration by parts formula on Ω:

0 =

∫
Ω

|V u|2Qu+

∫
Ω

∇u
Qu

· ∇∂tu−
∫
∂Ω

∇u · ν
Qu

∂tu−
∫

Ω

f∂tu.(2.7)

The first term, which is equal to
∫
Ω
V u ∂tu, is well defined thanks to (2.3) and (2.2).

The third and fourth terms are bounded as follows:∫
∂Ω

∇u · ν
Qu

∂tu =

∫
∂Ω

(∇u
Qu

· ν
)
∂tg ≤ ‖∂tg‖L1(∂Ω) ,(2.8)
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Ω

f∂tu =

∫
Ω

f
√
Qu

∂tu√
Qu

≤ 1

2

∫
Ω

|V u|2Qu+
1

2
‖f‖2

L∞(Ω)

∫
Ω

Qu.(2.9)

Next we observe that the basic identity

∂tQu(x, t) = ∂t

√
1 + |∇u|2 =

∇u · ∂t∇u
Qu

(2.10)

implies

1

2

∫
Ω

|V u|2Qu+ dt

∫
Ω

Qu ≤ ‖∂tg‖L1(∂Ω) +
1

2
‖f‖2

L∞(Ω)

∫
Ω

Qu.(2.11)

The result is obtained by integrating on [0, t] and applying the Gronwall lemma.
Inequality (2.6) acquires a geometric meaning upon observing that

∫
Ω
Qu is the

area of graph(u). This gives us a control on the growth of the area in time in terms
of the data. In particular, if the forcing term f = 0 and the boundary conditions are
time-independent, then (2.6) quantifies the decrease in area of the graph that tends
toward a nonparametric minimal surface as time grows. The MCF, with f = 0, is
thus interpreted as the gradient descent method for the area functional with respect
to the L2(Γ(t)) norm.

2.1. Finite element discretization. We start by introducing {Th}h, a shape-
regular family of triangulations (simplicial partitions) of the domain Ω. This means
that there exists a constant σ0 ∈ R

+, independent of the particular triangulation Th,
such that

sup {ρ ∈ R
+ : Bρ (x) ⊂ K}

diam(K)
≥ σ0 ∀K ∈ Th.(2.12)

We will refer to σ0 as the shape-regularity of the family {Th}h. We assume that
the approximate domain Ωh = int

(⋃
K∈Th

K
)

coincides with Ω; this is a simplifying
assumption that could be removed at the cost of seriously complicating the analysis,
without adding much content to the results we intend to present. The symbol h
stands for both the local meshsize function and the global meshsize of Th; this abuse
of notation should not cause confusion.

Given a simplex K ∈ Th and ψ : Ω → R, we denote by ψK the restriction
ψ|K—e.g., if ψ = h, we have hK = diam(K)—and by U h

K , the Th-neighborhood of K,

U h
K := int

(⋃{
K ′ ∈ Th : K ′ ∩K �= ∅}).(2.13)

We also associate with Th its internal mesh Σh :=
⋃
S∈S◦

h
S, where S ◦

h is the set of

internal edges (or faces) of the simplexes in Th. The finite element spaces, constructed
on Th, that will be employed are

Vh :=
{
φ ∈ W1

1(Ω) : φK ∈ P
� ∀K ∈ Th

}
and

◦
Vh := Vh ∩

◦
W1

1(Ω),(2.14)

where � ∈ Z
+ and P

� is the space of polynomials of degree at most �. A spatial finite
element discretization of Problem 1.1 can be now derived from (2.4).

Problem 2.5 (spatially discrete scheme for the MCFG). Let g̃h(t) ∈ Vh be an
interpolant of g̃(t). Find uh ∈ C1([0, T ]; Vh) such that, for each t ∈ [0, T ],

uh(t) − g̃h(t) ∈
◦
Vh,(2.15)
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∂tuh(t)

Quh(t)
, φh

〉
+

〈∇uh(t)
Quh(t)

,∇φh
〉

= 〈f(t), φh〉 ∀φh ∈
◦
Vh.(2.16)

Solvability of Problem 2.5 and a priori error estimates are studied by Dziuk [8,
Thm. 1]. Throughout the paper, uh will denote the solution of Problem 2.5.

3. A posteriori error estimates. In this section we state our main results.
We start by introducing some definitions.

Definition 3.1 (residual functions). For each t ∈ [0, T ], let r(t) be the internal
residual and let j(t) be the jump residual associated with uh. These two functions are
defined on Ω \ Σh and Σh, respectively, and are given by

r(x, t) :=
∂tuh(x, t)

Quh(x, t)
− f(x, t) − div

(∇uh(x, t)
Quh(x, t)

)
for x ∈ Ω \ Σh,(3.1)

j(x, t) :=

[∇uh(x, t)
Quh(x, t)

]
S

for x ∈ S ∈ S ◦
h ,(3.2)

where the jump of a vector field ψ across an edge S is defined as

[ψ]S (x) := lim
ε→0

(ψ(x+ ενS) −ψ(x− ενS)) · νS(3.3)

with x ∈ S and νS denoting one of the two normals to S (the choice is arbitrary and
does not affect the definition).

Definition 3.2 (local indicators and weights). Denote by C1 and C2 the Scott–
Zhang interpolation inequality constants, which depend only on the shape-regularity
σ0 of Th and which we introduce later in inequalities (6.2) and (6.3), respectively.
With each K ∈ Th we associate the local

elliptic indicator ηK0 (t) := h
d/2
K

(
C1 ‖r(t)‖Ld(K) + C2 ‖j(t)‖L∞(∂K)

)
,(3.4)

parabolic indicator ηK1 (t) := h
d/2
K

(
C1 ‖∂tr(t)‖Ld(K) + C2 ‖∂tj(t)‖L∞(∂K)

)
,(3.5)

and the local weights

ωK(t) := sup
x∈Uh

K

Quh(x, t)
2, αK(t) := ωK(t)2 sup

x∈Uh
K

1

Qu(x, t)
.(3.6)

Definition 3.3 (a posteriori error estimators). Denote by M and γ two positive
constants, depending only on the shape-regularity σ0, which we will introduce in detail
in the proof of Lemma 6.4. We define the elliptic part of the proper estimator

E2,0(t) := sup
s∈[0,t]

Ê2,0(s), where Ê2,0(t)
2 := γ2

∑
K∈Th

αK(t)ηK0 (t)2,(3.7)

the parabolic part of the proper estimator

E2,1(t) :=

∫ t

0

Ė2,1(s) ds, where Ė2,1(t)
2 := γ2

∑
K∈Th

αK(t)ηK1 (t)2,(3.8)

the elliptic part of the vicinity estimator

E∞,0(t) := sup
s∈[0,t]

Ê∞,0(s), where Ê∞,0(t) := M max
K∈Th

(
h
−d/2
K ωK(t)ηK0 (t)

)
,(3.9)
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and the parabolic part of the vicinity estimator

E∞,1(t) :=

∫ t

0

Ė∞,1(s) ds, where Ė∞,1(t) := M max
K∈Th

(
h
−d/2
K ωK(t)ηK1 (t)

)
.(3.10)

These definitions allow us to introduce the proper estimator and the vicinity estimator,
respectively, as

E2(t) :=
(
E2,0(t)

2 + E2,1(t)
2
)1/2

and E∞(t) := E∞,0(t) + E∞,1(t).(3.11)

We finally introduce the initial estimator and total estimator, respectively, as

E0 :=
(
(1 + 2E∞,0(0))A(0) + 2E2,0(0)

√
A(0)

)1/2

(3.12)

and

E (t) :=
(
E 2

0 + E2(t)
2 + E∞(t)

)1/2
.(3.13)

The motivation for our terminology will become clear in Theorem 3.6 below: there
the vicinity estimator E∞ does not enter directly into the conditional estimate, but
dictates a “closeness condition” that must be satisfied for the estimate to hold. This
conditional estimate then involves the initial and proper estimators E0 and E2.

We are now ready to state the main results, whose proofs are spread through
sections 4–6.

Theorem 3.4 (unconditional a posteriori estimate). Let u be the solution of
Problem 1.1, and uh the finite element solution of Problem 2.5. For all t ∈ [0, T ] there
exist C = C[uh, f, t] and C ′ = C ′[f, g, t] such that

C ≤ exp

∫ t

0

(
2 ‖∂tuh(s)‖2

L∞(Ω) + 4 ‖∇∂tuh(s)‖L∞(Ω)

)
ds,(3.14)

C ′ ≤ exp

(
1

2
‖f(s)‖2

L∞(Ω)

)(
‖Qg(0)‖L1(Ω) + ‖∂tg‖L1(∂Ω×(0,t))

)
,(3.15) ∫ t

0

∫
Ω

(V uh − V u)2Qu+
1

2
sup
[0,t]

∫
Ω

|Nuh −Nu|2Qu

≤ C
(
E0

2 + 4E2(t)
2 + 8C ′E∞(t)

)
.

(3.16)

Remark 3.5 (the sharpness of the unconditional estimate). The estimate (3.16)
holds, regardless of whether the approximate solution uh is close to or far from the
exact solution u. The presence of the vicinity estimator E∞ on the right-hand side is
undesirable because, even under the most optimistic assumptions of regularity on u,
there is no indication that this estimator will have the same order of convergence, as
h goes to zero, as the square of the geometric error on the left-hand side. In fact, the
numerical tests described in section 7 bear strong evidence that E∞ does not decay
with a sufficiently high power of h. This means that the above estimate is not sharp
and that it cannot be relied upon as a stopping criterion in an adaptive scheme. A
crucial point of this paper is that this estimate can be improved, provided that uh is
sufficiently close to u, as stated in the next theorem.
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Theorem 3.6 (conditional a posteriori estimate). Let u be the solution of Prob-
lem 1.1, and uh the finite element solution of Problem 2.5. For each t ∈ [0, T ], if

E∞(t) ≤ 1

8
,(3.17)

then there exists a constant C = C[uh, t] such that

C ≤ exp

∫ t

0

(
2 ‖∂tuh(s)‖2

L∞(Ω) + 4 ‖∇∂tuh(s)‖L∞(Ω)

)
ds,(3.18) ∫ t

0

∫
Ω

(V uh − V u)2Qu+
1

2
sup
[0,t]

∫
Ω

|Nuh −Nu|2Qu ≤ C
(
E0

2 + 8E2(t)
2
)
.(3.19)

Remark 3.7 (a posteriori nature of condition (3.17)). Theorem 3.6 is a conditional
result, typical in nonlinear analysis. The condition (3.17) can be interpreted as follows:
the approximate solution uh needs to be sufficiently close to the exact solution u for
the estimate to hold. The technique we use can be thought of as a linearization of
the equation about uh, instead of a linearization about u, which would be natural
in an a priori setting. This leads to the important fact that condition (3.17) can be
effectively verified since it involves exclusively a posteriori, and therefore computable,
quantities. Thus, in a practical adaptive method where a stopping criterion is needed,
Theorem 3.4 would be used in the early preasymptotic stages in order to get close
enough to the exact solution; the estimate of Theorem 3.6 would then provide a
sharper criterion once the algorithm enters a second stage in which the condition
(3.17) is satisfied.

4. The error equation. We divide the proof of Theorems 3.4 and 3.6 into
several steps that will spread over the next two sections. Here we introduce the
residual-based energy technique and we formulate the error equation.

4.1. The residual. The residual is defined as the difference between the exact
operator acting on the approximate solution and the exact operator acting on the
exact solution. In our setting, the result has to be understood in the following weak
sense:

〈R |φ〉 :=

〈
∂tuh
Quh

− ∂tu

Qu
, φ

〉
+

〈∇uh
Quh

− ∇u
Qu

,∇φ
〉

∀φ ∈
◦

W1
1(Ω).(4.1)

Here 〈· | ·〉 stands for the duality pairing. The distribution R is time-dependent and,

owing to Assumption 2.1, R(t) is a bounded linear functional on
◦

W1
1(Ω) for all t ∈

[0, T ]. We will refer to R as the residual functional. The use of (2.4) and an integration
by parts in the space variable lead to the residual functional representation

〈R |φ〉 =

〈
∂tuh
Quh

− f − div

(∇uh
Quh

)
, φ

〉
+

〈[∇uh
Quh

]
, φ

〉
Σh

= 〈r, φ〉 + 〈j, φ〉Σh
∀φ ∈

◦
W1

1(Ω),

(4.2)

where the residual functions r and j are those introduced in section 3.1.

4.2. Galerkin orthogonality and the error equation. The starting point of
our residual-based a posteriori estimation is exploiting the property that R vanishes
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on
◦
Vh. This is the so-called Galerkin orthogonality property, which yields the following

error equation:〈
∂tuh
Quh

− ∂tu

Qu
, φ

〉
+

〈∇uh
Quh

− ∇u
Qu

,∇φ
〉

= 〈R |φ− φh〉(4.3)

for all φ ∈
◦

W1
1(Ω), φh ∈

◦
Vh.

4.3. Choice of the test function. The energy technique relies on an appro-
priate choice of test functions φ and φh in (4.3). Let us denote by e the error

e(x, t) := uh(x, t) − u(x, t)(4.4)

and make the following choices for the test functions:

φ(x, t) := ∂te(x, t),(4.5)

φh(x, t) := Ihφ(x, t),(4.6)

where Ih is the Scott–Zhang interpolation operator which will be briefly discussed in
section 6.2 and section 6.3. For ∂te to be admissible as a test function φ in (4.3),
it must vanish on ∂Ω, which is not necessarily true. This motivates the following
temporary assumption, which will be removed in section 6.3 where we deal with
general boundary data.

Assumption 4.1 (exact boundary data resolution). Until section 6.3, let either
(a) the boundary value g be approximated exactly by gh, or
(b) g be time independent.

5. Coercivity. Our objective in this section is to derive a lower bound on the
left-hand side of (4.3) with the choice made in (4.5). To achieve this objective we
exhibit as much coercivity as the nonlinearity allows; we will make a liberal use of
the word “coercivity” in this sense. The geometric error functions of time A and B,
introduced in section 1.2, will be used extensively in this section and in the next one.
We begin by stating some simple yet fundamental geometric relations observed by
Dziuk.

Lemma 5.1 (basic geometry [8]). Given p1,p2 ∈ R
d, if qi := (1 + |pi|2)1/2 and

ni := (pi;−1)/qi ∈ R
d for i = 1, 2, then the following geometric relations hold:

1 − 1 + p1 · p2

q1q2
=

1

2
|n1 − n2|2 ,(5.1) ∣∣∣∣( 1

q1
− 1

q2

)(
p1

q1
− p2

q2

)∣∣∣∣ ≤ 1

2
|n1 − n2|2 ,(5.2)

|p1 − p2|
q1

≤ (1 + |p2|) |n1 − n2| .(5.3)

Lemma 5.2 (Dziuk identity [8]). If v and w are sufficiently differentiable func-
tions on Ω × [0, T ], then

1

2
∂t

(
|Nv −Nw|2Qw

)
=

(∇v
Qv

− ∇w
Qw

)
· ∇ (∂tv − ∂tw)

−∇∂tv ·
(∇w
Qv

− ∇w
Qw

+
∇v
Qv

− 1 + ∇w · ∇v
(Qv)2

∇v
Qv

)
.

(5.4)
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The first term in the left-hand side of (4.3) is handled through the following
inequality.

Lemma 5.3 (coercivity of the velocity term). With the notation

�1(t) :=
1

2
‖∂tuh(t)‖2

L∞(Ω) ,(5.5)

we have that, for all t ∈ [0, T ],〈
∂tuh
Quh

− ∂tu

Qu
, ∂tuh − ∂tu

〉
≥ 1

2
dtB(t) − �1A(t).(5.6)

Proof. Basic manipulations imply〈
∂tuh
Quh

− ∂tu

Qu
, ∂tuh − ∂tu

〉
=

∫
Ω

(V uh − V u)2Qu+

∫
Ω

∂tuh

(
1

Qu
− 1

Quh

)
(V uh − V u)Qu

≥ dtB(t) − ‖∂tuh‖L∞(Ω)

∫
Ω

∣∣∣∣ 1

Qu
− 1

Quh

∣∣∣∣√Qu |V uh − V u|
√
Qu

≥ dtB(t) − ‖∂tuh‖L∞(Ω)

(∫
Ω

|Nuh −Nu|2Qu
)1/2(∫

Ω

(V uh − V u)2Qu

)1/2

.

Consequently〈
∂tuh
Quh

− ∂tu

Qu
, ∂tuh − ∂tu

〉
≥ dtB(t) − 1

2
dtB(t) − �1(t)A(t) =

1

2
dtB(t) − �1A(t),

as asserted.
Lemma 5.4 (coercivity for normals and gradients). With the notation

�2(t) := ‖∇∂tuh(t)‖L∞(Ω) ,(5.7)

we have that, for all t ∈ [0, T ],〈∇uh
Quh

− ∇u
Qu

,∇(∂tuh − ∂tu)

〉
≥ 1

2
dtA(t) − �2(t)A(t).(5.8)

Proof. Integrating in space both sides of (5.4) and rearranging terms yields〈∇uh
Quh

− ∇u
Qu

,∇(∂tuh − ∂tu)

〉
=

1

2
dtA(t)

+

∫
Ω

∇∂tuh ·
( ∇u
Quh

− ∇u
Qu

+
∇uh
Quh

− 1 + ∇u · ∇uh
(Quh)2

∇uh
Quh

)
.

To show the result it is sufficient to show that the last integral above is bounded from
below by −�2(t)A(t). To do this we add and subtract −(Qu∇uh)/(Quh)2 and rewrite
this term as the sum of two integrals:

I1 + I2 :=

∫
Ω

∇∂tuh ·
( ∇u
Quh

− ∇u
Qu

+
∇uh
Quh

− Qu∇uh
(Quh)2

)
+

∫
Ω

∇∂tuh ·
(
Qu∇uh
(Quh)2

− 1 + ∇u · ∇uh
(Quh)2

∇uh
Quh

)
.

(5.9)
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The integrals in (5.9) are bounded, by using (5.2) for the first one,

I1 ≥ −‖∇∂tuh‖L∞(Ω)

∫
Ω

∣∣∣∣( 1

Qu
− 1

Quh

)(∇uh
Quh

− ∇u
Qu

)
Qu

∣∣∣∣ ≥ −�2(t)

2
A(t),

and with the help of (5.1) for the second one,

I2 ≥ −‖∇∂tuh‖L∞(Ω)

∫
Ω

∣∣∣∣(1 − 1 + ∇uh · ∇u
QuhQu

)
Qu

∇uh
(Quh)2

∣∣∣∣ ≥ −�2(t)

2
A(t).

This proves the assertion.
Lemma 5.5 (estimate of the geometric terms). With the notation

�(t) := �1(t) + �2(t),(5.10)

we have that, for all t ∈ [0, T ],

A(t) +B(t) ≤ A(0) + 2

∫ t

0

�(s)A(s) ds+ 2

∫ t

0

〈R(s) | ∂t (e(s) − Ihe(s))〉 ds.(5.11)

Proof. Using (4.5), (4.6), (5.6), and (5.8) in (4.3), we obtain

1

2
( dtA(t) + dtB(t)) ≤ 〈R | ∂te(t) − Ih∂te(t)〉 + �(t)A(t)(5.12)

for all t ∈ [0, T ]. An integration in time over the interval [0, t] yields the result.

6. Bounding the residual by the estimators. We prove in this section The-
orems 3.4 and 3.6 by estimating

∫ t
0
〈R | ∂t (e− Ihe)〉 appearing in (5.11). We will

denote by d′ = d/(d − 1) the conjugate exponent of d, the latter being the surface’s
dimension. We start by stating two lemmas bearing a fundamental geometric rela-
tionship and an interpolation theory result, respectively.

Lemma 6.1 (Fierro–Veeser inequality [12]). Adopting the same notation as in
Lemma 5.1, the following inequality holds:

|p1 − p2|
1

q21
≤ 2 |n1 − n2| + |n1 − n2|2 q2.(6.1)

Lemma 6.2 (Scott–Zhang interpolation [22]). If Ih denotes the averaging in-
terpolation operator that was introduced by Scott and Zhang—called the Scott–Zhang
interpolator in what follows—then the following interpolation inequalities hold:

‖ψ − Ihψ‖Ld′ (K) ≤ C1 |ψ|W1
1(U

h
K) ,(6.2)

‖ψ − Ihψ‖L1(∂K) ≤ 2C2 |ψ|W1
1(U

h
K) ,(6.3)

where U h
K is the Th-neighborhood of K defined in (2.13).

Remark 6.3. The particular choice of the norms in Lemma 6.2 is motivated by
our wish for

√
A(t) to appear in an upper bound on the right-hand side of (5.11).

Indeed, estimating the residual R in energy norms would typically lead to dealing
with |∇uh −∇u|. In light of the geometric errors A and B in the left-hand side of

(5.11), a straightforward idea would be to bound its L2 norm, that is, |∇uh −∇u|2,
from above by C |Nuh −Nu|2Qu, with the constant C = C[uh] independent of u
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(think of uh being unrelated to u in this paragraph). The only practical way to derive
such a bound would be a pointwise geometric relation like

|p1 − p2|2
κ(p1) |n1 − n2|2 q2

≤ 1,(6.4)

where p1 = ∇uh, n1 = Nuh, q1 = Quh, the quantities with subscript 2 refer to u,
and κ is some function of p1 only. Unfortunately this is not possible because (6.4) is
false. To see this, fix p1 and observe that n1 − n2 is bounded; by letting |p2| → ∞,
we obtain, in contrast with (6.4),

|p1 − p2|2
κ(p1) |n1 − n2|2 q2

≥ C
|p1 − p2|2

q2
= O(|p2|) → ∞.(6.5)

This difficulty can be circumvented by using the L1 norm of |∇u−∇uh|, instead
of the L2 norm, and the Fierro–Veeser inequality (6.1), which reads

|∇uh −∇u| = (Quh)
2 |∇uh −∇u|

(Quh)2

≤ (Quh)
2(2 |Nuh −Nu| + |Nuh −Nu|2Qu).

(6.6)

Notice that the last term is cumbersome because its power is too high—it is the “price
to pay.” This term will yield a term of the form �(t)A(t) on the right-hand side which
has to be handled carefully in order to close the estimate.

Recalling first the notation in section 1.2 and section 3.3, we now state and prove
the central result of this paper.

Lemma 6.4 (residual estimate). The following inequality holds for all t ∈ [0, T ] :

A(t) +B(t) ≤ E0
2 + 2Ê2,0(t)A(t)1/2 + 2Ê∞,0(t)A(t)

+ 2

∫ t

0

Ė2,1(s)A(s)1/2 ds+ 2

∫ t

0

Ė∞,1(s)A(s) ds+ 2

∫ t

0

�(s)A(s) ds.
(6.7)

Proof. Apply the representation formula (4.2) with φ = ∂tδhe, where δhe(t) :=
e(t) − Ihe(t), integrate by parts in time, and use the commutativity property ∂tIh =
Ih∂t, to obtain∫ t

0

〈R(s) | ∂tδhe(s)〉 ds =

∫ t

0

〈r(s), ∂tδhe(s)〉 + 〈j(s), ∂tδhe(s)〉Σh
ds

=
[〈r, δhe〉 + 〈j, δhe〉Σh

]t
0
−
∫ t

0

〈∂tr(s), δhe(s)〉 + 〈∂tj(s), δhe(s)〉Σh
ds.

Hence∫ t

0

〈R(s) | ∂tδhe(s)〉 ds

≤
∑
K∈Th

⎛⎝ ∑
s∈{0,t}

(
‖r(s)‖Ld(K) ‖δhe(s)‖Ld′ (K) +

1

2
‖j(s)‖L∞(∂K) ‖δhe(s)‖L1(∂K)

)

+

∫ t

0

‖∂tr(s)‖Ld(K) ‖δhe(s)‖Ld′ (K) +
1

2
‖∂tj(s)‖L∞(∂K) ‖δhe(s)‖L1(∂K) ds

⎞⎠ .
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Owing to the approximation properties of the Scott–Zhang interpolator in Lemma
6.2, and using the local indicators ηKi introduced in Definition 3.2, we may write

∫ t

0

〈R(s) | ∂tδhe(s)〉 ds ≤
∑
K∈Th

h
−d/2
K

(
ηK0 (0) ‖∇e(0)‖L1(Uh

K) + ηK0 (t) ‖∇e(t)‖L1(Uh
K)

+

∫ t

0

ηK1 (s) ‖∇e(s)‖L1(Uh
K) ds

)
.

(6.8)

We proceed by observing that inequality (6.6) implies

‖∇e(t)‖L1(Uh
K) ≤ sup

Uh
K

(Quh)
2

∫
Uh

K

(
2N (t)√
Qu(t)

+ N (t)2

)
,(6.9)

where, in order to simplify notation, we introduce the shorthand

N := |Nuh −Nu|
√
Qu.(6.10)

We continue the bound in (6.8) by using (6.9) as follows:∫ t

0

〈R(s) | ∂te(s) − Ih∂te(s)〉 ds

≤
∑
K∈Th

ηK0 (0)h
−d/2
K ωK(0)

∫
Uh

K

(
2N (0)√
Qu(0)

+ N (0)2

)

+
∑
K∈Th

ηK0 (t)h
−d/2
K ωK(t)

∫
Uh

K

(
2N (t)√
Qu(t)

+ N (t)2

)

+
∑
K∈Th

∫ t

0

ηK1 (s)h
−d/2
K ωK(s)

∫
Uh

K

(
2N (s)√
Qu(s)

+ N (s)2

)
ds.

(6.11)

The first two terms in (6.11) can be bounded at once through the following inequality
(where we simply take t = 0 for the first term):∑

K∈Th

ηK0 (t)h
−d/2
K ωK(t)

∫
Uh

K

(
2N (t)√
Qu(t)

+ N (t)2

)

≤ 2

( ∑
K∈Th

ηK0 (t)2h−dK ωK(t)2
∣∣U h

K

∣∣ sup
Uh

K

1

Qu(t)

)1/2( ∑
K∈Th

∫
Uh

K

N (t)2

)1/2

+ max
K∈Th

(
ηK0 (t)h

−d/2
K ωK(t)

)( ∑
K∈Th

∫
Uh

K

N (t)2

)
.

Likewise, the last term in (6.11) is bounded by

∫ t

0

(
2

( ∑
K∈Th

ηK1 (s)2h−dK ωK(s)2
∣∣U h

K

∣∣ sup
Uh

K

1

Qu(s)

)1/2( ∑
K∈Th

∫
Uh

K

N (s)2

)1/2

+ max
K∈Th

(
ηK1 (s)h

−d/2
K ωK(s)

)( ∑
K∈Th

∫
Uh

K

N (s)2

))
ds.
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To conclude the proof, we observe that the shape-regularity of Th (2.12) implies the
existence of two constants γ0 ∈ R

+ and M ∈ Z
+, depending only on σ0 and the

space dimension d, such that the number of simplexes of Th contained in U h
K does

not exceed M and
∣∣U h

K

∣∣ ≤Mγ2
0h

d
K . Defining γ := 2Mγ0, it follows that∫ t

0

〈R(s) | ∂tδhe(s)〉 ds

≤ γ

( ∑
K∈Th

αK(0)ηK0 (0)2

)1/2

A(0)1/2 +M max
K∈Th

(
h
−d/2
K ωK(0)ηK0 (0)

)
A(0)

+ γ

( ∑
K∈Th

αK(t)ηK0 (t)2

)1/2

A(t)1/2 +M max
K∈Th

(
h
−d/2
K ωK(t)ηK0 (t)

)
A(t)

+ γ

∫ t

0

( ∑
K∈Th

αK(s)ηK1 (s)2

)1/2

A(s)1/2 ds+M

∫ t

0

max
K∈Th

(
h
−d/2
K ωK(s)ηK1 (s)

)
A(s) ds.

Recalling Definition 3.3, we combine the last inequality with (5.11) and obtain (6.7),
as asserted.

Next we prove the theorems stated in section 3 with the aid of Lemma 6.4. For
(6.7) to be useful we must control the terms containing A(t) on the right-hand side
by those on the left-hand side. We distinguish two main ways of doing this. The first
way, which is direct and somewhat naive, uses the stability Lemma 2.4 and leads to
the unconditional a posteriori estimate in Theorem 3.4. The second, more careful,
way results in the conditional but sharper estimate in Theorem 3.6. To shorten the
discussion, we first show the latter and then the former, which is simpler.

6.1. Proof of Theorem 3.6. Our starting point is inequality (6.7). Introduce
the notation A∗(t) := sup[0,t]A, apply the Hölder inequality, and use the Young
inequality with a parameter µ at our disposal, to obtain

A(t) +B(t) ≤E0
2 + µA(t) +

1

µ
Ê2,0(t)

2 + µA∗(t) +
1

µ
E2,1(t)

2

+ 2Ê∞,0(t)A(t) + 2A∗(t)E∞,1(t) + 2

∫ t

0

�(s)A(s) ds.

(6.12)

Choosing µ = 1/8; taking the supremum over [0, t] on both sides; recalling that B,
E2,1, and E∞,1 are nondecreasing; and using Definition 3.3, we can write

A∗(t) +B(t) ≤ E 2
0 +

1

4
A∗(t) + 8E2(t)

2 + 2E∞A∗(t) + 2

∫ t

0

�(s)A∗(s) ds.(6.13)

The condition (3.17), i.e., E∞ ≤ 1/8, and the last inequality imply

1

2
A∗(t) +B(t) ≤ E0

2 + 8E2(t)
2 + 2

∫ t

0

�(s)A∗(s) ds.(6.14)

To conclude the proof, it suffices now to apply the Gronwall lemma in the above in-
equality, and to recall (5.10), (5.5), and (5.7), in order to derive (3.18) and
(3.19).
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6.2. Proof of Theorem 3.4. The proof is a direct combination of Lemma 6.4
and the elementary fact that

A(t) =

∫
Ω

|Nuh(t) −Nu(t)|2Qu(t) ≤ 4

∫
Ω

Qu(t).(6.15)

The stability Lemma 2.4 provides us with an upper bound on the last integral in
terms of the data f and g. To conclude, it is enough to proceed along the lines of
section 6.1 with µ = 1/4 and apply the Gronwall lemma.

Remark 6.5 (slowly varying solutions). Notice that if
∫ t
0
� is small enough (for

which it is necessary for ‖∂tuh‖L1(W1∞) to be small), the Gronwall lemma argument is
not needed and the exponential bound on C can be dropped. This is particularly true
for solutions that are close to stationary points, i.e., if ∂tf and ∂tg are very small. We
will not pursue this issue further in this paper, but we remark that this condition is
also a posteriori and could be checked automatically if needed.

6.3. Time-dependent Dirichlet boundary data. As promised earlier, we
now remove Assumption 4.1; that is, we allow

∂t(uh − u)|∂Ω = ∂t(gh − g) �= 0.(6.16)

We study the case where the boundary value g is discretized as follows:

g̃h := Ihg̃ and gh := g̃h|∂Ω ,(6.17)

where Ih it the Scott–Zhang interpolator of Lemma 6.2 and g̃ denotes the extension of
g to the whole domain Ω [22, eq. (5.5)]. The error e = uh−u can thus be decomposed
as follows:

e = e0 + ε := (uh − g̃h − u+ g̃) + (g̃h − g̃).(6.18)

The residual R, as defined in (4.1), can be naturally extended to be a functional on
W1

1(Ω). It follows that if we take φ = ∂te in (4.3), we have

〈R | ∂te〉 = 〈R | ∂te0〉 + 〈R | ∂tε〉 = 〈R | ∂te0 − Ih∂te0〉 + 〈R | ∂tε〉 .(6.19)

Notice that a Galerkin orthogonality argument can be applied directly to the part
with the admissible error e0 ∈

◦
W1

1. As for the last term in (6.19), we use the Vh-
invariance property of the Scott–Zhang interpolator Ih, namely IhIhψ = Ihψ for all
ψ ∈ W1

1(Ω), and (6.17) to conclude that

Ihε = Ihg̃h − Ihg̃ = IhIhg̃ − Ihg̃ = 0.

This implies that ∂tIhε = 0, and thus 〈R | ∂tε〉 = 〈R | ∂t(ε− Ihε)〉, whence the follow-
ing representation formula follows from (6.19) and elementwise integration by parts:

〈R | ∂te〉 = 〈r, ∂te− Ih∂te〉 + 〈j, ∂te− Ih∂te〉 + 〈β − βh, ∂tε〉∂Ω ,(6.20)

where β := (∇u · ν)/Qu and βh = (∇uh · ν)/Quh.
In order to obtain a lower bound on the left-hand side of (6.20), which is equal

to the left-hand side of (4.3) with φ = ∂te, we proceed in the same fashion as in
section 5 and thereby we again derive (5.11). The first two terms on the right-hand
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side of (6.20) can be dealt with exactly as in section 6, while the fact that β, βh ≤ 1
implies the following bound for the last term:

〈β − βh, ∂tε〉∂Ω ≤ 2 ‖∂tε‖L1(∂Ω) = 2 ‖∂tg − ∂tgh‖L1(∂Ω) .(6.21)

This proves the following generalization of Lemma 6.4.
Lemma 6.6 (residual estimate with boundary values). With the notation E∂(t) :=∫ t

0
‖∂t(g − gh)‖L1(∂Ω), we have that, for all t ∈ [0, T ],

A(t) +B(t) ≤ E0
2 + 2E∂(t) + 2Ê2,0(t)A(t)1/2 + 2Ê∞,0A(t)

+ 2

∫ t

0

Ė2,1(s)A(s)1/2 ds+ 2

∫ t

0

Ė∞,1(s)A(s) ds+ 2

∫ t

0

�(s)A(s) ds.
(6.22)

This lemma enables us to obtain extended versions of Theorems 3.6 and 3.4 by
just adding E∂ to the estimators therein. We omit the statement of these results as
they can be written in a straightforward manner.

7. Numerical experiments. We now present some numerical computations
that we have performed in order to confirm the reliability and test the sharpness of
the error estimates derived in Theorems 3.6 and 3.4. Many of the comments in this
section are given as figure captions in order to make the reading easier.

Definition 7.1 (fully discrete semi-implicit scheme [7, 8]). Let N ∈ Z
+ and

0 = t0 < t1 < · · · < tN = T be a partition of the time interval [0, T ]. For each
n ∈ [1 : N ], denote by τn := tn − tn−1 the nth step size. Given U0

h (an approximation
of g(0)) and g̃nh (the extension to Ω of an interpolant of g(tn)), find a sequence of
functions Unh ∈ Vh such that, for each n ∈ [1 : N ],〈 ∇Unh

QUn−1
h

,∇φh
〉

+

〈
Unh

τnQU
n−1
h

, φh

〉
=

〈
Un−1
h

τnQU
n−1
h

+ fn, φh

〉
∀φh ∈

◦
Vh,(7.1)

Unh − g̃nh ∈
◦
Vh.(7.2)

We implemented this scheme, which is due to Dziuk [8], with the help of the C
finite element toolbox albert of Schmidt and Siebert [21]. All the computations are
based on piecewise linear (P1) finite elements.

7.1. Main goal of the numerical results. With reference to Definition 3.3,
we introduce the full proper estimator defined as Ẽ := (E0

2 + E2
2)1/2, and we recall

that we denote by E∞ the vicinity estimator, by E the total estimator, and by E the
geometric error, introduced in (1.9). With this notation the unconditional estimate
of Theorem 3.4 can be written as

E ≤ CE = C
(
Ẽ 2 + C ′E∞

)1/2

,(7.3)

while the conditional estimate provided by Theorem 3.6 can be summarized as follows:

E∞ ≤ c ⇒ E ≤ C̃Ẽ .(7.4)

The main goal of our numerical experiments is to see that the error bound (7.4) is
sharp whereas (7.3) is not. This will be illustrated by comparing the experimental

order of convergence (EOC) of E, Ẽ , and E
1/2
∞ . The EOC is defined as follows: for a

given finite sequence of uniform triangulations {Thi}i=1,... ,I of meshsize hi, the EOC
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of a corresponding sequence of some triangulation-dependent quantity e(i) (like an
error or an estimator) is itself a sequence defined as

EOC e(i) =
log(e(i+ 1)/e(i))

log(hi+1/hi)
.(7.5)

Notice that for (7.4) to be sharp it is sufficient to have EOCE ≈ EOC Ẽ and E∞ =
o(1), as i increases—this will be satisfied in our numerical tests—whereas for (7.3)

to be sharp it is necessary to have the stronger requirement that EOCE ≈ EOC Ẽ

and EOCE ≈ EOCE
1/2
∞ —this will fail in our numerical tests. We will focus also

on understanding when E∞ = o(1) might fail and on computing the effectivity index,

which is a practical bound on the constant C̃, and is defined as E/Ẽ , at the finest
level I. Since we view the errors and the estimators as functions of time, the EOC
and the effectivity index are also presented as functions of time.

Remark 7.2 (practical version of the error estimators). To test the reliability and
the sharpness of the upper bound given by the estimators, we compute a fully discrete
version of the spatially discrete global estimators introduced in Definition 3.3. These
estimators are sums of the local indicators

ηKi (t) := h
d/2
K (C1

∥∥(∂t)ir(t)∥∥Ld(K)
+ C2

∥∥(∂t)ij(t)∥∥L∞(∂K)
), i = 0, 1,(7.6)

which involve the L∞ norm that is not so practical. Since we use piecewise linear
elements, the jump residuals are constant functions on each edge, and thus the L∞
norm can be replaced by the L2 norm using the inverse estimate

‖v‖L∞(∂K) ≤ Ch
(1−d)/2
K ‖v‖L2(∂K)(7.7)

for all v that are constants on each edge of ∂K. It is hence legitimate to use, instead
of ηiK , the handier local indicators

η̄Ki (t) := h
d/2
K C1

∥∥(∂t)ir(t)∥∥Ld(K)
+ h

1/2
K C2

∥∥(∂t)ij(t)∥∥L2(∂K)
, i = 0, 1.(7.8)

All the integrals are in fact quadratures: while albert’s built-in Gaussian quadrature
is used to approximate the space integrals, a simple midpoint rule is used for the time
integrals. Time derivatives are replaced by backward finite differences.

Remark 7.3 (the discrete initial condition). In our computations, we take the
minimal surface projection for the discrete initial values, i.e., U0

h := uh(0) = Mhg(0),
where Mhv is defined, for each v ∈ W1

1(Ω), as the unique function in Vh such that〈∇Mhv

QMhv
,∇φh

〉
=

〈∇v
Qv

,∇φh
〉

∀φh ∈
◦
Vh,(7.9)

and that interpolates v on the boundary.
This choice of the discrete initial value reduces the initial transients that can occur

with other choices for the discrete initial values such as Lagrange interpolation.
Example 7.4 (smooth exact solution on a square). Our first series of tests use

the following exact solution as a benchmark:

u(x, y; t) = t(sin(t) − sin(t− x(1 − x)y(1 − y))), (x, y, t) ∈ [0, 1]2 × [0, 8].(7.10)

The function u is smooth, it has zero initial and boundary values, which allows us
to focus on the effect of the estimators only, and it is the solution of Problem 1.1
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Fig. 7.1. Errors and EOC vs. time for Example 7.4. In the left column, we plot the errors in the
customary Sobolev norms, related to the heat equation, and the geometric energy error and normal
velocity error introduced in Definition 1.2. In the right column, we plot the corresponding EOC.
The different gray tones, from light to dark, correspond to the decreasing meshsizes h. Notice that
the behavior of the Sobolev energy norm error |e|L2(H1

0) and the geometric energy error is similar

and that both have EOC close to 1.

where the right-hand side f is obtained by applying the differential operator of (1.2)
on u. We performed a series of computations, on uniform meshes, with the meshsizes
hi = (0.5)i for 1 ≤ i ≤ 6. We report the results in the form of graphs, where the
abscissa always denotes the time variable; this allows us to track the behavior of the
errors and estimators in time. Figure 7.1 shows the behavior of the exact spatial errors,
namely, the geometric errors and those in the customary Sobolev norms for evolution
equations. Figure 7.2 shows the behavior of the proper and vicinity estimators with
respect to time.

As shown by the right-hand subfigure in Figure 7.1, the EOCE ≈ 1—this is
to be expected from the a priori results, derived in the case of smooth solutions
[8]. Although the normal velocity error tends to decrease faster, the geometric error
decreases like the geometric energy error, which has order 1.

The sharpness of estimate (7.4) can be seen from the fact that EOC Ẽ ≈ 1 and
that E∞ → 0. On the other hand, we notice that EOCE∞ ≤ 1, which implies that

EOC(E
1/2
∞ ) ≺ EOCE, and thus indicates that the unconditional estimate (7.3) is not

sharp.

The effectivity index C̃, relative to the estimate (7.4), is plotted in Figure 7.3(a)
as a function of time. In this example, the effectivity index is bounded in time, and
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Fig. 7.2. Estimators and EOC vs. time for Example 7.4 for i ≥ 2. The upper panels show

the proper estimator Ẽ and the corresponding EOC (notice that in this particular figure we do not
plot the proper estimator for the first meshsize h = 0.5, for reasons of clarity). The lower panels
exhibit the vicinity estimator behavior which is seen to converge to zero. According to Figure 7.1,

we have EOCE ≈ 1 and, according to the current figure, we have EOC Ẽ ≈ 1 which means that
the proper estimator is sharp as expected. Notice also that, for the vicinity estimator, we have
EOC E∞ ≈ 0.95 ≤ 1, which implies that EOC E ≤ 1/2: this is strong numerical evidence that the
unconditional estimate (7.3) cannot be sharp, in that the estimators decay with a much lower order
than the errors, and justifies the need for the sharper conditional result of Theorem 3.6.

we do not detect the exponential behavior predicted by the worst-case-scenario bound
in (3.19).

Example 7.5 (shrinking spherical segment). This second numerical example is
inspired by a simple geometric situation. A sphere that moves by mean curvature
flow shrinks to a point in finite time [14]. If we assume that the initial radius of the
sphere equals 2 and that the center is fixed at (0, 0, 0), then the segment of the surface
that lies above the square [0, 1] × [0, 1] × {0} ∈ R

3 is the graph of the function

u(x, t) =

√
4 − 4t− |x|2, (x, t) ∈ [0, 1]2 × [0, 0.5].(7.11)

The function u thus constitutes a solution of Problem 1.1 with zero right-hand side
f and time-dependent Dirichlet boundary value g. This is an interesting example
because of a blow-up of the gradient which occurs at the space-time boundary point
(1, 1; 1/2).
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Fig. 7.3. Effectivity indexes for Examples 7.4 and 7.5. These indexes, which are defined for the
finest mesh, are numerical realizations of the constants on the right-hand side of (3.16) or (3.18).
Panel (a) refers to the smooth exact solution of Example 7.4; the effectivity index behaves well in
time. Panel (b) shows the effectivity index for the proper estimator 7.5, which has a blow-up at time
t = 0.5. Consequently, the exponential behavior predicted for the factor C in Theorem 3.6 might be
sharp. The behavior of the graph in (b) close to t = 0.5 is to be taken with care, though, as the
vicinity estimator blows up there according to Figure 7.5, and thus the conditional estimate is not
guaranteed to hold anymore.
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Fig. 7.4. Sobolev norm errors and geometric errors for the shrinking sphere of Example 7.5.
The different gray tones correspond to decreasing meshsize h. In this example a blow-up in the
gradient occurs at the boundary at time t = 0.5.
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Fig. 7.5. Estimators and EOC vs. time for the shrinking sphere segment of Example 7.5. We
exhibit the behavior of the proper estimator in the upper row and that of the vicinity estimator in
the lower row. Darker gray tones correspond to decreasing meshsizes h. We can observe two stages
as time approaches the blow-up t = 0.5. In the first stage, the same observations made for Example

7.4 are valid in that EOC Ẽ ≈ EOCE and E∞ → 0 (justifying once more the need for Theorem 3.6).
In the second stage, the vicinity estimator E∞ exhibits a blow-up, which means that the condition

(3.17) of Theorem 3.6 is violated and that we can no longer rely on the proper estimator Ẽ . The
vicinity estimator blow-up can be interpreted as numerical evidence of the boundary gradient blow-up
occurring at t = 0.5.

Despite this singular behavior, the function u still satisfies Assumption 2.1, and
our a posteriori error analysis applies. Notice that the a priori error analysis of Deck-
elnick and Dziuk [7, Prop. 3] does not apply in this case because of the overly stringent
regularity assumptions. This example allows us to appreciate the exponential worst-
case-scenario bound on C̃ (factor C in Theorem 3.6), as that bound is expected to
behave like exp(1/

√
0.5 − t) as t→ 0.5. Numerical solutions have been computed on

uniform triangulations with meshsizes hi = (0.5)i, i = 2, . . . , 7. The type of data we
report is similar to that in section 7.4: the errors and their asymptotic behavior are
reported in Figure 7.4, while Figure 7.5 shows the behavior of the estimators. We
refer to the caption for a comment on the blow-up at t = 0.5 and its effect on the
estimators and estimate validity. In Figure 7.3(b) we report the effectivity index of
the proper estimator, which justifies in part the exponential behavior predicted by the
theory. Notice that because of the blow-up behavior, the effectivity index is not so
meaningful in the last part of the graph, close to t = 0.5, where the vicinity estimator
is too big.
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Abstract. The paper studies the binomial tree method for American options in a jump-diffusion
model. We employ the theory of viscosity solution to show uniform convergence of the binomial tree
method for American options. We also prove existence and convergence of the optimal exercise
boundary in the binomial tree approximation. In addition, the terminal value of the optimal exercise
boundary is given for American options in jump-diffusion models.
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model, integrodifferential equation, viscosity solution
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1. Introduction. Consider a financial market with two assets (Bt, St). The first
is a risk-free asset whose price Bt is governed by the equation dBt = rBtdt, where r
is the constant positive interest rate; the other is a risky stock. In a given probability
space (Ω,F , P), the stock price evolves according to the stochastic differential equation

dSt
St

= (µ− q)dt+ σdWt + d

⎛⎝ Nt∑
j=1

Uj

⎞⎠ ,(1.1)

where the coefficients µ, q, σ are positive constants, q is the dividend yield, (Wt)t≥0 is a
standard Brownian motion, (Nt)t≥0 is a Poisson process with constant intensity λ, and
the sequence (Uj)j≥1 are square integrable independently and identically distributed
(i.i.d.) random variables taking values in (−1,+∞) (since the price of a financial asset
should be positive).

Let K be the striking price of option, let S be the price of stock and z+ =
max{z, 0}. Then the payoff of an American option is ϕ(S), where ϕ(S) = (S −K)+

(call options) or ϕ(S) = (K − S)+(put options). Because the market here is not
complete, according to Harrison and Kreps [7], each equivalent martingale measure
Q defines an admissible price of contingent claim. To simplify analysis and focus
attention on early exercise considerations, we assume Q = P ; then we must have
µ = r − λk, where k = E(U1) and E is the expectation operator over the random
variable U1 (see [6]). Using an argument similar to that of Pham [6], it can be shown
that an American option’s price Vt = V (S, t) solves the following parabolic variational
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inequality: {
min{−L̂V (S, t), V (S, t) − ϕ(S)} = 0, S > 0, 0 ≤ t < T,

V (S, T ) = ϕ(S), S > 0,
(1.2)

where L̂ is the parabolic integrodifferential operator

L̂V =
∂V

∂t
+
σ2

2
S2 ∂

2V

∂S2 + (r − q − λk)S
∂V

∂S
− (r + λ)V + λ

∫ ∞

−1

V (S(1 + y), t)dN(y)

and N(y) is the distribution function of random variable U1.
There is usually no explicit formula for the price of American options, so numeri-

cal methods for computing the price of American options are necessary and important.
The binomial tree method, as a discrete time model first proposed by Cox, Ross, and
Rubinstein [4] is the most popular numerical approach to pricing options in diffusion
models. Amin [2] generalized their algorithm to jump-diffusion models. Xu, Qian,
and Jiang [10] gave an optimal error estimation of European options in Amin’s model.
In essence, the binomial tree method belongs to the probabilistic one; however, it can
be proved that the binomial tree method is consistent with a certain explicit differ-
ence scheme. By virtue of the notion of viscosity solution (see [5]), Barles, Daher,
and Romano [3] and Jiang and Dai [8] presented a framework to prove the conver-
gence of difference schemes for parabolic equations in diffusion models. However, in
jump-diffusion models, the equations associated to option pricing are so-called inte-
grodifferential equations. Fortunately, Alvarez and Tourin [1] developed the notion of
viscosity solution for second order integrodifferential equations. The main purpose of
this paper is to use numerical analysis and the theory of viscosity solution to prove the
convergence of Amin’s binomial tree method for American options in jump-diffusion
models. We also show existence and convergence of optimal exercise boundary in the
binomial tree approximation.

The rest of this paper is organized as follows. In the next section, the equivalence
of the binomial tree method and an explicit difference scheme are discussed. Section
3 is devoted to the convergence proof of the binomial tree method. In section 4,
we prove the existence and convergence of approximate optimal exercise boundary.
Finally, we give a proof of comparison principle, which is used in section 3.

2. Binomial tree method. First, we recall the binomial tree method developed
by Amin [2] when the underlying asset follows a jump-diffusion process. Let Z = {l :
l = 0,±1,±2, . . .}, let N be the number of discrete time points, ∆t = T

N , ρ = er∆t =
1 + r∆t+O(∆t2), and let V nj be the option price at time point n∆t with stock price

ejσ
√

∆t. Then we have (see Amin [2])⎧⎪⎪⎨⎪⎪⎩
V nj = max

{
1
ρ
[
(1 − λ∆t)

(
pV n+1

j+1 + (1 − p)V n+1
j−1

)
+ λ∆t

∑
l∈Z V

n+1
j+l p̂l

]
,

(ejσ
√

∆t −K)+
}
, j ∈ Z, 0 ≤ n ≤ N − 1,

V Nj = (ejσ
√

∆t −K)+, j ∈ Z,

(2.1)

where

p =

e(r−q)∆t−λ∆t
∑

l∈Z
elσ

√
∆tp̂l

1−λ∆t − ejσ
√

∆t

eσ
√

∆t − e−σ
√

∆t
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and

p̂l = Prob
(
ln(1 + U1) ∈ [(l − 1

2 )σ
√

∆t, (l + 1
2 )σ

√
∆t)

)
= N(e(l+ 1

2 )σ
√

∆t − 1) −N(e(l− 1
2 )σ

√
∆t − 1).

In view of [2], we have∑
l∈Z e

lσ
√

∆tp̂l = 1 + k +O(∆t),

p = 1
2 +

(
r − q − λk − σ2

2

) √
∆t

2σ +O(∆t
3
2 ).

(2.2)

Then we deduce from (2.1) and (2.2) that

V nj = max

{
1 − λ∆t

1 + r∆t+O(∆t2)

[(
1

2
+

(
r − q − λk − σ2

2

) √
∆t

2σ
+O(∆t

3
2 )

)
V n+1
j+1

+

(
1

2
−
(
r − q − λk − σ2

2

) √
∆t

2σ
+O(∆t

3
2 )

)
V n+1
j−1

]

+
λ∆t

1 + r∆t+O(∆t2)

∑
l∈Z

V n+1
j+l p̂l, (ejσ

√
∆t −K)+

}
.(2.3)

Next, we discuss the equivalence of the binomial tree method and explicit differ-
ence scheme. Let R be the set of all real numbers, QT = {(x, t) : 0 ≤ t < T, x ∈ R}.
Using a simple transformation S = ex, v(x, t) = V (S, t), (1.2) changes to the constant-
coefficients problem{

min
{
− Lv(x, t), v(x, t) − ϕ(ex)

}
= 0, (x, t) ∈ QT ,

v(x, T ) = ϕ(ex), x ∈ R,
(2.4)

where L is the operator

Lv =
∂v

∂t
+
σ2

2

∂2v

∂x2 +

(
r − q − λk − σ2

2

)
∂v

∂x
− (r + λ)v + λ

∫
R

v(x+ y, t)dÑ(y),

and Ñ(y) = N(ey − 1).

We now present an explicit finite difference scheme for (2.4). Given mesh size
∆x,∆t,N∆t = T , let Qh = {(n∆t, j∆x) : 0 ≤ n ≤ N, j ∈ Z} stand for the set of
lattice, vnj represent the value of numerical approximation of v(x, t) at (n∆t, j∆x) ∈
Qh, and ϕi = ϕ(ej∆x) = (ej∆x −K)+. Then we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min

{
−v

n+1
j − vnj

∆t − σ2

2
vn+1
j+1 − 2vn+1

j + vn+1
j−1

∆x2 −
(
r − q − λk − σ2

2

)
vn+1
j+1 − vn+1

j−1

2∆x

+ (r + λ)vnj − λ
∑
l∈Z

vn+1
j+l pl, v

n
j − ϕj

}
= 0, j ∈ Z, 0 ≤ n ≤ N − 1,

vNj = ϕj , j ∈ Z,

(2.5)
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or

vnj = max

{
1

1+r∆t
1

1+ λ∆t
1+r∆t

(
(1 − σ2∆t

∆x2 )vn+1
j + ( σ

2∆t
2∆x2 +

(
r − q − λk − σ2

2

)
∆t

2∆x )vn+1
j+1

+ ( σ
2∆t

2∆x2 − (r − q − λk − σ2

2 ) ∆t
2∆x )vn+1

j−1

)
+ 1

1+r∆t · λ∆t
1+ λ∆t

1+r∆t

∑
l∈Z

vn+1
j+l pl, ϕi

}
,

where

pl =

∫ (l+ 1
2 )∆x

(l− 1
2 )∆x

dÑ(y) = N(e(l+
1
2 )∆x − 1) −N(e(l−

1
2 )∆x − 1).

If σ2∆t/∆x2 = 1, then we have

pl = p̂l(2.6)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vnj = max

{
1−λ∆t+O(∆t2)

1+r∆t

[
( 1
2 + (r − q − λk − σ2

2 )
√

∆t
2σ )vn+1

j+1

+ ( 1
2 − (r − q − λk − σ2

2 )
√

∆t
2σ )vn+1

j−1

]
+ λ∆t+O(∆t2)

1+r∆t

∑
l∈Z

vn+1
j+l pl, ϕj

}
,

j ∈ Z, 0 ≤ n ≤ N − 1,

vNj = ϕj = (ejσ
√

∆t −K)+, j ∈ Z.

(2.7)

Comparing (2.3) and (2.7), we deduce the following result.

Theorem 2.1. The binomial tree method (2.1) is equivalent to the explicit dif-

ference scheme (2.5) with σ2∆t
∆x2 = 1 in the sense of neglecting a higher order ∆t

3
2 .

3. Convergence. This section is devoted to the convergence of the binomial
tree method. From now on, we will concentrate on American call option. It is easy
to generalize all main results to American put option.

Without loss of generality, we assume σ2∆t/∆x2 = 1 and

0 < p < 1,(3.1)

which always holds for ∆t small enough. In addition, we should assume q > 0, because
when q = 0, an American call option is reduced to the European option.

Now we investigate the properties of the binomial tree method (2.1).

Lemma 3.1. The binomial tree method (2.1) has the following properties:

(1) V nj ≤ V nj+1 for all j, n.

(2) V n+1
j ≤ V nj for all n < N, j.

(3) V nj ≤ ej∆x for all j, n.

(4) V nj − V ni ≤ ej∆x − ei∆x for all i ≤ j, n.

Proof. We use the induction to prove the properties.
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(1) Clearly, V Nj = ϕj ≤ ϕj+1 = V Nj+1. If V m+1
j ≤ V m+1

j+1 for all j, then

V mj = max

{
1
ρ

[
(1 − λ∆t)(pV m+1

j+1 + (1 − p)V m+1
j−1 ) + λ∆t

∑
l∈Z

V m+1
j+l pl

]
, ϕj

}

≤ max

{
1
ρ

[
(1 − λ∆t)(pV m+1

j+2 + (1 − p)V m+1
j ) + λ∆t

∑
l∈Z

V m+1
j+1+lpl

]
, ϕj+1

}
= V mj+1,

which is the desired result.
(2) By (2.1), V N−1

j ≥ ϕj = V Nj . If V m+1
j ≥ V m+2

j for all j, then

V mj = max

{
1
ρ

[
(1 − λ∆t)(pV m+1

j+1 + (1 − p)V m+1
j−1 ) + λ∆t

∑
l∈Z

V m+1
j+l pl

]
, ϕj

}

≥ max

{
1
ρ

[
(1 − λ∆t)(pV m+2

j+1 + (1 − p)V m+2
j−1 ) + λ∆t

∑
l∈Z

V m+2
j+l pl

]
, ϕj

}
= V m+1

j .

Property (2) is proved.
(3) Let V m denote {V mj }j∈Z. We introduce a weighted norm ‖ · ‖ as follows:

‖V m‖ = sup
j∈Z

|e−j∆xV mj |.

It suffices to show that ‖V m‖ ≤ 1 for all m. Clearly, ‖V N‖ = supj∈Z |e−j∆xϕj | = 1.
If ‖V m+1‖ ≤ 1, then

e−j∆xV mj = max

{
1
ρ

[
(1 − λ∆t)(pe∆xe−(j+1)∆xV m+1

j+1 + e−∆xe−(j−1)∆x(1 − p)V m+1
j−1 )

+ λ∆t
∑
l∈Z

el∆xe−(j+l)∆xV m+1
j+l pl

]
, e−j∆xϕj

}

≤ max

{
‖V m+1‖

ρ

[
(1 − λ∆t)(pe∆x + (1 − p)e−∆x) + λ∆t

∑
l∈Z

el∆xpl

]
, 1

}
.

Due to

pe∆x + (1 − p)e−∆x =

e(r−q)∆t − λ∆t
∑
l∈Z

el∆xpl

1 − λ∆t
,(3.2)

we have

‖V m‖ ≤ max

{‖V m+1‖
ρ e(r−q)∆t, 1

}
≤ max{e−q∆t, 1} ≤ 1,

which yields the desired result.
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(4) For i ≤ j,

V Nj − V Ni = (ej∆x −K)+ − (ei∆x −K)+

=

⎧⎪⎨⎪⎩
ej∆x − ei∆x if ej∆x ≥ ei∆x ≥ K,

ej∆x −K ≤ ej∆x − ei∆x if ej∆x ≥ K ≥ ei∆x,

0 ≤ ej∆x − ei∆x if K ≥ ej∆x ≥ ei∆x.

So we deduce

V Nj − V Ni = ϕj − ϕi ≤ ej∆x − ei∆x for all i ≤ j.(3.3)

Suppose V m+1
j − V m+1

i ≤ ej∆x − ei∆x for all i ≤ j. To simplify writing, we set

Imj = (1 − λ∆t)(pV mj+1 + (1 − p)V mj−1) + λ∆t
∑
l∈Z

V mj+lpl.

Then

1
ρI

m+1
j − 1

ρI
m+1
i

= 1
ρ

[
[(1 − λ∆t)

(
p(V m+1

j+1 − V m+1
i+1 ) + (1 − p)(V m+1

j−1 − V m+1
i−1 )

)
+ λ∆t

∑
l∈Z

(e(j+l)∆x − e(i+l)∆x)pl

]

≤ 1
ρ (ej∆x − ei∆x)

[
(1 − λ∆t)

(
pej∆x + (1 − p)e−j∆x

)
+ λ∆t

∑
l∈Z

el∆xpl

]
= e−q∆t

[
ej∆x − ei∆x

]
≤ ej∆x − ei∆x for all i ≤ j,

(3.4)

where the third equality follows from (3.2). So we have

V mj − V mi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
ρI

m+1
j − 1

ρI
m+1
i if 1

ρI
m+1
j ≥ ϕj and 1

ρI
m+1
i ≥ ϕi,

ϕj − ϕi if 1
ρI

m+1
j ≤ ϕj and 1

ρI
m+1
i ≤ ϕi,

1
ρI

m+1
j − ϕi ≤ 1

ρI
m+1
j − 1

ρI
m+1
i if 1

ρI
m+1
j ≥ ϕj and 1

ρI
m+1
i ≤ ϕi,

ϕj − 1
ρI

m+1
i ≤ ϕj − ϕi if 1

ρI
m+1
j ≤ ϕj and 1

ρI
m+1
i ≥ ϕi.

In all cases we can deduce from (3.3) and (3.4) that

V mj − V mi ≤ ej∆x − ei∆x for all i ≤ j,

which is the desired result. The proof is completed.
To simplify notation, (2.1) can be written as

V n = F (∆t)(V n+1),

where V m = {V mj }j∈Z. It is easy to check that F (∆t) has the following properties:
Lemma 3.2. (1) F (∆t) is monotone, i.e.,

F (∆t)U ≤ F (∆t)V if U ≤ V.
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(2) F (∆t) can commute with nonnegative constants, i.e.,

F (∆t)(V +K) ≤ F (∆t)V +K, K ≥ 0.

Let u∆t(x, t) be defined as the extension function of V nj as follows:

u∆t(x, t) =

⎧⎪⎪⎨⎪⎪⎩
V nj for

x ∈ [(j − 1
2 )∆x, (j + 1

2 )∆x
)
, t ∈ [(n− 1

2 )∆t, (n+ 1
2 )∆t

)
,

j ∈ Z, 1 ≤ n ≤ N − 1,
V Nj for x ∈ [(j − 1

2 )∆x, (j + 1
2 )∆x

)
, t ∈ [(N − 1

2 )∆t, T
)
, j ∈ Z,

V 0
j for x ∈ [(j − 1

2 )∆x, (j + 1
2 )∆x

)
, t ∈ [0, 1

2∆t
)
, j ∈ Z.

By definition and Lemma 3.1(3), we have

u∆t(x, t) =
(
F (∆t)u∆t( · , t+ ∆t)

)
(x) for all (x, t) ∈ R × [0, T − ∆t]

and

0 ≤ u∆t(x, t) ≤ ex+
∆x
2 for small ∆t.(3.5)

We will show the convergence of the binomial tree method for American options.
Theorem 3.3. As ∆t→ 0, we have that u∆t(x, t) converges locally uniformly to

u(x, t) in R × [0, T ], where u(x, t) is the unique solution to the problem (2.4).
The proof of Theorem 3.3 relies on the notion of viscosity solution. It will be

useful to have the notations

USC
(
R × [0, T ]

)
=
{
upper semicontinuous functions u : R × [0, T ] → R

}
,

LSC
(
R × [0, T ]

)
=
{
lower semicontinuous functions u : R × [0, T ] → R

}
.

Definition 3.4. (1) Any u ∈ USC(R × [0, T ])(LSC(R × [0, T ])) is a viscosity
subsolution (supersolution) of (2.4) if⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min

{
−∂φ
∂t

− σ2

2
∂2φ
∂x2 −

(
r − q − λk − σ2

2

)
∂φ
∂x

+ (r + λ)u

− λ

∫
R

φ(x+ y, t)dÑ(y), u− (ex −K)+
}

≤ 0 (≥ 0), (x, t) ∈ R × [0, T ),

u(x, T ) ≤ (≥) (ex −K)+, x ∈ R,

whenever φ ∈ C2(R× [0, T ]) and u− φ has a global maximum (minimum) at (x, t) ∈
R × [0, T ).

(2) u is a viscosity solution of (2.4) if it is simultaneously a subsolution and a
supersolution.

Now we establish the comparison principle for problem (2.4).
Theorem 3.5. Suppose u and v are viscosity subsolution and supersolution of

(2.4) and

|u(x, t)|, |v(x, t)| ≤ ex.

Then

u ≤ v on R × (0, T ].

The proof of this theorem will be given in the appendix of this paper.
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Remark 3.6. By Theorem 3.5, we obtain the uniqueness of problem (2.4) imme-
diately.

Proof of Theorem 3.3. Denote

u∗(x, t) = lim sup
∆t→0,(y,s)→(x,t)

u∆t(y, s),

u∗(x, t) = lim inf
∆t→0,(y,s)→(x,t)

u∆t(y, s).

Owing to (3.5), u∗ and u∗ are well defined and

0 ≤ u∗(x, t) ≤ u∗(x, t) ≤ ex.(3.6)

Obviously, u∗ ∈ USC(R × [0, T ]) and u∗ ∈ LSC(R × [0, T ]). If we can show u∗ and
u∗ are subsolution and supersolution of (2.4), respectively, then in terms of Theorem
3.5, we deduce u∗ ≤ u∗ and thus u∗ = u∗ = u(x, t), which guarantees that the whole
sequence converges to the unique viscosity solution u(x, t).

We only need to show that u∗ is a subsolution of (2.4). It can be shown that
u∗(x, T ) = (ex −K)+. Suppose that for φ ∈ C2(R × [0, T )), u∗ − φ attains a global
maximum at (x0, t0) ∈ R × [0, T ) and (u∗ − φ)(x0, t0) = 0. We then should assume
that (x0, t0) is a strict global maximum. Set Φ = φ− ε, ε > 0; then u∗ − Φ attains a
strict global maximum at (x0, t0) and

(u∗ − Φ)(x0, t0) > 0.(3.7)

By the definition of u∗, there exists a sequence u∆tm(ym, sm) such that

∆tm → 0, (ym, sm) → (x0, t0), u∆tm(ym, sm) → u∗(x0, t0) as m→ +∞.

Assuming that (ŷm, ŝm) is a global maximum point of u∆tm −Φ on R× [0, T ), we can
deduce that there is a subsequence u∆tmi

(ŷmi , ŝmi) such that

∆tmi
→ 0, (ŷmi , ŝmi) → (x0, t0), (u∆tmi

− Φ)(ŷmi , ŝmi) → (u∗ − Φ)(x0, t0)

(3.8)

as mi → +∞. Indeed, suppose (ŷmi , ŝmi) → (ŷ, ŝ); then

(u∗ − Φ)(x0, t0) = lim
mi→∞(u∆tmi

− Φ)(ymi , smi)

≤ lim
mi→∞(u∆tmi

− Φ)(ŷmi , ŝmi) ≤ (u∗ − Φ)(ŷ, ŝ),

which forces (ŷ, ŝ) = (x0, t0) since (x0, t0) is a strict global maximum point of u∗−Φ.
Therefore,

(u∆tmi
− Φ)( · , ŝmi + ∆tmi) ≤ (u∆tmi

− Φ)(ŷmi , ŝmi) in R,

that is,

u∆tmi
( · , ŝmi + ∆tmi) ≤ Φ( · , ŝmi + ∆tmi) + (u∆tmi

− Φ)(ŷmi , ŝmi) in R.(3.9)

From (3.7) and (3.8), we also deduce the important fact

(u∆tmi
− Φ)(ŷmi

, ŝmi
) > 0(3.10)
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when mi is large enough.
Then by (3.7)–(3.10) and Lemma 3.2, we have

u∆tmi
(ŷmi , ŝmi) =

(
F (∆tmi)u∆tmi

( · , ŝmi + ∆tmi)
)
(ŷmi)

≤
(
F (∆tmi)

(
Φ( · , ŝmi + ∆tmi) + (u∆tmi

− Φ)(ŷmi , ŝmi)
))

(ŷmi)

≤
(
F (∆tmi

)Φ( · , ŝmi + ∆tmi)
)
(ŷmi

) + (u∆tmi
− Φ)(ŷmi , ŝmi).

Thus

Φ(ŷmi , ŝmi) − (F (∆tmi)Φ( · , ŝmi + ∆tmi
))(ŷmi

) ≤ 0.(3.11)

Let mi tend to infinity, and by Theorem 2.1, we get from (3.11) that

min

{
−∂Φ
∂t

− σ2

2
∂2Φ
∂x2 −

(
r − q − λk − σ2

2

)
∂Φ
∂x

+ (r + λ)Φ

−λ
∫
R

Φ(x+ y, t)dÑ(y), Φ − (ex −K)+
}

(x0, t0) ≤ 0.

Letting ε tend to zero, we have

min

{
−∂φ
∂t

− σ2

2
∂2φ
∂x2 −

(
r − q − λk − σ2

2

)
∂φ
∂x

+ (r + λ)φ

−λ
∫
R

φ(x+ y, t)dÑ(y), φ− (ex −K)+
}

(x0, t0) ≤ 0.
(3.12)

Recalling that u∗(x0, t0) = φ(x0, t0), we conclude from (3.12) that u∗ is a subsolution
of (2.4). Similarly, we can show that u∗ is a supersolution of (2.4). Thus, we have
proved u∆t(x, t) converges to u(x, t) as ∆t → 0. Because u(x, t) is continuous and
monotone with respect to x and t (see [6]), and u∆t(x, t) is also a monotone function
of x and t from Lemma 3.1, we know [8, Lemma 4.5] that this convergence is uniform
on any semibounded domain (−∞,M) × [0, T ], which is the desired result.

Remark 3.7. From Theorem 3.5, we can only deduce that u∗ ≤ u∗ on R× (0, T ].
However, we can make some extension of u∆t(x, t) by (2.1) for n = −1,−2, . . . ,−N ′

to let u∗ and u∗ have definition in R × [−δ, T ] for some δ = N ′∆t > 0. It can still
be shown that u∗ and u∗, satisfying (3.6), are viscosity subsolution and supersolution
of problem (2.4) on R × [−δ, T ]. Then we conclude by Theorem 3.5 that u∗ ≤ u∗ on
R × (δ, T ], which implies u∗ = u∗ on R × [0, T ].

4. Optimal exercise boundary. This section investigates properties of optimal
exercise boundary (i.e., free boundary). We will show existence and convergence of
optimal exercise boundary in the binomial tree method. We also achieve the terminal
value s(T ) of the optimal exercise boundary s(t) of problem (2.4).

To prove the existence of approximate optimal exercise boundary in the binomial
tree method, it suffices to show the following.

Lemma 4.1. Let ∆t be sufficiently small. For each n < N , there exists an integer
jn such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V nj = ϕj >
1
ρ

[
(1 − λ∆t)

(
pV n+1

j+1 + (1 − p)V n+1
j−1

)
+ λ∆t

∑
l∈Z

V n+1
j+l pl

]
, j ≥ jn,

V nj = 1
ρ

[
(1 − λ∆t)

(
pV n+1

j+1 + (1 − p)V n+1
j−1

)
+ λ∆t

∑
l∈Z

V n+1
j+l pl

]
≥ ϕj , j < jn.

(4.1)
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Furthermore, we have

jn ≤ jn−1.

Proof. We use induction to prove this lemma. Let m1 = inf{j : ej∆x −K ≥ 0}.
If j ≥ m1 + 1, in terms of (3.2), we can get

INj = (1 − λ∆t)
[
pV Nj+1 + (1 − p)V Nj−1

]
+ λ∆t

∑
l∈Z

V Nj+lpl

= (1 − λ∆t)
[
p(e(j+1)∆x −K) + (1 − p)(e(j−1)∆x −K)

]
+ λ∆t

∑
l∈Z

(e(j+l)∆x −K)+pl

= (1 − λ∆t)ej∆x
[
pe∆x + (1 − p)e−∆x

]− (1 − λ∆t)K + λ∆t
∑

l≥m1−j
(e(j+l)∆x −K)pl

= ej∆x+(r−q)∆t −K + λ∆t
∑

l<m1−j
(K − e(j+l)∆x)pl, j ≥ m1 + 1.

Then

INj − ρϕj = ej∆x(e(r−q)∆t − er∆t) +K(er∆t − 1) + λ∆t
∑

l<m1−j
(K − e(j+l)∆x)pl

=

⎡⎣rK − qej∆x + λ
∑

l<m1−j
(K − e(j+l)∆x)pl

⎤⎦ ∆x2

σ2 +O(∆x4), j ≥ m1 + 1.

Noting that∑
l<m1−j

(K − e(j+l)∆x)pl =
∑

l<m1−(j+1)

(K − e(j+l)∆x)pl + (K − e(m1−1)∆x)pk1−j−1

≥
∑

l<m1−(j+1)

(K − e(j+1+l)∆x)pl

and

0 ≤
∑

l<m1−j
(K − e(j+l)∆x)pl ≤ K,

it is easy to see that, for ∆x small enough and j ≥ m1 + 1, INj − ρϕj is strictly
monotonically decreasing with respect to j∆x and when j is sufficiently large, we
must have INj − ρϕj < 0. So take

m2 = inf

⎧⎨⎩j ≥ m1 + 1 : rK − qej∆x + λ
∑

l<m1−j
(K − e(j+l)∆x)pl ≤ 0

⎫⎬⎭ .(4.2)

When j ≥ m2 + 1, due to the strict monotonicity of INj − ρϕj , we get V N−1
j = ϕj >

1
ρI

N
j ; when j < m1, V

N−1
j = 1

ρI
N
j ≥ 0 = ϕj . At the same time, we have

INm1
− ρϕm1 = (1 − λ∆t)

[
pϕm1+1 + (1 − p)ϕm1−1

]
+ λ∆t

∑
l∈Z

ϕm1+lpl

>

[
rK − qem1∆x + λ

∑
l<0

(
K − e(m1+l)∆x

)
pl

]
∆x2

σ2 +O(∆x4)

> INm1+1 − ρϕm1+1,
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where the second inequality follows from ϕm1−1 = 0 > e(m1−1)∆x − K. Thus we
know that INj − ρϕj is also strictly monotonically decreasing for j ≥ m1. So, when

m2 = m1 + 1, if ϕm1
> 1

ρI
N
m1

we choose jN−1 = m1(= m2 − 1); otherwise we

choose jN−1 = m2 or m2 + 1. When m2 > m1 + 1, which implies INm1
− ρϕm1

≥
INm1+j

− ρϕm1+j ≥ 0 for 1 ≤ j ≤ m2 −m1 − 1, we choose jN−1 = m2 or m2 + 1. Thus
we have shown that there exists jN−1 ∈ [m2 − 1,m2 + 1] such that (4.1) holds.

Suppose (4.1) is true when n = m + 1. When j < jm+1, due to Lemma 3.1(2),

we have 1
ρI

m+1
j ≥ 1

ρI
m+2
j ≥ ϕj (which implies that jm ≥ jm+1 if jm exists); when

j ≥ jm+1 + 1,

Im+1
j − ρϕj = (1 − λ∆t)

[
pV m+1

j+1 + (1 − p)V m+1
j−1

]
+ λ∆t

∑
l∈Z

V m+1
j+l pl − ρϕj

= (1 − λ∆t)
[
pϕj+1 + (1 − p)ϕj−1

]
+ λ∆t

∑
l∈Z

V m+1
j+l pl − ρϕj

=

[
rK − qej∆x + λ

∑
l∈Z

(
V m+1
j+l − (e(j+l)∆x −K)

)
pl

]
∆x2

σ2 +O(∆x4)

=

⎡⎣rK − qej∆x + λ
∑

l<jm+1−j

(
V m+1
j+l − e(j+l)∆x +K

)
pl

⎤⎦ ∆x2

σ2 +O(∆x4).

From Lemma 3.1(4), we can deduce that Im+1
j − ρϕj is strictly monotonically de-

creasing with respect to j∆x for ∆x small enough and j ≥ jm+1 + 1. From Lemma
3.1(3) we know that Im+1

j − ρϕj < 0 when j is sufficiently large. Take

m3 = inf

⎧⎨⎩j ≥ jm+1 + 1 : rK − qej∆x + λ
∑

l<jm+1−j
(V m+1
j+l − e(j+l)∆x +K)pl ≤ 0

⎫⎬⎭ .

Similar to the case of n = N − 1, we can show that there exists jm ∈ [m3 − 1,m3 + 1]
such that (4.1) holds. Thus the proof is completed.

By Lemma 4.1, we can define the approximate optimal exercise boundary.

Definition 4.2. For fixed ∆t, define the approximate optimal exercise boundary
x = s∆t(t) as follows: for t∈ [(n− 1)t, n∆t], 1 ≤ n < N ,

s∆t(t) =
t− (n− 1)∆t

∆t
jn∆x+

n∆t− t

∆t
jn−1∆x.

By definition, s∆t(t) is monotonically decreasing.

Similar to the proof of Jiang [8, Theorem 4.1(2)] and Lamberton [9, Theorem 3.1],
we have the following.

Theorem 4.3. If the genuine optimal exercise boundary s(t) of problem (2.4) is
continuous, then s∆t(t) converges uniformly to s(t) as ∆t→ 0.

Now we can give the terminal value s(T ) of the genuine optimal exercise boundary
s(t).

Theorem 4.4. If s(t) is continuous, we have

s(T ) = max{lnK,x0},(4.3)
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where x0 is the unique solution of the equation

rK − qex + λ

∫ lnK−x

−∞
(K − ex+y)dÑ(y) = 0.(4.4)

Proof. From the proof of Lemma 4.1, we know that s∆t(T − ∆t) = jN−1∆x ∈
[(m2 − 1)∆x, (m2 + 1)∆x], where m2 is defined by (4.2). Let ∆t → 0; then we can
easily deduce (4.3) from Theorem 4.3 and (4.2) . We only have to verify that equation
(4.4) has an unique solution. Let

f(x) = rK − qex + λ

∫ lnK−x

−∞
(K − ex+y)dÑ(y);

then

f ′(x) = −qex − λ

∫ lnK−x

−∞
ex+ydÑ(y) < 0

and

lim
x→+∞ f(x) = −∞, lim

x→−∞ f(x) ≥ rK > 0.

We conclude that the equation f(x) = 0 has a unique solution x0. The proof is
completed.

Remark 4.5. From Theorem 4.4, we know that for American call options in jump-
diffusion models, the terminal value of optimal exercise boundary is max{K, ex0}.
When there is no jump, i.e., λ = 0, the value is max{K, rqK}, which is a well-known

result in diffusion models.
Remark 4.6. It’s easy to see that the solution of (4.4) tends to infinity as q tends

to zero. Then the optimal exercise boundary also tends to infinity. Indeed, when
q = 0, American call options are equal to European ones. However, when dividends
are considered, the valuation of American call options, just as puts, is a free-boundary
problem.

Remark 4.7. In this paper American call options are considered because the
approximate sequence to call options is not uniformly bounded in the L∞-norm as
opposed to puts. However, it is easy to generalize all main results to American put
options. Similarly, for American puts, we can prove that the terminal value of optimal
exercise boundary is min{K, ey0}, where y0 is the unique solution of the following
equation:

−rK + qey + λ

∫ +∞

lnK−y
(ex+y −K)dÑ(x) = 0.

Appendix. Proof of Theorem 3.5. For all u ∈ USC(R × [0, T ]) and (x, t) ∈
R × [0, T ), we define the parabolic superjet:

P2,+u(x, t) =
{

(a, p,X) ∈ R × R × R/u(y, s) ≤ u(x, t) + a(s− t) + p(y − x)

+ X
2 (y − x)2 + o(|s− t| + |y − x|2) as (y, s) → (x, t)

}
and its closure

P̄2,+u(x, t) = {(a, p,X) = limn→∞(an, pn, Xn) with (an, pn, Xn) ∈ P2,+u(xn, tn)

and limn→∞(xn, tn, u(xn, tn)) = (x, t, u(x, t))}.
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Similarly, if v ∈ LSC(R × [0, T ]), we consider the parabolic subject P2,−v(x, t) =
−P2,−(−v)(x, t) and its closure P̄2,−v(x, t) = −P̄2,−(−v)(x, t).

Repeating the argument of Alvarez and Tourin, we can obtain another formulation
for viscosity solution, as follows.

Lemma A.1. Let u ∈ USC(R× [0, T ])(LSC(R× [0, T ]) and |u(x, t)| ≤ ex; then u
is a viscosity subsolution (supersolution) of (2.4) if⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min

{
−a− σ2

2 X −
(
r − q − λk − σ2

2

)
p+ (r + λ)u− λ

∫
R

u(x+ y, t)dÑ(y),

u− (ex −K)+
}

≤ 0 (≥ 0), (x, t) ∈ R × (0, T ),

(a, p,X) ∈ P2,+u(x, t)(P2,−u(x, t)),
u(x, T ) ≤ (≥) (ex −K)+, x ∈ R.

Using the transformation v(x, t) = exu(x, t), (2.4) is transformed into the follow-
ing equation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min

{
− ∂u
∂t

− σ2

2
∂2u
∂x2 −

(
r − q − λk + σ2

2

)
∂v
∂x

+ (q + λ+ λk)u

− λ

∫
R

u(x+ y, t)eydÑ(y), u− g(x)

}
= 0, (x, t) ∈ R × [0, T ),

u(x, T ) = g(x), x ∈ R,

(A.1)

where g(x) = (1 − e−xK)+.
So we only have to prove comparison for (A.1) with bounded solutions.
Let u and v be subsolution and supersolution of (A.1), respectively, and |u|, |v| ≤

1. We argue by contradiction and thus assume that

(z, s) ∈ R × (0, T ) and u(z, s) − v(z, s) = δ > 0.(A.2)

For all ε, α, β > 0, we define a function Φ(x, y, t) in R × R × (0, T ]:

Φ(x, y, t) = u(x, t) − v(y, t) − ε

2
(x2 + y2) − α

2
|x− y|2 − β

t
.

Since |u|, |v| ≤ 1 and limt→0 Φ(x, y, t) = −∞, Φ admits a maximum at (x̂, ŷ, t̂) ∈
R × R × (0, T ] (we omit the dependence on ε and α to alleviate notations) and
x̂2 + ŷ2 < +∞ (otherwise Φ(x̂, ŷ, t̂) → −∞). By (A.2),

Φ(x̂, ŷ, t̂) ≥ δ − εz2 − β

s
≥ δ

2
> 0 when ε and β is small enough.(A.3)

It is easy [5, Lemma 3.1] to check

lim
α→∞α|x̂− ŷ|2 = 0.(A.4)

If t̂ = T , we have

0 <
δ

2
≤ Φ(x̂, ŷ, T ) ≤ g(x̂) − g(ŷ) − α

2
|x̂− ŷ|2;

however, the right-hand side above tends to zero as α → ∞ by (A.4). So t̂ < T if α
is large.
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Applying Theorem 8.3 of [5] to the function Φ(x, y, t) at (x̂, ŷ, t̂) ∈ R×R×(0, T ),
we can find a, b,X, Y ∈ R such that

(a, α(x̂− ŷ) + εx̂,X) ∈ P̄2,+u(x̂, t̂), (b, α(x̂− ŷ) − εŷ, Y ) ∈ P̄2,−v(ŷ, t̂)

and

a− b = − β

t̂2
, X − Y ≤ 2ε+

2ε2

α
.(A.5)

The fact that u and v are, respectively, subsolution and supersolution of (A.1) and
Lemma A.1 yields

min

{
− a− σ2

2 X −
(
r − q − λk + σ2

2

)
[α(x̂− ŷ) + εx̂] + (q + λ+ λk)u(x̂, t̂)

− λ

∫
R

u(x̂+ y, t̂)eydÑ(y), u(x̂, t̂) − g(x̂)

}
≤ 0

and

min

{
− b− σ2

2 Y −
(
r − q − λk + σ2

2

)
[α(x̂− ŷ) − εŷ] + (q + λ+ λk)v(ŷ, t̂)

− λ

∫
R

v(ŷ + y, t̂)eydÑ(y), v(ŷ, t̂) − g(ŷ)

}
≥ 0.

Subtracting these two inequalities and remarking that min(c, d)−min(e, f) ≤ 0 implies
either c− e ≤ 0 or d− f ≤ 0; we divide our consideration into two cases:

(1) The first case is

(q + λ+ λk)[u(x̂, t̂) − v(ŷ, t̂)] − λ

∫
R

[u(x̂+ y, t̂) − v(ŷ + y, t̂)]eydÑ(y)

≤ − β
t̂2

+ σ2

2 (X − Y ) + (r − q − λk + σ2

2 )ε(x̂+ ŷ).
(A.6)

Because

Φ(x̂, ŷ, t̂) ≥ Φ(x̂+ y, ŷ + y, t̂),

we have

u(x̂+ y, t̂) − v(ŷ + y, t̂) ≤ u(x̂, t̂) − v(ŷ, t̂) + ε[y(x̂+ ŷ) + y2].(A.7)

We conclude from (A.5), (A.6), and (A.7) that(
q + λ+ λk − λ

∫
R

eydÑ(y)

)
[u(x̂, t̂) − v(ŷ, t̂)]

≤ − β

t̂2
+
σ2

2
(2ε+

2ε2

α
) + ε(r − q − λk +

σ2

2
)(x̂+ ŷ) + ελ

∫
R

ey[y(x̂+ ŷ) + y2]dÑ(y).

(A.8)

We recall that∫
R

eydÑ(y) =

∫ +∞

−1

(1 + y)dN(y) = 1 + k,∫
R

eyy2dÑ(y) =

∫ +∞

−1

(1 + y) ln2(1 + y)dN(y) ≤
∫ +∞

−1

y2dN(y) < +∞,

x̂2 + ŷ2 < +∞.

(A.9)
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At the same time, by (A.3),

u(x̂, t̂) − v(ŷ, t̂) ≥ Φ(x̂, ŷ, t̂) ≥ δ

2
> 0 if ε is small enough.(A.10)

So by choosing α sufficiently large and sending ε→ 0, β → 0 in (A.8), we deduce from
(A.8), (A.9), and (A.10) that

0 <
qδ

2
≤ 0,

which is a contradiction.
(2) The second case occurs if

u(x̂, t̂) − v(ŷ, t̂) ≤ g(x̂) − g(ŷ).(A.11)

In view of (A.4), (A.10), and continuity of g(x), we can easily deduce a contradiction
from (A.11) when α→ ∞.
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Abstract. We present a family of mixed finite element spaces for second order elliptic equations
in two and three space dimensions. Our spaces approximate the vector flux by a continuous function.
Our spaces generalize certain spaces used for approximation of Stokes problems. The finite element
method incorporates projections of the Dirichlet data and certain low order terms. The method is
locally conservative on the average. Suboptimal convergence is proven and demonstrated numerically.
The key result is to construct a flux π-projection operator that is bounded in the Sobolev space H1,
preserves a projection of the divergence, and approximates optimally. Moreover, the corresponding
Raviart–Thomas flux preserving π-projection operator is an L2-projection when restricted to this
family of spaces.
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1. Introduction. Mixed finite element methods have been used effectively to
solve many problems, including second order elliptic problems [10, 15, 31, 34]. Both
the scalar variable and its vector flux are approximated directly. While it is necessary
to approximate the flux in H(div), the space of L2 vectors whose divergence is also in
L2, it is not necessary that the flux be fully continuous. In the usual mixed spaces (see,
e.g., [12, 13, 14, 17, 29, 31]), only the normal component of the approximate flux is
continuous. The tangential components are discontinuous across element boundaries.

In some applications, it is desirable that the flux be continuous. The applications
we have in mind come from simulating fluid flow in a porous medium [7, 30, 32].
Miscible displacement in a petroleum reservoir or groundwater transport problems
require the solution to a system of equations in model form:

ap+ ∇ · u = b, Ω,(1.1)

du = −∇p+ c, Ω,(1.2)

φ
∂c

∂t
−∇ · (D(u)∇c− uc

)
= ĉf+ − cf−, Ω, t > 0,(1.3)

where p is the pressure, u is the Darcy velocity (i.e., the flux), c is the concentration
of a dissolved chemical that is transported by the flow, and a, b, c, d, φ, D, and ĉ are
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various parameters. To these equations, we must add boundary and initial conditions.
For the subsystem (1.1)–(1.2), let ∂Ω be decomposed into ΓN and ΓD, and set

u · ν = gN , ΓN ,(1.4)

p = pD, ΓD,(1.5)

where ν is the outer unit normal vector, gN is the given boundary flux, and pD is the
given boundary pressure.

Since D(u) ≈ 0, equation (1.3) is nearly hyperbolic. Characteristic methods have
been successful in treating this equation (see, e.g., [4, 20, 22, 23]); however, they rely
heavily on the velocity u. To obtain good characteristic trace-backs, uh ≈ u should
satisfy

(i) ∇ · uh = PW f , where PW is an appropriate projection;
(ii) uh is continuous.

Property (i) gives a proper divergence to the flow so that mass is conserved, while (ii)
is required for consistency in tracing regions through the flow field.

A second application involves the coupling of Stokes flow with Darcy flow in a
region with open channel flow adjacent to a porous medium [8]. Usual approaches
require that the Stokes equations be approximated by a continuous velocity, since it
must remain in H1. However, this is not properly matched on the open/porous inter-
face to a discontinuous Darcy velocity. A continuous Darcy velocity would therefore
be desirable. These spaces have been exploited in [1, 2, 3].

Current mixed methods achieve (i) at the expense of (ii). Our goal is to relax (i),
so that it holds only “on the average”, but maintain (ii). Brezzi, Fortin, and Marini
[16] presented a stabilization technique that allows the use of continuous finite element
spaces. Their technique involves a modification of the usual mixed equations. Herein,
we provide a family of mixed methods that is stable for the original set of mixed equa-
tions. These methods are defined on rectangular grids, and they generalize the Stokes
elements of Fortin [24] (cf. Bernardi and Raugel [9]). We present the full development
for two dimensions, and discuss the three dimensional case in the last section.

2. Some general notation. Throughout the paper, for domain ω, we denote
by Lp(ω) the usual Lebesgue space of index p, 1 ≤ p ≤ ∞, and by W k,p(ω) the
usual Sobolev space of k weak derivatives in Lp(ω). We denote by (·, ·)ω the L2(ω)
inner product (i.e., Lebesgue integration over ω). Moreover, ‖ · ‖k,ω is the norm of
Hk(ω) ≡ W k,2(ω), and | · |r,ω denotes the Hr(ω) seminorm. In the notation we may
suppress ω when it is Ω. On a domain boundary e, we use the notation 〈·, ·〉e for
the L2(e) inner product. For d-dimensional set S, |S| is its d-dimensional Lebesgue
measure.

Let Pk(ω) denote the space of polynomials of degree at most k over the set
ω. Moreover, in R

2, let Qi,j(ω) be the set of polynomials of degree at most i in
x and j in y over ω, and similarly define Qi,j,k(ω) in R

3. We will make use of

scaling arguments, so let us define R̂ = [−1, 1]2 as our reference rectangle. Moreover,

let λ̂j denote the Legendre polynomial of degree j on [−1, 1]. Recall that they are
L2([−1, 1])-orthogonal polynomials, and that by convention, they are normalized so

that λ̂j(1) = 1; then also λ̂j(−1) = (−1)j .
Finally, if X is a closed subspace of L2(ω), we denote by PX : L2(ω) → X the

L2(ω)-projection operator onto X defined for ψ ∈ L2(ω) as the unique PXψ ∈ X such
that

(ψ − PXψ,ϕ)ω = 0 ∀ϕ ∈ X.
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3. An illustrative example. To illustrate our finite element spaces, consider
(1.1)–(1.2) in mixed form for Ω ⊂ R

2 a bounded domain, with the natural boundary
conditions ΓN = ∂Ω and gN = 0, and a and c set to 0:

(∇ · u, w) = (b, w) ∀w ∈ L2(Ω)/R,(3.1)

(du,v) − (p,∇ · v) = 0 ∀v ∈ H0(div; Ω),(3.2)

where H0(div; Ω) is the subset of H(div; Ω) with vanishing normal trace on ∂Ω. Let
Vh×Wh denote some mixed finite element space, and solve (3.1)–(3.2) for (uh, ph) ∈
Vh ×Wh with the restrictions that w ∈Wh and v ∈ Vh.

If Vh ×Wh is the lowest order Raviart–Thomas space [29, 31, 34], the solution
uh is discontinuous. On a rectangular element R, the x-coordinate of uh, uh,1, is in

V RT0

h,1 (R) = Q1,0(R).

This space has one degree of freedom for each edge normal to the x-direction. If we
add four degrees of freedom by defining

Vh,1(R) = Q1,2(R),

the extra corner degrees of freedom allow us to enforce continuity, while the two
edge degrees of freedom allow us to maintain the average flux across each normal
edge, i.e., the proper average divergence of the flow. A similar modification in y,
Vh,2(R) = Q2,1(R), gives a new element with the required properties on all edges of
R. This is a Stokes element due to Fortin [24].

4. The spaces in two dimensions on rectangles. Assume Ω ⊂ R
2. Let

Th denote a quasi-regular, conforming finite element partition of Ω into rectangles
of diameter bounded by h. By quasi-regular, we mean that the aspect ratio of the
rectangles is bounded by a fixed constant. We now define our family of mixed spaces;
it contains the element of the previous section as its lowest order member.

Definition 4.1. For each integer k ≥ 1, the linear space Vk
h ×W k−1

h is defined
so that, for any rectangle R ∈ Th,

Vk
h(R) = Qk,k+1(R) ×Qk+1,k(R),

W k−1
h (R) = Qk−1,k−1(R),

and

Vk
h = {v ∈ (C0(Ω))2 : v|R ∈ Vk

h(R) ∀R ∈ Th},
W k−1
h = {w ∈ L2(Ω) : w|R ∈W k−1

h (R) ∀R ∈ Th}.

A local basis for W k−1
h (R) is trivial to construct; moreover, since W k−1

h is discon-
tinuous across element boundaries, a global basis can be constructed immediately.

A local nodal basis can be defined for Vk
h(R) by the degrees of freedom given in

the next lemma. Moreover, because these degrees of freedom uniquely determine the
function on each edge, they can be pieced together across edges and vertices to form
a global basis for the continuous function space Vk

h.
Lemma 4.2. For R a rectangle, uh ∈ Vk

h(R) is uniquely defined by the following
degrees of freedom:
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(i) for each corner point P ∈ ∂R and Cartesian direction j = 1, 2,

DOF
(i)
P,j(uh) = uh,j(P ) = uh(P ) · ej ;

(ii) on each edge e ⊂ ∂R,

DOF
(ii)
e,λ (uh) = 〈uh · τe, λ〉e ∀λ ∈ Pk−2(e),

where τe is a unit tangential direction;
(iii) on each edge e ⊂ ∂R,

DOF
(iii)
e,λ (uh) = 〈uh · νe, λ〉e ∀λ ∈ Pk−1(e),

where νe is the outer unit normal direction;
(iv) over R,

DOF (iv)
v (uh) = (uh,v)R ∀v ∈ Qk−2,k−1(R) ×Qk−1,k−2(R).

Moreover, on each edge e ⊂ ∂R, uh|e is uniquely defined by the degrees of freedom
(i)–(iii) restricted to e.

Proof. We restrict our analysis to the case where R = R̂ = [−1, 1]2; an affine map
can be used to show the result for a general rectangle R. As usual, since our function
spaces are finite-dimensional vector spaces, the degrees of freedom uniquely determine
the function if and only if both the dimension of the function space and the number
of independent degrees of freedom agree; whenever the degrees of freedom vanish, the
function also vanishes.

We begin by considering uh on an edge e. Now uh·τe ∈ Pk(e) and uh·νe ∈ Pk+1(e),
so the total dimension of this space is 2k+ 3. The number of degrees of freedom that
act on e are 4 for (i), k − 1 for (ii), k for (iii), and 0 for (iv), leading to the same
number 2k+ 3 degrees of freedom on e. Suppose that the degrees of freedom (i)–(iii)
restricted to e vanish. We conclude from (i) that

uh · τe(ξ) = (1 − ξ2) q(ξ),

where q ∈ Pk−2 (and uh · τe ≡ 0 if k = 1). Then (ii) implies that q = 0, and
we conclude that uh · τe ≡ 0 on e. Similarly, we conclude from (i) and (iii) that
uh · νe ≡ 0 on e. We have thereby demonstrated the last statement of the lemma.

Note that the total number of degrees of freedom is 8 for (i), 4(k − 1) for (ii), 4k
for (iii), and 2(k − 1)k for (iv), so that the total is 2k2 + 6k + 4. This is the same as

dimVk
h(R) = 2(k + 1)(k + 2) = 2k2 + 6k + 4.

So suppose that all degrees of freedom of uh vanish. We have already shown that
then uh|∂R vanishes, so

uh(x, y) = (1 − x2)(1 − y2)v(x, y)

for some v(x, y) ∈ Qk−2,k−1(R)×Qk−1,k−2(R). By degree of freedom (iv), we conclude
that v ≡ 0, and so also uh ≡ 0, completing the proof.

For completeness and future reference, we show how to construct an explicit nodal
basis on the reference rectangle R̂ = [−1, 1]2. A nodal basis has the property that

each member has one degree of freedom evaluate to 1 and the rest to 0. Recall that λ̂j
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is the Legendre polynomial of degree j on R̂, that 〈λ̂i, λ̂j〉[−1,1] = 0 if i �= j, and that

λ̂j(1) = 1 and λ̂j(−1) = (−1)j . For degrees of freedom (ii)–(iv), we need to select a

basis for the test spaces. Since {λ̂j}j≤k forms a basis for Pk(−1, 1), we can restrict
the polynomials in the degrees of freedom (ii) and (iii) to Legendre polynomials, and
to tensor products of such in (iv).

For degree of freedom (i), we define for corner point P = (−1,−1) and direction
1 the basis function

v̂
(i)
P,1 = −1

4
(λ̂k(x̂) − λ̂k−1(x̂))(λ̂k+1(ŷ) − λ̂k(ŷ))e1.

This function has the property that it is e1 at P and vanishes at the three other
corner points, and the degrees of freedom (ii)–(iv) vanish. We similarly define a basis
function for the other three corner points, and for direction 2. For degree of freedom
(ii), with edge e = (−1, 1) × {−1} and λ = λ̂j(x̂), 0 ≤ j ≤ k − 2, we define

v̂
(ii)
e,j = α

(ii)
e,j (λ̂j(x̂) − λ̂kj (x̂))(λ̂k+1(ŷ) − λ̂k(ŷ))e1,

where kj is either k − 1 or k so that kj and j have the same even/odd parity (i.e., so

that λ̂kj (−1) = λ̂j(−1)), and α
(ii)
e,j is chosen to fix the normalization

DOF
(ii)
e,λj

(v̂
(ii)
e,j ) = 〈v̂(ii)

e,j · τe, λ̂j〉e = 1.

The other basis functions of type (ii) are defined similarly. For degree of freedom (iii),

with edge e = {−1} × (−1, 1) and λ = λ̂j(ŷ), 0 ≤ j ≤ k − 1, we define

v̂
(iii)
e,j = α

(iii)
e,j (λ̂k(x̂) − λ̂k−1(x̂))(λ̂j(ŷ) − λ̂kj (ŷ))e1,

where kj is either k or k+1 so that kj and j have the same parity and α
(iii)
e,j is chosen

to make

DOF
(iii)
e,λj

(v̂
(iii)
e,j ) = 〈v̂(iii)

e,j · νe, λ̂j〉e = 1.

The other basis functions of type (iii) are defined similarly. Finally, for degree of

freedom (iv), with v = λ̂j(x̂)λ̂�(ŷ)e1, 0 ≤ j ≤ k − 2, 0 ≤ � ≤ k − 1, we define

v̂
(iv)
j,� = α

(iv)
j,� (λ̂j(x̂) − λ̂kj (x̂))(λ̂�(ŷ) − λ̂k�(ŷ))e1,

where kj is either k − 1 or k so that λ̂kj (−1) = λ̂j(−1), and k� is either k or k + 1 so

that λ̂k�(−1) = λ̂�(−1), and α
(iv)
j,� is defined so that

DOF
(iv)

λ̂j λ̂�
(v̂

(iv)
j,� ) = (v̂

(ii)
j,� , λ̂j λ̂�)R̂ = 1.

The other type (iv) nodal basis functions are defined similarly.
The nodal basis on Th is constructed from these local basis functions via local

affine mappings. On R ∈ Th, we would map R to R̂ by x �→ x̂ ≡ (x − x0)/h1 and
y �→ ŷ ≡ (y−y0)/h2, where R has side lengths h1 and h2 and lower left corner (x0, y0).
The important part of the construction is that the reference basis functions v̂(i), . . . ,
v̂(iv) are independent of h.

We close this section with a remark about the finite element basis. We chose
degrees of freedom and a local basis that are useful for the numerical analysis that
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follows. This is primarily due to degree of freedom (iii), which says that moments of
the normal flux are controlled. However, an equivalent set of degrees of freedom would
be to replace (ii) and (iii) by evaluation at an appropriate number of points along the
boundary. This would be a better basis for implementation, since it is simpler to
construct.

5. A π operator. For simplicity, let Pk−1
W : L2(Ω) → W k−1

h denote the L2(Ω)-
projection PWk−1

h
. As is usual for mixed spaces, we will define a π operator [15, 21, 31]

for our spaces. Our π operator should map (H1(Ω))2 onto Vk
h. When u ∈ (H1(Ω))2,

the normal or tangential trace of u on an edge e is in H1/2(e), and so degrees of
freedom (ii) and (iii), and also (iv), are defined. However, degree of freedom (i)
causes some problems.

We can resolve the difficulty by using the Clément [19] (or the Scott–Zhang [33])
interpolant Ik : H1(Ω) → Qkh, where Qkh is the space of continuous functions with
Qkh|R = Qk,k(R) for any R ∈ Th. For completeness, we define Ik as in [19]. The
interpolant of ψ ∈ L2(Ω) is defined at the nodal points of Qkh by setting the value to
a local L2-projection of ψ. Let N denote the set of nodal points of Qkh; these are, for
example, the union over R ∈ Th of the (k + 1)2 grid points of a k × k uniform grid
over R. For each P ∈ N , let

∆P =
⋃

R∈Th with P∈R
R

be the union of the rectangles containing P . Then define ψP ∈ Qk,k(∆P ) by

(ψ − ψP , ϕ)∆P
= 0 ∀ϕ ∈ Qk,k(∆P ),

and set Ikψ(P ) = ψP (P ). This uniquely defines Ikψ ∈ Qkh; moreover, we have the
estimate

‖ψ − Ikψ‖j ≤ C‖ψ‖rhr−j , j ≤ r ≤ k + 1, j = 0, 1.(5.1)

Definition 5.1. For u ∈ (H1(Ω))2, let πku ∈ Vk
h be defined as the interpolant

of the degrees of freedom from Lemma 4.2, modified by the Clément operator Ik. That
is, for each R ∈ Th, we require the following:

(1) For each corner point P ∈ ∂R and direction j = 1, 2,

πku(P ) · ej = Iku(P ) · ej .

(2) On each edge e ⊂ ∂R,

〈πku · τe, λ〉e = 〈u · τe, λ〉e ∀λ ∈ Pk−2(e).

(3) On each edge e ⊂ ∂R,

〈πku · νe, λ〉e = 〈u · νe, λ〉e ∀λ ∈ Pk−1(e).

(4) Over R,

(πku,v)R = (u,v)R ∀v ∈ Qk−2,k−1(R) ×Qk−1,k−2(R).
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The operator πk is linear, and it is well defined by Lemma 4.2. Before deriving
properties of this operator, we consider its explicit construction using the global nodal

basis given in section 4. Let us denote this basis as {v(i)
j1
,v

(ii)
j2
,v

(iii)
j3

,v
(iv)
j4

}j1,j2,j3,j4 ,
where the superscript designates the degree of freedom type, and for consistency

of notation below, the index ranges do not overlap. Basis function v
(ii)
j2

, of degree
of freedom type (ii), is defined with respect to some grid edge ej2 and Legendre

polynomial λj2 on ej2 , and similarly for v
(iii)
j3

. For v
(iv)
j4

, it is defined with respect to

rectangle Rj4 and a tensor product of Legendre polynomials vj4 .
We claim that we can represent, for u ∈ (H1(Ω))2,

πku = Iku +
∑
j2

1

|ej2 |
〈(u − Iku) · τej2 , λj2〉ej2 v

(ii)
j2

+
∑
j3

1

|ej3 |
〈(u − Iku) · νej3 , λj3〉ej3 v

(iii)
j3

+
∑
j4

1

|Rj4 |
(u − Iku,vj4)v(iv)

j4
,(5.2)

which is indeed in Vk
h. We note that, after a local change of variables,

〈v · ξ, λ〉e = |e|〈v̂ · ξ̂, λ̂〉ê and (v, ψ)R = |R|(v̂, ψ̂)R̂,

and thus by our normalization of the reference basis functions, the degrees of freedom
(ii)–(iv) of πku match u, and πku has the correct values at the grid points.

Lemma 5.2. Assume that u ∈ (H1(Ω))2.
(a) The linear operator πk is bounded on (H1(Ω))2 independently of h.
(b) There exists some constant C independent of h such that for R ∈ Th and

u ∈ (Hr(∆R))2,

|πku − u|j,R ≤ C|u|r,∆R
hr−jR , 1 ≤ r ≤ k + 1, j = 0, 1,

where hR = diam(R) and ∆R is the union of R and its nearest neighboring
elements in Th.

(c) For u ∈ (Hr(Ω))2,

|πku − u|j ≤ C|u|rhr−j , 1 ≤ r ≤ k + 1, j = 0, 1.

(d) Pk−1
W ∇ · u = Pk−1

W ∇ · πku.
Proof. To show (a), we use the representation (5.2) derived above, which when

squared implies

|πku|2 ≤ |Iku|2 +
∑
j2

1

|ej2 |2
|〈(u − Iku) · τej2 , λj2〉ej2 v

(ii)
j2

|2

+
∑
j3

1

|ej3 |2
|〈(u − Iku) · νej3 , λj3〉ej3v

(iii)
j3

|2

+
∑
j4

1

|Rj4 |2
|(u − Iku,vj4)v(iv)

j4
|2,
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since at each point x ∈ Ω the sums are finite with the number depending on k but
not on h. A similar expression holds for the gradient, and so, after integrating,

‖πku‖2
1 ≤ ‖Iku‖2

1 +
∑
j2

1

|ej2 |2
‖〈(u − Iku) · τej2 , λj2〉2ej2 v

(ii)
j2

‖2
1

+
∑
j3

1

|ej3 |2
‖〈(u − Iku) · νej3 , λj3〉2ej3 v

(iii)
j3

‖2
1

+
∑
j4

1

|Rj4 |2
‖(u − Iku,vj4)2 v

(iv)
j4

‖2
1.(5.3)

We begin with the second term on the right-hand side above. By the standard
affine change of variables R �→ R̂ and the quasi regularity of the grid, we deduce that
for any ψ

‖ψ‖0,R = |R|1/2 ‖ψ̂‖0,R̂,(5.4)

|ψ|1,R ≤ C|R|1/2h−1 |ψ̂|1,R̂ ≤ C |ψ̂|1,R̂ ≤ C |ψ|1,R,(5.5)

since in two dimensions |R|1/2 = O(h). Now

‖v(ii)
j2

‖1 =

{∑
R

‖v(ii)
j2

‖2
1,R

}1/2

≤ C

{∑
R

‖v̂(ii)
j2

‖2
1,R̂

}1/2

≤ C,

since v̂
(ii)
j2

is supported in at most four rectangles and is independent of h. Moreover,
if ej2 ⊂ R′ ∈ Th, then by the trace theorem (see, e.g., [26]),

1

|ej2 |
|〈v · τej2 , λj2〉ej2 | = |〈v̂ · τ̂êj2 , λ̂j2〉êj2 |

≤ C‖v̂‖1,R̂′‖λ̂j2‖0,êj2
≤ C

{
h−1‖v‖0,R′ + |v|1,R′

}
,

and so ∑
j2

1

|ej2 |2
‖〈v · τej2 , λj2〉ej2v

(ii)
j2

‖2
1 ≤ C

∑
j2

{
h−1‖v‖0,R′ + |v|1,R′

}2

≤ C
{
h−2‖v‖2

0 + |v|21
}
,(5.6)

since a given rectangle R′ ⊃ ej2 appears at most four times in the sum. Similarly,∑
j3

1

|ej3 |2
‖〈v · νej3 , λj3〉ej3v

(iii)
j3

‖2
1 ≤ C

{
h−2‖v‖2

0 + |v|21
}

(5.7)

and ∑
j4

1

|Rj4 |2
‖(v,vj4)v(iv)

j4
‖2
1 ≤ Ch−2‖v‖2

0 .(5.8)

Thus from (5.3) we deduce that

‖πku‖1 ≤ C
{‖Iku‖1 + h−1‖u − Iku‖0 + |u − Iku|1

} ≤ C‖u‖1.(5.9)
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Now (b), with j = 1, follows from the Bramble–Hilbert lemma [10], since locally
πk is a kth degree polynomial preserving operator. To prove the j = 0 case when
k > 1, we need only compute

‖u − πku‖2
0,R = ‖u − ū − (πku − πku)‖2

0,R ≤ C‖u − πku‖2
1,Rh

2,

where the over-line denotes the local average and we use the fact that ū = πku by
degree of freedom (iv). The case of k = 1 follows directly from a careful scaling
analysis of (5.2) as above and (5.1). The argument appears in [26]: noting (5.4) and
modifying (5.6)–(5.8), we see as in (5.9) that

‖u − πku‖0 ≤ ‖u − Iku‖0 +
∑
j2

1

|ej2 |
‖〈(u − Iku) · τej2 , λj2〉ej2v

(ii)
j2

‖0

+
∑
j3

1

|ej3 |
‖〈(u − Iku) · νej3 , λj3〉ej3v

(iii)
j3

‖0

+
∑
j4

1

|Rj4 |
‖(u − Iku,vj4)v(iv)

j4
‖0

≤ C
{‖u − Iku‖0 + h|u − Iku|1

} ≤ Chr‖u‖r,

where r = 1 or 2.
Result (c) follows from (b). For (d), let w ∈W k−1

h and compute

(∇ · u, w)R = 〈u · ν, w〉∂R − (u,∇w)R

= 〈πku · ν, w〉∂R − (πku,∇w)R = (∇ · πku, w)R,

since w|e ∈ Pk−1(e) and ∇w|R ∈ Qk−2,k−1(R) ×Qk−1,k−2(R).
Remark 5.1. The usual mixed spaces satisfy

PWh,usual
∇ · u = ∇ · πusualu,(5.10)

since ∇ · Vh,usual ⊂Wh,usual. This is not true for the spaces of Definition 4.1.
Our spaces can be viewed as generalizations of the Raviart–Thomas spaces RTk−1

[29, 31]. Our analysis will make strong use of the RTk−1-projection operator π̃k−1.
We briefly review RTk−1. By definition,

RTk−1 = Ṽk−1
h ×W k−1

h ,

where

Ṽk−1
h (R) = Qk,k−1(R) ×Qk−1,k(R),

Ṽk−1
h = {v ∈ H(div; Ω) : v|R ∈ Ṽk−1

h (R) ∀R ∈ Th}.

The operator

π̃k−1 : (H1(Ω))2 → Ṽk−1
h

is defined on a rectangle R by the degrees of freedom
(i) 〈π̃k−1u · ν, λ〉e = 〈u · ν, λ〉e for all λ ∈ Pk−1(e) and edges e ⊂ ∂R,
(ii) (π̃k−1u,v)R = (u,v)R for all v ∈ Qk−2,k−1(R) ×Qk−1,k−2(R).
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We recall that

∇ · π̃k−1u = Pk−1
W ∇ · u,(5.11)

‖u − π̃k−1u‖0 ≤ C‖u‖rhr, 1 ≤ r ≤ k.(5.12)

Let Pk−1

Ṽ
: (L2(Ω))2 → Ṽk−1

h denote projection PṼ k−1
h

. Relations between πk

and π̃k−1 are given as follows.
Lemma 5.3. Assume that u ∈ (H1(Ω))2.
(a) π̃k−1 πku = π̃k−1u.
(b) π̃k−1u = Pk−1

Ṽ
πku.

(c) π̃k−1u = Pk−1

Ṽ
u, provided u ∈ Vk

h.

Proof. For (a), πk preserves the degrees of freedom of π̃k−1. Result (b) is a
corollary of (a) and (c).

For (c), since π̃k−1 is constructed locally on each element, we restrict our analysis
to a rectangle R. Assume without loss of generality that R = R̂. Since x and y
components are independent, we consider only x-components. Then

Ṽ k−1
h,1 = span{λi(x)λj(y) : i ≤ k , j ≤ k − 1},
V kh,1 = span{λi(x)λj(y) : i ≤ k , j ≤ k + 1}.

We wish to show that for u ∈ Vk
h(R),

((π̃k−1u)1 − u1, v1)R = 0 ∀ v1 ∈ Ṽ k−1
h,1 (R).

If u ∈ Ṽk−1
h (R), the result is trivial, so assume

u1 ∈ span{λi(x)λj(y) : i ≤ k, j = k, k + 1}.

Then (u1, v1)R = 0 for all v1 ∈ Ṽ k−1
h,1 (R). Moreover, if e is an edge of ∂R with x

constant (i.e., with ν = e1), then by the orthogonality of the Legendre polynomials,
(i) 〈u1(x, ·), q〉e = 0 for all q(y) ∈ Pk−1(e),
(ii) (u1, v1)R = 0 for all v1 ∈ Qk−2,k−1(R).

These are the degrees of freedom that define the x-component of π̃k−1, and so (π̃k−1u)1 =
0 = (Pk−1

Ṽ
u)1.

6. A mixed finite element method. To approximate (1.1)–(1.2), (1.4)–(1.5),
we first rewrite the equations in mixed variational form. Let

V0 = {v ∈ H(div; Ω) : v · ν = 0 on ΓN},

and W = L2(Ω), unless a ≡ 0 and ΓN = ∂Ω (the pure Neumann problem), in which
case W = {w ∈ L2(Ω) :

∫
Ω
w = 0}. In the latter case, we also assume the usual

compatibility condition between b and gN .
We find (u, p) ∈ H(div; Ω) ×W such that u · ν = gN on ΓN and

(ap,w) + (∇ · u, w) = (b, w) ∀w ∈W,(6.1)

(du,v) − (p,∇ · v) = −〈pD,v · ν〉ΓD
+ (c,v) ∀v ∈ V0.(6.2)

Normally one merely restricts to the finite element spaces to define the mixed
method. For our spaces, however, this is not the proper definition of the method
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when nonhomogeneous boundary terms appear. We assume that the grid is such that
for any edge e ⊂ R ∈ Th, either e ⊂ ΓN or e ⊂ ΓD.

We begin with Dirichlet conditions. Let us define for edge e ⊂ ΓN ∩ ∂R, R ∈ Th,
Λkh(e) = Vk

h(R) · ν = Pk+1(e),

Λ̃k−1
h (e) = Ṽk−1

h (R) · ν = Pk−1(e),

and the full spaces Λkh of continuous functions and Λ̃k−1
h of discontinuous functions over

ΓN . With the definition Pk−1

Λ̃
= PΛ̃k−1

h
, we replace pD by Pk−1

Λ̃
pD in the equations.

For Neumann conditions, we need to set uh · ν on ΓN . This can be done in any
reasonable way, but for the error analysis to follow it is convenient to set uh ·ν to πku.
Since u is unknown, we need to define it using only gN . Near the boundary only, we
use the Scott–Zhang [33] modification of the Clément operator Ik [19] considered in
section 5, which has similar properties, except that in (5.1) we must have r ≥ 1. We
set the corner values to a local L2-projection defined entirely on the boundary of the
domain, instead of over rectangles in the domain, so that Iku ·ν|ΓN

is defined entirely
by u · ν|ΓN

= gN . Further, we can define an operator IkΛ : L2(ΓN ) → Λkh by

IkΛg(P ) = Ikg(P )

for each corner point P of the grid restricted to ΓN , and, on each grid edge e ⊂ ΓN ,

〈IkΛg, λ〉e = 〈g, λ〉e ∀λ ∈ Pk(e).

Then it is easy to check that

πku · ν|ΓN
= IkΛgN .

Finally, to set the Neumann boundary condition, we set uh · ν = IkΛgN on ΓN .
Let

Vk
h,0 = {v ∈ Vk

h : v · ν = 0 on ΓN}.
We now define our mixed finite element method for (6.1)–(6.2). Find (uh, ph) ∈
Vk
h ×W k−1

h such that uh · ν = IkΛgN on ΓN and

(aph, wh) + (∇ · uh, wh) = (b, wh) ∀wh ∈Wh,(6.3)

(duh,vh) − (ph,∇ · vh) = −〈Pk−1

Λ̃
pD,vh · ν〉ΓD

+ (Pk−1

Ṽ
c,vh) ∀vh ∈ Vk

h,0.(6.4)

7. Mixed method error analysis. We now analyze the error in approximating
(6.1)–(6.2) by (6.3)–(6.4). In (6.2) let v be replaced by π̃k−1vh for vh ∈ Vk

h,0. By

Lemma 5.3, π̃k−1vh = Pk−1

Ṽ
vh, and with (5.11) we obtain

(Pk−1

Ṽ
du,vh) − (Pk−1

W p,∇ · vh) = −〈Pk−1

Λ̃
pD,vh · ν〉ΓD

+ (Pk−1

Ṽ
c,vh), vh ∈ Vk

h,0.(7.1)

Note that in (6.1), if w ∈ W k−1
h , we can replace u by πku. Thus the difference of

(6.1), (7.1) and (6.3)–(6.4) is

(a(p− ph), wh) + (∇ · (πku − uh), wh) = 0, wh ∈W k−1
h ,(7.2)

(Pk−1

Ṽ
du − duh,vh) − (Pk−1

W p− ph,∇ · vh) = 0, vh ∈ Vk
h,0.(7.3)
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Select the standard test functions

vh = πku − uh ∈ Vk
h,0 and wh = Pk−1

W p− ph ∈W k−1
h .

Then the sum of (7.2)–(7.3) is

(a(p− ph), p− ph) + (d(u − uh),u − uh)

= (a(p− ph), p− Pk−1
W p) + (d(u − uh),u − πku) + (du − Pk−1

Ṽ
du, πku − uh),

from which we conclude, using standard approximation theory [10, 18] and Lemma 5.2,
that

‖√a(p− ph)‖0 + ‖d1/2(u − uh)‖0

≤ C
{‖p− Pk−1

W p‖0 + ‖u − πku‖0 + ‖du − Pk−1

Ṽ
du‖0

}
≤ C

{‖p‖r + ‖u‖r
}
hr(7.4)

for any 1 ≤ r ≤ k.
Theorem 7.1. If u ∈ (H1(Ω))2, the coefficients a ≥ 0 and d are sufficiently

smooth, and d is uniformly elliptic, then there is some constant C, independent of h,
such that

(a) ‖√a(p− ph)‖0 + ‖u − uh‖0 ≤ C
{‖p‖r + ‖u‖r

}
hr, 1 ≤ r ≤ k,

(b) ‖Pk−1
W p− ph‖0 ≤ C

{‖p‖r + ‖u‖r+1

}
hr+1, 0 ≤ r ≤ k,

(c) ‖p− ph‖0 ≤ C
{‖p‖r + ‖u‖r

}
hr, 1 ≤ r ≤ k,

(d) ‖Pk−1
W ∇ · (u − uh)‖0 ≤ C

{‖p‖r + ‖u‖r
}
hr, 1 ≤ r ≤ k,

(e) ‖∇ · (u − uh)‖0 ≤ C
{‖p‖r + ‖u‖r

}
hr−1, 1 ≤ r ≤ k,

where for (b) and (c) we have assumed that problem (7.5)–(7.7) below is 2-regular,
i.e., its solution satisfies (7.8), and for (e) we assume that the finite element partition
is quasi-uniform.

While results (c) and (d) are optimal in the rate of convergence, results (a) and
(e) are only suboptimal. Result (b) exhibits a superconvergence phenomenon typical
of mixed methods. If k = 1, we do not control the full divergence error; however, we
at least have stability. See, e.g., [25, 27] for conditions that imply 2-regularity.

Proof. We have shown (a) above. For (b) and (c), let ψ ∈ L2(Ω) be such that
‖ψ‖0 ≤ 1 and consider the solution ϕ ∈ H2(Ω) to

aϕ−∇ · d−1∇ϕ = ψ, Ω,(7.5)

d−1∇ϕ · ν = 0, ΓN ,(7.6)

ϕ = 0 , ΓD.(7.7)

By hypothesis the problem is 2-regular, so by definition there is some constant C > 0
such that

‖ϕ‖2 ≤ C‖ψ‖0 ≤ C.(7.8)

Then, using Lemma 5.2(d),

(Pk−1
W p− ph, ψ) = (a(Pk−1

W p− ph), ϕ) − (Pk−1
W p− ph,∇ · d−1∇ϕ)

= (a(Pk−1
W p− ph), ϕ) − (Pk−1

W p− ph,∇ · πkd−1∇ϕ)

= (a(Pk−1
W p− ph), ϕ) − (Pk−1

Ṽ
du − duh, π

kd−1∇ϕ),
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by (7.3), since πkd−1∇ϕ ∈ Vk
h,0. Our immediate goal is to cancel the coefficients d

and d−1 in the last term, so we compute

(Pk−1

Ṽ
du − duh, π

kd−1∇ϕ) = (Pk−1

Ṽ
du − duh, π

kd−1∇ϕ− Pk−1

Ṽ
d−1∇ϕ)

+ (Pk−1

Ṽ
du − duh,Pk−1

Ṽ
d−1∇ϕ)

= (Pk−1

Ṽ
du − duh, π

kd−1∇ϕ− Pk−1

Ṽ
d−1∇ϕ)

+ (d(u − uh),Pk−1

Ṽ
d−1∇ϕ− d−1∇ϕ) + (u − uh,∇ϕ).

We now wish to integrate the last term above by parts and use the other error equation
(7.2). However, we must do this carefully, so as to obtain the superconvergence
claimed in the theorem. We compute

(u − uh,∇ϕ) = (u − πku,∇ϕ) + (πku − uh,∇ϕ− Pk−1

Ṽ
∇ϕ)

+ (πku − uh,Pk−1

Ṽ
∇ϕ).

Now, using Lemma 5.3, (5.11), and (7.2),

(πku − uh,Pk−1

Ṽ
∇ϕ) = (Pk−1

Ṽ
(πku − uh),∇ϕ)

= (π̃k−1(πku − uh),∇ϕ)

= −(∇ · π̃k−1(πku − uh), ϕ)

= −(∇ · (πku − uh),Pk−1
W ϕ)

= (a(p− ph),Pk−1
W ϕ)

= (a(Pk−1
W p− ph),Pk−1

W ϕ) + ((a− P0
Wa)(p− Pk−1

W p),Pk−1
W ϕ),

since Pk−1
W (P0

Wa(p−Pk−1
W p)) = 0. Combining and using the approximation properties

of the various projections and (7.4), we obtain that

(Pk−1
W p− ph, ψ) = (a(Pk−1

W p− ph), ϕ− Pk−1
W ϕ)

− (Pk−1

Ṽ
du − duh, π

kd−1∇ϕ− Pk−1

Ṽ
d−1∇ϕ)

− (d(u − uh),Pk−1

Ṽ
d−1∇ϕ− d−1∇ϕ) − (u − πku,∇ϕ)

− (πku − uh,∇ϕ− Pk−1

Ṽ
∇ϕ) − ((a− P0

Wa)(p− Pk−1
W p),Pk−1

W ϕ)

≤ C
{(‖√a(Pk−1

W p− ph)‖0 + ‖u − uh‖0 + ‖Pk−1

Ṽ
du − du‖0

+ ‖πku − u‖0 + ‖a‖W 1,∞‖p− Pk−1
W p‖0

)
h+ ‖u − πku‖0

}‖ϕ‖2

≤ C
{‖p‖r + ‖u‖r+1

}
hr+1,

where 0 ≤ r ≤ k. Thus (b) and (c) follow.
Substituting wh = Pk−1

W ∇ · (u − uh) ∈ W k−1
h into (7.2) and using (7.4) leads

to (d). For (e), we have a standard inverse inequality argument [10]. On a quasi-
uniform partition (i.e., one that is quasi-regular and has the size of the largest to
smallest rectangle bounded independently of h), we compute

‖∇ · (u − uh)‖0 ≤ ‖∇ · (u − πku)‖0 + ‖∇ · (πku − uh)‖0

≤ ‖u − πku‖1 + Ch−1‖πku − uh‖0,

and the result follows easily.



MIXED ELEMENTS WITH A CONTINUOUS FLUX 1927

8. The inf-sup condition. Our spaces satisfy the celebrated LBB or inf-sup
condition of Ladyzhenskaya [28], Babuška [6], Brezzi [11], and Brezzi and Fortin [15].

Theorem 8.1. If Ω is a polygonal domain, then there exists a constant γ > 0
such that

inf
w∈Wk−1

h

sup
v∈Vk

h,0

(∇ · v, w)

‖v‖‖w‖0
≥ γ > 0,

wherein functions of W k−1
h have mean zero if ΓN = ∂Ω and we take the norm on Vk

h

to be any one of

‖v‖ =
{‖v‖2

0 + ‖∇ · v‖2
0

}1/2 ≡ ‖v‖H(div),

‖v‖ =
{‖v‖2

0 + ‖Pk−1
W ∇ · v‖2

0}1/2 ≡ |||v|||,

or ‖v‖ = ‖v‖1.
Proof. It suffices to show the result for the (H1(Ω))2-norm on V kh , since

|||v||| ≤ ‖v‖H(div) ≤ ‖v‖1.

There exists a β > 0 such that, given w ∈ L2(Ω) (or w ∈ L2(Ω)/R if ΓN = ∂Ω), there
is some ψ ∈ (H1(Ω))2 such that both ∇ · ψ = w and ‖ψ‖1 ≤ β‖w‖0 (see [5]). Then
for w ∈W k−1

h ,

sup
v∈Vk

h,0

(∇ · v, w)

‖v‖1‖w‖0
≥ (∇ · πkψ,w)

‖πkψ‖1‖w‖0
≥ ‖w‖0

C‖ψ‖1
≥ 1

βC
> 0,

since πk is bounded on (H1(Ω))2.
We analyzed our finite element method in a direct way in section 7 above, rather

than use the inf-sup theory of saddle point problems [6, 10, 11, 15]. This is because
it is not straightforward to apply the theory. To do so would require both that the
form (∇·v, w) be continuous and that (dv,v) be coercive on the set Z = {v ∈ Vk

h,0 :

(∇ · v, w) = 0 ∀w ∈ W k−1
h }. For the former, we would need to take the norm on Vk

h

to be at least ‖·‖H(div), while for the latter we would need the norm to be no stronger

than ||| · |||. The problem is that testing (∇ · v, w) by w ∈W k−1
h does not control the

full divergence of v, but only its projection Pk−1
W ∇ · v.

9. Numerical examples. In this section we present some numerical results on
the problem (1.1)–(1.2), (1.5) with Ω = (0, 1)2, ΓD = ∂Ω, a = 0, and c = 0. We fix
the true solution and then define pD and b so that the equations are satisfied. The
test cases are summarized in Table 9.1, wherein d and p are defined, as well as a
statement as to whether the grid is uniform or not. The observed convergence errors
are shown in Table 9.2, and in Table 9.3 we show the observed convergence rates. The
norms of the errors were computed using a tensor product 3-point Gauss rule, and the
convergence rates were obtained by fitting the norms of the errors to exp(m log h+ b),
with m being the convergence rate.

As can be seen from Table 9.3, p converges to ph as O(h), and P0
W p as O(h2),

both as expected from Theorem 7.1. We also see that u converges to uh somewhat
better than expected. It appears that on the uniform grid we attain O(h3/2) super-
convergence in the L2-norm, and O(h1/2) in the H1-seminorm. On the random grid,
the superconvergence appears to be lost, at least mostly so. For these test cases,
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Table 9.1

Numerical test cases.

Case Coefficient d True solution Grid

1 1 y4ex uniform

2 1
cos(x2y)

x2 + xy + 1
uniform

3

(
e2xy

2
0

0 1/(1.1 + x2 − y)

)
cos(x2y)

x2 + xy + 1
uniform

4

(
e2xy

2
0

0 1/(1.1 + x2 − y)

)
cos(x2y)

x2 + xy + 1
random

Table 9.2

Observed errors.

Case h ‖p− ph‖0 ‖P0
W p− ph‖0 ‖u − uh‖0 ‖∇(u − uh)‖0 ‖∇ · (u − uh)‖0

1 1/8 9.90e−2 1.86e−3 8.11e−2 3.43e+0 9.40e−1
1/16 4.98e−2 4.31e−4 3.01e−2 2.60e+0 4.60e−1
1/32 2.49e−2 1.03e−4 1.09e−2 1.92e+0 2.27e−1
1/64 1.25e−2 2.64e−5 3.92e−3 1.38e+0 1.13e−1

2 1/8 2.55e−2 2.57e−4 1.23e−2 5.16e−1 9.82e−2
1/16 1.27e−2 5.95e−5 4.51e−3 3.91e−1 4.80e−2
1/32 6.37e−3 1.43e−5 1.62e−3 2.86e−1 2.38e−2
1/64 3.18e−3 3.22e−6 5.78e−4 2.05e−1 1.18e−2

3 1/8 2.55e−2 4.57e−4 3.06e−2 1.26e+0 2.88e−1
1/16 1.27e−2 1.17e−4 1.17e−2 9.93e−1 1.57e−1
1/32 6.37e−3 2.96e−5 4.29e−3 7.45e−1 8.00e−2
1/64 3.18e−3 6.30e−6 1.54e−3 5.43e−1 4.00e−2

4 1/8 2.68e−2 4.81e−4 3.17e−2 1.23e+0 3.00e−1
1/16 1.34e−2 1.18e−4 1.20e−2 9.95e−1 1.50e−1
1/32 6.68e−3 3.38e−5 5.37e−3 8.73e−1 8.03e−2
1/64 3.38e−3 5.80e−6 2.44e−3 6.85e−1 4.04e−2

Table 9.3

Observed convergence rates. Best fit to y = exp(m log h+ b), with m reported below (where y is
the norm of the error).

Case ‖p− ph‖0 ‖P0
W p− ph‖0 ‖u − uh‖0 ‖∇(u − uh)‖0 ‖∇ · (u − uh)‖0

1 0.996 2.049 1.457 0.437 1.020
2 1.000 2.100 1.471 0.445 1.018
3 1.000 2.052 1.438 0.405 0.950
4 0.997 2.092 1.227 0.271 0.958

P0
W∇ · uh = P0

W∇ · u. However, it appears that ∇ · u approaches ∇ · uh with rate
O(h). We have not been able to demonstrate that this is true in general.

If the projection of the Dirichlet data is not used in (6.4), then the results degrade
significantly. Thus, it is important to include this projection in the method. In our
tests, it amounts to simplifying the computation by replacing the Dirichlet value on
each boundary element edge by its average value.

10. The spaces in three dimensions. There are several ways to define our
mixed finite element spaces in three dimensions. We present the version with as few
degrees of freedom as seems possible.
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Let

Q̃j,j = {p ∈ Qj,j : p has exact degree j}.
Then dimQj,j = 2j + 1. Moreover, let

Q̃xi,j,j = {p ∈ Qi,j,j : p has exact degree j in y and z},

and define similarly Q̃yj,i,j and Q̃zj,j,i, each with dimension (i+ 1)(2j + 1).
We next define some spaces of “bubble” functions. For each integer k ≥ 1, let

R = (a0, a1) × (b0, b1) × (c0, c1) and

Bkx(R) =
{
p : p(x, y, z)

= (y − b0)(b1 − y)(z − c0)(c1 − z)
[
(a1 − x) q0(y, z) + (x− a0) q1(y, z)

]
for some q0, q1 ∈ Q̃k−1,k−1((b0, b1) × (c0, c1))

}
⊂ Q1,k+1,k+1(R),

with a similar definition for Bky (R) and Bkz (R). Also let

Bk(R) =
{
v : v(x, y, z) = (x− a0)(a1 − x)(y − b0)(b1 − y)(z − c0)(c1 − z)ψ(x, y, z)

for some ψ ∈ Q̃xk−2,k−1,k−1(R) × Q̃yk−1,k−2,k−1(R) × Q̃zk−1,k−1,k−2(R)
}

⊂ Qk,k+1,k+1(R) ×Qk+1,k,k+1(R) ×Qk+1,k+1,k(R).

Definition 10.1. For each integer k ≥ 1, for any R ∈ Th, let

Vk
h(R) =

(
Qk,k,k(R)

)3
+Bkx(R) ×Bky (R) ×Bkz (R) + Bk(R)

⊂ Qk,k+1,k+1(R) ×Qk+1,k,k+1(R) ×Qk+1,k+1,k(R),

W k−1
h (R) = Qk−1,k−1,k−1(R),

and define Vk
h ×W k−1

h as in Definition 4.1.
Lemma 10.2. Let R be a rectangular parallelepiped in three dimensions. For

each edge e ∈ ∂R, fix a set Se of k + 1 distinct points, including the endpoints. Then
uh ∈ Vk

h(R) is uniquely defined by the following degrees of freedom:
(i) For each edge e ∈ ∂R, point P ∈ Se, and Cartesian direction j = 1, 2, 3,

DOF
(i)
P,j(uh) = uh,j(P ) = uh(P ) · ej .

(ii) On each face f ⊂ ∂R,

DOF
(ii)
f,τf ,λ

(uh) = 〈uh · τf , λ〉f ∀λ ∈ Qk−2,k−2(f),

where τf is one of the two linearly independent Cartesian unit tangential
directions.

(iii) On each face f ⊂ ∂R,

DOF
(iii)
f,λ (uh) = 〈uh · νf , λ〉f ∀λ ∈ Qk−1,k−1(f),

where νf is the outer unit normal direction.
(iv) Over R,

DOF (iv)
v (uh) = (uh,v)R ∀v ∈ Qk−2,k−1,k−1(R) ×Qk−1,k−2,k−1(R)

×Qk−1,k−1,k−2(R).
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Moreover, on each edge e ⊂ ∂R, uh|e is uniquely defined by the degrees of freedom (i)
restricted to e, and on each face f ⊂ ∂R, uh|f is uniquely defined by the degrees of
freedom (i)–(iii) restricted to f .

The dimension of Vk
h(R) is

dimVk
h(R) = 3(k + 1)3 + 6(2k − 1) + 3(k − 1)(2k − 1) = 3(k3 + 5k2 + 4k)

= 3k(k + 1)(k + 4).

The number of independent degrees of freedom for (i) is 3(12(k− 1) + 8) = 36k− 12,
for (ii) is 12(k − 1)2 = 12k2 − 24k + 12, for (iii) is 6k2, and for (iv) is 3k2(k − 1),
for a total matching the dimension of the space. Therefore the proof of the lemma is
similar to that for Lemma 4.2, and we omit it.

The theoretical results of the previous sections can be developed for these spaces
in a relatively straightforward way. In particular, we have analogues of the definition
of πk, Lemmas 5.2 and 5.3, the development of the mixed finite element method, and
Theorems 7.1 and 8.1.
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Abstract. We consider standard finite volume piecewise linear approximations for second order
elliptic boundary value problems on a nonconvex polygonal domain. Based on sharp shift estimates,
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1. Introduction. We analyze the standard finite volume element method for the
discretization of second order linear elliptic PDEs on a nonconvex polygonal domain
Ω ⊂ R

2. Namely, for a given function f , we seek u such that

Lu ≡ −div(A∇u) = f in Ω, and u = 0 on ∂Ω(1.1)

with A = (aij)
2
i,j=1 a given symmetric matrix function with real-value entries aij ∈

W 1
∞, 1 ≤ i, j ≤ 2. We assume that the matrix A is uniformly positive definite in Ω,

i.e., there exists a positive constant α0 such that

ξTA(x)ξ ≥ α0ξ
T ξ ∀ξ ∈ R

2, ∀x ∈ Ω̄.(1.2)

The class of finite volume methods is based on some approximation of the balance
relation

−
∫
∂b

A∇u · nds =

∫
b

f dx,(1.3)

which is valid for any subdomain b ⊂ Ω. Here n denotes the outer unit normal vector
to the boundary of b.

There are various approaches to the finite volume method. One, the finite volume
element method, uses a finite element partition of Ω, where the solution space con-
sists of continuous piecewise linear functions, a collection of vertex-centered control
volumes, and a test space of piecewise constant functions over the control volumes
(cf., e.g., [6, 10, 25, 28]). A second approach, usually called the finite volume differ-
ence method, uses cell-centered grids and approximates the derivatives in the balance
equation by finite differences (cf., e.g., [22, 29, 33]). Another approach uses mixed
reformulation of the problem [12, 16]. The first approach is quite close to the finite
element method but nevertheless has some new properties that make it attractive for
the applications [1, 20]. The second approach is closer to the classical finite difference
method and extends it to more general than rectangular meshes. It is used mostly on
perpendicular bisection or Voronoi type meshes. Approximations on such rectangular
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Fig. 1.1. Left-hand side: A sample region with dotted lines indicating the corresponding box
bz. Right-hand side: A triangle K partitioned into three subregions Kz.

and triangular meshes were studied, for example, in [34] and [26], respectively. The
third approach is close to mixed and hybrid finite element methods and can deal,
for example, with irregular quadrilateral and hexahedral cells [12, 30]. Finite volume
discretizations for more general convection-diffusion-reaction problems were studied
by many authors. For a comprehensive presentation and more references of existing
results we refer to the monographs on the finite volume difference method [22] and
on the finite volume element method [28], and for various applications on the special
issue [21].

We shall consider a finite volume element discretization of (1.1), in the standard
conforming space of piecewise linear functions,

Xh = {χ ∈ C(Ω) : χ|K is linear ∀K ∈ Th and χ|∂Ω = 0}

with {Th}0<h<1 a given family of triangulations of Ω with h denoting the maximum
diameter of the triangles of Th. For simplicity we shall assume that Th is a quasi-
uniform triangulation. However, this assumption is only required to show L∞-norm
error estimates. For L2- and H1-norm error estimations, nondegenerate triangulations
[9, equation (4.4.16)] are sufficient.

The finite volume problem will satisfy a relation similar to (1.3) for b in a finite
collection of subregions of Ω called control volumes, the number of which will be
equal to the dimension of the finite element space Xh. These control volumes are
constructed in the following way: Let zK be the barycenter of K ∈ Th. We connect
zK with line segments to the midpoints of the edges of K, thus partitioning K into
three quadrilaterals Kz, z ∈ Zh(K), where Zh(K) are the vertices of K. Then with
each vertex z ∈ Zh = ∪K∈Th

Zh(K) we associate a control volume (also called a
box) bz, which consists of the union of the subregions Kz, sharing the vertex z (see
Figure 1.1). We denote the set of interior vertices of Zh by Z0

h.
The finite volume element method is then to find uh ∈ Xh such that

−
∫
∂bz

(A∇uh) · nds =

∫
bz

f dx, ∀z ∈ Z0
h.(1.4)

Before we start our description of this work we introduce some notation. We will
use the standard notation for the Sobolev spaces W s

p and Hs = W s
2 (cf. [2]). Namely,

Lp(V ), 1 ≤ p < ∞, denotes the space of p-integrable real functions over V ⊂ R
2,

(·, ·)V the inner product in L2(V ), | · |Hs(V ) and ‖ · ‖Hs(V ) the seminorm and norm,

respectively, in Hs(V ), | · |W s
p (V ) and ‖ · ‖W s

p (V ) the seminorm and norm, respectively,
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in W s
p (V ), p ≥ 1, and s ∈ R. In addition, if V = Ω we suppress the index V , and if

p = 2 and s = 0 we also suppress these indexes and denote ‖ · ‖W 0
2

= ‖ · ‖. Further,

we shall denote with p′ the adjoint of p, i.e., 1
p + 1

p′ = 1, p > 1.

We begin with some comments. It is well known that in the case of a polygonal
Ω, if f ∈ Lp, 1 < p < ∞, then the solution u of (1.1) is not always in W 2

p (cf., e.g.,
[24] and section 2). However, it is always in W 2

p̄ or in a fractional order space H1+s

for some 0 < s < 1, where s and p̄, given in section 2, depend on both the maximal
interior angle of Ω and p. In short, for p large, s and p̄ depend on the maximal interior
angle, while for p close to 1, they depend on p.

In this paper we study the influence of the corner singularities imposed by the
nonconvex polygonal domain Ω and the possible insufficient regularity of the right-
hand side f , say, f ∈ Lp(Ω), p < 2, or f ∈ H−�(Ω), 0 ≤ � < 1/2, on the convergence
rate of the finite volume element method. For domains with smooth boundary and
convex polygonal domains, H1- and L2-norm error estimates were derived in [15] and
[23], respectively, taking into account the regularity of f .

Note that we use the conservative version of the method, namely the right-hand
side of the scheme is computed by the L2–inner product of f with the characteristic
functions of the finite volumes (or equivalently by the duality between H� and H−�

for 0 ≤ � < 1/2). The reason for � < 1/2 is that (1.4) makes sense for at least f ∈ L1.
For results concerning finite volume schemes for problems with more singular f , i.e.,
f ∈ H−1, we refer to [19], where an approximation of

∫
b
f is considered.

As a model for our analysis we shall consider the corresponding Galerkin finite
element method, which is to find uh ∈ Xh such that

a(uh, χ) = (f, χ), ∀χ ∈ Xh,(1.5)

with a(·, ·) the bilinear form defined by

a(v, w) =

∫
Ω

A∇v · ∇w dx.

It is known that uh satisfies (cf., e.g., [3, 8] and [9, Chapter 12])

‖u− uh‖ + hδ‖u− uh‖H1 ≤ Chs+δ
{‖u‖H1+s ,
‖u‖W 2

p̄
, any δ < π/ω,(1.6)

where s is given by (2.4) or (2.6), p̄ by (2.3), and ω denotes the biggest interior angle
of Ω (cf. section 2). Note that the convergence rate of the finite element method (1.5)
is optimal in the H1-norm and suboptimal in the L2-norm, since Xh has the following
approximation properties (cf., e.g., [9, p. 285]):

inf
χ∈Xh

(‖v − χ‖ + h‖v − χ‖H1) ≤
{
Ch1+s‖v‖H1+s , ∀v ∈ H1+s ∩H1

0 , 0 < s < 1,

Ch3−2/p‖v‖W 2
p
, ∀v ∈W 2

p ∩H1
0 , 1 ≤ p ≤ 2.

(1.7)

In the literature there are various techniques for improving the convergence rate of a
finite element method in nonconvex domains, e.g., mesh refinement, augmenting the
basis functions with appropriate singular functions (cf., e.g., [8, 11]). Also, recently
in [18] such a method was analyzed for some finite volume element methods. Here,
we are interested in the analysis of (1.4) in a mesh Th, which does not have any prior
knowledge of the singularity imposed by the domain.



ERROR ESTIMATES FOR FVEM IN POLYGONAL DOMAINS 1935

Table 1.1

Theoretical convergence rate of the finite volume element method versus the finite element
method in a nonconvex polygonal domain, when the exact solution u of problem (1.1) is in H1+s,
where s is defined by (2.4) or (2.6), and any δ < π/ω.

pω = 2/(2 − π/ω), s0 = 1 − π/ω H1-norm L2-norm L∞-norm

p̃ω = 2pω/(3pω − 2) FVE FE FVE FE FVE FE

pω < 2 1 < p < p̃ω s+ δ

p̃ω < pω p̃ω < p < pω min(1, s+ δ)

f ∈ Lp pω ≤ p 1

1 < α < p̃ω s s+ δ s+ δ ≈ s

f ∈W t
α p̃ω ≤ α ≤ 2 min(s+ δ, 1 + t)

s0 < 1/2 � < s0 1 − �

f ∈ H−� s0 < � < 1/2 1 − �

In Theorems 4.3 and 5.2, we show optimal order H1-norm error estimates for the
finite volume element method (1.4), if f ∈ Lp, p > 1, and f ∈ H−�, � ∈ (0, 1/2).
Thus, the finite element (1.5) and finite volume element method (1.4) converge with
the same rate in the H1-norm.

However, as in the convex case (cf., e.g., [13, 27]), the situation in the L2-norm
error estimate is quite different. The convergence rate in the L2-norm of the finite
volume element method (1.4) is suboptimal and lower than the corresponding finite el-
ement method. In Theorem 4.3, for f ∈ Lp, p > 1, we show L2-norm error estimations
where the order cannot be higher than 1. However, assuming additional regularity
for f , namely, f ∈ W t

α, t ∈ (0, 1], α ∈ (1, 2], we are able to show, in Theorem 4.6,
L2-norm error estimations that, depending on α and t, could be of the same order as
the finite element method. For example, this is true for α or t sufficiently close to 1.
Also, in Theorem 4.8 we derive almost optimal order L∞-norm error estimates.

In section 5, we consider the case where f ∈ H−�, � ∈ (0, 1/2) with A = I and
show optimal order H1-norm, suboptimal L2-norm, and almost optimal L∞-norm
error estimates. In Theorem 5.2, we show again that the convergence rate of the
finite volume element method (1.4) in the L2-norm is suboptimal and lower than the
corresponding suboptimal rate of the finite element method.

In Table 1.1, we summarize the theoretical results concerning the convergence
rate of the finite volume element method in the H1-, L2-, and L∞-norms obtained
in sections 4 and 5 and compare them with the corresponding known results for the
finite element method. According to (1.6) the rate of the finite element method in
the H1-norm and L2-norm is s and s + δ, respectively, for any δ < π/ω and s given
by either (2.4) or (2.6), depending on whether f ∈ Lp or f ∈ H−�. Note that if we
assume that f ∈ W t

α, with t ∈ (0, 1] and α ∈ (1, 2], both methods give the same
convergence rate, if α < p̃ω = 2pω/(3pω − 2) with pω = 2/(2 − π/ω). Otherwise, this
is determined by min(s+ π/ω, 1 + t).

Also, in section 7 we present some numerical results for Poisson’s equation on a
Γ-shaped domain. The particular examples we consider justify the theoretical results
of Theorems 4.3, 4.6, and 4.8. However, these do not show the lower convergence rate
in the L2-norm of Theorem 4.3, which occurs if f ∈ Lp, p > 1, and f /∈ W t

α, for any
α ∈ (1, 2] and t ∈ (0, 1). To show that the L2-norm estimates of Theorems 4.3 and
5.2 are sharp, following [27], we consider two counterexamples.

A short presentation of parts of this work can be found in [14]. For simplicity we
choose not to include convection terms in the differential equation (1.1). But they



1936 P. CHATZIPANTELIDIS AND R. D. LAZAROV

ω S0

Ω

Fig. 2.1. A nonconvex domain Ω.

can be included provided they are bounded and the diffusion term is dominating. A
brief description of this paper is the following: In section 2 we give, in short, known
sharp regularity estimates for the exact solution of problems (1.1) and (2.1), based on
[24, 4]. In section 3 we present the finite volume element method. In sections 4 and 5,
we analyze the finite volume element method (1.4) and derive error estimates in the
H1-, L2- and L∞-norms. The approach follows the one developed in [13] and uses
known sharp regularity results for the solutions of elliptic boundary value problems
(cf. [24]). In section 6, we derive some auxiliary results, needed in proving Theorems
4.3, 4.6, 4.8, 5.2, 5.4, and 5.5. Finally in section 7, we present numerical examples
that illustrate the theoretical results of section 4.

2. Preliminaries. Let us first consider the Dirichlet problem for Poisson’s equa-
tion: Given f ∈ Lp, p > 1, find a function u : Ω → R

2 such that

−∆u = f, in Ω, and u = 0 on ∂Ω(2.1)

with Ω a bounded, nonconvex, polygonal domain in R
2. For simplicity we assume

that Ω has only one interior angle greater than π, namely ω ∈ (π, 2π) (cf. Figure 2.1).
It is well known that for such domains there exists a unique solution u ∈ H1

0 of (2.1).
The solution u could be represented in the form u = uS + uR, where uR ∈

W 2
p ∩H1

0 , and uS = crλm 1√
ωλm

sin(λmθ)η(re
iθ), expressed in polar coordinates (r, θ)

with respect to the vertex S0 with angle ω (cf. [24]). Here c is a constant, λm = mπ
ω ,

m ∈ N, and η is a cutoff function which is one near S0 and zero away from S0. A
crucial role in determining the regularity of the solution u of (1.1) is played by the
constant pω ≡ 2

2−π/ω . According to [24, p. 233],

if f ∈ Lp, p > 1, then u ∈W 2
p̄ ,(2.2)

where

p̄ =

{
p, p < pω,
γ, any γ < pω, p ≥ pω,

pω ≡ 2

2 − π/ω
.(2.3)

Using also the imbedding W 2
p̄ ⊂ H1+s, for s = 2−2/p̄ (cf., e.g., [24, p. 34]), we obtain

the following:

if f ∈ Lp, p > 1, then u ∈ H1+s, for s = 2 − 2

p̄
.(2.4)

Also, for problem (2.1) we have (cf., e.g., [4]),

if f ∈ H−�, 0 ≤ � ≤ 1, then u ∈ H1+s,(2.5)
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where

s =

{
1 − �, s0 < � ≤ 1,
δ, any δ < π/ω, 0 ≤ � ≤ s0,

s0 =
2

p0
− 1 = 1 − π

ω
.(2.6)

For the more general problem (1.1), similar results hold. Let S be a vertex of Ω, and
denote the corresponding interior angle of Ω by ω(S). Let A and T be matrices such

that A = (aij(S))
2
i,j=1 and −T AT T = I, and let ωA(S) be the angle at the vertex

T S of the transformed domain T Ω = {T x : x ∈ Ω}. Define

ω = max
S

ωA(S) and pω =
2

2 − π/ω
.

3. The finite volume element method. In order to analyze the finite volume
element method (1.4) we shall need to rewrite it in a variational form resembling the
one for the finite element problem (1.5) (cf., e.g., [13]). For this purpose we introduce
the space

Yh = {η ∈ L2(Ω) : η|bz is constant, z ∈ Z0
h, η|bz = 0 if z ∈ ∂Ω}.

For an arbitrary η ∈ Yh we multiply the integral relation (1.4) by η(z) and sum over
all z ∈ Z0

h. Thus we obtain the following Petrov–Galerkin formulation of the finite
volume element method: Find uh ∈ Xh such that

ah(uh, η) = (f, η), ∀η ∈ Yh,(3.1)

where the bilinear form ah(·, ·) : Xh × Yh → R is defined by

ah(v, η) = −
∑
z∈Z0

h

η(z)

∫
∂bz

(A∇v) · nds, v ∈ Xh, η ∈ Yh.(3.2)

Further, we consider the interpolation operator Ih : C(Ω) → Yh, defined by

Ihv =
∑
z∈Z0

h

v(z)ϕz,(3.3)

where ϕz is the characteristic function of bz. Then, we can rewrite (1.4) as

ah(uh, Ihχ) =
∑
z∈Z0

h

χ(z)

∫
bz

f dx, ∀χ ∈ Xh.(3.4)

Note that for every f ∈ Lp and χ ∈ Xh,

(f, Ihχ) =
∑
z∈Zh

χ(z)

∫
Ω

fϕz dx =
∑
z∈Z0

h

χ(z)

∫
bz

f dx.(3.5)

Thus (3.4) can be written equivalently in the form

ah(uh, Ihχ) = (f, Ihχ), ∀χ ∈ Xh.(3.6)

Existence of uh follows from the fact that ah is coercive, for h sufficiently small (cf.,
e.g., [13] or [28, Theorem 3.2.1]),

∃ c0 > 0 : c0|χ|2H1 ≤ ah(χ, Ihχ), ∀χ ∈ Xh.
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Then this, the local stability of Ih,

‖Ihχ‖Lp(K) ≤ C‖χ‖Lp(K), ∀χ ∈ Xh, K ∈ Th, p > 1,

and the Sobolev imbedding

‖χ‖Lp
≤ C‖χ‖H1 , ∀χ ∈ Xh, p > 1,

give the stability of the finite volume scheme (3.6),

‖uh‖H1 ≤ C‖f‖Lp
, p > 1.(3.7)

Also, note that if A(x) is a constant matrix over each finite element K ∈ Th, then
ah(χ, Ihψ) = a(χ, ψ), ∀χ, ψ ∈ Xh (cf., e.g., [27]). In particular, if A = I, we have

ah(χ, Ihψ) = a(χ, ψ) =

∫
Ω

∇χ · ∇ψ dx, ∀χ, ψ ∈ Xh(3.8)

(cf., e.g., [6]). Thus, (3.6) takes the form

a(uh, χ) = (f, Ihχ), ∀χ ∈ Xh.(3.9)

In the case of general matrix A(x), the identity (3.8) is not valid. However,
following [13], we are able to rewrite ah in a form similar to a. Indeed, we transform
the left-hand side of (1.4) using integration by parts to get, for z ∈ Z0

h and K ∈ Th,∫
Kz

Lχdx+

∫
∂Kz∩∂K

A∇χ · nds = −
∫
∂Kz∩∂bz

A∇χ · nds, ∀χ ∈ Xh.

Thus, multiplying by ψ(z), ψ ∈ Xh, and summing over the triangles having z as a
vertex and then over the vertices z ∈ Z0

h, we obtain

ah(χ, Ihψ) =
∑
K

{(Lχ, Ihψ)K + (A∇χ · n, Ihψ)∂K}, ∀χ, ψ ∈ Xh.(3.10)

This is similar to

a(χ, ψ) ≡ (A∇χ,∇ψ) =
∑
K

{(Lχ,ψ)K + (A∇χ · n, ψ)∂K}, ∀χ, ψ ∈ Xh.

Due to this similarity and for convenience, in what follows we shall use (3.10) as a
definition of the bilinear form ah.

4. Nonsmooth data: Lp case. In this section we shall derive H1-, L2-, and
L∞-norm estimates of the error u−uh for f ∈ Lp, p > 1. First, we shall demonstrate
that the finite element method (1.5) and finite volume element method (3.6) have the
same convergence rate in the H1-norm. The L2-norm error estimate is quite different,
and we derive two separate results. First, we will show suboptimal order L2-norm
error estimates for f ∈ Lp, p > 1, where the order is less than in the corresponding
order for the finite element scheme (1.5). Next, assuming higher regularity for f ,
namely f ∈ W t

α, t ∈ (0, 1], α ∈ (1, 2], we will show again suboptimal order L2-norm
error estimates, but now depending on α and t, these could be of the same order as
the corresponding estimates of the finite element scheme. Finally, we show almost
optimal L∞-norm estimates of the error u− uh.
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For the analysis of the finite volume element method (3.6) we shall need to esti-
mate the errors εh and εa defined by

εh(f, χ) = (f, χ) − (f, Ihχ), ∀f ∈ Lp, χ ∈ Xh,

εa(χ, ψ) = a(χ, ψ) − ah(χ, Ihψ), ∀χ, ψ ∈ Xh.

In section 6 we will give the proof of the following two lemmas.
Lemma 4.1. There exists a constant C such that for every χ ∈ Xh,

|εh(f, χ)| ≤ Ch‖f‖Lp
|χ|W 1

p′
, ∀f ∈ Lp,

1

p
+

1

p′
= 1,(4.1)

|εh(f, χ)| ≤ Ch1+t‖f‖W t
p
|χ|W 1

p′
, ∀f ∈W t

p, 0 < t ≤ 1.(4.2)

Lemma 4.2. Assume that A ∈ W 2
∞. Then there exists a positive constant C =

C(A) such that

|εa(ψ, χ)| ≤ Ch|ψ|W 1
p
|χ|W 1

p′
, ∀χ, ψ ∈ Xh,(4.3)

|εa(uh, χ)| ≤ Ch
(‖∇(u− uh)‖L2

+ h‖u‖W 2
p̄

)|χ|W 1
p̄′
, ∀χ ∈ Xh.(4.4)

Next, we derive H1- and L2-norm error estimates for the finite volume element
method (1.4).

Theorem 4.3. Let u and uh be the solutions of (1.1) and (1.4), respectively, with
f ∈ Lp, p > 1. Then, there exists a constant C, independent of h, such that

‖u− uh‖H1 ≤ C
(
hs‖u‖W 2

p̄
+ hmin(1,2−2/p)‖f‖Lp

) ≤ Chs‖f‖Lp
,(4.5)

‖u− uh‖ ≤ C
(
hs+δ‖u‖W 2

p̄
+ hmin (1,s+δ)‖f‖Lp

)
, for any δ < π/ω,(4.6)

with p̄ and s given by (2.3) and (2.4), respectively.
Remark 4.4. The H1-norm error estimation (4.5) is of optimal order (cf. (1.7)).

However, the L2-norm error estimation is not of the same order as the finite element
approximation (cf. (1.6)) for every p. For example, for p sufficiently close to 1,
s + δ < 1, thus, ‖u− uh‖ = O(hs+δ). However, for p ≥ 2, s = 2 − 2/p̄ ≈ π/ω.
Therefore, since s + δ ≈ 2π/ω > 1, ‖u− uh‖ = O(h). The most interesting outcome
of this theorem is that the convergence rate for the L2-norm is suboptimal and lower
than the rate of the finite element method (1.5). This estimate is sharp, as first
demonstrated by a counterexample in [27], for convex domains. Later in section 7 we
give a similar example to the one in [27], which shows the sharpness of the L2-error
estimate (4.6).

Proof. In view of (2.2), u ∈ W 2
p̄ , with p̄ defined by (2.3). Using the triangle

inequality,

‖u− uh‖H1 ≤ ‖u− χ‖H1 + ‖uh − χ‖H1 , ∀χ ∈ Xh,(4.7)

and the approximation properties (1.7) of Xh, it suffices to consider the last term of
(4.7). The positive definiteness of A, (1.2), gives

α0‖uh − χ‖2
H1 ≤ a(uh − χ, uh − χ), ∀χ ∈ Xh.(4.8)
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Thus, in view of

a(uh − χ, uh − χ) = a(u− uh, uh − χ) + a(u− χ, uh − χ)

≤ a(u− uh, uh − χ) + C‖u− χ‖H1 ‖uh − χ‖H1 , ∀χ ∈ Xh,

and (4.8), we get for every χ ∈ Xh,

‖uh − χ‖2
H1 ≤ C|a(u− uh, uh − χ)| + C‖u− χ‖2

H1 .(4.9)

In addition, using the definitions of εh and εa, we have

a(u− uh, uh − χ) = a(u, uh − χ) − ah(uh, Ih(uh − χ)) − εa(uh, uh − χ)

= εh(f, uh − χ) − εa(uh, uh − χ), ∀χ ∈ Xh.
(4.10)

Applying then, to this relation, (4.1), (4.3), and the inverse inequality

|χ|W 1
p′

≤ Ch2/p′−1|χ|H1 , p′ > 2, ∀χ ∈ Xh,

we obtain

|a(u− uh, uh − χ)| ≤ C(hmin (1,2−2/p)‖f‖Lp
+ h‖uh‖H1)‖uh − χ‖H1 .(4.11)

Thus, for h sufficiently small, this estimate, (3.7) and (4.9) yield

‖uh − χ‖H1 ≤ C‖u− χ‖H1 + Chmin (1,2−2/p)‖f‖Lp
, ∀χ ∈ Xh,(4.12)

which combined with (1.7) and (4.7) gives

‖u− uh‖H1 ≤ C
(
hs‖u‖W 2

p̄
+ hmin(1,2−2/p)‖f‖Lp

)
.

Using now the fact that for p < pω, s = 2 − 2/p and for p ≥ pω, s < min(1, 2 − 2/p),
we get

‖u− uh‖H1 ≤ Chs
(‖u‖W 2

p̄
+ ‖f‖Lp

)
.(4.13)

Finally, employing the a priori regularity estimation of u, (2.2), we obtain the desired
estimate (4.5).

We now prove (4.6) by using a duality argument. We consider the following
auxiliary problem: Seek ϕ ∈ H1

0 such that

Lϕ = u− uh in Ω and ϕ = 0 on ∂Ω.(4.14)

In view of (2.2) and the fact that u − uh ∈ L2, we have ϕ ∈ W 2
γ , where γ < pω, i.e.

2/γ = 2 − π/ω + ε, with arbitrary small ε > 0, and satisfies the a priori estimate

‖ϕ‖W 2
γ
≤ C‖u− uh‖, γ < pω.(4.15)

Now let Πh : W 2
γ ∩H1

0 → Xh denote the standard nodal interpolation operator. It is
well known that Πh has the following approximation property (cf., e.g., [17, Theorem
3.1.6] and [2, Theorem 5.4]),

‖Πhv − v‖H1 ≤ Chπ/ω−ε‖v‖W 2
γ
, ∀v ∈W 2

γ ∩H1
0 ,(4.16)
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and Πh is bounded in ‖ · ‖W 1
q

(cf., e.g., [17, Theorem 3.1.6] and [2, Theorem 5.4]),

‖Πhv‖W 1
q
≤ C‖v‖W 2

γ
, ∀v ∈W 2

γ ∩H1
0 , q ≤ p′γ = 2γ/(2 − γ),(4.17)

where pγ = 2γ/(3γ − 2).
Using (4.14) and Green’s formula, we easily obtain

‖u− uh‖2
= −(u− uh, Lϕ) = a(u− uh, ϕ)

= a(u− uh, ϕ− Πhϕ) + a(u− uh,Πhϕ) := I + II.
(4.18)

The first term, I, can obviously be bounded in the following way by using (4.13) and
(4.16):

|I| ≤ C‖u− uh‖H1 ‖ϕ− Πhϕ‖H1 ≤ Chs+π/ω−ε
(‖u‖W 2

p̄
+ ‖f‖Lp

) ‖ϕ‖W 2
γ
.(4.19)

Also, in view of (4.10), the second term, II, can be written in the form

II = a(u− uh,Πhϕ) = εh(f,Πhϕ) − εa(uh,Πhϕ).(4.20)

Then using (4.1) and (4.4), II can be estimated by

|II| ≤ Ch‖f‖Lp
|Πhϕ|W 1

p′
+ h
(‖∇(u− uh)‖L2

+ h‖u‖W 2
p̄

) |Πhϕ|W 1
p̄′
.(4.21)

In order to bound |Πhϕ|W 1
p′

and |Πhϕ|W 1
p̄′

in (4.21) we consider two different cases

for p: (1) p ≥ pγ = 2γ/(3γ − 2), and (2) 1 < p < pγ . We can easily see that pγ < pω.
Thus, in view of the definition of p̄ (cf. (2.3)), for p ≥ pγ we also have p̄ ≥ pγ and for
1 < p < pγ , p̄ < pγ .

Let us first consider the case p ≥ pγ . Then we have p′ ≤ p′γ and p̄′ ≤ p′γ so for
the respective norms of Πhϕ in (4.21) we can apply the estimate (4.17). Using also
(4.13) we get

|II| ≤ C(h‖f‖Lp
+ h1+s(‖u‖W 2

p̄
+ ‖f‖Lp

))‖ϕ‖W 2
γ

≤ C(h‖f‖Lp
+ h1+s‖u‖W 2

p̄
)‖ϕ‖W 2

γ
.

(4.22)

Combining now this estimation with (4.19), (4.15), and (4.18), we obtain the desired
estimate (4.6), for p ≥ pγ .

In the remaining case 1 < p < pγ we cannot directly employ (4.17) for the
estimation of II. However, the inverse inequality

|χ|W 1
q
≤ Ch2/q−2/p′γ |χ|W 1

p′γ
, q > p′γ , ∀χ ∈ Xh,

and (4.17), give

|Πhv|W 1
q
≤ Ch2/q−1+π/ω−ε‖v‖W 2

γ
, ∀v ∈W 2

γ ∩H1
0 , q > p′γ .(4.23)

Using now this estimation in (4.21) and the fact that for 1 < p < pγ , 2/p′ = 2−2/p =
s, we get

|II| ≤ Ch2/p′+π/ω−ε(‖f‖Lp
+ h‖u‖W 2

p̄

) ‖ϕ‖W 2
γ

≤ Chs+π/ω−ε
(‖f‖Lp

+ hs‖u‖W 2
p̄

) ‖ϕ‖W 2
γ
.

(4.24)
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Then, combining this estimation with (4.19), (4.15), and (4.18), we obtain

‖u− uh‖ ≤ Chs+δ(‖u‖W 2
p̄

+ ‖f‖Lp
).

Finally, (4.6) follows from the fact that for 1 < p < pγ , s = 2− 2
p < 2− 2

pγ
= 2

γ − 1 =

1 − π
ω + ε.
Remark 4.5. For the proof of Theorems 4.3 and 4.6 it is not necessary to assume

a quasi-uniform mesh Th. This is done in order to simplify the proof, and it is only
required for the validity of the inverse inequalities that are used. This assumption
can be avoided by applying local inverse inequalities which hold in more general
triangulations.

Next, we shall demonstrate that under some additional assumptions on the smooth-
ness of the data the convergence rate in the L2-norm can be improved and be equal
to the rate of the corresponding finite element method.

Theorem 4.6. Let u and uh be the solutions of (1.1) and (1.4), respectively.
Assume that f ∈ W t

α, 1 < α ≤ 2, 0 < t ≤ 1, and A ∈ W 2
∞. Then there exists a

constant C, independent of h, such that

‖u− uh‖ ≤ C(hs+δ‖f‖Lp
+ h1+t+min(0,1−2/α+δ)‖f‖W t

a
), for any δ < π/ω,(4.25)

with p = 2α/(2 − tα) and p̄ and s given by (2.3) and (2.4), respectively.
Remark 4.7. For α < p̃ω = 2pω

3pω−2 , we have 2/α > 1+π/ω. Thus 1+t+min(0, 1−
2/α+ δ) = 2 + t− 2/α+ δ = 2− 2/p+ δ ≥ s+ δ. Therefore, ‖u−uh‖ = O(hs+δ), i.e.,
in this case the L2-norm error estimate of the finite volume element method has the
same convergence rate as the corresponding finite element method. If α ≥ p̃ω, i.e.,
2/α ≤ 1 + δ, then the order of ‖u− uh‖ is min(s+ δ, 1 + t).

Proof. The proof will be similar to the one for (4.6). First, let us note that
since f ∈ W t

α, we have by imbedding (cf. [2, Theorem 7.57]) that f ∈ Lp, with
p = 2α/(2 − tα). Thus, in view of (2.2), u ∈W 2

p̄ with p̄ given by (2.3).
Let again γ < pω, such that 2/γ = 2 − π/ω + ε, with arbitrary small ε > 0, and

let ϕ ∈W 2
γ ∩H1

0 be the solution of the auxiliary problem (4.14). Obviously, in order
to show a higher order L2-norm error estimation of u−uh, we need to derive “better”
bounds for I and II of (4.18). It is obvious that the estimation of I, (4.19), derived
in Theorem 4.3 is of the desired order. Thus, it suffices to show a better estimate for
II than the ones derived in Theorem 4.3 (cf. (4.22) and (4.24)).

Using (4.2) and (4.4) in (4.20), we get

|II| ≤ C(h1+t‖f‖W t
α
|Πhϕ|W 1

α′
+ h1+s‖f‖Lp

|Πhϕ|W 1
p̄′

).(4.26)

Similarly, as in Theorem 4.3 we need to derive bounds for

|Πhϕ|W 1
α′

and |Πhϕ|W 1
p̄′
,

and we will need to consider various cases for α and p with respect to pγ = 2γ/(3γ−2).
Since p = 2α/(2 − tα), we can easily see that p > α; thus we have the following

three cases: (1) p > α ≥ pγ , (2) p ≥ pγ > α, and (3) pγ > p > α.
First, we consider the case p > α ≥ pγ . For such p, according to (2.3), we have

p̄ > pγ . Thus, using (4.17) in (4.26), and the fact that 1/2 < π/ω < 1, we get

|II| ≤ C(h1+t‖f‖W t
α

+ hs+π/ω−ε‖f‖Lp
)‖ϕ‖W 2

γ
.(4.27)
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Therefore, combining this estimation, (4.19), (4.15), (4.18), and the fact that if α > pγ ,
then 2/α < 2/pγ = 1 + π/ω − ε, we obtain the desired result, (4.25), in the case
p > α ≥ pγ .

Now let p ≥ pγ > α. Again we can easily see that p̄ ≥ pγ . Therefore, applying
(4.23) and (4.17) in (4.26) and using the fact that 1/2 < π/ω < 1, we obtain

|II| ≤ C(ht+2/α′+π/ω−ε‖f‖W t
α

+ h1+s‖f‖Lp
)‖ϕ‖W 2

γ

≤ C(h1+t+1−2/α+π/ω−ε‖f‖W t
α

+ hs+π/ω−ε‖f‖Lp
)‖ϕ‖W 2

γ
.

(4.28)

Therefore, combining this estimation, (4.19), (4.15), (4.18), and the fact that if α ≤ pγ ,
then 2/α > 1 + π/ω − ε, we obtain the desired result, (4.25), if p > pγ ≥ α.

In the remaining case pγ > p > α, we have p̄ = p < pγ . Thus, applying (4.23) in
(4.26) and using the fact that 1/2 < π/ω < 1, we have

|II| ≤ C(ht+2/α′+π/ω−ε‖f‖W t
α

+ h2/p′+π/ω−ε+s‖f‖Lp
)‖ϕ‖W 2

γ

≤ C(h1+t+1−2/α+π/ω−ε‖f‖W t
α

+ hs+π/ω−ε‖f‖Lp
)‖ϕ‖W 2

γ
.

(4.29)

Therefore, combining this estimation, (4.19), (4.15), and (4.18) we obtain the
desired result, (4.25), for the remaining case pγ ≥ p > α.

Finally, we will show an almost optimal L∞-norm error estimate.
Theorem 4.8. Let u and uh be the solutions of (1.1) and (1.4), respectively, with

f ∈ Lp, p > 1, and A ∈W 2
∞. Then there exists a constant C, independent of h, such

that

‖u− uh‖L∞ ≤ Chs log
1

h
‖f‖Lp

.(4.30)

Proof. We split the error u − uh by adding and subtracting the Galerkin finite
element approximation uh (cf. (1.5)); thus u − uh = (u − uh) + (uh − uh). The
estimation of ‖u− uh‖L∞ is well known (cf., e.g., [32]). However, we shall briefly
demonstrate it.

In view of [32, equation (0.8)] and the standard imbedding W 2
p̄ ⊂ C0,2−2/p̄ (cf.,

e.g., [24, Theorem 1.4.5.2]), we have

‖u− uh‖L∞ ≤ Chs log
1

h
‖u‖C0,s ≤ Chs log

1

h
‖u‖W 2

p̄
,

where s = 2 − 2/p̄ and Cm,� is the space of m times continuously differentiable
functions whose mth order derivative fulfills a uniform Hölder condition of order �.

Then, combining this with the elliptic regularity estimate,

‖u‖W 2
p̄
≤ Cp̄‖f‖Lp

(4.31)

(cf. [24, Theorem 5.2.7]), we obtain

‖u− uh‖L∞ ≤ Cp̄h
s log

1

h
‖f‖Lp , p > 1.(4.32)

We turn now to the estimation of ‖uh − uh‖L∞ . Let x0 ∈ K0 ∈ Th such that
‖uh − uh‖L∞ = |(uh − uh)(x0)| and δx0 = δ ∈ C∞

0 (Ω) a regularized Dirac δ-function
satisfying

(δ, χ) = χ(x0), ∀χ ∈ Xh.
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For such a function δ (cf., e.g., [9]) we have

supp δ ⊂ B = {x ∈ Ω : |x− x0| ≤ h/2},
∫

Ω

δ = 1, 0 ≤ δ ≤ Ch−2,

‖δ‖Lp
≤ Ch2(1−p)/p, 1 < p <∞.

Also let us consider the corresponding regularized Green’s function G ∈ H1
0 , defined

by

a(G, v) = (δ, v), ∀v ∈ H1
0 .(4.33)

Then, we have

‖uh − uh‖L∞ = (δ, uh − uh) = a(G, uh − uh) = a(Gh, uh − uh)

= a(u− uh, Gh) = εh(f,Gh) − εa(uh, Gh),
(4.34)

where Gh ∈ Xh is the finite element approximation of G, i.e.,

a(G,χ) = a(Gh, χ), ∀χ ∈ Xh.

Further, using (4.1), (4.3), and the inverse inequality

|χ|W 1
q
≤ Ch2/q−1|χ|H1 , ∀χ ∈ Xh, q > 2,

in (4.34) we obtain

‖uh − uh‖L∞ ≤ C
{
h
(‖∇(u− uh)‖L2

+ h‖u‖W 2
p̄

)|Gh|W 1
p̄′

+ h‖f‖Lp
|Gh|W 1

p′

}
≤ C

{
h2−2/p̄

(‖∇(u− uh)‖L2
+ h‖u‖W 2

p̄

)
+ hmin(1,2−2/p)‖f‖Lp

}‖Gh‖H1 ,

(4.35)

with p > 1. In addition, in view of [31, Lemma 3.1] we get

‖Gh‖H1 ≤ C‖∇G‖L2
≤ C

1

(q − 1)1/2
‖δ‖Lq

(4.36)

with q ↓ 1. Choosing now q = 1 + (log 1
h )−1 we have

‖Gh‖H1 ≤ C

(
log

1

h

)1/2

.(4.37)

Combining now (4.34)–(4.37) and Theorem 4.3, we obtain

‖uh − uh‖L∞ ≤ Ch2s

(
log

1

h

)1/2

‖u‖W 2
p̄

+ Chmin(1,2−2/p)

(
log

1

h

)1/2

‖f‖Lp
.(4.38)

From this, (4.31), and (4.32) we get the desired estimation (4.30).
Remark 4.9. Assuming f ∈ L∞ will not improve the convergence rate in (4.30),

we can easily see that in this case (4.38) does not contribute terms of order higher
than 1. However, (4.32) gives terms of order almost 2−2/p̄, which is less than 1. Also,
if we assume f ∈ W t

α, then similarly as in Theorem 4.6 we can show ‖uh − uh‖L∞ =

O(h1+t), but again the error ‖u− uh‖L∞ will be at most of order 2 − 2/p̄.
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5. Nonsmooth data: H−� case. In this section we will consider problem (2.1),
i.e., A = I, and we shall derive H1-, L2- and L∞-norm estimates of the error u− uh
for f ∈ H−�, � ∈ (0, 1/2). We will show optimal H1-, suboptimal L2-, and almost
optimal L∞-norm error estimates. The H1- and L∞-norm estimations are of the same
order with the corresponding estimations for the finite element scheme, whereas the
L2-norm estimates are smaller.

This time for the analysis of the finite volume element method (3.6) we shall need
in addition the following lemma, which we prove in section 6.

Lemma 5.1. There exists a constant C such that for every χ ∈ Xh,

|εh(f, χ)| ≤ Ch1−�‖f‖H−� |χ|H1 , ∀f ∈ H−�, 0 < � < 1/2.(5.1)

Theorem 5.2. Let u and uh be the solutions of (2.1) and (1.4), respectively, with
f ∈ H−�, 0 ≤ � < 1/2. Then there exists a constant C, independent of h, such that

‖u− uh‖H1 ≤ C
(
hs‖u‖H1+s + h1−�‖f‖H−�

) ≤ Chs‖f‖H−� ,(5.2)

‖u− uh‖ ≤ C
(
hs+δ‖u‖H1+s + h1−�‖f‖H−�

)
, any δ < π/ω.(5.3)

Remark 5.3. The convergence rate of the H1-norm is of optimal order (cf. (1.7)).
However, since s + δ > 1 ≥ 1 − �, for δ arbitrarily close to π/ω and δ < π/ω,
the convergence rate in the L2-norm is suboptimal and lower than the rate of the
corresponding finite element method (cf. (1.5)). Later in section 7 we give an example
similar to the one in [27], which shows the sharpness of the L2-error estimate (5.3).

Proof. The proof is similar as in Theorem 4.3, thus it suffices to estimate the first
term of the right-hand side of (4.9). If f ∈ H−�, with 0 < � < 1/2, then in view of
(2.5), u ∈ H1+s, with s defined by (2.6). Since A = I, εa ≡ 0. Therefore, using (5.1)
in (4.10) we obtain

|a(u− uh, uh − χ)| ≤ Ch1−�‖f‖H−� |uh − χ|H1 , ∀χ ∈ Xh.(5.4)

Then, in view of the approximation property (1.7) of Xh we get

‖u− uh‖H1 ≤ C
(
hs‖u‖H1+s + h1−�‖f‖H−�

)
.

Using now the fact that for s0 < � < 1/2, s = 1 − � (cf. (2.6)), and for 0 ≤ � ≤ s0,
s < 1 − �, and the a priori regularity estimate (2.5), we obtain the desired estimate
(5.2).

We now turn to (5.3). Using again the same arguments as in Theorem 4.3 it
suffices to estimate term II of (4.18). Let again γ < pω, such that 2/γ = 2−π/ω+ ε,
with arbitrarily small ε > 0, and let ϕ ∈ W 2

γ ∩ H1
0 be the solution of the auxiliary

problem (4.14). Combining (4.10) and (5.1), we have

|II| ≤ Ch1−�‖f‖H−� |Πhϕ|H1 .(5.5)

Finally, since, pγ < 2, we can employ (4.17) in the estimation above, and then com-
bining (4.18), (4.16), (5.2), and (4.15), we obtain the desired estimate (5.3).

In Theorem 5.2 we demonstrated that ‖u−uh‖H1 ≈ Chs, for u ∈ H1+s, s < π/ω.
In general, we know that u /∈ H1+π/ω, even if f is smooth. In Theorem 5.4, we will
show that for f ∈ H−�, with � ∈ (0, s0), ‖u − uh‖H1 ≈ C�h

π/ω, where the constant
C� blows up when �→ s0. This is a slight improvement of the result of Theorem 5.2,
which in this case gives ‖u− uh‖H1 ≈ Chπ/ω−ε with ε > 0 arbitrarily small. Here we
use the technique developed in [5].
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Theorem 5.4. Let u and uh be the solutions of (2.1) and (1.4), respectively, with
f ∈ H−�, 0 ≤ � < s0. Then there exists a constant C, independent of h, such that

‖u− uh‖H1 ≤ C
1

s0 − �
hπ/ω‖f‖H−� .(5.6)

Proof. Obviously, if f ∈ H−�, with 0 ≤ � < s0, then f ∈ H−�̃, �̃ ∈ (s0, 1/2). Then
according to Theorem 5.2, we have that

‖u− uh‖H1 ≤ Ch1−�̃(‖u‖H2−�̃ + ‖f‖H−�̃

)
.(5.7)

Also, since u ∈ H2−�̃, we have

(f, v) = a(u, v) ≤ ‖u‖H2−�̃‖v‖H �̃ , ∀v ∈ H1
0 ;(5.8)

thus, ‖f‖H−�̃ ≤ ‖u‖H2−�̃ , which in view of (5.7) gives

‖u− uh‖H1 ≤ Ch1−�̃‖u‖H2−�̃ .(5.9)

In addition, we can easily see that if u ∈ H2 ∩H1
0 ,

‖u− uh‖H1 ≤ Ch‖u‖H2 .(5.10)

Then, by interpolation between (5.9) and (5.10), we get

‖u− uh‖H1 ≤ Ch1−s0‖u‖X ,(5.11)

where X = [H2 ∩H1
0 , H

2−�̃ ∩H1
0 ]s0/�̃,∞. Here [V,W ]θ,q, 0 ≤ θ ≤ 1, 1 ≤ q ≤ ∞,

denote the Banach spaces intermediate between V andW defined by theK-functional,
which are used in interpolation theory (cf., e.g., [7, Chapter 5]). Denote now with L2,ψ

the orthogonal space with respect to the L2-inner–product to the space spanned by
the function ψ = ϕ+ uR, where ϕ = r−π/ω sin(ϑπ/ω)η, and uR ∈ H1

0 the variational
solution of −∆uR = ∆ϕ. Then, in view of [5, Theorem 4.1], we have

‖u‖X ≤ C‖f‖Y(5.12)

with Y = [L2,ψ, H
−�̃]s0/�̃,∞; thus

‖u− uh‖H1 ≤ Ch1−s0‖f‖Y .(5.13)

Further, since �̃ > s0, [L2,ψ, H
−1]�̃,2 = [L2, H

−1]�̃,2 = H−�̃ (cf., e.g., [5, equation

(3.16)]). Therefore, in view of the reiteration theorem for the interpolation of spaces
(cf., e.g., [7, Chapter 5]), we get

Y = [L2,ψ, H
−1]s0,∞.(5.14)

In addition, in view of [5, Theorem 3.1 and Remark 3.1], we have

‖f‖[L2,ψ,H−1]
s0,∞

≤ C
1

s0 − �
‖f‖H−� , ∀f ∈ H−�.(5.15)

Thus, combining (5.13)–(5.15) we get the desired estimate.
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Finally, we will show an almost optimal L∞-norm error estimate.
Theorem 5.5. Let u and uh be the solutions of (2.1) and (1.4), respectively, with

f ∈ H−�, 0 < � < 1/2. Then there exists a constant C, independent of h, such that

‖u− uh‖L∞ ≤ Chs log
1

h
‖f‖H−� .(5.16)

Proof. The proof is similar to the one for Theorem 4.8. Hence, we will derive
bounds for ‖u− uh‖L∞ and ‖uh − uh‖L∞ .

This time using [32, equation (0.8)] and the standard imbedding H1+s ⊂ C0,s

(cf., e.g., [24, Theorem 1.4.5.2]), we have

‖u− uh‖L∞ ≤ Chs log
1

h
‖u‖C0,s ≤ Chs log

1

h
‖u‖H1+s .

Then, combining this with the elliptic regularity estimate,

‖u‖H1+s ≤ C�‖f‖H−�

(cf. [4]), we obtain

‖u− uh‖L∞ ≤ C�h
s log

1

h
‖f‖H−� , 0 ≤ � < 1/2.(5.17)

We turn now to the estimation of ‖uh − uh‖L∞ . Since A = I, (4.34) gives

‖uh − uh‖L∞ = εh(f,Gh),(5.18)

where Gh ∈ Xh is the finite element approximation of the regularized Green function
G (cf. (4.33)). Then, using Lemma 5.1 and (4.37), we obtain

‖uh − uh‖L∞ ≤ Ch1−�
(

log
1

h

)1/2

‖f‖H−� .

From this and (5.17) we get the desired estimation (5.16).

6. Auxiliary results. In this section we shall prove Lemmas 4.1, 4.2, and 5.1
of the previous sections.

Proof of Lemma 4.1. We can easily see that the interpolation operator Ih satisfies
the property

‖χ− Ihχ‖qLq(K) =
∑

z∈Zh(K

∫
Kz

(χ− χ(z))q dx

≤ hqK |χ|qW 1
q (K), ∀χ ∈ Xh, q > 1,(6.1)

with Zh(K) the set of the vertices of K. Also, since in the construction of the control
volumes we choose zK to be the barycenter of K, we have∫

K

χdx =

∫
K

Ihχdx, ∀K ∈ Th, ∀χ ∈ Xh.(6.2)

In view of (6.1), (4.1) follows easily. Let now f̄K be the mean value of f in K. Thus,

‖f − f̄K‖Lp(K) ≤ ChK |f |W 1
p (K), ∀f ∈W 1

p (K), p > 1.(6.3)
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Then, by interpolation of this estimate and ‖f − f̄K‖Lp(K) ≤ C‖f‖Lp(K), we get, for

f ∈W t
p(K), p > 1, and 0 < t ≤ 1

‖f − f̄K‖Lp(K) ≤ ChtK |f |W t
p(K).(6.4)

Since f̄K is constant over K, due to (6.2), we have

(f, χ− Ihχ)K = (f − f̄K , χ− Ihχ)K , ∀χ ∈ Xh.

Thus, due to this, (6.4), and (6.1), we get for every χ ∈ Xh,

|(f, χ− Ihχ)K | = |(f − f̄K , χ− Ihχ)K | ≤ Ch1+t
K |f |W t

p(K) |χ|W 1
p′ (K),

which concludes the proof of (4.2).
We now turn to the proof of Lemma 4.2. For this we shall need the following

auxiliary result.
Lemma 6.1. Let K be a triangle and e a side of K. Then for ϕ ∈W 1

p (K), p > 1,
there exists a constant C independent of K such that∣∣∣∣∫

e

ϕ(χ− Ihχ) ds

∣∣∣∣ ≤ Ch|ϕ|W 1
p (K)|χ|W 1

p′ (K), ∀χ ∈ P1(K).

Proof of Lemma 6.1. It is obvious that, for c constant, Ihc = c and∫
e

Ihχds =

∫
e

χds, ∀χ ∈ Xh, ∀e ∈ Eh.(6.5)

Thus, we have for every χ ∈ P1(K) and ϕ ∈ L2(e),∫
e

ϕ(χ− Ihχ) ds =

∫
e

(ϕ− c1)(χ− c2 − Ih(χ− c2)) ds,

for all constants c1, c2 ∈ R, K ∈ Th, and e ∈ Eh(K). Using now in the relation above
the fact that ‖Ihχ‖L∞(e) ≤ ‖χ‖L∞(e) and a local inverse inequality, we get for all

constants c1, c2 ∈ R, χ ∈ P1(K), and ϕ ∈W 1
p (K),∣∣∣∣∫

e

ϕ(χ− Ihχ) ds

∣∣∣∣ ≤ ‖ϕ− c1‖Lp(e)‖χ− c2 − Ih(χ− c2)‖Lp′ (e)

≤ h1/p′
e ‖ϕ− c1‖Lp(e) ‖χ− c2 − Ih(χ− c2)‖L∞(e)

≤ Ch1/p′
e ‖ϕ− c1‖Lp(e)‖χ− c2‖L∞(e)

≤ C‖ϕ− c1‖Lp(e) ‖χ− c2‖Lp′ (e)

(6.6)

with he = |e|. In view of the Bramble–Hilbert lemma and a standard homogeneity
argument, we can easily show

inf
c∈R

‖ϕ− c‖Lp(e) ≤ Ch1−1/p
e |ϕ|W 1

p (K), ∀ϕ ∈W 1
p (K), p > 1.

Finally, combining this with (6.6) we obtain the desired estimate.
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We now turn to the proof of Lemma 4.2.
Proof of Lemma 4.2. First we will show (4.3). In view of Green’s formula, we

have

εa(ψ, χ) =
∑
K

(Lψ, χ− Ihχ)K +
∑
K

(A∇ψ · n, χ− Ihχ)∂K = I + II.(6.7)

For the first term we have from (6.1),

|I| ≤ C
∑
K

‖Lψ‖Lp(K) ‖χ− Ihχ‖Lp′ (K) ≤ C
∑
K

hK |ψ|W 1
p (K) |χ|W 1

p′ (K).

The bound for II follows at once from Lemma 6.1 since |A∇ψ ·n|W 1
p (K) ≤ C|ψ|W 1

p (K).

We now turn to (4.4). Let ψ = uh in (6.7) and (∇A)K be the average over K.
Then in view of (6.1)–(6.3) we have for every χ ∈ Xh,

(Luh, χ− Ihχ)K = ([∇A− (∇A)K ]∇uh, χ− Ihχ))K ≤ Ch2
K |uh|W 1

p̄ (K) |χ|W 1
p̄′ (K)

with p̄ given by (2.3). From the estimation above we easily obtain the desired bound
for I. Let now Eh(K) be the set of edges of K ∈ Th and Āe = A(me), where me is
the midpoint of the edge e. We will show that for every χ ∈ Xh,

II =
∑
K

∑
e∈Eh(K)

((A− Āe)∇(uh − u) · n, χ− Ihχ)e.(6.8)

Provided that this holds, we may apply Lemma 6.1 and the estimate

|(A− Āe)∇(uh − u)|W 1
p̄ (K) ≤ C

(‖∇(u− uh)‖L2(K) + h‖u‖W 2
p̄ (K)

)
(6.9)

to obtain

|II| ≤ Ch
(‖∇(u− uh)‖L2

+ h‖u‖W 2
p̄

) |χ|W 1
p̄′
, ∀χ ∈ Xh,

which gives the desired estimate for II. Therefore, it remains to prove (6.8). We will
show, for every ψ ∈ Xh,∑

K

(A∇u · n, ψ − Ihψ)∂K =
∑
K

∑
e∈Eh(K)

(Āe∇u · n, ψ − Ihψ)e = 0.(6.10)

In the first sum we have by Green’s formula for every ψ ∈ Xh,∑
K

(A∇u · n, ψ)∂K =
∑
K

(A∇u,∇ψ)K − (Lu, ψ)K = (A∇u,∇ψ) − (Lu, ψ) = 0.

In addition,
∑
K (A∇u · n, Ihψ)∂K = 0 because Ihψ is piecewise constant on each

interior edge e and A∇u · n is continuous across e (in the trace sense), and Ihψ = 0
on ∂Ω. Since the first sum in (6.10) vanishes for each smooth A and is continuous in
A on L1(∪∂K), the second sum is the limit of sums with a smooth A and, therefore,
also vanishes. Finally, since Āe∇uh · n is constant on each e, in view of (6.5) we have∑

K

∑
e∈Eh(K)

(Āe∇uh · n, χ− Ihχ)e = 0, ∀χ ∈ Xh.
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It remains now to prove Lemma 5.1.
Proof of Lemma 5.1. In view of the definition of εh, it suffices to show

|χ− Ihχ|H� ≤ Ch1−�‖∇χ‖L2
, 0 < � < 1/2.

The fractional order seminorm | · |H� is given by

|w|2H� =

∫
Ω

∫
Ω

|w(x) − w(y)|2
|x− y|2(1+�)

dy dx;(6.11)

therefore,

|χ− Ihχ|2H� =
∑

z,w∈Zh

∫
bz

∫
bw

|(χ− Ihχ)(x) − (χ− Ihχ)(y)|2
|x− y|2(1+�)

dy dx

≤ 4
∑

z,w∈Zh
z �=w

∫
bz

∫
bw

|∇χ(z)|2 |x− z|2
|x− y|2(1+�)

dy dx

+
∑
z∈Zh

∫
bz

∫
bz

|∇χ(z)|2|x− y|−2+2(1−�)
dy dx = 4I + II.

For the estimation of II we rewrite the integral with respect to the y variable in polar
coordinates (r, θ) having as center x; thus |x− y| = r and∫

bz

|x− y|−2+2(1−�)
dy ≤ C

∫ h

0

r(1−�)p−2+1 dr = Ch2(1−�).

Therefore, ∫
bz

∫
bz

|∇χ|2|x− y|−2+2(1−�)
dy dx ≤ Ch2(1−�)‖∇χ‖2

L2(bz),(6.12)

which gives the desired estimate for II. Let us consider now z �= w and fix temporarily
an x ∈ Kz. Using again polar coordinates with center x we estimate the integral with
respect to y,∫

bw

|x− y|−2(1+�)
dy ≤ C

∫ ∞

r0(x)

r1−2(1+�) dr ≤ Cr−2�
0 (x) = III,

where r0(x) = dist(x, bw). Let us assume that vertices z and w are in a different
triangle and |r0(x)| > kh; therefore, |III| ≤ C|r0(x)|−2� ≤ Ch−2�. Thus,∫

bz

∫
bw

|∇χ(z)|2|x− z|2|x− y|−2(1+�)
dy dx ≤ Ch2(1−�)‖∇χ‖2

L2(bz).(6.13)

Finally, let us consider the case that z �= w and are vertices of the same triangle K.
Then r0(x) could be arbitrarily small and in order for∫

bz

r0(x)
−2�(x) dx < +∞,

we need to assume that � < 1/2. In a such case, we have∫
bz

∫
bw

|∇χ(z)|2|x− z|2|x− y|−2(1+�)
dy dx ≤ Ch2

∫
bz

|∇χ(z)|2r2�0 (x) dx.(6.14)
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Next we will estimate the right-hand side of the relation above. For this, it suffices to
bound

∫
Kz

|∇χ(z)|2r2�0 . Let us denote with x1 and x2 the two coefficients of a point

x in Kz and introduce a rotation and translation of the (x1, x2)-coordinate system to
(x̃1, x̃2), where x̃1-axis is the common edge Kz ∩Kw. We can easily see that for any
point in x ∈ Kz,

r0(x) = dist(x, bw) ≥ dist((x̃1, 0), bw) = x̃1.

Therefore, r−2�
0 (x) ≤ x̃−2�

1 , ∀x ∈ Kz. Then

h2

∫
Kz

|∇χ(z)|2r−2�
0 (x) dx ≤ Ch2|∇χ(z)|2

∫ h

0

∫ h

0

x̃−2�
1 dx̃1 dx̃2

≤ Ch2(1−�)‖∇χ‖2
L2(Kz),

assuming � < 1/2. Hence, the relation above and (6.14) give∫
bz

∫
bw

|∇χ(z)|2|x− z|2|x− y|−2(1+�)
dy dx ≤ Ch2(1−�)‖∇χ‖2

L2(bz).

Combining this with (6.12) and (6.13), we obtain the desired estimate.

7. Numerical results. In this section we will illustrate on several numerical
examples the theoretical results of section 4. Our examples are similar to the ones
considered in [8, 27].

First, we will show that the theoretical L2-norm convergence rate of Theorem 4.6
is satisfied for the model Dirichlet boundary value problem for the Poisson equations
in a Γ-shaped domain (cf. Figure 7.1), with vertices (0, 0), (1, 0), (1, 1), (−1, 1),
(−1,−1), and (0,−1). As in [8], we consider the following two singular functions for
this Γ-shaped domain:

S1(r, θ) = φ(r)r2/3 sin

(
2

3
θ

)
, S2(r, θ) = φ(r)rβ sin

(
2

3
θ

)
,

where β ∈ (0, 1) and φ is a cutoff function defined by

φ(r) =

⎧⎨⎩
1 0 ≤ r ≤ 1/4,
−192r5 + 480r4 − 440r3 + 180r2 − 135

4 r + 27
8 , 1/4 ≤ r ≤ 3/4,

0 3/4 ≤ r.

(-1,1) (1,1)

(1,0)

(0,-1)(-1,-1)

y

x
1/4

3/4

(0,0)

Fig. 7.1. A Γ-shaped domain.
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Table 7.1

Approximate theoretical convergence rate for exact solution u = S1 + S2 + (x− x3)(y2 − y4).

β

pω = 3/2, p̃ω = 6/5 1/3 1/2 2/3 3/4

f (−∆u) almost in W t
α W

10/66
11/10

W
1/6
6/5

W
4/3
6/5

W
5/12
6/5

rate in H1-norm = s 1/3 1/2 2/3 2/3

s + 2/3, (α < p̃ω) s + 2
3

= 1

rate in L2–norm ≈ min(s + 2/3, 1 + t), (α ≥ p̃ω) s + 2
3

= 7
6

s + 2
3

= 4
3

s + 2
3

= 4
3

rate in L∞-norm ≈ s 1/3 1/2 2/3 2/3

For f = −∆(S1 + S2) + 6x(y2 − y4) + (x − x3)(12y2 − 2) the exact solution is u =
S1 + S2 + (x− x3)(y2 − y4). We can easily see that

∆(S1 + S2) = φ(r)(β2 − (2/3)2)rβ−2 sin

(
2

3
θ

)
+ (2β + 1)φ′(r)rβ−1 sin

(
2

3
θ

)
+φ′′(r)rβ sin

(
2

3
θ

)
+

7

3
φ′(r)r−1/3 sin

(
2

3
θ

)
+ φ′′(r)r2/3 sin

(
2

3
θ

)
.

Since φ is a smooth cutoff function and 6x(y2−y4)+(x−x3)(12y2−2) is a polynomial,
the nonsmoothness of f results from −∆(S1 + S2) and for β ∈ (0, 1) this is dictated
from the term rβ−2, except in the case β = 2/3, where the leading term is r−1/3.

According to [24, Theorem 1.4.5.3], if a function g can be written as g = rγϕ(ϑ),
in polar coordinates, where ϕ is smooth function, then g ∈W t

α, with t > 0 and α > 1,

for γ > t − 2/α. Thus, applying this to f , we have that f is almost in W
β−2+2/α
α ,

with α ∈ (1, 2/(2−β)), for β �= 2/3, and f ∈W
−1/3+2/α
α , with α ∈ (1, 6), for β = 2/3.

In addition, in view of the imbedding Lp ⊂ W t
a, with p = 2α/(2 − tα), for β �= 2/3,

then f ∈ Lp, with p = 2/(2 − β), and for β = 2/3, f ∈ L6.
Since we have considered a Γ-shaped domain, the largest interior angle is 3π/2;

therefore, pω = 2/(2 − (π/ 3π
2 )) = 3/2. Thus, in view of (2.2), the solution u of the

Poisson problem is almost in W 2
p̄ , with p̄ = min(2/(2− β), 3/2), or else u is almost in

H1+s with s = min(β, 2/3).
For example, we consider β = 1/3, 1/2, 2/3, and 3/4. Then f is almost in the

Sobolev spaces W
10/66
11/10 , W

1/6
6/5 , W

4/3
6/5 , and W

5/12
6/5 for β = 1/3, 1/2, 2/3, and 3/4,

respectively. In Table 7.1 we present the theoretical and in Tables 7.2 and 7.3 the
computed rates of convergence of the finite volume element method which illustrate
the results of Theorem 4.6. The computation is done in the following way: For a given
triangulation with number of nodes N and stepsize 2h, we compute the finite volume
solution and the norms of the errors ‖u− u2h‖T , where T = H1, L2, L∞. Then we
split each triangle into four similar triangles and compute the solution uh and the
corresponding norms of the errors, ‖u− uh‖T . Then the computed rates are given

by log2
‖u−u2h‖T

‖u−uh‖T
. This procedure is repeated up to seven levels of refinement. The

integrals in the finite volume formulation were approximated with a 13-point Gaussian
quadrature. For the solution of the corresponding linear system we used a multigrid
preconditioner.

One may argue that the suboptimal order of the L2-norm error estimates in
Theorems 4.3 and 5.4 of the finite volume element method might be an artifact of
the proof and expect the same rate as in the finite element method. However, this
is not correct. In what follows, we consider a counterexample which is based on a
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Table 7.2

Experimental convergence rate for β = 1
3

and β = 1
2
.

β = 1/3 β = 1/2

# of nodes H1 L2 L∞ H1 L2 L∞
225 0.75 1.26 0.28 0.86 1.54 0.48
833 0.68 1.14 0.38 0.83 1.39 0.54
3201 0.59 1.09 0.38 0.81 1.32 0.54
12545 0.49 1.06 0.37 0.75 1.26 0.54
49665 0.42 1.04 0.36 0.69 1.23 0.54
197633 0.38 1.03 0.36 0.63 1.22 0.53
788481 0.37 1.02 0.35 0.60 1.21 0.53

Theoretical ≈ 0.33 1 0.33 0.5 1.17 0.5

Table 7.3

Experimental convergence rate for β = 2
3

and β = 3
4
.

β = 2/3 β = 3/4
# of nodes H1 L2 L∞ H1 L2 L∞

225 0.89 1.76 0.92 0.90 1.84 1.15
833 0.89 1.60 0.66 0.91 1.66 0.69
3201 0.91 1.55 0.67 0.93 1.63 0.70
12545 0.90 1.46 0.67 0.93 1.54 0.69
49665 0.87 1.41 0.67 0.91 1.47 0.69
197633 0.83 1.37 0.67 0.88 1.42 0.69
788481 0.79 1.36 0.67 0.85 1.40 0.69

Theoretical ≈ 0.66 1.33 0.66 0.66 1.33 0.66

similar argument given in [27]. The following arguments can easily be modified and
apply to a model problem in a convex domain. This can then be used to illustrate
the theoretical convergence rates derived in [14, 23].

First we will show that the L2-norm estimate in Theorem 4.3 is sharp. We consider
the model problem

−∆u = f in Ω, and u = 0 on ∂Ω,(7.1)

where f ∈ L2 and Ω is the Γ-shaped domain with vertices (0, 0), (2, 0), (2, 2), (−2, 2),
(−2,−2), and (0,−2). Since π/ω = 2/3, according to Theorem 4.3 we know that

‖u− uh‖H1 ≤ Chs‖f‖L2

with s = 2/3 − ε, ε > 0 arbitrarily small. Let us assume then that (4.6) is not true
and the finite volume and finite element methods converge in the L2-norm with the
same rate, i.e.,

‖u− uh‖L2
≤ Ch2s‖f‖L2

.

Obviously,

‖u− uh‖L2
= sup
φ∈L2\{0}

(u− uh, φ)

‖φ‖L2

.

Hence, our assumption leads to

|(u− uh, φ)| ≤ Ch2s‖φ‖L2
‖f‖L2

.(7.2)
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Fig. 7.2. An example of a triangulation. The successive uniform refinement occurs by splitting
the triangles into four.

Next, let us denote ψ ∈ H1+s ∩H1
0 the solution of the auxiliary problem

−∆ψ = φ in Ω, and ψ = 0 on ∂Ω.(7.3)

Thus,

(u− uh, φ) = a(u− uh, ψ) = a(u− uh, ψ − Πhψ) + a(u− uh,Πhψ),(7.4)

where Πhψ is the interpolant of ψ in Xh. Obviously, then

a(u− uh,Πhψ) = (f,Πhψ − IhΠhψ).(7.5)

We can easily see that

a(u− uh, ψ − Πhψ) ≤ Ch2s‖φ‖L2
‖f‖L2

.

Thus combining (7.2)–(7.5), we get

(f,Πhψ − IhΠhψ) ≤ Ch2s‖φ‖L2
‖f‖L2

.

Since f is an arbitrary function of L2, this leads to

‖Πhψ − IhΠhψ‖L2
≤ Ch2s‖φ‖L2

.

Hence,

‖ψ − IhΠhψ‖L2
≤ Ch2s‖φ‖L2

.

Then, since φ is also an arbitrary function, this should be true for any function
ψ ∈ H1+s ∩H1

0 . Therefore, let us consider a function ψ ∈ H1+s ∩H1
0 such that

ψ(x1, x2) = x1(1 − x1), (x1, x2) ∈ Ω1 = [1/2, 3/2] × [1/2, 3/2].(7.6)

For this ψ we should get

‖ψ − IhΠhψ‖L2(Ω1)
≤ Ch2s.(7.7)
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1
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Fig. 7.3. A sample square Kij . The two regions b1ij and b2ij are separated with the dashed line.

We discretize Ω1 into n2 equal size squares with length h = 1/n, and each square is
divided further into two right triangles in the same direction. Next, we construct the
relative control volumes by connecting the barycenter of its triangle with the middle
of the edges. Let us denote zij the vertices (1/2 + i/n, 1/2 + j/n), i, j = 0, . . . , n− 1.
Also, let Kij be the square [1/2 + i/n, 1/2 + (i+ 1)/n]× [1/2 + j/n, 1/2 + (j + 1)/n],
i, j = 1, . . . , n, and b1ij = Kij ∩ (bij ∪ bi(j+1)) and b2ij = Kij ∩ (b(i+1)j ∪ b(i+1)(j+1))
(cf. Figure 7.3). Then, since ψ depends only on x, IhψI has the same value on the
control volumes bij , j = 0, . . . , n − 1, for every i = 0, . . . , n − 1. For this reason, on
the square Kij , Ihψ = ψ(zij) on b1ij and Ihψ = ψ(z(i+1)j) on b2ij . Then we have

‖ψ − IhΠhψ‖2
L2(Ω1)

=

∫
Ω1

ψ2 dx1 dx2 +

∫
Ω1

(IhΠhψ)2 dx1 dx2

− 2

∫
Ω1

ψIhΠhψ dx1 dx2

=

∫ 3/2

1/2

x2
1(1 − x1)

2 dx1 +

n−1∑
i,j=0

(ψ2(zij)|b1ij | + ψ2(z(i+1)j)|b2ij |)

− 2

n−1∑
i,j=0

(
ψ(zij)

∫
b1ij

x1(1 − x1) dx1 dx2

+ψ(z(i+1)j)

∫
b2ij

x1(1 − x1) dx1 dx2

)
=

10

81n2
+

1

405n4
.

Finally, we have

‖ψ − IhΠhψ‖L2(Ω1)
=

√
10

9

1

n
+ o

(
1

n

)
= O(h).

Combining this with (7.7) we get a contradiction, since 2s ≈ 4/3.
Similar arguments can be used in order to show now the sharpness of the L2-norm

error estimate in Theorem 5.2. Thus, let us consider this time the model problem
(7.1), with f ∈ H−1/3.
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According to Theorem 5.2 we have that

‖u− uh‖H1 ≤ Chs‖f‖H−1/3 ,

with s = 2/3− ε, ε > 0, arbitrarily small. Let us assume that the L2-norm error esti-
mate in Theorem 5.4 does not hold and the finite volume and finite element methods
converge in L2-norm with the same rate, i.e.,

‖u− uh‖L2
≤ Ch2s‖f‖H−1/3 .

Repeating similar arguments as in the previous counterexample, the function ψ ∈
H1+s ∩H1

0 that satisfies (7.6) and (7.3) should also satisfy

‖Πhψ − IhΠhψ‖H1/3 ≤ Ch2s‖φ‖L2
.(7.8)

We discretize again Ω1 in the same way as before, into n2 equal size squares with
length h = 1/n, and each square is divided further into two right triangles in the
same direction. We construct the control volumes bij in the same manner as before
and denote zij the vertices (1/2 + i/n, 1/2 + j/n), i, j = 0, . . . , n− 1. Then, using the
definition of | · |H� (6.11), we can estimate ‖Πhψ − IhΠhψ‖H1/3(Ω1)

from below by

‖Πhψ − IhΠhψ‖2
H1/3(Ω1)

≥
n−1∑
i,j=1

∫
bzij

∫
bzij

|∇Πhψ(zij) · (x− y)|2
|x− y|2(1+1/3)

dy dx.(7.9)

Also, let x = (x1, x2), y = (y1, y2), and K̃ij = [1/2 + i/n, 1/2 + i/n+ 1/3n] × [1/2 +
j/n, 1/2+j/n+1/3n], and since ψ is invariant in the x2-direction and |x−y| ≤ √

2/3n,
(7.9) gives

‖Πhψ − IhΠhψ‖2
H1/3(Ω1)

≥
n−1∑
i,j=1

∫
K̃ij

∫
K̃ij

|∇Πhψ(zij) · (x− y)|2
|x− y|2(1+1/3)

dy dx

≥
(

3n√
2

)2(1+1/3)

(n− 1)

n−1∑
i=1

∫
K̃i1

∫
K̃i1

∣∣∣∣∂Πhψ(zi1)

∂x1

∣∣∣∣2 (x1 − y1)
2
dy dx.

(7.10)

Next, we can easily see that |∂Πhψ(zi1)
∂x1

| = (2i+ 1)/n and∫
K̃i1

∫
K̃i1

(x1 − y1)
2
dy dx =

1

2 · 37n6
.

Thus,

n−1∑
i=1

∫
K̃i1

∫
K̃i1

∣∣∣∣∂Πhψ(zi1)

∂x1

∣∣∣∣2 (x1 − y1)
2
dy dx ≥ 1

2 · 37n8

n−1∑
i=1

i2 =
n(n− 1)(2n− 1)

4 · 38n8
.

Finally, employing this in (7.10) we get

‖Πhψ − IhΠhψ‖H−1/3(Ω1)
≥ C

n2/3
+ o

(
1

n2/3

)
= O(h2/3).

Combining this with (7.8) we get a contradiction, since 2s ≈ 4/3.
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Kröner, eds., Hermes Penton Science, London, 2002, pp. 171–178.

[15] S.-H. Chou and Q. Li, Error estimates in L2, H1 and L∞ in covolume methods for elliptic
and parabolic problems: A unified approach, Math. Comp., 69 (1999), pp. 103–120.

[16] S.-H. Chou and P. S. Vassilevski, A general mixed covolume framework for constructing
conservative schemes for elliptic problems, Math. Comp., 68 (1999), pp. 991–1011.

[17] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics Appl. Math. 40,
SIAM, Philadelphia, 2002.

[18] K. Djadel, S. Nicaise, and J. Tabka, Some refined finite volume methods for elliptic problems
with corner singularities, Internat. J. Finite Volume (electronic journal), 2003.
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Abstract. A locally conservative numerical method for solving the coupled Stokes and Darcy
flows problem is formulated and analyzed. The approach employs the mixed finite element method
for the Darcy region and the discontinuous Galerkin method for the Stokes region. A discrete inf-sup
condition and optimal error estimates are derived.
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1. Introduction. The numerical modeling of reactive transport necessitates the
use of numerical schemes that do not create artificial mass [14]. Mixed finite element
(MFE) and discontinuous Galerkin (DG) methods are two examples of locally mass
conservative methods that are used in the geosciences. MFE methods are quite popular
for porous media problems [16, 34, 17, 4] and DG methods are attractive for modeling
flow on unstructured meshes [33, 31, 30, 32].

Many applications involve different physical processes in different parts of the
simulation domain. In this paper we propose a numerical method for approximating
the solution to the coupled Darcy–Stokes problem. Such systems arise, for example,
in modeling the interaction between surface water (river) and groundwater (aquifer).
There are few works in the literature that address the numerical analysis of the coupled
Darcy–Stokes problem. In [25], Layton, Schieweck, and Yotov consider a formulation
based on the Beavers–Joseph–Saffman interface conditions [5, 35, 24], prove the ex-
istence and uniqueness of a weak solution, and analyze a continuous finite element
scheme coupled with MFE. A similar formulation is studied by Discacciati, Miglio,
and Quarteroni [15], where continuous finite elements are used in both regions. An
application of this formulation to vugular porous media is studied in [3]. A singularly
perturbed Stokes problem, which models Darcy flow as a limiting case, is considered
by Mardal, Tai, and Winther [27]. There, a new finite element is proposed which be-
haves uniformly in the perturbation parameter. Ewing, Iliev, and Lazarov [18] employ
finite difference methods for a similar model involving the Navier–Stokes equations
with an added Darcy term.

The model we consider, which is similar to the one in [25], is based on imposing the
correct local equations in each region, coupled with appropriate interface conditions.
In particular, the fluid region is modeled by the Stokes equations and the porous media
region is modeled by the Darcy’s law. Continuity of flux, balance of forces, and the
Beavers–Joseph–Saffman slip with friction condition (see (2.10) below) are imposed
on the interface. In this work we emphasize locally mass conservative discretizations.
Conserving mass locally is especially important when the flow equations are coupled
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1960 BÉATRICE RIVIÈRE AND IVAN YOTOV

with the reactive transport of chemical species. In the porous media region, the
fluid velocity and pressure are obtained by MFE, and in the incompressible flow
region, the fluid velocity and pressure are approximated by DG. An advantage of our
approach is the possibility of coupling existing highly optimized MFE-based porous
media simulators with the flexibility and easy implementation of DG methods for
incompressible flows. The meshes at the interface between the two regions may be
nonmatching. The estimates are derived for two-dimensional problems. The results
are also valid in higher dimension, and depend on the existence of approximation
operators (see Remark 4.4 below).

The outline of the paper is as follows. In section 2, the model problem, notation,
and scheme are presented. Section 3 contains the derivation of the discrete inf-sup
condition. In section 4, approximation results and optimal a priori error estimates
are proved. Some concluding remarks follow.

2. Model problem, notation, and scheme. Let Ω be a domain in R
d, d = 2,

subdivided into two subdomains Ω1, Ω2. Let Γ12 be the interface ∂Ω1 ∩ ∂Ω2. Define
Γi = ∂Ωi\Γ12, i = 1, 2. Denote by n the outward normal vector to ∂Ω. Let n12 (resp.,
τ 12) be the unit normal (resp., tangential) vector to Γ12 outward of Ω1. Denote by
u = (u1,u2) the fluid velocity and by p = (p1, p2) the fluid pressure, where ui = u|Ωi

and pi = p|Ωi . The flow in the domain Ω1 is assumed to be of Stokes type, and
therefore the following equations are satisfied:

−∇ · T (u1, p1) = f1 in Ω1,(2.1)

∇ · u1 = 0 in Ω1,(2.2)

u1 = 0 on Γ1.(2.3)

Here T is the stress tensor

T (u1, p1) = −p1I + 2µD(u1)

which depends on the viscosity µ > 0 and the strain tensor

D(u1) =
1

2
(∇u1 + ∇uT1 ).

In the region Ω2, the fluid pressure and velocity satisfy the single phase Darcy flow
equations

∇ · u2 = f2 in Ω2,(2.4)

u2 = −K∇p2 in Ω2,(2.5)

u2 · n = 0 on Γ2,(2.6)

where K is a symmetric and positive definite tensor representing the permeability
divided by the viscosity and satisfying, for some 0 < κ0 ≤ κ1 <∞,

κ0ξ
T ξ ≤ ξTK(x)ξ ≤ κ1ξ

T ξ ∀x ∈ Ω2, ∀ξ ∈ R
d.(2.7)

The physical quantities are coupled through appropriate interface conditions

u1 · n12 = u2 · n12,(2.8)

p1 − 2µ((D(u1)n12) · n12) = p2,(2.9)

u1 · τ 12 = −2G(D(u1)n12) · τ 12.(2.10)
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Note that condition (2.8) represents the mass conservation across the interface, con-
dition (2.9) imposes balance of forces across the interface, and condition (2.10) is
the Beavers–Joseph–Saffman law, where G > 0 is a friction constant that can be
determined experimentally. The reader should refer to [5, 35, 24, 25] for a detailed
description and motivation for the choice of these interface conditions.

For i = 1, 2, let E ih be a nondegenerate quasi-uniform subdivision of Ωi [11]
such that the partition E1

h consists of triangles and E2
h consists of either triangles

or rectangles. Let Γih be the set of interior edges and let hi denote the maximum
diameter of elements in E ih. The meshes at the interface between the two domains Ωi
may not match. For s ≥ 0, p > 1, and a domain E ⊂ R

d, let W s,p(E) be the usual
Sobolev spaces [1], let Hs(E) = W s,2(E) be equipped with the usual norm ‖ · ‖s,E ,
and let L2

0(E) denote the space of L2 functions with zero average. In the formulation
for the Stokes region, we need that both the gradient of u1 and the pressure p1 have
a trace on line segments. For this, it suffices to define the following velocity-pressure
spaces for the Stokes region:

X1 = {v1 ∈ (L2(Ω1))
d : ∀E ∈ E1

h, v1|E ∈ (W 2,4/3(E))d},
M1 = {q1 ∈ L2(Ω1) : ∀E ∈ E1

h, q1|E ∈W 1,4/3(E)},

with norms

|||v1|||2s,Ω1
=
∑
E∈E1

h

‖v1‖2
s,E ,

‖v1‖2
X1 = |||∇v1|||20,Ω1

+
∑

e∈Γ1
h
∪Γ1

σe
|e| ‖[v1]‖2

0,e +
µ

G

∑
e∈Γ12

‖v1 · τ 12‖2
0,e,

‖q1‖M1 = ‖q1‖0,Ω1
.

Here, the parameter σe ≥ 0 takes a constant value over each edge e, and |e| denotes the
measure (or length) of e. Given a fixed normal vector ne on each edge e = ∂E1

e ∩∂E1
e ,

directed from E1
e to E2

e , the average and jump of functions in X1 and M1 can be
defined as

{w} =
1

2
(w|E1

e
) +

1

2
(w|E2

e
), [w] = (w|E1

e
) − (w|E2

e
) ∀e = ∂E1

e ∩ ∂E2
e ,

{w} = w|E1
e
, [w] = w|E1

e
∀e = ∂E1

e ∩ ∂Ω1.

The velocity-pressure spaces for the Darcy region are

X2 =

{
v ∈ H(div; Ω2) :

∫
∂Ω2

v · nw = 0 ∀w ∈ H1
0,Γ12

(Ω2)

}
,

M2 = L2(Ω2),

where H(div; Ω2) is the space of vectors in (L2(Ω2))
d whose divergence lies in L2(Ω2)

and

H1
0,Γ12

(Ω2) = {w ∈ H1(Ω2) : w = 0 on Γ12}.

The norms associated with (X2,M2) are

‖v2‖2
X2 = ‖v2‖2

0,Ω2
+ ‖∇ · v2‖2

0,Ω2
, ‖q2‖M2 = ‖q2‖0,Ω2 .(2.11)
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We can now define X = X1 ×X2 and M = (M1 ×M2) ∩ L2
0(Ω), the spaces for the

coupled formulation with the usual norms

‖v‖2
X = ‖v1‖2

X1 + ‖v2‖2
X2 , ‖q‖2

M = ‖q1‖2
M1 + ‖q2‖2

M2 .(2.12)

In [25], it was shown that there exists a unique weak solution (u, p) of the coupled
problem (2.1)–(2.10), with u1 ∈ (H1(Ω1))

d, u2 ∈ X2, and p ∈ M . We will assume
that the solution (u, p) is regular enough, so that it is a strong solution of (2.1)–(2.10).
Next, we introduce the bilinear forms a1 : X1 ×X1 → R and b1 : X1 ×M1 → R,

a1(u1,v1) = 2µ
∑
E∈E1

h

∫
E

D(u1) : D(v1)+
∑

e∈Γ1
h
∪Γ1

σe
|e|
∫
e

[u1] · [v1]

− 2µ
∑

e∈Γ1
h
∪Γ1

∫
e

{D(u1)}ne · [v1]+2µε
∑

e∈Γ1
h
∪Γ1

∫
e

{D(v1)}ne · [u1](2.13)

+
µ

G

∑
e∈Γ12

∫
e

u1 · τ 12v1 · τ 12,

b1(v1, p1) = −
∑
E∈Eh

∫
E

p1∇ · v1 +
∑

e∈Γ1
h
∪Γ1

∫
e

{p1}[v1] · ne.(2.14)

Here, ε is a constant that takes the value −1 or +1, which makes the bilinear form a1

symmetric or nonsymmetric. The bilinear forms corresponding to the Darcy region
are a2 : X2 ×X2 → R and b2 : X2 ×M2 → R:

a2(u2,v2) =

∫
Ω2

K−1u2 · v2,(2.15)

b2(v2, q2) = −
∫

Ω2

q2∇ · v2.(2.16)

Let k1, k2, and l2 be positive integers. LetXh andMh be finite-dimensional subspaces
of X and M , respectively, such that

Xh = X1
h ×X2

h, Mh = M1
h ×M2

h ,

where (X1
h,M

1
h) is the pair of discontinuous finite element spaces

X1
h = {v1 ∈X1 : ∀E ∈ E1

h, v1 ∈ (Pk1(E))d},
M1
h = {q1 ∈M1 : ∀E ∈ E1

h, q1 ∈ Pk1−1(E)}.
The discrete spaces corresponding to the Darcy region consist of the standard mixed
finite element spaces (such as RT spaces [29], BDM spaces [9], BDFM spaces [8], and
BDDF spaces [7]). The mixed spaces X2

h and M2
h contain all polynomials of degree

at least k2 and l2, respectively. Note that for the Raviart–Thomas (RT) spaces, the
condition l2 = k2 holds. We also assume that

∀v2 ∈X2
h, v2 · n = 0 on Γ2.

Let E be a mesh element with diameter hE . Given p ∈ L2
0(Ω), we denote by p̃ the L2

projection of p in Mh satisfying

∀q ∈ Pk1−1(E),

∫
E

q(p̃− p) = 0 ∀E ∈ E1
h,(2.17)

∀q ∈ Pl2(E),

∫
E

q(p̃− p) = 0 ∀E ∈ E2
h,(2.18)
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and, if p|Ω1 ∈ Hk1(Ω1) and p|Ω2
∈ H l2+1(Ω2), then

‖p− p̃‖m,E ≤ Chk1−mE |p|k1,E , E ⊂ Ω1, m = 0, 1,(2.19)

‖p− p̃‖m,E ≤ Chl2+1−m
E |p|l2+1,E , E ⊂ Ω2, m = 0, 1.(2.20)

Remark 2.1. One advantage of the DG method is that one can vary the polyno-
mial degrees from element to element. Here we assume that k1 is the minimum of the
polynomial degrees used in the Stokes region.

Here and throughout the paper, C denotes a varying constant that is independent
of the diameter of the mesh elements. We also make use of the quasi-local interpolant
Π1
h : (H1(Ω1))

d →X1
h [13, 19, 12, 22] satisfying, for all v1 ∈ (H1(Ω1))

d,

b1(Π
1
hv1 − v1, q1) = 0 ∀q1 ∈M1

h ,(2.21)

∀e ∈ Γ1
h ∪ Γ1,

∫
e

[Π1
hv1] · q1 = 0 ∀v1 ∈ (H1(Ω1))

d : v1 = 0 on Γ1, ∀q1 ∈M1
h ,(2.22)

|||Π1
hv1|||1,Ω1

≤ C‖v1‖1,Ω1
.(2.23)

The operator Π1
h has the optimal approximation properties

|Π1
hv1 − v1|m,E ≤ Chs−mE |v1|s,δ(E) ∀1 ≤ s ≤ k1 + 1, ∀v1 ∈ Hs(Ω1), m = 0, 1,

(2.24)

where δ(E) is a suitable macro-element containing E. Moreover, it holds that for at
least one edge e of every element E ∈ E1

h,∫
e

(Π1
hv1 − v1) = 0 ∀v1 ∈ (H1(Ω1))

d.(2.25)

We note that (2.25) holds true for all edges in the cases k = 1 and k = 2. For k = 3,
we can assume, without loss of generality, that (2.25) is satisfied for all edges in Γ12.
We will make use of the following bounds on Π1

h.
Lemma 2.2. Let 1 ≤ s ≤ k1 + 1. For all v1 ∈ (Hs(Ω1))

d,

‖Π1
hv1 − v1‖X1 ≤ Chs−1

1 |v1|s,Ω1
,(2.26)

‖Π1
hv1‖X1 ≤ C‖v1‖1,Ω1

.(2.27)

Proof. From Lemma 3.10 of [22] and from (2.24), we have

‖v1 − Π1
hv1‖X1 ≤ C|||∇(v1 − Π1

hv1)|||0,Ω1 ≤ Chs−1
1 |v1|s,Ω1 .(2.28)

The bound (2.27) follows easily from the triangle inequality and (2.26) with s = 1,
using that ‖v1‖X1 ≤ C‖v1‖1,Ω1 for v1 ∈ (H1(Ω1))

d.
We also recall the MFE interpolant Π2

h : X2 ∩ (Hθ(Ω2))
d → X2

h for any θ > 0,
satisfying [10], for any v2 ∈X2 ∩ (Hθ(Ω2))

d,

b2(Π
2
hv2 − v2, q2) = 0 ∀q2 ∈M2

h ,(2.29) ∫
e

((Π2
hv2 − v2) · ne)w2 · ne = 0 ∀e ∈ Γ2

h, ∀w2 ∈X2
h.(2.30)

Moreover, Π2
h satisfies the approximation properties

‖v2 − Π2
hv2‖0,E ≤ ChsE |v2|s,E , 1 ≤ s ≤ k2 + 1,(2.31)

‖∇ · (v2 − Π2
hv2)‖0,E ≤ ChsE |∇ · v2|s,E , 0 ≤ s ≤ l2 + 1.(2.32)
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It has been shown by Mathew in [28] for the Raviart–Thomas elements [29] that

‖Π2
hv2‖H(div;Ω2) ≤ C(‖v2‖θ,Ω2 + ‖∇ · v2‖0,Ω2),(2.33)

a result that can be trivially extended to the other families of MFE spaces. Recall
the basic trace inequalities on any mesh element E with diameter hE

∀φ ∈ H1(E), ∀e ⊂ ∂E, ‖φ‖2
0,e ≤ C(h−1

E ‖φ‖2
0,E + hE |φ|21,E),(2.34)

∀φ ∈ H2(E), ∀e ⊂ ∂E, ‖∇φ · n‖2
0,e ≤ C(h−1

E ‖φ‖2
1,E + hE |φ|22,E),(2.35)

∀φ ∈ Pk(E), ∀e ⊂ ∂E, ‖∇φ · n‖0,e ≤ Ch
−1/2
E |φ|1,E ,(2.36)

Recall also the Korn’s inequality proved in [6]

∀v ∈X1
h, C|||∇v|||20,Ω1

≤ |||D(v)|||20,Ω1
+

∑
e∈Γ1

h
∪Γ1

1

|e| ‖[v]‖
2
0,e.(2.37)

Define the finite-dimensional space of functions on the interface Λh = X2
h · n12 and

let

V h =

{
v = (v1,v2) ∈Xh :

∑
e∈Γ12

∫
e

η(v1 − v2) · n12 = 0 ∀η ∈ Λh

}
.

Defining a = a1+a2 and b = b1+b2, the numerical scheme is, Find (U , P ) ∈ V h×Mh

such that

a(U ,v) + b(v, P ) =

∫
Ω1

f1 · v ∀v ∈ V h,(2.38)

b(U , q) =

∫
Ω2

f2q ∀q ∈Mh.(2.39)

Remark 2.3. This scheme is locally mass conservative. Indeed, if one chooses the
test function in (2.39) such that q = 1 on E and q = 0 on the rest of the domain, we
have ∫

∂E

{U} · nE = 0 ∀E ⊂ E1
h,∫

∂E

U · nE =

∫
E

f2 ∀E ⊂ E2
h.

Remark 2.4. The space of weakly-continuous-normal velocities V h is introduced
to facilitate the analysis of the numerical method. A direct construction of this space
may, however, be difficult. An equivalent formulation to (2.38)–(2.39) is given in
section 5. It is only based on the space Xh and is more suitable for implementation.
The space Λh plays the role of a Lagrange multiplier or mortar space for imposing
continuity of the normal velocities on Γ12. The choice Λh = X2

h · n12 is critical for
the stability and accuracy of the numerical scheme, even in the case of nonmatching
grids across Γ12. This choice differs from the mortar space used in [2] in the case of
MFE discretizations on nonmatching grids.

In the rest of the section, we show that the solution of the coupled problem
satisfies the scheme up to an interface consistency error. We also prove uniqueness
and existence of the discrete solution.
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Lemma 2.5. If (u, p) ∈ X ×M solves the coupled Stokes–Darcy flow problem
(2.1)–(2.10), such that ui = u|Ωi and pi = p|Ωi , then (u, p) satisfies the variational
problem

a(u,v) + b(v, p) =

∫
Ω1

f1 · v1 −
∑
e∈Γ12

∫
e

p2(v1 − v2) · n12 ∀v ∈ V h,(2.40)

b(u, q) =

∫
Ω2

f2q ∀q ∈Mh.(2.41)

Proof. Multiplying the Stokes equation (2.1) by v1 ∈X1
h and integrating by parts

over one element E,∫
E

T (u1, p1) : ∇v1 −
∫
∂E

T (u1, p1)nE · v1 =

∫
E

f1 · v1.

Summing over all elements E,∑
E

∫
E

(−p1I + 2µD(u1)) : ∇v1 −
∑
e∈Γ1

h

∫
e

[(−p1I + 2µD(u1))]ne · v1

−
∫

Γ12

(−p1I + 2µD(u1))n12 · v1 −
∫

Γ1

(−p1I + 2µD(u1))n · v1 =

∫
Ω1

f1 · v1.

It is easy to show that D(u1) : ∇v1 = D(u1) : D(v1) and that I : ∇v1 = ∇ · v1.
Thus, the equation becomes∑
E

∫
E

(2µD(u1) : D(v1) − p1∇ · v1)

−
∑
e∈Γ1

h

∫
e

{−p1I + 2µD(u1)}ne · [v1] −
∑
e∈Γ1

h

∫
e

[−p1I + 2µD(u1)]ne · {v1}

−
∫

Γ12

(−p1I + 2µD(u1))n12 · v1 −
∫

Γ1

(−p1I + 2µD(u1))n · v1 =

∫
Ω1

f1 · v1.

By regularity of the true solution, we have∑
E

∫
E

(2µD(u1) : D(v1) − p1∇ · v1) −
∫

Γ12

(−p1I + 2µD(u1))n12 · v1

−
∑
e∈Γ1

h

∫
e

{−p1I + 2µD(u1)}ne · [v1] + ε
∑
e∈Γ1

h

∫
e

{2µD(v1)}ne · [u1]

−
∫

Γ1

(−p1I + 2µD(u1))n · v1 + ε

∫
Γ1

2µD(v1)n · u1 =

∫
Ω1

f1 · v1.

Let us now consider the interface term

(−p1I+2µD(u1))n12 = −p1n12+(2µ(D(u1)n12)·τ 12)τ 12+(2µ(D(u1)n12)·n12)n12,

which, combined with v1 = (v1 · τ 12)τ 12 + (v1 · n12)n12, gives

(−p1I + 2µD(u1))n12 · v1 = −p1(v1 · n12) + 2µ(D(u1)n12) · τ 12(v1 · τ 12)

+ 2µ(D(u1)n12) · n12(v1 · n12).
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Thus,

−
∫

Γ12

(−p1I + 2µD(u1))n12 · v1 = −
∫

Γ12

(−p1 + 2µ(D(u1)n12) · n12)(v1 · n12)

−
∫

Γ12

2µ(D(u1)n12) · τ 12(v1 · τ 12).

With the interface conditions (2.9) and (2.10), we obtain

−
∫

Γ12

(−p1I + 2µD(u1))n12 · v1 =

∫
Γ12

p2(v1 · n12) +
µ

G

∫
Γ12

(u1 · τ 12)(v1 · τ 12).

Thus,∑
E

∫
E

(2µD(u1) : D(v1) − p1∇ · v1)

−
∑

e∈Γ1
h
∪Γ1

∫
e

{(−p1I + 2µD(u1))ne} · [v1] + ε
∑

e∈Γ1
h
∪Γ1

∫
e

{2µD(v1)ne} · [u1]

+

∫
Γ12

p2v1 · n12 +
µ

G

∫
Γ12

u1 · τ 12v1 · τ 12 =

∫
Ω1

f1 · v1

which is equivalent to

a1(u1,v1) + b1(v1, p1) +

∫
Γ12

p2v1 · n12 =

∫
Ω1

f1 · v1 ∀v1 ∈X1
h.(2.42)

The Darcy’s law (2.5) can be rewritten as K−1u2 = −∇p2. As usual, multiplication
by v2 ∈X2

h and integration by parts on the Darcy region yields∫
Ω2

K−1u2 · v2 = −
∫

Ω2

∇p2 · v2 =

∫
Ω2

p2∇ · v2 −
∫
∂Ω2

p2v2 · n

=

∫
Ω2

p2∇ · v2 −
∫

Γ2

p2v2 · n+

∫
Γ12

p2v2 · n12,

or equivalently,

a2(u2,v2) + b2(v2, p2) −
∫

Γ12

p2v2 · n12 = 0 ∀v2 ∈X2
h.(2.43)

Adding (2.42) and (2.43) yields (2.40). Clearly, (2.2) and the regularity of the solution
gives

b1(u1, q) = 0 ∀q ∈M1
h .

Finally, a simple integration in (2.4) yields

b2(u2, q) =

∫
Ω2

f2q ∀q ∈M2
h ,

and adding to the previous equation gives the result.
Next, we prove a coercivity lemma that holds true under the following condition.
Hypothesis A. In the definition of the bilinear form a1(·, ·), let us assume that

either the condition (a) or (b) holds true.
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(a) ε = 1 and σe > 1 for all edges in Γ1
h ∪ Γ1. For instance, one may choose

σe = 2.
(b) ε = −1 and σe ≥ σ0 > 0 for σ0 large enough.
Lemma 2.6. Assuming Hypothesis A, there exists a positive constant C0 such

that

C0‖v‖2
X ≤ a(v,v) ∀v ∈Xh : ∇ · v = 0 a.e. in Ω2.

Proof. Let v ∈ Xh. Then v = (v1,v2) with vi ∈ Xi
h, i = 1, 2. Using (2.13) and

(2.15),

a(v,v) = 2µ
∑
E∈E1

h

∫
E

D(v1) : D(v1)+
∑

e∈Γ1
h
∪Γ1

σe
|e|
∫
e

[v1]
2

− 2(1− ε)µ
∑

e∈Γ1
h
∪Γ1

∫
e

{D(v1)}ne · [v1]+
µ

G

∑
e∈Γ12

∫
e

(v1 ·τ 12)
2+

∫
Ω2

K−1v2 ·v2.

Using Korn’s inequality (2.37) and the bound on K (2.7) gives

a(v,v) ≥ Cµ|||∇v|||20,Ω1
+ C

∑
e∈Γ1

h
∪Γ1

σe − 1

|e|
∫
e

[v1]
2

− 2(1− ε)µ
∑

e∈Γ1
h
∪Γ1

∫
e

{D(v1)}ne · [v1] +
µ

G

∑
e∈Γ12

∫
e

(v1 · τ 12)
2 +

1

κ1
‖v2‖2

0,Ω2
.

If ε = 1, then the result is straightforward. If ε = −1, we have from trace inequality
(2.36)

2(1 − ε)µ
∑

e∈Γ1
h
∪Γ1

∫
e

{D(v1)}ne · [v1] ≤ 4µ
∑

e∈Γ1
h
∪Γ1

h
−1/2
1 ‖∇v1‖0,Ee

( |e|
|e|
)1/2

‖[v1]‖0,e

≤ C

2
µ|||∇v1|||20,Ω1

+ C̃
∑

e∈Γ1
h
∪Γ1

1

|e|
∫
e

[v1]
2.

Thus, we obtain if ε = −1,

a(v1,v1) ≥ 3

4
µ|||∇v1|||20,Ω1

+
∑

e∈Γ1
h
∪Γ1

C(σe − 1) − C̃

|e|
∫
e

[v1]
2

+
µ

G

∑
e∈Γ12

∫
e

(v1 · τ 12)
2 +

1

κ1
‖v2‖2

0,Ω2
≥ C0(‖v1‖2

X1 + ‖v2‖2
0,Ω2

)

with C0 positive constant, assuming that σe is large enough:

(C(σe − 1) − C̃ ≥ C0 > 0).

We are now ready to prove that the discrete scheme (2.38)–(2.39) is solvable.
Lemma 2.7. If Hypothesis A holds, then there exists a unique solution to the

problem (2.38)–(2.39).
Proof. Since the problem (2.38)–(2.39) is finite dimensional, it suffices to show

that the solution is unique. Set fi = 0 and choose v = U and q = P . Then

a(U ,U) = 0.
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In addition,

b(U , q) = 0 ∀q ∈Mh,

which implies that ∇·U = 0 in Ω2, since ∇·X2
h = M2

h . Therefore Lemma 2.6 directly
implies that U = 0. Thus, the pressure satisfies

b(v, P ) = 0 ∀v ∈ V h.

The inf-sup condition (3.1) proved below implies that P = 0.

3. A discrete inf-sup condition. In this section, a discrete inf-sup condition
is proved.

Theorem 3.1. There exists a positive constant β such that

inf
qh∈Mh

sup
vh∈V h

b(vh, qh)

‖vh‖X‖qh‖M ≥ β.(3.1)

Proof. Let qh ∈Mh be given. Then there exists [20, 21] v ∈ (H1(Ω))d such that

∇ · v = −qh in Ω, v = 0 on ∂Ω,

satisfying

‖v‖1,Ω ≤ C‖qh‖0,Ω.

Note that

b(v, qh) = −
∫

Ω

(∇ · v)qh = ‖qh‖2
M ,

which, together with the above a priori bound, implies

b(v, qh) ≥ 1

C
‖v‖1,Ω‖qh‖M .

Next, we need to construct an operator πh : X1 × (X2 ∩ (H1(Ω2))
d) → V h

satisfying

b(πhv − v, qh) = 0 ∀qh ∈Mh, and ‖πhv‖X ≤ C‖v‖1,Ω.(3.2)

Let πhv = (π1
hv, π

2
hv) ∈ X1

h ×X2
h. We take π1

hv = Π1
hv1 where Π1

h : X1 → X1
h is

the quasi-local interpolant defined in (2.21). Clearly, due to (2.27),

‖π1
hv‖X1 ≤ C‖v‖1,Ω1

.(3.3)

To define π2
hv, consider the auxiliary problem

∇ · ∇ϕ = 0 in Ω2,(3.4)

∇ϕ · n = 0 on Γ2,(3.5)

∇ϕ · n12 = (π1
hv − v) · n12 on Γ12.(3.6)

The problem is well posed, since∫
Γ12

(π1
hv − v) · n12 = 0,
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due to (2.25). Let z = ∇ϕ. We note that the piecewise smooth function π1
hv · n12 ∈

Hθ(Γ12) for any 0 < θ < 1/2. By elliptic regularity [26],

‖z‖θ,Ω2
≤ C‖(π1

hv − v) · n12‖θ−1/2,Γ12
, 0 ≤ θ ≤ 1/2.(3.7)

Let w = v + z. Clearly ∇ · w = ∇ · v in Ω2 and w · n12 = π1
hv · n12 on Γ12. We

now define π2
hv := Π2

hw, where Π2
h : X2 ∩ (Hθ(Ω2))

d →X2
h is the MFE interpolant

defined in (2.29). Note that, using (2.29),

b2(π
2
hv, qh) = b2(Π

2
hw, qh) = b2(w, qh)

= −
∫

Ω2

(∇ ·w)qh = −
∫

Ω2

(∇ · v)qh = b2(v, qh) ∀qh ∈M2
h ,

thus the so-constructed πhv = (π1
hv, π

2
hv) satisfies

b(πhv − v, qh) = 0 ∀qh ∈Mh.

It is easy to see that πhv ∈ V h. Indeed, for every e ∈ Γ12
h and η ∈ Λh, using (2.30)

and the fact that Λh = X2
h · n12,∫

e

π2
hv · n12η =

∫
e

Π2
hw · n12η =

∫
e

w · n12η =

∫
e

π1
hv · n12η.

It remains to show the bound in (3.2). Using (2.31), (2.32), and (3.7),

‖π2
hv‖X2 = ‖Π2

hw‖X2

≤ ‖Π2
hv‖X2 + ‖Π2

hz‖X2

≤ C(‖v‖1,Ω2
+ ‖z‖θ,Ω2

)

≤ C(‖v‖1,Ω1 + ‖(π1
hv − v) · n‖Γ12)

The last term can be bounded as follows. For every e ∈ Γ12, and edge (face) of
E ∈ E1

h, using (2.34) and (2.24),

‖(π1
hv − v) · n12‖e ≤ C(h

−1/2
E ‖π1

hv − v‖0,E + h
1/2
E |π1

hv − v|1,E) ≤ Ch
1/2
E |v|1,δ(E).

(3.8)

Therefore

‖π2
hv‖X2 ≤ C‖v‖1,Ω,

which, combined with (3.3), implies the bound in (3.2). Now using (3.2),

1

C
‖qh‖M ≤ b(v, qh)

‖v‖1,Ω
=
b(πhv, qh)

‖v‖1,Ω
≤ b(πhv, qh)

1
C ‖πhv‖X

∀qh ∈Mh,

which proves (3.1).

4. A priori error estimates. In this section, optimal error estimates in the
energy norm are obtained for the velocity field. Also, optimal error estimates in the
L2 norm of the error for the pressure are obtained. We start with an approximation
result for the weakly normal-continuous velocity space V h.
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Lemma 4.1. For v ∈ (H1(Ω))d such that v|Ω1
∈ (Hk1+1(Ω1))

d, v|Ω2
∈ (Hk2+1(Ω2))

d,
and ∇ · v|Ω2 ∈ (H l2+1(Ω2))

d, there exists ṽ ∈ V h such that

b(v − ṽ, q) = 0 ∀q ∈Mh,(4.1)

∀e ∈ Γ1
h ∪ Γ1,

∫
e

[ṽ] · q = 0 ∀q ∈ (Pk1−1(e))
d,(4.2)

‖v − ṽ‖X ≤ C{hk11 |v|k1+1,Ω1 + hk2+1
2 |v|k2+1,Ω2

+ hl2+1
2 |∇ · v|l2+1,Ω2}.(4.3)

Proof. We will show that the interpolant πhv constructed in Theorem 3.1 satisfies
the above conditions. Indeed, (4.1) and (4.2) follow directly from the construction of
πhv. To show (4.3), we first note that (2.26) implies that

‖v − πhv‖X1 ≤ Chk11 |v|k1+1,Ω1 .(4.4)

Next,

‖v − πhv‖X2 = ‖v − Π2
hw‖X2 ≤ ‖v − Π2

hv‖X2 + ‖Π2
h(w − v)‖X2 .(4.5)

For the first term on the right in (4.5), using (2.31) and (2.32),

‖v − Π2
hv‖X2 ≤ Chk2+1

2 |v|k2+1,Ω2 + hl2+1
2 |∇ · v|l2+1,Ω2 .(4.6)

The last term in (4.5) can be bounded as follows, using (2.33), (3.7), (3.8), and (2.24):

‖Π2
h(w − v)‖X2 = ‖Π2

hz‖X2 ≤ ‖z‖θ,Ω2
(4.7)

≤ C‖(π1
hv − v) · n12‖0,Γ12 ≤ Ch

k1+1/2
1 |v|k1+1,Ω1 .

A combination of (4.4)–(4.7) completes the proof.

Theorem 4.2. Let (u, p) ∈X ×M be the solution of the coupled problem (2.1)–
(2.10). Assume that u|Ωi

∈ Hki+1(Ωi) for i = 1, 2. Assume that p|Ω1
∈ Hk1(Ω1) and

that p|Ω2
∈ H l2+1(Ω2). Assume that Hypothesis A holds. Let (U , P ) be the discrete

solution of (2.38)–(2.39) Then, the following estimate holds:

‖u−U‖X ≤ Chk11 (|u|k1+1,Ω1 + |p|k1,Ω1) + Chk2+1
2 |u|k2+1,Ω2

+C(hl2+1
2 + h

l2+1/2
2 h

1/2
1 )|p|l2+1,Ω2 .

Proof. Let ũ be the interpolant of u defined in Lemma 4.1 and let p̃ be the
interpolant of p, satisfying (2.17)–(2.20). From (2.40), (2.41), and (2.38)–(2.39), the
error equation is

a(U − ũ,v) + b(v, P − p̃) = a(u− ũ,v) + b(v, p− p̃)
(4.8)

−
∑
e∈Γ12

∫
e

p2(v1 − v2) · n12 ∀v ∈ V h,

b(U − ũ, q) = b(u− ũ, q) ∀q ∈Mh.(4.9)
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Note that (4.1) implies that b(U − ũ, q) = 0 for all q ∈Mh, which implies that

∇ · (U − ũ) = 0 in Ω2,

since ∇ ·X2
h = M2

h . Define χ = U − ũ and ξ = P − p̃. Choose v = χ and q = ξ.
Then,

a(χ,χ) + b(χ, ξ) = a(u− ũ,χ) + b(χ, p− p̃) −
∑
e∈Γ12

∫
e

p2(χ1 − χ2) · n12,

b(χ, ξ) = 0.

Equivalently,

a(χ,χ) = a(u− ũ,χ) + b(χ, p− p̃) −
∑
e∈Γ12

∫
e

p2(χ1 − χ2) · n12.(4.10)

The first term on the right can be estimated as follows:

a1(u− ũ,χ) = 2µ
∑
E∈E1

h

∫
E

D(u− ũ) : D(χ)

− 2µ
∑

e∈Γ1
h
∪Γ1

∫
e

{D(u− ũ)}ne · [χ] + 2µε
∑

e∈Γ1
h
∪Γ1

∫
e

{D(χ)}ne · [u− ũ]

+
∑

e∈Γ1
h
∪Γ1

σe
|e|
∫
e

[u− ũ] · [χ] +
µ

G

∑
e∈Γ12

∫
e

(u− ũ) · τ 12χ · τ 12

= T1 + · · · + T5.

Using Cauchy–Schwarz inequality, and the approximation result (4.3), we have

T1 ≤ 2µ
∑
E∈E1

h

‖∇(u− ũ)‖0,E‖∇χ‖0,E ≤ 1

8
|||∇χ|||20,Ω1

+ C|||∇(u− ũ)|||20,Ω1

≤ 1

8
|||∇χ|||20,Ω1

+ Ch2k1
1 |u|2k1+1,Ω1

.

Let Lh(u) denote the standard Lagrange interpolant of degree k1 defined in Ω1 and
let us insert it in the second integral term. Note that Lh(u) satisfies the optimal error
estimates

|Lh(u) − u|m,E ≤ Chs−mE |u|s,E ∀2 ≤ s ≤ k1 + 1, m = 0, 1, 2.(4.11)

For e a segment of Γ1
h ∪ Γ1, we have∫

e

{D(u− ũ)}ne · [χ] =

∫
e

{D(u− Lh(u))}ne · [χ] +

∫
e

{D(Lh(u) − ũ)}ne · [χ].

Expanding the first integral, we obtain from the trace inequality (2.35) and from the
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fact that the Lagrange interpolant satisfies (4.11)∑
e∈Γ1

h
∪Γ1

∫
e

{D(u− Lh(u))}ne · [χ]

≤
∑

e∈Γ1
h
∪Γ1

σ
1/2
e

|e|1/2 ‖[χ]‖0,e
|e|1/2
σ

1/2
e

‖{D(u− Lh(u))}ne‖0.e

≤ 1

8

∑
e∈Γ1

h
∪Γ1

σe
|e| ‖[χ]‖2

0,e+C
∑

e∈Γ1
h
∪Γ1

|e|
σe

(h−1
e |u−Lh(u)|21,E12

e
+he|u−Lh(u)|22,E12

e
)

≤ 1

8

∑
e∈Γ1

h
∪Γ1

σe
|e| ‖[χ]‖2

0,e + Ch2k1
1 |u|2k1+1,Ω1

.

Similarly, using the trace inequality (2.36), triangle inequality, and (4.3)∑
e∈Γ1

h
∪Γ1

∫
e

{D(Lh(u) − ũ)}ne · [χ] ≤ 1

8

∑
e∈Γ1

h
∪Γ1

σe
|e| ‖[χ]‖2

0,e

+C
∑

e∈Γ1
h
∪Γ1

|ũ− Lh(u)|21,E12
e

≤ 1

8

∑
e∈Γ1

h
∪Γ1

σe
|e| ‖[χ]‖2

0,e + Ch2k1
1 |u|2k1+1,Ω1

.

Therefore,

T2 ≤ 1

4

∑
e∈Γ1

h
∪Γ1

σe
|e| ‖[χ]‖2

0,e + Ch2k1
1 |u|2k1+1,Ω1

.

The third term vanishes because of the continuity of u and property (4.2) of ũ:

T3 = 0.(4.12)

Using Cauchy–Schwarz inequality, the jump term is bounded by virtue of (2.24) and
(2.34):

T4 ≤ 1

8

∑
e∈Γ1

h
∪Γ1

σe
|e| ‖[χ]‖2

0,e + C
∑

e∈Γ1
h
∪Γ1

σe
|e| ‖[u− ũ]‖2

0,e

≤ 1

8

∑
e∈Γ1

h
∪Γ1

σe
|e| ‖[χ]‖2

0,e + Ch2k1
1 |u|2k+1,Ω1

.

The last term is bounded as follows, from the trace inequality (2.34):

T5 ≤ µ

G

∑
e∈Γ12

‖u− ũ‖0,e‖χ · τ 12‖0,e

≤ µ

2G

∑
e∈Γ12

‖χ · τ 12‖2
0,e + C

∑
e∈Γ1

(h−1
e ‖u− ũ‖2

0,E + he|u− ũ|21,E)

≤ µ

2G

∑
e∈Γ12

‖χ · τ 12‖2
0,e + Ch2k1

1 |u|2k1+1,Ω1
.
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Let us now estimate a2(u− ũ,χ), using the result (4.3),

a2(u− ũ,χ) =

∫
Ω2

K−1(u− ũ) · χ ≤ 1

8
‖K−1/2χ‖2

0,Ω2
+ h2k2+2

2 |u|2k2+1,Ω2
.

Let us now estimate b1(χ, p − p̃). By property (2.17), (2.19), and the trace estimate
(2.34),

b1(χ, p− p̃) = −
∑
E∈Eh

∫
E

(p− p̃)∇ · χ+
∑

e∈Γ1
h
∪Γ1

∫
e

{p− p̃}[χ] · ne

=
∑

e∈Γ1
h
∪Γ1

∫
e

{p− p̃}[χ] · ne

≤ 1

8

∑
e∈Γ1

h
∪Γ1

σe
|e|
∫
e

[χ]2 + Ch2k1
1 |p|2k1,Ω1

.

Now estimate b2(χ, p− p̃) using Cauchy–Schwarz inequality and approximation result
(2.20)

b2(χ, p− p̃) = −
∫

Ω2

(p− p̃)∇ · χ ≤ 1

8
|||∇χ|||20,Ω2

+ Ch2l2+2
2 |p|2l2+1,Ω2

It remains to bound the last term in (4.10). Since χ belongs to V h, we have∑
e∈Γ12

∫
e

p2(χ1 − χ2) · n12 =
∑
e∈Γ12

∫
e

(p2 − p̃e2)(χ1 − χ2) · n12,

where p̃e2 ∈ Λh is the L2 projection of p2 with respect to the L2 inner product on the
edge e. Therefore, by definition of the projection and since Λh = X2

h · n12, we have∑
e∈Γ12

∫
e

(p2 − p̃e2)χ2 · n12 = 0.

We also note that for any edge e and any constant vector ce, we have∑
e∈Γ12

∫
e

(p2 − p̃e2)χ1 · n12 =
∑
e∈Γ12

∫
e

(p2 − p̃e2)(χ1 − ce) · n12

≤
∑
e∈Γ12

‖p2 − p̃e2‖0,e‖χ1 − ce‖0,e.

Assume that each edge e of Γ12 is shared by the element E2
e ∈ E2

h and parts of the
elements E1

e,i ∈ E1
h, i = 1, ne. Then, from the approximation properties and the trace

inequality (2.34), we obtain∫
e

(p2−p̃e2)χ1 ·n12 ≤ Ch
l2+1/2
2 ‖p2‖l2+1,E2

e

ne∑
i=1

(h
−1/2
1 ‖χ1−ce‖0,E1

e,i
+h

1/2
1 ‖∇χ1‖0,E1

e,i
),

thus ∑
e∈Γ12

∫
e

(p2 − p̃e2)χ1 · n12 ≤ C
∑
e∈Γ12

h
l2+1/2
2 |p2|l2+1,E2

e

ne∑
i=1

h
1/2
1 ‖∇χ1‖0,E1

e,i

≤ 1

8
|||∇χ|||20,Ω1

+ Ch2l2+1
2 h1|p2|2l2+1,Ω2

.
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Combining all bounds above yields

a(χ,χ) ≤ 1

4
|||∇χ|||20,Ω1

+
3

4

∑
e∈Γ1

h
∪Γ1

σe
|e| ‖[χ]‖2

0,e +
µ

2G

∑
e∈Γ12

‖χ · τ 12‖2
0,e

+
1

4
‖K−1/2χ‖2

0,Ω2
+ Ch2k2+2

2 |u|k2+1,Ω2 + C(h2l2+2
2 + h2l2+1

2 h1)|p|2l2+1,Ω2

+Ch2k1
2 |u|2k1+1,Ω1

+ Ch2k1
1 |p|2k1,Ω1

.

Equivalently,

a(χ,χ) ≤ Ch2k2+2
2 |u|2k2+1,Ω2

+ C(h2l2+2
2 + h2l2+1

2 h1)|p|2l2+1,Ω2

+Ch2k1
1 (|u|2k1+1,Ω1

+ |p|2k1,Ω1
).

Now, since ∇ · χ = 0 in Ω2, the coercivity Lemma 2.6 implies

‖u−U‖X ≤ ‖u− ũ‖X + ‖U − ũ‖X
≤ ‖u− ũ‖X +

1√
C0

a(χ,χ)1/2

which concludes the proof, using (4.3).
Theorem 4.3. Under the assumptions and notation of Theorem 4.2, we have

‖p− P‖0,Ω ≤ Chk11 (|u|k1+1,Ω1 + |p|k1,Ω1) + Chk2+1
2 |u|k2+1,Ω2

+C(hl2+1
2 + h

l2+1/2
2 h

1/2
1 )|p|l2+1,Ω2 ,

where C is a constant independent of h1, h2.
Proof. The error equation (4.8) can be written as

∀v ∈V h, a(U −u,v) + b(v, P − p̃) = b(v, p− p̃)−
∑
e∈Γ12

∫
e

p2(v1 − v2) ·n12.(4.13)

From the discrete inf-sup condition (3.1),

‖P − p̃‖0,Ω ≤ 1

β
sup
vh∈V h

b(vh, P − p̃)

‖vh‖X .(4.14)

Using (4.13), for any vh ∈ V h,

b(vh, P − p̃) = −a(U − u,vh) + b(vh, p− p̃) −
∑
e∈Γ12

∫
e

p2(vh1 − vh2) · n12.

For the first term on the right,

a(U−u,vh)= 2µ
∑
E∈E1

h

∫
E

D(U −u) : D(vh)+
∑

e∈Γ1
h
∪Γ1

σe
|e|
∫
e

[U −u] · [vh]

− 2µ
∑

e∈Γ1
h
∪Γ1

∫
e

{D(U−u)ne} · [vh]+2µε
∑

e∈Γ1
h
∪Γ1

∫
e

{D(vh)ne} · [U −u]

+
µ

G

∑
e∈Γ12

∫
e

(U −u) ·τ 12vh ·τ 12 +

∫
Ω2

K−1(U −u) · vh

= Q1 + · · · +Q6.
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We now bound each Qi term. From Cauchy–Schwarz inequality, the terms Q1, Q2,
Q5, and Q6 are easily bounded

Q1 +Q2 +Q5 +Q6 ≤ C‖vh‖X‖U − u‖X .
We now bound Q3,

Q3 ≤ C
∑

e∈Γ1
h
∪Γ1

( |e|
σe

)1/2

‖∇(U − u)‖0,e

(
σe
|e|
)1/2

‖[vh]‖0,e

≤ C‖vh‖X
⎛⎝ ∑
e∈Γ1

h
∪Γ1

(h1‖∇(U − ũ)‖2
0,e + h1‖∇(u− ũ)‖2

0,e)

⎞⎠1/2

≤ C‖vh‖X(‖U − ũ‖2
X + Ch2k1

1 |u|2k1+1,Ω1
)1/2.

Now, Q4 is bounded similarly, from trace inequality (2.36),

Q4 ≤ C
∑

e∈Γ1
h
∪Γ1

‖{D(vh)ne}‖0,e‖[U − u]‖0,e

≤ C
∑

e∈Γ1
h
∪Γ1

h−1/2‖∇vh‖0,E12
e

(
σe
|e|
)1/2−1/2

‖[U − u]‖0,e

≤ C‖vh‖X‖U − u‖X .
Let us now estimate b(vh, p− p̃). From the property (2.17), it is reduced to

b(vh, p− p̃) =
∑

e∈Γ1
h
∪Γ1

∫
e

{p− p̃}[vh] · ne

≤
∑

e∈Γ1
h
∪Γ1

(
σe
|e|
)1/2

‖[vh]‖0,e

( |e|
σe

)1/2

‖{p− p̃}‖0,e

≤ ‖vh‖XChk11 |p|k1,Ω1 .

Finally, following the same approach as in the proof of Theorem 4.2, we bound the
interface integral∑

e∈Γ12

∫
e

p2(vh1 − vh2) · n12 =
∑
e∈Γ12

∫
e

(p2 − p̃e2)vh1 · n12

≤ C‖vh‖Xhl2+1/2
2 h

1/2
1 |p2|l2+1,Ω2 .

Combining all the bounds with (4.14) yields

‖P − p̃‖0,Ω ≤ C
(
‖U − u‖X + hk11 (|u|k1+1,Ω1

+ |p|k1,Ω1
) + h

l2+1/2
2 h

1/2
1 ‖p‖l2+1,Ω2

)
.

Using Theorem 4.2 concludes the proof.
Remark 4.4. The results proven in this section are valid and unchanged in three-

dimensional domains, assuming there exist interpolants Π1
h and Π2

h defined in (2.21)
and (2.29). The existence of Π1

h for k = 1 in three dimensions is given in [13]. The
existence of Π2

h in any dimension is a well-known fact [10].
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5. Implementation issues and conclusions. In this paper, the convergence
of a numerical scheme for solving the coupled Darcy–Stokes problem is proved. In
order to parallelize the implementation of the scheme, a Lagrange multiplier λ ∈ Λh
approximating p2 on Γ12 can be introduced. We recall the definition of Λh = X2

h ·n12

given in section 2. Defining the bilinear form on the interface,

Λ(η,v) =
∑
e∈Γ12

∫
e

η(v1 − v2) · n12 ∀η ∈ Λh, ∀v ∈Xh,

the scheme can be rewritten as: Find (U , P, λ) ∈Xh×Mh×Λh such that U i = U |Ωi

and Pi = P |Ωi
satisfy

a1(U1,v1) + b1(v1, P1) + Λ(λ,v1) =

∫
Ω1

f1 · v1 ∀v1 ∈X1
h,(5.1)

b1(U1, q1) = 0 ∀q1 ∈M1
h ,(5.2)

a2(U2,v2) + b2(v2, P2) − Λ(λ,v2) = 0 ∀v2 ∈X2
h,(5.3)

b2(U2, q2) =

∫
Ω2

f2q2 ∀q2 ∈M2
h ,(5.4)

Λ(η,U) = 0 ∀η ∈ Λh.(5.5)

It can easily be shown that the two discrete formulations are equivalent. Formulation
(5.1)–(5.5) is suitable for a parallel implementation. In particular, using an approach
from [23], a nonoverlapping domain decomposition algorithm can be formulated that
reduces the coupled system to a symmetric and positive definite interface problem for
λ. In addition to its parallel efficiency, this approach allows for existing codes solving
the Stokes or the Darcy equations to be utilized.
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Abstract. A class of nonoscillatory numerical methods for solving nonlinear scalar conservation
laws in one space dimension is considered. This class of methods contains the classical Lax–Friedrichs
and the second-order Nessyahu–Tadmor schemes. In the case of linear flux, new l2 stability results
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1. Introduction. We are interested in the scalar hyperbolic conservation law{
ut + f(u)x = 0, (x, t) ∈ R × (0,∞),
u(x, 0) = u0(x), x ∈ R,

(1.1)

where f is a given flux function. In recent years, there has been enormous activity
in the development of the mathematical theory and in the construction of numerical
methods for (1.1). Even though the existence-uniqueness theory of weak solutions is
complete [12], there are many numerically efficient methods for which the questions of
convergence and error estimates are still open. For example, there are many nonoscil-
latory schemes based on the minmod limiter which are numerically robust, at least in
many numerical tests, but theoretical results about convergence and error estimates
are still missing [3, 6, 7, 18].

In this paper, we consider a class of the so-called Godunov-type schemes for solv-
ing (1.1). There are two main steps in such schemes: evolution and projection. In the
original Godunov scheme, the projection is onto piecewise constant functions—the
cell averages. In the general Godunov-type method, the projection is onto piece-
wise polynomials. To determine the properties of these schemes it is necessary to
study the properties of the projection operator. We limit our attention to the case of
piecewise linear projection based on cell averages using minmod limiters for the slope
reconstruction, and we call such a scheme minmod-type. For example, the Nessyahu–
Tadmor scheme [15] is of minmod-type and is based on staggered evolution; other
examples include the second-order nonoscillatory central schemes with nonstaggered
grids given in [8, 9], and the UNO and TVD2 schemes in [6]. Theoretical results about
convergence of such schemes to the entropy solution, or error estimates, are still miss-
ing. In most cases the authors give a variation bound for such a scheme, which is
enough to conclude that the method converges to a weak solution; see [10]. The only
paper which has a convergence result is the paper of Nessyahu and Tadmor [15] in
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which the authors prove a single cell entropy inequality for a minor modification of
the original minmod scheme. A single entropy inequality is enough to conclude that
the scheme is convergent to the unique entropy solution but does not give any rate of
convergence. In order to get a rate, one has to have a family of entropy inequalities
(see [1, 2, 11, 14]). Alternatively, for a convex flux, one can impose Lip+ stability on
the projection and then prove convergence via Tadmor’s Lip′ theory [16, 19]. Unfor-
tunately, it is well known that minmod-type schemes are incompatible with the Lip+
condition—the Lip+ seminorm is not preserved by a minmod-type projection. It is
easy to think about minmod-type schemes in terms of new/old cell averages. That
is, we start with a sequence of cell averages {wj}, and after one time step (projection
and evolution) we get a new sequence {w′

j}. A scheme is total variation diminishing
(TVD) if the variation of the new sequence

∑
j |w′

j − w′
j−1| is not bigger than the

variation of the old one
∑
j |wj − wj−1|, i.e., the l1 norm of the jumps does not in-

crease in time. In the Lip+ case (for convex flux) the condition on the jumps is that
the biggest nonnegative jump does not increase in time:

sup
j

(w′
j − w′

j−1)+ ≤ sup
j

(wj − wj−1)+.

In section 3 of this paper, we prove that for linear flux the l2 norm of the jumps for
some minmod-type schemes does not increase in time. This class of schemes include
the NT scheme and the TVD2 scheme considered in [6]. Based on that, we use the
dual approach (see [16, 19]) to derive a new error estimate in L2 in section 4. The
rate of convergence that we prove is 1/2 in L2, which improves the known result of
1/4 (see [19]). In section 5, we present numerical examples in the case of linear and
convex flux and discuss the nonconvex case. Our numerical tests show that for convex
flux the minmod schemes preserve the one-sided analogue∑

j

(w′
j − w′

j−1)
2
+ ≤

∑
j

(wj − wj−1)
2
+,

which suggests a different approach to proving convergence and error estimates for
such schemes in the convex case. The l2 norm of the jumps is a natural candidate
norm for the analysis of high-order schemes, such as central or ENO [7] type, due to
its numerical viscosity. We view the results of this paper as a step toward obtaining
convergence results and estimates for the rate of convergence of minmod-type schemes
for solving (1.1) in the case of convex nonlinear flux.

2. Nonoscillatory central schemes. In this section, we are concerned with
nonoscillatory central differencing approximations to the scalar conservation law

ut + f(u)x = 0.(2.1)

The prototypes of all central schemes are the staggered form of the Lax–Friedrichs
(LxF) scheme and its second-order extension, the Nessyahu–Tadmor (NT) scheme [15].
For an introduction to central schemes, see [8, 9, 13, 15]. For simplicity, we limit our
attention to the staggered NT scheme described below. Let v(x, t) be an approximate
solution to (2.1), and assume that the space mesh ∆x and the time mesh ∆t are
uniform. Let xj := j∆x, j ∈ Z, λ := ∆t

∆x , and

vj(t) :=
1

∆x

∫ xj+1/2

xj−1/2

v(x, t) dx(2.2)
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be the average of v at time t over (xj−1/2, xj+1/2). Let us assume that v(·, t) is a
piecewise linear function, and that it is linear on the intervals (xj−1/2, xj+1/2), j ∈ Z,
of the form

v(x, t) = Lj(x, t) := vj(t) + (x− xj)
1

∆x
v′j , xj−1/2 < x < xj+1/2,(2.3)

where 1
∆xv

′
j is the numerical derivative of v, which is yet to be determined. Integration

of (2.1) over the staggered space-time cell (xj , xj+1) × (t, t+ ∆t) yields

vj+1/2(t+ ∆t) =
1

∆x

(∫ xj+1/2

xj

Lj(x, t) dx+

∫ xj+1

xj+1/2

Lj+1(x, t) dx

)
(2.4)

− 1

∆x

(∫ t+∆t

t

f(v(xj+1, τ)) dτ −
∫ t+∆t

t

f(v(xj , τ)) dτ

)
.

The first two integrals on the right-hand side of (2.4) can be evaluated exactly. More-
over, if the CFL condition

λ max
xj≤x≤xj+1

|f ′(v(x, t))| ≤ 1

2
, j ∈ Z,(2.5)

is met, then the last two integrants on the right of (2.4) are smooth functions of τ .
Hence, they can be integrated approximately by the midpoint rule with third-order
local truncation error. Note that, in the case of zero slopes 1

∆xv
′
j and 1

∆xv
′
j+1, the time

integration is exact for any flux f , and even for nonzero slopes the time integration
can be exact for a low degree polynomial flux. Thus, following [15], we arrive at

vj+1/2(t+ ∆t) =
1

2
(vj(t) + vj+1(t)) +

1

8
(v′j − v′j+1)(2.6)

− λ

(
f

(
v

(
xj+1, t+

∆t

2

))
− f

(
v

(
xj , t+

∆t

2

)))
.

By Taylor expansion and the conservation law (2.1), we obtain

v

(
xj , t+

∆t

2

)
= vj(t) − 1

2
λf ′j ,(2.7)

where 1
∆xf

′
j stand for an approximate numerical derivative of the flux f(v(x = xj , t)).

The following choices are widely used as approximations of the numerical derivatives
(we drop t to simplify the notation):

v′j = m(vj+1 − vj , vj − vj−1),(2.8)

f ′j = m(f(vj+1) − f(vj), f(vj) − f(vj−1)),

where m(a, b) stands for the minmod limiter

m(a, b) ≡ MinMod(a, b) :=
1

2
(sgn(a) + sgn(b)) · min(|a|, |b|)(2.9)

with the usual generalization

m(E) :=

⎧⎨⎩
inf (E) if E ⊂ R+,
sup(E) if E ⊂ R−,
0 otherwise.

(2.10)
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A generalization of this numerical approximation is based the so-called minmod-θ
limiters

v′j = m

(
θ(vj+1 − vj),

1

2
(vj+1 − vj−1), θ(vj − vj−1)

)
,(2.11)

f ′j = m

(
θ(f(vj+1) − f(vj)),

1

2
(f(vj+1) − f(vj−1)), θ(f(vj) − f(vj−1))

)
.

Given the approximate slopes and flux derivatives (2.11), we have a family of central
schemes in the predictor-corrector form

v

(
xj , t+

∆t

2

)
= vj(t) − 1

2
λf ′j ,

vj+1/2(t+ ∆t) =
1

2
(vj(t) + vj+1(t)) +

1

8
(v′j − v′j+1)(2.12)

− λ

(
f

(
v

(
xj+1, t+

∆t

2

))
− f

(
v

(
xj , t+

∆t

2

)))
,

where we start with vj(0) := 1
∆x

∫ xj+1/2

xj−1/2
u0(x) dx. Note that we alternate between two

uniform partitions of the real line: all intervals with integer end points for t = 2k∆t,
k ∈ Z, and half integers for t = (2k + 1)∆t, k ∈ Z. As a special case, we recover the
staggered LxF scheme for θ = 0 and the basic minmod scheme for θ = 1 (the middle
slope in the minmod limiter (2.11) drops if θ ≤ 1).

3. l2 stability for linear flux. In this section we will prove that the central
scheme given in (2.12) is l2 stable for any θ in the interval [0, 1]. Based on this stability
we will also derive a new error estimate in L2 instead of the usual L1 estimates in the
conservation laws. Note that even for linear flux f , the minmod-type schemes are not
linear and the only global property known is that the total variation does not increase
in time under an appropriate CFL condition; see [15]. The class of minmod-type
schemes is also not Lip+ stable except for the obvious choice θ = 0. Let us consider a
linear flux f(u) = au, uniform time steps tn = n∆t, and restrict the minmod limiter
to θ ≤ 1. We denote vnj := vj(tn), δ

n
j := vnj − vnj−1. The minmod scheme (2.12)

reduces to

vn+1
j+1/2 =

1

2
(vnj + vnj+1) +

θ

8

(
m(δnj , δ

n
j+1) − m(δnj+1, δ

n
j+2)

)
(3.1)

− a∆t

∆x

(
vnj+1 −

a∆t

2∆x
θm(δnj+1, δ

n
j+2) − vnj +

a∆t

2∆x
θm(δnj , δ

n
j+1)

)
.

Hence, we have an explicit formula for the new cell averages (at time tn+1) on a stag-
gered grid in terms of the old ones (at time tn) on a regular grid. In order to simplify
the notation, we drop the time dependence and denote wj := vnj , w′

j+1 := vn+1
j+1/2,

δ′j := w′
j −w′

j−1, α := 1
2 + a∆t

∆x , and β := 1
2α(1− α). With this notation, we have the

following relation between the sequence of the new averages {w′
j} and the old ones

{wj}:
w′
j = αwj−1 + (1 − α)wj + θβ (m(δj−1, δj) − m(δj , δj+1)) .(3.2)

Using that δj = wj − wj−1, we derive the formula for the sequence of new jumps in
terms of the old ones:

δ′j = αδj−1 + (1 − α)δj − θβm(δj−2, δj−1) + 2θβm(δj−1, δj) − θβm(δj , δj+1).(3.3)
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The CFL condition (2.5) reduces to 0 ≤ α ≤ 1 because α = 1
2 + a∆t

∆x and |a∆t∆x | ≤ 1
2 .

The main result in this section is the following stability result.
Theorem 3.1. If the initial condition u0 ∈ L1

loc(R), then the l2 norm of the
jumps of the approximate solution v(·, t) is nonincreasing in time. That is,

‖{δ′j}‖l2 ≡ ‖{vn+1
j − vn+1

j−1 }‖l2 ≤ ‖{δj}‖l2 ≡ ‖{vnj − vnj−1}‖l2(3.4)

for all n ≥ 1.
Proof. It is clear that we have to prove the result for one step, assuming that

‖{δj}‖l2 < ∞. We split the proof into two parts. First, we prove the stability for a
monotone sequence {wj}. By symmetry, it is sufficient to consider the case δj ≥ 0
for all j ∈ Z. Then we apply that result locally to derive the l2 stability for a general
sequence.

Theorem 3.2. Let us assume that δj ≥ 0, j ∈ Z, and δ′j are given by (3.3).
Then

‖{δ′j}‖l2 ≤ ‖{δj}‖l2 .(3.5)

Proof. Let us recall that {δj}∞−∞ ∈ l2 and δj ≥ 0 for all j. It is enough to prove
Theorem 3.2 only for 0 < α < 1. Let β1 := θβ; then 0 < β1 ≤ β. We construct the
new sequence {δ′j} by using the rule

δ′j = (1 − α)δj + αδj−1 − β1 min(δj−2, δj−1) + 2β1 min(δj−1, δj) − β1 min(δj , δj+1)
(3.6)

for each j. First we assume that {δj} has finite support. It is easy to see how to
modify the proof in case the support is not finite. Therefore we assume δj = 0 for
j ≤ 3 and for j ≥ N − 3 for some integer N . Then δ′j = 0 for j ≤ 3 and j ≥ N − 2.
Thus it suffices to prove

N∑
j=1

δ2j ≥
N∑
j=1

(δ′j)
2.(3.7)

Let us introduce some notation. Let yj = min(δj , δj+1), ∆δj = δj − δj−1, ∆yj =
yj − yj−1, ∆2δj = δj − 2δj−1 + δj−2, and ∆2yj = yj − 2yj−1 + yj−2. Then (3.6)
becomes

δ′j = ((1 − α)δj + αδj−1) − β1∆
2yj and

N∑
j=1

(δ′j)
2 =

N∑
j=1

(
((1 − α)δj + αδj−1)

2 − 2β1((1 − α)δj + αδj−1)∆
2yj + β2

1(∆2yj)
2
)
.

Note that since δ0 = δ1 = 0 and δN−1 = δN = 0, we have

N∑
j=1

δ2j − ((1 − α)δj + αδj−1)
2 =

N∑
j=1

(1 − (1 − α)2 − α2)δ2j − 2α(1 − α)δjδj−1

= 2β

N∑
j=1

(2δ2j − 2δjδj−1) = 2β

N∑
j=1

(δj − δj−1)
2 = 2β

N∑
j=1

(∆δj)
2.
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Thus we get

N∑
j=1

δ2j −
N∑
j=1

(δ′j)
2 =

N∑
j=1

(
2β(∆δj)

2 + 2β1((1 − α)δj + αδj−1)∆
2yj − β2

1(∆2yj)
2
)
.

(3.8)

To prove Theorem 3.2, we need to prove

N∑
j=1

(
2β(∆δj)

2 + 2β1((1 − α)δj + αδj−1)∆
2yj − β2

1(∆2yj)
2
) ≥ 0.

Note that

N∑
j=1

(
2β(∆δj)

2 + 2β1((1 − α)δj + αδj−1)∆
2yj − β2

1(∆2yj)
2
)

= β1

⎛⎝ N∑
j=1

(
2

(
β

β1

)
(∆δj)

2 + 2((1 − α)δj + αδj−1)∆
2yj − β1(∆

2yj)
2

)⎞⎠
≥ β1

⎛⎝ N∑
j=1

(
2(∆δj)

2 + 2((1 − α)δj + αδj−1)∆
2yj − β(∆2yj)

2
)⎞⎠

=

(
β1

β

) N∑
j=1

(
2β(∆δj)

2 + 2β((1 − α)δj + αδj−1)∆
2yj − β2(∆2yj)

2
)
.

Therefore it is sufficient to prove the theorem in the case β1 = β, which is the worst
case in a certain sense. Now we use ∆2yj = ∆yj − ∆yj−1, ∆yj = 0, δj = 0 for j ≤ 1,
j ≥ N − 1, and Abel’s transform to obtain

N∑
j=1

δj∆
2yj =

N∑
j=1

(δj − δj+1)∆yj and

N∑
j=1

δj−1∆
2yj =

N∑
j=1

(δj−1 − δj)∆yj .

Thus, (3.8) becomes

N∑
j=1

δ2j −
N∑
j=1

(δ′j)
2 = 2β

⎛⎝ N∑
j=1

(∆δj)
2 − (1 − α)

N∑
j=1

∆δj+1∆yj

− α

N∑
j=1

∆δj∆yj − β

2

N∑
j=1

(∆2yj)
2

⎞⎠ .

Recall that yj = min(δj , δj+1), ∆δj = δj−δj−1, ∆yj = yj−yj−1, ∆2δj = δj−2δj−1 +
δj−2, and ∆2yj = yj−2yj−1 +yj−2. To finish the proof of Theorem 3.2, it is sufficient
to prove the following two lemmas.

Lemma 3.3.

N∑
j=1

(∆δj)
2 − (1 − α)

N∑
j=1

∆δj+1∆yj − α

N∑
j=1

∆δj∆yj − β

N∑
j=1

(∆2δj)
2 ≥ 0.
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Lemma 3.4.

2

N∑
j=1

(∆2δj)
2 ≥

N∑
j=1

(∆2yj)
2.

Proof of Lemma 3.3. We consider that
∑
j denotes

∑N
j=1. Define

A =
∑
j

∆δj+1∆yj and B =
∑
j

∆δj∆yj .

Our aim is to prove that∑
j

(∆δj)
2 − (1 − α)A− αB − β

∑
j

(∆2δj)
2 ≥ 0.(3.9)

Let u+ = max(u, 0), u− = min(u, 0). It is easy to check that

∆yj = (∆δj)+ + (∆δj+1)−.(3.10)

We can transform A as follows:

A =
∑
j

∆δj+1((∆δj)+ + (∆δj+1)−)

=
∑
j

∆δj+1(∆δj)+ +
∑
j

∆δj(∆δj)− =
∑

∆δj≤0

(∆δj)
2 +

∑
∆δj≥0

∆δj∆δj+1

=
∑

∆δj≤0

(∆δj)
2 +

∑
∆δj≥0,∆δj+1≤0

∆δj∆δj+1 +D,(3.11)

where D =
∑

∆δj≥0,∆δj+1≥0 ∆δj∆δj+1. Further,

D =
1

2

∑
∆δj≥0,∆δj+1≥0

(
(∆δj)

2 + (∆δj+1)
2 − (∆2δj+1)

2
)

=
1

2

∑
∆δj−1≥0,∆δj≥0

(
(∆δj−1)

2 + (∆δj)
2 − (∆2δj)

2
)

=
1

2

∑
∆δj≥0,∆δj+1≥0

(∆δj)
2 +

1

2

∑
∆δj≥0,∆δj−1≥0

(∆δj)
2 − 1

2

∑
∆δj−1≥0,∆δj≥0

(∆2δj)
2.

By (3.11),

A =
∑
j

(∆δj)
2 − 1

2

∑
∆δj≥0,∆δj+1<0

(∆δj)
2 − 1

2

∑
∆δj≥0,∆δj−1<0

(∆δj)
2

− 1

2

∑
∆δj−1≥0,∆δj≥0

(∆2δj)
2 +

∑
∆δj≥0,∆δj+1≤0

∆δj∆δj+1.(3.12)

Transform B in the same way as A:

B =
∑

∆δj≥0

(∆δj)
2 +

∑
∆δj≥0,∆δj+1≤0

∆δj∆δj+1 + E,(3.13)
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where E =
∑

∆δj≤0,∆δj+1≤0 ∆δj∆δj+1. The quantity E can also be rewritten in the
same way as D:

E =
1

2

∑
∆δj≤0,∆δj+1≤0

(∆δj)
2 +

1

2

∑
∆δj−1≤0,∆δj≤0

(∆δj)
2 − 1

2

∑
∆δj−1≤0,∆δj≤0

(∆2δj)
2.

Combining this equality with (3.13), we get

B =
∑
j

(∆δj)
2 − 1

2

∑
∆δj≤0,∆δj+1>0

(∆δj)
2 − 1

2

∑
∆δj≤0,∆δj−1>0

(∆δj)
2

− 1

2

∑
∆δj−1≤0,∆δj≤0

(∆2δj)
2 +

∑
∆δj+1≤0,∆δj≥0

∆δj∆δj+1.(3.14)

By (3.12) and (3.14),∑
j

(∆δj)
2 − (1 − α)A− αB − β

∑
j

(∆2δj)
2 = F +G+H + I + J +K + L,(3.15)

where

F =
1 − α

2

∑
∆δj≥0,∆δj+1<0

(∆δj)
2, G =

1 − α

2

∑
∆δj≥0,∆δj−1<0

(∆δj)
2,

H =
α

2

∑
∆δj≤0,∆δj+1>0

(∆δj)
2, I =

α

2

∑
∆δj≤0,∆δj−1>0

(∆δj)
2,

J = −
∑

∆δj+1≤0,∆δj≥0

∆δj∆δj+1 +

(
1 − α

2
− β

) ∑
∆δj−1≥0,∆δj≥0

(∆2δj)
2

+

(
α

2
− β

) ∑
∆δj−1≤0,∆δj≤0

(∆2δj)
2,

K = −β
∑

∆δj−1>0,∆δj<0

(∆2δj)
2, and L = −β

∑
∆δj−1<0,∆δj>0

(∆2δj)
2.

We have to prove that F + G + H + I + J + K + L ≥ 0. Among the sums
F,G,H, I, J,K,L, only the two last sums might be negative; we will show that and

F + I +K ≥ 0,(3.16)

G+H + L ≥ 0.(3.17)

Indeed,

1 − α

2
(∆δj−1)

2 +
α

2
(∆δj)

2 − β(∆2δj)
2 =

1 − α

2
(∆δj−1)

2 +
α

2
(∆δj)

2

− (1 − α)α

2
(∆δj − ∆δj−1)

2 =
1

2
((1 − α)∆δj−1 + α∆δj))

2 ≥ 0.

Summing the last inequality over all j with ∆δj−1 > 0, ∆δj < 0, we get (3.16). The
inequality (3.17) can be proved similarly.
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Additionally, we have

J ≥ 0.(3.18)

Finally, plugging (3.16), (3.17), and (3.18) into (3.15), we obtain the required
(3.9). This completes the proof of Lemma 3.3.

Proof of Lemma 3.4. First, recall that ∆2yj = 0 for j ≤ 1 and j ≥ N . Also, from
the proof of Lemma 3.3 we have

∆yj =

⎧⎪⎪⎨⎪⎪⎩
∆δj+1 if ∆δj+1 ≤ 0, ∆δj ≤ 0,
∆δj+1 + ∆δj if ∆δj+1 ≤ 0, ∆δj ≥ 0,
∆δj if ∆δj+1 ≥ 0, ∆δj ≥ 0,
0 if ∆δj+1 ≥ 0, ∆δj ≤ 0.

Similarly,

∆yj−1 =

⎧⎪⎪⎨⎪⎪⎩
∆δj if ∆δj ≤ 0, ∆δj−1 ≤ 0,
∆δj + ∆δj−1 if ∆δj ≤ 0, ∆δj−1 ≥ 0,
∆δj−1 if ∆δj ≥ 0, ∆δj−1 ≥ 0,
0 if ∆δj ≥ 0, ∆δj−1 ≤ 0.

Therefore ∆δj−1, ∆δj , ∆δj+1 and their signs uniquely determine ∆2yj . We have
eight cases depending on what the signs of ∆δj−1, ∆δj , ∆δj+1 are.

• Case I. (+,+,+), that is, ∆δj−1 ≥ 0, ∆δj ≥ 0, ∆δj+1 ≥ 0. Then, ∆yj =
∆δj , ∆yj−1 = ∆δj−1, and so ∆2yj = ∆2δj ; thus, (∆2yj)

2 ≤ (∆2δj)
2 in this

case.
• Case II. (+,+,−), that is, ∆δj−1 ≥ 0, ∆δj ≥ 0, ∆δj+1 < 0. Then, ∆yj =

∆δj+1 + ∆δj , ∆yj−1 = ∆δj−1, and so ∆2yj = ∆δj+1 + ∆δj − ∆δj−1.
• Case III. (+,−,+), that is, ∆δj−1 ≥ 0, ∆δj < 0, ∆δj+1 ≥ 0. Then, ∆yj =

0, ∆yj−1 = ∆δj + ∆δj−1, and so ∆2yj = −∆δj − ∆δj−1. In this case
(∆2yj)

2 − (∆2δj)
2 = 4∆δj∆δj−1 ≤ 0 and (∆2yj)

2 ≤ (∆2δj)
2.

• Case IV. (+,−,−), that is, ∆δj−1 ≥ 0, ∆δj < 0, ∆δj+1 < 0. Then, ∆yj =
∆δj+1, ∆yj−1 = ∆δj + ∆δj−1, and so ∆2yj = ∆δj+1 − ∆δj − ∆δj−1.

• Case V. (−,+,+), that is, ∆δj−1 < 0, ∆δj ≥ 0, ∆δj+1 ≥ 0. Then, ∆yj =
∆δj , ∆yj−1 = 0, and so ∆2yj = ∆δj . In this case 0 ≤ ∆δj < ∆δj − ∆δj−1

and (∆2yj)
2 ≤ (∆2δj)

2.
• Case VI. (−,+,−), that is, ∆δj−1 < 0, ∆δj ≥ 0, ∆δj+1 < 0. Then, ∆yj =

∆δj+1 +∆δj , ∆yj−1 = 0, and so ∆2yj = ∆δj+1 +∆δj . In this case (∆2yj)
2−

(∆2δj+1)
2 = 4∆δj+1∆δj ≤ 0 and (∆2yj)

2 ≤ (∆2δj+1)
2.

• Case VII. (−,−,+), that is, ∆δj−1 < 0, ∆δj < 0, ∆δj+1 ≥ 0. Then, ∆yj =
0, ∆yj−1 = ∆δj , and so ∆2yj = −∆δj . In this case 0 < −∆δj ≤ ∆δj+1−∆δj
and (∆2yj)

2 ≤ (∆2δj+1)
2.

• Case VIII. (−,−,−), that is, ∆δj−1 < 0, ∆δj < 0, ∆δj+1 < 0. Then,
∆yj = ∆δj+1, ∆yj−1 = ∆δj , and so ∆2yj = ∆2δj+1. In this case (∆2yj)

2 ≤
(∆2δj+1)

2.
Therefore in Cases I (+,+,+), III (+,−,+), and V (−,+,+), (∆2yj)

2 ≤ (∆2δj)
2,

and in Cases VI (−,+,−), VII (−,−,+), and VIII (−,−,−), (∆2yj)
2 ≤ (∆2δj+1)

2.
There are only two “bad” cases: II (+,+,−) and IV (+,−,−), which need a special
treatment.

Next, we define a sequence of + and − signs {sj}, where sj = + if ∆δj ≥ 0 and
sj = − if ∆δj < 0. Note that sj = + for j ≤ 3 and j ≥ N − 2. There are three types
of “bad” quadruples:
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• Type A quadruple: (+,+,−,−), that is, ∆δj−1 ≥ 0, ∆δj ≥ 0, ∆δj+1 < 0,
∆δj+2 < 0 for some j. We claim that in this case the following inequality
holds:

(∆2yj)
2 + (∆2yj+1)

2 ≤ 2(∆2δj)
2 + 2(∆2δj+1)

2 + 2(∆2δj+2)
2.(3.19)

In this case ∆2yj = ∆δj+1+∆δj−∆δj−1 and ∆2yj+1 = ∆δj+2−∆δj+1−∆δj .
If we denote ∆δj−1 by a, ∆δj by b, ∆δj+1 by c, and ∆δj+2 by d, the above
inequality becomes

(c+ b− a)2 + (d− c− b)2 ≤ 2(b− a)2 + 2(c− b)2 + 2(d− c)2

for a ≥ 0, b ≥ 0, c < 0, d < 0,

which is equivalent to a2 +2b2 +2c2 +d2 −2ab+2ac−8bc+2bd−2cd ≥ 0, or

(a− b+ c)2 + (b− c+ d)2 − 4bc ≥ 0,

which holds since b ≥ 0, c < 0.
• Type B quadruple: (+,+,−,+), that is, ∆δj−1 ≥ 0, ∆δj ≥ 0, ∆δj+1 < 0,

∆δj+2 ≥ 0 for some j. We claim that in this case the following inequality
holds:

(∆2yj)
2 + (∆2yj+1)

2 ≤ 2(∆2δj)
2 + 2(∆2δj+1)

2 + (∆2δj+2)
2.(3.20)

In this case ∆2yj = ∆δj+1 + ∆δj − ∆δj−1 and ∆2yj+1 = −∆δj+1 − ∆δj .
Using the notation we just introduced, the inequality becomes

(c+ b− a)2 + (c+ b)2 ≤ 2(b− a)2 + 2(c− b)2 + (d− c)2

for a ≥ 0, b ≥ 0, c < 0, d ≥ 0.

Since (d− c)2 ≥ c2, it is sufficient to prove

(c+ b− a)2 + (c+ b)2 ≤ 2(b− a)2 + 2(c− b)2 + c2, or

a2 + 2b2 + c2 − 2ab+ 2ac− 8bc ≥ 0, or (a− b+ c)2 + b2 − 6bc ≥ 0,

which holds for b ≥ 0, c < 0.
• Type C quadruple: (−,+,−,−), that is, ∆δj−1 < 0, ∆δj ≥ 0, ∆δj+1 < 0,

∆δj+2 < 0 for some j. We claim that in this case the following inequality
holds:

(∆2yj)
2 + (∆2yj+1)

2 ≤ (∆2δj)
2 + 2(∆2δj+1)

2 + 2(∆2δj+2)
2.(3.21)

In this case ∆2yj = ∆δj+1 +∆δj and ∆2yj+1 = ∆δj+2 −∆δj+1 −∆δj . Using
the notation we just introduced, the inequality becomes

(c+ b)2 + (d− c− b)2 ≤ (b− a)2 + 2(c− b)2 + 2(d− c)2

for a < 0, b ≥ 0, c < 0, d < 0.

Since (b− a)2 ≥ b2, it is sufficient to prove

(c+ b)2 + (d+ c− b)2 ≤ b2 + 2(c− b)2 + 2(d− c)2, or

b2 + 2c2 + d2 − 8bc+ 2bd− 2cd ≥ 0, or (b− c+ d)2 + c2 − 6bc ≥ 0,

which holds for b ≥ 0, c < 0.
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We will call the Type A (3.19), Type B (3.20), and Type C (3.21) inequalities
“long” inequalities; we call the inequalities of type (∆2yj)

2 ≤ (∆2δj)
2 and (∆2yj)

2 ≤
(∆2δj+1)

2 “short” inequalities.
Now, we construct a set of inequalities. We identify all “bad” quadruples and

include the corresponding inequality (Type A, B, or C) in the set. Next, for all
j ∈ [1, N ] such that sj is not a middle element of a “bad” quadruple, and such that j
does not belong to the “bad” Cases II and IV, we include the corresponding “short”
inequality in the set. Finally, we add all inequalities in the set. Taking into account
that ∆2δj = 0 and ∆2yj = 0 for j > N , the resulting inequality is

N∑
j=1

aj(∆
2yj)

2 ≤
N∑
j=1

bj(∆
2δj)

2,(3.22)

where the aj ’s and bj ’s are nonnegative integers. To finish the proof of the lemma we
need to show aj ≥ 1 and bj ≤ 2 for all j ∈ [1, N ].

Note that all “long” inequalities have the form (∆2yj)
2 +(∆2yj+1)

2 ≤ · · · , where
sj and sj+1 are the middle elements of a “bad” quadruple. Then aj ≥ 1 if sj is a
middle element of a “bad” quadruple. (By middle element of a quadruple we mean
second or third element of the quadruple.)

Now, suppose that sj is not a middle element of a “bad” quadruple. Then j does
not belong to the “bad” Cases II and IV. Indeed if j is in Case II: (sj−1, sj , sj+1) =
(+,+,−), then sj is a middle element of Type B quadruple if sj+2 = + and a
middle element of Type A quadruple if sj+2 = −. Similarly, if j is in Case IV:
(sj−1, sj , sj+1) = (+,−,−), then sj is a middle element of Type A quadruple if
sj−1 = + and a middle element of Type C quadruple if sj−1 = −. Therefore a
“short” inequality for (∆2yj)

2 has been included in the set of inequalities. Thus
aj ≥ 1 in this case as well. We have proved aj ≥ 1 for all j ∈ [1, N ].

Now, we prove bj ≤ 2 for all j ∈ [1, N ]. Note that (∆2δj)
2 can appear in only two

“short” inequalities: (∆2yj)
2 ≤ (∆2δj)

2 and (∆2yj−1)
2 ≤ (∆2δj)

2. Therefore bj ≤ 2
if (∆2δj)

2 does not appear in any “long” inequalities, that is, if sj is not a second,
third, or fourth element of a “bad” quadruple.

The case when sj is a second, third, or fourth element of a “bad” quadruple
requires more work. First, note that two distinct “bad” quadruples have at most two
common elements. Indeed all “bad” quadruples are of the form (∗,+,−, ∗), where ∗
denotes + or −, and no “bad” quadruple has (+,−) as its first two or last two elements.
Next, the only case when two “bad” quadruples have two common elements is the
following configuration:

(sj−1, sj , sj+1, sj+2, sj+3, sj+4) = (+,+,−,+,−,−).(3.23)

Indeed, a Type A quadruple cannot share exactly two elements with another “bad”
quadruple because no “bad” quadruple has (−,−) as its first two elements, or (+,+)
as its last two elements. Similar analysis shows that the only way a Type B or Type C
quadruple can share exactly two elements with another Type B or Type C quadruple
is when the configuration (3.23) occurs.

Let us analyze the configuration (3.23). The “long” inequalities which correspond
to the two “bad” quadruples in this configuration are

(∆2yj)
2 + (∆2yj+1)

2 ≤ 2(∆2δj)
2 + 2(∆2δj+1)

2 + (∆2δj+2)
2,(3.24)

(∆2yj+2)
2 + (∆2yj+3)

2 ≤ (∆2δj+2)
2 + 2(∆2δj+3)

2 + 2(∆2δj+4)
2.(3.25)
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Their sum is

(∆2yj)
2 + (∆2yj+1)

2 + (∆2yj+2)
2 + (∆2yj+3)

2

≤ 2(∆2δj)
2 + 2(∆2δj+1)

2 + 2(∆2δj+2)
2 + 2(∆2δj+3)

2 + 2(∆2δj+4)
2.

In this case sj , sj+1, sj+2, sj+3, and sj+4 appear as second, third, or fourth elements
of a “bad” quadruple. Since the configuration (3.23) starts with (+,+) and ends with
(−,−), it cannot share two elements with a “bad” quadruple outside the configuration.
This means that none of sj , sj+1, sj+2, sj+3, and sj+4 can be a second, third, or
fourth element of a “bad” quadruple outside the configuration. In other words, none
of (∆2δj)

2, (∆2δj+1)
2, (∆2δj+2)

2, (∆2δj+3)
2, and (∆2δj+4)

2 can appear in a “long”
inequality other than (3.24) and (3.25). Since, sj , sj+1, sj+2, and sj+3 are middle
elements of “bad” quadruples, (∆2δj+1)

2, (∆2δj+2)
2, and (∆2δj+3)

2 cannot appear
in “short” inequalities either. Thus bj+1 = bj+2 = bj+3 = 2. Also, (∆2δj)

2 cannot
appear in a “short” inequality. The only way this could happen is (∆2yj−1)

2 ≤
(∆2δj)

2, which is impossible since j−1 is either in Case I (+,+,+) or Case V (−,+,+),
depending on what sj−2 is, and in both cases the short inequality is (∆2yj−1)

2 ≤
(∆2δj−1)

2. Thus bj = 2. Similarly, (∆2δj+4)
2 cannot appear in a “short” inequality.

The only way this could happen is (∆2yj+4)
2 ≤ (∆2δj+4)

2, which is impossible since
j + 4 is either in Case VII (−,−,+) or Case VIII (−,−,−), depending on what sj+5

is, and in both cases the short inequality is (∆2yj+4)
2 ≤ (∆2δj+5)

2. Thus bj+4 = 2.
This concludes the analysis of the configuration (3.23).

Now, let sj be a second, third, or fourth element of a “bad” quadruple but not
an element of a configuration (3.23). This means that (∆2δj)

2 appears in exactly
one “long” inequality (it cannot be a second, third, or fourth element of two distinct
“bad” quadruples). If sj is a third element of a “bad” quadruple, then sj−1 and sj
are the middle elements of the quadruple and (∆2δj)

2 does not appear in a short
inequality. Thus, bj ≤ 2 in this case. The cases when sj is a second or fourth element
of a “bad” quadruple need separate consideration.

1. sj is a second element of a Type A quadruple (+,+,−,−). The only way
(∆2δj)

2 could appear in a “short” inequality is (∆2yj−1)
2 ≤ (∆2δj)

2, which
is impossible since j− 1 is either in Case I (+,+,+) or Case V (−,+,+), de-
pending on what sj−2 is, and in both cases the short inequality is (∆2yj−1)

2 ≤
(∆2δj−1)

2. Thus bj = 2.
2. sj is a fourth element of a Type A quadruple (+,+,−,−). The only way

(∆2δj)
2 could appear in a “short” inequality is (∆2yj)

2 ≤ (∆2δj)
2, which

is impossible since j is either in Case VII (−,−,+) or Case VIII (−,−,−),
depending on what sj+1 is, and in both cases the short inequality is (∆2yj)

2 ≤
(∆2δj+1)

2. Thus bj = 2.
3. sj is a second element of a Type B quadruple (+,+,−,+). Here the argument

is word-by-word like in part 1. The only way (∆2δj)
2 could appear in a

“short” inequality is (∆2yj−1)
2 ≤ (∆2δj)

2, which is impossible since j − 1
is either in Case I (+,+,+) or Case V (−,+,+), depending on what sj−2

is, and in both cases the short inequality is (∆2yj−1)
2 ≤ (∆2δj−1)

2. Thus
bj = 2.

4. sj is a fourth element of a Type B quadruple (+,+,−,+). Since the coefficient
of (∆2δj)

2 in the corresponding “long” inequality (3.20) is 1 and (∆2δj)
2 could

appear in at most one “short” inequality, we conclude bj ≤ 2.
5. sj is a second element of a Type C quadruple (−,+,−,−). Since the coeffi-

cient of (∆2δj)
2 in the corresponding “long” inequality (3.21) is 1 and (∆2δj)

2

could appear in at most one “short” inequality, we conclude bj ≤ 2.
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6. sj is a fourth element of a Type C quadruple (−,+,−,−). Here the argument
is word-by-word like in Case 2. The only way (∆2δj)

2 could appear in a
“short” inequality is (∆2yj)

2 ≤ (∆2δj)
2, which is impossible since j is either

in Case VII (−,−,+) or Case VIII (−,−,−), depending on what sj+1 is, and
in both cases the short inequality is (∆2yj)

2 ≤ (∆2δj+1)
2. Thus bj = 2.

We have shown that in all six cases bj ≤ 2 for j ∈ [1, N ], which completes the proof
of Lemma 3.4 and Theorem 3.2.

Now, we continue with the general case, the proof of Theorem 3.1. That is, we
want to show that the l2 norms inequality

‖{δ′j}‖l2 ≤ ‖{δj}‖l2(3.26)

holds for any initial sequence {δj} with finite l2 norm. We consider the sequence {wj}
and restrict the index j to a maximal subset Λm on which the piecewise constant
function w is monotone, recalling that δj = wj − wj−1. Given a sequence {wj},
we can decompose it into monotone subsequences. This decomposition also gives a
decomposition of the sequence {δj} into subsequences such that in each subsequence
all jumps have the same sign (nonnegative or nonpositive). Without any limitations,
we assume that the jumps {δj} are nonnegative for all l ≤ j ≤ r, δl−1 < 0, and
δr+1 < 0. That is, wl−1 is a local minimum and wr is a local maximum of the
piecewise constant function w. Let wm be the following piecewise constant correction
of w:

wmj :=

⎧⎨⎩
wj if l ≤ j ≤ r,
wl−1 if j < l,
wr if j > r.

(3.27)

Note that Λm = {j : l ≤ j ≤ r + 1}, and the jump sequence δm := {δmj } of wm is
given by

δmj :=

{
wj − wj−1 if l ≤ j ≤ r,
0 otherwise.

(3.28)

Hence, we have a sequence of monotone functions {wm} and the corresponding jump
sequences {δmj }j such that∑

m

∑
j∈Λm

‖{δmj }‖2
l2 =

∑
m,j∈Z

‖{δmj }‖2
l2 = ‖{δj}‖2

l2 ,

because the sequence of the jumps of {δj} is decomposed into disjoint jump subse-
quences {δmj }. There are two types of jumps δ′j . A jump δ′j is of type 1 if it is equal to
the jump δ′j(δ

m), that is, the jump generates with the starting sequence {δmj }, where
the index m such that j ∈ Λm. A jump is of type 2 if it is not of type 1. Note that a
type 2 jump δ′j∗ occurs only inside an interval which contains a strict local extremum.

Near a local extremum we have two nonzero jumps, say δlj∗ and δrj∗ , generated by
the two monotone wm’s with index sets finishing/starting with j∗. It is easy to verify
that

|δ′j∗ | =
∣∣|δlj∗ | − |δrj∗ |

∣∣.
Hence, we have that

(δ′j∗)
2 < (δlj∗)

2 + (δrj∗)
2,
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and we conclude that∑
j

(δ′j)
2 ≤

∑
m

∑
j∈Λm

(δ′j(δ
m))2 ≤

∑
m

∑
j∈Λm

(δmj )2 =
∑
n

(δj)
2,

where we use the notation δ′j(δ
m) for the new jumps generated by δm. It is also easy

to prove a local inequality but with index set for δ′j starting from an interval right
after an extremum and finishing right before one.

4. Error estimates for linear flux. Recall that u is the entropy solution to
the conservation law ut + f(u)x = 0 with initial condition u0, and v is the numerical
solution described in (2.12). In the case of linear flux and 0 ≤ θ ≤ 1, the formula for
the new averages of the minmod scheme is given in (3.1), and the conservation law
(2.1) reduces to

ut + aux = 0.(4.1)

Let Sτ be the shift operator defined by Sτg(·) := g(· − τ). Then the exact solution
of (4.1) at time t for any initial data u0 is u(·, t) = Satu

0. Let Ah be the averaging
operator defined on a uniform partition by Ahg|I := 1

h

∫
I
g(s)ds, where |I| = h. It will

be useful to define a global approximate solution v. We first define the approximate
solution at discrete times by vn := v(·, n∆t), n = 0, 1, . . . , N , in the following way:
(i) v0 := u0; (ii) vn := Sa∆tPhv

n−1, where for odd n, 1 ≤ n ≤ N , Phv is the
linear function on Ij := (xj−1/2, xj+1/2) defined in (2.3) with the minmod slopes
(2.8), and for even n we have the analogous definition of Ph on the shifted partition
{Ij+1/2| j ∈ Z}. Note that Phv

n = PhAhv
n because the piecewise linear projection Ph,

defined in (2.3) and (2.8), is based only on the averages of vn on the corresponding
partition. The formula (3.1) for the new cell averages can be written as

vnj+1/2 = Ah(v
n)|Ij+1/2

= Ah(Sa∆tPhv
n−1)|Ij+1/2

for odd n, with Ah based on the staggered partition {Ij+1/2| j ∈ Z} and Ph based
on regular partition {Ij | j ∈ Z}. For even n, we have the same sequence of operators
but on the reversed partitions. The global approximate solution v is defined by
v(·, n∆t) = vn and v(·, t) = Sa(t−n∆t)(Phv

n) for n∆t < t ≤ (n + 1)∆t and n =
0, 1, . . . , N − 1. That is, v solves (4.1) exactly for n∆t < t ≤ (n + 1)∆t with initial
data Phv

n, n = 0, 1, . . . , N − 1.
In order to describe the next result, we need to introduce some notation. A

function g is of bounded variation, i.e., g ∈ BV(R), if

|g|BV(R) := sup

n∑
i=1

|g(xi+1) − g(xi)| < ∞,

where the supremum is taken over all finite sequences x1 < · · · < xn in R. Functions
of bounded variation have at most countably many discontinuities, and their left and
right limits g(x−) and g(x+) exist at each point x ∈ R. Since the values of the initial
condition u0 on a set of measure zero have no influence on the numerical solution v
and the entropy solution u, it is desirable to replace the seminorm |·|BV(R) by a similar
quantity independent of the function values on sets of measure zero. The standard
approach in conservation laws is to consider the space Lip(1,L1(R)) of all functions
g ∈ L1(R) such that the seminorm

|g|Lip(1,L1(R)) := lim sup
s>0

1

s

∫
R

|g(x+ s) − g(x)| dx(4.2)
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is finite. It is clear that |g|Lip(1,L1(R)) will not change if g is modified on a set of
measure zero. At the same time the above two seminorms are equal for functions
g ∈ BV(R) such that the value of g at a point of discontinuity lies between g(x−)
and g(x+) (see Theorem 9.3 in [5]). Similarly, we define the space Lip(1,Lp(R)),
1 ≤ p ≤ ∞, which is the set of all functions g ∈ Lp(R) for which

‖g(· − s) − g(·)‖Lp(R) ≤Ms, s > 0.(4.3)

The smallest M ≥ 0 for which (4.3) holds is |g|Lip(1,Lp(R)). It is easy to see that in
the case p = 1 the seminorm given in (4.3) is the same as the one in (4.2). In the
case p > 1, the space Lip(1,Lp(R)) is essentially the same as W 1(Lp(R)); see [5] for
details. With this notation, we have the following result.

Theorem 4.1. Let u(x, t) = u(x− at, 0) be the solution to (2.1) with linear flux
f(z) = az, and let v be the numerical solution described in (3.1) with 0 ≤ θ ≤ 1. If
the CFL condition (2.5) is satisfied, tn = n∆t, 0 ≤ n ≤ N , and T = N∆t, we have

‖u(·, T ) − v(·, T )‖Lp(R) ≤ C(Nh)1/2h1/2|u0|Lip(1,Lp(R))(4.4)

for p = 1, 2, where C is an absolute constant.
Proof. The L1 estimate is based on the TVD property of the numerical solution v,

and the L2 estimate is based on the l2 stability of the jumps proved in Theorem 3.1.
Both estimates use a dual argument similar to the one in [19], and in the proof we
use an index p, where p ∈ {1, 2}. Note that we consider the case of linear flux, and
the usual Lip+ stability requirement is not needed in the dual approach because the
negative norm stability (4.6) holds for any initial data (not just Lip+). In the proof,
C will be an absolute constant that can be different at different places.

Let e(x, t) := u(x, t) − v(x, t) and E(x, t) :=
∫ x
−∞ e(s, t)ds, where we assume

that u0 ∈ L1(R) to guarantee that E is well defined for all (x, t) ∈ R × (0, T ).
We have that E also satisfies (4.1) for n∆t < t ≤ (n + 1)∆t with initial data∫ x
−∞ u(s, n∆t) − Phv

n(s)ds, n = 0, 1, . . . , N − 1. For a function g ∈ L1(R) and
1 ≤ p ≤ ∞, we define a minus one norm in the following way:

‖g‖−1,p :=

∥∥∥∥∫ ·

−∞
g(s) ds

∥∥∥∥
Lp(R)

.(4.5)

It is easy to verify that for any τ ∈ R

‖Sτg‖−1,p = ‖g‖−1,p.(4.6)

Recall that T = N∆t. Then we have the representations u(·, T ) = (Sa∆t)
Nu0 and

v(·, T ) = (Sa∆tPh)
Nu0. Using (4.6), we have

‖e(·, T )‖−1,p = ‖(Sa∆t)Nu0 − (Sa∆tPh)
Nu0‖−1,p

= ‖(Sa∆t)N−1u0 − Ph(Sa∆tPh)
N−1u0‖−1,p,

and by the triangle inequality we obtain

‖e(·, T )‖−1,p ≤ ‖(Sa∆t)N−1u0 − (Sa∆tPh)
N−1u0‖−1,p(4.7)

+ ‖Ph(Sa∆tPh)N−1u0 − (Sa∆tPh)
N−1u0‖−1,p.

Let en = ((Sa∆t)
n − (Sa∆tPh)

n)u0, n = 0, 1, . . . , N . Then (4.7) is equivalent to

‖eN‖−1,p ≤ ‖eN−1‖−1,p + ‖PhvN−1 − vN−1‖−1,p,(4.8)
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and applying (4.8) for n = N,N − 1, . . . , 1, we get

‖eN‖−1,p ≤
N−1∑
n=1

‖Phvn − vn‖−1,p(4.9)

because e0 ≡ 0. To prove the error estimates, we need the following technical lemma.
Lemma 4.2. For any p ∈ {1, 2} and any n = 0, 1, . . . , N , we have

(i) ‖{δnj }‖lp ≤ h1− 1
p |u0|Lip(1,Lp(R)),

(ii) ‖Phvn −Ahv
n‖−1,p ≤

(
2

p+ 1

) 1
p

h1+ 1
p ‖{δj}‖lp ,

(iii) ‖Ahvn − vn‖−1,p ≤
(

4

p+ 1

) 1
p

h2|u0|Lip(1,Lp(R)).

Proof. The inequalities (i) and (ii) follow by standard arguments; therefore, we
only prove (i) in the case p = 2 and omit the rest because their proofs are similar.
Recall that δnj = vnj − vnj−1, and by Theorem 3.1 we have⎛⎝∑

j

(δnj )2

⎞⎠1/2

≤
⎛⎝∑

j

(δ0j )
2

⎞⎠1/2

,

where δ0j = u0
j − u0

j−1, u
0
j := 1

h

∫
Ij
u0(s)ds. Hence, to prove (i) for p = 2, we need to

prove ∑
j

(δ0j )
2 ≤ h|u0|2Lip(1,L2(R)).

Since

∑
j

(δ0j )
2 =

∑
j

(
1

h

∫
Ij

(u0(s+ h) − u0(s))ds

)2

≤ h−2
∑
j

(∫
Ij

|u0(s+ h) − u0(s)|ds
)2

,

and since by the Cauchy–Schwarz inequality
(∫
Ij
|u0(s+h)−u0(s)|ds)2 ≤ h

∫
Ij
|u0(s+

h) − u0(s)|2ds, we obtain∑
j

(δ0j )
2 ≤ h−1

∫
R

|u0(s+ h) − u0(s)|2ds.(4.10)

From (4.3), we have
∫

R
|u0(s + h) − u0(s)|2ds ≤ h2|u0|2Lip(1,L2(R)), and using that in

(4.10), we conclude ∑
j

(δ0j )
2 ≤ h|u0|2Lip(1,L2(R)),

which proves (i) for p = 2. To prove (iii), we note that

|Ahvn − vn|Ij ≤ max
x∈Ij

vn(x) − min
x∈Ij

vn(x),(4.11)
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and because vn = Sa∆tv
n−1, we have that

max
x∈Ij

vn(x) − min
x∈Ij

vn(x) ≤ 2 max(|δn−1
j−1 |, |δn−1

j |).

The rest of the proof of (iii) is analogous to the proof of (i).
Combining (i)–(iii), we have ‖Phvn − vn‖−1,p ≤ Ch2|u0|Lip(1,Lp(R)), and after

applying the above inequality in (4.9), we derive the following estimate:

‖eN‖−1,p ≤ CNh2|u0|Lip(1,Lp(R)).(4.12)

Because vN /∈ Lip(1,L2(R)), we approximate vN by

ṽ :=
1

h

∫ x+h/2

x−h/2
Ahv

N (s) ds.

Similar to Lemma 4.2, it is easy to verify that for p ∈ {1, 2} we have

‖ṽ − vN‖−1,p ≤ Ch2|u0|Lip(1,Lp(R)),(4.13)

‖ṽ − vN‖Lp(R) ≤ Ch|u0|Lip(1,Lp(R)),(4.14)

and

|ṽ|Lip(1,Lp(R)) ≤ |u0|Lip(1,Lp(R)).(4.15)

Let ẽ := u(·, T ) − ṽ. Then ‖ẽ‖−1,p ≤ ‖eN‖−1,p + ‖ṽ − vN‖−1,p, and combining the
estimates (4.12) and (4.13), we have

‖ẽ‖−1,p ≤ CNh2|u0|Lip(1,Lp(R)).(4.16)

Kolmogorov–Landau inequalities in Lp(R) (p. 156 in [5]) for the functions Ẽ(x) :=∫ x
∞ ẽ(s) ds, Ẽ′, and Ẽ′′ give

‖ẽ‖Lp = ‖Ẽ′‖Lp ≤
√

2‖Ẽ‖1/2
Lp ‖Ẽ′′‖1/2

Lp =
√

2‖ẽ‖1/2
−1,p|ẽ|1/2Lip(1,Lp(R)).

Using (4.16) and (4.15), we arrive at

‖ẽ‖Lp ≤ C(Nh)1/2h1/2|u0|Lip(1,Lp(R)).(4.17)

Finally, by the triangle inequality,

‖e‖Lp ≤ ‖ẽ‖Lp + ‖ṽ − vN‖Lp(R) ≤ C(Nh)1/2h1/2|u0|Lip(1,Lp(R)),

and we combine (4.14) and (4.17) to conclude

‖u(·, T ) − v(·, T )‖Lp(R) = ‖e‖Lp ≤ C(Nh)1/2h1/2|u0|Lip(1,Lp(R)).

Note that C can be computed explicitly and is not very big (C < 20). In the case
p = 2 and u0 /∈ L1(R), we get the same error estimate via an approximation procedure
because the estimate is independent of the L1 norm.

Corollary 4.3. In the case of Nh ≤ C, we get the convergence rate

‖u(·, T ) − v(·, T )‖Lp(R) ≤ Ch1/2|u0|Lip(1,Lp(R))

for p = 1 and p = 2.
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The L1 estimate is not new—it follows from the arguments in [19]—but the 1/2
rate in L2 is new. Note that, using the L1 estimate, by interpolation arguments we get
only a 1/4 rate in L2. The rate 1/2 is optimal for the case θ = 0 because the numerical
method in that case reduces to the LxF scheme, a special case of a monotone scheme.
In the case p = 1, the sharpness of the 1/2 bound is given in [20], with an extension
to the nonlinear case in [17]. The sharpness in the case p = 2 follows from the more
general result for formal first-order linear schemes; see [4]. The case θ > 0 is more
complicated because the schemes are nonlinear, and it will be addressed elsewhere.

5. Numerical examples. In this section, we present numerical evidence for the
new l2 stability result we proved in section 3. Our numerical tests suggest that in
the case of linear flux the NT schemes do not increase the l2 norm of the jumps for
either θ ≤ 1 (as proved in Theorem 3.1) or for 1 < θ ≤ 2. In the case of convex flux,
we numerically observe the one-sided analogue of this property. We now give generic
examples for this l2 stability in the linear and convex case.

Example 1. Linear equation. We take a piecewise linear initial condition u0 (see
top left of Figure 5.1) and compare three different approximate solutions. It is easy
to see that for a bigger value of θ we get smaller numerical diffusion (see top right
panel of Figure 5.1). The other two plots on Figure 5.1 give the behaviors of the l2
and the l∞ norms of the jumps in time where the time is rescaled from [0, 0.15] to
[0, 1] and the l2 norm is also rescaled. Note the oscillatory behavior of the l∞ norm
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Fig. 5.1. ut +0.5ux = 0. The solid line represents θ = 1, the dashed line represents θ = 2, and
the dash-dotted line stands for θ = 0, the staggered LxF scheme. The values we used are ∆x = 0.005,
λ = 0.15, final time T = 0.15, and the flux is f(u) = 0.5u.
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and the monotonicity of the l2 norm for θ = 1, 2.
The presence of shocks or local extrema in the initial data will only make the

decrease of the l2 norm of the jumps faster in the beginning, and then for large time the
l2 norm will decrease very slowly again. In some sense, the total amount of numerical
diffusion is given in the decrease of the l2 norm. In the so-called second-order methods
(like θ = 1, 2), the amount of diffusion is much smaller than in first-order methods
represented here by the LxF scheme (θ = 0). We will address this issue in a different
paper and use it to improve the error estimate for θ = 1.

Example 2. Burgers’ equation (see Figure 5.2). We consider the same initial data,
numerical schemes, ∆x, λ, and T , as in the first example. Note again the oscillatory
behavior of the l∞ norm and the monotonicity of the l2 norm for θ = 1, 2. This is a
generic case of nondecreasing initial data which corresponds to a region of spreading
of the characteristics.

The nonlinearity of the flux in such regions helps to decrease overall any norm
of the jumps. In the case of a general initial condition, the l2 norm of the jumps
decreases in every region of rarefaction. That is, for convex flux numerical schemes
decrease the one-sided l2 norm of the jumps,∑

j

(vn+1
j − vn+1

j−1 )2+ ≤
∑
j

(vnj − vnj−1)
2
+.

It is important to note that in the case of convex/concave flux extreme values separate
the regions of rarefactions from the regions of shocks, and we observe numerically that
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the l2 norm of the jumps decreases in every interval where the numerical solution is
nondecreasing/nonincreasing.

In the nonconvex case (at least one inflection point), the situation is quite differ-
ent. In one interval of monotonicity we can have both shocks and rarefaction waves.
In that case, the NT scheme with θ = 2 converges to a wrong weak solution even for
the Buckley–Leverett problem; see Example 3 in [8]. Our numerical tests show that
the NT scheme gives a wrong solution to that problem for any value of θ ≥ 1.2 and
in general it looks like the biggest reliable value of θ for a nonconvex flux is θ = 1.

Acknowledgments. The authors are grateful to Ronald DeVore for his inspiring
discussions and constant support. We also thank the anonymous referees. Their
comments and suggestions helped improve the paper.
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Abstract. A mortar finite element method with a new Lagrange multipliers space for clamped
plate problems is discussed. In the subdomains a conforming Hsieh–Clough–Tocher (HCT) macro
element defined on nonmatching triangulations is utilized. The main result of the paper is the proof
of an inf-sup condition with new test spaces. Finally, an error bound for Lagrange multipliers is
proved.
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1. Introduction. The numerical approximation of partial differential equations
is often a very difficult and challenging task. This problem can be solved by using
supercomputers; however, their efficiency strongly depends on the utilization of spe-
cially adapted numerical algorithms. Domain decomposition methods form a group
of such tools, which have been analyzed and successfully used in solving practical
problems. One domain decomposition method is the mortar method which allows us
to use discretizations of different types with independent discretization parameters
in nonoverlapping subdomains. A general presentation of the mortar method in two
and three dimensions for elliptic boundary value problems of second order can be
found, e.g., in [8], [4], or [5]. In [4], [9], and [29], the mortar methods for second order
elliptic problems with saddle point approach were discussed. The mortar approach
for discretizations of fourth order elliptic problems was studied in [3], where locally
spectral discretizations were utilized, in [21], [22] for discrete Kirchhoff triangle local
discretizations, and in [28], [27] for local Hsieh–Clough–Tocher (HCT), reduced HCT,
and Adini and Morley finite element discretizations, and some parallel algorithms for
solving a discrete problem were considered in [26]. There are also many algorithms
for solving problems obtained by the mortar method; cf. [18], [1], [2], [14], [17], and
many others.

In this paper, we consider a certain mortar method for local HCT discretiza-
tions of plate problems. We introduce a new type of test mortar spaces that contain
functions of lower regularity (discontinuous) and prove that they are as good as the
ones considered in [28]. The new choice of the test mortar spaces is also due to the
more feasible implementation; the mass matrices in the two mortar conditions have
a simpler structure. Next we reformulate the mortar discrete problem into a saddle
point problem and prove an inf-sup condition in two different norms. Similar types
of spaces in the mortar condition have been used for second order elliptic problems in
two dimensions in [29] and in three dimensions in [20].
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In [4] an inf-sup condition in some trace norms defined on interface was proved
for second order differential equations, and a few years later in [29] and [9] an inf-sup
condition in mesh-dependent norms for second order elliptic problems was stated. We
generalized their results to plate problems.

We restrict ourselves to the geometrically conforming version of the mortar method;
i.e., the polygonal domain Ω is divided into polygonal subdomains Ωi which form
a coarse triangulation. Locally, in the subdomains the conforming finite element
method, i.e., the HCT macro element (cf. [16]), is utilized.

We first introduce independent local discretizations in each subdomain. The two-
dimensional triangulations of two neighboring subregions do not necessarily match
on their common interface. Then a mortar technique for plate problems which is
presented here requires the continuity of the solution at the vertices of subdomains and
that the solution on the two neighboring subdomains satisfies two mortar conditions
of the L2 type. We propose two new Lagrange multiplier spaces. We give error bounds
analogous to the results of [28]; see also [27].

We also reformulate the mortar discrete problem into a saddle point problem.
Then a proper representation of multipliers is given, and error bounds for multipliers
are proved in two types of norm, mesh-dependent and dual to proper trace spaces
defined on interfaces. We generalize the results of [29], [9], [4], which were obtained
for the mortar method for second order elliptic problems, to fourth order problems.

The outline of the paper is as follows. In section 2 we present a differential problem
and discuss local discretization of HCT type and the mortar method. Section 3 is
devoted to presenting new spaces and proving an error estimate of the mortar method
with these new test spaces. Finally, in section 4 inf-sup conditions are proved in both
types of norms, and an estimate of an error of Lagrange multipliers is shown.

In the paper the following notation is used: u � v, x � y, and w � z mean
that there exist positive constants c and C independent of the parameter of the fine
triangulation of any substructure, and the number of subdomains is such that

c u ≤ v ≤ C u, x ≥ c y, and w ≤ C z, respectively.

2. Discrete problem. Let Ω be a polygonal domain in R2. The differential
problem is to find u∗ ∈ H2

0 (Ω) such that

a(u∗, v) =

∫
Ω

fv dx ∀v ∈ H2
0 (Ω),(2.1)

where u∗ is the displacement, f ∈ L2(Ω) is the body force, and

a(u, v) =

∫
Ω

[�u�v + (1 − ν) (2ux1x2vx1x2 − ux1x1vx2x2 − ux2x2vx1x1)] dx.

Here

H2
0 (Ω) = {v ∈ H2(Ω) : v = ∂nv = 0 on ∂Ω},

∂n is the normal unit derivative outward to ∂Ω, and uxixj := ∂2u
∂xi∂xj

for i, j = 1, 2.

The Poisson ratio ν satisfies 0 < ν < 1/2. The Lax–Milgram theorem, utilizing
the continuity and ellipticity of the bilinear form a(·, ·), yields the existence and the
uniqueness of the solution; see, e.g., [11] or [16].
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Let Ω be a union of nonoverlapping polygonal subdomains that are arbitrary, i.e.,

Ω =

N⋃
k=1

Ωk with Ωk ∩ Ωl = ∅, k �= l.

We assume that the intersection of boundaries of two different subdomains ∂Ωk ∩
∂Ωl, k �= l, is either the empty set, a vertex, or a common edge. Thus {Ωk} forms a de-
composition of Ω that we call the coarse triangulation with a parameterH = maxkHk,
where Hk = diamΩk. We assume the shape regularity of that decomposition; e.g., cf.
section 2, p. 5 in [10]. In the mortar method the interface Γ =

⋃N
k=1 ∂Ωk \ ∂Ω plays

an important role.
We triangulate each subdomain Ωk into nonoverlapping triangles. We denote an

element of this triangulation by τ . We assume that the arising fine triangulation
Th(Ωk) is quasi-uniform with parameter hk = max(diam τ) for τ ∈ Th(Ωk); cf. [11].

We now introduce the mortar method that locally uses the HCT macro element;
cf. Chapter 7, section 46, p. 279 in [16]. The local finite element space Xh(Ωk) is
defined by

Xh(Ωk) = {v ∈ C1(Ωk) : v|τ ∈ P3(τi) for triangles τi, i = 1, 2, 3,

formed by connecting the vertices of τ ∈ Th(Ωk)

to its centroid, and v = ∂nv = 0 on ∂Ωk ∩ ∂Ω};

cf. [16] and Figure 2.1.

Fig. 2.1. HCT macro element.

The degrees of freedom of the HCT element are the following ones: {v(p), vx1
(p),

vx2(p), ∂nv(m)}, where p is a vertex of an element and m is a midpoint of an edge of
an element (cf. Figure 2.1).

The space Xh(Ωk) is equipped with a local bilinear form defined by

ak(u, v) =

∫
Ωk

[�u�v + (1 − ν) (2ux1x2vx1x2 − ux1x1vx2x2 − ux2x2vx1x1)] dx.

We next define two global spaces X̃h(Ω) =
∏N
k=1Xh(Ωk) and its subspace Xh(Ω)

of functions continuous at crosspoints, i.e., at common vertices of subdomains. We
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also introduce a bilinear form aH(u, v) =
∑N
k=1 ak(u, v), a so-called broken norm

‖u‖2
H2

H
(Ωk)

=
∑N
k=1 ‖u‖2

H2(Ωk), and a broken seminorm |u|2
H2

H
(Ωk)

=
∑N
k=1 |u|2H2(Ωk).

For each interface Γkl = ∂Ωk ∩ ∂Ωl, we choose one side as a master (mortar)
denoted by γkl ⊂ ∂Ωk and the second one as a slave δlk ⊂ ∂Ωl. Here the choice
of the master side is arbitrary. Thus each interface Γkl = ∂Ωk ∩ ∂Ωl has two inde-
pendent one-dimensional triangulations, the first hl one: T lh(δlk) inherited from the
two-dimensional triangulation of Ωl and the second hk one: T kh (γkl) inherited from
the two-dimensional one of Ωk.

We also introduce an additional notation: Let the set of all vertices of elements of
the triangulation of Ωk, Ωk ∂Ωk and γkl, δlk be denoted by Ωk,h, Ωk,h, ∂Ωk,h, γkl,h,
and δlk,h, respectively.

To properly define a mortar method we have to introduce two test spaces defined
on a slave δlk ⊂ Γ: M1,hl(δlk) associated with tangential traces of functions from
Xh(Ωl) and M2,hl(δlk) corresponding to normal traces. We will consider a new type
of spaces; cf. [29] for the case of mortar method for second order elliptic equations.
The test spaces will be defined below; see section 3.

We say that uk ∈ Xh(Ωk) and ul ∈ Xh(Ωl) for ∂Ωl∩∂Ωk = Γkl satisfy the mortar
conditions if ∫

δlk

(uk − ul)ψ ds = 0 ∀ψ ∈M1,hl(δlk)(2.2)

and ∫
δlk

(∂nuk − ∂nul)ψ ds = 0 ∀ψ ∈M2,hl(δlk).(2.3)

We now define a space V h as the subspace of Xh(Ω) formed by functions which
satisfy the mortar conditions (2.2) and (2.3) on each interface Γkl = δlk = γkl. Note
that V h contains functions which are continuous at the crosspoints. This is a technical
requirement used in the proof of Lemma 3.14; cf. (3.6).

The discretization of (2.1) in V h is of the form:
Find u∗h ∈ V h such that

aH(u∗h, v) =

∫
Ω

fv dx ∀v ∈ V h.(2.4)

We now formulate our problem as a saddle point problem. We introduce a new
discrete Hilbert space Mh(Γ) = M1(Γ) ×M2(Γ) and a bilinear form b(·, ·) : Xh(Ω) ×
Mh(Γ) → R, where

M1(Γ) =
∏
δji⊂Γ

M1,hj (Γij) and M2(Γ) =
∏
δji⊂Γ

M2,hj (Γij)

and

b(ψ, u) =
∑
δji⊂Γ

(∫
Γij

[u]ψ1 ds+

∫
Γij

[∂nu]ψ2 ds

)
∀u ∈ Xh(Ω), ∀ψ ∈Mh(Γ).

Here [·] is a jump across Γij = δji = γij , u = (u1, . . . , uN ) and ψ = (ψ1, ψ2). Then
the new problem is to find a pair (u∗h, λ

∗
h) ∈ Xh(Ω) ×Mh(Γ) such that

aH(u∗h, v) + b(λ∗h, v) = (f, v) ∀v ∈ Xh(Ω),(2.5)

b(ψ, u∗h) = 0 ∀ψ ∈Mh(Γ).
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We prove below that this problem has a unique solution.

The second equation in (2.5) is equivalent to the mortar conditions (2.2) and
(2.3). Thus we have

V h = {u ∈ Xh(Ω) : b(ψ, u) = 0 ∀ψ ∈Mh(Γ)},

and the first term of a solution of (2.5) is also a solution of (2.4) and vice versa.

3. New Lagrange multiplier spaces. In this section we introduce a new type
of mortar test space for the mortar methods for fourth order problem.

3.1. A new tangential test space. Let W 1,hj (Γij) be the space of traces

(tangential) of Xh(Ωj) onto δji and W
1,hj

0 (Γij) = H2
0 (Γij)∩W 1,hj (Γij). We introduce

natural nodal bases of them. Basis functions of W 1,hj (Γij) and W
1,hj

0 (Γij) are defined
by

φ0
1,p(q) =

{
1 p = q,
0 p �= q,

∂sφ
0
1,p(q) = 0,

∂sφ
1
1,p(q) =

{
1 p = q,
0 p �= q,

φ1
1,p(q) = 0

for p, q ∈ δij,h, and δji,h, respectively. Here ∂s is the tangential derivative. We now
introduce a mortar test space M1,h(δji) = Span{θ01,p, θ11,p : p ∈ δji,h} for each interface

Γij = γij = δji. It should be contained in the dual space of H3/2(Γij). The definition
of our tangential space is quite simple, namely, let M1,h(δji) = Span{θ01,p, θ11,p : p ∈
δji,h}, where

θ01,p(s) =

{
1 for s ∈ [ml,mr]

0 for s ∈ δij \ [ml,mr]
,

and (cf. Figures 3.1 and 3.2)

θ11,p(s) =

{
(s− p) for s ∈ [ml,mr]

0 for s ∈ δij \ [ml,mr]
.

Here ml and mr are the right and left neighboring midpoints of a nodal point p. In
the case of a nodal point p next to an end of this slave, we take the respective end
instead of ml in the case of the left end and mr in the case of the right one. We have

dimM1,h(δji) = dimW
1,hj

0 (δji). This property is a very important one.

Note that the space M1,h(δji) is much simpler than the one introduced in [28].

Fig. 3.1. Tangential basis—interior nodal functions.
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Fig. 3.2. Tangential basis—near left endpoint of δji.

Let us consider a segment [0, 2], the standard cubic Hermitian interpolation basis
on this segment, i.e., four functions φ0(x) = 0.25∗ (1+x)∗ (x−2)2, φ1(x) = 0.25∗x∗
(x−2)2, φ2(x) = 0.25∗x2 ∗ (3−x), and φ3(x) = 0.25∗x2 ∗ (x−2), and four functions

θ0(s) =

{
1 for s ∈ [0, 1]
0 for s ∈ (1, 2]

, θ1(s) =

{
s for s ∈ [0, 1]
0 for s ∈ (1, 2]

,

θ2(s) =

{
0 for s ∈ [0, 1]
1 for s ∈ (1, 2]

, θ3(s) =

{
0 for s ∈ [0, 1]
s− 2 for s ∈ (1, 2]

.

Now we consider a 4 × 4 matrix A = {∫ 2

0
φiθj ds}ij . We obtain

A = 0.25 ∗

⎛⎜⎜⎝
13/4 29/20 3/4 −11/20
11/12 8/15 5/12 −3/10
3/4 11/20 13/4 −29/20

−5/12 −3/10 −11/12 8/15

⎞⎟⎟⎠ .

Simple computation shows that the matrix (AT + A)/2 is symmetric and positive
definite, which is equivalent to

(Au,u)R4 > 0 ∀u ∈ R4, u �= 0.(3.1)

From this follows a proposition.
Proposition 3.1. For any w̃ =

∑
p∈δji,h(w(p)θ01,p + w′(p)θ11,p) ∈ M1,hj (δji)

corresponding to w =
∑
p∈δji,h(w(p)φ0

1,p + w′(p)φ1
1,p) ∈W

1,hj

0 (δji) it holds that

‖w‖2
L2(δji)

� ‖w̃‖2
L2(δji)

�
∫
δji

ww̃ ds.

Proof. We show a spectral equivalence of the mass matrices that also proves
our proposition: For any vector w = (w0,w1)T corresponding to a function w =∑
p∈δji,h(w(p)φ0

1,p + w′(p)φ1
1,p) ∈W

1,hj

0 (δji) it holds that

(D1w,w) � (W1,0w,w) � (M1w,w) � (D1w,w),

where

D1 =

(
D00 0
0 D11

)
, W1,0 =

(
W00 0

0 W11

)
, M1 =

(
M00 M01

M10 M11

)
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for the block diagonal matrices Dkk = diag{∫
Γij

(θk1,p)
2 ds}p∈δji,h , θk1,p ∈ M1,hj (δji),

and Wkk = diag{∫
Γij

(φk1,p)
2 ds}p∈δji,h , φk1,p ∈ W

1,hj

0 (δji), and for matrices Mkl =

{∫
Γij

φl1,pθ
k
1,q ds}p,q∈δji,h for k, l = 0, 1.

We first introduce local matrices associated with an element e ∈ T jh(δji) and ob-
tained by integrating over this element. Let us define Wkk|e = diag{∫

e
(φk1,p)

2ds}p∈δji,h ,
Dkk|e = diag{∫

e
(θk1,p)

2 ds}p∈δji,h , and Mkl|e = {∫
e
φl1,pθ

k
t,q ds}p,q∈δji,h for k, l = 0, 1.

We have

D1 =
∑

e∈T j
h
(δji)

De, W1,0 =
∑

e∈T j
h
(δji)

We, M1 =
∑

e∈T j
h
(δji)

Me.

Then note that

(D1u,u) =
∑

e∈T j
h
(δji)

(Deu,u), (W1,0u,u) =
∑

e∈T j
h
(δji)

(Weu,u),

(M1u,u) =
∑

e∈T j
h
(δji)

(Meu,u).

The equivalence of We and De is obvious. We have to prove a spectral equivalence
of Me and De. Moving to reference element [0, 2] and utilizing (3.1) (in the case of
element e not touching endpoints of δji) and Lemma 5, section 4.1, p. 375 in [28]
(in the case of end-elements), together with a scaling argument, yields the following
bound (Deu,u) � (Meu,u). The upper bound is obvious.

Additionally we get an approximation property of this space in a standard way.

Proposition 3.2. The tangential space M1,h(δji) has the following approxima-
tion property:

inf
ψ∈M1,hj (Γij)

‖u− ψ‖L2(Γij) � hsj |u|Hs(Γij) ∀u ∈ Hs(Γij),

for s = 0, 1
2 , 1,

3
2 , 2.

Proof. The proof is standard for s = 0, 1, 2 (i.e., for s = 1, 2 the square of the
L2 norm over Γij is represented as a sum of integrals over disjoint segments [ml,mr]
(notation as in the definition of M1,hj (δji))), and then using a scaling argument
and a quotient space argument (cf., e.g., [16]) ends the proof of the case s = 1, 2.
Next a Hilbertian interpolation argument yields the proper estimate for remaining
cases.

Remark 1. From the proof it can be seen that the statement of Proposition 3.2
can be extended to all s ∈ [0.2], but in our paper we need only the result of that
proposition.

3.2. A normal test space. As in the previous subsection, let W 2,hj (Γij) be

the space of traces of normal derivatives of Xh(Ωj) onto δji, and let W
2,hj

0 (Γij) =
H1

0 (Γij) ∩ W 2,hj (Γij). That is, W 2,hj (Γij) is a space of all continuous piecewise
quadratic functions on the hj triangulation of δji.

Let δji,h/2 be the union of δji,h and of all midpoints of elements of the hj trian-

gulation of δji, and let δji,h/2 = δji,h/2 \ ∂δji; i.e., δji,h/2 is equal to δji,h/2 minus the
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ends of δji. Then, we introduce a standard nodal basis of W 2,hj (Γij) and W
2,hj

0 (Γij)
as follows: Let

φ2,p(q) =

{
1 p = q,
0 p �= q

(3.2)

for p, q ∈ δji,h/2 and δji,h/2, respectively.

We now introduce a mortar test space M2,h(δji) = Span{θ2,p, : p ∈ δji,h/2} for

each interface Γij = γij = δji which should be contained in (H1/2(Γij))
′. We take the

one which already has been introduced in [30] where a mortar method for second order
elliptic problems was considered. We define basis function of M2,hj (δji) as follows.

Let us first consider a nodal point p ∈ δji,h/2 which is in the closure of a left-
or right-end element of δji, respectively, denoted by el, er. Basis functions associated
with such points (we have four such points) are defined in a special way: Let m1 be a
midpoint of the left-end element el and p0, p1, p2, the three consecutive nodal points
of δji,h, i.e., p0, p1 are the left and right neighbors of m1, and p0 is the left end of δji;
then

θ2,m1(s) =

{
2|p0 − p1|−1|s− p1| for s ∈ [p0, p1],
0 for s ∈ δji \ [p0, p1],

and

θ2,p1(s) =

⎧⎨⎩
|p0 − p1|−1(2s− p0 − p1) for s ∈ [p0, p1],
1
4 (2 + 4φ2,p1(s) − 3φ2,p2(s)) for s ∈ [p1, p2],
0 for s ∈ δji \ [p0, p2],

respectively; cf. Figure 3.3. Here φ2,p is a nodal basis function defined by (3.2). The
two functions associated with two nodal points of δji,h/2 nearest to the right end of
this slave are given analogously.

For the rest of the nodal points such that p ∈ δji,h we set

θ2,p(s) =

{
1
2 (5φ2,p(s) − 2) for s ∈ [pl, pr],
0 for s ∈ δji \ [pl, pr],

and for p ∈ δji,h/2 \ δji,h (p is a midpoint) the function θ2,p is defined by

θ2,p(s) =

{
1
4 (2 − 3φ2,pl(s) + 4φ2,pl(s) − 3φ2,pl(s)) for s ∈ [pl, pr],
0 for s ∈ δji \ [pl, pr].

Here pl, pr ∈ δji,h/2 are the left and right neighboring nodal points of p ∈ δji,h/2,
respectively.

We have dimM2,h(δji) = dimW
2,hj

0 (δji).
The two following propositions can be straightforwardly obtained from the results

stated in section 1.2.4.3 in [30]; cf. also Properties (Sb), (Sd), and (Se) in section 1.2
in [30].

Proposition 3.3. The normal space M2,hj (Γij) has the following approximation
property:

inf
ψ∈M2,hj (Γij)

‖u− ψ‖L2(Γij) � hs|u|Hs(Γij) ∀u ∈ Hs(Γij), s = 0,
1

2
,
3

2
.
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p0 p1 p2m 1

2,m
1

2,p1
Θ

n

Θ 2,n Θ2,q

q

Θ

Fig. 3.3. Normal basis functions.

Proposition 3.4. For any u =
∑
p∈δji,h u(p)φ2,p ∈ W

2,hj

0 (δji) and the corre-

sponding function ũ =
∑
p∈δji,h u(p)θ2,p ∈M2,hj (δji) it holds that

‖u‖2
L2(δji)

� ‖ũ‖2
L2(δji)

�
∫
δji

uũ ds.

3.3. Ellipticity of aH(·, ·) in V h. In this subsection we state an ellipticity
property of aH(·, ·) in V h in the following proposition.

Proposition 3.5. For any u ∈ V h it holds that

c ‖u‖H2
H

(Ω) ≤ |u|H2
H

(Ω) ≤ C ‖u‖H2
H

(Ω),

where c, C are positive constants independent of hi and the number of subdomains.
Proof. Because Ω is bounded in R2 there exists a square [a, b]× [c, d] of the same

diameter as Ω such that Ω ⊂ [a, b] × [c, d]. Below we denote the extension of u to
[a, b] × [c, d] by zero also by u. For any (x1, x2) ∈ [a, b] × [c, d]

ux1(x1, x2) =

∫ x1

a

ux1x1(t, x2) dt+
∑

akl∈[a,x1]∩Γkl

[ux1 ](akl, x2),

where [·] denotes a jump over Γkl at point akl. Here akl is the common point of a
segment [a, x1] and an interface Γkl ⊂ ∂Ωk ∩ ∂Ωl.

By the Schwarz inequality we have

∫ x1

a

|ux1x1
(t, x2)| dt ≤

√
diam(Ω)

(∫ b

a

|ux1x1
(t, x2)|2 dt

)1/2

and

∑
akl∈[a,x1]∩Γkl

|[ux1 ](akl, x2)| ≤
(∑
akl

|Γkl|
)1/2(∑

akl

|Γkl|−1|[ux1 ](akl, x2)|2
)1/2

.
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By the shape regularity of the division of Ω into substructures we obtain the estimate∑
akl∈[a,b]∩Γkl

|Γkl| ≤ Cs |b − a|, where the positive constant Cs depends only on
the constant in the shape regularity condition, i.e., is independent of the number of
subdomains; see Lemma 2.2 in [7].

Hence integrating over Ω, we get

|u|2H1
H

(Ω) � |u|2H2
H

(Ω) +
∑

Γkl⊂Γ

1

|Γkl|
∫

Γkl

[∂nu]
2 + [∂su]

2 ds.

We now have to estimate the second sum. By (2.3) the average values of ∂nuk and
∂nul over interface Γkl are equal to each other. Thus the standard trace theorem and
the Poincaré inequality yield that∫

Γkl

|∂nuk − ∂nul|2 ds � diam(Ωk)|uk|2H2(Ωk) + diam(Ωl)|ul|2H2(Ωl)
.

Note that M1,hl(δlk) contains the space of linear polynomials. Thus by (2.2), a
quotient space argument (see, e.g., Theorem 3.1.1, p. 115 in [15]), a scaling argument,
and a trace theorem, we get∫

Γkl

|∂suk − ∂sul|2 ds � diam(Ωk)|uk|2H2(Ωk) + diam(Ωl)|ul|2H2(Ωl)
.

Summing over all interfaces concludes the proof of the estimate of the H1 seminorm.
Here we used the fact that from the shape regularity assumption follows diam(Ωs) �
|Γkl|, s = k, l.

The estimate of the L2 norm can be proved in a similar way.
As a direct consequence we have the following corollary.
Corollary 3.6. The discrete problem (2.4) has a unique solution.

3.4. Approximation property of V h. In order to prove an approximation
property of V h we have to introduce two types of operators: the first one corresponds
to normal parts of traces and was proposed in [30] (in more general form), and the
other is associated with tangential traces.

Definition 3.7. Let Π
(2)
ij : L2(Γij) →W

2,hj

0 (δji) be defined by∫
Γij

Π
(2)
ij uv ds =

∫
Γij

uv ds ∀v ∈M2,hj (δji).

Definition 3.8. Let Π
(1)
ij : L2(Γij) →W

1,hj

0 (δji) be defined by∫
Γij

Π
(1)
ij uv ds =

∫
Γij

uv ds ∀v ∈M1,hj (δji).

We introduce Hs
00(Γij) = [L2(Γij), H

2
0 (Γij)]s, a scale of Hilbertian interpolation

spaces for s ∈ [0, 2]. We note that Hs
00(Γij) = Hs(Γij) for 0 ≤ s < 1/2, specifically

H0
00(Γij) = L2(Γij), and H1

00(Γij) = H1
0 (Γij); cf. [24], [25]. The double zero in the

subscript plays an important role only in the case of s = 1/2 and 3/2.

We now state the most important properties of Π
(2)
ij and Π

(1)
ij , namely, stability

properties.
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Lemma 3.9. An operator Π
(2)
ij introduced in Definition 3.7 is well defined and

satisfies ∥∥∥Π(2)
ij u
∥∥∥
Hs

00(Γij)
� ‖u‖Hs

00(Γij) ∀u ∈ Hs
00(Γij)

for s ∈ [0, 1].
The proof follows directly from Lemma 1.3 in [30]; cf. also section 1.2.4.1 in [30].

Lemma 3.10. An operator Π
(1)
ij introduced in Definition 3.8 is well defined and,

moreover, it holds that∥∥∥Π(1)
ij u
∥∥∥
Hs

00(Γij)
� ‖u‖Hs

00(Γij) ∀u ∈ Hs
00(Γij)

for s ∈ [0, 2].

Proof. From Proposition 3.1 it follows that Π
(1)
ij u is well defined for any u ∈

L2(Γij). Let w = Π
(1)
ij u ∈ W

1,hj

0 (Γij) and w =
∑
l=0,1

∑
p∈δji w

(l)φl1,p and define

w̃ =
∑
l=0,1

∑
p∈δji w

(l)θl1,p ∈ M1,hj (Γij). Using Proposition 3.1 and Definition 3.8
we have

‖w‖2
L2(Γij)

�
∫

Γij

ww̃ ds =

∫
Γij

uw̃ ds

≤ ‖u‖L2(Γij)‖w̃‖L2(Γij) � ‖u‖L2(Γij)‖w‖L2(Γij).

From this it follows that Π
(1)
ij is well defined and stable in the L2 norm.

We now prove the H2
0 case. We have∣∣∣Π(1)

ij u
∣∣∣
H2(Γij)

≤
∣∣∣Π(1)

ij u−QW 1
0
u
∣∣∣
H2(Γij)

+ |QW 1
0
u|H2(Γij),

where QW 1
0

is the standard L2(Γij) orthogonal projection onto W
1,hj

0 (Γij) and it is a

known fact that QW 1
0

is stable in the H2 seminorm. Thus it suffices to estimate the

first term. Utilizing an inverse inequality and the L2 stability of Π
(1)
ij , we get∣∣∣Π(1)

ij u−QW 1
0
u
∣∣∣
H2(Γij)

� h−2
j

∥∥∥Π(1)
ij u−QW 1

0
u
∥∥∥
L2(Γij)

= h−2
j

∥∥∥Π(1)
ij (u−QW 1

0
u)
∥∥∥
L2(Γij)

� h−2
j ‖u−QW 1

0
u‖L2(Γij) � |u|H2(Γij).

The last estimate follows from an approximation property of QW 1
0
. We also used the

the fact that Π
(1)
ij is a projection (not orthogonal) onto W

1,hj

0 (Γij). Using a Hilbertian
interpolation argument ends the proof.

Lemma 3.11. For any u ∈ H4(Ω) ∩H2
0 (Ω), it holds that

inf
v∈V h

|u− v|2H2
H

(Ω) �
N∑
k=1

h4
k|u|2H4(Ωk).

The proof is similar to that of Lemma 4, section 4.1, p. 375 in [28]; therefore we omit
some details.
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Proof. Let ũ be a function in Xh(Ω) (cf., e.g., Theorem 48.1, p. 296 in [16]), such
that

|u− ũk|Hs(Ωk) � h4−s
k |u|H4(Ωk), s = 0, 1, 2.(3.3)

We next define for each interface Γij with the master γij and respective slave

δji two functions: wji = Π
(1)
ij (ũi − ũj) and ∂nwji = Π

(2)
ij (∂nũi − ∂nũj). Here

ũi, ũj , ∂nũi, ∂nũj are respective traces onto the master γij and the slave δji. Then
we define a global function w ∈ Xh(Ω) as follows: on a slave δji we set Tr wj|δji =
(wji, ∂swji, ∂nwji). Let Trwj be equal to zero on all masters contained in ∂Ωj . We
then define wj ∈ Xh(Ωj) as a discrete extension of Trwj in H2(Ωj) such that

|wj |H2(Ωj) � |∇Trw|∂Ωj
|
H

1/2
00 (∂Ωj)

;

cf. [12]. Then v = ũ+w is in V h, which follows from (2.2), (2.3), and Definitions 3.7
and 3.8. We have

|u− v|H2
H

(Ω) ≤ |u− ũ|H2
H

(Ω) + |w|H2
H

(Ω).

Note that the first term was estimated by (3.3).
We now estimate the seminorm of w. We have

|w|2H2
H

(Ω) �
∑

Γij⊂Γ

‖∇wj‖2

H
1/2
00 (δji)

�
∑
Γij

{‖∂swji‖2

H
1/2
00 (δji)

+ ‖∂nwji‖2

H
1/2
00 (δji)

}.

Thus by Lemmas 3.9 and 3.10 we have

|w|2H2
H

(Ω) �
∑

Γij⊂Γ

‖∇(ũi − ũj)‖2

H
1/2
00 (Γij)

�
∑

Γij⊂Γ

∑
k=i,j

‖∇(ũk − u)‖2

H
1/2
00 (Γij)

.

Utilizing (3.3) and afterwards summing the resulting inequalities over all interfaces
yields

|w|2H2
H

(Ω) �
∑

Γij⊂Γ

[
h4
i |u|2H4(Ωi)

+ h4
j |u|2H4(Ωj)

]
�

N∑
k=1

h4
k|u|2H4(Ωk).

This concludes the proof.

3.5. Consistency error. We first state two technical results.
Lemma 3.12. Let Q1,ij be the L2 orthogonal projection onto the test space

M1,hj (δji) defined on a slave δji ⊂ Γij. Then, for u ∈ Hr(Γij), it holds that

hsj‖u−Q1,iju‖L2(Γij) + ‖u−Q1,iju‖H−s(Γij) � hs+rj |u|Hr(Γij), s, r =
1

2
,
3

2
.(3.4)

Proof. A proof of the estimate of the L2 norm follows directly from Proposition
3.2. The estimates of the dual norms are proved using Proposition 3.2 and a duality
trick:

‖u−Q1,iju‖H−s(Γij) = sup
‖ψ‖Hs(Γij)≤1

|(u−Q1,iju, ψ)|

= sup
‖ψ‖Hs(Γij)≤1

|(u−Q1,iju, ψ −Q1,ijψ)|

≤ sup
‖ψ‖Hs(Γij)≤1

‖u−Q1,iju‖L2(Γij)‖ψ −Q1,ijψ‖L2(Γij)

� hs+rj |u|Hr(Γij).
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The proof is complete.
The next lemma states an analogous property of Q2,ij , the L2 orthogonal projec-

tion onto the normal space M2,hj (δji).
Lemma 3.13. Let Q2,ij be the L2 orthogonal projection onto the test space

M2,hj (δji) defined on a slave δji ⊂ Γij. It holds that

hsj‖u−Q2,iju‖L2(Γij) + ‖u−Q2,iju‖H−s(Γij) � hs+rj |u|Hr(Γij), s, r =
1

2
,
3

2
.(3.5)

The proof is very similar to the one of the previous lemma and follows from Proposition
3.3.

In the following lemma bounds for the consistency errors are given.
Lemma 3.14. Let u∗, a solution of (2.1), be in H4(Ω)∩H2

0 (Ω). Then for w ∈ V h

it holds that

|aH(u∗ − u∗h, w)| � |w|H2
H

(Ω)

(
N∑
k=1

h4
k|u∗|2H4(Ωk)

)1/2

,

where u∗h is a solution of (2.4).
Proof. Using the Green’s formulas (e.g., see (1.2.5) and (1.2.9), pp. 14–15 in [15])

and (2.4), we have

aH(u∗ − u∗h, w) = aH(u∗, w) − f(w) =

3∑
k=1

Ek(u
∗, w),

where

E1(u
∗, w) =

∫
Γ

−∂n(�u∗)[w] ds, E2(u
∗, w) =

∫
Γ

(1 − ν)∂n∂su
∗[∂sw] ds,

and

E3(u
∗, w) =

∫
Γ

(�u∗ − (1 − ν)∂2
su

∗)[∂nw] ds.

We note that ∂n, ∂s are normal and tangential derivatives, while [·] is the jump across
the interface Γ.

Utilizing the fact that [w] is equal to zero at the ends of any interface Γkl, we
obtain

E2(u
∗, w) = −

∑
Γij

(1 − ν)

∫
Γij

∂s∂n∂su
∗[w] ds.(3.6)

Let E0(u
∗, w) = E1(u

∗, w)+E2(u
∗, w) and E0(u

∗, w) =
∫
Γ
G3u

∗[w]ds, where G3u
∗ =

−∂n�u∗ − (1 − ν)∂s∂n∂su
∗.

We now consider one interface Γij which is equal geometrically to the mortar γij
and slave δji. The mortar condition (2.2) yields that Q1,ijwi = Q1,ijwj and∫

Γij

G3u
∗[w] ds =

∫
Γij

((I −Q1,ij)G3u
∗) [w] ds

� ‖(I −Q1,ij)G3u
∗‖H−3/2(Γij)

⎛⎝∑
k=i,j

|wk|H3/2(Γij)

⎞⎠ .
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Using the Schwarz inequality, Lemma 3.12, and the standard trace theorem (e.g.,
cf. Theorem 1.5.2.1, p. 42 in [19]), we have∫

Γij

G3u
∗[w] ds � h2

j |u∗|H4(Ωj)(|wi|H2(Ωi) + |wj |H2(Ωj)).

Summing over all interfaces yields the estimate of E0(u
∗, w).

Let G2u
∗ = �u∗ − (1 − ν)(∂2

su
∗); then proceeding similarly to above and using

(2.3) instead of (2.2) and Lemma 3.13 we obtain

∫
Γij

G2u
∗[∂nw] ds ≤ ‖(I −Q2,ij)G2u

∗‖H−1/2(δji)

⎛⎝∑
k=i,j

|∂nwk|H1/2(δji)

⎞⎠
� h2

j |G2u
∗|H3/2(δji)(|∂nwi|H1/2(δji) + |∂nwj |H1/2(δji))

� h2
j |u∗|H4(Ωj)(|wi|H2(Ωi) + |wj |H2(Ωj)).

Summing over all interfaces yields the estimate of E3(u
∗, w).

The proof is complete.
As a simple consequence of the second Strang lemma (see, e.g., Lemma 8.1.9,

p. 198 in [11] or [6]), Lemmas 3.11 and 3.14, and Proposition 3.5 we get an optimal
error estimate that is stated in the following theorem.

Theorem 3.15. Let u∗ and u∗h, the solutions of (2.1) and of (2.4), respectively,
be in H2

0 (Ω) ∩H4(Ω). Then it holds that

‖u∗ − u∗h‖H2
H

(Ω) �
(

N∑
k=1

h4
k|u∗|2H4(Ωk)

)1/2

.(3.7)

4. Inf-sup condition. In this section we prove that under our assumptions an
inf-sup condition holds for (2.5). An interpretation of Lagrange multipliers is given.
We follow [4] and [9] where second order elliptic problems were considered.

We first introduce a space X00(Ω) ⊂∏N
k=1H

2
C(Ωk) as follows:

X00(Ω) =

{
v ∈

N∏
k=1

H2
C(Ωk) : v continuous at crosspoints,(4.1)

[v] ∈ H
3/2
00 (Γij), and [∂nv] ∈ H

1/2
00 (Γij) ∀Γij ⊂ Γ

}
,

where

H2
C(Ωk) = {v ∈ H2(Ωk) : v = ∂nv = 0 on ∂Ω ∩ ∂Ωk}.

Remark 2. The space X00(Ω) is not closed in the norm ‖ · ‖H2
H

(Ω). The proof is

very similar to that of Remark 2.1 in [9].
Therefore the space X00(Ω) is endowed with the following norm:

‖v‖2
X = ‖v‖2

H2
H

(Ω) +
∑

Γij⊂Γ

{
‖[v]‖2

H
3/2
00 (Γij)

+ ‖[∂nv]‖2

H
1/2
00 (Γij)

}
.(4.2)
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We have the following proposition.
Proposition 4.1. The space X00(Ω) endowed with the norm ‖ · ‖X is complete;

moreover, the following continuous embedding holds:

H2
0 (Ω) ⊂ X00(Ω) ⊂

N∏
k=1

H2
C(Ω).

This proposition is analogous to Remark 2.2 in [9], where the case of H1 space is
considered. The proof is also quite similar to that in [9]; therefore it is skipped.

The spaceH2
0 (Ω) can be described as a subspace ofX00(Ω) formed by all functions

for which

H
−3/2
00 (Γij)

〈µ1, [v]〉H3/2
00 (Γij)

= 0 ∀µ1 ∈ H
−3/2
00 (Γij),

H
−1/2
00 (Γij)

〈µ2, [∂nv]〉H1/2
00 (Γij)

= 0 ∀µ2 ∈ H
−1/2
00 (Γij).(4.3)

Here H
−3/2
00 (Γij) and H

−1/2
00 (Γij) denote the dual spaces of H

3/2
00 (Γij) and H

1/2
00 (Γij),

respectively.

We introduce a space of Lagrange multipliers M(Γ) =
∏

Γij⊂ΓH
−3/2
00 (Γij) ×

H
−1/2
00 (Γij) endowed with the norm

‖ψ‖2
M =

∑
Γij⊂Γ

‖ψ|δji‖2

H
−3/2
00 (Γij)×H−1/2

00 (Γij)
(4.4)

=
∑

Γij⊂Γ

{
‖ψ1‖2

H
−3/2
00 (Γij)

+ ‖ψ2‖2

H
−1/2
00 (Γij)

}
.

Let us consider a saddle point problem: Find a pair (u∗, λ∗) ∈ X00(Ω) ×M(Γ)
such that

aH(u∗, v) + b(λ∗, v) = (f, v) ∀v ∈ X00(Γ),(4.5)

b(µ, u∗) = 0 ∀µ ∈M(Γ),

where

b(µ, v) =
∑

Γij⊂Γ
H

−3/2
00 (Γij)

〈µ1, [v]〉H3/2
00 (Γij)

+
H

−1/2
00 (Γij)

〈µ2, [∂nv]〉H1/2
00 (Γij)

.

Then we have the following theorem.
Theorem 4.2. The problem (4.5) has a unique solution since the following inf-

sup condition holds:

inf
ψ∈M(Γ)\{0}

sup
u∈X00(Ω)\{0}

b(ψ, u)

‖ψ‖M‖u‖X ≥ C.(4.6)

Moreover, the first term of the solution of (4.5) is also a solution of (2.1) and if we
assume that the solution of (2.1) u∗ is in H2

0 ∩H4(Ω), then

λ∗ = (λ∗1, λ
∗
2) = (−∂n�u∗ − (1 − ν)∂s∂n∂su

∗,�u∗ − (1 − ν)∂2
su

∗) on Γij ⊂ Γ.

Proof. The last statement of the theorem follows from the Green’s integral for-
mulas; cf., e.g., [16].
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We obviously have that b(·, ·) is continuous over X00(Ω)×M(Γ) and that aH(·, ·)
is continuous over X00(Ω) and from (4.3) we see that aH(·, ·) is elliptic over

H2
0 (Ω) = {v ∈ X00(Ω) : b(µ, v) = 0 ∀µ ∈M(Γ)}.

Thus there is a unique u∗ ∈ H2
0 (Ω) which is the first part of a solution of (4.5). In

order to get the existence of the second part of this solution, the Babuška–Brezzi–
Ladyzhenskaya condition has to be proved.

Let µ ∈ M(Γ), µ = {µij}Γij⊂Γ for µij = (µ1, µ2) ∈ H
3/2
00 (δji) × H

1/2
00 (δji). For

each interface Γij ⊂ Γ, with jth the slave side of Γij , we introduce a function wij ∈
H2

0,Γij
(Ωj) as a unique solution of

aj(wij , v) =

∫
Γij

µ1v ds+

∫
Γij

µ2∂nv ds ∀v ∈ H2
0,δji(Ωj).(4.7)

Here aj(·, ·) = a|Ωj
(·, ·) is the restriction of bilinear form a(·, ·) to the subregion Ωj ,

H2
0,δji(Ωj) = {u ∈ H2(Ωj) : u = ∂nu = 0 on ∂Ωj \ δji},(4.8)

and
∫
Γij

µ1v ds and
∫
Γij

µ2∂nv ds denote the dual pairs for H
3/2
00 (Γij) and H

1/2
00 (Γij),

respectively. The standard trace and extension theorems yield that

‖µ|Γij
‖
H

−3/2
00 (δji)×H−1/2

00 (δji)
� sup

|u|H2(Ω)=1

(∫
δji

µ1u ds+

∫
δji

µ2∂nu ds

)
,

where sup is taken over H2
0,δji

(Ωj). Thus

‖µ|Γij
‖2

H
−3/2
00 (Γij)×H−1/2

00 (Γij)
� |wij |2H2(Ωj)

(4.9)

=

∫
Γij

µ1wij ds+

∫
Γij

µ2∂nwij ds.

Then, we define a function w = {∑δji⊂∂Ωj
wij}Nj=1. We have w ∈ X00(Ω) as [w] = wij

and [∂nw] = ∂nwij on Γij . By this, the Friedrich’s theorem, and trace theorems we
have

‖w‖2
X �

∑
Γij⊂Γ

|wij |2H2(Ωj)
�
∑

Γij⊂Γ

‖µ|Γij
‖2

H
−3/2
00 (Γij)×H−1/2

00 (Γij)
= ‖µ‖2

M .

Then

‖µ‖2
M =

∑
Γij⊂Γ

‖µ|Γij
‖2

H
−3/2
00 (Γij)×H−1/2

00 (Γij)
� b(µ,w) � b(µ,w)

‖µ‖M
‖w‖X .

Thus the inf-sup condition is proved. We can conclude that there is a unique solution
of (4.5); see [13].

We next prove the following theorem which gives us a discrete inf-sup condition.
Theorem 4.3. For problem (2.5) the following inf-sup condition holds:

inf
ψ∈Mh(Γ)\{0}

sup
u∈Xh(Ω)\{0}

b(ψ, u)

‖ψ‖M‖u‖X ≥ C,(4.10)
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where C is a constant independent of any hk and the number of subdomains.
Proof. Let us consider a function ψ ∈ Mh(Γ) and ψij = (ψ1, ψ2) ∈ Mh(δji),

its restriction to an interface Γij = δji = γij . Here H2
0,δji

(Ωj) was defined in (4.8).
Next, as in the proof of the previous theorem, we introduce an auxiliary function
w = {∑δji⊂∂Ωj

wij}Nj=1, where wij is a function defined locally on Ωj (δji ⊂ ∂Ωj), as

a unique solution of (4.7) with µk replaced by ψk for k = 1, 2. Again we have

‖ψij‖2

H
−3/2
00 (δji)×H−1/2

00 (δji)
� |wij |2H2(Ωj)

(4.11)

=

∫
δji

wijψ1 ds+

∫
δji

∂nwijψ2 ds.

We now construct a discrete function wh = {∑δji⊂∂Ωj
wh,ij}Nj=1 ∈ Xh(Ω) associated

with w.
We define wh,ij for δji ⊂ ∂Ωj locally over Ωj as follows:⎧⎪⎨⎪⎩

aj(wh,ij , v) = 0 ∀v ∈ X0,h(Ωj),

T r wh,ij =
(
Π

(1)
ij wij , ∂s

(
Π

(1)
ij wij

)
,Π

(2)
ij ∂nwij

)
on δji,

T r wh,ij = 0 on ∂Ωj \ δji,
(4.12)

where Trv = (v|∂Ωj
,∇v|∂Ωj

) for v,∇v—the H2 traces of v ∈ H2(Ωj), and X0,h(Ωj) =
Xh(Ωj) ∩H2

0 (Ωj).
Now from the Friedrich’s inequality, the discrete extension theorem (see, e.g.,

[23]), Lemmas 3.10 and 3.9, and the standard trace theorem we obtain

‖wh,ij‖2
H2(Ωj)

�
∥∥∥∂s (Π(1)

ij wij

)∥∥∥2
H

1/2
00 (δji)

+
∥∥∥Π(2)

ij ∂nwij

∥∥∥2
H

1/2
00 (δji)

(4.13)

� ‖∂swij‖2

H
1/2
00 (δji)

+ ‖∂nwij‖2

H
1/2
00 (δji)

� |wij |2H2(Ωj)
.

Note that

[wh] = wh,ij and [∂nwh] = ∂nwh,ij on δji ⊂ Γ.

Thus

‖[∂swh]‖2

H
1/2
00 (δji)

+ ‖[∂nwh]‖2

H
1/2
00 (δji)

= ‖∂swh,ij‖2

H
1/2
00 (δji)

+ ‖∂nwh|δji‖2

H
1/2
00 (δji)

� |wij |2H2(Ωj)
.

Then summing over all interfaces we have

‖wh‖2
X �

∑
δji⊂Γ

|wij |2H2(Ωj)
� ‖ψ‖2

M .(4.14)

We next see that by Definitions 3.7 and 3.8

‖ψ‖2
M �

∑
δji⊂Γ

{∫
δji

wijψ1 ds+

∫
δji

∂nwijψ2 ds

}

=
∑
δji⊂Γ

{∫
δji

Π
(1)
ij wijψ1 ds+

∫
δji

Π
(2)
ij ∂nwijψ2

}
ds
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=
∑
δji⊂Γ

{∫
δji

wh,ijψ1 ds+

∫
δji

∂nwh,ijψ2

}
ds = b(ψ,wh)

� b(ψ,wh)
‖ψ‖M
‖wh‖X .

The proof is completed.
We also consider the mesh-dependent norms and introduce a series of mesh-

dependent norms defined on a single slave δji ⊂ ∂Ωj for any ψ ∈ L2(δji):

‖ψ‖2
s,h,δji = h−2s

j ‖ψ‖2
L2(δji)

, s ∈ R.(4.15)

Certainly, we have

(u, v)L2(δji) ≤ ‖u‖−s,h,δji‖v‖s,h,δji .

Let the mesh-dependent norm on Mh(Γ) be defined by

‖ψ‖2
M,h =

∑
δji⊂(Γ)

{‖ψt|δji‖2
−3/2,h,δji

+ ‖ψn|δji‖2
−1/2,h,δji

}(4.16)

=
∑

δji⊂(Γ)

{
h3
j‖ψ1‖2

L2(δji)
+ hj‖ψ2‖2

L2(δji)

}
,

while on Xh(Ω) by

‖u‖2
X,h = ‖u‖2

H2
H

(Ω) +
∑
δji⊂Γ

{‖[u|δji ]‖2
3/2,h,δji

+ ‖[∂nu|δji ]‖2
1/2,h,δji

}.(4.17)

The next theorem gives us a discrete inf-sup condition in the mesh-dependent
norm ‖ · ‖M,h.

Theorem 4.4. For problem (2.5) the following inf-sup condition holds:

inf
ψ∈Mh(Γ)\{0}

sup
u∈Xh(Ω)\{0}

b(ψ, u)

‖ψ‖M,h‖u‖X,h ≥ C,(4.18)

where C is a constant independent of any hk and the number of subdomains.
Proof. For a slave δji and a restriction of µ = (µ1, µ2) ∈Mh(Γ) to δji we introduce

two functions µ̃1 ∈W
1,hj

0 (δji) and µ̃2 ∈W
2,hj

0 (δji).

With a function µ1 =
∑
l=0,1

∑
p∈δji,h µ

(l)
1 (p)θl1,p ∈M1,hj (Γij) we associate µ̃1 =∑

l=0,1

∑
p∈δji,h µ

(l)
1 (p)φl1,p and for µ2 =

∑
p∈δji,h/2

µ2(p)θ2,p ∈ M2,hj (Γij) we define

µ̃2 =
∑
p∈δji,h/2

µ2(p)φ2,p. By Propositions 3.1 and 3.4 we have

‖µk‖2
L2(δji)

� ‖µ̃k‖2
L2(δji)

�
∫
δji

µkµ̃k ds, k = 1, 2.(4.19)

We next see that

‖µ1‖−3/2,h,δji �
h

3/2
j

∫
δji
µ1µ̃1 ds

‖µ̃1‖0,h,δji

=

∫
δji
µ1µ̃1 ds

‖µ̃1‖3/2,h,δji

=

∫
δji

µ1µ̂1 ds,(4.20)
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where µ̂1 = µ̃1/‖µ̃1‖3/2,h,δji . Analogously, we get

‖µ2‖−1/2,h,δji �
∫
δji

µ2µ̂2 ds,(4.21)

where µ̂2 = µ̃2/‖µ̃1‖1/2,h,δji . Then we introduce two functions w1,ij , w2,ij ∈ Xh(Ωj)
as follows: ⎧⎨⎩

aj(w1,ij , v) = 0 ∀v ∈ X0,h(Ωj),
T r w1,ij = (µ̂1, ∂sµ̂1, 0) on δji,
T r w1,ij = 0 on ∂Ωj \ δji,

(4.22)

⎧⎨⎩
aj(w2,ij , v) = 0 ∀v ∈ X0,h(Ωj),
T r w2,ij = (0, 0, µ̂2) on δji,
T r w2,ij = 0 on ∂Ωj \ δji,

(4.23)

where Trv = (v|∂Ωj
,∇v|∂Ωj

) for v,∇v—the H2 traces of v ∈ H2(Ωj), and X0,h(Ωj) =
Xh(Ωj) ∩ H2

0 (Ωj). The extension of wk,ij , k = 1, 2, by zero to Ω is denoted by the
same symbols. By the Friedrich’s inequality, the extension theorem of [23], and inverse
inequalities we have

‖w1,ij‖2
H2(Ωj)

� ‖∂sµ̂1‖2

H
1/2
00 (δji)

� ‖µ̂1‖2
3/2,h,δji

= 1,

‖w2,ij‖2
H2(Ωj)

� ‖µ̂2‖2

H
1/2
00 (δji)

� ‖µ̂2‖2
1/2,h,δji

= 1.

We then define a function w ∈ Xh(Ω) as follows:

w =
∑
k=1,2

∑
δji⊂Γ

b(µk, wk,ij)wk,ij =
∑
k=1,2

∑
δji⊂Γ

∫
δji

µkµ̂k ds wk,ij .

From the definition and a coloring argument we find that

‖w‖2
H2

H
(Ω) �

N∑
j=1

∑
δji⊂∂Ωj

∑
k=1,2

b(µk, wk,ij)
2‖wk,ij‖2

H2(Ωj)

�
∑
δji⊂Γ

{‖µ1‖2
−3/2,h,δji

‖w1,ij‖2
3/2,h,δji

+ ‖µ1‖2
−1/2,h,δji

‖w2,ij‖2
1/2,h,δji

}(4.24)

=
∑
δji⊂Γ

{‖µ1‖2
−3/2,h,δji

+ ‖µ2‖2
−1/2,h,δji

} = ‖µ‖2
M,h

and, analogously,

‖[w]‖3/2,h,δji = |b(µ1, w1,ij)| ‖w1,ij‖3/2,h,δji � ‖µ1‖−3/2,h,δji

and

‖[∂nw]‖1/2,h,δji = |b(µ2, w2,ij)| ‖w2,ij‖1/2,h,δji � ‖µ2‖−1/2,h,δji .

Summing over all δji ⊂ Γ and utilizing (4.24) we get

‖w‖X,h � ‖µ‖M,h.
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Finally, this, (4.20), and (4.21) yield

‖µ‖2
M,h �

∑
δji⊂Γ

∑
k=1,2

b(µk, wk,ij) = b(µ,w) � b(µ,w)
‖µ‖M,h

‖w‖X,h .

Dividing by ‖µ‖M,h completes the proof.
We then have a theorem which gives us estimates of the error for Lagrange mul-

tipliers in the norms ‖ · ‖M and ‖ · ‖M,h.
Theorem 4.5. If we assume that u∗, a solution of (2.1), belongs to H2

0 ∩H4(Ω),
then

‖λ∗ − λ∗h‖2
M + ‖λ∗ − λ∗h‖2

M,h �
N∑
k=1

h2
k|u∗|2H4(Ωk).

Proof. We first have for any µ ∈Mh(Γ) (cf., e.g., [13])

‖λ∗ − λ∗h‖M ≤ ‖λ∗ − µ‖M + ‖µ− λ∗h‖M ∀µ ∈Mh(Γ).

Next, by Theorem 4.3 we get

‖µ− λ∗h‖M � sup
v∈Xh(Ω)

b(λ∗h − µ, v)

‖v‖X ,

and by (4.5) and (2.5)

b(λ∗h − µ, v) = b(λ∗h − λ∗, v) + b(λ∗ − µ, v) = aH(u∗ − u∗h, v) + b(λ∗ − µ, v).

Thus

b(λ∗h − µ, v)

‖v‖X � |u∗ − u∗h|H2
H

(Ω) + ‖λ∗ − µ‖M .

Finally, we get

‖λ∗ − λ∗h‖M � inf
µ∈Mh(Γ)

‖λ∗ − µ‖M + |u∗ − u∗h|H2
H

(Ω).

The second term is bounded by Lemma 3.11. This estimate is also valid for the mesh-

dependent norm. By continuous embeddings H
3/2
00 (δji) ⊂ H3/2(δji) and H

1/2
00 (δji) ⊂

H1/2(δji) we have

‖ · ‖
H

−3/2
00 (δji)

� ‖ · ‖H−3/2(δji) and ‖ · ‖
H

−1/2
00 (δji)

� ‖ · ‖H−1/2(δji).

Thus Lemmas 3.12 and 3.13 and the trace theorems yield

‖λ∗1 −Q1,ijλ
∗
1‖H−3/2

00 (δji)
≤ ‖λ∗1 −Q1,ijλ

∗
1‖H−3/2(δji) � h2

j |λ∗1|H1/2(δji)

� h2
j |u∗|H4(Ωj)

and

‖λ∗2 −Q2,ijλ
∗
2‖H−1/2

00 (δji)
≤ ‖λ∗2 −Q2,ijλ

∗
2‖H−1/2(δji) � h2

j |λ∗2|H3/2(δji)

� h2
j |u∗|H4(Ωj).
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Summing over all δji ⊂ Γ completes the proof.

The last part of the proof for the mesh-dependent norms ‖ · ‖M,h and ‖ · ‖X,h
can be done in a very similar way, utilizing the L2 estimates of Lemmas 3.12 and
3.13.

Remark 3. Throughout this section the Poincaré inequalities and the trace and
extension theorems are utilized frequently for the subdomains and then the respective
constants depend on the diameter of the subdomain. This is taken into account
implicitly in all proofs; however, it is not written explicitly. We also would like to
note that the other equivalent approach is to use local norms scaled appropriately by
the diameters of respective subdomains.

Acknowledgment. The author would like to thank Prof. Maksymilian Dryja
for his encouragement and many helpful discussions.
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Abstract. This paper is concerned with the stability properties of Runge–Kutta methods for
the pantograph equation, a functional differential equation with a proportional delay. The focus is
on nonautonomous equations. Both linear and nonlinear cases are considered. Sufficient and neces-
sary conditions for the asymptotic stability of the numerical solution of general neutral pantograph
equations are given. An upper bound for the error growth is investigated for algebraically stable
methods applied to nonneutral equations. Finally, some stability results are extended to the case of
a more general class of equations.
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1. Introduction. Many real-world phenomena can be modelled by initial value
problems for functional differential equations of the form

y′(t) = f(t, y(t), y(t− τ(t)), y′(t− τ(t))).(1.1)

In recent years, the study of numerical solvers for this problem has attracted the at-
tention of many authors. The classical case where the term τ(t) is a constant can be
regarded as a representative of finite time delay and has been widely studied in the
literature (see, for example, Baker [1], Bellen and Zennaro [5] and the extensive bib-
liography therein). Another interesting case, which can be viewed as a representative
of infinite time delay, is that of the pantograph equation, where

τ(t) = (1 − q)t, q ∈ (0, 1).

For applications of this type of equation, we refer to Iserles [16].
In order to get insight into the stability of numerical methods for the pantograph

equation, the scalar linear autonomous equation

y′(t) = ay(t) + by(qt) + cy′(qt), t > 0,(1.2)

has been used as a test problem and many interesting results have been found (cf. [2,
6, 7, 8, 9, 17, 18, 22, 24, 25]). In the early work, a constant stepsize was consid-
ered. As pointed out in Liu [22, 24], however, this kind of stepsize precludes long
time integration due to computer memory restrictions. In order to overcome this
difficulty, Liu [22] transformed (1.2) into a differential equation with a constant delay
by a change of variable, suggested by Jackiewicz [20]. Later, Liu [24] and Bellen,
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Guglielmi, and Torelli [2] proposed nonconstant stepsize strategies where the step-
sizes are geometrically increasing and they investigated the stability of θ-methods.
Recently, Koto [21] further studied the stability of general Runge–Kutta methods for
the multidimensional system

u′(t) = etLu(t) + etMu(t+ log q) +Nu′(t+ log q), t > 0,(1.3)

which is obtained from the equation

y′(t) = Ly(t) +My(qt) + qNy′(qt), t > 0,(1.4)

by a change of the independent variable u(t) = y(et), where L, M , and N are con-
stant complex d× d matrices. In an abstract sense the geometrically increasing mesh
approach and the exponential transform method may be considered to be essentially
the same (cf. [21]). Relevant to the nonautonomous pantograph equation, however,
only few results on numerical stability have been published. Bellen, Guglielmi, and
Torelli [2], and Guglielmi and Zennaro [13] discussed the asymptotic stability of θ-
methods for scalar equations with variable coefficients. Bellen, Maset, and Torelli [4]
studied the “first step” integration of linear systems of neutral type and investigated
the contractivity of continuous Runge–Kutta methods. Zhang and Sun [28, 29] re-
cently obtained some stability results of Runge–Kutta methods for a class of nonlinear
equations of nonneutral type (see Theorem 6.1 of this paper).

In this paper, a new approach for proving numerical stability is introduced. Suf-
ficient and necessary conditions for asymptotic stability are derived for both linear
and nonlinear problems of neutral type. Also, upper bounds for the error growth are
studied for nonneutral systems and some sharper results than those published in the
literature are obtained.

This paper is organized as follows. In section 2, the discrete schemes based on
Runge–Kutta methods are introduced. In section 3, we focus on the asymptotic
stability of the schemes for linear systems of neutral type with variable coefficients.
In section 4, an upper bound for the error growth is given for a class of linear problems.
In section 5, we turn our attention to nonlinear equations and an asymptotic stability
result is derived. In section 6, we further investigate the error growth bound for a
class of nonlinear problems. In section 7, we generalize our stability analysis to the
case of a more general class of equations. Finally, in section 8, some conclusions are
drawn.

2. Adaptation of Runge–Kutta methods to functional-differential equa-
tions of pantograph type. In this section, we consider the adaptation of Runge–
Kutta methods to the pantograph equation{

y′(t) = f(t, y(t), y(qt), y′(qt)), t > 0,
y(0) = y0,

(2.1)

where f : [0,+∞) × C
d × C

d × C
d → C

d, is a given mapping and q is a constant
satisfying q ∈ (0, 1).

Let (A, b, c) denote a given Runge–Kutta method characterized by the s×smatrix
A = (aij) and vectors b = (b1, . . . , bs)

T , c = (c1, . . . , cs)
T . In this paper we always

assume that
∑s
j=1 bj = 1. Let tn, n = 0, 1, . . . , be grid points satisfying

0 = t0 < t1 < t2 < · · · <∞, lim
n→∞ tn = ∞,
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and hn = tn+1 − tn, the corresponding stepsizes. Approximations yn+1 to y(tn+1) are
defined by the following equations:

Y
(n)
i = yn + hn

s∑
j=1

aijf(tn + cjhn, Y
(n)
j , Ȳ

(n−m)
j , Ŷ

(n−m)
j ), i = 1, . . . , s,(2.2)

yn+1 = yn + hn

s∑
j=1

bjf(tn + cjhn, Y
(n)
j , Ȳ

(n−m)
j , Ŷ

(n−m)
j ),(2.3)

where each Y
(n)
j is an approximation to y(tn + cjhn), the arguments Ȳ

(n−m)
j and

Ŷ
(n−m)
j denote approximations to y(q(tn + cjhn)) and y′(q(tn + cjhn)), respectively,

obtained by specific interpolation procedures at the point t = q(tn + cjhn), and m is
a positive integer that will be defined later.

In this paper, we consider a nonconstant stepsize strategy where the stepsizes
are geometrically increasing. This kind of grid was proposed by Liu [24], and by
Bellen, Guglielmi, and Torelli [2]. As pointed out in the above references, it has two
advantages. First, it can avoid the computer memory problems in the case of long-
time integration. Second, an interpolation procedure is not necessary if we choose the
grid such that every delayed point maps exactly onto a past grid point.

To formulate the grid, we partition the half-line [0,+∞) into a union of bounded
intervals as follows:

[0,+∞) = [0, h]
∞⋃
k=0

(q−kh, q−k−1h],

where h is an arbitrary but fixed positive number. Second, we further divide ev-
ery interval (q−kh, q−k−1h] into a fixed number m of subintervals whose length is

proportionally increasing with the factor p = q
−1
m , i.e.,

(q−kh, q−k−1h] =

m⋃
i=1

(q−kpi−1h, q−kpih].

The first interval [0, h] is divided as follows:

[0, h] = [0, qh]

m⋃
i=1

(qpi−1h, qpih].

Therefore, we obtain the global grid defined by

tn = pn−m−1h, n = 1, 2, . . . ,

which gives

hn = tn+1 − tn = pn−m−1(p− 1)h, n = 1, 2, . . . ,

and h0 = qh. Hence, for n = m+ 1,m+ 2, . . . ,

qtn = tn−m and qhn = hn−m,

which shows the delayed point is just on the past grid point and

q(tn + cjhn) = tn−m + cjhn−m.
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Therefore, we can set

Ȳ
(n−m)
j = Y

(n−m)
j ,

Ŷ
(n−m)
j = f(tn−m + cjhn−m, Y

(n−m)
j , Y

(n−2m)
j , Ŷ

(n−2m)
j ),

which on substitution into (2.2)–(2.3) gives

Y
(n)
i = yn + hn

s∑
j=1

aij Ŷ
(n)
j , i = 1, . . . , s,(2.4)

Ŷ
(n)
j = f(tn + cjhn, Y

(n)
j , Y

(n−m)
j , Ŷ

(n−m)
j ), j = 1, . . . , s,(2.5)

yn+1 = yn + hn

s∑
j=1

bj Ŷ
(n)
j .(2.6)

Remark 2.1. In Liu [24], this kind of stepsize was used in the numerical exam-
ples although a slightly more general assumption on the grid was considered in the
theoretical analysis. In Bellen, Guglielmi, and Torelli [2], the stepsize strategy in the
theoretical analysis is that every interval (q−kh, q−k−1h] is divided into m intervals of
the same size. The strategy of proportionally increasing stepsizes was also suggested
in Remark 5.1 of their paper where it is pointed out that this choice can simplify the
implementation of the method considerably and leads to a more regular behavior of
the error.

Remark 2.2. Because we are interested in the stability of the numerical so-

lution, we assume that the initial values Y
(n−1)
j , Ŷ

(n−1)
j , and yn are available for

n = 1, 2, . . . ,m. For the integration of the first steps, i.e., the initializing methods,
we refer to the paper by Bellen, Maset, and Torelli [4].

Now we introduce some concepts which will be used later.
Definition 2.3 (see [14]). The stability function of a Runge–Kutta method

(A, b, c) is defined by

R(z) = 1 + zbT (Is − zA)−1e,

where e = [1, . . . , 1]T and Is stands for the s× s identity matrix.
Definition 2.4. When A is nonsingular, the method is called strictly stable at

infinity if

|R(∞)| = |1 − bTA−1e| < 1.

Definition 2.5 (see [10]). A Runge–Kutta method (A, b, c) is called algebraically
stable if the following matrix M = [Mij ] is nonnegative definite:

M = BA+ATB − bbT ,

where B = diag(b1, b2, . . . , bs).

3. Linear stability. In this section, we discuss the stability of Runge–Kutta
methods for linear systems of the form

y′(t) = L(t)y(t) +M(t)y(qt) +N(t)y′(qt), t > 0,(3.1)

where L(t), M(t), and N(t) are complex d× d matrices whose entries are continuous
functions. First, we recall some results on the stability of the analytical solution. For
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the autonomous case (1.4) of (3.1), a result obtained by Liu [23] (see also [16]) implies
the following proposition.

Proposition 3.1. The zero solution of (1.4) is asymptotically stable if L, M
satisfy

σ[L] ⊂ C
−, ρ[L−1M ] < 1,(3.2)

where C
− = {z ∈ C : Re z < 0}, and σ[·] and ρ[·] denote the spectrum and spectral

radius of a matrix, respectively.
For the asymptotic stability of the nonautonomous neutral system (3.1), a result

obtained by Iserles and Terjeki [19] implies the following proposition.
Proposition 3.2. The zero solution of (3.1) is asymptotically stable if there

exists a vector norm ‖ · ‖∗ on C
d, with induced matrix norm and the corresponding

logarithmic norm µ[·] such that for all t ≥ 0 the following statements hold:

µ[L(t)] ≤ 0, ‖N(t)‖∗ ≤ ξ0 < 1,

∫ ∞

0

µ[L(t)]dt = −∞,(3.3)

max
x∈[0,t]

‖M(x) +N(x)L(qx)‖∗ + k0µ[L(t)](1 − ξ0) ≤ 0 for some k0 ∈ (0, 1).(3.4)

Now we analyze the conditions of Proposition 3.2 in order to motivate our as-
sumptions for the numerical stability analysis. We consider the nonneutral case, i.e.,
N(t) = 0. If lim supt→∞ µ[L(t)] = 0, from (3.4) it follows that M(t) = 0, t ∈ [0,∞),
which leads to a trivial case. Therefore, we assume that for sufficiently large t,
µ[L(t)] ≤ L0 < 0, which implies that the matrix L(t) is nonsingular. Hence, from the
properties of the logarithmic norm (cf. [12]), it follows that

‖L−1(t)‖∗ ≤ 1

−µ(L(t))
≤ 1

−L0
.

In addition, for every u ∈ C
d,

−µ[L(t)]‖u‖∗ ≤ ‖L(t)u‖∗,
which guarantees that, for every v ∈ C

d,

−µ[L(t)]‖L−1(t)M(t)v‖∗ ≤ ‖M(t)v‖∗.
Therefore, we have

−µ[L(t)]‖L−1(t)M(t)‖∗ ≤ ‖M(t)‖∗,
which, combined with (3.4), implies

‖L−1(t)M(t)‖∗ ≤ k0 < 1.

In our analysis of the asymptotic stability of numerical methods, we will make use
of the following assumption, which is a natural extension of the conditions for scalar
equations given by Guglielmi and Zennaro [13], and which can also cover condition
(3.2) in the autonomous case.

Assumption A: There exist a vector norm ‖ · ‖∗ on C
d and induced matrix norm

such that the matrices L(t), M(t), and N(t) satisfy for all t > 0

‖L−1(t)‖∗ ≤ C0, ‖L−1(t)N(t)‖∗ ≤ Ĉ0, ‖L−1(t)M(t)‖∗ ≤ k0 < 1,
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where C0, Ĉ0 and k0 are constants.
The application of method (2.4–2.6) to (3.1) leads to the following difference

equation:

Y
(n)
i = yn + hn

s∑
j=1

aij Ŷ
(n)
j , i = 1, . . . , s,(3.5)

Ŷ
(n)
j = L(tn + cjhn)Y

(n)
j +M(tn + cjhn)Y

(n−m)
j(3.6)

+N(tn + cjhn)Ŷ
(n−m)
j , j = 1, . . . , s,

yn+1 = yn + hn

s∑
j=1

bj Ŷ
(n)
j .(3.7)

Now we present a preliminary result that will be used further on. For the differ-
ence equation

un = λ1un−m + λ2vn + λ3vn−m,(3.8)

vn+1 = λ4vn + λ5un,(3.9)

with λi ∈ C, we have the asymptotic stability result stated in the following lemma.
Lemma 3.3. The difference equation (3.8)–(3.9) is asymptotically stable if

|λ1| < 1, |λ4| < 1, (|λ2| + |λ3|)|λ5| < (1 − |λ1|)(1 − |λ4|).(3.10)

Proof. It is easy to see that the characteristic equation of (3.8)–(3.9) is given by

det

[
1 − λ1z

−m −λ2 − λ3z
−m

−λ5 z − λ4

]
= 0,

which gives

λ5(λ2 + λ3z
−m) = z(1 − λ4z

−1)(1 − λ1z
−m).(3.11)

Suppose |λ1| < 1, |λ4| < 1, and there exists z ∈ C satisfying (3.11) with |z| ≥ 1. Then

|λ5|(|λ2| + |λ3|) ≥ (1 − |λ4|)(1 − |λ1|),

which contradicts the third inequality of (3.10). This completes the proof.
Now we state and prove the main result of this section.
Theorem 3.4. Let Assumption A hold and the matrix A be nonsingular. Then

the difference equation (3.5–3.7) is asymptotically stable if the underlying Runge–Kutta
method is strictly stable at infinity.

Proof. It follows from (3.6) that

L−1(tn + cihn)Ŷ
(n)
i = Y

(n)
i + L−1(tn + cihn)M(tn + cihn)Y

(n−m)
i

+L−1(tn + cihn)N(tn + cihn)Ŷ
(n−m)
i , i = 1, . . . , s,

which in combination with Assumption A gives

‖Y (n)
i ‖∗ ≤ k0‖Y (n−m)

i ‖∗ + C0‖Ŷ (n)
i ‖∗ + Ĉ0‖Ŷ (n−m)

i ‖∗.(3.12)
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On the other hand, (3.5) plus the nonsingularity of A implies

Ŷ
(n)
i = h−1

n

s∑
j=1

Dij(Y
(n)
j − yn),(3.13)

where D = [Dij ] = A−1. Substituting (3.13) into (3.7) yields

yn+1 = R(∞)yn +

s∑
i=1

s∑
j=1

biDijY
(n)
j .(3.14)

Hence, there exists a constant C1 > 0 such that

‖yn+1‖∗ ≤ |R(∞)|‖yn‖∗ + C1

s∑
i=1

‖Y (n)
i ‖∗.(3.15)

A combination of (3.12) and (3.13) leads to

(3.16)
s∑
i=1

‖Y (n)
i ‖∗ ≤ k0

s∑
i=1

‖Y (n−m)
i ‖∗

+

s∑
i=1

s∑
j=1

|Dij |(h−1
n C0‖Y (n)

j − yn‖∗ + h−1
n−mĈ0‖Y (n−m)

j − yn−m‖∗),

which shows that there exists a constant Ĉ1 > 0 such that

s∑
i=1

‖Y (n)
i ‖∗ ≤ k0

s∑
i=1

‖Y (n−m)
i ‖∗

+ Ĉ1

⎡⎣h−1
n

⎛⎝ s∑
j=1

‖Y (n)
j ‖∗ + ‖yn‖∗

⎞⎠ + h−1
n−m

⎛⎝ s∑
j=1

‖Y (n−m)
j ‖∗ + ‖yn−m‖∗

⎞⎠⎤⎦ .
Considering hn → ∞, there exist positive numbers N0, k1 < 1, and C2 < (1− k1)(1−
|R(∞)|)/(2C1) such that for every n > N0,

s∑
i=1

‖Y (n)
i ‖∗ ≤ k1

s∑
i=1

‖Y (n−m)
i ‖∗ + C2(‖yn‖∗ + ‖yn−m‖∗).(3.17)

An application of Lemma 3.3 to (3.15) and (3.17) gives

lim
n→∞ ‖yn‖∗ = 0 and lim

n→∞

s∑
i=1

‖Y (n)
i ‖∗ = 0.

Considering (3.13), we have

lim
n→∞

s∑
i=1

hn‖Ŷ (n)
i ‖∗ = 0.

Therefore, the difference equation (3.5–3.7) is asymptotically stable. This completes
the proof.
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Remark 3.5. In the case of constant coefficients, it is well known that the condi-
tion ρ[L−1M ] < 1 is equivalent to the condition that there exists a norm ‖ · ‖∗ such
that ‖L−1M‖∗ < 1. Therefore, specializing Theorem 3.4 to the case of autonomous
equations, the obtained result is in accordance with that by Koto [21]. Here we have
given a new approach to the proof which allowed us to study the variable coefficient
case.

Remark 3.6. In the proof we only use the fact that hn → ∞. Hence, our result
is also valid for the other grid types proposed in [2, 24]. In addition, it is easily seen
from the proof that, if the condition ‖L−1(t)M(t)‖∗ ≤ k0 < 1 in Assumption A is
replaced by limt→∞ ‖L−1(t)M(t)‖∗ ≤ k0 < 1, Theorem 3.4 still holds. In the one-
dimensional case, the latter has been assumed for the stability analysis of θ-methods
in [2]. Finally, specializing Theorem 3.4 to the nonneutral case, the induced result is
also new.

Next, we show that the assumption of strict stability at infinity is also necessary
for the asymptotic stability of the difference equation.

Lemma 3.7. Suppose the matrix A is nonsingular. Then there exists a constant
N1 > 0 such that

|R(z)| ≥ |R(∞)| − 2|z−1||bTA−2e|, |z| ≥ N1, z ∈ C.(3.18)

Proof. Considering the nonsingularity of A and the fact

(A− z−1Is)
−1 = A−1 + z−1A−1(A− z−1Is)

−1,

we have

R(z) = R(∞) − z−1bTA−1(A− z−1Is)
−1e,

which gives

|R(z)| ≥ |R(∞)| − |z−1||bTA−1(A− z−1Is)
−1e|.(3.19)

Considering

lim
z→∞ |bTA−1(A− z−1Is)

−1e| = |bTA−2e|,

there exists a constant N1 such that for every z ∈ C with |z| ≥ N1,

|bTA−1(A− z−1Is)
−1e| ≤ 2|bTA−2e|,

which, together with (3.19), implies the conclusion.
The application of method (2.4–2.6) to the scalar equation

y′(t) = λy(t), λ ∈ R,(3.20)

leads to the difference equation

yn+1 = R(hnλ)yn.(3.21)

Theorem 3.8. Suppose the matrix A is nonsingular and there exists a constant λ0

such that the difference equation (3.21) is asymptotically stable for every λ satisfying
λλ0 > λ2

0. Then the underlying Runge–Kutta method is strictly stable at infinity.
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Proof. Suppose |R(∞)| ≥ 1. By the assumptions of the theorem we can choose λ
such that

λλ0 > λ2
0, |hiλ| ≥ N1, and |hiλ| > 4|bTA−2e|, i = 0, 1,

which gives

|hnλ| ≥ N1 and |hnλ| > 4|bTA−2e|, n = 0, 1, 2, . . . .

Considering Lemma 3.7, we have

|R(hnλ)| ≥ |R(∞)| − 2|hnλ|−1|bTA−2e|
≥ |R(∞)| exp(−4|hnλ|−1|bTA−2e|/|R(∞)|)
= |R(∞)| exp(−4p−n+1|h1λ|−1|bTA−2e|/|R(∞)|),

where we have used the fact that the function 1 − x − exp(−2x) is positive for x ∈
(0, 1/2). Therefore,

n∏
i=1

|R(hiλ)| ≥
n∏
i=1

|R(∞)| exp(−4p−i+1|h1λ|−1|bTA−2e|/|R(∞)|)

= |R(∞)|n exp

(
−1 − p−n

1 − p−1
4|h1λ|−1|bTA−2e|/|R(∞)|

)
,

which shows that the difference equation (3.21) is not asymptotically stable. This
completes the proof.

Corollary 3.9. Suppose the matrix A is nonsingular and there exists a constant
λ0 < 0 such that (3.21) is asymptotically stable for every λ ∈ (−∞, λ0]. Then the
underlying Runge–Kutta method is strictly stable at infinity.

4. An upper bound of error growth for linear problems. Asymptotic
stability implies that the initial error will eventually vanish for sufficiently large time
points. From the viewpoint of a practical computation, it is also important to give
an upper bound of error growth. This subject was studied in Koto [21], where the
nonneutral pantograph equation{

y′(t) = Ly(t) +My(qt), t > 0,
y(0) = y0,

(4.1)

was used as a test problem and algebraically stable methods were considered. In this
section we follow Koto’s practice and pursue a sharper result for (4.1), which can be
regarded as an error equation of a linear problem.

The application of method (2.4–2.6) to (4.1) yields

Y (n) = (e⊗ Id)yn + hn(A⊗ Id)Ŷ
(n),(4.2)

Ŷ (n) = (Is ⊗ L)Y (n) + (Is ⊗M)Y (n−m),(4.3)

yn+1 = yn + hn(b
T ⊗ Id)Ŷ

(n),(4.4)

where ⊗ denotes the Kronecker product and

Y (n) =
(
Y

(n)T

1 , Y
(n)T

2 , . . . , Y (n)T

s

)T
, Ŷ (n) =

(
Ŷ

(n)T

1 , Ŷ
(n)T

2 , . . . , Ŷ (n)T

s

)T
.
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The following notation is a generalization of that in [21]:

H(σ) = −
[
L∗G+GL+ E GM

M∗G −σE
]
,(4.5)

where G and E are Hermitian positive definite matrices and the superscript ∗ stands
for the Hermitian adjoint. It is also seen that H(σ2) is necessarily nonnegative definite
if H(σ1) is nonnegative definite and σ2 > σ1. In the scalar case, if the complex
numbers L, M satisfy

√
σ(ReL) + |M | < 0,

then H(σ) is nonnegative definite.
Throughout this section, we assume that the notations are the same as those in

section 3.
Lemma 4.1. Suppose that the method (A, b, c) is algebraically stable and there

exist a constant σ and matrices G and E such that H(σ) is nonnegative definite.
Then the following inequality holds true:

y∗n+1Gyn+1 ≤ y∗nGyn − hnY
(n)∗(B ⊗ E)Y (n) + σhnY

(n−m)∗(B ⊗ E)Y (n−m).(4.6)

Proof. As in Burrage and Butcher [10], where it is proved that algebraic stability
implies B-stability, we can obtain

y∗n+1Gyn+1 − y∗nGyn − hnY
(n)∗(B ⊗G)Ŷ (n) − hnŶ

(n)∗(B ⊗G)Y (n)

= −h2
nŶ

(n)∗(M⊗G)Ŷ (n).

By using the algebraic stability of the method, we have

y∗n+1Gyn+1 ≤ y∗nGyn + hnY
(n)∗(B ⊗G)Ŷ (n) + hnŶ

(n)∗(B ⊗G)Y (n)

= y∗nGyn − hnY
(n)∗(B ⊗ E)Y (n) + σhnY

(n−m)∗(B ⊗ E)Y (n−m)

−hn
s∑
i=1

bi(Y
(n)∗

i , Y
(n−m)∗

i )H(σ)(Y
(n)T

i , Y
(n−m)T

i )T

which by the nonnegative definiteness of H(σ) gives (4.6).
Theorem 4.2. Suppose that the method (A, b, c) is algebraically stable and there

exist matrices G and E such that H(q) is nonnegative definite. Then we have that for
every n ≥ m,

y∗n+1Gyn+1 +

n∑
i=n−m+1

hiY
(i)∗(B ⊗ E)Y (i) ≤ y∗nGyn +

n−1∑
i=n−m

hiY
(i)∗(B ⊗ E)Y (i).

(4.7)

Proof. Inequality (4.7) immediately follows from Lemma 4.1 and the fact qhn =
hn−m.

Remark 4.3. By the same argument as in section 5 of Koto [21], it is seen that
the functional

V (y(t)) = y(t)∗Gy(t) +

∫ t

qt

y(x)∗Ey(x)dx
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is a Liapunov functional for equation (4.1) if H(q) is nonnegative definite. Inequality
(4.7) can be regarded as a discrete analogue.

Remark 4.4. The proof of Lemma 4.1 is closely related to its counterpart in [21].
There, (4.1) was studied through an investigation of the corresponding constant delay
system transformed by a change of independent variable.

In the following, we derive a result which can be applied to the more general case
where H(σ) is nonnegative definite for some σ ∈ [q, 1). Except for certain special
statements, the following results remain valid for σ ≥ 1 although they may not result
in stability when σ ≥ 1.

Lemma 4.5. Suppose that the method (A, b, c) is algebraically stable and there
exist a constant σ ≥ q and matrices G and E such that H(σ) is nonnegative definite.
Then we have that for every k ≥ 0,

m∑
i=1

p−iY ((k+2)m−i)∗(B ⊗ E)Y ((k+2)m−i) ≤ q2σkδ,(4.8)

where

δ = ph−1
1 y∗mGym + q−1σ

m−1∑
i=0

piY (i)∗(B ⊗ E)Y (i).(4.9)

Proof. It follows from Lemma 4.1 that

y∗n+1Gyn+1 ≤ y∗nGyn − h1p
n−1Y (n)∗(B ⊗ E)Y (n)

+σq−1h1p
n−m−1Y (n−m)∗(B ⊗ E)Y (n−m).

By induction, one arrives at

y∗n+1Gyn+1 ≤ y∗mGym − h1

n∑
i=n−m+1

pi−1Y (i)∗(B ⊗ E)Y (i)

+ (−1 + σq−1)h1

n−m∑
i=m

pi−1Y (i)∗(B ⊗ E)Y (i)

+σq−1h1

m−1∑
i=0

pi−1Y (i)∗(B ⊗ E)Y (i).

Therefore,

n∑
i=n−m+1

piY (i)∗(B ⊗ E)Y (i) ≤ δ + (−1 + σq−1)

n−m∑
i=m

piY (i)∗(B ⊗ E)Y (i).

Let n = (k + 2)m− 1 for k ≥ 0. We have

p(k+2)m
m∑
i=1

p−iY ((k+2)m−i)∗(B ⊗ E)Y ((k+2)m−i)

≤ δ + (−1 + σq−1)

k−1∑
l=0

p(l+2)m
m∑
i=1

p−iY ((l+2)m−i)∗(B ⊗ E)Y ((l+2)m−i),
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which gives

m∑
i=1

p−iY ((k+2)m−i)∗(B ⊗ E)Y ((k+2)m−i)

≤ qk+2δ + (−1 + σq−1)

k∑
l=1

ql
m∑
i=1

p−iY ((k+2−l)m−i)∗(B ⊗ E)Y ((k+2−l)m−i).

We prove (4.8) by induction. When k = 0, (4.8) follows directly from the above
inequality. Now we assume that (4.8) holds for every k < j and show that it then
also holds for k = j. It follows from the above inequality that

m∑
i=1

p−iY ((j+2)m−i)∗(B ⊗ E)Y ((j+2)m−i)

≤ qj+2δ + (−1 + σq−1)

j∑
l=1

ql
m∑
i=1

p−iY ((j+2−l)m−i)∗(B ⊗ E)Y ((j+2−l)m−i)

≤ qj+2δ + (−1 + σq−1)

j∑
l=1

ql+2σj−lδ

= q2σjδ.

Therefore, (4.8) holds for every k ≥ 0. This completes the proof.
Corollary 4.6. Under the assumptions of Lemma 4.5, (4.8) implies that,

Y (n)∗(B ⊗ E)Y (n) ≤ σn/mδ, for every n ≥ m.(4.10)

Proof. It follows from (4.8) that for every k ≥ 0, i ∈ {1, . . . ,m},

Y ((k+2)m−i)∗(B ⊗ E)Y ((k+2)m−i) ≤ piq2σkδ = q2−i/mσkδ ≤ σk+2−i/mδ,
(4.11)

which gives (4.10).
Theorem 4.7. Suppose that the method (A, b, c) with a nonsingular matrix A is

algebraically stable, bi > 0 for all i and there exist a constant σ ≥ q and matrices G
and E such that H(σ) is nonnegative definite. Then there exists a constant C̄ such
that for every n ≥ m,

‖yn+1‖∗ ≤ |R(∞)|n+1−m‖ym‖∗ + C̄σ1/2δ1/2ψn+1−m(|R(∞)|, σ1/2m),(4.12)

where ‖ · ‖∗ denotes a norm on C
d, and

ψn(x, y) =

⎧⎨⎩
xn − yn

x− y
, x �= y,

nxn−1, x = y.
(4.13)

Proof. Since bi > 0 for all i, it follows from Corollary 4.6 that there exists a
constant C̄1 such that for every n ≥ m

s∑
j=1

‖Y (n)
j ‖∗ ≤ C̄1σ

n/2mδ1/2.
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Considering (3.14) and the assumptions from the statement of the theorem, there
exists a constant C̄2 such that

‖yn+1‖∗ ≤ |R(∞)|‖yn‖∗ + C̄2

s∑
j=1

‖Y (n)
j ‖∗.

By induction, we have

‖yn+1‖∗ ≤ |R(∞)|‖yn‖∗ + C̄1C̄2σ
n/2mδ1/2

≤ |R(∞)|n+1−m‖ym‖∗ + C̄1C̄2σ
1/2δ1/2

n−m∑
i=0

|R(∞)|iσ(n−m−i)/2m.

This implies inequality (4.12).
Using the fact that R(∞) = 0 for the Radau IA, Radau IIA, and Lobatto IIIC

methods, and the fact that |R(∞)| = 1 for the Gauss methods, we can state the
following corollaries.

Corollary 4.8. Suppose that there exist a constant σ ≥ q and matrices G and
E such that H(σ) is nonnegative definite. Then for any Radau IA, Radau IIA, or
Lobatto IIIC method, there exists a constant C̄ such that for every n ≥ m,

‖yn+1‖∗ ≤ C̄σn/2mδ1/2.(4.14)

Corollary 4.9. Suppose that there exist a constant σ ∈ [q, 1) and matrices G
and E such that H(σ) is nonnegative definite. Then for any Gauss method, there
exists a constant C̄ such that for every n ≥ m,

‖yn+1‖∗ ≤ ‖ym‖∗ +
C̄σ1/2δ1/2

1 − σ1/2m
.(4.15)

Remark 4.10. The Assumption (L) in Koto [21] is equivalent to the condition
that there exist matrices G and E such that H(q) is nonnegative definite. Our result
can be applied to the more general case σ ≥ q.

5. Nonlinear stability. In this section, we derive conditions which guarantee
the asymptotic stability of the numerical solution of nonlinear equations. First, we
recall a result on the asymptotic stability of the analytical solution. Consider a system
defined by the same function f as in (2.1) but with a different initial value,{

z′(t) = f(t, z(t), z(qt), z′(qt)), t > 0,
z(0) = z0.

(5.1)

Let 〈·, ·〉 be an inner product on C
d, let ‖ · ‖ be the corresponding norm, and let the

function f satisfy the conditions

Re〈u1 − u2, f(t, u1, v, ν) − f(t, u2, v, ν)〉 ≤ α(t)‖u1 − u2‖2,
(5.2)

for t > 0, u1, u2, v, ν ∈ C
d,

‖f(t, u, v1, ν1) − f(t, u, v2, ν2)‖ ≤ β(t)‖v1 − v2‖ + γ(t)‖ν1 − ν2‖,
(5.3)

for t > 0, u, v1, v2, ν1, ν2 ∈ C
d,

where α(t), β(t), and γ(t) are continuous functions. An application of Theorem 2.1
in Zennaro [27] (see also [5]) gives the following proposition.
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Proposition 5.1. Suppose γ(t) = 0 and the functions α(t) and β(t) satisfy

α(t) ≤ α0 < 0, t > 0,(5.4)

and, for some nonnegative real number k0 < 1,

k0α(t) + β(t) ≤ 0, t > 0.(5.5)

Then, for the solutions y(t) and z(t) of (2.1) and (5.1), it holds that

lim
t→∞ ‖y(t) − z(t)‖ = 0.(5.6)

Remark 5.2. In the literature, we have not found any stability results on general
nonlinear neutral equations. Some results on equations of special form, such as sepa-
rable systems and equations of Hale’s form, can be found in [3, 19, 26]. We do not give
the details of those results because they cannot directly be applied to equations of the
form (2.1). Here, we will only use conditions (5.4) and (5.5) plus the boundedness of
γ(t) to analyze the asymptotic stability of numerical methods for nonlinear neutral
equations of the form (2.1). Stability results for nonneutral equations are given in [5]
(Theorem 9.7.1).

The Runge–Kutta method (A, b, c) applied to problem (5.1) leads to the following
process:

Z
(n)
i = zn + hn

s∑
j=1

aijẐ
(n)
j , i = 1, . . . , s,(5.7)

Ẑ
(n)
j = f(tn + cjhn, Z

(n)
j , Z

(n−m)
j , Ẑ

(n−m)
j ), j = 1, . . . , s,(5.8)

zn+1 = zn + hn

s∑
j=1

bjẐ
(n)
j .(5.9)

Let

wn = yn − zn, W
(n)
j = Y

(n)
j − Z

(n)
j , j = 1, . . . , s.

It follows from (2.4–2.6) and (5.7–5.9) that

W
(n)
i = wn + hn

s∑
j=1

aij(Ŷ
(n)
j − Ẑ

(n)
j ), i = 1, . . . , s,(5.10)

wn+1 = wn + hn

s∑
j=1

bj(Ŷ
(n)
j − Ẑ

(n)
j ).(5.11)

Now we are in the position to state and prove the main result of this section.
Theorem 5.3. Suppose that the method (A, b, c) with a nonsingular matrix A is

strictly stable at infinity and that there exist positive constants C3, C4, and k2 such
that

0 < −α−1(t) ≤ C3, |α−1(t)γ(t)| ≤ C4, |α−1(t)β(t)| ≤ k2 < 1.(5.12)

Then, the following results hold:

lim
n→∞ ‖wn‖ = 0, lim

n→∞

s∑
j=1

‖W (n)
j ‖ = 0,(5.13)

lim
n→∞hn

s∑
j=1

‖Ŷ (n)
j − Ẑ

(n)
j ‖ = 0.(5.14)
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Proof. From (5.10) and the nonsingularity of A it follows that

Ŷ
(n)
i − Ẑ

(n)
i = h−1

n

s∑
j=1

Dij(W
(n)
j − wn), i = 1, . . . , s,(5.15)

where D = [Dij ] = A−1. Substituting (5.15) into (5.11) yields

wn+1 = R(∞)wn +

s∑
i=1

s∑
j=1

biDijW
(n)
j .(5.16)

Hence, there exists a constant C5 > 0 such that

‖wn+1‖ ≤ |R(∞)|‖wn‖ + C5

s∑
i=1

‖W (n)
i ‖.(5.17)

On the other hand, conditions (5.2) and (5.3) imply that Re〈W (n)
j , Ŷ

(n)
j − Ẑ

(n)
j 〉 can

be rewritten and bounded as follows:

Re〈W (n)
j , f(tn+cjhn, Y

(n)
j , Y

(n−m)
j , Ŷ

(n−m)
j )−f(tn+cjhn, Z

(n)
j , Y

(n−m)
j , Ŷ

(n−m)
j )〉

+ Re〈W (n)
j , f(tn+cjhn, Z

(n)
j , Y

(n−m)
j , Ŷ

(n−m)
j )−f(tn+ cjhn, Z

(n)
j , Z

(n−m)
j , Ẑ

(n−m)
j )〉

≤ α(tn+cjhn)‖W (n)
j ‖2 + β(tn+cjhn)‖W (n)

j ‖‖W (n−m)
j ‖

+ γ(tn+cjhn)‖W (n)
j ‖‖Ŷ (n−m)

j −Ẑ(n−m)
j ‖.

Considering the inequality

Re〈W (n)
j , Ŷ

(n)
j − Ẑ

(n)
j 〉 ≥ −‖W (n)

j ‖‖Ŷ (n)
j − Ẑ

(n)
j ‖,

we have that

‖W (n)
j ‖ ≤ k2‖W (n−m)

j ‖ + C4‖Ŷ (n−m)
j − Ẑ

(n−m)
j ‖ + C3‖Ŷ (n)

j − Ẑ
(n)
j ‖,(5.18)

where we have used Assumption (5.12). Using (5.15), we further obtain

s∑
i=1

‖W (n)
i ‖ ≤ k2

s∑
i=1

‖W (n−m)
i ‖ + h−1

n−mC4

s∑
i=1

s∑
j=1

|Dij |‖W (n−m)
j − wn−m‖

(5.19)

+h−1
n C3

s∑
i=1

s∑
j=1

|Dij |‖W (n)
j − wn‖.

Considering hn → ∞, there exist positive numbers N2, k3 < 1 and C6 < (1 − k3)(1 −
|R(∞)|)/(2C5) such that for every n > N2,

s∑
i=1

‖W (n)
i ‖ ≤ k3

s∑
i=1

‖W (n−m)
i ‖ + C6(‖wn‖ + ‖wn−m‖).(5.20)

An application of Lemma 3.3 to (5.17) and (5.20) gives (5.13). Then (5.14) follows
from (5.15). This completes the proof.

Remark 5.4. In the proof, we only use hn → ∞. Hence, the result is also valid
for the other grid types proposed in [2, 24]. From Corollary 3.9 we can see that the
assumption of strict stability at infinity is also necessary to the result.
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Remark 5.5. Theorem 5.3 is different from the asymptotic stability result ob-
tained by Zhang and Sun [28] (see Theorem 6.1 of this paper). Therefore, specializing
Theorem 5.3 to the case of nonneutral equations, our result is also new. In addition,
our proof is completely different from that in [28].

Remark 5.6. It should be pointed out that Theorem 5.3 cannot cover the asymp-
totic stability results of section 3. In fact, specializing the Assumption (5.12) in
Theorem 5.3 to the case of (3.1), the induced assumptions are stronger than Assump-
tion A.

6. An upper bound of error growth for nonlinear problems. In this
section, we investigate error growth bounds of numerical methods for nonneutral,
nonlinear problems of the form{

y′(t) = f(t, y(t), y(qt)), t > 0,
y(0) = y0,

(6.1)

where the function f satisfies the conditions

Re〈u1 − u2, f(t, u1, v) − f(t, u2, v)〉 ≤ α‖u1 − u2‖2, t > 0, u1, u2, v ∈ C
d,(6.2)

‖f(t, u, v1) − f(t, u, v2)‖ ≤ β‖v1 − v2‖, t > 0, u, v1, v2 ∈ C
d,(6.3)

where α and β are constants. Throughout this section, we assume that the other
notations are the same as those in section 5.

For problems (6.1–6.3), Zhang and Sun (cf. [28]) have considered a stepsize strat-
egy where every interval (q−ih, q−i−1h] is divided into m subintervals of the same
size, and obtained the following global and asymptotic stability results for (k, l)−
algebraically stable Runge–Kutta methods. Here, a method (A, b, c) is said to be
(k, l)-algebraically stable if there exists a nonnegative diagonal matrix D such that
the matrix [

k − 1 − 2leTDe eTD − bT − 2leTDA
De− b− 2lATDe DA+ATD − bbT − 2lATDA

]
is nonnegative definite (cf. [11]).

Theorem 6.1 (see [28]). Suppose that the method (A, b, c) is (k, l)-algebraically
stable for a nonnegative diagonal matrix D = diag(d1, d2, . . . , ds), where 0 < k ≤ 1
and the following condition holds:

qα+ β ≤ 0, (1 − q)(qα+ β)h ≤ mq2l,(6.4)

then

‖wn+1‖ ≤
[
1 +

√
(q−1 − 1)βh

]
max

⎧⎨⎩‖wm‖,
s∑
j=1

(√
bj max

−m≤i≤−1
‖W (m+i)

j ‖
)⎫⎬⎭ .

(6.5)

If it is further assumed that k < 1, then

lim
n→∞ ‖yn − zn‖ = 0.

Here we obtain the following results.
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Theorem 6.2. Suppose that the method (A, b, c) is algebraically stable and that
the following condition holds:

α+ q−1/2β ≤ 0.(6.6)

Then we have that for every n ≥ 2m− 1,

‖wn+1‖2 − h1(2α+ q−1/2β)

n∑
i=n−m+1

s∑
j=1

bjp
i−1‖W (i)

j ‖2

(6.7)

≤ ‖wm‖2 + h1q
−1/2β

m−1∑
i=0

s∑
j=1

bjp
i−1‖W (i)

j ‖2.

Proof. It is known (see [10]) that

‖wn+1‖2 − ‖wn‖2 − 2hn

s∑
j=1

bj Re〈W (n)
j , Ŷ

(n)
j − Ẑ

(n)
j 〉

= −h2
n

s∑
i=1

s∑
j=1

Mij〈Ŷ (n)
i − Ẑ

(n)
i , Ŷ

(n)
j − Ẑ

(n)
j 〉.

By means of the algebraic stability of the method and by (6.2) and (6.3), we have

‖wn+1‖2 ≤ ‖wn‖2 + 2hn

s∑
j=1

bj Re〈W (n)
j , Ŷ

(n)
j − Ẑ

(n)
j 〉

= ‖wn‖2 + 2hn

s∑
j=1

bj Re〈W (n)
j , f(tn + cjhn, Y

(n)
j , Y

(n−m)
j )

− f(tn + cjhn, Z
(n)
j , Y

(n−m)
j )〉

+ 2hn

s∑
j=1

bj Re〈W (n)
j , f(tn + cjhn, Z

(n)
j , Y

(n−m)
j )

− f(tn + cjhn, Z
(n)
j , Z

(n−m)
j )〉

≤ ‖wn‖2 + hn

s∑
j=1

bj [(2α+ q−1/2β)‖W (n)
j ‖2 + q1/2β‖W (n−m)

j ‖2],

where we have used

2‖W (n)
j ‖‖W (n−m)

j ‖ ≤ q−1/2‖W (n)
j ‖2 + q1/2‖W (n−m)

j ‖2.(6.8)

By induction, one arrives at

‖wn+1‖2 ≤ ‖wm‖2 + h1

s∑
j=1

bj

[
n∑

i=n−m+1

pi−1(2α+ q−1/2β)‖W (i)
j ‖2

+ 2

n−m∑
i=m

pi−1(α+ q−1/2β)‖W (i)
j ‖2(6.9)

+

m−1∑
i=0

pi−1q−1/2β‖W (i)
j ‖2

]
,
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which, combined with (6.6), gives (6.7). This completes the proof.
Corollary 6.3. Under the assumptions of Theorem 6.2, we have that for every

n ≥ 2m− 1,

‖wn+1‖2 ≤ ‖wm‖2 + hp−1q−1/2(1 − q)β max
0≤i≤m−1

1≤j≤s
‖W (i)

j ‖2.(6.10)

Proof. The conclusion follows from the fact that

m−1∑
i=0

pi‖W i
j‖2 ≤ pm − 1

p− 1
max

0≤i≤m−1
‖W (i)

j ‖2.

Remark 6.4. The above proof procedure is closely related to its counterpart in
the case of a constant delay (cf. [15]) and in the case of a proportional delay (cf. [28]).
Compared to Theorem 6.1 in the case of algebraically stable methods, our result is
slightly sharper because Assumption (6.4) is stronger than (6.6).

Remark 6.5. In the case of time-dependent Lipschitz constants, if (6.6) is replaced
by

2α(t) + q−1/2(β(t) + β(t/q)) ≤ 0,(6.11)

we can similarly obtain that for every n ≥ 2m− 1,

‖wn+1‖2 − h1

n∑
i=n−m+1

s∑
j=1

bjp
i−1(2α(ti + cjhi) + q−1/2β(ti + cjhi))‖W (i)

j ‖2

(6.12)
≤ ‖wm‖2 + hp−1q−1/2(1 − q) max

0≤i≤m−1
1≤j≤s

β(ti+m + cjhi+m)‖W (i)
j ‖2.

Next, we derive some results which can be applied to the more general case
α+ β < 0. We define the following two constants

r =

⎧⎨⎩0, when 2α+ (1 + q−1)β ≤ 0,
2α+ (1 + q−1)β

−(2α+ β)
, when 2α+ (1 + q−1)β > 0,

(6.13)

∆ =
‖wm‖2p/h1 + q−1β

∑s
j=1 bj

∑m−1
i=0 pi‖W (i)

j ‖2

−(2α+ β)
.(6.14)

Theorem 6.6. Suppose that the method (A, b, c) is algebraically stable and that
the following condition holds:

α+ β < 0.(6.15)

Then we have that for every k ≥ 0,

s∑
j=1

bj

m∑
i=1

p−i‖W ((k+2)m−i)
j ‖2 ≤ q2(q + qr)k∆.(6.16)

Proof. If we replace (6.8) by the inequality

2‖W (n)
j ‖‖W (n−m)

j ‖ ≤ ‖W (n)
j ‖2 + ‖W (n−m)

j ‖2,
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we obtain

‖wn+1‖2 ≤ ‖wn‖2 + hn

s∑
j=1

bj [(2α+ β)‖W (n)
j ‖2 + β‖W (n−m)

j ‖2].

By induction, one arrives at

‖wn+1‖2 ≤ ‖wm‖2 + h1p
−1

s∑
j=1

bj

[
n∑

i=n−m+1

pi(2α+ β)‖W (i)
j ‖2

+

n−m∑
i=m

pi(2α+(1+q−1)β)‖W (i)
j ‖2 +

m−1∑
i=0

piq−1β‖W (i)
j ‖2

]
.

Therefore,

s∑
j=1

bj

n∑
i=n−m+1

pi‖W (i)
j ‖2 ≤ r

s∑
j=1

bj

n−m∑
i=m

pi‖W (i)
j ‖2 + ∆.

Let n = (k + 2)m− 1 for k ≥ 0. We then have

s∑
j=1

bj

m∑
i=1

p−i‖W ((k+2)m−i)
j ‖2 ≤ r

k∑
l=1

ql
s∑
j=1

bj

m∑
i=1

p−i‖W ((k−l+2)m−i)
j ‖2 + qk+2∆.

By induction we can prove from the above inequality that (6.16) holds for every k ≥ 0.
This completes the proof.

Remark 6.7. It is easy to verify the following inequality,

0 < q + qr ≤ max

(
q,

β

−(2α+ β)

)
.

Hence, q + qr < 1 if α + β < 0 and the right-hand side of (6.16) goes to zero for
increasing k.

Remark 6.8. If condition (6.15) is replaced by the weaker condition

2α+ β < 0,(6.17)

then Theorem 6.6 is still valid. Then, however, it is not guaranteed that q + qr < 1.
Corollary 6.9. Under the assumptions of Theorem 6.6, inequality (6.16) im-

plies that for every n ≥ m

s∑
j=1

bj‖W (n)
j ‖2 ≤ (q + qr)n/m∆.(6.18)

Proof. It follows from (6.16) that for every k ≥ 0, i ∈ {1, . . . ,m},
s∑
j=1

bj‖W ((k+2)m−i)
j ‖2 ≤ piq2(q + qr)k∆ = q2−i/m(q + qr)k∆ ≤ (q + qr)k+2−i/m∆,

which gives (6.18).
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Theorem 6.10. Suppose that the method (A, b, c) with a nonsingular matrix A
is algebraically stable, bi > 0 for all i and (6.15) holds. Then there exists a constant
C7, depending only on the coefficients of the method, such that for every n ≥ m,

‖wn+1‖ ≤ |R(∞)|n+1−m‖wm‖ + C7(q + qr)1/2∆1/2ψn+1−m(|R(∞)|, (q + qr)1/2m),

where the function ψn(x, y) is defined by (4.13).
Proof. Considering (5.16) and the assumptions of the theorem, there exists a

constant C7, depending only on the coefficients, such that

‖wn+1‖ ≤ |R(∞)|‖wn‖ + C7

⎛⎝ s∑
j=1

bj‖W (n)
j ‖2

⎞⎠1/2

,

which in combination with (6.18) gives

‖wn+1‖ ≤ |R(∞)|‖wn‖ + C7(q + qr)n/2m∆1/2

≤ |R(∞)|n+1−m‖wm‖

+C7(q + qr)1/2∆1/2
n−m∑
i=0

|R(∞)|i(q + qr)(n−m−i)/2m.

This implies the result of the theorem.
Corollary 6.11. Suppose (6.15) holds. Then for any Radau IA, Radau IIA, or

Lobatto IIIC method, there exists a constant C7 depending only on the coefficients of
the method, such that for every n ≥ m,

‖wn+1‖ ≤ C7(q + qr)n/2m∆1/2.

Corollary 6.12. Suppose (6.15) holds. Then for any Gauss method there exists
a constant C7, depending only on the coefficients of the method, such that for every
n ≥ m,

‖wn+1‖ ≤ ‖wm‖ +
C7(q + qr)1/2∆1/2

1 − (q + qr)1/2m
.

Remark 6.13. It is easy to extend the results of this section to the case of (k, l)-
algebraically stable methods if we impose some restrictions on stepsize similar to those
in [15].

7. Extension to a more general class of equations. In this section, we
generalize some stability results to the more general equations{

y′(t) = L(t)y(t) +M(t)y(t− τ(t)) +N(t)y′(t− τ(t)), t ≥ t0,
y(t) = g(t), t ≤ t0,

(7.1)

and {
y′(t) = f(t, y(t), y(t− τ(t)), y′(t− τ(t))), t ≥ t0,
y(t) = g(t), t ≤ t0.

(7.2)

The ideas are related to those in [13]. We assume that there exists a constrained mesh
in the interval [t0,+∞) such that

tn − τ(tn) = tn−m, n ≥ m,(7.3)
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for some integer m. The corresponding discretized schemes for (7.1) and (7.2) are
(3.5–3.7) and (2.4–2.6), respectively. Then, a similar analysis leads to the following
general results.

Theorem 7.1. Suppose that the method (A, b, c) with a nonsingular matrix A is
strictly stable at infinity and that the coefficient matrices of (7.1) satisfy

lim
n→∞h−1

n ‖L−1(tn + cihn)‖ = 0, lim
n→∞h−1

n−m‖L−1(tn + cihn)N(tn + cihn)‖ = 0,

(7.4)

and

lim sup
n→∞

‖L−1(tn + cihn)M(tn + cihn)‖ = k0 < 1,(7.5)

for i = 1, 2, . . . , s. Then, the scheme (3.5–3.7) is asymptotically stable for (7.1).
Theorem 7.2. Suppose that the method (A, b, c) with a nonsingular matrix A

is strictly stable at infinity and that the function f of (7.2) satisfies conditions (5.2)
and (5.3) with

lim
n→∞hnα(tn + cihn) = −∞, lim

n→∞
γ(tn + cihn)

hn−mα(tn + cihn)
= 0,(7.6)

and

lim sup
n→∞

β(tn + cihn)

|α(tn + cihn)| = k2 < 1,(7.7)

for i = 1, 2, . . . , s. Then, the scheme (2.4–2.6) is asymptotically stable for (7.2), i.e.,
(5.13) and (5.14) hold.

Remark 7.3. For the constant delay system (1.3), we can consider a constant step-
size strategy, i.e., hn = − log q/m, such that (7.3), (7.4), and (7.5) hold if ρ[L−1M ]<1.

Remark 7.4. If the delay τ(t) satisfies the conditions

0 < τ0 ≤ τ(t) < t, t ≥ t0,(7.8)

0 < q∗ ≤ 1 − τ ′(t) ≤ q∗ < 1, t ≥ t0,(7.9)

then t − τ(t) is strictly increasing and limt→∞ t − τ(t) = +∞, which guarantees the
existence of a constrained mesh (cf. [5, 13]) and

hn−m = hn − (τ(tn+1) − τ(tn)) ≤ q∗hn.

Hence,

lim
n→∞hn = +∞,

which implies (7.4) if L−1(t) and N(t) are bounded. In the case of vanishing delays,
i.e., τ(0) = 0, we can choose an appropriate point t0 > 0 and assume we know an
approximate solution in [0, t0] such that (7.8) hold.

Remark 7.5. If ci ∈ {0, 1} or τ(t) is of the form qt + d, we can appropriately
choose stepsize such that (7.3) implies

tn + cihn − τ(tn + cihn) = tn−m + cihn−m,

see [5, section 6.3]. In the other case, however, the above equality may no longer
hold, an interpolation for the delay argument is possibly necessary and a rigorous
theoretical analysis is missing (and outside the scope of the present paper).
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8. Concluding remarks. In this work the stability of Runge–Kutta methods
for both linear and nonlinear nonautonomous pantograph equations has been ana-
lyzed. A new approach has been introduced to derive the asymptotic stability of
numerical methods and some sufficient and necessary conditions have been found. By
further exploiting the special structure of the stepsize, we have also obtained some
upper bounds for the error growth.

The techniques of this paper can be applied to investigate the stability of numer-
ical methods for the constant delay system derived from the pantograph equation.
They could also possess a potential applicability to integro-differential equations with
proportional delays.

Acknowledgments. The authors are grateful to the anonymous referee for his
valuable comments and remarks. They are also indebted to Professor Hermann Brun-
ner for suggesting the extension of the study to a more general class of equations.
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Abstract. This paper is concerned with optimization or minimization problems that are gov-
erned by operator equations, such as partial differential or integral equations, and thus are naturally
formulated in an infinite dimensional function space V . We first construct a prototype algorithm of
steepest descent type in V and prove its convergence. By using a Riesz basis in V we can transform
the minimization problem into an equivalent one posed in a sequence space of type �p. We convert
the prototype algorithm into an adaptive method in �p. This algorithm is shown to be convergent
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1. Introduction. Optimization or minimization problems arise in many areas
of modern science and technology. As examples let us mention control theory, image
processing and segmentation, drag reduction, and shape optimization. Constrained
and nonsmooth optimization, such as in modelling American options, and elastoplastic
hardening and softening, pose additional challenges and require special care. Here
we are particularly interested in problems that are governed by operator equations,
such as partial differential or integral equations, and thus are naturally formulated in
infinite-dimensional function spaces (see, e.g., [1, 7, 24, 28]).

The numerical solution of minimization problems in function spaces is tradition-
ally based upon the choice of a suitable discretization of the spaces, leading to similar
problems in finite dimension; these are then solved by some of the available optimiza-
tion algorithms in Euclidean spaces. Such an approach may incorporate an adaptive
strategy, which is highly appropriate for those problems whose minimizers contain
well-localized structures. With the aid of a posteriori error analysis, a refinement or
derefinement (coarsening) of the current discretization can be constructed yielding to
an adaptively generated sequence of finite-dimensional discretizations. Even though
these kinds of adaptive methods have been successfully used in many different appli-
cations, the literature on the numerical analysis of adaptive methods for minimization
problems seems fairly limited. Not much is known on the convergence of the adaptive
iterations and even less on the convergence speed.

Starting from recent investigations concerning adaptive wavelet methods [10, 11,
12], it is by now clear that using as much information from the original infinite-
dimensional variational problem as possible gives in particular a strong mathematical
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tool to prove convergence and convergence rate results. The new philosophy consists
of combining an infinite-dimensional iteration with an approximate finite application
of the underlying exact operators. By using an analogous approach, similar results
for adaptive finite element methods have been obtained [3, 23, 27]. An important
ingredient in the design and analysis of such algorithms has been provided by recent
results in nonlinear approximation theory [22]. They give guidelines for the definition
of refinement and coarsening strategies based upon a rigorous control of the resulting
errors as well as the number of degrees of freedom. They set the appropriate notion
of optimality by indicating the best possible relation between accuracy and number of
degrees of freedom in approximating the solution to the particular problem at hand.
It turns out that the correct functional setting for this notion is provided by certain
approximation spaces. In many cases, these approximation spaces are close to Besov
spaces in certain scales, in which the summability index decreases as the regularity
index increases (as opposed to traditional scales of Sobolev spaces for nonadaptive
methods).

The purpose of the present paper is to take a first step towards the adaptive
numerical treatment of infinite dimensional minimization problems following the new
philosophy described above. To this end, we start with a fairly classical situation
in which we want to minimize a strictly convex, Fréchet differentiable functional J
defined on a reflexive Banach space V . The assumption of convexity guarantees
the existence of a global minimizer and global convergence toward it, allowing us to
concentrate on the central issues related to the infinite-dimensional setting. Since
the ultimate goal of our investigations will be to handle a broad class of problems
including constrained or nonsmooth optimization (see, e.g., [25]), the minimization
strategy will be based upon a general method of steepest descent type, coupled with
a line search. The advantage is that we do not require strong regularity assumptions
such as existence or boundedness of the Hessian of the functional.

After making suitable assumptions on the well-posedness of the minimization
problem, we construct a steepest descent algorithm in the Banach space V which is
proven to be convergent. This algorithm will serve as a prototype for the adaptive
algorithms constructed next. By introducing a Riesz basis in V and by considering the
sequence of the expansion coefficients of a function with respect to the chosen basis,
we transform the minimization problem into an equivalent one posed in a sequence
space of type �p. This transformation is a crucial step toward the concrete realization
of the algorithm and for the introduction of adaptive concepts.

Next, we convert the previous algorithm into a steepest descent method defined in
the sequence space. While the exact minimizer is in general represented by a sequence
with infinitely many nonvanishing entries, the new algorithm acts only on finite vectors
(i.e., sequences having only a finite number of nonvanishing entries); hence, it is
numerically feasible. Since the number of active coefficients may grow in the descent
stages, we incorporate a coarsening procedure in order to remove unnecessary details
from time to time. This adaptive algorithm is shown to be convergent under mild
conditions on the parameters that appear in its definition.

Under more restrictive assumptions we are also able to investigate the rate of
convergence of our algorithm. Precisely, we prove that the error between the exact
and the approximate minimizer decays at least in a geometric manner as the number
of iterations increases. The number of approximate evaluations of the gradient of the
functional applied to a finite vector (which is usually the most expansive part of the
algorithm) grows in an asymptotically optimal way, i.e., at most logarithmically in the
accuracy. Finally, we can prove that the output of the algorithm is optimal in the sense
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of nonlinear approximation theory (asymptotically optimal work/accuracy balance)
under the condition that the gradient can be efficiently approximated in a sparse way
and an optimal thresholding procedure is available to realize the coarsening.

The paper is organized as follows. We start from a fairly general framework of
convex optimization in Banach spaces. Under these weak assumptions, we formulate
the abstract algorithm in section 2 and prove its convergence. Section 3 is devoted
to the transformation of the algorithm into an equivalent one set in an �p-space.
This abstract setting yields a method in infinite dimension which is in general not
computable. Hence, in section 4 we investigate the ingredients that are needed to
define a computable adaptive version of our general algorithm and then we prove the
convergence of the resulting method.

In the second part of the paper, starting with section 5, we specialize our setting
to the �2-case and we assume Lipschitz continuity of the gradient. In this framework
we indicate a precise choice of the parameters in our abstract algorithm and construct
more efficient adaptive algorithmic ingredients in order to obtain also a rate of con-
vergence. In section 6, we investigate the optimality of the algorithm. At last, two
examples are provided in section 7.

We will frequently use the notation A <∼ B, which means that there exists a
constant c > such that A ≤ cB, uniformly in all parameters on which A and B may
depend. The notation A ∼ B means A <∼ B and B <∼ A.

2. Convex optimization in Banach spaces. Our setting is as follows. Let V
be a reflexive Banach space normed by ‖ · ‖V and let us denote by 〈·, ·〉 the duality
pairing between V and V ′. Let J : V → R be a Fréchet differentiable functional. We
consider the following minimization problem: Find u ∈ V such that

J(u) = min
v∈V

J(v).(2.1)

We start by collecting the general assumptions on the functional J that will hold
throughout the paper. Then we will recall the concept of admissible descent directions
and stepsizes adapted to the Banach space setting. Finally, we formulate our abstract
algorithm and prove its convergence.

2.1. General assumptions.
Assumption 2.1. The functional J satisfies the following conditions:
(i) The Fréchet derivative J ′ : V → V ′ is uniformly continuous on each bounded

subset of V ;
(ii) J is V -elliptic in the sense that there exist cJ > 0 and p > 1 such that

〈J ′(w) − J ′(v), w − v〉 ≥ cJ‖w − v‖pV
for all w, v ∈ V .

Let us collect some consequences of the latter assumption.
Lemma 2.2. Let Assumption 2.1 be satisfied. Then, the following statements

hold.
(a) For all w, v ∈ V we have

J(v) − J(w) ≥ 〈J ′(w), v − w〉 +
cJ
p
‖v − w‖pV .(2.2)

(b) J is strictly convex and bounded from below.
(c) Let u(0) ∈ V be arbitrary; then the set R(u(0)) := {v ∈ V : J(v) ≤ J(u(0))} is

bounded.
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The straightforward proof can be found in Appendix A (see also [8]). In particular,
we see from (b) that our assumptions are slightly stronger than convexity.

Under Assumption 2.1, there exists a unique solution to the minimization problem
(2.1) (see, e.g., [7] for a proof).

2.2. Descent directions and stepsizes. As already said, we aim at formulat-
ing an algorithm of steepest descent type that leads to the solution u of the optimiza-
tion problem (2.1). Since we are working in abstract Banach spaces, we cannot expect
to have orthogonal descent directions available, no matter what inner product is used.
Hence, we have to specify what directions are admissible in order to yield a possible
descent. We require that the direction is not orthogonal to the current gradient.

Definition 2.3. Given v ∈ V , we call s ∈ V an admissible descent direction for
v if ‖s‖ = 1 and 〈J ′(v), s〉 < 0.

Once an admissible descent direction is determined, one has to find the minimum
of the functional J along the search direction. Again, we cannot hope to be able to
determine this minimum exactly, even though this is a one-dimensional (1D) min-
imization problem. In order to ensure that the line search in fact yields a smaller
value of the functional then the starting one, we identify a possible range of stepsizes
that guarantees this descent. We adapt the classical concept of admissible stepsizes
as follows (see, e.g., [21, subsection 6.3]).

Definition 2.4 (Wolfe’s condition). Let α, β be fixed constants satisfying 0 <
α < β < 1. For any v ∈ V and any admissible descent direction s ∈ V , define
A(J ; v, s) as the set of all those µ ∈ R+ satisfying the following conditions:

J(v + µs) ≤ J(v) + αµ 〈J ′(v), s〉,(2.3)

〈J ′(v + µs), s〉 ≥ β 〈J ′(v), s〉.(2.4)

We call A(J ; v, s) the set of admissible stepsizes.
In order to understand the meaning of the previous conditions, it is convenient

to introduce the auxiliary univariate function

ϕ(µ) := J(v + µs), µ ∈ R,(2.5)

which is a strictly convex function satisfying ϕ(0) = J(v), ϕ′(0) = 〈J ′(v), s〉 < 0, and
ϕ(µ) → +∞ for µ→ +∞. Then, condition (2.3) reads

ϕ(µ) ≤ ϕ(0) + αϕ′(0)µ(2.6)

and, due to the convexity of ϕ, it identifies an interval of the form (0, µmax]. Con-
versely, condition (2.4) reads

ϕ′(µ) ≥ βϕ′(0)(2.7)

and identifies an interval of the form [µmin,+∞). Then, A(J ; v, s) is the intersection
of these two intervals. It is not empty since α < β; see also Figure 2.1.

2.3. A convergent steepest descent algorithm. We are now ready to in-
troduce the steepest descent algorithm for solving the optimization problem (2.1).
In this first version, we assume that all evaluations of both the functional J and its
gradient J ′ are done exactly. Hence, we term this version the Exact Algorithm.

We need the following notation.
Definition 2.5. Let R : V ′ → V denote the Riesz operator; i.e., R(f) is defined

for f ∈ V ′ as the unique element in V such that ‖R(f)‖V = 1 and ‖f‖V ′ = 〈f,R(f)〉.
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ϕ(µ)

ϕ(0)

ϕ′(0)

ϕ′(µmin) = β ϕ′(0)

0 µmin µmax

ϕ(µ)

µ

ϕ(µmax) = ϕ(0) + αϕ′(0)µmax

Fig. 2.1. Conditions on the stepsize imposed by Definition 2.4.

Obviously, R(f) can also be characterized by

〈f,R(f)〉 = sup
v∈V

〈f, v〉
‖v‖ .

Algorithm 2.6 (Exact Algorithm). Let u(0) ∈ V be given.
Then, for k = 0, 1, 2, . . ., while J ′(u(k)) 
= 0, do

1. choose the search direction as s(k) := −R(J ′(u(k))).
2. determine an admissible stepsize µ(k) ∈ A(J ;u(k), s(k)).
3. update: u(k+1) := u(k) + µ(k)s(k).

Proposition 2.7. Under Assumption 2.1, the Exact Algorithm converges to u.

Proof. Without loss of generality we assume that the algorithm produces an
infinite sequence of vectors. We do the proof in several steps by adapting the conver-
gence proof of the classical steepest descent method for a convex functional in finite
dimension; see, e.g., [8].

(i) Using Lemma 2.2(a), we get

cJ
p
‖u(k+1) − u(k)‖pV ≤ [J(u(k+1)) − J(u(k))] − 〈J ′(u(k)), u(k+1) − u(k)〉.

Next, condition (2.3) can be equivalently written as

−〈J ′(u(k)), u(k+1) − u(k)〉 ≤ 1

α
[J(u(k)) − J(u(k+1))];

thus

cJ
p
‖u(k+1) − u(k)‖pV ≤

(
1

α
− 1

)
[J(u(k)) − J(u(k+1))].(2.8)

(ii) By construction, we have that {J(u(k))}k∈N0 is monotonically decreasing and
bounded from below by J(u); hence

lim
k→∞

[J(u(k)) − J(u(k+1))] = 0.

Using (2.8), we obtain limk→∞ ‖u(k+1) − u(k)‖V = 0.
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(iii) Now we have by condition (2.4)

‖J ′(u(k))‖V ′ = sup
‖ϕ‖V =1

〈J ′(u(k)), ϕ〉 = − 〈J ′(u(k)), s(k)〉

= 〈J ′(u(k+1)) − J ′(u(k)), s(k)〉 − 〈J ′(u(k+1)), s(k)〉
≤ ‖J ′(u(k+1)) − J ′(u(k))‖V ′ ‖s(k)‖V − β〈J ′(u(k)), s(k)〉
= ‖J ′(u(k+1)) − J ′(u(k))‖V ′ + β ‖J ′(u(k))‖V ′ ,

and hence ‖J ′(u(k))‖V ′ ≤ 1
1−β ‖J ′(u(k+1)) − J ′(u(k))‖V ′ .

(iv) The sequence {u(k)}k lies in R(u(0)) since J(u(k)) ≤ J(u(k−1)) ≤ · · · ≤
J(u(0)). Hence by Assumption 2.1 and Lemma 2.2(c), we obtain

‖J ′(u(k+1)) − J ′(u(k))‖V ′
k→∞−→ 0,

which by (iii) implies

lim
k→∞

J ′(u(k)) = 0.(2.9)

(v) Now using Assumption 2.1 and the fact that J ′(u) = 0, we get

cJ‖u(k) − u‖pV ≤ 〈J ′(u(k)) − J ′(u), u(k) − u〉 = 〈J ′(u(k)), u(k) − u〉
≤ ‖J ′(u(k))‖V ′ ‖u(k) − u‖V

and finally by (2.9)

‖u(k) − u‖V ≤
( 1

cJ
‖J ′(u(k))‖V ′

)1/(p−1) k→∞−→ 0.

This proves the assertion.

3. Optimization in sequence spaces. So far, we considered a minimization
problem in an arbitrary reflexive Banach space V . In many cases of interest, V is
equipped with a Riesz basis Ψ; i.e., the norm in V of an expansion in Ψ is equivalent
to a discrete norm of the expansion coefficients (see also (3.1) below). One may
think of V being a function space and the basis being the Fourier basis. However,
our considerations have been motivated by recent results in wavelet theory [9, 16]. In
particular, we were driven by the results in [10, 11], where an adaptive wavelet method
for solving certain operator equations was proven to be asymptotically optimally
convergent. One main ingredient for defining the adaptive approximation and for
analyzing it is the transformation of the operator equation into an equivalent discrete
problem still on an infinite-dimensional space. We will mimic this approach for our
minimization problem.

To this end, let us now consider a basis Ψ := {ψλ : λ ∈ J } in V and, for any
v =

∑
λ∈J vλψλ ∈ V , let us denote by v = (vλ)λ∈J the (possibly infinite) sequence

of its coefficients; we will use the notation v = vTΨ. We assume that Ψ is a Riesz
basis in V , in the sense that there exists 1 < p <∞ and constants 0 < cΨ ≤ CΨ <∞
such that

cΨ ‖v‖�p ≤ ‖v‖V ≤ CΨ ‖v‖�p for all v = vTΨ =
∑
λ∈J

vλ ψλ ∈ V.(3.1)
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Let us also denote by 〈·, ·〉 the duality pairing between �p = �p(J ) and �p′ = �p′(J ),
where 1

p + 1
p′ = 1. The isomorphism v �→ v induces an isomorphism F �→ F between

V ′ and �p′ , by setting 〈F ,v〉 = 〈F, v〉 for all v ∈ �p′ . The previous norm equivalences
(3.1) yield

C−1
Ψ ‖F ‖�p′ ≤ ‖F‖V ′ ≤ c−1

Ψ ‖F ‖�p′ for all F ∈ V ′.(3.2)

Thus, we can transfer the minimization in V to a minimization in the sequence
space �p. To this end, let us introduce the functional J : �p → R defined as

J(v) := J(vTΨ).(3.3)

We use J (and not J) here to indicate that J(v) ∈ R is a number, whereas boldface
characters always stand for sequences. Then, the minimization problem (2.1) can
equivalently be formulated as follows: Find u ∈ �p such that

J(u) = min
v∈�p

J(v).(3.4)

Note that the solutions u ∈ V of (2.1) and u ∈ �p of (3.4) are related by u = uTΨ.
The operator J inherits all the properties of the operator J . In particular, it

satisfies the conditions in Assumption 2.1. Its derivative is given by

J ′(v) = 〈J ′(vTΨ),Ψ〉,
where, for any f ∈ V ′, we use the notation 〈f,Ψ〉 := (〈f, ψλ〉)λ∈J . In fact,

〈J ′(v),w〉 = lim
t→0+

J(v + tw) − J(v)

t
= lim

t→0+

J(vTΨ + twTΨ) − J(vTΨ)

t

= 〈J ′(vTΨ),wTΨ〉 = wT 〈J ′(vTΨ),Ψ〉 = 〈〈J ′(vTΨ),Ψ〉,w〉.
Let us now define the operator R : �p′ \ {0} → �p,

1
p + 1

p′ = 1, by

(R(f))λ :=
fλ |fλ|p′−2

‖f‖p′−1
�p′

.

We have

〈f ,R(f)〉 = ‖f‖1−p′
�p′

∑
λ

f2
λ |fλ|p

′−2 = ‖f‖�p′ ;

since p = p′

p′−1 , we also have

‖R(f)‖�p = ‖f‖1−p′
�p′

(∑
λ

|fλ|p(p′−1)
)1/p

= ‖f‖1−p′
�p′

(∑
λ

|fλ|p′
)(p′−1)/p′

= 1.

Note that R coincides with the normalized Riesz operator in the Hilbert case p =
p′ = 2; otherwise the operator is nonlinear.

Now, we can formulate the discrete counterpart of Algorithm 2.6, which reads as
follows.

Algorithm 3.1 (fully infinite-dimensional steepest descent method).

Let u(0) ∈ V be given.
Then, for k = 0, 1, 2, . . ., while J ′(u(k)) 
= 0, do

1. determine the search direction s(k) by s(k) := −R(J ′(u(k)));
2. determine an admissible stepsize µ(k) ∈ A(J;u(k), s(k));
3. update: u(k+1) := u(k) + µ(k)s(k).

The convergence of the latter algorithm to u follows by Proposition 2.7.
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4. A general adaptive algorithm. The above fully infinite-dimensional algo-
rithm is posed in general terms and is in general not computable. The next step
is to replace all noncomputable operations by finite approximations. We start by
identifying certain routines that are needed within the algorithm. To this end, for
any sequence v ∈ �(J ), we define supp v as the set of indices corresponding to the
nonzero entries, i.e.,

supp v := {λ ∈ J : vλ 
= 0},(4.1)

and we call a vector compactly (or finitely) supported if # supp v <∞. We will often
add the index Λ and use the notation vΛ in order to indicate a compactly supported
vector. Note that Λ sometimes (but not necessarily) coincides with supp vΛ. When
this is the case, we will clearly state it.

There are several issues that we need to treat in order to define a computable
version of the descent algorithm. First of all, even if vΛ is a compactly supported
vector, in general the gradient J ′(vΛ) has infinitely many components, so it cannot
be computed exactly. Next, once an approximate descent direction has been found,
an admissible stepsize has to be computed. This may require several evaluations of
the functional J. Finally, in order to achieve an algorithm of optimal complexity,
the negligible components of the current approximation of the minimizer should be
removed (possibly not at each iteration), by using a coarsening procedure.

We start by assuming the availability of three basic procedures for approximating
the functional and its gradient as well as for thresholding a given vector.

Assumption 4.1. A procedure EVAL-GRAD: [vΛ, ε] �→ wΛ is available:
Given a compactly supported vector vΛ and a tolerance ε > 0, a compactly supported
vector wΛ is computed, such that ‖J ′(vΛ) −wΛ‖�p′ ≤ ε.

Assumption 4.2. A procedure EVAL-J: [vΛ, ε] �→ g is available:
Given a compactly supported vector vΛ and a tolerance ε > 0, a real number g is
computed, such that |J(vΛ) − g| ≤ ε.

Assumption 4.3. A procedure THRESH: [vΛ, ε] �→ zΛ is available:
Given a compactly supported vector vΛ and a tolerance ε > 0, a compactly supported
vector zΛ is computed, such that ‖vΛ−zΛ‖�p ≤ ε and supp zΛ ⊆ supp vΛ has minimal
cardinality, possibly subject to certain constraints on the distribution of its entries.

Now we indicate how to use these routines in order to realize the main ingredi-
ents of the adaptive algorithm. We use EVAL-GRAD to create a procedure, called
APPROX-GRAD, which yields an admissible descent direction. Next, we combine
EVAL-GRAD and EVAL-J to construct a procedure, called LINE-SEARCH,
which defines an admissible stepsize. In turn, the routines APPROX-GRAD and
LINE-SEARCH are combined to form DESCENT which realizes one descent
step of the algorithm. On the other hand, by THRESH and APPROX-GRAD
we construct a procedure COARSE in order to coarsen the current iterate. Fi-
nally, DESCENT and COARSE are used to define our general adaptive algorithm
MINIMIZE. For the sake of clarity, we show the hierarchy of these routines in
Figure 4.1.

4.1. Approximation of the gradient. We first note that EVAL-GRAD may
not yield an admissible descent direction. In fact, it may very well happen that the
approximate evaluation of the gradient J ′(vΛ) gives 0 even though vΛ is not the
minimum of J. Indeed, the approximation may discard many very small entries of
J ′(vΛ) so that vΛ may even be far away from the minimum. Hence, we have to
ensure theoretically that G(vΛ) vanishes if and only if the exact gradient vanishes.
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LINE-SEARCH
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EVAL-J
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�

�

�

Fig. 4.1. Hierarchy of procedures.

This is accomplished by the procedure APPROX-GRAD shown below. Besides the
input vector vΛ and the accuracy ε > 0, APPROX-GRAD takes an extra input
parameter, namely, 0 < γ < 1, whose meaning will be discussed later on. Finally,
ν ∈ (0, 1) denotes any arbitrarily fixed constant.

APPROX-GRAD: [vΛ, ε, γ] �→ [G(vΛ), η]
1. set η(1) := ε;
2. for n = 1, 2, . . . do

(a) w
(n)
Λ := EVAL-GRAD[vΛ, η

(n)];
(b) if ‖w(n)

Λ ‖�2 ≥ 1+γ
1−γ η

(n), setG(vΛ) := w(n), η := η(n), RETURN;

else set η(n+1) := ν η(n);
3. G(vΛ) := 0, η := 0.

Note that statement 3 is reached only after an infinite loop in statement 2. Of
course, in the computable version of the algorithm, we will insert a stopping criterion
in statement 2; see section 5.6 below.

The following statement is an immediate consequence of the definition.
Proposition 4.4. The procedure APPROX-GRAD: [vΛ, ε, γ] �→ [G(vΛ), η]

has the following property: Given 0 < γ < 1, ε > 0, and a finitely supported vector
vΛ, a vector G(vΛ) with finite support and a number η = η(vΛ) ∈ [0, ε] are computed,
such that

‖J ′(vΛ) −G(vΛ)‖�p′ ≤ η,(4.2)

‖G(vΛ)‖�p′ ≥
1 + γ

1 − γ
η.(4.3)

Remark 4.5. Even though ε does not appear in (4.2) and (4.3), it serves as upper
bound for the tolerance η determined inside the routine APPROX-GRAD.

The inequalities (4.2) and (4.3) show that the routine APPROX-GRAD defines
an admissible descent direction whenever J ′(vΛ) 
= 0. Precisely, the following results,
which will play a crucial role in the subsequent analysis, hold.

Proposition 4.6. G(vΛ) satisfies the following properties:
(a) The inequality

‖J ′(vΛ)‖�p′ − η ≤ ‖G(vΛ)‖�p′ ≤ ‖J ′(vΛ)‖�p′ + η(4.4)

holds.
(b) J ′(vΛ) = 0 if and only if G(vΛ) = 0.
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(c) If J ′(vΛ) 
= 0, then for sΛ := −R(G(vΛ)), one has

〈J ′(vΛ), sΛ〉 ≤ −γ ‖J ′(vΛ)‖�p′ ;(4.5)

i.e., sΛ is an admissible descent direction.
(d) Finally, we have

γ‖G(vΛ)‖�p′ ≤ |〈J ′(vΛ), sΛ〉| ≤ 2

1 + γ
‖G(vΛ)‖�p′ .(4.6)

Proof. The first assertion is an immediate consequence of the triangle inequality.
As for (b), if J ′(vΛ) = 0, then

1 + γ

1 − γ
η ≤ ‖G(vΛ)‖�p′ ≤ η,

which is possible only if η = 0 and consequently G(vΛ) = 0. The converse is trivial.
If J ′(vΛ) 
= 0, then

〈J ′(vΛ), sΛ〉 = 〈G(vΛ) − J ′(vΛ),R(G(vΛ))〉 − 〈G(vΛ),R(G(vΛ))〉
≤ ‖J ′(vΛ) −G(vΛ)‖�p′ − ‖G(vΛ)‖�p′
≤ η − (1 + γ)η − γ‖G(vΛ)‖�p′
= −γ (η + ‖G(vΛ)‖�p′ ) ≤ − γ ‖J ′(vΛ)‖�p′

by (4.4) and Proposition 4.4, which proves (c). Note that with this choice the angle
between the gradient and the descent direction is bounded away from 90◦.

The first inequality in (d) follows directly from the proof of (c), taking into account
that 〈J ′(vΛ), sΛ〉 is negative. In fact, as above, we have

|〈J ′(vΛ), sΛ〉| ≥ γ (η + ‖G(vΛ)‖�p′ ) ≥ γ ‖G(vΛ)‖�p′ .
As for the second inequality, we have

|〈J ′(vΛ), sΛ〉| ≤ |〈G(vΛ), sΛ〉| + |〈J ′(vΛ) −G(vΛ), sΛ〉|
= ‖G(vΛ)‖�p′ + ‖J ′(vΛ) −G(vΛ)‖�p′ .

By (4.2) and (4.3), we get

‖J ′(vΛ) −G(vΛ)‖�p′ ≤ η ≤ 1 − γ

1 + γ
‖G(vΛ)‖�p′ ,

from which (d) follows.
Note that APPROX-GRAD gives the desired result after a finite number of

steps if and only if J ′(vΛ) 
= 0.
Remark 4.7. Proposition 4.4 shows that APPROX-GRAD gives an approxi-

mation of the gradient up to a relative accuracy:

‖J ′(vΛ) −G(vΛ)‖�p′
‖J ′(vΛ)‖�p′

≤ 1 − γ

2γ
.

In fact, using (4.4) as well as (4.3) gives

‖G(vΛ)‖�p′ ≤ ‖J ′(vΛ)‖�p′ + η ≤ ‖J ′(vΛ)‖�p′ +
1 − γ

1 + γ
‖G(vΛ)‖�p′ ,
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which implies

‖G(vΛ)‖�p′ ≤
1 + γ

2γ
‖J ′(vΛ)‖�p′ .(4.7)

Then, we conclude by (4.2) that

‖J ′(vΛ) −G(vΛ)‖�p′ ≤ η ≤ 1 − γ

1 + γ
‖G(vΛ)‖�p′ ≤

1 − γ

2γ
‖J ′(vΛ)‖�p′ .

4.2. Approximate descent step. Let vΛ be a given compactly supported
vector, and let G(vΛ) be an approximation of the gradient J ′(vΛ) produced by
APPROX-GRAD; let us set sΛ = −R(G(vΛ)). Hereafter, we describe how to
select an admissible step size. The proposed algorithm is based on a bisection pro-
cedure, which yields the admissible step µ ∈ A(J;vΛ, sΛ) after a finite number of
bisections, and requires only the approximate evaluation of the functional J.

Setting as in (2.5) ϕ(µ) := J(vΛ + µsΛ), we look for µ satisfying (2.6) and the
similar condition

ϕ(µ) ≥ ϕ(0) + β ϕ′(0)µ;

indeed, the latter condition implies (2.7), thanks to Lagrange’s theorem and the mono-
tonicity of ϕ′. Thus, setting

Q(µ) :=
ϕ(µ) − ϕ(0)

µϕ′(0)
=
ϕ(0) − ϕ(µ)

µ |ϕ′(0)| ,

we look for µ satisfying

α ≤ Q(µ) ≤ β.(4.8)

This is possible, since limµ→0+Q(µ) = 1 and Q is monotonically decreasing to −∞
for µ → +∞. On the other hand, only a computable approximation of Q(µ) can be
used in the search. So, we approximate Q(µ) by

Q̃(µ) :=
ϕ̃(0) − ϕ̃(µ)

µ ‖G(vΛ)‖�p′
,

where ϕ̃(0) = EVAL-J[vΛ, ε], ϕ̃(µ) = EVAL-J[vΛ+µsΛ, ε], and ε := �µ ‖G(vΛ)‖�p′ ,
� > 0 being a constant to be determined later on. It is easily seen that

2

1 + γ
Q̃(µ) − 4�

1 + γ
≤ Q(µ) ≤ 1

γ
Q̃(µ) +

2�

γ
.

Thus, (4.8) holds if Q̃(µ) satisfies

α̃ ≤ Q̃(µ) ≤ β̃(4.9)

with

α̃ :=
1 + γ

2
α+ 2� and β̃ := γβ − 2�.
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Note that these bounds are meaningful provided that α, β, and γ are chosen such that

β >
1 + γ

2γ
α(4.10)

holds. In fact, then we have γβ − 1+γ
2 α > 0 and we can choose � > 0 such that

� <
1

4

(
γβ − 1 + γ

2
α

)
(4.11)

and thus α̃ = 1+γ
2 α+ 2� < γβ − 2� = β̃.

Starting from any tentative stepsize and possibly halving or doubling the current
stepsize a finite number of times, either we satisfy (4.9), or we find two values µ−

0 < µ+
0

such that Q̃(µ−
0 ) > β̃ and Q̃(µ+

0 ) < α̃. In this case, we can start the classical bisection
procedure applied to Q̃. Let us prove that this procedure guarantees that (4.9) is
satisfied after a finite number of steps. We argue by contradiction, assuming that the
procedure generates an infinite sequence of values µ−

n < µ+
n such that Q̃(µ+

n ) < α̃,
Q̃(µ−

n ) > β̃, limn→∞(µ+
n − µ−

n ) = 0. Then, there exists µ̄ such that limn→∞ µ+
n =

limn→∞ µ−
n = µ̄. By continuity, we have limn→∞(Q(µ−

n )−Q(µ+
n )) = 0. On the other

hand,

Q(µ−
n ) ≥ 2

1 + γ
Q̃(µ−

n ) − 4�

1 + γ
>

2β̃ − 4�

1 + γ

and

Q(µ+
n ) ≤ 1

γ
Q̃(µ+

n ) +
2�

γ
<

2�+ α̃

γ

so that

Q(µ−
n ) −Q(µ+

n ) > ω − ν �

with

ω = ω(α, β, γ) :=
2γ

1 + γ
β − 1 + γ

2γ
α, and ν = ν(γ) :=

γ

1 + γ
+

4

γ
.

Choosing α, β, and γ such that in addition to (4.10) we also have

β >
(1 + γ)2α+ 4�(1 + 3γ)

4γ2
,(4.12)

we obtain ω − �ν > 0, i.e., a contradiction. In fact, a straightforward calculation
shows that (4.12) yields

� <
4γ2β − (1 + γ)2α

4(1 + 3γ)
=
ω

ν
.

We summarize the result as follows.
Proposition 4.8. Given any compactly supported vector vΛ, let us set sΛ =

−R(G(vΛ)), where G(vΛ) is an approximation of J ′(vΛ) satisfying conditions
(4.2) and (4.3). In addition, let Assumption 4.2 be satisfied. Then, choosing α, β, γ
according to (4.10) and (4.12), we can compute an admissible stepsize µ ∈
A(J;vΛ, sΛ).

A different algorithm for choosing the stepsize will be described under more re-
strictive assumptions in section 5.1 below. Both algorithms are particular realizations
of a general procedure LINE-SEARCH which we define as follows.
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Definition 4.9. We call LINE-SEARCH: [vΛ,G(vΛ), α, β] �→ η any proce-
dure with the following property: Given α, β satisfying 0 < α < β < 1, a finitely sup-
ported vector vΛ, and an approximation G(vΛ) of its gradient produced by APPROX-
GRAD, and setting sΛ = −R(G(vΛ)), then an admissible stepsize η ∈ A(J;vΛ, sΛ)
is computed.

By the routines APPROX-GRAD and LINE-SEARCH, we perform one step
of descent, which is detailed in the following routine.

DESCENT: [vΛ, ε] �→ wΛ

1. [G(vΛ), η] := APPROX-GRAD[vΛ, ε, γ]
2. if η = 0, STOP (vΛ = u); else
3. sΛ := −R(G(vΛ));
4. µ := LINE-SEARCH[vΛ,G(vΛ), α, β];
5. wΛ := vΛ + µsΛ.

4.3. Coarsening. The problem of coarsening a vector is one of the central is-
sues of nonlinear approximation theory (see [9, 22]). Several routines of this type
are available in the literature; see, e.g., [10, 11, 12]. However, we are interested in
a procedure which guarantees the possibility of significantly reducing the support of
vΛ while preserving the value of the functional J up to a small perturbation. The
particular realization of the coarsening that we propose is based on the following result.

Lemma 4.10. Let vΛ, wΛ be finitely supported vectors such that supp wΛ ⊆
supp vΛ =: Λ. Furthermore, let [G(wΛ, η] = APPROX-GRAD[wΛ, ε, γ] for some
ε > 0 and 0 < γ < 1. Then,

J(wΛ) − J(vΛ) ≤
(
‖G(wΛ)|Λ‖�p′ + η

)
‖wΛ − vΛ‖�p .

Proof. By the convexity of J, we obtain

J(wΛ) − J(vΛ) ≤ 〈J ′(wΛ),wΛ − vΛ〉 ≤ ‖J ′(w)|Λ‖�p′ ‖wΛ − vΛ‖�p .(4.13)

Next, by (4.2), we have

‖J ′(w)|Λ −G(w)|Λ‖�p′ ≤ ‖J ′(w) −G(w)‖�p′ ≤ η,

whence the result immediately follows.
We are ready to introduce the routine COARSE. It depends on a parameter

ϑ > 0, which bounds from above the error in the functional, as clarified in Proposi-
tion 4.11 below.

COARSE: [vΛ, ϑ] → wΛ

1. [G(vΛ), η(0)] = APPROX-GRAD[vΛ, ϑ, γ];

2. A(0) = ‖G(v)|Λ‖�p′ + η(0).

3. For k = 0, . . . do

(a) w
(k)
Λ = THRESH[vΛ,

ϑ
A(k) ];

(b) [G(w
(k)
Λ ), η(k)] = APPROX-GRAD[w

(k)
Λ , ϑ, γ];

(c) B(k) = ‖G(w
(k)
Λ )|Λ‖�p′ + η(k);

(d) if B(k) ≤ A(k), set wΛ := w
(k)
Λ , RETURN;

(e) else A(k+1) = max(B(k), 2A(k)).
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Proposition 4.11. Given a finitely supported vector vΛ and a number ϑ > 0, the
procedure COARSE: [vΛ, ϑ] �→ wΛ produces a finitely supported vector wΛ obtained
by thresholding vΛ such that J(wΛ) < J(vΛ) + ϑ.

Proof. Thanks to Lemma 4.10 and the fact that the sequence A(k) is geometrically
increasing, one sees immediately that this procedure terminates in a finite number of
iterations leading to the claimed inequality.

An improved version of COARSE will be given in section 5.4 under more re-
strictive assumptions.

4.4. The general convergent adaptive algorithm. We are now ready to
define a general adaptive algorithm. It depends on the choice of various parameters.
A strategy for their selection will be detailed in the next section.

Algorithm 4.12. MINIMIZE
Let u(0) = u

(0)
Λ ∈ �p be given. Fix constants α, β, γ satisfying 0 < α < β < 1 and

0 < γ < 1, which enter into the definition of DESCENT.
For m = 0, 1, . . ., do

v
(m,0)
Λ := u

(m)
Λ

choose an integer K(m) ≥ 1
For k = 0, 1, . . . ,K(m) − 1, do

choose ε(m,k) > 0
v

(m,k+1)
Λ := DESCENT[v

(m,k)
Λ , ε(m,k)]

End
choose ϑ(m) > 0

u
(m+1)
Λ := COARSE[v

(m,K(m))
Λ , ϑ(m)]

End
Theorem 4.13. Let the sequence (K(m))m be arbitrary. Assume that the se-

quence (ε(m,k))m,k satisfies

lim
m→∞ sup

k
ε(m,k) = 0,(4.14)

whereas the sequence (ϑ(m))m satisfies

ϑ(m) ≤ 1

2
[J(u

(m)
Λ ) − J(v

(m,K(m))
Λ )].(4.15)

Then, Algorithm 4.12 MINIMIZE either yields u after a finite number of steps or

produces an infinite sequence (u
(m)
Λ )m which converges to u.

Proof. If, for some m and k, the procedure DESCENT stops, then v
(m,k)
Λ = u.

Otherwise, the algorithm produces an infinite sequence of vectors. Assuming the

latter case, we first show that the sequence (J(u
(m)
Λ ))m is strictly decreasing. Let m

be fixed. By definition of DESCENT, we have

J(v
(m,k+1)
Λ ) < J(v

(m,k)
Λ ), k = 0, 1, . . . ,K(m) − 1,(4.16)

whence

J(v
(m,K(m))
Λ ) < J(u

(m)
Λ ).(4.17)

Furthermore, by definition of COARSE and assumption (4.15), we get

J(u
(m+1)
Λ ) ≤ J(v

(m,K(m))
Λ ) + ϑ(m) ≤ 1

2
[J(v

(m,K(m))
Λ ) + J(u

(m)
Λ )],(4.18)
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from which we obtain the desired result

J(u
(m+1)
Λ ) − J(u

(m)
Λ ) ≤ 1

2
[J(v

(m,K(m))
Λ ) − J(u

(m)
Λ )] < 0.(4.19)

Next, since the functional J is bounded from below, we deduce that

lim
m→∞[J(u

(m)
Λ ) − J(u

(m+1)
Λ )] = 0.(4.20)

Using (4.18) again, we easily get J(u
(m)
Λ ) − J(v

(m,K(m))
Λ ) < 2[J(u

(m)
Λ ) − J(u

(m+1)
Λ )].

Hence, we also have that

lim
m→∞ϑ(m) = lim

m→∞

[
J(u

(m)
Λ ) − J(v

(m,K(m))
Λ )

]
= 0.(4.21)

Thanks to (4.16), we obtain

lim
m→∞ sup

k
[J(v

(m,k)
Λ ) − J(v

(m,k+1)
Λ )] = 0.

Exactly as in the proof of Proposition 2.7(i), the latter result implies

lim
m→∞ sup

k
‖v(m,k+1)

Λ − v(m,k)
Λ ‖�p = 0.(4.22)

We now observe that, by (4.16) and (4.19), the sequence (v
(m,k)
Λ )m,k is contained in

the bounded set R(u(0)). Using the uniform continuity of J ′ on bounded sets, we
obtain from (4.22)

lim
m→∞ sup

k
‖J ′(v(m,k+1)

Λ ) − J ′(v(m,k)
Λ )‖�p′ = 0.(4.23)

Next, setting [G(v
(m,k)
Λ ), η(m,k)] := APPROX-GRAD[v

(m,k)
Λ , ε(m,k), γ] and using

(4.2) as well as step 3 of DESCENT, we have, for 0 ≤ k < K(m),

‖J ′(v(m,k)
Λ )‖�p′ − η(m,k) ≤ ‖G(v

(m,k)
Λ )‖�p′ = − 〈G(v

(m,k)
Λ ), s

(m,k)
Λ 〉

= 〈J ′(v(m,k)
Λ ) −G(v

(m,k)
Λ ), s

(m,k)
Λ 〉

+ 〈J ′(v(m,k+1)
Λ ) − J ′(v(m,k)

Λ ), s
(m,k)
Λ 〉

− 〈J ′(v(m,k+1)
Λ ), s

(m,k)
Λ 〉.

Now, (2.4) and (4.2) yield

‖J ′(v(m,k)
Λ )‖�p′ − η(m,k) ≤

≤ ‖J ′(v(m,k)
Λ ) −G(v

(k)
Λ )‖�p′ + ‖J ′(v(m,k+1)) − J ′(v(m,k)

Λ )‖�p′
− β 〈J ′(v(m,k)

Λ ), s
(m,k)
Λ 〉

≤ η(m,k) + ‖J ′(v(m,k+1)) − J ′(v(m,k)
Λ )‖�p′ + β‖J ′(v(m,k)

Λ )‖�p′ ;

thus

(1 − β)‖J ′(v(m,k)
Λ )‖�p′ ≤ ‖J ′(v(m,k)

Λ ) − J ′(v(m,k+1)
Λ )‖�p′ + 2η(m,k).
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By definition of APPROX-GRAD and assumption (4.14), we get η(m,k) ≤ ε(m,k) →
0 as m→ ∞, uniformly in k. This and (4.23) imply

lim
m→∞ sup

k
‖J ′(v(m,k)

Λ )‖�p′ = 0.

Since ‖v(m,k)
Λ − u‖�p ≤

(
1

cJ,Ψ
‖J ′(v(m,k)

Λ )‖�p′
)1/(p−1)

, we conclude that

lim
m→∞ sup

k
‖v(m,k)

Λ − u‖�p = 0.

In particular, since v
(m,0)
Λ = u

(m)
Λ , this implies the claimed result.

A few remarks are in order.
Remark 4.14. (i) Fulfilling assumption (4.15) may be accomplished as follows.

By Wolfe’s condition, the value of the functional is decreased when going from v
(m,k)
Λ

to v
(m,k+1)
Λ , provided the gradient is not yet zero causing the algorithm to stop.

Precisely, setting v
(m,k+1)
Λ = v

(m,k)
Λ + µ(k)s(k), we have by (2.3), (4.5), and (4.7)

J(v
(m,k)
Λ ) − J(v

(m,k+1)
Λ ) ≥ −αµ(k)〈J ′(v(m,k)

Λ ), s
(m,k)
Λ 〉 ≥ αγ µ(k)‖J ′(v(m,k)

Λ )‖�p′
≥ α

2γ2

1 + γ
µ(k)‖G(v

(m,k)
Λ )‖�p′ .

Then, we obtain by using a telescopic sum

J(u
(m)
Λ ) − J(v

(m,K(m))
Λ ) = J(v

(m,0)
Λ ) − J(v

(m,K(m))
Λ ) =

K(m)−1∑
k=0

J(v
(m,k)
Λ ) − J(v

(m,k+1)
Λ )

≥ 2αγ2

1 + γ

K(m)−1∑
k=0

µ(k)‖G(v
(m,k)
Λ )‖�p′ ;

i.e., we can choose

ϑ(m) :=
αγ2

1 + γ

K(m)−1∑
k=0

µ(k)‖G(v
(m,k)
Λ )‖�p′ ,

which is in fact computable.
(ii) In view of (4.21), a natural way to satisfy assumption (4.14) is to set

ε(m,k) :=

{
1 if m = 0,
ϑ(m−1) if m ≥ 1,

k = 0, 1, . . . ,K(m) − 1.

5. An adaptive algorithm with convergence rate. From now on, we focus
our analysis on the case p = 2. Furthermore, we assume that the Fréchet derivative J ′

is Lipschitz continuous on each bounded subset of V . Precisely, recalling that the set
R(u(0)) (see Lemma 2.2) is bounded, we assume the existence of a constant LJ > 0,
possibly depending on u(0), such that

‖J ′(v) − J ′(w)‖V ′ ≤ LJ ‖v − w‖V , v, w ∈ R(u(0)).(5.1)
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Recalling the norm equivalences (3.1) and (3.2) and setting LJ,Ψ = LJC
2
Ψ, we obtain

the discrete form of the previous inequality, namely,

‖J ′(v) − J ′(w)‖�2 ≤ LJ,Ψ ‖v −w‖�2 , v,w ∈ R(u(0)).(5.2)

Recalling Assumption 2.1(ii) and setting cJ,Ψ = cJc
2
Ψ, we also get

cJ,Ψ‖v −w‖2
�2 ≤ 〈J ′(v) − J ′(w),v −w〉 ≤ LJ,Ψ‖v −w‖2

�2 , v,w ∈ R(u(0)).(5.3)

In this section, we present a particular realization of the abstract adaptive al-
gorithm MINIMIZE, which exploits the extra properties of the functional J stated
above. The convergence result of the algorithm will be supplemented by a precise
estimate of the rate of decay of the error. This will allow us to determine the number
of iterations needed to reach a target tolerance, as well as to relate the error of the
algorithm to the best approximation error of the solution.

We start by describing a more efficient line-search algorithm than the one pre-
scribed in section 4.2; it requires neither the evaluation of the functional, nor ad-
ditional approximate evaluations of the gradient other than the already computed
descent direction.

5.1. Line search. Given a compactly supported vector vΛ ∈ R(u(0)) and an
approximation G(vΛ) of J ′(vΛ) which satisfies conditions (4.2) and (4.3), we set
sΛ = −R(G(vΛ)) and we define a closed interval with computable endpoints, con-
tained in the interval A(J;vΛ, sΛ). To this end, let us set ϕ(µ) = J(vΛ + µsΛ),
so that ϕ′(µ) = 〈J(vΛ + µsΛ), sΛ〉, and let us recall that µ ∈ A(J;vΛ, sΛ) if and
only if conditions (2.6) and (2.7) are satisfied. In this subsection, we actually as-
sume that (5.2) and, consequently, (5.3) hold indeed in a bounded set larger than
R(u(0)), namely, in the neighborhood of R(u(0)) of radius µ̄ := diam(R(u(0))) (in
the �2-distance); obviously, this is not restrictive at all, since it amounts to properly
(re-)defining the constant LJ . Thus, if we choose v = vΛ and w = vΛ + µsΛ in (5.3),
we easily obtain

cJ,Ψ µ ≤ ϕ′(µ) − ϕ′(0) ≤ LJ,Ψ µ, µ ∈ [0, µ̄].(5.4)

Using the right-hand side of (5.4), we get for some θ ∈ (0, 1)

ϕ(µ) = ϕ(0) + ϕ′(θ µ)µ ≤ ϕ(0) + ϕ′(0)µ+ θ LJ,Ψ µ
2.

Hence, (2.6) is fulfilled if µ satisfies

ϕ′(0)µ+ LJ,Ψ µ
2 ≤ αϕ′(0)µ, i.e., LJ,Ψ µ ≤ (1 − α) |ϕ′(0)|.

Taking into account the left-hand side of (4.6), we get the sufficient condition for the
validity of (2.6)

µ ≤ µ∗ := γ
1 − α

LJ,Ψ
‖G(vΛ)‖�2 ,

provided µ∗ ≤ µ̄. This is indeed the case, since by (4.7) and (5.2) we have

µ∗ ≤ 1 − α

LJ,Ψ

1 + γ

2
‖J ′(vΛ)‖�2 ≤ (1 − α)

1 + γ

2
‖vΛ − u)‖�2 < µ̄.
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On the other hand, using the inequality on the left-hand side, condition (2.7) is
fulfilled if µ satisfies

ϕ′(0) + cJ,Ψ µ ≥ β ϕ′(0), i.e., cJ,Ψ µ ≥ (1 − β) |ϕ′(0)|.

By the right-hand side of (4.6), we get the sufficient condition for the validity of (2.7)

µ ≥ µ∗ :=
2

1 + γ

1 − β

cJ,Ψ
‖G(vΛ)‖�2 .

Obviously, we have to require that µ∗ ≤ µ∗, i.e,

(1 − β) ≤ γ(γ + 1)

2

cJ,Ψ
LJ,Ψ

(1 − α),(5.5)

which can always be satisfied, e.g., by fixing α and choosing β as close to 1 as needed.
Thus, we have obtained the following result.
Proposition 5.1. For any α ∈ (0, 1) and any γ ∈ (0, 1), there exists β∗ satisfying

α ≤ β∗ < 1 such that for all β ∈ [β∗, 1), the interval[
2

1 + γ

1 − β

cJ,Ψ
‖G(vΛ)‖�2 , γ

1 − α

LJ,Ψ
‖G(vΛ)‖�2

]
(5.6)

is nonempty and contained in A(J;vΛ, sΛ).
Consequently, the output of the procedure LINE-SEARCH[vΛ, α, β] can be

defined by picking any value in this interval.

5.2. Error reduction in one descent step. Let vΛ ∈ R(u(0)) be any com-
pactly supported approximation of the exact minimizer u. We apply the routine
DESCENT to it and, assuming vΛ 
= u, we get a new approximation wΛ. Here-
after, we are interested in studying the behavior of the approximation error in going
from vΛ to wΛ. In the analysis, the following definition will be useful.

Definition 5.2. For any compactly supported vector vΛ, we set

E(vΛ) := J(vΛ) − J(u).

The quantity E(vΛ) is an a priori error bound; indeed, by (2.2) and (3.1), we get

‖vΛ − u‖2
�2 ≤ 2

cJ,Ψ
E(vΛ).(5.7)

In order to compare E(wΛ) to E(vΛ), we recall the definition of wΛ = vΛ +
µ sΛ given at point 5 of DESCENT; from condition (2.3) and inequality (4.5), we
immediately get

E(wΛ) ≤ E(vΛ) − αγµ ‖J ′(vΛ)‖�2 .(5.8)

We now establish two technical results which will be used in what follows.
Lemma 5.3. Let µ = LINE-SEARCH[vΛ, α, β]. Then the following inequality

holds:

‖J ′(vΛ)‖�2 ≤ LJ,Ψ
γ(1 − β)

µ.
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Proof. We start by the trivial identity

−〈J ′(vΛ), sΛ〉 = 〈J ′(wΛ) − J ′(vΛ), sΛ〉 − 〈J ′(wΛ), sΛ〉.
Using (5.3) and condition (2.4), we obtain

−〈J ′(vΛ), sΛ〉 ≤ LJ,Ψ‖wΛ − vΛ‖�2 − β〈J ′(vΛ), sΛ〉,
i.e.,

−〈J ′(wΛ), sΛ〉 ≤ LJ,Ψ
1 − β

‖wΛ − vΛ‖�2 .

We conclude by (4.5).
Lemma 5.4. The following inequality holds:

E(vΛ) ≤ 1

2cJ,Ψ
‖J ′(vΛ)‖2

�2 .

Proof. We again apply (2.2) and (3.1) to get

J(u) − J(vΛ) ≥ 〈J ′(vΛ),u− vΛ〉 +
cJ,Ψ
2

‖u− vΛ‖2
�2

≥ min
z∈�2

{
〈J ′(vΛ),z〉 +

cJ,Ψ
2

‖z‖2
�2

}
= min

z∈�2

∑
λ∈J

{
J ′(vΛ)λ zλ +

cJ,Ψ
2
z2
λ

}
.

We note that we can minimize along each component λ independently for each λ ∈ J ;
the minimum is attained at zλ = − 1

cJ,Ψ
J ′(vΛ)λ. We conclude that

J(u) − J(vΛ) ≥ − 1

2cJ,Ψ
‖J ′(vΛ)‖2

�2 ,

which is precisely the thesis.
We are now ready to estimate the error reduction guaranteed by one application

of DESCENT.
Proposition 5.5. Given a compactly supported vector vΛ ∈ R(u(0)) and any tol-

erance ε, define wΛ := DESCENT(vΛ, ε). Let α, β be any fixed constants satisfying
Wolfe’s condition in Definition 2.4. Then, setting

σ := 1 − 2
cJ,Ψ
LJ,Ψ

γ2 (1 − β)α < 1,(5.9)

we have

E(wΛ) ≤ σ E(vΛ).

Proof. By the two previous lemmas, we obtain

µ ‖J ′(vΛ)‖�2 ≥ γ (1 − β)

LJ,Ψ
‖J ′(vΛ)‖2

�2 ≥ 2
cJ,Ψ
LJ,Ψ

γ (1 − β) E(vΛ).

The result follows from (5.8).
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Remark 5.6. The expression (5.9) for the error reduction factor σ suggests a
simple strategy for selecting the two parameters α and β which appear in (2.3) and
(2.4). Indeed, we observe that σ is monotonically decreasing as 1 − β increases.
Recalling condition (5.5), we are lead to choose

1 − β =
γ(γ + 1)

2

cJ,Ψ
LJ,Ψ

(1 − α).(5.10)

In this case, the interval (5.6) reduces to a point, which is the chosen stepsize; i.e., we
set

µ := γ
1 − α

LJ,Ψ
‖G(vΛ)‖�2 .

Substituting (5.10) into (5.9), we see that σ is minimized with respect to α by the
choice α = 1

2 . With this value for α, we finally obtain the error reduction rate

σopt := 1 −
(
cJ,Ψ
LJ,Ψ

)2
γ3 (1 + γ)

4
.(5.11)

As a by-product of the previous analysis, we obtain the next result, which de-
scribes the interplay between the available error control quantities.

Proposition 5.7. The following chain of inequalities holds:

‖vΛ − u‖2
�2 ≤ 2

cJ,Ψ
E(vΛ) ≤ 2

c2J,Ψ
‖J ′(vΛ)‖2

�2 ≤ 2

(
LJ,Ψ
cJ,Ψ

)2

‖vΛ − u‖2
�2 ,

for all vΛ ∈ R(u(0)).
Proof. It is enough to combine (5.7), Lemma 5.4, and (5.2) with v = vΛ and

w = u.
The result means that (E(vΛ))1/2 is an a priori error bound both from above and

from below; similarly ‖J ′(vΛ)‖�2 is an upper and lower a posteriori error estimator.
Of course, in general, none of them is computable in practice. However, by using
inequalities (4.4), we can easily obtain from the latter a computable a posteriori error
estimator.

5.3. Improving the error estimate. In this section, we show that the ap-
plication of APPROX-GRAD within the procedure DESCENT may lead to the
improvement of the currently available estimate of the quantity E. This feature will
be crucial in the design of the adaptive algorithm considered in the next section.

Let vΛ be any compactly supported vector and let EΛ be any upper estimate
of E(vΛ), i.e., E(vΛ) ≤ EΛ. By Proposition 5.7, there exists a constant C1 (whose
expression is easily computable) such that

‖J ′(vΛ)‖�2 ≤ C1E(vΛ)1/2 ≤ C1E
1/2
Λ .(5.12)

Let us enter APPROX-GRAD[vΛ, ε, γ] with the choice ε = C1E
1/2
Λ . Observe that

whenever the loop in APPROX-GRAD does not stop, i.e., whenever for some n we

have ‖w(n)
Λ ‖�2 < 1+γ

1−γ η
(n), then we get a new a priori information on the norm of the

gradient, namely,

‖J ′(vΛ)‖�2 ≤ ‖J ′(vΛ) −w(n)
Λ ‖�2 + ‖w(n)

Λ ‖�2 < η(n) +
1 + γ

1 − γ
η(n) =

2

1 − γ
η(n).
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Thus, if n̄ denotes the number of applications of EVAL-GRAD within APPROX-
GRAD, then we know that

‖J ′(vΛ)‖�2 ≤ 2

1 − γ
νn̄−1ε = C1

2

1 − γ
νn̄−1

E
1/2
Λ .(5.13)

Again by Proposition 5.7 we have, for a suitable constant C2,

E(vΛ) ≤ C2‖J ′(vΛ)‖2
�2 ≤ C2C2

1

4

(1 − γ)2
ν2n̄−2

EΛ.(5.14)

If we define n0 as the smallest integer ≥ 1 such that

C2C2
1

4

(1 − γ)2
≤ ν−2(n0−1),(5.15)

then we obtain

E(vΛ) ≤ ν2(n̄−n0) EΛ.

Obviously, we have to take the most accurate estimate between this one and the initial
one E(vΛ) ≤ EΛ. Denoting by (z)+ the positive part of a number z, we conclude that
at the output of an application of APPROX-GRAD, in which n̄ applications of
EVAL-GRAD have been made, we know that

E(vΛ) ≤ ν2(n̄−n0)+ EΛ.(5.16)

5.4. Coarsening. The coarsening procedure COARSE: [vΛ, ϑ] �→ wΛ as de-
scribed in section 4.3 can be simplified and optimized by exploiting the assumption
(5.1). Under the sole condition that an estimate of ‖J ′(vΛ)‖�2 is known, we can get
wΛ without any application of APPROX-GRAD, by calling once the procedure
THRESH introduced therein. Indeed, by the convexity of J and by (5.1), we have
for any wΛ ∈ R(u(0))

J(wΛ) − J(vΛ) ≤ 〈J ′(wΛ),wΛ − vΛ〉
= 〈J ′(wΛ) − J ′(vΛ),wΛ − vΛ〉 + 〈J ′(vΛ),wΛ − vΛ〉
≤ LJ,Ψ‖wΛ − vΛ‖2

�2 + ‖J ′(vΛ)‖�2‖wΛ − vΛ‖�2 .

Assume that ‖J ′(vΛ)‖�2 ≤ ξ for some ξ > 0. Then, setting

εϑ := min

((
ϑ

2LJ,Ψ

)1/2

,
ϑ

2ξ

)
and wΛ := THRESH[vΛ, εϑ],(5.17)

we obtain the desired coarsened vector wΛ.

5.5. The adaptive algorithm. Denote by E0 any computable estimate of the

initial error E(u
(0)
Λ ), i.e., choose E0 so that

E(u
(0)
Λ ) := J(u

(0)
Λ ) − J(u) ≤ E0.(5.18)

Let ν ∈ (0, 1) be a fixed constant. We now prove by recursion that the parameters
appearing in Algorithm 4.12 MINIMIZE can be chosen in such a way that either
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the exact solution u is obtained after a finite number of steps, or there exists a strictly
increasing sequence of integers em with e0 = 0 such that

E(u
(m)
Λ ) ≤ ν2em E0;(5.19)

furthermore, denoting by Nm the number of applications of EVAL-GRAD to get

u
(m)
Λ , we will relate Nm to em.

For m = 0, inequality (5.19) is precisely (5.18). By induction, we assume that
(5.19) holds up to some m ≥ 0. We set em,0 = 0 and we prove by recursion that there
exists a nondecreasing sequence of integers em,k such that

E(v
(m,k)
Λ ) ≤ Em,k with Em,k := σkν2(em+em,k)

E0, k = 0, 1, . . . .(5.20)

By (5.19), this inequality holds for k = 0. By induction, assume that it holds up to
some k ≥ 0. Set

ε(m,k) := C1E
1/2
m,k(5.21)

and apply DESCENT[v
(m,k)
Λ , ε(m,k)]. If the output η of APPROX-GRAD within

DESCENT is zero, we have found the exact solution and the algorithm stops. Other-
wise, let n̄m,k denote the number of applications of EVAL-GRAD inside the routine

DESCENT[v
(m,k)
Λ , ε(m,k)]. Recalling (5.16) and Proposition 5.5, we obtain

E(v
(m,k+1)
Λ ) ≤ σE(v

(m,k)
Λ ) ≤ σν2(n̄m,k−n0)+ Em,k.(5.22)

Setting em,k+1 := em,k + (n̄m,k − n0)+, we obtain (5.20) with k replaced by k + 1.
This completes the inner recursion argument.

Let K(m) be an integer to be determined. The coarsening step COARSE yields

E(u
(m+1)
Λ ) − E(v

(m,K(m))
Λ ) = J(u

(m+1)
Λ ) − J(v

(m,K(m))
Λ ) ≤ ϑ(m).

Choose

ϑ(m) := C̄ Em,K(m) ,(5.23)

where C̄ > 0 is by now a constant which can be freely chosen, but in the next section
will be chosen in order to guarantee the optimality of the thresholding procedure.
Then, recalling the definition in (5.20), we obtain

E(u
(m+1)
Λ ) ≤ (1 + C̄)σK

(m)

ν
2(em+e

m,K(m) )
E0.

This suggests choosing K(m) ≥ 1 as the smallest integer for which we have

gm,K(m) ≥ 1, where gm,K(m) satisfies ν
2g

m,K(m) := (1 + C̄)σK
(m)

ν
2e

m,K(m) .(5.24)

Note that K(m) is bounded by K̄, where K̄ ≥ 1 is the smallest integer satisfying
(1 + C̄)σK̄ ≤ ν2. Setting

ēm := [gm,K(m) ] ≥ 1 and em+1 := em + ēm,(5.25)

we obtain (5.19) with m replaced by m + 1. This completes the outer recursion
argument.



ADAPTIVE OPTIMIZATION OF CONVEX FUNCTIONALS 2065

We note that each coarsening step u
(m+1)
Λ := COARSE[v

(m,K(m))
Λ , ϑ(m)] can be

accomplished as described in section 5.4. Recalling (5.12), we have

‖J ′(v(m,K(m))
Λ )‖�2 ≤ C1E(v

(m,K(m))
Λ )1/2 ≤ C1E

1/2

m,K(m) =: ξ(m).

Since we have chosen ϑ(m) = C̄ Em,K(m) , by (5.17) we obtain u
(m+1)
Λ as the output of

THRESH[v
(m,K(m))
Λ , ε

(m)
ϑ ] with

ε
(m)
ϑ := min

(( C̄
2LJ,Ψ

)1/2

,
C̄

2C1

)
E

1/2

m,K(m) .(5.26)

Finally, let us count the number of applications of EVAL-GRAD in our algo-
rithm. By the previous considerations, they occur only within DESCENT. Denote
by Nm+1,m = n̄m,0 + · · · + n̄m,K(m)−1 the number of applications of EVAL-GRAD

needed to compute u
(m+1)
Λ from u

(m)
Λ . We observe that surely em,K(m) ≤ ēm + δK̄

for some δ ≥ 1. Thus,

Nm+1,m =

K(m)−1∑
k=0

(n̄m,k − n0) + n0K
(m) ≤

K(m)−1∑
k=0

(n̄m,k − n0)+ + n0K̄

= em,K(m) + n0K̄ ≤ ēm + (n0 + δ)K̄

≤ (n0 + δ + 1)K̄ēm = qK̄(em+1 − em)

with q := n0 + δ+ 1 and n0 defined in (5.15). We conclude that the number Nm+1 of

applications of EVAL-GRAD needed to compute u
(m+1)
Λ from u

(0)
Λ satisfies

Nm+1 =

m∑
µ=0

Nµ+1,µ ≤ qK̄

m∑
µ=0

(eµ+1 − eµ) = qK̄em+1.

Remark 5.8. In view of the subsequent optimality analysis, we observe that a
version of the algorithm can be given in which each n̄m,k (and hence Nm+1,m) is

guaranteed to be uniformly bounded. In fact, (5.14) shows that the output w
(n)
Λ of

the routine EVAL − GRAD[vΛ, ν
n−1ε] satisfies

E(w
(n)
Λ ) ≤ C2C2

1

4

(1 − γ)2
ν2n−2

EΛ,

where again EΛ is an estimate for E(vΛ). Choosing n̄ as the smallest integer satisfying

C2C2
1

4

(1 − γ)2
ν2n−2 ≤ σ,

we obtain E(w
(n)
Λ ) ≤ σ EΛ. Hence, we can restrict the loop in APPROX-GRAD

to n = 1, 2, . . . , n̄, with an absolute constant n̄. If (4.3) is satisfied before the end of
the loop, we leave APPROX-GRAD and proceed by LINE-SEARCH (resulting
in some vΛ) and obtain the error reduction E(vΛ) ≤ σ EΛ by the above arguments.

Otherwise, after at most n̄ steps, we leave APPROX-GRAD and set vΛ := w
(n̄)
Λ ,

avoiding the necessity of the line search in this case. This again results in the same
error reduction.
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Let us summarize our result in the following theorem.
Theorem 5.9. Let p = 2 and let (5.1) hold. We consider Algorithm 4.12 MIN-

IMIZE. We fix a constant ν ∈ (0, 1) and we choose a constant E0 satisfying (5.18).
Then, for the choice (5.24) of the parameters K(m) (with K(m) <∼ 1), ϑ(m) as in

(5.23) and ε(m,k) as in (5.21), either the algorithm yields the exact solution u after a
finite number of steps, or there exists a strictly increasing sequence {em} of integers

(5.25), with e0 = 0, such that the sequence of approximations u
(m)
Λ produced by the

algorithm satisfies

E(u
(m)
Λ ) ≤ ν2em E0, m = 0, 1, . . . .

Furthermore, the number Nm of applications of EVAL-GRAD needed to compute

u
(m)
Λ from u

(0)
Λ satisfies Nm <∼ em; i.e., it grows at most as the logarithm of the

obtained accuracy.
Recalling (3.1) and Proposition 5.7, we immediately obtain an error estimate in

the V -norm.
Corollary 5.10. Under the same conditions of the previous theorem, we have

‖u(m)
Λ − u‖V ≤ νem CΨ

(
2E0

cJ,Ψ

)1/2

, m = 0, 1, . . . .

5.6. Stopping criteria. The previous algorithm produces arbitrarily close ap-
proximations to the exact solution u. In practice, one fixes a tolerance TOL and

wishes to stop the algorithm as soon as the inequality ‖u(m)
Λ − u‖V < TOL is guar-

anteed to hold. According to the previous estimate, one can take as m the smallest
integer for which

νem <
1

CΨ

(
cJ,Ψ
2E0

)1/2

TOL.

On the other hand, the stopping test needs to be included also within APPROX-
GRAD, in order to prevent an infinite loop, or simply to avoid unnecessary applica-
tions of EVAL-GRAD therein. Precisely, recalling (5.13), the loop in APPROX-
GRAD is stopped if, for some n,

2

1 − γ
νn−1ε < ω TOL,

where ω ∈ (0, 1) can be easily determined from Proposition 5.7 so that ‖vΛ − u‖�2 <
TOL/(2CΨ). Setting wΛ := THRESH[vΛ, TOL/(2CΨ)], the triangle inequality
yields ‖wΛ − u‖�2 < TOL/CΨ, whence ‖wΛ − u‖V < TOL and the algorithm is
stopped.

6. Optimality properties of the algorithm. We continue the discussion of
the algorithm described in section 5. Here, we investigate how the number of active

basis functions in u
(m)
Λ (i.e., the cardinality of the support of u

(m)
Λ ) and the overall

computational complexity needed to get u
(m)
Λ (number of arithmetic operations and

sortings) are related to the accuracy of the approximation.
The relationship between cardinality of the active degrees of freedom (i.e., the

number of active basis functions) and accuracy is a central topic in nonlinear approx-
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imation theory [22]. This involves the best N -term or the best η-accurate approxi-
mation to a given v ∈ �2 defined as follows. Let

ΣN :=

{
w =

∑
λ∈Λ

wλ ψλ : |Λ| ≤ N

}

(where |Λ| denotes the cardinality of Λ ⊂ J ) be the nonlinear manifold of all linear
combinations of basis functions containing at most N terms. Then a best N -term
approximation vN to v is defined by

‖v − vN‖�2 = inf
wN∈Σcon

N

‖v −wN‖�2 =: �con
N (v),

where Σcon
N ⊆ ΣN takes into account possible constraints in the choice of the active

degrees of freedom (see (7.2) for an example).
Based on this, approximation spaces As are defined as the quasi-normed sequence

space consisting of all those elements whose error �con
N (v) decays at least as N−s. The

quasi norm is defined by

‖v‖As := sup
N>0

Ns �con
N (v).

On the other hand, a best η-accurate approximation vη to v is a vector of smallest
support compatible with the constraints, such that

‖v − vη‖�2 ≤ η.

A typical result is as follows: any best η-accurate approximation vη satisfies the

inequality | supp vη| <∼ η−1/s‖v‖1/s
As as η → 0.

In this framework, the behavior of best N -term or best η-accurate approximations
to v provides a benchmark to evaluate the quality of any compactly supported ap-
proximation of v. Precisely, a family {vΛ} of compactly supported vectors converging
to v in the �2-norm is said to be asymptotically optimal if it satisfies ‖vΛ‖As <∼ ‖v‖As

and

‖v − vΛ‖�2 <∼ |Λ|−s‖v‖As ,

or, equivalently,

|Λ| <∼ ‖v − vΛ‖−1/s
�2

‖v‖1/s
As .

The latter condition is surely satisfied if for any vΛ there exists η = ηΛ > 0 such that

‖v − vΛ‖�2 ≤ η and |Λ| <∼ η−1/s‖v‖1/s
As .

Note that in this context the subscript Λ refers to the actual support of the vector.
We remark that these results are known for Lp-spaces as well; see, e.g., [14, 22].

Before we proceed, let us give two concrete examples for the space As. If no
constraint is imposed on the choice of the active degrees of freedom, then As = �wτ ,
where �wτ (with 1

τ = s + 1
2 ) is the Lorentz space of sequences v = {vλ} ∈ �2 whose

nonincreasing rearrangement |vλ1 | ≥ |vλ2 | ≥ · · · ≥ |vλn | ≥ · · · satisfies

|v|�wτ := sup
n
n1/τ |vλn | <∞.
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This expression can be viewed as a quantitative measurement of the sparseness of the
sequence v. The space �wτ is equipped with the (quasi) norm ‖v‖�wτ := ‖v‖�2 + |v|�wτ .
If V is the Besov space Brp,p(Ω) of functions defined in a domain Ω ⊂ R

d, then

v ∈ As is implied by the regularity condition v = vTΨ ∈ Br+dsτ,τ (Ω), provided the
basis Ψ characterizes this space (see [5, 6, 15, 17, 18, 20] for more details, where the
construction is detailed in L2(Ω) but can easily be extended to the Lp-case).

As a second example, we consider a basis Ψ of compactly supported wavelets in
Ω. Suppose that the set of active degrees of freedom is constrained to have a tree-
structure (i.e., λ ∈ suppvN implies µ ∈ suppvN for all wavelets ψµ whose support
contains the support of ψλ). Then, As = As,tree is the space of sequences whose best
tree N -term approximation converges at a rate N−s, i.e., the space of all �2-sequences
v such that

�tree
N (v) <∼ N−s,

which is a quasi-normed space under the quasi norm

‖v‖As,tree := sup
n∈N

Ns �tree
N (v).

Here v ∈ As holds provided v = vTΨ ∈ Br+dsτ∗,τ∗(Ω) holds for some τ∗ > τ with τ as
above. We now suppose that the procedure THRESH defined in section 4.3 satisfies
the following condition.

Assumption 6.1. There exists a constant C∗ ≥ 1 such that if v ∈ As and if vΛ

satisfies ‖v − vΛ‖�2 ≤ ε, then zΛ := THRESH[vΛ, C
∗ε] satisfies

‖v − zΛ‖�2 ≤ (1 + C∗) ε, | supp zΛ| <∼ ε−1/s‖v‖As , ‖zΛ‖As <∼ ‖v‖As .(6.1)

This condition holds both for the unconstrained thresholding (e.g., with C∗ = 4;
see [10, 11]) and for the tree-thresholding (with a possibly larger C∗; see [4, 12]).
Obviously, with a larger constant C∗, the results are still valid.

From now on, let us suppose that u ∈ As for some s > 0. We recall that, for any

m ≥ 0, the vector v
(m,K(m))
Λ satisfies by Proposition 5.7 and by (5.20)

‖v(m,K(m))
Λ − u‖�2 ≤

(
2

cJ,Ψ

)1/2

E
1/2

m,K(m) =: ε(m).(6.2)

Furthermore, we recall that u
(m+1)
Λ = THRESH[v

(m,K(m))
Λ , ε

(m)
ϑ ], where ε

(m)
ϑ is de-

fined in (5.26). Now we choose the constant C̄ introduced in (5.23) in such a way that

ε
(m)
ϑ = C∗ε(m), i.e.,

min

(( C̄
2LJ,Ψ

)1/2

,
C̄

2C1

)
= C∗

(
2

cJ,Ψ

)1/2

.(6.3)

In this way (6.1) applies to v = u, vΛ = v
(m,K(m))
Λ , and zΛ = u

(m+1)
Λ . Finally,

observing that E
1/2

m,K(m) ∼ νem+1E
1/2
0 and shifting m into m− 1, we get the following

result.
Proposition 6.2. Let the assumptions of Theorem 5.9 and Assumption 6.1 hold.

Then, the iterates u
(m)
Λ generated by Algorithm 4.12 MINIMIZE with the choice (6.3)

satisfy

| supp u
(m)
Λ | <∼ (νemE

1/2
0 )−1/s‖u‖1/s

As and ‖u(m)
Λ ‖As <∼ ‖u‖As ,

for m = 0, 1, . . . .
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Since we have ‖u − u
(m)
Λ ‖�2 <∼ νemE

1/2
0 by Theorem 5.9, this proves the op-

timality of the approximation as far as the number of active degrees of freedom is
concerned.

In order to control the possible growth of the supports of the vectors in the inter-
mediate stages of the algorithm, as well as the computational complexity, we suppose
that the procedure EVAL-GRAD defined in section 4.1 satisfies the following con-
dition.

Assumption 6.3. Given any tolerance ε > 0 and any compactly supported vector
vΛ, then the output wΛ := EVAL-GRAD[vΛ, ε] satisfies

| supp wΛ| <∼ ε−1/s(‖vΛ‖1/s
As + ‖u‖1/s

As + 1),

‖wΛ‖As <∼ ‖vΛ‖As + ‖u‖As + 1.

The number opswΛ of operations needed to compute wΛ satisfies

opswΛ <∼ ε−1/s(‖vΛ‖1/s
As + ‖u‖1/s

As + 1) + | suppvΛ|.(6.4)

This condition is fulfilled in a number of relevant cases, as described in [11, 12].
The second term on the right-hand side of (6.4) can be neglected in certain situations
(e.g., in the linear and certain nonlinear cases). When it is needed, it accounts for
computing a chain of near-best trees for the given input index set. It was shown in [13,
Theorem 3.4] that the number log2(‖vΛ‖/ε) of these trees depends on only ‖vΛ‖ and
the target accuracy. Moreover, it was shown there that the overall cost to compute

these trees remains proportional to ε−1/s(‖vΛ‖1/s
As +1)+ |T (vΛ)|, where T (v) denotes

the smallest tree containing supp v. It is not restrictive to assume in the nonlinear
case that the input as well as all intermediate vectors do already have tree structures.
This shows that applying EVAL-GRAD to a sequence of decreasing tolerances for
the same input vector simply may require computing additional near-best trees. This
in turns means that |T (vΛ)| = | supp vΛ| has to be counted only once in the operation
count.

From the previous property, we deduce similar bounds for the output of the
routine APPROX-GRAD. Precisely, recalling that EVAL-GRAD is recursively
applied in APPROX-GRAD with the same input vector vΛ, we immediately deduce
that

| supp G(vΛ)| <∼ η−1/s(‖vΛ‖1/s
As + ‖u‖1/s

As + 1),(6.5)

‖G(vΛ)‖As <∼ ‖vΛ‖As + ‖u‖As + 1,(6.6)

where the constants on the right-hand side do not depend on the number of applica-
tions of EVAL-GRAD.

Concerning the operation count, we have to take into account that the accuracy in
the calls to EVAL-GRAD is reduced at a geometric rate; i.e., we have η(k) = ε νk−1

after k calls of EVAL-GRAD. Furthermore, we recall that the second term on the
right-hand side of (6.4) can be counted only once. Hence, denoting again by n̄ the
number of calls to EVAL-GRAD, and observing that η = η(n̄), we have

opsG(vΛ) <∼
n̄∑
k=1

ops (EVAL-GRAD[vΛ, η
(k)])

<∼
n̄∑
k=1

(η(k))−1/s(‖vΛ‖1/s
As + ‖u‖1/s

As + 1) + | supp vΛ|

<∼ η−1/s(‖vΛ‖1/s
As + ‖u‖1/s

As + 1) + | supp vΛ|,(6.7)
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where again the constants on the right-hand side do not depend on n̄. Recalling
Remark 5.8, we point out that the number of applications of EVAL-GRAD in each
iteration can be uniformly bounded. We stress the fact that the crucial point is—as al-
ready pointed out earlier—that EVAL-GRAD is called within APPROX-GRAD
with the same input vector vΛ with a series of tolerances that are geometrically de-
creasing. This implies, as shown in (6.7), a uniform bound on the number of operations
in terms of the error which is actually reachable for the input vΛ.

Consequently, we obtain similar estimates if, on the left-hand sides, we replace
G(vΛ) by the output wΛ := DESCENT[vΛ, ε]; in this case, η is the quantity deter-
mined within APPROX-GRAD.

We now apply these results within the Algorithm MINIMIZE, with the choice of
parameters described in sections 5 and 6. For any m ≥ 0 and k = 0, . . . ,K(m)−1, set

[G(v
(m,k)
Λ ), η(m,k)] := APPROX-GRAD[v

(m,k)
Λ , ε(m,k)]. Recalling (5.20) and (5.21)

as well as the definitions of n̄m,k and em,k+1, it is straightforward to check that

η(m,k) ≥ C1σ
−1/2

E
1/2
m,k+1

{
νn0 if n̄m,k ≥ n0,
1 if n̄m,k < n0.

In both cases, η(m,k) >∼ E
1/2
m,k+1 uniformly in m and k. Thus, by (6.5)–(6.7) we obtain

| supp G(v
(m,k)
Λ )| <∼ (E

1/2
m,k+1)

−1/s(‖v(m,k)
Λ ‖1/s

As + ‖u‖1/s
As + 1),(6.8)

‖G(v
(m,k)
Λ )‖As <∼ ‖v(m,k)

Λ ‖As + ‖u‖As + 1,(6.9)

opsG(v
(m,k)
Λ ) <∼ (E

1/2
m,k+1)

−1/s(‖v(m,k)
Λ ‖1/s

As + ‖u‖1/s
As + 1) + | supp v

(m,k)
Λ |.(6.10)

Next, from the definition of v
(m,k+1)
Λ = v

(m,k)
Λ + µ(m,k)s

(m,k)
Λ , we deduce that

| supp v
(m,k+1)
Λ | ≤ | supp v

(m,k)
Λ | + | supp G(v

(m,k)
Λ )|,(6.11)

ops (v
(m,k+1)
Λ ,v

(m,k)
Λ ) <∼ opsG(v

(m,k)
Λ ) + | supp v

(m,k+1)
Λ |,(6.12)

where ops (wΛ,vΛ) means the number of operations needed to compute wΛ, given
vΛ. We observe that, by the particular realization of line search we have chosen, we
have

µ(m,k)s
(m,k)
Λ = ζ(m,k)‖G(v

(m,k)
Λ )‖�2

G(v
(m,k)
Λ )

‖G(v
(m,k)
Λ )‖�2

= ζ(m,k)G(v
(m,k)
Λ )

for some ζ(m,k) uniformly bounded from above and below (see (5.6)). Thus, we have

‖v(m,k+1)
Λ ‖As <∼ ‖v(m,k)

Λ ‖As + ‖u‖As + 1.(6.13)

Now, we apply a recursion argument; taking into account Proposition 6.2, using again
the property of geometric series and the uniform boundedness of K(m), from (6.8)–
(6.13), we deduce the estimates

| supp v
(m,k+1)
Λ | + ops (v

(m,k+1)
Λ ,u(m)) <∼ (E

1/2
m,k+1)

−1/s(‖u‖1/s
As + 1)

<∼ (νem+1E
1/2
0 )−1/s(‖u‖1/s

As + 1),(6.14)

‖v(m,k+1)
Λ ‖As <∼ ‖u‖As + 1.
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Finally, recall that also the number of sortings needed in THRESH[v
(m,K(m))
Λ , ε

(m)
ϑ ]

can be made proportional to | supp v
(m,K(m))
Λ | (see [2]). Shifting m into m−1, we get

the following result.

Proposition 6.4. Under the assumptions of Proposition 6.2 and Assumption 6.3,

the cardinality of the supports of all vectors involved in the computation of u
(m)
Λ starting

from u
(0)
Λ , as well as the complexity to compute u

(m)
Λ , is bounded by the quantity

C(νemE
1/2
0 )−1/s(‖u‖1/s

As + 1).

This completes the assessment of the optimality of the algorithm.

7. Examples. We conclude the paper with two concrete examples.

7.1. The nonlinear Laplacian. Let Ω ⊂ R
n be a bounded domain with Lip-

schitz boundary ∂Ω. Given some p > 2, let V = W 1,p
0 (Ω) be the closed subspace of

the Sobolev space W 1,p(Ω) of the functions vanishing on ∂Ω, equipped with the norm

‖v‖W 1,p
0 (Ω) =

(∑n
i=1 ‖ ∂v

∂xi
‖pLp(Ω)

)1/p

. Let f be an element in V ′ = W−1,p′(Ω), and let

〈f, v〉V′×V denote the duality pairing between V ′ and V.

We consider the functional J : V → R defined as

J(v) =
1

p
‖v‖pV − 〈f, v〉V′×V .

Its Fréchet derivative is given by J ′(w) = A(w) − f , where

A(w) = −
n∑
i=1

∂

∂xi

(∣∣∣∣ ∂w∂xi
∣∣∣∣p−2

∂w

∂xi

)

is known as the p-Laplacian. The functional J satisfies Assumption 2.1. Indeed,
condition (i) can be proven by a repeated application of Hölder’s inequality in Lp-
spaces, whereas condition (ii) easily follows from the existence of a constant cp > 0
such that

(|s|p−2s− |t|p−2t)(s− t) ≥ cp|s− t|p for all s, t ∈ R.(7.1)

Thus, there exists a unique minimizer of the functional J on V, i.e., a unique solution
of the Dirichlet problem A(u) = f in Ω, u = 0 on ∂Ω (see, e.g., [26] for more details).

In view of the numerical discretization of such a problem, we introduce a wavelet
basis Ψ∗ := {ψ∗

λ : λ ∈ J } in Lp(Ω), such that ‖ψ∗
λ‖Lp(Ω) ∼ 1 for all λ. Here λ is

a multi-index, containing all the relevant parameters of the wavelet, including the
level index j =: |λ|. Furthermore, we denote by Brp,p,0(Ω) the closure of C∞

0 (Ω) in
the Besov space Brp,p(Ω), and we assume that there exists r∗ > 1 such that, for all r
satisfying 0 < r < r∗, Ψ∗ is also a basis in Brp,p,0(Ω) and the norm equivalence

‖v‖Br
p,p,0(Ω) ∼

(∑
λ∈J

2pr|λ| |v∗λ|p
)1/p

(7.2)

holds for all v =
∑
λ∈J v

∗
λψ

∗
λ ∈ Brp,p,0(Ω). Examples of such bases can be found, e.g.,

in [5, 6, 15, 17, 18, 20].
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It is well known (see, e.g., [29]) that Brp,p(Ω) = W r,p(Ω) algebraically and topo-

logically for all r 
∈ N, whereas, unfortunately, Bkp,p(Ω) 
= W k,p(Ω) for k ∈ N; one has

only Bk+εp,p (Ω) ⊂ W k,p(Ω) ⊂ Bkp,p(Ω) for all ε > 0 with strict topological inclusions.

Thus, we cannot apply the results of sections 3 and 4 taking W 1,p
0 (Ω) as V therein.

We circumvent such a drawback by resorting to a perturbation argument. To this
end, we assume that u ∈ B1+ε0

p,p,0 (Ω) for some ε0 > 0. Then, for any fixed ε ∈ (0, ε0],

we set V = Vε = B1+ε
p,p,0(Ω) and we normalize the wavelets in the Vε-norm; i.e., we

set ψλ = 2−(1+ε)|λ| ψ∗
λ for all λ ∈ J . Then, (7.2) yields precisely (3.1). Next, we

introduce the perturbed functional Jε : Vε → R, defined as

Jε(v) =
ε

p
‖v‖p�p + J(v) for all v = vTΨ ∈ Vε.

Its Fréchet derivative J ′
ε : Vε → V ′

ε satisfies 〈J ′
ε(v), w〉V ′

ε×Vε = ε
∑
λ∈J |vλ|p−2vλwλ +

〈J ′(v), w〉V′×V for all v, w ∈ Vε. This functional, too, satisfies Assumption 2.1. Ac-
tually, condition (i) follows from the continuous inclusion Vε ⊂ W 1,p

0 (Ω), whereas
condition (ii) is satisfied since (7.1) and the similar condition for J imply for all
w, v ∈ Vε

〈J ′
ε(w) − J ′

ε(v), w − v〉V ′
ε×Vε ≥ εcp‖w − v‖p�p + cJ‖w − v‖p

W 1,p
0 (Ω)

.(7.3)

Using (7.2), we obtain the existence of a constant c′J (independent of ε) such that

〈J ′
ε(w) − J ′

ε(v), w − v〉V ′
ε×Vε

≥ c′J(ε‖w − v‖p
B1+ε

p,p,0(Ω)
+ ‖w − v‖p

W 1,p
0 (Ω)

).

We can also express the ellipticity bound of the functional in terms of wavelet coef-
ficients. Indeed, since W 1,p

0 (Ω) ⊂ B1
p,p,0(Ω) with continuous inclusion, by (7.2) with

r = 1 there exists a constant c′′J (again independent of ε) such that

〈J ′
ε(w) − J ′

ε(v), w − v〉V ′
ε×Vε

≥ c′′J
∑
λ∈J

(ε+ 2−pε|λ|)|wλ − vλ|p.

Let uε ∈ Vε be the unique minimizer of Jε in Vε. Since all assumptions are fulfilled, we
can apply Algorithm 4.12 MINIMIZE described in sections 3 and 4 to the functional
Jε.

The next result proves that uε can be made arbitrarily close to u by choosing ε
small enough.

Proposition 7.1. The following estimate holds:

‖u− uε‖W 1,p
0 (Ω)

<∼ ε1/p, 0 < ε ≤ ε0.

Proof. SetN(v) := 1
p‖v‖p�p and note that J ′

ε(uε) = 0 and J ′
ε(u) = J ′(u)+εN ′(u) =

εN ′(u). Applying (7.3) with w = u and v = uε, we obtain

cJ‖u− uε‖pW 1,p
0 (Ω)

+ εcp‖u− uε‖p�p <∼ 〈J ′
ε(u) − J ′

ε(uε), u− uε〉V ′
ε×Vε

<∼ ε 〈N ′(u), u− uε〉V ′
ε×Vε

= ε 〈N ′(u),u− uε〉�p′×�p .
By Hölder’s inequality,

〈N ′(u),u−uε〉�p′×�p ≤ ‖N ′(u)‖�p′ ‖u−uε‖�p ≤ 1

p′cp
′/p
p

‖N ′(u)‖p′�p′ +
cp
p
‖u−uε‖p�p ,

whence the result easily follows from the assumption u ∈ B1+ε0
p,p,0 (Ω).
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The proposition provides a guideline for selecting the perturbation parameter ε.
Suppose that we wish to approximate u, in the W 1,p

0 (Ω)-norm, within an accuracy of
order TOL. Then, it is enough to choose ε = (TOL)p and stop Algorithm MINI-
MIZE as soon as uε is itself approximated with an accuracy of order TOL.

7.2. The nonlinear reaction-diffusion problem. Let G : R → R
+ be a

smooth strictly convex function, such that G(s) <∼ |s|p for all s ∈ R, where p ≥ 2 is

chosen so that H1
0 (Ω) ↪→ Lp(Ω), V = H1

0 (Ω). We consider the functional

J(v) :=
1

2

∫
Ω

|∇v|2 +

∫
Ω

G(v) − 〈f, v〉V ′×V ,

which is strictly convex and unbounded. The Fréchet derivative is given by

J ′(v) = −∆ + g(v)I − f =: A(v) − f,

where g(s) := G′(s) is strictly monotone in R. It is readily seen that A is continuous
and strictly monotone. Moreover, A is Lipschitz continuous and one can show that
the following bounds hold:

‖v‖V <∼ ‖A(v)‖V ′ <∼ ‖v‖p−1
V , v ∈ V.

Thus, Assumption 2.1(i) is satisfied. Moreover, due to the monotonicity of g, for all
v, w ∈ V , we have (g(v) − g(w), v − w)0,Ω ≥ 0 and thus

〈J ′(v) − J ′(w), v − w〉 = ‖∇(v − w)‖2
0,Ω + (g(v) − g(w), v − w)0,Ω >∼ ‖v − w‖2

V ,

so that (ii) holds for p = 2.

Let us take any wavelet basis Ψ of H1
0 (Ω) (see [5, 6, 15, 17, 18, 20]), so that the

following norm equivalence holds:

‖v‖V ∼
(∑
λ∈J

22|λ||vλ|2
)1/2

, v =
∑
λ∈J

vλ ψλ.

If the nonlinear function G is a global polynomial, then all required ingredients
can be taken from the literature. Indeed, EVAL-GRAD and EVAL-J consist of
a linear part which is described in [10, 11] and a nonlinearity of polynomial type.
A corresponding evaluation scheme can be found in [13, 19]. In addition, a tree-
coarsening routine is available in [12]. Finally, the gradient consists of the Laplacian
and, again, a nonlinearity of polynomial type which can be realized using the methods
described in [10, 11, 13, 19]. Moreover, note that if in addition the Fréchet derivative
J ′′ of J ′ is well-posed in the sense that ‖J ′′(v)w‖V ′ ∼ ‖w‖V for all v in a neigh-
borhood of the solution u of J ′(u) = 0, then one can also use the adaptive wavelet
method presented in [12] for the Euler–Lagrange equation in order to determine the
minimizer u of J .

However, the function G may have a much more complicated structure, e.g., it
may be defined piecewise. In this case, our general approach can also be used, provided
corresponding routines for EVAL-J, EVAL-GRAD, and THRESH are available.
Constructing and analyzing such schemes will be a subject of future research.
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Appendix A. Proof of Lemma 2.2. As for Lemma 2.2(a), the proof is straight-
forward setting w := u+ t(v−u), i.e., v−u = 1

t (w−u), and using (ii) in Assumption
2.1 to obtain

J(v) − J(u) =

∫ 1

0

d

dt
J(u+ t(v − u)) dt

=

∫ 1

0

〈J ′(u+ t(v − u)), v − u〉 dt

= 〈J ′(u), v − u〉 +

∫ 1

0

〈J ′(u+ t(v − u)) − J ′(u), v − u〉 dt

≥ 〈J ′(u), v − u〉 + cJ

∫ 1

0

1

t
‖w − u‖pV dt

= 〈J ′(u), v − u〉 + cJ

∫ 1

0

1

t
‖t(u− v)‖pV dt

= 〈J ′(u), v − u〉 + cJ

∫ 1

0

tp−1‖u− v‖pV dt

= 〈J ′(u), v − u〉 +
cJ
p
‖u− v‖pV .

Now we prove (b). Indeed,

J(v) ≥ J(u) + 〈J ′(u), v − u〉 +
cJ
p
‖v − u‖p;

hence, J(v) > J(u) + 〈J ′(u), v − u〉 for all u 
= v ∈ V . For the boundedness, take
again u = 0 in (a); then

J(v) ≥ J(0) + 〈J ′(0), v〉 +
cJ
p
‖v‖pV ≥ J(0) − ‖J ′(0)‖V ′ ‖v‖V +

cJ
p
‖v‖pV ,

which is bounded from below by the constant J(0) − ‖J ′(0)‖V ′ .
As for (c), take u = 0 in (a). Then, for v ∈ R(u(0)), we have

cJ
p
‖v‖pV ≤ J(v) − J(0) − 〈J ′(0), v〉 ≤ |J(u(0))| + |J(0)| + ‖J ′(0)‖V ′ ‖v‖V .

Since p > 1, we have ‖v‖V ≤ C(p, u(0)).
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1. Introduction. Many applications in engineering sciences require finding all
isolated solutions to systems of constraints over real numbers. These systems may
be nonpolynomial and are difficult to solve: the inherent computational complexity
is NP-hard and numerical issues are critical in practice (e.g., it is far from being
obvious to guarantee correctness and completeness as well as to ensure termination).
These systems, called numerical CSP (constraint satisfaction problem) in the rest
of this paper, have been approached in the past by different interesting methods:1

interval methods [35, 24, 38, 20, 40], continuation methods [37, 2, 62], and constraint
satisfaction methods [30, 6, 11, 61]. Of particular interest is the mathematical and
programming simplicity of the latter approach: the general framework is a branch and
prune algorithm that requires only specifying the constraints and the initial range of
the variables.

The purpose of this paper is to introduce and study a new branch and bound
algorithm called QuadSolver. The essential feature of this algorithm is a global
constraint—called Quad—that works on a tight and safe linear relaxation of the poly-
nomial relations of the constraint systems. More precisely, QuadSolver is a branch
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these methods can neither handle nonpolynomial systems nor deal with inequalities.
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and prune algorithm that combines Quad, local consistencies, and interval methods.
That is to say, QuadSolver is an attempt to merge the best interval and constraint
programming techniques. QuadSolver has been evaluated on a variety of benchmarks
from kinematics, mechanics, and robotics. On these benchmarks, it outperforms clas-
sical interval methods as well as CSP solvers and it compares well with state-of-the-art
optimization solvers.

The Quad-filtering algorithm [27] has first been defined for quadratic constraints.
The relaxation of quadratic terms is adapted from a classical linearization method,
the reformulation-linearization technique (RLT) [54, 53]. The simplex algorithm is
used to narrow the domain of each variable with respect to the subset of the linear
set of constraints generated by the relaxation process. The coefficients of these linear
constraints are updated with the new values of the bounds of the domains and the
process is restarted until no more significant reduction can be done. We have demon-
strated [27] that the Quad algorithm yields a more effective pruning of the domains
than local consistency filtering algorithms (e.g., 2b-consistency [30] or box-consistency
[6]). Indeed, the drawback of classical local consistencies comes from the fact that the
constraints are handled independently and in a blind way.2 That is to say, classical
local consistencies do not exploit the semantic of quadratic terms; in other words,
these approaches do not take advantage of the very specific semantic of quadratic
constraints to reduce the domains of the variables. Conversely, linear programming
techniques [1, 54, 3] do capture most of the semantics of quadratic terms, e.g., convex
and concave envelopes of these particular terms.3

The extension of Quad for handling any polynomial constraint system requires
replacing nonquadratic terms by new variables and adding the corresponding identi-
ties to the initial constraint system. However, a complete quadrification [58] would
generate a huge number of linear constraints. Thus, we introduce here an heuristic
based on a good tradeoff between a tight approximation of the nonlinear terms and
the size of the generated constraint system. This heuristic works well on classical
benchmarks (see section 8).

A safe rounding process is a key issue for the Quad framework. Let us recall that
the simplex algorithm is used to narrow the domain of each variable with respect to
the subset of the linear set of constraints generated by the relaxation process. The
point is that most implementations of the simplex algorithm are unsafe. Moreover,
the coefficients of the generated linear constraints are computed with floating point
numbers. So, two problems may occur in the Quad-filtering process.

1. The whole linearization may become incorrect due to rounding errors when
computing the coefficients of the generated linear constraints.

2. Some solutions may be lost when computing the bounds of the domains of
the variables with the simplex algorithm.

We propose in this paper a safe procedure for computing the coefficients of the
generated linear constraints. Neumaier and Shcherbina [42] have addressed the second

23b-consistency and kb-consistency are partial consistencies that can achieve a better pruning
since they are “less local” [11]. However, they require numerous splitting steps to find the solutions
of a system of quadratic constraints; so, they may become rather slow.

3Sherali and Tuncbilek [55] have also proposed four different filtering techniques for solving
quadratic problems. Roughly speaking, the first filtering strategy performs a feasibility check on
inequality constraints to discard subintervals of the domains of the variables. This strategy is very
close to box-consistency filtering (see [60]). The three other techniques are based on specific properties
of optimization problems with a quadratic objective function: the eigenstructure of the quadratic
objective function, fathoming node, and Lagrangian dual problem. Thus, these techniques can be
considered as local consistencies for optimization problems (see also [59] and Neumaier’s survey [41]).
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problem.4 They have proposed a simple and cheap procedure to get a rigorous upper
bound of the objective function. The incorporation of these procedures in the Quad-
filtering process allows us to call the simplex algorithm without worrying about safety.
So, with these two procedures, linear programming techniques can be used to tackle
continuous CSPs without losing any solution.

The rest of this paper is organized as follows. Section 2 gives an overview of the
approach whereas section 3 contains the notation. Sections 4 and 5 recall the basics
of interval programming and constraint programming. Section 6 details the principle
of the Quad algorithm, the linearization process, and the extension to polynomial
constraints. Section 7 introduces the rounding process we propose to ensure the safe
relaxations. Section 8 describes the experimental results and discusses related work.
Concluding remarks are given in section 9.

2. Overview of the approach. As mentioned, QuadSolver is a branch and
prune algorithm that combines Quad and a box-consistency.

Box-consistency is the most successful adaptation of arc-consistency [31] to
constraints over the real numbers. The box-consistency implementation of Van-
Hentenryck, McAllester, and Kapur [60] is computed on three-interval extensions
of the initial constraints: the natural interval extension, the distributed interval ex-
tension, and the Taylor interval extension with a conditioning step. The leftmost and
the rightmost zeros are computed using a variation of the univariate interval Newton
method.

The QuadSolver we propose here combines Quad-filtering and box-consistency
filtering to prune the domain of the variables of numerical constraint systems. Oper-
ationally, QuadSolver performs the following filtering processes:

1. box-consistency filtering,
2. Quad-filtering.

The box-consistency is first used to detect some inconsistencies before starting
the Quad-filtering algorithm which is more costly. These two steps are wrapped into a
classical fixed point algorithm which stops when the domains of the variables cannot
be further reduced.5

To isolate the different solutions, Quad uses classical branching techniques.
Before going into the details, let us outline the advantages of our approach on a

couple of small examples.

2.1. Quad-filtering. Consider the constraint system C = {2xy+y = 1, xy = 0.2}
which represents two intersecting curves (see Figure 2.1). Suppose that x = [−10,+10]
and y = [−10,+10] are the domains of the variables x and y. An interval x = [x, x]
denotes the set of reals {r|x ≤ r ≤ x}.

The RLT (see section 6.2) yields the following constraint system:⎧⎪⎪⎨⎪⎪⎩
y + 2w = 1, w = 0.2,
yx+ xy − w ≤ xy, yx+ xy − w ≥ xy,
yx+ xy − w ≥ xy, yx+ xy − w ≤ xy,
x ≥ x, x ≤ x, y ≥ y, y ≤ y,

(a)

where w is a new variable that stands for the product xy. Note that constraint system
(a) implies that w ∈ [x, x] ∗ [y, y].

4They have also suggested a solution to the first problem though their solution is dedicated to
mixed integer programming problems.

5In practice, the loop stops when the domain reduction is lower than a given ε.
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Fig. 2.1. Geometrical representation of {2xy + y = 1, xy = 0.2}.

Substituting x, y, x, and y by their values and minimizing (resp., maximizing) x, y,
and w with the simplex algorithm yield the following new bounds:

x = [−9.38, 9.42], y = [0.6, 0.6], w = [0.2, 0.2].

By substituting the new bounds of x, y, and w in the constraint system (a), we ob-
tain a new linear constraint system. One more minimizing (resp., maximizing) step
is required to obtain tight bounds of x. Note that numerous splitting operations are
required to find the unique solution of the problem with a 3b-consistency filtering
algorithm. The proposed algorithm solves the problem by generating 6 linear con-
straints and with 8 calls to the simplex algorithm. It finds the same solution as a
solver based on 3b-consistency but without splitting and in less time.

2.2. A safe rounding procedure. Consider the constraint system

C =

{
w1 + w2 = 1, w1x1 + w2x2 = 0,
w1x1x1 + w2x2x2 = 1, w1x1x1x1 + w2x2x2x2 = 0,

which represents a simple Gaussian quadrature formula to compute integrals [9]. Sup-
pose that the domains of variables x1, x2, w1, and w2 are all equal to [−1,+1]. This
system has two solutions:

• x1 = −1, x2 = 1, w1 = 0.5, w2 = 0.5,
• x1 = 1, x2 = −1, w1 = 0.5, w2 = 0.5.

A straightforward implementation of Quad would only find one unsafe solution
with

x2 ∈ [+0.9999 . . . 944,+0.9999 . . . 989].

Indeed, when we examine the Quad-filtering process, we can identify some linear pro-
grams where the simplex algorithm steps to the wrong side of the objective.

With the corrections we propose in section 7, we obtain a tight approximation
of the two correct solutions (with x2 ∈ [−1.000000 . . . ,−0.999999 . . . ] and x2 ∈
[0.999999 . . . , 1.000000 . . . ]).

3. Notation and basic definitions. This paper focuses on CSPs where the
domains are intervals and the constraints Cj(x1, . . . , xn) are n-ary relations over the
reals. C stands for the set of constraints.

x or Dx denotes the domain of variable x, that is to say, the set of allowed values
for x. D stands for the set of domains of all the variables of the considered constraint
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system. R denotes the set of real numbers whereas F stands for the set of floating
point numbers used in the implementation of nonlinear constraint solvers; if a is a
constant in F, a+ (resp., a−) corresponds to the smallest (resp., largest) number of F

strictly greater (resp., lower) than a.
x = [x, x] is defined as the set of real numbers x verifying x ≤ x ≤ x. x, y denote

real variables, X,Y denote vectors whereas X,Y denote interval vectors. The width
w(x) of an interval x is the quantity x − x while the midpoint m(x) of the interval
x is (x + x)/2. A point interval x is obtained if x = x. A box is a set of intervals:
its width is defined as the largest width of its interval members, while its center is
defined as the point whose coordinates is the midpoint of the ranges. IR

n denotes the
set of boxes and is ordered by set inclusion.

We use the RLT notation introduced in [54, 3] with slight modifications. More
precisely, we will use the following notations: [c]L is the set of linear constraints
generated by replacing the nonlinear terms by new variables in constraint c, and [c]LI
denotes the set of equations that keep the link between the new variables and the
nonlinear terms while [c]R contains linear inequalities that approximate the semantics
of nonlinear terms of constraint c. These notations will be used indifferently whether
c is a constraint or C is a set of constraints.

Rounding is necessary to close the operations over F (see [18]). A rounding func-
tion maps the result of the evaluation of an expression to available floating-point num-
bers. Rounding x towards +∞ maps x to the least floating point number xf such that
x ≤ xf . �(x) (resp., �(x)) denotes a rounding mode of x towards −∞ (resp., +∞).

4. Interval programming. This section recalls the basic concepts of interval
arithmetic that are required to understand the rest of the paper. Readers familiar
with interval arithmetic may skip this section.

4.1. Interval arithmetic. Interval arithmetic has been introduced by Moore [35].
It is based on the representation of variables as intervals.

Let f be a real-valued function of n unknowns X = (x1, . . . , xn). An interval
evaluation of f for given ranges X = (x1, . . . ,xn) for the unknowns is an interval y
such that

y ≤ f(X) ≤ y for all X = (x1, . . . , xn) ∈ X = (x1, . . . ,xn).(4.1)

In other words, y and y are lower and upper bounds for the values of f when the
values of the unknowns are restricted to the box X.

There are numerous ways to calculate an interval evaluation of a function [20, 46].
The simplest is the natural evaluation in which all the mathematical operators in f
are substituted by their interval equivalents. Interval equivalents exist for all classical
mathematical operators. Hence interval arithmetic allows us to calculate an interval
evaluation for all nonlinear expressions, whether algebraic or not. For example, if
f(x) = x+ sin(x), then the interval evaluation of f for x ∈ [1.1, 2] can be calculated
as follows:

f([1.1, 2]) = [1.1, 2] + sin([1.1, 2]) = [1.1, 2] + [0.8912, 1] = [1.9912, 3].

Interval arithmetic can be implemented with directed rounding to take into ac-
count round-off errors. There are numerous interval arithmetic packages implementing
this property: one of the most famous library is BIAS/Profil,6 but a promising new

6http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html.
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package—based on the multiprecision software MPFR7—is MPFI [47].
The main limitation of interval arithmetic is the overestimation of interval func-

tions. This is due to two well-known problems:
• the so-called wrapping effect [35, 39], which overestimates by a unique vector

the image of an interval vector (which is in general not a vector). That is to
say, {f(X)|X ∈ X} is contained in f(X) but is usually not equal to f(X);

• the so-called dependency problem [20], which is due to the independence of
the different occurrences of some variables during the interval evaluation of
an expression. In other words, during the interval evaluation process there
is no correlation between the different occurrences of a same variable in an
equation. For instance, consider x = [0, 10]. x−x = [x−x, x−x] = [−10, 10]
instead of [0, 0] as one could expect.

In general, it is not possible to compute the exact enclosure of the range for an
arbitrary function over the real numbers [25]. Thus, Moore introduced the concept
of interval extension: the interval extension of a function is an interval function that
computes outer approximations on the range of the function over a domain [20, 36].
Two main extensions have been introduced: the natural extension and the Taylor
extension [46, 20, 38].8 Due to the properties of interval arithmetic, the evaluation of
a function may yield different results according to the literal form of the equations.
Thus, many literal forms may be used as, for example, factorized form (Horner for
polynomial system) or distributed form [60].

Nevertheless, in general, neither the natural form nor the Taylor expansion allows
us to compute the exact range of a function f . For instance, considering f(x) =
1 − x+ x2 and x = [0, 2], we have

ftay([0, 2]) = f(x) + (2x − 1)(x − x) = f(1) + (2[0, 2] − 1)([0, 2] − 1) = [−2, 4],

f([0, 2]) = 1 − x + x2 = 1 − [0, 2] + [0, 2]2 = [−1, 5],(4.2)

ffactor([0, 2]) = 1 + x(x − 1) = 1 + [0, 2]([0, 2] − 1) = [−1, 3],

whereas the range of f over X = [0, 2] is [3/4, 3]. In this case, this result could directly
be obtained by a second form of factorization: ffactor2([0, 2]) = (x − 1/2)2 + 3/4 =
([0, 2] − 1/2)2 + 3/4 = [3/4, 3].

4.2. Interval analysis methods. This section provides a short introduction
to interval analysis methods (see [35, 20, 38, 40] for a more detailed introduction).
We limit this overview to interval Newton-like methods for solving a multivariate
system of nonlinear equations. Their use is complementary to methods provided by
the constraint programming community.

The aim is to determine the zeros of a system of n equations fi(x1, . . . , xn) in n
unknowns xi inside the interval vector X = (x1, . . . ,xn) with xi ∈ xi for i = 1, . . . , n.

First, consider solving an interval linear system of equations defined as follows:

AX = b, A ∈ A, b ∈ b,(4.3)

where A is an interval matrix and b is an interval vector. Solving this linear interval
system requires us to determine an interval vector X containing all solutions of all
scalar linear systems noted AX = b such that A ∈ A and b ∈ b. Finding the exact
value of X is a difficult problem, but three basic interval methods exist: Gaussian

7http://www.mpfr.org.
8ftay(X) = f(X) + A(X −X), where A is the Jacobian or the interval slope matrix.
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elimination, Gauss–Seidel iterative method, or Krawczyk method (see [24, 38, 20, 40]).
They may provide an overestimated interval vector X1 including X. However, in
general the computed intervals are too wide and a preconditioning is required, that
is to say, a multiplication of both sides of (4.3) by the inverse of a midpoint of A.
The matrix m(A)−1A is then “closer” to the identity matrix and the width of X1 is
smaller [20].

To solve nonlinear systems, an interval Newton algorithm is often used—see
[20] or [38]. The basic idea is to solve iteratively a linear approximation of the
nonlinear system obtained by a Taylor expansion. Many improvements [24, 19], based
on variations of the resolution of the linear subsystem or the preconditioning, have
been proposed. Note that many interesting properties are provided by Newton-like
methods: existence and/or uniqueness of a root, convergence area/rate, . . . .

5. Constraint programming. This section recalls the basics of constraint pro-
gramming techniques which are required to understand the rest of this paper. A
detailed discussion of these concepts and techniques can be found in [6, 26].

5.1. The general framework. The constraint programming framework is based
on a branch and prune scheme which was inspired by the traditional branch and bound
approach used in optimization problems. That is to say, it is best viewed as an itera-
tion of two steps [60]:

1. pruning the search space;
2. making a choice to generate two (or more) subproblems.

The pruning step ensures that some local consistency holds. In other words, the
pruning step reduces an interval when it can prove that the upper bound or the lower
bound does not satisfy some constraint. Informally speaking, a constraint system C
satisfies a partial consistency property if a relaxation of C is consistent. For instance
consider x = [x, x] and c(x, x1, . . . , xn) ∈ C. Whenever c(x, x1, . . . , xn) does not hold
for any values a ∈ x = [x, x′], then x may be shrunk to x = [x′, x]. Local consistencies
are detailed in the next subsection. Roughly speaking, they are relaxations of arc-
consistency, a notion that is well known in artificial intelligence [31, 34].

The branching step usually splits the interval associated to some variable in two
intervals with the same width. However, the splitting process may generate more than
two subproblems and one may split an interval at a point different from its midpoint.
The choice of the variable to split is a critical issue in difficult problems. Sophisticated
splitting strategies have been developed for finite domains but few results [23] are
available for continuous domains.

5.2. Local consistencies [11, 26]. Local consistencies are conditions that fil-
tering algorithms must satisfy. A filtering algorithm can be seen as a fixed point
algorithm defined by the sequence {Dk} of domains generated by the iterative appli-
cation of an operator Op : IR

n −→ IR
n (see Figure 5.1).

Dk =

{ D if k = 0
Op(Dk−1) if k > 0

Fig. 5.1. Filtering algorithms as fixed point algorithms.

The operator Op of a filtering algorithm generally satisfies the following three
properties:

• Op(D) ⊆ D (contractance);
• Op is conservative; that is, it cannot remove any solution;
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• D′ ⊆ D ⇒ Op(D′) ⊆ Op(D) (monotonicity).

Under those conditions, the limit of the sequence {Dk}, which corresponds to the
greatest fixed point of the operator Op, exists and is called a closure. A fixed point
for Op may be characterized by an lc-consistency property, called a local consistency.
The algorithm achieving filtering by lc-consistency is denoted lc-filtering. A CSP is
said to be lc-satisfiable if lc-filtering of this CSP does not produce an empty domain.

Consistencies used in numerical CSP solvers can be categorized in two main
classes: arc-consistency-like consistencies and strong consistencies. Strong consis-
tencies will not be discussed in this paper (see [30, 26] for a detailed introduction).

Most of the numerical CSP systems (for example, BNR-prolog [43], Interlog [8],
CLP(BNR) [7], PrologIV [12], UniCalc [4], Ilog Solver [22], Numerica [61], and
RealPaver [5]) compute an approximation of arc-consistency [31] which will be named
ac-like-consistency in this paper. An ac-like-consistency states a local property on a
constraint and on the bounds of the domains of its variables. Roughly speaking, a
constraint cj is ac-like-consistent if for any variable xi in var(cj), the bounds xi and
xi have a support in the domains of all other variables of cj .

The most famous ac-like consistencies are 2b-consistency and box-consistency.

2b-consistency (also known as hull consistency) [10, 7, 28, 30] requires only to
check the arc-consistency property for each bound of the intervals. The key point is
that this relaxation is more easily verifiable than arc-consistency itself. Informally
speaking, variable x is 2b-consistent for constraint “f(x, x1, . . . , xn) = 0” if the lower
(resp., upper) bound of the domain of x is the smallest (resp., largest) solution of
f(x, x1, . . . , xn). The box-consistency [6, 21] is a coarser relaxation (i.e., it allows less
stringent pruning) of arc-consistency than 2b-consistency. Variable x is box-consistent
for constraint “f(x, x1, . . . , xn) = 0” if the bounds of the domain of x correspond to
the leftmost and rightmost zeros of the optimal interval extension of f(x, x1, . . . , xn).
2b-consistency algorithms actually achieve a weaker filtering (i.e., a filtering that
yields bigger intervals) than box-consistency, more precisely when a variable occurs
more than once in some constraint (see Proposition 6 in [11]). This is due to the
fact that 2b-consistency algorithms require a decomposition of the constraints with
multiple occurrences of the same variable.

2b-consistency [30] states a local property on the bounds of the domains of a
variable at a single constraint level. A constraint c is 2b-consistent if, for any variable
x, there exist values in the domains of all other variables which satisfy c when x is
fixed to x and x.

The filtering by 2b-consistency of P = (D, C) is the CSP P ′ = (D′, C) such that

• P and P ′ have the same solutions;
• P ′ is 2b-consistent;
• D′ ⊆ D and the domains in D′ are the largest ones for which P ′ is 2b-

consistent.

Filtering by 2b-consistency of P always exists and is unique [30], that is to say it is a
closure.

The box-consistency [6, 21] is a coarser relaxation of arc-consistency than 2b-
consistency. It mainly consists of replacing every existentially quantified variable
but one with its interval in the definition of 2b-consistency. Thus, box-consistency
generates a system of univariate interval functions which can be tackled by numerical
methods such as interval Newton. In contrast to 2b-consistency, box-consistency
does not require any constraint decomposition and thus does not amplify the locality
problem. Moreover, box-consistency can tackle some dependency problems when each
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constraint of a CSP contains only one variable which has multiple occurrences. More
formally we have the following definition.

Definition 5.1 (box-consistency). Let (D, C) be a CSP and c ∈ C a k-ary con-
straint over the variables (x1, . . . , xk). c is box-consistent if, for all xi, the following
relations hold:

1. c(x1, . . . ,xi−1, [xi, x
+
i ),xi+1, . . . ,xk),

2. c(x1, . . . ,xi−1, (x
−
i , xi],xi+1, . . . ,xk).

Closure by box-consistency of P is defined similarly as closure by 2b-consistency
of P .

Benhamou et al. have introduced HC4 [5], an ac-like-consistency that merges
2b-consistency and box-consistency and which optimizes the computation process.

6. Quad basics and extensions. This section first introduces Quad, a global
constraint that works on a tight and safe linear relaxation of quadratic subsystems of
constraints. Then, it generalizes Quad to the polynomial part of numerical constraint
systems. Different linearization techniques are investigated to limit the number of
generated constraints.

6.1. The Quad algorithm. The Quad-filtering algorithm (see Algorithm 1) con-
sists of three main steps: reformulation, linearization, and pruning.

The reformulation step generates [C]R, the set of implied linear constraints. More
precisely, [C]R contains linear inequalities that approximate the semantics of nonlinear
terms of C.

The linearization process first decomposes each nonlinear term in sums and prod-
ucts of univariate terms; then it replaces nonlinear terms with their associated new
variables. For example, considering constraint c : x2x3x

2
4(x6 + x7) + sin(x1)(x2x6 −

x3) = 0, a simple linearization transformation may yield the following sets:

• [c]L = {y1 + y3 = 0, y2 = x6 + x7, y4 = y5 − x3},
• [c]LI = {y1 = x2x3x

2
4y2, y3 = sin(x1)y4, y5 = x2x6}.

[c]L is the set of linear constraints generated by replacing the nonlinear terms by
new variables and [c]LI denotes the set of equations that keep the link between the
new variables and the nonlinear terms. Note that the nonlinear terms which are not
directly handled by the Quad are taken into account by the box-filtering process.

Finally, the linearization step computes the set of final linear inequalities and
equations LR = [C]L ∪ [C]R, the linear relaxation of the original constraints C.

The pruning step is just a fixed point algorithm that calls iteratively a linear
programming solver to reduce the upper and lower bounds of every original variable.
The algorithm converges and terminates if ε is greater than zero.

Now we are in the position to introduce the reformulation of nonlinear terms.
Section 6.2 first introduces the handling of quadratic constraints while section 6.3
extends the previous results to polynomial constraints.

6.2. Handling quadratic constraints. Quadratic constraints are approximated
by linear constraints in the following way. Quad creates a new variable for each
quadratic term: y for x2 and yi,j for xixj . The produced system is denoted as⎡⎣ ∑

(i,j)∈M
ak,i,jxixj +

∑
i∈N

bk,ix
2
i +

∑
i∈N

dk,ixi = bk

⎤⎦
L

.

.
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Function Quad filtering(IN: X , D, C, ε) return D′

% X : initial variables; D: input domains; C: constraints; ε: minimal reduction
% D′: output domains

1. Reformulation: generation of linear inequalities [C]R for the nonlinear terms
in C.

2. Linearization: linearization of the whole system [C]L.
We obtain a linear system LR = [C]L ∪ [C]R.

3. D′ := D.

4. Pruning:
While the amount of reduction of some bound is greater than ε and ∅ �∈ D′

Do

(a) D ← D′.
(b) Update the coefficients of the linearizations [C]R according to the do-

mains D′.
(c) Reduce the lower and upper bounds x′i and x′i of each initial variable

xi ∈ X by computing min and max of xi subject to LR with a linear
programming solver.

Algorithm 1

The Quad-algorithm.

A tight linear (convex) relaxation, or outer-approximation to the convex and con-
cave envelope of the quadratic terms over the constrained region, is built by generating
new linear inequalities.

Quad uses two tight linear relaxation classes that preserve equations y = x2 and
yi,j = xixj and that provide a better approximation than interval arithmetic [27].

6.2.1. Linearization of x2. The term x2 with x ≤ x ≤ x is approximated by
the following relations:

[x2]R =

{
L1(α) ≡ [(x− α)2 ≥ 0]L, where α ∈ [x, x],

L2 ≡ [(x+ x)x− y − xx ≥ 0]L.
(6.1)

Note that [(x − αi)
2 = 0]L generates the tangent line to the curve y = x2 at the

point x = αi. Actually, Quad computes only L1(x) and L1(x). Consider for instance
the quadratic term x2 with x ∈ [−4, 5]. Figure 6.1 displays the initial curve (i.e.,
D1) and the lines corresponding to the equations generated by the relaxations: D2

for L1(−4) ≡ y + 8x + 16 ≥ 0, D3 for L1(5) ≡ y − 10x + 25 ≥ 0, and D4 for
L2 ≡ −y + x+ 20 ≥ 0.

We may note that L1(x) and L1(x) are underestimations of x2 whereas L2 is an
overestimation. L2 is also the concave envelope, which means that it is the optimal
concave overestimation.

6.2.2. Bilinear terms. In the case of bilinear terms xy, McCormick [32] pro-
posed the following relaxations of xy over the box [x, x]×[y, y], stated in the equivalent
RLT form [54]:

[xy]R =

⎧⎪⎪⎨⎪⎪⎩
BIL1 ≡ [(x− x)(y − y) ≥ 0]L,
BIL2 ≡ [(x− x)(y − y) ≥ 0]L,
BIL3 ≡ [(x− x)(y − y) ≥ 0]L,
BIL4 ≡ [(x− x)(y − y) ≥ 0]L.

(6.2)
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D1
D2,D3
D4

0

y

x

Fig. 6.1. Approximation of x2.

Cu
D1, D3
D2, D4

0

y

x

Fig. 6.2. Illustration of xy relaxations.

BIL1 and BIL3 define a convex envelope of xy whereas BIL2 and BIL4 define a
concave envelope of xy over the box [x, x] × [y, y]. Al-Khayyal and Falk [1] showed
that these relaxations are the optimal convex/concave outer-estimations of xy.

Consider for instance the quadratic term xy with x ∈ [−5, 5] and y ∈ [−5, 5].
The work done by the linear relaxations of the three-dimensional curve z = xy is well
illustrated in two dimensions by fixing z. Figure 6.2 displays the two-dimensional
shape, for the level z = 5, of the initial curve (i.e., Cu) and the lines corresponding to
the equations generated by the relaxations (where z = 5): D1 for BIL1 ≡ z+5x+5y+
25 ≥ 0, D2 for BIL2 ≡ −z+5x− 5y+25 ≥ 0, D3 for BIL3 ≡ −z− 5x+5y+25 ≥ 0,
and D4 for BIL4 ≡ z − 5x− 5y + 25 ≥ 0.

6.3. Extension to polynomial constraints. In this section, we show how
to extend the linearization process to polynomial constraints. We first discuss the
quadrification process and compare it with RLT. Then, we present the linearizations
of product and power terms.

6.3.1. Transformation of nonlinear constraints into quadratic constraints.
In this section, we show how to transform a polynomial constraint system into an
equivalent quadratic constraint system, a process called quadrification [58].

For example, considering the constraint c : x2x3x
2
4 + 3x6x7 + sin(x1) = 0, the

proposed transformation yields

{y1y2 + 3y2 + s1 = 0, y1 = x2x3, y2 = x4x4, y3 = x6x7}

and the set {y1 = x2x3, y2 = x2
4, y3 = x6x7, s1 = sin(x1)} of equations that keep

the link between the new variables and the nonlinear terms that cannot be further
quadrified. Such a transformation is one of the possible quadrifications. It is called a
single quadrification.

We could generate all possible single quadrifications, or all quadrifying identities,
and perform a so-called complete quadrification. For example, the complete quadrifi-
cation of E = {x2x3x

2
4 + 3x6x7 + sin(x1) = 0} is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y1 + 3y2 + s1 = 0, y2 = x6x7,
y1 = y3y4, y3 = x2x3, y4 = x2

4,
y1 = y5y6, y5 = x2x4, y6 = x3x4,
y1 = x2y7, y7 = x3y4, y7 = x4y6,
y1 = x3y8, y8 = x2y4, y8 = x4y5,
y1 = x4y9, y9 = x2y6, y9 = x3y5, y9 = x4y3,
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where s1 = sin(x1).

A quadrification for polynomial problems was introduced by Shor [58]. Sherali
and Tuncbilek [57] have proposed a direct reformulation/linearization (RLT) of the
whole polynomial constraints without quadrifying the constraints. They did prove the
dominance of their direct reformulation/linearization technique over Shor’s quadrifi-
cation [56].

A complete quadrification generates as many new variables as the direct RLT.
Linearizations proposed in RLT are built on every nonordered combination of δ vari-
ables, where δ is the highest polynomial degree of the constraint system.

The complete quadrification generates linearizations on every couple of nonordered
combined variables [vi, vj ] where vi (resp., vj) is the variable that has been introduced
for linearizing the nonordered combination of variables.

Complete quadrification and direct RLT yield a tighter linearization than the
single quadrification but the number of generated linearizations grows in an exponen-
tial way for nontrivial polynomial constraint systems. More precisely, the number of
linearizations depends directly on the number of generated new variables.

To sum up, the linearization of polynomial systems offers two main possibilities:
the transformation of the initial problem into an equivalent quadratic constraint sys-
tem through a process called quadrification, or the direct linearization of polynomial
terms by means of RLT. Theoretical considerations, as well as experimentations, have
been conducted to exclude as practical a complete quadrification which produces a
huge amount of linear inequalities for nontrivial polynomial systems. The next two
subsections present our choices for the linearization of product and power terms.

6.3.2. Product terms. For the product term

x1x2 . . . xn(6.3)

we use a two-step procedure: quadrification and bilinear relaxations.

Since many single quadrifications exist, an essential point is the choice of a good
heuristic that captures most of the semantics of the polynomial constraints. We use a
“middle” heuristic to obtain balanced degrees on the generated terms. For instance,
considering T ≡ x1x2 . . . xn, a monomial of degree n, the middle heuristic will identify
two monomials T1 and T2 of highest degree such that T = T1T2. It follows that
T1 = x1x2 . . . xn÷2 and T1 = xn÷2+1 . . . xn.

The quadrification is performed by recursively decomposing each product xi . . . xj
into two products xi . . . xd and xd+1 . . . xj . Of course, there are many ways to choose
the position of d. Ryoo and Sahinidis [49] and Sahinidis and Twarmalani [51] use
what they call rAI, “recursive interval arithmetic,” which is a recursive quadrification
where d = j − 1. We use the middle heuristic Qmid, where d = (i + j)/2, to obtain
balanced degrees on the generated terms. Let us denote by [E]RI the set of equations
that transforms a product terms into a set of quadratic identities.

The second step consists of a bilinear relaxation [[C]RI ]R of all the quadratic
identities in [C]RI with the bilinear relaxations introduced in section 6.2.2.

Sherali and Tuncbilek [57] have proposed a promising direct reformulation/
linearization technique (RLT) of the whole polynomial constraints without quadri-
fying the constraints. Applying RLT on the product term x1x2 . . . xn generates the
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following n-ary inequalities:9∏
i∈J1

(xi − xi)
∏
i∈J2

(xi − xi) ≥ 0 for all J1, J2 ⊆ {1, . . . , n} : |J1 ∪ J2| = n,(6.4)

where {1, . . . , n} is to be understood as a multiset and where J1 and J2 are multisets.
We now introduce Proposition 6.1, which states the number of new variables and

relaxations, respectively, generated by the quadrification and RLT process on the
product term (6.3).

Proposition 6.1. Let T ≡ x1x2 . . . xn be some product of degree n ≥ 1 with n
distinct variables. The RLT of T will generate up to (2n − n− 1) new variables and
2n inequalities whereas the quadrification of T will generate only (n−1) new variables
and 4(n− 1) inequalities.

Proof. The number of terms of length i is clearly the number of combinations
of i elements within n elements, that is to say Cin. In the RLT relaxations (6.4),
we generate new variables for all these combinations. Thus, the number of variables
is bounded by

∑
i=2,...,n Cin =

∑
i=0,...,n Cin − n − 1, that is to say 2n − n − 1 since∑

i=0,... ,n Cin = 2n. In (6.4), for each variable we consider alternatively the lower
bound and the upper bound: thus there are 2n new inequalities.

For the quadrification process, the proof can be done by induction. For n = 1, the
formula is true. Now suppose that for length i (with 1 ≤ i < n), (i− 1) new variables
are generated. For i = n, we can split the term at the position d with 1 ≤ d < n. It
results from the induction hypothesis that we have d − 1 new variables for the first
part, and n− d− 1 new variables for the second part, plus one more new variable for
the whole term. So, n − 1 new variables are generated. Bilinear terms require four
relaxations, thus we get 4(n− 1) new inequalities.

Proposition 6.2 states that quadrification with bilinear relaxations provides con-
vex and concave envelopes with any d. This property results from the proof given in
[49] for the rAI heuristic.

Proposition 6.2. [[x1x2 . . . xn]RI ]R provides convex and concave envelopes of
the product term x1x2 · · ·xn.

Generalization for sums of products, the so-called multilinear terms∑
i=1,... ,t

ai
∏
j∈Ji

xj ,

have been studied recently [14, 52, 48, 49]. It is well known that finding the convex or
concave envelope of a multilinear term is an NP-hard problem [14]. The most common
method of linear relaxation of multilinear terms is based on the simple product term.
However, it is also well known that this approach leads to a poor approximation of
the linear bounding of the multilinear terms. Sherali [52] has introduced formulae for
computing convex envelopes of the multilinear terms. It is based on an enumeration
of vertices of a pre-specified polyhedra which is of exponential nature. Rikun [48] has
given necessary and sufficient conditions for the polyhedrality of convex envelopes.
He has also provided formulae of some faces of the convex envelope of a multilinear
function. To summarize, it is difficult to characterize convex and concave envelopes
for general multilinear terms. Conversely, the approximation of “product of variables”
is an effective approach; moreover, it is easy to implement [51, 50].

9Linearizations proposed in RLT on the whole polynomial problem are built on every nonordered
combination of δ variables, where δ is the highest polynomial degree of the constraint system.
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6.3.3. Power terms. A power term of the form xn can be approximated by
n + 1 inequalities with a procedure proposed by Sherali and Tuncbilek [57], called
“bound-factor product RLT constraints.” It is defined by the following formula:

[xn]R = {[(x− x)i(x− x)n−i ≥ 0]L, i = 0, . . . , n}.(6.5)

The essential observation is that this relaxation generates tight relations between
variables on their upper and lower bounds. More precisely, suppose that some original
variable takes a value equal to either of its bounds. Then all the corresponding new
RLT linearization variables that involve this original variable take relative values
that conform with actually fixing this original variable at its particular bound in the
nonlinear expressions represented by these new RLT variables [57].

Note that relaxations (6.5) of the power term xn are expressed with xi for all
i ≤ n, and thus provide a fruitful relationship on problems containing many power
terms involving some variable.

The univariate term xn is convex when n is even, or when n is odd and the value
of x is negative; it is concave when n is odd and the value of x is positive. Sahinidis
and Twarmalani [50] have introduced the convex and concave envelopes when n is
odd by taking the point where the power term xn and its underestimator have the
same slope. These convex/concave relaxations on xn are expressed with only [xn]L
and x. In other words, they do not generate any relations with xi for 1 < i < n.

That is why we suggest implementing the approximations defined by formulae
(6.5). Note that for the case n = 2, (6.5) provides the concave envelope.

7. A safe rounding procedure for the Quad-algorithm. This section details
the rounding procedure we propose to ensure the completeness of the Quad algorithm
[33]. First, we show how to compute safe coefficients for the generated linear con-
straints. In the second subsection we explain how a recent result from Neumaier and
Shcherbina [42] allows us to use the simplex algorithm in a safe way.

7.1. Computing safe coefficients.

(a) Approximation of L1. The linear constraint L1(y, α) ≡ y − 2αx + α2 ≥ 0
approximates a term x2 with α ∈ [x, x]. L1(y, α) corresponds to the tangent lines to
the curve y = x2 at the point (α, α2).

Thus, the computation over the floats of the coefficients of L1(y, α) may change
the slope of the tangent line as well as the intersection points with the curve y = x2.
Consider the case where α is negative: the solutions are above the tangent line; thus
we have to decrease the slope to be sure to keep all of the solutions. It follows that
we have to use a rounding mode towards +∞. Likewise, when α is positive, we have
to set the rounding mode towards −∞. More formally, we have

L1F(y, α) ≡
{
y −�(2α)x+ �(α2) ≥ 0 if α ≥ 0,

y −�(2α)x+ �(α2) ≥ 0 if α < 0,

where �(x) (resp., �(x)) denotes a rounding mode of x towards −∞ (resp., +∞).

(b) Approximation of L2. The case of L2 is a bit more tricky since the “rotation
axis” of the line defined by L2 is between the extremum values of x2 (L2(y) is an
overestimation of y). Thus, to keep all the solutions we have to strengthen the slope
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of this line at its smallest extremum. It follows that

L2F ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(x+ x)x− y −�(xx) ≥ 0 if x ≥ 0,

�(x+ x)x− y −�(xx) ≥ 0 if x < 0,

�(x+ x)x− y

−�(xx+ Ulp(�(x+ x))x) ≥ 0 if x > 0, x < 0, |x| ≤ |x|,
�(x+ x)x− y

−�(xx−�(Ulp(�(x+ x))x)) ≥ 0 if x > 0, x < 0, |x| > |x|,
where Ulp(x) computes the distance between x and the float following x.

(c) Approximation of BIL1, BIL2, BIL3, and BIL4. The general form of BIL1,
BIL2, BIL3, and BIL4 is xixj + s1b1xi + s2b2xj + s3b1b2 ≥ 0, where b1 and b2 are
floating point numbers corresponding to bounds of xi and xj whereas si ∈ {−1, 1}.

The term s3b1b2 is the only term which results from a computation: all the other
terms use constants which are not subject to round-off errors. Thus, these linear
constraints can be rewritten in the following form: Y + s3b1b2.

A rounding of s3b1b2 towards +∞ enlarges the solution space, and thus ensures
that all these linear constraints are safe approximations of x2.

It follows that BIL{1, . . . , 4}F ≡ Y + �(s3b1b2) ≥ 0.
(d) Approximation of multivariate linearizations. We are now in the position to

introduce the corrections of multivariate linearizations as introduced for the power of
x. Such linearizations could be rewritten in the following form:

n∑
i=1

aixi + b ≥ 0,

where ai denotes the expression used to compute the coefficient of variable xi, and b is
the expression used to compute the constant value. Proposition 7.1 takes advantage
of interval arithmetic to compute a safe linearization with coefficients over the floating
point numbers.

Proposition 7.1.

n∑
i=1

aixi + sup

(
b+

n∑
i=1

sup(sup(aixi) − aixi)

)
≥

n∑
i=1

aixi + b ≥ 0 for all xi ∈ xi.

Proof. For all xi ∈ xi, we have

n∑
i=1

aixi + sup

(
b+

n∑
i=1

sup(sup(aixi) − aixi)

)
≥

n∑
i=1

aixi + b+

n∑
i=1

(sup(aixi) − aixi)

and

n∑
i=1

aixi + b+

n∑
i=1

(sup(aixi) − aixi) =

n∑
i=1

(ai(xi − xi) + sup(aixi)) + b.

As for all i ∈ {1, . . . , n}, we have ai ≥ ai, sup(aixi) ≥ aixi, and for all xi ∈ xi,
xi − xi ≥ 0. Therefore,

n∑
i=1

(ai(xi − xi) + sup(aixi)) + b ≥
n∑
i=1

(ai(xi − xi) + aixi) + b =

n∑
i=1

aixi + b.
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This proposition provides a safe approximation of a multivariate linearization
which holds for any ai, xi, and b. This result could be refined by means of the
previous approximations. For instance, whenever xi ≥ 0, aixi ≥ aixi. In this case,
there is no need for an additional correction.

(e) Approximation of initial constant values. Initial constant values are real num-
bers that may not have an exact representation within the set of floating point num-
bers. Thus, a safe approximation is required.

Constant values in inequalities have to be correctly rounded according to the
orientation of the inequality. The result presented in the previous paragraph sets the
rounding directions which have to be used.

Equations must be transformed into inequalities when their constant values have
to be approximated.

7.2. Computation of safe bounds with linear programming algorithm.
Linear programming methods can solve problems of the following form:

min CTX
such that B ≤ AX ≤ B

and X ≤ X ≤ X.
(7.1)

The solution of such a problem is a vector Xr ∈ R
n. However, the solution computed

by solvers like CPLEX or SOPLEX is a vector Xf ∈ F
n that may be different from

Xr due to the rounding errors. More precisely, Xf is safe for the objective only if
CTXr ≥ CTXf .

Neumaier and Shcherbina [42] provide a cheap method to obtain a rigorous bound
of the objective and certificates of infeasibility. The essential observation is that the
dual of (7.1) is

max BTZ ′ +B
T
Z ′′

such that AT (Z ′ − Z ′′) = C.
(7.2)

Let Y = Z ′ − Z ′′, and let the residue R = ATY − C ∈ R = [R,R]. It follows that

CTX = (ATY −R)TX = Y TAX −RTX ∈ Y T [B,B] − RT [X,X]

and the value of µ, the lower bound of the value of the objective function, is

µ = inf(Y TB − RTX) = �(Y TB − RTX).(7.3)

Formula (7.3) is trivially correct by construction. Note that the precision of such a
safe bound depends on the width of the intervals [X,X].

So, we just have to apply this correction before updating the lower and the upper
bounds of each variable.

However, the linear program (7.1) may be infeasible. In that case, Neumaier and

Shcherbina show that whenever d = inf(R′TX − Y TB) > 0, where R′ = ATY ∈ R′,
then it is certain that no feasible point exists. However, the precision of interval
arithmetic does not always allow us to get a positive value for d while the linear
program is actually infeasible. In the latter case, we consider it as feasible. Note
that box-consistency may be able to reject most, if not all, of the domains of such
variables.
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8. Experimental results. This section reports experimental results of Quad on
a variety of twenty standard benchmarks. Benchmarks eco6, katsura5, katsura6,
katsura7, tangets2, ipp, assur44, cyclic5, tangents0, chemequ, noon5, geneig,
kinema, reimer5, and camera1s were taken from Verschelde’s web site,10 kin2 from
[60], didrit from [15], lee from [29], and finally yama194, yama195, and yama196

from [63]. The most challenging benchmark is stewgou40 [16]. It describes the 40
possible positions of a Gough–Stewart platform as a function of the values of the
actuators. The proposed modelling of this problem consists of 9 equations with 9
variables.

The experimental results are reported in Tables 8.1 and 8.2. Column n (resp.,
δ) shows the number of variables (resp., the maximum polynomial degree). BP(Φ)
stands for a Branch and Prune solver based on the Φ filtering algorithm, that is to
say, a search-tree exploration where a filtering technique Φ is applied at each node.
quad(H) denotes the Quad algorithm where bilinear terms are relaxed with formulae
(6.2), power terms with formulae (6.5), and product terms with the quadrification
method; H stands for the heuristic used for decomposing terms in the quadrification
process.

The performances of the following five solvers have been investigated.

1. RealPaver: a free Branch and Prune solver11 that dynamically combines
optimized implementations of box-consistency filtering and 2b-consistency
filtering algorithms [5].

2. BP(box): a Branch and Prune solver based on the ILOG12 commercial im-
plementation of box-consistency.

3. BP(box+simplex): a Branch and Prune solver based on box and a simple
linearization of the whole system without introducing linear relaxations of
the nonlinear terms.

4. BP(box+quad(Qmid)): a Branch and Prune solver which combines box and
the Quad algorithm where product terms are relaxed with the Qmid heuristic.

5. BP(box+quad(rAI)): a Branch and Prune solver which combines box and
the Quad algorithm where product terms are relaxed with the rAI heuristic.

Note that the BP(box+simplex) solver implements a strategy that is slightly
different from the approach of Yamamura, Kawata, and Tokue [63].

All the solvers have been parameterized to get solutions or boxes with precision
of 10−8. That is to say, the width of the computed intervals is smaller than 10−8. A
solution is said to be safe if we can prove its uniqueness within the considered box.
This proof is based on the well-known Brouwer fixed point theorem (see [20]) and
requires just a single test.

Sols, Ksplit, and T (s) are, respectively, the number of solutions, the number
of thousands of branchings (or splittings), and the execution time in seconds. The
number of solutions is followed with a number of safe solutions between brackets. A
“–” in the column T (s) means that the solver was unable to find all the solutions
within eight hours. All the computations have been performed on a PC with Pentium
IV processor at 2.66 GHz running Linux. The compiler was GCC 2.9.6 used with the
-O6 optimization flag.

The performances of RealPaver, BP(box), and BP(box+quad(Qmid)) are dis-
played in Table 8.1. The benchmarks have been grouped into three sets. The first

10The database of polynomial systems is available at http://www.math.uic.edu/∼jan/Demo/.
11See http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver/main.html.
12See http://www.ilog.com/products/jsolver.
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Table 8.1

Experimental results: comparing Quad and Constraint solvers.

BP(box+quad(Qmid)) BP(box) Realpaver
Name n δ Sols Ksplits T (s) Sols Ksplits T (s) Sols T (s)

cyclic5 5 5 10(10) 0.6 45.8 10(10) 13.4 26.3 10 291.6
eco6 6 3 4(4) 0.4 15.3 4(4) 1.7 3.7 4 1.3

assur44 8 3 10(10) 0.1 49.5 10(10) 15.8 72.5 10 72.6
ipp 8 2 10(10) 0.0 5.7 10(10) 4.6 14.0 10 16.8
katsura5 6 2 16(11) 0.1 9.9 41(11) 8.2 12.7 12 6.7
katsura6 7 2 60(24) 0.5 121.9 182(24) 136.6 281.4 32 191.8
kin2 8 2 10(10) 0.0 6.2 10(10) 3.5 19.3 10 2.6
noon5 5 3 11(11) 0.1 17.9 11(11) 50.2 58.7 11 39.0
tangents2 6 2 24(24) 0.1 17.5 24(24) 14.1 27.9 24 16.5

camera1s 6 2 16(16) 1.0 28.9 2(2) 11820.3 − 0 −
didrit 9 2 4(4) 0.1 14.7 4(4) 51.3 132.9 4 94.6
geneig 6 3 10(10) 0.8 39.1 10(10) 290.7 868.6 10 475.6
kinema 9 2 8(8) 0.2 19.9 15(7) 244.0 572.4 8 268.4
katsura7 8 2 58(42) 1.7 686.9 231(42) 1858.5 11104.1 44 4671.1
lee 9 2 4(4) 0.5 43.3 0(0) 8286.3 − 0 −
reimer5 5 6 24(24) 0.1 53.0 24(24) 2230.2 2892.5 24 733.9
stewgou40 9 4 40(40) 1.6 924.0 11(11) 3128.6 − 8 −
yama194 16 3 9(9) 0.0 11.1 9(8) 1842.1 − 0 −
yama195 60 3 3(3) 0.0 106.1 0(0) 19.6 − 0 −
yama196 30 1 2(1) 0.0 6.7 0(0) 816.7 − 0 −

group contains problems where the QuadSolver does not behave very well. These
problems are quite easy to solve and the overhead of the relaxation and the calls
to a linear solver does not pay off. The second group contains a set of benchmarks
for which the QuadSolver compares well with the two other constraint solvers: the
QuadSolver requires always much less splitting and often less time than the other
solvers. In the third group, which contains difficult problems, the QuadSolver out-
performs the two other constraint solvers. The latter were unable to solve most of
these problems within eight hours whereas the QuadSolver managed to find all the
solutions for all but two of them in less than 8 minutes. For instance, BP(box) re-
quires about 74 hours to find the four solutions of the Lee benchmark whereas the
QuadSolver managed to do the job in a couple of minutes. Likewise, the QuadSolver
did find the forty safe solutions of the stewgou40 benchmark in about 15 minutes
whereas BP(box) required about 400 hours. The essential observation is that the
QuadSolver spends more time in the filtering step but it performs much less splitting
than classical solvers. This strategy pays off for difficult problems.

All the problems, except cyclic5 and reimer5, contain many quadratic terms
and some product and power terms. cyclic5 is a pure multilinear problem that
contains only sums of products of variables. The Quad algorithm has not been very
efficient for handling this problem. Of course, one could not expect an outstanding
performance on this bench since product term relaxation is a poor approximation of
multilinear terms. reimer5 is a pure power problem of degree 6 that has been well
solved by the Quad algorithm.

Table 8.2 displays the performances of solvers combining box-consistency and
three different relaxation techniques. There is no significant difference between the
solver based on the Qmid heuristics and the solver based on the rAI heuristics. In-
deed, both heuristics provide convex and concave envelopes of the product terms.
The QuadSolver with relaxations outperforms the BP(box+simplex) approach for all
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Table 8.2

Experimental results: comparing Quad based on different relaxations.

BP(box+simplex) BP(box+quad(Qmid)) BP(box+quad(rAI))

Name Sols Ksplits T (s) Sols Ksplits T (s) Sols Ksplits T (s)

cyclic5 10(10) 15.6 60.6 10(10) 0.6 45.8 10(10) 0.8 76.1
eco6 4(4) 1.1 7.2 4(4) 0.4 15.3 4(4) 0.4 15.3

assur44 10(10) 15.5 261.9 10(10) 0.1 49.5 10(10) 0.1 50.0
ipp 10(10) 3.2 39.7 10(10) 0.0 5.7 10(10) 0.0 5.7
katsura5 41(11) 7.7 47.8 16(11) 0.1 9.9 16(11) 0.1 9.9
katsura6 182(24) 135.2 1156.7 60(24) 0.5 121.9 60(24) 0.5 122.7
kin2 10(10) 3.4 42.5 10(10) 0.0 6.2 10(10) 0.0 6.2
noon5 11(11) 49.6 226.7 11(11) 0.1 17.9 11(11) 0.1 17.8
tangents2 24(24) 11.4 77.7 24(24) 0.1 17.5 24(24) 0.1 17.5

camera1s 4(4) 3298.6 − 16(16) 1.0 28.9 16(16) 1.0 29.9
didrit 4(4) 5.3 93.2 4(4) 0.1 14.7 4(4) 0.1 14.7
geneig 10(10) 202.8 2036.8 10(10) 0.8 39.1 10(10) 0.8 39.2
kinema 13(7) 87.0 1135.1 8(8) 0.2 19.9 8(8) 0.2 20.0
katsura7 231(42) 1867.2 21679.6 58(42) 1.7 686.9 58(42) 1.7 684.0
lee 2(2) 78.1 1791.8 2(2) 0.3 27.1 2(2) 0.3 26.5
lee2 4(4) 117.6 2687.2 4(4) 0.5 43.3 4(4) 0.5 43.3
reimer5 24(24) 2208.7 10433.5 24(24) 0.1 53.0 24(24) 0.1 53.1
stewgou40 13(13) 716.3 − 40(40) 1.6 924.0 40(40) 1.5 914.1
yama194 9(7) 442.0 − 9(9) 0.0 11.1 9(9) 0.0 11.2
yama195 3(2) 0.0 37.7 3(3) 0.0 106.1 3(3) 0.0 106.7
yama196 2(1) 0.0 6.6 2(1) 0.0 6.7 2(1) 0.0 6.7

benchmarks but yama195, which is a quasilinear problem. These performances on
difficult problems illustrate well the capabilities of the relaxations.

Note that Verschelde’s homotopy continuation system, PHCpack [62], required
115 s to solve lee and 1047 s to solve stewgou40 on our computer. PHCpack is a
state-of-the-art system in solving polynomial systems of equations. Unfortunately, it
is limited to polynomial systems and does not handle inequalities. PHCpack searches
for all the roots of the equations, whether real or complex, and it does not restrict its
search to a given subspace. The homotopy continuation approach also suffers from
an exponential growing computation time which depends on the number of nonlinear
terms (PHCpack failed to solve yama195 which contains 3600 nonlinear terms). In
contrast to homotopy continuation methods, QuadSolver can easily be extended to
nonpolynomial systems.

Thanks to Arnold Neumaier and Oleg Shcherbina, we had the opportunity to test
BARON [50] with some of our benchmarks. QuadSolver compares well with this sys-
tem. For example, BARON 6.013 and QuadSolver require more or less the same time
to solve camera1s, didrit, kinema, and lee. BARON needs only 1.59 s to find all
the solutions of yama196 but it requires 859.6 s to solve yama195. Moreover, BARON
loses some solutions on reimer5 (22 solutions found) and stewgou40 (14 solutions
found) whereas it generates numerous wrong solutions for these two problems. We
must also underline that BARON is a global optimization problem solver and that it
has not been built to find all the solutions of a problem.

9. Conclusion. In this paper, we have exploited an RLT schema to take into ac-
count specific semantics of nonlinear terms. This relaxation process is incorporated in
the Branch and Prune process [60] that exploits interval analysis and constraint satis-

13The tests were performed on an Athlon XP 1800 computer.
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faction techniques to find rigorously all solutions in a given box. The reported exper-
imental results show that this approach outperforms the classical constraint solvers.

Pesant and Boyer [44, 45] first introduced linear relaxations in a CLP language
to handle geometrical constraints. However, the approximation of the constraints was
rather weak. The approach introduced in this paper is also related to recent work that
has been done in the interval analysis community as well as to some work achieved in
the optimization community.

In the interval analysis community, Yamamura, Kawata, and Tokue [63] used a
simple linear relaxation procedure where nonlinear terms are replaced by new vari-
ables to prove that some box does not contain solutions. No convex/concave outer-
estimations are proposed to obtain a better approximation of the nonlinear terms.
As pointed out by Yamamura, Kawata, and Tokue, this approach is well adapted to
quasi-linear problems: “This test is much more powerful than the conventional test if
the system of nonlinear equations consists of many linear terms and a relatively small
number of nonlinear terms” [63].

The global optimization community also worked on solving nonlinear equation
problems by transforming them into an optimization problem (see, for example, Chap-
ter 23 in [17]). The optimization approach has the capability to take into account
specific semantics of nonlinear terms by generating a tight outer-estimation of these
terms. The pure optimization methods are usually not rigorous since they do not take
into account rounding errors and do not prove the uniqueness of the solutions found.

Acknowledgments. We thank Arnold Neumaier for his fruitful comments on
an early version of this paper. We are also grateful to Arnold Neumaier and Oleg
Shcherbina for their help in testing BARON.
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Parix XI Orsay, France, 1997.

[16] P. Dietmaier, The Stewart-Gough platform of general geometry can have 40 real postures, in
Advances in Robot Kinematics: Analysis and Control, Kluwer, Dordrecht, 1998, pp. 1–10.

[17] C. A. Floudas, ed., Deterministic Global Optimization: Theory, Algorithms and Applications,
Kluwer, Dordrecht, 2000.

[18] D. Goldberg, What every computer scientist should know about floating-point arithmetic,
ACM Computing Surveys, 23 (1991), pp. 5–48.

[19] E. Hansen and S. Sengupta, Bounding solutions of systems of equations using interval anal-
ysis, BIT, 21 (1981), pp. 203–221.

[20] E. R. Hansen, Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.
[21] H. Hong and V. Stahl, Starting regions by fixed points and tightening, Computing, 53 (1994),

pp. 323–335.
[22] ILOG Solver 4.0, Reference Manual, ILOG, Mountain View, 1997.
[23] R. B. Kearfott, Tests of generalized bisection, ACM Trans. Math. Software, 13 (1987),

pp. 197–220.
[24] R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken,

Computing, 4 (1969), pp. 187–201.
[25] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasi-

bility of Data Processing and Interval Computations, Kluwer, Dordrecht, 1998.
[26] Y. Lebbah and O. Lhomme, Accelerating filtering techniques for numeric CSPs, Artificial

Intelligence, 139 (2002), pp. 109–132.
[27] Y. Lebbah, M. Rueher, and C. Michel, A global filtering algorithm for handling systems

of quadratic equations and inequations, in Proc. of the 8th International Conference on
Principles and Practice of Constraint Programming, Cornell University, New York, 2002,
Lecture Notes in Comput. Sci. 2470, pp. 109–123.

[28] J. H. M. Lee and M. H. van Emden, Interval computation as deduction in CHIP, J. Logic
Programming, 16 (1993), pp. 255–276.

[29] T.-Y. Lee and J.-K. Shim, Elimination-based solution method for the forward kinematics of
the general Stewart-Gough platform, in Computational Kinematics, F. C. Park and C. C.
Iurascu, eds., 2001, pp. 259–267.

[30] O. Lhomme, Consistency techniques for numeric CSPs, in Proceedings of International Joint
Conference on Artificial Intelligence, Chambéry, France, 1993, pp. 232–238.
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FAST MULTIPOLE METHOD FOR MULTIVARIABLE INTEGRALS∗
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Abstract. We give a fast numerical algorithm to evaluate a class of multivariable integrals.
A direct numerical evaluation of these integrals costs Nm, where m is the number of variables and
N is the number of the quadrature points for each variable. For m = 2 and m = 3 and for only
one-dimensional variables, we present an algorithm which is able to reduce this cost from Nm to
a cost of the order of O((− log ε)µmN), where ε is the desired accuracy and µm is a constant that
depends only on m. Then, we make some comments about possible extensions of such algorithms
to number of variables m ≥ 4 and to higher dimensions. This recursive algorithm can be viewed
as an extension of “fast multipole methods” to situations where the interactions between particles
are more complex than the standard case of binary interactions. Numerical tests illustrating the
efficiency and the limitation of this method are presented.
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1. Introduction. In this paper, we are concerned with numerical approxima-
tions of the following multivariable integrals:

(1.1)∫
C×C×···×C

φ1(x1)φ2(x2) · · ·φm(xm)

⎡⎣ ∏
1≤i<j≤m

fij(xi − xj)

⎤⎦ dµ(x1) dµ(x2) · · · dµ(xm),

where C is a cube of R
d, m is the number of variables, and µ is a positive measure. For

instance, the measure µ can be the usual Lebesgue’s measure or a discrete measure.
The functions fij are assumed to be sufficiently regular on R

d\{0}. The functions φj
and fij are such that the integrals (1.1) is absolutely convergent.

The basic example is the evaluation of the total interaction energy of a system of
N charged particles:

E =
N∑

i,j=1; i �=j

qirj
|xi − xj | ,(1.2)

where xi is the position of the ith particle and qi its charge (here ri = qi), or the
continuous version

E =

∫
C×C

q(x)r(y)

|x− y| dµ(x)dµ(y).(1.3)
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The classical interactions described by (1.3) are binary in the sense that they corre-
spond to the particular case m = 2 of (1.1). Fast computations of the integrals (1.3)
for a large number of functions (q, r) must be performed in quantum chemistry, for
“Hartree–Fock” models and “density functional” models involving many electrons, as
explained and done in [8, 9], [18], or [19] (computation of the “J-matrix”).

However, in more precise quantum models the particles are strongly correlated
through a wave function Ψ(x1, . . . , xm), where m ≥ 3 is the number of particles.
In this case, the determination of the state of the particles leads to the problem of
computing the following integrals (“Coulomb energy”):

∫
Ωm

|Ψ(x1, . . . , xm)|2
⎛⎝ ∑

1≤i<j≤m

1

|xi − xj |

⎞⎠ dµ(x1) · · · dµ(xm),(1.4)

with Ω ⊂ R
d, and where the function Ψ can take the following form:

Ψ(x1, . . . , xm) := φ1(x1)φ2(x2) · · ·φm(xm)
∏

1≤i<j≤m
fij(xi − xj)(1.5)

or

Ψ(x1, . . . , xm) := φ1(x1)φ2(x2) · · ·φm(xm)

⎛⎝ ∑
1≤i<j≤m

fij(xi − xj)

⎞⎠ .(1.6)

When the variables xi are not correlated (fij = 1), explicit computations for (1.4) and
(1.5) can be done for some particular classes of φi’s such as Gaussian functions [12,
Chapters 1 and 2]. But this specific choice of Ψ is not always sufficient to describe the
realistic behavior of the state of the particles [13]. On the other hand, if the particles
are correlated (fij �= 1), analytic computations are not possible in general, and Monte
Carlo methods are usually used [10] (see also [11]). The main difficulties with these
random methods, or pseudorandom methods, is to control the accuracy because of
the presence of oscillations and convergence problems.

Hopefully there are some cases where partial analytic computations are possible.
In the “Møller–Plesset perturbation theory of second order with linear r12 terms,”
or “MP2-R12 method” [14], the used typical functions are of the form (1.6) with
fij(xi − xj) = |xi − xj |. In this case a simple algebraic calculation shows that the
computation of the m-particle integral (1.4) reduces to the computation of m = 2, 3
or m = 4 particle integrals of the form (1.1), and of 1-particle integrals. This has been
extensively used in order to compute very accurately the energy of small atoms and
molecules as in Kutzelnigg and Klopper [15, 16] and Müller, Kutzelnigg, and Noga [17],
or in [23]. Yet, a limitation of this approach is that a particular basis of functions φj
is used in order to avoid or to approximate the computation of multiparticle integrals.
It would be useful to be able to rapidly (and accurately) compute such integrals (for
m = 2, 3, 4 only) without any particular constraint on the φj functions.

Note that for most real quantum applications, one should treat the case d = 3.
However, quantum model problems on the line (d = 1) are also used [22].

In this paper we present an alternative approach. This approach is deterministic
and is an extension of the well-known fast multiple method (FMM) to more complex
systems of particles. The FMM method was introduced by Greengard and Rokhlin
[1, 2] to compute the binary interaction (1.2) with a cost of the order of O(N) instead
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of the order of O(N2) (see also [5] and [6], and for instance [20] or [21] for recent
developments of the FMM). Here we want to extend this technique to situations
where the correlations between particles are stronger, as in multivariable integrals of
the form (1.1). We give the details of the algorithm only in the case of two or three
variables (i.e., m = 2 or m = 3) and for one-dimensional variables (d = 1). This
work gives a first idea of how this algorithm could be used for more general situations
(d = 3 for instance). However, a complete generalization is not obvious and is under
investigation.

Our aim is to reduce the cost of the numerical evaluation of integrals (1.1). We
use a regular mesh of C with N points and consider a discrete measure µ supported
by the mesh. This also corresponds to a quadrature formula of the integrals (1.1),
and leads to the problem of evaluating the following sums:

N∑
i1=1

N∑
i2=1

. . .

N∑
im=1

φ1(xi1)φ2(xi2) · · ·φm(xim)

⎡⎣ ∏
1≤k<�≤m

fk�(xik − xi�)

⎤⎦ .(1.7)

A direct evaluation of the sums (1.7) requires a computational cost of the order of
O(Nm). The purpose of the paper is to present an algorithm reducing this cost to
the order O(log2(

1
ε )
µ N), where µ depends only on m and d and will be made precise

in what follows (at least for the specific case d = 1 and m ≤ 3), and where ε is the
relative error between the exact value of formula (1.7) and the result obtained by the
present algorithm. The parameter ε is linked to the order of “multipole expansions”
through the relation p = log2(

1
ε ) (when d = 1) and does not depend on N . This result

was already announced by the authors in [4] without proof.
In order to simplify the presentation of the algorithm, we shall assume that d = 1,

fij(r) = rαij (with αij > −1), and C = [0, 1].
We also mention that the approach of [7] using wavelets, for m = 3 variables

and with d = 1, can be used to compute some partially correlated sums or integrals.
However, it cannot be applied here in general because the variables in the sum (1.7)
are completely correlated.

We first present in section 2 the algorithm in the simple case of m = 2 variables.
This corresponds to the case of binary interactions for which the multipole method
has been widely developed by Greengard and Rokhlin [1, 2]. In sections 3 and 4, we
focus on the case m = 3 and state our main results. We point out that this is not
a straightforward generalization of the 2-variable case. In section 5, we give some
numerical illustrations of the method in the case m = 3, and in section 6 we conclude
with some remarks and extensions to the case m ≥ 4.

2. The case of binary interactions (m = 2). In this section, we present
a brief description of the approach in the case of binary interactions (m = 2). In
this case, the used method is strongly related to the ideas of the classical FMM
introduced by Greengard and Rokhlin [1, 2]. Even if the case of binary interactions is
now classical, the presentation below is a first step in the understanding of the more
complex approach for strongly correlated particles (m = 3 for instance). This last
case is our main concern in this work and will be developed in the next section.

Consider first the case of binary interactions, i.e., the problem of approximating
the following sum:

Idis :=

N∑
i,j=1

φ1(ai)φ2(aj)|ai − aj |α,(2.1)



FAST MULTIPOLE METHOD FOR MULTIVARIABLE INTEGRALS 2101

where α ≥ 0 and ai = 1
N (i− 1

2 ), i = 1, . . . , N , are the points of a regular mesh of C.
Note that when −1 < α < 0 we can also consider the sum (2.1) for all pairs (i, j) with
i �= j. In order to simplify the presentation we restrict ourselves to the case α ≥ 0
(see Remark 3).

Note that Idis is also equal to the following integral:

Idis :=

∫
C×C

φ1(x1)φ2(x2)|x1 − x2|α dµ(x1)dµ(x2),

where C = [0, 1] and µ is the discrete measure defined on C by µ({x}) = 1 if x = ai,
and µ({x}) = 0 otherwise. To simplify, we set d2µ = dµ ⊗ dµ and F (x1, x2) =
φ1(x1)φ2(x2)|x1 − x2|α.

To evaluate Idis one needs O(N2) operations. Our purpose is to reduce this
cost to the order O(N). To achieve this we use a multigrid hierarchy and multipole
expansions as follows.

Multigrid hierarchy. We split the interval C = C1
0 in several parts according to

the following hierarchy.
Level k = 0: C1

0 = C.
Level k = 1: We split C into two equal parts (called its children) C1

1 = [0, 1
2 ],

C2
1 = [ 12 , 1], and C1

0 is called their father.
Level k = 2: We split each Ci1 into two equal parts (its children). We obtain 2

intervals C1
2 , C2

2 (when i = 1) or C3
2 , C4

2 when i = 2.
Level k: We split each Cik−1 into two equal parts, C2i−1

k and C2i
k . We obtain 2k

intervals (Cik)i=1,...,2k .

The center of an interval Cik is rik = i−1/2
2k . We iterate this process until the finest

mesh level ng.

Definition 2.1. (i) Let Cik and Cjk be two intervals of level k. We say that Cik
and Cjk are well separated if they are separated at least by one interval of the same
level (i.e., |i− j| ≥ 2).

(ii) We say that Cik and Cjk are neighbors if |i− j| ≤ 1 and then write Cik ∈ V (Cjk).
V (Cik) denotes the set of neighbors of Cik.

(iii) We define and denote by Int(Cik) the interaction list of a given interval Cik of

level k, as the set of intervals Cjk of the same level k, which are well separated, and
whose fathers are neighbors.

Graphic illustrations of neighboring intervals and well-separated intervals are
given in Figure 2.1.

With this definition we have the following partition of C × C:

C × C =

⎛⎜⎜⎜⎝ ⋃
k=1,ng

⋃
i,j=1,...,2k

Cj
k
∈Int(Ci

k
)

Cik × Cjk

⎞⎟⎟⎟⎠⋃
⎛⎜⎜⎜⎝ ⋃

i,j=1,...,2
ng

Ci
ng
,Cj

ng neighbors

Cing
× Cjng

⎞⎟⎟⎟⎠ .(2.2)

From this remark we deduce that

(2.3)

Idis =

⎛⎜⎜⎜⎝ ∑
k=1,ng

∑
i,j=1,...,2k

Cj
k
∈Int(Ci

k
)

∫
Ci
k
×Cj

k

Fd2µ

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝ ∑
i,j=1,...,2

ng

Ci
ng
,Cj

ng neighbors

∫
Ci
ng

×Cj
ng

Fd2µ

⎞⎟⎟⎟⎠ .
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C1 C2

x 10 20x

C1 C2

C2 C1 C2’’C2’

Well–Separated Intervals

Neighbor Intervals

Level k

Level k–1

(c)

(b)

(a)

Interaction List 

Fig. 2.1. Example of well-separated intervals (a) and of neighboring intervals (b) at some level
k. (c) Example of an interaction list Int(C1) = (C2, C′

2, C
′′
2 ) of an interval C1.

Thus, in order to evaluate Idis, it suffices to evaluate the integrals
∫
Ci
k
×Cj

k
F when Cik

and Cjk are well separated (at level k) but whose fathers are neighbors, and also the
integrals

∫
Ci
ng

×Cj
ng
F on neighboring intervals at the finest level ng. Notice that in

(2.2) or (2.3) we have only O(N) contributions of products Cik × Cjk.
Notations. We define the moment of φ of order i on the interval C around y by

Mφ(i, y, C) :=

∫
C
φ(x)(x− y)i dµ(x).(2.4)

In the case where y is the center of the interval C, we simply write

Mφ(i, C) := Mφ(i, y, C).

Lemma 2.2 (multipole expansion). (i) Let α > −1, and let p ∈ N be such
that p + 1 ≥ α. Let C1 and C2 be two intervals of the same level, which are well
separated, and let x10 and x20 be their centers. Let u = x10−x20

|x10−x20| (i.e., u = ±1) and

hi = xi−xi0

|x10−x20| . There exist coefficients cij(α, u) such that for all x1 ∈ C1, and for all

x2 ∈ C2, we have

|x1 − x2|α = |x10 − x20|α
⎛⎝ ∑
i+j≤p

cij(α, u)h
i
1h
j
2 + δ

⎞⎠ ,(2.5)

where |δ| ≤ cα
(p+ 1)α+12p

.

(ii) We have the following expansion, called multipole expansion [1]:
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(2.6)∫
C1×C2

Fd2µ = |x10 − x20|α
⎛⎝ ∑
i+j≤p

cij(α, u)

|x10 − x20|i+jMφ1
(i, C1) Mφ2

(j, C2)

⎞⎠ + η,

where F = F (x1, x2) = φ1(x1)φ2(x2)|x1−x2|α, and where x10 and x20 are the centers
of C1 and C2, respectively. The error η satisfies

|η| ≤ c′α
(p+ 1)α+12p

∫
C1×C2

|F |d2µ,

where the constants cα and c′α will be made precise in the proof.

Note. By
∑
i+j≤p we mean the sum for all pairs (i, j) such that i ≥ 0, j ≥ 0 and

i+ j ≤ p.

Proof of Lemma 2.2. We write

|x1 − x2|α = |(x10 − x20) + (x1 − x10) − (x2 − x20)|α
= |x10 − x20|α |u+ h1 − h2|α.

Since C1 and C2 are well separated, |hi| ≤ 1
4 . Consider the case u = 1 (the case

u = −1 is similar). We have |u + h1 − h2|α = (1 + h)α, where h = h1 − h2 and
|h| ≤ |h1|+ |h2| ≤ 2 1

4 ≤ 1
2 . Then we expand (1+h)α to the order p with respect to h:

(1 + h)α =

p∑
n=0

(
α
n

)
hn +Rp+1(α, h),

where ( an ) := a(a−1)···(a−n+1)
n! and Rp(α, h) :=

∑∞
n=p(

α
n )hn. Developing again hn =

(h1 − h2)
h =

∑n
j=1(

j
n )hn−j1 (−h2)

j , we find formula (2.5) with

cij(u, α) := (−1)jui+j
(

i
i+ j

)(
α

i+ j

)
,

and with an error term δ that we want to bound. Let

q = q(α) := inf{n ∈ N, n ≥ α}.

We have |(αn )| = AαBα(n) with

Aα :=
1

q!
α(α− 1)(α− 2) · · · (α+ 1 − q)

and

Bα(n) :=

(
1 − α+ 1

q + 1

)(
1 − α+ 1

q + 2

)
· · ·

(
1 − α+ 1

n

)
.

From the definition of q = q(α), we have α ≤ q < α+1, and then Aα ≤ 1. Now, using
the inequality 1−x ≤ e−x, we obtain 0 ≤ Bα(n) ≤ ( q+1

n+1 )α+1. Thus |(αn )| ≤ ( q+1
n+1 )α+1.

Hence, for p ≥ 1, we have
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Rp(α, n) ≤ (q + 1)α+1
∑
n≥p

|h|n
(n+ 1)α+1

≤ (q + 1)α+1 1

|h|
∫ ∞

p

|h|t
tα+1

dt

≤ (q + 1)α+1 1

log(1/|h|)
|h|p−1

pα+1

≤ (q + 1)α+1

log(2)

( 1
2 )p−1

pα+1
.

We then deduce that for p ≥ α, (i.e., p ≥ q), Rp(α, n) ≤ cα
1

pα+1 ( 1
2 )p−1, where

cα = (α+ 2)α+1/ log(2), and Lemma 2.2(i) follows.

(ii) Reporting this bound in the expression of Ii, and observing that 2
3 ≤ |x10−x20|

|x1−x2| ≤
2, we obtain the desired bound with c′α := cα max(2α, ( 2

3 )α).
Remark 1. We give also an estimate that will be useful in the next section. There

exists a constant Lα such that, for |h1| ≤ 1
4 and |h2| ≤ 1

4 , we have∑
0≤i+j≤p

|cij(u, α)||h1|i|h2|j ≤ Lα,

where the coefficients cij(u, α) are defined in Lemma 2.2.
Theorem 2.3. Let N = 2ngs, with s being a fixed integer. Let p be an in-

teger such that p̄ := p + 1 ≥ α. There exists an explicit algorithm that gives an
approximation Imultipole of the discretization Idis, (2.1), using O(max{1, p̄s} p̄ N) op-
erations with a relative error of the order of O(1/

(
p̄α+1 2p

)
), i.e., |Idis− Imultipole| ≤

cα
p̄α+1 2p

∫
C0×C0

|F |.
Note that taking s = p̄ we obtain a total cost of O(p̄ N). Note also that s is the

number of points inside each interval of the finest level ng, and is naturally chosen to
be small compared to N .

Remark 2 (elementary operations). For simplicity, we set to one all the costs of
each of the following operations: one addition, one multiplication, one power (such as
xα or |x|α), and one evaluation of a known function. The cost of memory access will
also be neglected.

Proof of Theorem 2.3. Assume that the moments Mφj
(i, C) (i = 0, . . . , p and j =

1, 2) have been precalculated for all intervals C of each level of the multigrid hierarchy.
Since an interaction list contains at most 3 intervals, it follows from Lemma 2.2 and
(2.3) that the total cost of the evaluation of the integrals on well-separated intervals
is of the order of

∑ng

k=1 3 2kp̄2 ≤ 3 2ng+1p̄2 = O(p2N
s ).

On the other hand, the integrals on neighboring intervals at level ng are evaluated
by direct quadrature formula (because here we cannot use a multipole expansion).
The cost of this last evaluation is s2 for each pair of intervals. There are at most
3 neighbors for each interval. Hence the total cost of these integrals is smaller than
3s22ng = 3sN .

Now we present a recursive algorithm in order to precalculate the moments
Mφj (i, C) at all levels k = 1, . . . , ng and for i = 0, . . . , p. First, we evaluate the
moments at the finest mesh level ng. This costs s2ng (p + 1) = O(p̄N), since there
are p̄ = p+ 1 moments for each interval, with s points per interval at the finest level.
Suppose we have calculated the moments of level k + 1. To evaluate a moment of
order k, we use the decomposition of C�k into its two children: C�k = C2�−1

k+1 ∪C2�
k+1, and

the formula
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Mφ(i, Ck) = Mφ(i, rk, Ck)
=

∑
j, Cj

k+1
child of Ck

Mφ(i, rk, Cjk+1).(2.7)

Using the translation x− rk = x− rjk+1 − (rk − rjk+1), we obtain

Mφ(i, rk, Cjk+1) =

i∑
q=0

(
i
q

)
(rk − rjk+1)

i−qMφ(q, Cjk+1).(2.8)

Hence the computation of the moments Mφ(i, Ck) for i = 0, . . . , p requires O(p̄2) op-
erations. The total cost of the evaluation of all moments at all levels is O(p̄N) +

O(
∑ng−1
k=1 2kp̄2) = O(p̄ N + p̄2

s N), which concludes the proof of the first part of The-
orem 2.3.

In order to obtain the error estimate of Theorem 2.3, we use the controlled mul-
tipole approximation of Lemma 2.2(ii). We obtain for any well-separated intervals
C1, C2 of the same level∣∣∣∣∫C1×C2

Fd2µ− Imult.(C1 × C2)

∣∣∣∣ ≤ c′α
p̄α+12p

∫
C1×C2

|F |d2µ(2.9)

with

Imult.(C1 × C2) := |x10 − x20|α
⎛⎝ ∑
i+j≤p

cij(α, u)

|x10 − x20|i+jMφ1
(i, C1) Mφ2

(j, C2)

⎞⎠ .

Summing the above contributions (2.9) at all levels and over all products C1 × C2

as in the partition (2.2), and adding the exact contributions at the finest level (for
neighbor intervals), we obtain the desired error bound. This concludes the proof of
Theorem 2.3.

Remark 3. If we consider the sum (2.1) with α ∈ (−1, 0) and for pairs (i, j) such
that i �= j, then the previous results and algorithm are unchanged except for the
calculation of the sums at the finest mesh level (where we must sum only over (i, j)
with i �= j).

3. The case of multiple interactions (m = 3 variables). In this section,
we consider the following three-variables integral:

I =

∫
C0×C0×C0

F (x1, x2, x3)d
3µ(x1, x2, x3),

where

F (x1, x2, x3) := φ1(x1)φ2(x2)φ3(x3)|x1 − x2|α|x2 − x3|β |x3 − x1|γ ,
C0 = [0, 1], and α, β, γ > −1. We have also denoted d3µ = dµ ⊗ dµ ⊗ dµ. As for the
case m = 2, when µ is the discrete measure, this integral becomes

Idis :=

N∑
i1,i2,i3=1

φ1(ai1)φ2(ai2)φ3(ai3)|ai1 − ai2 |α|ai2 − ai3 |β |ai3 − ai1 |γ .(3.1)

We shall also restrict ourselves to the case α, β, γ ≥ 0 as in the previous section in
order to simplify the presentation of the result. However, as in Remark 3, it is not
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difficult to extend our results to the case α, β, γ > −1 (in which Idis is defined as in
(3.1) but where we sum only on i1 �= i2, i2 �= i3, and i3 �= i1).

To evaluate Idis one needs O(N3) operations. Our purpose is to reduce this cost
to the order O(N). We use the same hierarchy and the same definitions as in the
previous section.

In the following theorem, we state our main result.

Theorem 3.1. Let N = 2ngs, with s being a fixed integer. Let p be an integer such
that p+1 ≥ max(α, β, γ). Let p̄ := p+1. There exists an explicit algorithm that gives

an approximation Imultipole of the discretization Idis, (3.1), using O(max{ p̄s , s
2

p̄2 } p̄2N)

operations with a relative error of the order of O(p−δ2−p), where δ = min(α, β, γ)+1,
in the following sense:

|Idis − Imultipole| ≤ Cα,β,γ
1

p̄δ2p

∫
C0×C0×C0

|F | d3µ .(3.2)

Note that taking s = p̄ we obtain an O(p̄2N) algorithm, and taking s = 1 we
obtain an O(p̄3N) algorithm. We recall that s is the number of particles in each
interval at the finest mesh level ng and that s is a small number compared to N .

Explicit theoretical cost bounds are given by (4.6), (4.7), and (4.8) in section 4.

Proof. To prove this theorem we follow the ideas of the previous section. We will
first establish that the cost is proportional to N . We show that the proportionality
factor depends only on s and p̄, and we do not give the exact complexity in this
section. In particular, we show that the cost is of the order of O(p̄6N) when s ≤ p̄.
In section 4 we shall establish a more precise cost estimate using only summation
techniques.

The proof of Theorem 3.1 is achieved in three steps.

3.1. Basic partition. Our first aim is to obtain a decomposition of Idis in the
same way as in (2.3). We then have to define a suitable notion of neighbors (for a set
of three intervals), and select intervals which enter in interaction at each level.

Neighbors (or neighboring intervals). See Figure 3.1 for some examples. We say
that a set of three intervals of a given level are neighbors (or neighboring intervals), if
each of the three intervals is a neighbor of at least one of the two others. We recall
that two intervals are neighbors if there is no interval between them. For instance,

Ck
i Ck

i Ck
i+2

Ck
i+1

Ck
i+1 Ck

iCk
( +1i+1 ,         ,          )

Ck
i Ck

i+1

(1b) Ck
i+1 Ck

iCk
i( ,          ,          )+1

Ck
i+1 Ck

i
+1

(1a)

(1c)

Ck
i( ,          ,          )+2

Fig. 3.1. Example of neighbor intervals.
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Ck
i+2ii–2Ck Ck

Level k(2a)

Ck
i+2

Ck
i+2

Level k–1

iCk

iCk

(2b)

(2c)

Ck
i–1

Fig. 3.2. Example of intervals in interaction. (a): Case (i); (b) and (c): Case (ii).

the three intervals

(Cik, Ci+1
k , Ci+2

k )

are neighboring intervals, even if the two intervals (Cik, Ci+2
k ) are not neighbors.

Intervals in interaction (see Figure 3.2). We say also that three intervals of a
given level are in interaction if they are not neighbors but their fathers are, in the
sense defined above. For instance, the following intervals are always in interaction:

(Ci−2
k , Cik, Ci+2

k ), (Ci−1
k , Cik, Ci+2

k ).(3.3)

Note that in this case there is at least one interval which is well separated from the
two others.

Partition. Let Intk be the product of intervals of level k which are in interaction:

Intk :=
⋃

(Cr1
k
, Cr2

k
, Cr3

k
) in interaction

Cr1k × Cr2k × Cr3k .

Let also Hk be the product of intervals of level k which are neighbors:

Hk :=
⋃

(Cr1
k
, Cr2

k
, Cr3

k
) neighbors

Cr1k × Cr2k × Cr3k .

We note that Hk = Intk+1 ∪ Hk+1 from the definitions, and that H0 contains only
one element: H0 = C × C × C (recall that C = C1

0). Hence we deduce the following
partition of C × C × C:

C × C × C =

(
ng⋃
k=2

Intk

)⋃
Hng .(3.4)

Note that Intk = ∅ for k = 1, because intervals are neighbors.
Now, for later use, we decompose Intk into two types of contributions. Let three

intervals be in interaction. Since they are not neighbors, we have two cases.
Case (i). Each interval is well separated from the two others.
Case (ii). One interval is well separated from the two others, which are neighbors.
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For instance, the first example in (3.3) corresponds to case (i), while the second
corresponds to case (ii). We then have Intk = Ek ∪ Fk, where Ek and Fk are defined
by

Ek :=
⋃

(Cr1
k
, Cr2

k
, Cr3

k
)∈Intk, case(i)

Cr1k × Cr2k × Cr3k

and

Fk :=
⋃

(Cr1
k
, Cr2

k
, Cr3

k
)∈Intk, case(ii)

Cr1k × Cr2k × Cr3k .

We finally obtain from (3.4) the following partition:

C × C × C =

(
ng⋃
k=2

Ek ∪ Fk
)⋃

Hng .(3.5)

Let Ir1,r2,r3k be the integral on Cr1k × Cr2k × Cr3k :

(3.6)

Ir1,r2,r3k =

∫
Cr1
k

×Cr2
k

×Cr3
k

φ1(x1)φ2(x2)φ3(x3)|x1 − x2|α|x2 − x3|β |x3 − x1|γd3µ.

Then, as in (3.5), we obtain Idis as the sum of all these previous contributions at all
levels:

Idis =

ng∑
k=2

∑
Cr1
k

×Cr2
k

×Cr3
k

∈Ek

Ir1,r2,r3k

+

ng∑
k=2

∑
Cr1
k

×Cr2
k

×Cr3
k

∈Fk

Ir1,r2,r3k

+
∑

Cr1
k
, Cr2

k
, Cr3

k
neighbors

Ir1,r2,r3ng
.(3.7)

3.2. Computation of moments and integrals: One-variable and two-
variables moments. The first difference with the case of binary interactions (m = 2)
is that we need to precalculate supplementary moments. In addition to the one-
variable moments

M1
φ(i, C) =

∫
C
φ(x)(x− x0)

idµ(x)(3.8)

(where x0 is the center of C), we define new moments (two-variables moments) as
follows:

(3.9)

M2
φ1,φ2,α(i, j, C1, C2) :=

∫
C1×C2

φ1(x1)φ2(x2)(x1−x10)
i(x2−x20)

j |x1−x2|αd2µ(x1, x2),
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where x10 and x20 are the centers of C1 and C2, respectively. The above integrals are
sums (since µ is discrete), and for instance for M2 we have the formula

M2
φ1,φ2,α(i, j, C1, C2)

=
∑

k,�=1,...,2ng ; ak∈C1, a�∈C2

φ1(ak)φ2(a�)(ak − x10)
i(a� − x20)

j |ak − a�|α

(we exclude the terms k = � in the case α < 0). These moments will be used in the
computation of the Fk integrals.

Developed formula with moments. We assume that all the one-variable mo-
ments have been calculated, and all the two-variables moments (M2

φ1,φ2,α
(i, j, C1, C2),

M2
φ2,φ3,β

(i, j, C1, C2), and M2
φ3,φ1,γ

(i, j, C1, C2)) have been calculated for C1 ∈ Int(C2),
and at all levels. Starting from this hypothesis, we will determine the (asymptotic)
cost of evaluating the total integral Idis. According to the decompositions (3.5) or
(3.7), we distinguish three kinds of integrals to compute.

We first consider the case of the Ek integrals. These are integrals of the form
(3.6) in which the intervals Cr1k , Cr2k , and Cr3k are mutually well separated. The three
variables can be mutually separated using Lemma 2.2, and we obtain an expression
using only one-variable moments M1:

Ir1,r2,r3k = |x10 − x20|α|x20 − x30|β |x30 − x10|α

×
{ ∑

i1+j1≤p

∑
i2+j2≤p

∑
i3+j3≤p

ci1,j1(α, u1) ci2,j2(β, u2) ci3,j3(γ, u3)

|x10 − x20|i1+j1 |x20 − x30|i2+j2 |x30 − x10|i3+j3

×M1
φ1

(i1 + j3, Cr1k ) M1
φ2

(i2 + j1, Cr2k )M1
φ3

(i3 + j2, Cr3k )

}
+ ηE ,(3.10)

where ηE is the resulting error. Using Lemma 2.2 and Remark 1, and after easy
calculations we get the following error estimate:

|η| ≤ Cα,β,γp
−min(α,β,γ)−12−p

∫
Cr1
k

×Cr2
k

×Cr3
k

|F |d3µ.

The evaluation of expression (3.10) costs O(p̄6) operations. The computation of
all Ek integrals then costs O(p̄6

∑ng

k=1 2k), i.e., O(p̄62ng ).
Now we consider the Fk integrals. If for instance Cr3k is well separated from Cr1k

and Cr2k , then using multipole expansions for |x2−x3|β and |x3−x1|γ (see Lemma 2.2)
we obtain

Ir1,r2,r3k = |x30 − x10|γ |x20 − x30|β
{ ∑
i1+j1≤p

∑
i2+j2≤p

c1i1,j1(γ, u3) c
2
i2,j2

(β, u2)

|x30 − x10|i1+j1 |x20 − x30|i2+j2

×M2
φ1,φ2,α(i1, i2, Cr1k , Cr2k ) M1

φ3
(j1 + j2, Cr3k )

}
+ η,(3.11)

where η is the error and satisfies |η| ≤ Cβ,γp
−min(β,γ)−12−p

∫
Cr1
k

×Cr2
k

×Cr3
k

|F |d3µ. We

point out that a fast computation of the two-variables moments again requires the use
of multipole expansion (see below) and then involves an additional error. The error
estimate ηF in the computation of the Fk integrals still follows the same expression
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as for ηE , but the proof of such an estimate is much more technical than for the Ek
integrals. Because of its limited interest, this proof is omitted.

Expression (3.11) can be calculated using the precalculated moments M1 and
M2, and with a cost of the order of O(p̄4). Then the total cost induced by the Fk
integrals is of the order of O(p̄4

∑ng

k=1 2k), i.e., O(p̄42ng ).

Finally we consider the Hng integrals at the finest mesh level. For these, we use a
direct computation of the sums of the terms of Ir1,r2,r3ng

. Because these integrals only

concern neighboring intervals at the finest level ng, this step costs O(s3 · 2ng ).

Hence the total cost for the calculations of Idis, using multipole expansions, is of

the order of O((s3 + p̄6) 2ng ) = O( s
3+p̄6

s N).

Computation of the moments. We first compute the moments M1
φj

(i, C) for the

orders i = 0, . . . , 2p. This costs O(p̄2N
s ) +O(p̄N) (see the previous section). We then

compute the moments M2 given by (3.9) in the only case where C1 and C2 are neigh-
bors (other moments are not used). We proceed recursively as for the moments M1.

First, we evaluate the moments M2 at the finest mesh level ng, for i, j = 0, . . . , p.
This costs O(p̄2 · s2 · 2ng ) = O(p̄2 · s · N), where N = 2ng · s (since there are 2ng

intervals and each interval contains s quadrature points). Now suppose we have
calculated the moments M2 at level k + 1. To evaluate a moment M2 at level k
on neighbors C1 × C2, we decompose C1 (resp., C2) into intervals of levels k + 1:
Cik+1 (resp., Cjk+1). When Cik+1 and Cjk+1 are well separated, we can use Lemma 2.2
in order to separate the variables and use only one-variable moments (we use also
translations as in (2.8)). When Cik+1 and Cjk+1 are neighbors, we can use the moments
M2 precalculated at level k+1 (we use also translations). The complexity of these last
recursive operations will be determined in the next section. Roughly, the contribution
corresponding to neighboring children Cik+1 and Cjk+1 needs O(p̄2) operations, because
it only uses translations. The contributions of well-separated children requires both
multipole expansions, and translations, and thus needs O(p̄4) operations. Since we
have O(p̄2) moments M2

φ1,φ2,α
(i, j, C1, C2) (i, j = 0, . . . , p) to calculate, the total cost

is of the order of O(p̄6).

Since there are O(2ng ) = O(N/s) intervals, the total cost for computing the
moments is of the order of O(p̄2sN) +O(p̄6N

s ).

Total cost. Adding the previous bounds, we obtain a total cost of the order of

O(p̄2sN) + O(p̄6N
s ) + O( s

3+p̄6

s N). This is bounded by O( s
3+p̄6

s N). In particular,
for s ∈ [1, p̄], we obtain a cost of the order of O(p̄6 N).

Up to now, we have shown that the total computational cost of the multipole algo-
rithm is asymptotically proportional to N . In situations where N is not large enough,
it is useful to know the value of the proportionality coefficient. In the next section,
we give more precise expressions of the computational costs (or complexities) of the
above-described algorithms. Since the proofs of such expressions are very technical
and lengthy, we just present them without any proof. These reduction techniques are
essentially based on reordering the terms of the various sums and/or writing them
in terms of matrix-matrix products. We point out that these manipulations do not
involve any additional error.

4. Exact cost. In this section, we give more precise expressions of the costs of
the computations involved in the above-described multipole algorithm. These costs
will be expressed as functions of the quantities p, s, and N .

Computing the one-variable moments. The computational cost of the one-variable
moments, (3.8), Mφq (i, Ck) for i = 0, . . . , 2p, and for all levels k = 2, 3, . . . , ng, is
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bounded by (
6p̄+ 44

p̄2

s

)
N.(4.1)

Computing the two-variables moments. As explained in the previous section, we
need to compute all two-variables moments M2

φ1,φ2,α
(i, j, C1, C2) on neighbor intervals,

at all levels, for i, j = 0, . . . , p. These moments are expressed by (3.9), and their com-
putation requires a more complicated algorithm than for the one-variable moments.
The total cost for this algorithm is bounded by

3 · (18 · (4p̄3 + 7p̄2) · (2ng − 4) + (2sp̄2 + 12s2p̄) · (3 · 2ng )
)

≤ 9 · (6(4p̄3 + 7p̄2) + (2sp̄2 + 12s2p̄)
)

2ng

= 18
(
12p̄3 + 21p̄2 + sp̄2 + 6s2p̄)

)
2ng

= 18

{
12p̄

s
+

21

s
+ 1 +

6s

p̄

}
p̄2N,(4.2)

where the factor 3 takes the three types of two-variables moments into account, i.e.,
M2
φ1,φ2,α

, M2
φ2,φ3,β

, and M2
φ3,φ1,γ

.
Note that for p large enough, choosing s = p̄ (and N = 2ngs), this expression

leads to the approximated cost bound 342 p̄2N .
Computing the three-variable integrals. Using the basic partition (3.5), we know

that the sum Idis given by (3.1) can be split into three sets of contributions: Ek, Fk,
and Hng . Here, we give the complexity of these contributions.

Ek integrals: These integrals are expressed by (3.10). The total cost of their
evaluation is bounded by

cE := 10p̄3 + 15p̄2 + p̄.(4.3)

Note that a direct computation of Ik would require O(p6) operations.
Fk integrals: These integrals are expressed by (3.11). The evaluation of an Fk

integral needs a number of operations bounded by

cF := 4p̄3 + 9p̄2.

Hng integrals: At level k = ng, we make direct computations for neighboring
intervals. The cost of the evaluation of an Hng

integral is less than

(15s3) · 13 · 2ng = 195 s2N.(4.4)

Recursion algorithm. We now proceed in the computation of the integrals corre-
sponding to intervals which are in interaction at all levels, from level k = ng down to
the level k = 2. The integrals of level k will be computed assuming that we have al-
ready computed the one- and two-variable moments at level k. Counting the number
of occurrences of types Ek, Fk, and Hng , and using the previous costs, we get a total
cost of the recursive algorithm (not including the cost induced by the computation of
the moments) less than

456

{
1 +

2

p̄
+

1

19p̄2
+

1

6p̄3

}
p̄3

s
N + 195 s2 N.(4.5)

Note that taking s := p̄ large enough, this cost is equivalent to 651 p̄2 N .
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Total cost. The total cost for the evaluation of the integral Idis is obtained by
summing the previous costs (4.1), (4.2), and (4.5):

Total Cost ≤
{

6

p̄
+

44

s

}
p̄2 N

+ 18

{
12p̄

s
+

21

s
+ 1 +

6s

p̄

}
p̄2 N

+ 456

{
1 +

2

p̄
+

1

19p̄2
+

1

6p̄3

}
p̄3

s
N + 195 s2 N.(4.6)

Using the fact that max{ p̄s , 1, sp̄ , s
2

p̄2 } = max{ p̄s , s
2

p̄2 }, and s, p̄ ≥ 1, we obtain that the

total cost is bounded by O(max{ p̄s , s
2

p̄2 }· p̄2N). More precisely, we obtain the following
bound:

Total Cost ≤ 2800 · max

{
p̄

s
,
s2

p̄2

}
p̄2 N.(4.7)

This concludes the proof of Theorem 3.1.
Remark 4. For s := p̄ we obtain from (4.6) the following asymptotic cost bound:

Total Cost ≤ 993 · p̄2 N, s = p̄→ ∞.(4.8)

Since a direct calculation of Idis costs 15N3 (we count 14 elementary operations for
the evaluation of the integrand term, plus 1 for the sum), in the case s = p̄ we can
predict that the FMM method is useful as soon as 993p̄2N ≤ 15N3, i.e., N ≥ 8.14 p̄.
For instance this gives N ≥ 82 for p̄ = 10.

5. Numerical tests. We have chosen the functions φ1(x) =
√
x, φ2(x) = x

1+x ,
and φ3(x) = x

2+x , and the exponents α, β, γ = −0.2,−0.5,−0.9. We have also taken
a discretization mesh with ng levels and s0 = 2 points per interval at the finest level.
Thus we have N = 2ngs0 discretization points per variable. We shall also use the
decomposition N = 2ns where 0 ≤ n ≤ ng and s = 2ng−ns0.

We have first tested the numerical behavior of the error with respect to the order
p of the multipole expansion. In Table 5.1 and Figure 5.1 we give the absolute values
of the errors e(p) := |Idis − Imultipole|, versus p, in the case ng = 4. The results are
similar for other values of ng. The relative error |Idis− Imultipole|/|Idis| also decreases
in the same way since here Idis ∼ 0.86 (with a 1/N3 normalization factor in the
definition of Idis). We note that best results are obtained for even values of p.

In particular, we observe that with p = 10 we have 7 correct digits, with p = 20
we have more than 11 correct digits, and with p ≥ 30 we have more than 16 correct
digits.

Table 5.1

Error versus the order p of multipole expansions (for p = 30 the error is smaller than 1E-16).

ng p Error Time

4. 0. 0.0133175 1.62
4. 5. 0.0000546 1.99
4. 10. 9.048E-08 2.60
4. 15. 1.355E-09 3.44
4. 20. 4.244E-12 4.63
4. 25. 6.661E-14 6.19
4. 30. 0 8.44
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Fig. 5.1. Error versus order p of multipole expansion.
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√
e(p−2)
e(p)

(order of error) is plotted versus p (order of multipole expansions).

In Figure 5.2, we have plotted
√
e(p− 2)/e(p), for even p, and observe that√

e(p− 2)/e(p) → 2.7 for large p values. This means that the “observed” order of
the method is approximately 2.7 (i.e., e(p) ∼ C/(2.7)p, for even p values). This is
better than our theoretical bounds which predicts the order 2. The reason is that, in
the theoretical analysis, the bounds for the multipole expansions are obtained in the
worst case. This is a known fact in the usual FMM method [2] that can be used in
order to improve the bounds.

We also mention that the CPU time increases very slowly with p (at least for
small p values, p ≤ 40). For instance with p = 20 it is roughly three times the CPU
time of the case p = 0, and with p = 10 it is roughly 1.5 times the CPU time of

p = 0. This is much faster than the predicted theoretical result: O( p̄
3

s N) for fixed s
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Table 5.2

CPU times. t(n) := t1 + t2 + t3 is the total time; t1, t2 are the computation times for the one-
and two-variable moments, and t3 for the three-variable integrals. Here p = 10 and n = ng, excepted
for the “optimized” multipole calculation where n = max(ng − 5, 0).

n = ng n = (ng − 5)+

ng t1 t2 t3 t(n)
t(n)

2t(n−1)
t(n) tdirect

2. 0.02 0.15 0.10 0.27 0.04 0.01
3. 0.03 0.35 0.57 0.95 1.7812 0.04 0.01
4. 0.13 0.75 1.72 2.60 1.3684 0.04 0.01
5. 0.22 1.63 4.30 6.15 1.1827 0.08 0.07
6. 0.45 3.38 9.62 13.45 1.0935 0.37 0.48
7. 0.92 6.90 20.95 28.77 1.0694 1.28 3.33
8. 1.80 13.92 42.80 58.51 1.0171 3.45 24.72
9. 3.60 28.10 89.03 120.73 1.0316 8.00 192.47

10. 7.08 57.10 180.98 245.16 1.0153 17.24 1515.90
11. 14.25 114.01 363.30 491.56 1.0025 36.08 12467.01
12. 28.35 230.09 729.77 988.21 1.0052 74.58 112829.63
13. 57.38 461.78 1478.54 1997.70 1.0108 152.12 1018518.50
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Fig. 5.3. CPU time.

and large p. In fact all moments have been computed using products of matrices and
vectors, and thus are computed with a similar cost independently of p (for small p
values, say p ≤ 30).

In our second test we are interested in the numerical O(N) behavior. In Table 5.2
and Figure 5.3, we have given the CPU time t(n) versus the number of levels n =
log2(N/s), for different methods. The first method is with n = ng (and s = s0); i.e.,
the number of levels n for the multipole method is the same as for the discretization
mesh. We have fixed p = 10 for these calculations, since in practice the CPU time
increases slowly with p as previously remarked. We see that we have t(n)/[2t(n−1)] ∼
1 for large n, which corresponds to an O(N) behavior at this scale.

In Figure 5.3 the CPU time curves are in logarithmic scale for the time. The first
curve concerns the CPU time obtained by direct calculations, simply doing a direct
computation of the sum Idis (using vectorized computations). For ng ≥ 9, this CPU
time has been estimated (only by making a part of the calculation).
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The second curve is the CPU time of our method, with n = ng and p = 10.
The third curve is obtained with n = max(ng − 5, 0) and s = 2ng−ns0. This

means that we have used the first n levels for the multigrid hierarchy of the FMM
method, and that, at level k = n, the moments and integrals are directly computed.
At this level, there are s = 2ng−ns0 points per interval (for ng ≥ 5, this leads to
s = 25 · s0 = 32 · s0). This is like a multigrid method where a “rough” scale is used
for the first levels k ≤ n (where we use the approximation of multipole expansions),
and a refined scale is used at level k = n (where exact computations are made).

We see that the multipole method (for n = ng) becomes faster than the direct
method for ng ≥ 9. The “optimized” multipole method, i.e., with n = max(ng−5, 0),
is faster for ng ≥ 5. For instance, for ng = 10 (N3 = 8 · 230 ∼ 1010 points), the
computation time is 17 s for the “optimized” FMM, which is roughly 90 times faster
when compared to the direct computation, and 15 times faster than the FMM method
(n = ng). The fact that for small ng values the time of the optimized multipole method
is greater than the direct method is due to the initialization of one- and two-variable
moments.

Note on computation and storage of moments. For each type of moments (one-
and two-variable moments), and for the three-variable integrals, it is possible to use
only one list of 2ng moments. Initially, the list contains the values of the moments at
finest level ng. Then, when we calculate recursively the moments of level ng − 1, we
can store them on the same list, using only the first 2ng−1 elements, and so on.

In order not to overwrite on the list of necessary moments, we proceed recursively
as follows.

At level k = ng: Initialize the list of one- and second-order moments and the
three-variable integrals.

For levels k = ng − 1 to 0 step −1 do:

• Computation of three-variable integrals at level k (requires at level k + 1 the
one- and two-variable moments, and three-variable integrals). Storage in the list of
three-variable integrals erases the three-variable integrals of level k + 1.

• Computation of two-variable moments at level k (requires one- and two-variable
moments of level k + 1). Storage in the list of two-variable moments erases that of
two-variable moments at level k + 1.

• Computation of one-variable moments at level k (requires one-variable moments
of level k + 1). Storage erases the list of one-variable moments at level k + 1.

6. Concluding remarks. For m ≥ 2, we have summarized in Table 6.1 some
obtained results, with N = 2ng p̄ and p̄ = p + 1. We recall that p is the order of
the multipole expansions. The results between brackets are conjectured. (Here the
dimension is d = 1 for each variable.) All the error bounds are of the form O( 1

p̄κ2p ),

where κ := infi<j(αij) + 1.

Table 6.1

Costs and errors bounds for various numbers m of particles.

m = 2 m = 3 m = 4 m ≥ 5

Cost O(p̄N) O(p̄2N) O(p̄4N) ≤ Cmp̄
δmN

Error O

(
1

p̄κ2p

)
O

(
1

p̄κ2p

) [
O(

1

p̄κ2p
)

] [
O(

1

p̄κ2p
)

]
For m = 4, we can prove that the cost of our FMM algorithm is O(p̄4N), using

cost reduction techniques as in section 4, while the error is expected to be bounded
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by cste
p̄κ2p .

For m ≥ 5, there are m(m − 1)/2 binary interactions in the integrand term.
Again, we can prove a similar cost bound, of the form Cmp̄

δmN , where δm and Cm
are some constants that depend only on m. However, we did not compute here an
explicit estimate of δm when using cost reduction techniques.

For d ≥ 2, i.e., for more than one dimension for the particle position, we expect a
similar cost, i.e., O(pδm,dN) (with δm,d being some constant). This task has not been
addressed in this paper, but the simple case d = 1 should greatly help to treat the
higher-dimensional case. In particular, one can see that the partition algorithm of the
integration domain (developed in section 3.1) is independent of the variable dimension.
This algorithm can be used for the three-dimensional case as it stands. However, the
multipole expansions should be more technical for higher dimensions. This last point
is under study and we think that this could be done using the techniques in [2] or in
[3] where three-dimensional multipole expansions are developed. A complete three-
dimensional algorithm is under investigation.

We also mention that it is possible to compute in O(p̄µmN) the following kind of
one-particle operators:

v(x1) =

∫
Cm−1

φ2(x2) · · ·φm(xm)
∏

1≤i<j≤m
|xi − xj |αijdµ(x2) · · · dµ(xm)

(where x1 takes values on a mesh with N points, and dµ is the discrete measure on
the mesh). In this case, we have to use a “descending” algorithm as in the FMM of
Greengard and Rokhlin [1].

Finally we mention that an alternative method based on the use of wavelet bases
is the subject of a future work.
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Abstract. We derive novel pointwise a posteriori error estimators for elliptic obstacle problems
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1. Model problem, its discretization, and main results. Free boundary
problems are ubiquitous in applications, from nonlinear elasticity and plasticity to
fluids and finance. The detection and accurate approximation of the free boundary
is often a primary goal of the computation. There are, however, no results in the
literature which provide a posteriori error estimates for interfaces. In case they are
defined as level sets, then the mere control of the solution(s) does not yield, in general,
control of the interfaces. In this paper we examine a model problem, namely the
elliptic obstacle problem with Hölder obstacle, and derive novel pointwise a posteriori
error estimates for both the solution and free boundary. The maximum norm is
essential in this endeavor to convert error estimates for solutions into error estimates
for interfaces. The estimators in turn exhibit complete localization (vanish within
the full-contact set) and thus improve upon [15]. Their reliability and efficiency is
assessed both theoretically and computationally herein.

We first introduce the continuous obstacle problem. Let Ω be a bounded, poly-
hedral, not necessarily convex domain in R

d with d ∈ {1, 2, 3}. Let f ∈ L∞(Ω) be a
load function, χ ∈ H1(Ω)∩C0,α(Ω̄) be a lower obstacle, and g ∈ H1(Ω)∩C0,α(Ω̄) be
a Dirichlet boundary datum with 0 < α ≤ 1. Both χ and g satisfy the compatibility
condition

χ ≤ g on ∂Ω.

Let K be the following nonempty, closed, and convex subset of H1(Ω):

K := {v ∈ H1(Ω) | v ≥ χ a. e. in Ω and v = g on ∂Ω}.
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The variational formulation of the continuous obstacle problem reads as follows:

u ∈ K : 〈∇u, ∇(u− v)〉 ≤ 〈f, u− v〉 for all v ∈ K.(1.1)

Hereafter, 〈ϕ, ψ〉 denotes the scalar product in L2(Ω) as well as the duality pairing
between H̊1(Ω) and H−1(Ω). It is well known that (1.1) admits a unique solution u
[11, Theorem 6.2], [9, 17], which is also Hölder continuous [8]. The latter implies that
the contact set

Λ := {u = χ} := {x ∈ Ω | u(x) = χ(x)}
and the free boundary or interface

F := ∂{u > χ} ∩ Ω

are closed in Ω. We are interested in the numerical study of these two sets. To this
end, we first approximate u by means of finite elements and, later on, we construct
appropriate a posteriori barrier sets depending on data and the finite element solution
uh.

Given a shape-regular partition Th of Ω, the set of nodes of Th is denoted by
Nh, and the subset of interior nodes by N̊h. Let Vh indicate the space of continuous
piecewise affine finite element functions over Th and V̊h := Vh ∩ H̊1(Ω). The nodal
basis functions of Vh are given by (φz)z∈Nh

, and they form a partition of unity of Ω,
that is,

∑
z∈Nh

φz = 1. Let Ih be the Lagrange interpolation operator onto Vh.
Let χh := Ihχ be the discrete obstacle and let Ihg be the discrete Dirichlet

boundary datum. The discrete counterpart Kh of K is then

Kh := {vh ∈ Vh | vh ≥ χh in Ω and vh = Ihg on ∂Ω}.
Note that it is sufficient to check the unilateral constraint of Kh only at the nodes. The
set Kh is nonempty, convex, closed but in general not a subset of K (nonconforming
approximation). The discrete obstacle problem reads as follows:

uh ∈ Kh : 〈∇uh, ∇(uh − vh)〉 ≤ 〈f, uh − vh〉 for all vh ∈ Kh.(1.2)

Problem (1.2) admits a unique solution (use [9, 11] in the Hilbert space Vh).
In section 2 we introduce a computable, second order estimator Eh, and prove in

particular the a posteriori error bound

‖u− uh‖0,∞;Ω ≤ Eh.(1.3)

Later in section 4 we couple (1.3) with the nondegeneracy condition f+∆χ ≤ −λ < 0,
to show an a posteriori error bound for interfaces, which roughly reads as follows:

The strip
{
x ∈ Ω | 0 < dist(x, {uh > χh + Eh}) < rh

}
of width rh ≈√Eh/λ contains the exact interface F .

(1.4)

The reasoning behind these results is rather different from other a posteriori error
analyses, except for [15]. Indeed, in section 2 we construct continuous barrier func-
tions for the exact solution u upon correcting the discrete solution uh via the Riesz
representation of the Galerkin functional, a nonlinear residual appropriate in this
context; cf. [15, 20]. The derivation concludes with an application of the continuous
maximum principle, which imposes no constraint on the triangulations Th, in contrast
to a priori analyses.

The main theoretical results, (1.3) and (1.4), exhibit the following salient features:
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• Full localization (see also [7]): The residual estimator inside Eh vanishes in the
discrete full-contact set where uh = χh (see section 2.1 for its definition). In partic-
ular, if χ = χh and u = χ = uh on a finite element star, then the residual indicator
vanishes on the star as well. This gives rise to a rare local upper bound and is
an important improvement over [15]. Its computational impact is discussed and
illustrated in section 3.2.

• Reliability and efficiency: In addition to the upper bound (1.3) (reliability), we
establish local lower bounds for all estimators (efficiency); this is discussed in section
2.5 and confirmed numerically in section 3.1.

• Partition of unity and star-based estimators: The error analysis is based on the
partition of unity (φz)z∈Nh

, and consequently, the residual estimators entering Eh
are star-based; see also [7, 12].

• Element residual oscillation: The customary element residual ‖h2f‖0,∞;Ω is re-

placed here by data oscillation on stars, namely maxz∈N̊h
‖(f − f̂z)φz‖0,∞;Ω, which

is generically of higher order asymptotically. This is achieved via an additional
cancellation provided directly by the partition of unity, without dealing with the
element residual as in [14]; see also [7].

• Barrier sets and interface estimates: Two important issues must be emphasized.
First, the maximum norm is the most adequate one to link solutions and inter-
faces. Second, the approximation of level sets is not a direct consequence of precise
estimates for solutions. The missing ingredient is the nondegeneracy condition
f + ∆χ ≤ −λ < 0 due to Caffarelli [2], which is also used in the a priori error anal-
ysis of free boundaries [1, 5, 13]. Our second main result (1.4) is a dual counterpart
of the latter, and the first computable error estimate for interfaces.

This paper is organized as follows. In section 2 we introduce the concept of full-
contact set along with exact and discrete multipliers associated with the unilateral
constraint. We then define and study the Galerkin functional for (1.1) and use it to
construct barrier functions, which eventually yield the desired pointwise a posteriori
error estimates for solutions. In section 3, we present two numerical examples which
document reliability, efficiency, and full localization properties of Eh. We introduce
the concept of barrier sets and derive a posteriori error estimates for free boundaries
in section 4. We conclude in section 5 with two revealing numerical examples which
not only corroborate the theory of section 4, but also provide support of its optimality.

2. Pointwise a posteriori error estimates. Intuitively, one expects that a
discrete counterpart of the exact contact set Λ enters into the a posteriori estimate of
‖u−uh‖0,∞;Ω. Crucial facts, such as the location of Λ, are encoded in the nonpositive

functional σ ∈ H−1(Ω) = H̊1(Ω)∗ defined by

〈σ, ϕ〉 = 〈f, ϕ〉 − 〈∇u, ∇ϕ〉 for all ϕ ∈ H̊1(Ω),(2.1)

which plays the role of a multiplier for the unilateral constraint. In fact, we have
σ = f + ∆χ in the interior of the contact set Λ = {u = χ}, where σ is typically < 0,
and σ = 0 in the open noncontact set Ω \Λ = {u > χ}. It is then not surprising that
the a posteriori error analysis needs a multiplier σh that is associated with uh—the
discrete counterpart of σ.

2.1. Discrete full-contact set and multiplier. We first introduce some no-
tation. Let Jh be the jumps of the normal derivatives of uh across interior sides
(nodes/edges/faces in 1 dimension/2 dimensions/3 dimensions, respectively). More
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precisely, given a common side S of two different simplices T+ and T−, we have on S

Jh = [[∂nuh]] =
[∇uh|T+ −∇uh|T−

] · n,
where n is the normal of S that points from T− to T+. We denote the union of all
interior sides (interelement boundaries) by Γ. For a node z ∈ Nh, let ωz = supp(φz)
be the finite element star and γz = Γ ∩ int ωz be the union of all interior sides in ωz.
We define

Ch = {z ∈ Nh | uh = χh and f ≤ 0 in ωz, Jh ≤ 0 on γz}
to be the set of full-contact nodes and denote by

Ω0
h =

{
x ∈ Ω |

∑
z∈Ch

φz(x) = 1

}
, Ω+

h = Ω\Ω0
h

the discrete full-contact set and its complement. Furthermore, we set Γ0
h = Γ ∩ Ω0

h

and Γ+
h = Γ ∩ Ω+

h . We clearly have

z ∈ Nh \ Ch =⇒ ωz ⊂ Ω+
h and γz ⊂ Γ+

h .(2.2)

Finally, let Πh : L1(Ω) → V̊h be the interpolation operator of [3]; see also [16]. Such
a Πh is both positivity preserving, which helps construct σh ≤ 0, and second order
accurate, which is crucial in dealing with the second order maximum norm error.

With these notations at hand, we define the discrete multiplier σh ∈ H−1(Ω) by
using the partition of unity 〈σh, ϕ〉 =

∑
z∈Nh

〈σh, ϕ φz〉 and setting

〈σh, ϕ φz〉 =

∫
Ω0

h

f ϕφz +

∫
Γ0
h

Jhϕφz

+

∫
Ω+

h

f (Πhϕ)(z)φz +

∫
Γ+
h

Jh (Πhϕ)(z)φz

(2.3)

for all z ∈ Nh and ϕ ∈ H̊1(Ω). Note that Πhϕ is evaluated at the node z and is thus
a constant for each z ∈ Nh. Therefore, (2.2) gives

z ∈ Nh \ Ch =⇒ 〈σh, ϕ φz〉 = (Πhϕ)(z) sz,(2.4)

where sz is a nodal multiplier:

sz :=

∫
Ω

f φz +

∫
Γ

Jhφz, z ∈ Nh.(2.5)

It satisfies sz ≤ 0 whenever z ∈ N̊h ∪ Ch. This follows from the definition of Ch, if
z ∈ Ch, and from utilizing vh = uh + φz ∈ Kh in (1.2), if z ∈ N̊h.

We point out that the definition of the discrete multiplier σh via (2.3) is crucially
distinct from those in [7, 15], which are in turn quite different from each other. In
particular, the finite element star ωz in (2.3) is divided into two parts and thus, in
contrast to [7, 15], “broken” nodal multipliers are involved.

Let us finish this section with the observation that the discrete multiplier σh is,
as the exact multiplier σ of (2.1), nonpositive.

Lemma 2.1 (sign of σh). The discrete multiplier σh satisfies σh ≤ 0.
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Proof. Let ϕ ∈ H̊1(Ω) be nonnegative. Since Πhϕ ≥ 0 in Ω and Πhϕ = 0 on ∂Ω,
(2.4) implies 〈σh, ϕ φz〉 ≤ 0 for all z ∈ Nh \ Ch. On the other hand, if z ∈ Ch, then
f ≤ 0 in ωz as well as Jh ≤ 0 on γz by definition, whence 〈σh, ϕ φz〉 ≤ 0 follows from
(2.3).

The multiplier σh is not a discrete function and is thus noncomputable. In eval-
uating our error estimator, we will only make use of the nodal multipliers sz for
z ∈ N̊h ∪ Ch. The properties of these computable multipliers are closely related to
properties of σh (see Proposition 2.5 below).

2.2. Galerkin functional: Definition and properties. We are now in the
position to define the Galerkin functional Gh ∈ H−1(Ω), which plays the role of the
residual for (unconstrained) equations; see [15, 20]:

〈Gh, ϕ〉 := 〈∇(u− uh), ∇ϕ〉 + 〈σ − σh, ϕ〉
= −〈∇uh, ∇ϕ〉 + 〈f − σh, ϕ〉 for all ϕ ∈ H̊1(Ω).

(2.6)

Integrating by parts and employing the partition of unity (φz)z∈Nh
, we obtain

〈Gh, ϕ〉 =

∫
Ω

f ϕ−
∫

Ω

∇uh∇ϕ− 〈σh, ϕ〉 =

∫
Ω

f ϕ+

∫
Γ

Jh ϕ− 〈σh, ϕ〉

=
∑
z∈Nh

{∫
Ω

f ϕφz +

∫
Γ

Jh ϕφz −
∫

Ω0
h

f ϕφz −
∫

Γ0
h

Jh ϕφz

−
∫

Ω+
h

f (Πhϕ)(z)φz −
∫

Γ+
h

Jh (Πhϕ)(z)φz

}

=
∑
z∈Nh

{∫
Ω+

h

f [ϕ− (Πhϕ)(z)]φz +

∫
Γ+
h

Jh [ϕ− (Πhϕ)(z)]φz

}

=

∫
Ω+

h

f

[
ϕ−

∑
z∈Nh

(Πhϕ)(z)φz

]
+

∫
Γ+
h

Jh

[
ϕ−

∑
z∈Nh

(Πhϕ)(z)φz

]

=

∫
Ω+

h

f [ϕ− Πhϕ] +

∫
Γ+
h

Jh [ϕ− Πhϕ].

This expression shows the effect of full localization of the Galerkin functional to the
set Ω+

h . The construction of σ̃h in [15] leads merely to a partial localization. The full
localization of σh defined by (2.3) is due to the notion of full-contact nodes, which
was introduced in [7] so as to achieve full localization in the context of a first order
estimator. In [7, Remark 4.5] one finds also an argument that the sign conditions on
f and Jh in the definition of Ch are crucial.

To exploit further cancellation properties, we introduce the constant values

ψ̄z =

⎧⎨⎩
(∫

Ω+
h
φz

)−1 ∫
Ω+

h
ψ φz if ρz = 0,

0 else

for all z ∈ Nh and ψ ∈ L1(Ω), where

ρz :=

∫
Ω+

h

f φz +

∫
Γ+
h

Jh φz.
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Note that, in view of (1.2) and (2.2), we certainly have ρz = 0 if uh(z) > χh(z) and
perhaps by chance otherwise. Setting ψ := ϕ − Πhϕ, employing again the partition
of unity, and the fact that ψ̄z ρz = 0 we can rewrite 〈Gh, ϕ〉 as follows:

〈Gh, ϕ〉 =
∑
z∈Nh

∫
Ω+

h

f [ψ − ψ̄z]φz +

∫
Γ+
h

Jh [ψ − ψ̄z]φz.

For nodes z ∈ Nh with ρz = 0, the value ψ̄z is the weighted L2-projection of ψ to the
constant functions on ωz ∩ Ω+

h . Hence, we can subtract a constant from the element
residual at these nodes without altering the expression. In particular, we can write

〈Gh, ϕ〉 =
∑
z∈Nh

∫
ω+

z

[f − f̂z] [ψ − ψ̄z]φz +

∫
γ+
z

Jh [ψ − ψ̄z]φz,(2.7)

where

ω+
z = ωz ∩ Ω+

h , γ+
z = γz ∩ Ω+

h ,(2.8)

and

f̂z =

{
1
2

(
minω+

z
f + maxω+

z
f
)

if ρz = 0,

0 else.
(2.9)

This shows that only the oscillation f − f̂z of the interior residual f enters in the
estimators on all stars with ρz = 0 and not f itself.

2.3. Galerkin functional: Estimates. In order to bound the pointwise error
‖u− uh‖0,∞;Ω, we shall need an estimate of Gh in the dual norm

‖Gh‖−2,∞;Ω := sup
{〈Gh, ϕ〉 | ϕ ∈ H̊1(Ω) ∩W 2

1 (Ω) with ‖D2ϕ‖0,1;Ω ≤ 1
}
.(2.10)

In what follows, the symbol “�” stands for “≤ C,” where the generic constant C may
depend on the shape-regularity of the partition Th, the domain Ω, and its dimension
d. The starting point for estimating (2.10) is (2.7). For ϕ ∈ H̊1(Ω) ∩W 2

1 (Ω) and
ψ = ϕ− Πhϕ, the Bramble–Hilbert lemma and second order interpolation estimates
for Πh provide

‖ψ − ψ̄z‖0,1;ωz
� hz‖∇ψ‖0,1;ωz

= hz‖∇(ϕ− Πhϕ)‖0,1;ωz
� h2

z‖D2ϕ‖0,1;Uh(ωz)

and, with the additional use of a scaled trace theorem,

‖ψ − ψ̄z‖0,1;γz � h−1
z ‖ψ − ψ̄z‖0,1;ωz + ‖∇ψ‖0,1;ωz � hz‖D2ϕ‖0,1;Uh(ωz),

where Uh(ωz) is the union of all simplices of Th having nonempty intersection with
the star ωz. In view of (2.7), the last two estimates yield the following one:

|〈Gh, ϕ〉| � max
z∈Nh

(
h2
z‖(f − f̂z)φz‖0,∞;ω+

z
+ hz‖Jh φz‖0,∞;γ+

z

)
‖D2ϕ‖0,1;Ω.(2.11)

Analogously, one obtains

|〈Gh, ϕ〉| �
(∑
z∈Nh

hpz‖(f − f̂z)φz‖p0,p;ω+
z

+ hz‖Jh φz‖p0,p;γ+
z

)1/p

‖∇ϕ‖0,p′;Ω,(2.12)
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where p′ = p/(p − 1) is the dual exponent of p ∈ [1,∞). The proof of (2.11)–(2.12)
is straightforward and thus omitted; we refer to [15] for similar bounds for a slightly
different Galerkin functional Gh. Let w ∈ H̊1(Ω) be the Riesz representation of Gh,

w ∈ H̊1(Ω) :

∫
Ω

∇w · ∇ϕ = 〈Gh, ϕ〉 for all ϕ ∈ H̊1(Ω).(2.13)

The following estimate will be instrumental in section 2.5 and, compared with [15],
exhibits extra localization and cancellation of the element residual. Since the argu-
ment is similar to that in [15], which in turn is based on linear theory [4, 14], we only
sketch it here for completeness.

Lemma 2.2 (properties of w). The function w is Hölder continuous and satisfies

‖w‖0,∞;Ω ≤ C∗| log hmin|2 max
z∈Nh

ηz,(2.14)

where C∗ > 0 is an interpolation constant solely depending on mesh regularity, hmin :=
minz∈Nh

hz, and ηz is the star-based residual indicator

ηz := h2
z‖(f − f̂z)φz‖0,∞;ω+

z
+ hz ‖Jh φz‖0,∞;γ+

z
,(2.15)

with ω+
z , γ+

z , and f̂z defined in (2.8) and (2.9).
Proof. We first apply the classical Hölder estimate of De Giorgi and Nash to

deduce that w ∈ C0,α(Ω) for α = 1 − d/p > 0 and ‖w‖C0,α(Ω) � ‖Gh‖−1,p;Ω. Conse-

quently, (2.12) yields ‖w‖C0,α(Ω) �
(∑

z∈Nh
ζpz
)
1/p with

ζz := hz ‖(f − f̂z)φz‖0,p;ω+
z

+ h1/p
z ‖Jh φz‖0,p;γ+

z
.

Hence

|w(x0) − w(x1)| � |x0 − x1|α‖w‖C0,α(Ω) � |x0 − x1|α
(∑
z∈Nh

ζpz

)1/p

.(2.16)

To prove a bound for |w(x0)| = ‖w‖0,∞;Ω, we first invoke the uniform cone property

of Ω and find a ball B ⊂ Ω of radius ρ = hβmin (β ≥ 1 to be determined) such that
dist(x0, B) � ρ. We then introduce a regularized delta function δ supported in B and
corresponding regularized Green’s function G ∈ H̊1(Ω) satisfying −∆G = δ. As in
[4, 14], we get

‖D2G‖0,1;Ω � | log hmin|2,
whence, for some x1 ∈ B and with the help of (2.11),

w(x1) = 〈w, δ〉 = 〈∇w, ∇G〉 = 〈Gh, G〉 � | log hmin|2 max
z∈Nh

ηz.(2.17)

Fixing p > d and choosing β = α−1, we deduce that

hαβminζz � hzζz � ηz|ω+
z |1/p for all z ∈ Nh.(2.18)

Since |x0 − x1|α � ρα = hmin, combining (2.16) and (2.17) leads to (2.14).
Remark 2.3. We point out that (2.14) improves upon estimates in [4, 14] for linear

elliptic PDEs (corresponding to the situation when u > χ and uh/χh) in four respects.
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First, there is no structural assumption hmax � hγmin (γ ≥ 1) on the partition Th.
Second, the assumption ‖w‖0,∞;Ω � h2

max is totally circumvented via (2.16) and (2.18).
Third, the residual f need not be globally continuous—these three assumptions may
not be valid in the present context (see section 3.2 below). Fourth, the usual interior

residual hz‖fφz‖0,∞;ωz
is directly replaced by data oscillation hz‖(f − f̂z)φz‖0,∞;ωz

,
which is asymptotically smaller for f ∈ C0(Ω); this is in the spirit of [14, Corollary
7.2].

Remark 2.4. The estimate (2.14) stems from linear theory and the constant C∗

is the usual interpolation constant of residual-type estimators, which is not explicity
known but can be estimated with the help of numerical experiments. It is conceivable
that a sharp constant-free estimator in the maximum norm could be designed, but we
are unaware of such an undertaking. Note also that w is an auxiliary function, never
to be approximated and thus only accessible with additional work.

2.4. Barrier functions. We now introduce the continuous barriers u∗ (lower)
and u∗ (upper), and derive a posteriori comparison estimates via the continuous
maximum principle, thereby imposing no geometric constraints on the mesh. This
is in striking contrast to existing a priori error analyses.

Given a function v, let v+ = max(v, 0) denote its nonnegative part.
Proposition 2.5 (lower barrier). Let u∗ be the function

u∗ := uh + w − ‖w‖0,∞;Ω − ‖g − Ihg‖0,∞;∂Ω − ‖(uh − χ)+‖0,∞;Λh
,(2.19)

where Λh is the contact set

Λh :=
⋃

{ωz : z ∈ N̊h ∪ (Ch ∩ ∂Ω) and sz < 0}(2.20)

with sz defined in (2.5). Then u∗ satisfies

u∗ ≤ u in Ω.

Proof. We split the proof into four steps.
1. Since

(u∗ − u)|∂Ω ≤ (uh − u)|∂Ω − ‖g − Ihg‖0,∞;∂Ω ≤ 0,

the function v := (u∗ − u)+ satisfies

v|∂Ω = 0.(2.21)

We want to show that ‖∇v‖0,2;Ω = 0 and then use (2.21) to conclude that v = 0.
2. In view of (2.19), (2.13), (2.6), and σ ≤ 0, we can write

‖∇v‖2
0,2;Ω =

∫
Ω

∇(u∗ − u) · ∇v =

∫
Ω

∇(uh − u) · ∇v +

∫
Ω

∇w · ∇v
= 〈σ − σh, v〉 ≤ − 〈σh, v〉 .

(2.22)

It thus remains to show 〈σh, v〉 = 0, i.e., 〈σh, v φz〉 = 0 for all z ∈ Nh.
3. We now show that

sz = 0 or z ∈ (Nh ∩ ∂Ω) \ Ch =⇒ 〈σh, v φz〉 = 0.
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First, consider z ∈ Ch with sz = 0. By definition of Ch, we have Jh ≤ 0 on γz and
f ≤ 0 in ωz. Hence,

0 = sz =

∫
ωz

f φz +

∫
γz

Jh φz

implies in fact Jh = 0 on γz and f = 0 in ωz. This yields

〈σh, v φz〉 =

∫
ωz∩Ω0

h

f v φz +

∫
γz∩Ω0

h

Jh v φz

+ (Πhv)(z)

[∫
ωz\Ω0

h

f φz +

∫
γz\Ω0

h

Jhφz

]
= 0.

Next, for z ∈ Nh\Ch with sz = 0, we directly obtain 〈σh, v φz〉 = 0 by (2.4). Finally,
if z ∈ (Nh ∩ ∂Ω) \ Ch is a boundary node not being in full contact, then (2.4) and
(Πhv)(z) = 0 give 〈σh, v φz〉 = 0.

4. It remains to show that there is no node z ∈ N̊h ∪ Ch with 〈σh, v φz〉 < 0 and
sz < 0. Suppose that z were such a node. Then there would exist an x ∈ ωz with
v(x) > 0, whence the definitions of u∗ and Λh give

uh(x) > u(x) + ‖(uh − χ)+‖0,∞;Λh
≥ χ(x) + ‖(uh − χ)+‖0,∞;ωz

≥ uh(x).

This contradiction concludes the proof.
Proposition 2.6 (upper barrier). The function

u∗ := uh + w + ‖w‖0,∞;Ω + ‖g − Ihg‖0,∞;∂Ω + ‖(χ− uh)
+‖0,∞;Ω(2.23)

satisfies

u ≤ u∗ in Ω.

Proof. We proceed as in Proposition 2.5, dealing with v := (u − u∗)+ ∈ H̊1(Ω)
and using σh ≤ 0 from Lemma 2.1. The crucial property 〈σ, (u− u∗)+〉 = 0 follows
easily as in [15, Proposition 4.1].

2.5. Upper and lower bounds. Combining the results of sections 2.3 and 2.4,
we can now establish an upper a posteriori error estimate.

Theorem 2.7 (reliability). Let (u, σ) be the continuous solution satisfying (1.1)
and (2.1), and let (uh, σh) be the discrete solution satisfying (1.2) and (2.3), respec-
tively. Then the following global a posteriori upper bound holds:

max
{‖u− uh‖0,∞;Ω, ‖σ − σh‖−2,∞;Ω

} ≤ Eh,(2.24)

where ‖ · ‖−2,∞;Ω is defined in (2.10), the error estimator Eh is given by

Eh := C∗| log hmin|2 maxz∈Nh
ηz localized residual

+ ‖(χ− uh)
+‖0,∞;Ω + ‖(uh − χ)+‖0,∞;Λh

localized obstacle approx.

+ ‖g − Ihg‖0,∞;∂Ω boundary datum approx.

C∗ is twice the geometric constant C∗ in (2.14), solely depending on mesh regularity,
ηz is the star-based indicator defined in (2.15), and Λh is defined in (2.20).
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Proof. Combining Propositions 2.5 and 2.6, we obtain u∗ ≤ u ≤ u∗, whence

‖u− uh‖0,∞;Ω ≤ 2‖w‖0,∞;Ω + ‖(χ− uh)
+‖0,∞;Ω

+ ‖(uh − χ)+‖0,∞;Λh
+ ‖g − Ihg‖0,∞;∂Ω.

Lemma 2.2 then yields (2.24) for u− uh. Finally, we resort to (2.6), namely,

〈σ − σh, ϕ〉 = 〈Gh, ϕ〉 + 〈u− uh, ∆ϕ〉 for all ϕ ∈ H̊1(Ω) ∩W 2
1 (Ω),

and make use of (2.11) in conjunction with the bound above for ‖u − uh‖0,∞;Ω to
derive the remaining estimate for σ − σh.

The latter observation is important for the establishment of lower bounds and
underlines the significance of the Galerkin functional. The global upper bound of
Theorem 2.7 is of optimal order because the computable quantities therein are (lo-
cally) bounded by the combined error ‖u − uh‖0,∞;Ω + ‖σ − σh‖−2,∞;Ω and data
approximation as follows.

Remark 2.8. The only constant in (2.24), C∗ in Eh, comes from linear theory (see
Remark 2.4). The nonlinear theory of sections 2.4 and 2.5, which accounts for the
highly nonlinear effects of the unilateral constraint, is thus constant-free.

Theorem 2.9 (efficiency). The following local lower bounds hold for any z ∈ Nh

and T ∈ Th:

hz‖Jhφz‖0,∞;γ+
z

� ‖u− uh‖0,∞;ω+
z

+ ‖σ − σh‖−2,∞;ω+
z

+ h2
z‖f − f̂z‖0,∞;ω+

z
,

‖Ihg − g‖0,∞;T∩∂Ω ≤ ‖u− uh‖0,∞;T , ‖(χ− uh)
+‖0,∞;T ≤ ‖u− uh‖0,∞;T ,

and, if ωz ⊂ Λh,

‖(uh − χ)+‖0,∞;ωz
� ‖u− uh‖0,∞;ωz + ‖σ − σh‖−2,∞;ωz + h2

z‖f − f̂z‖0,∞;ωz

+ ‖(χh − χ)+‖0,∞;ωz
+ ‖ [[∂nχh]] ‖0,∞;γz .

The proofs of these estimates are very similar to those of the corresponding lower
bounds in [15, section 6] and are therefore omitted. The efficiency predicted by these
estimates is corroborated computationally in section 3.

3. Numerical experiments I: Pointwise error. In this section we present a
couple of insightful examples computed with the finite element toolbox ALBERT of
Schmidt and Siebert [18, 19]. This code implements a bisection algorithm for refine-
ment and thus guarantees mesh regularity. In each iteration of the adaptive algorithm,
the solver for the resulting complementary problem is the projective nonlinear SOR
analyzed in [6].

The factor C∗| log hmin| of Theorem 2.7 is, in practice, replaced by C∗ = 0.02.
This choice is consistent with (2.24) for meshes with reasonable shape-regularity and
moderate hmin. For the computation of the maximum norm, functions are evaluated
at the element Lagrange nodes corresponding to polynomials of degree 7. The marking
strategy for refinement is based on the maximum norm criterion.

3.1. Madonna’s obstacle: Reliability and efficiency. Let Ω := (−1, 1)2 and
the obstacle χ be the upward cone with tip at x0 = ( 3

8 ,
3
8 ) and slope m = 1.8:

χ(x) = 1 −m|x− x0|.
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Fig. 3.1. Madonna’s obstacle: Graph and grid of the discrete solution for adaptive iteration 14.
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Fig. 3.2. Madonna’s obstacle: Equivalence of estimator Eh and true pointwise error ‖u −
uh‖0,∞;Ω. The optimal decay is indicated by the dotted line with slope −1.

The exact solution is radially symmetric with respect to x0, vanishes at |x− x0| = 1
m

and has a first order contact with the obstacle at |x− x0| = 1
2m ; this corresponds to

height 1
2 (see Figure 3.1). The obstacle is thus singular within the contact set, due

to the upward tip, which leads to local refinement. Several meshes are displayed in
Figure 5.2 below.

Since we know the exact solution u, this example allows for a precise compu-
tational study of the estimator Eh. Figure 3.2 displays both Eh and ‖u − uh‖0,∞;Ω

versus the number of degrees of freedom (DOFs), and clearly demonstrates the equiv-
alence between them. This result is consistent with Theorems 2.7 (reliability) and 2.9
(efficiency) and confirms their optimality.

3.2. Pyramid obstacle: Full localization. We now consider the same pyra-
mid obstacle as in [15, section 7.4], namely

χ(x) := dist(x, ∂Ω) − 1
5 ,

f = −5 and g = 0 on the square domain Ω := {x | |x|1 < 1}; see Figure 3.3. We
show the dramatic effect of full localization of Eh in Figure 3.4, which exhibits coarse
meshes within the full contact set (bottom row) in striking contrast to recent results
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from [15] (top row). In addition, the new estimator is sharper with respect to the
maximum norm than that in [15] and thus yields much fewer DOFs for about the
same accuracy.

Fig. 3.3. Pyramid obstacle: Graph with grid of the discrete solution over the obstacle for
adaptive iteration 10, displaying lack of refinement along the diagonals inside the full-contact set
(effect of full localization).

step = 0, DOFs = 5 step = 6, DOFs = 829 step = 17, DOFs = 14,869

step = 0, DOFs = 5 step = 5, DOFs = 381 step =10, DOFs = 3,073

Fig. 3.4. Pyramid obstacle: Comparison of grids obtained with the partially localized estimator
of [15] (top) and the fully localized estimator (bottom). The meshes on the same column correspond
to about the same value of the estimator, whereas the number of DOFs are much reduced with the
new approach. The benefits of full localization are apparent since the refinement on the diagonals
in contact is avoided.

4. A posteriori barrier sets. The error in the approximation of σ is related to
some “weak distance” of the exact contact set Λ and an appropriate approximation;
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cf. [20, Remark 3.2]. However, the fact that the estimator Eh controls the pointwise
error ‖u− uh‖0,∞;Ω allows, in certain situations, for more accurate a posteriori infor-
mation on Λ and also on the exact free boundary (or interface) F . This topic is the
main concern of this section.

We consider the nondegenerate situation when one knows λ > 0 such that

〈f, ϕ〉 − 〈∇χ, ∇ϕ〉 ≤ −λ
∫

Ω

ϕ(4.1)

for all ϕ ∈ H̊1(Ω) with ϕ ≥ 0. Condition (4.1) guarantees stability of the exact free
boundary F and is due to Caffarelli [2]; see also [9, section 2.10]. Moreover, (4.1)
implies

sup
B(x;r)

(u− χ) ≥ u(x) − χ(x) +
λr2

2d
(4.2)

for any x ∈ {u > χ} and any r > 0 such that B(x; r) ⊂ Ω. Its proof proceeds along
the same lines as that of Lemma 3.1 in [9, Chapter 2].

Let us define K := {dist(·, ∂Ω) ≥ rh} and the barrier sets

Λ∗ := {uh ≤ χ+ Eh}, Λ∗ :=
{

dist
(·, {uh ≥ χh + Eh}

) ≥ rh

}
,(4.3)

where

r2h :=
2d

λ

(
2Eh + ‖(χh − χ)+‖0,∞;{uh≤χh+Eh}

)
.(4.4)

The following result, based on Theorem 2.7 and (4.2), locates the exact contact set Λ
and the free boundary F a posteriori.

Theorem 4.1 (a posteriori control of contact set and interface). The set Λ∗ is
an upper barrier set for the exact contact set Λ = {u = χ}, i.e., Λ ⊂ Λ∗.

Moreover, if the stability condition (4.1) holds, then the set Λ∗ is a lower barrier
set for Λ in the sense that Λ∗ ∩K ⊂ Λ ∩K, whence

F ∩K ⊂ (
Λ∗ ∩K) \ int

(
Λ∗ ∩K

)
.

Remark 4.2 (conditioning). In the light of (4.2), λ dictates the quadratic growth
of u − χ in the noncontact set away from the free boundary F , and so the larger λ,
the more stable F ; that is, λ acts as a measure of conditioning of the free boundary.
Correspondingly, the thicknesses of the strips Ω\K and

(
Λ∗∩K)\int

(
Λ∗∩K

)
depend

inversely on λ.
Remark 4.3 (existence of exact interface). Suppose that condition (4.1) holds.

Then Λ∗ ∩ K �= ∅ implies Λ �= ∅. Moreover, Λ∗ ∩ K �= ∅ and Ω \ Λ∗ �= ∅ imply
F �= ∅.

Proof of Theorem 4.1. We first prove Λ ⊂ Λ∗. We use Theorem 2.7 with x ∈ Λ

uh(x) = u(x) +
[
uh(x) − u(x)

] ≤ χ(x) + Eh
to deduce x ∈ Λ∗. We next prove Λ∗ ∩K ⊂ Λ ∩K provided that (4.1) holds. Let
x ∈ Λ∗ ∩K and suppose that

u(x) > χ(x).(4.5)
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Then, the definition of Λ∗ in (4.3) implies that

uh ≤ χh + Eh in B(x; rh)(4.6)

holds and (4.2) yields

sup
B(x;rh)

(u− χ) >
λr2h
2d

.(4.7)

Consequently, Theorem 2.7, (4.4), and (4.7) give for some point y ∈ B(x; rh):

uh(y) = u(y) +
[
uh(y) − u(y)

]
> χ(y) +

λr2h
2d

− Eh

= χ(y) + 2Eh + ‖(χh − χ)+‖0,∞;{uh≤χh+Eh} − Eh ≥ χh(y) + Eh.
This contradicts (4.6) and so (4.5) is false. Consequently, x ∈ Λ as asserted.

Remark 4.4 (estimate in distance). We stress that Theorem 4.1 relies solely on
(4.2) and not on estimating the measure of {0 < u− χ < ε}, the so-called nondegen-
eracy property of Caffarelli [2]. This leads, in the a priori error analysis for χ = χh,
to estimates in measure for the discrete free boundary relative to F [1, 13]. Bounds
in distance require regularity of F [1, 5, 13]. We locate here F relative to

Fh = ∂{uh > χh + Eh} ∩ Ω.

This dual approach yields estimates in distance without regularity assumptions on
the exact free boundary F .

Remark 4.5 (computation of effective condition number). Statement (4.6) reveals
that (4.1) is needed in the proof of Theorem 4.1 only for positive test functions ϕ with
suppϕ ⊂ {uh ≤ χh + Eh}. Therefore, if χ ∈ H2(Ω), one can adaptively compute the
condition number λ by

λ = − sup
{uh≤χh+Eh}

(f + ∆χ).

Remark 4.6 (Computation of barrier sets). The argument for Theorem 4.1 itself
is “constant-free.” Therefore, the only not explicitly known quantity entering the
definition of the barrier sets Λ∗ and Λ∗ is the constant C∗ mentioned in Remark 2.4.

5. Numerical experiments II: Free boundaries. In this section we present
several numerical experiments illustrating the impact of the a posteriori barrier sets
in section 4 on the numerical study of exact free boundaries.

5.1. Madonna’s obstacle: Reliability and efficiency. Let us reconsider the
example from section 3.1, this time focusing on the approximation of the exact free
boundary F = {x ∈ Ω | |x − x0| = 1

2m}. The condition number λ which enters the
definition of rh in (4.4), and thus the one of Λ∗, is computed according to Remark 4.5.
Figure 5.1 depicts the true distance dist(F ,Fh) between F and Fh = ∂{uh > χh+Eh}
together with rh versus the number of DOFs; the number rh essentially measures
the gap between the two barrier sets. Both quantities decay with optimal order.
Their behavior corroborates the reliability statement of Theorem 4.1 and, furthermore,
reveals nice efficiency properties of rh, which are not explained by the theory of section
4. Note also that, for the final computations the two barrier sets are quite close, i.e.,
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Fig. 5.1. Madonna’s obstacle: Equivalence of dist(F ,Fh) and the distance rh of the barriers.
The optimal decay is indicated by the dotted line with slope −1/2.

rh ≈ 0.02. The grids and interface barriers in Figure 5.2 illustrate different stages
in the information about the exact free boundary: the very coarse grid of the first
column only indicates a possible exact free boundary; the still quite coarse grid of
the second column assures the existence of the free boundary within the a posteriori
annulus Λ∗\Λ∗ (see Remark 4.3) and suggests that it might be a circle; the latter
is further confirmed by the finer grid of the third column and corresponding better
interface resolution.

Fig. 5.2. Madonna’s obstacle: grids and interface barriers obtained by the adaptive algorithm
in steps 1, 6, and 13.

5.2. From balls to bones. We consider the domain Ω = (−2, 2) × (−1, 1)d−1,
boundary value g = 0, several constant loads f , and the smooth obstacle

χ(x) = α− β(x2
1 − 1)2 − γ(|x|2 − x2

1)(5.1)
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with α=10, β=6, γ=20 in 2 dimensions, and α=5, β=6, and γ=30 in 3 dimensions. In
2 dimensions the graph of the obstacle consists of two hills connected by a saddle.

Fig. 5.3. From balls to bones: Interface barriers for tolerance ≈ 0.01 (left) and adaptive grids
for tolerance ≈ 0.15 (right) in 2 dimensions for forcing term f = 0,−5.9,−8.1,−15 (from top to
bottom). The distance of the barriers is ≈ 0.05 for all four forces.

In what follows, “barrier sets for tolerance ≈ τ” (> 0) denote those barrier sets
which are constructed in the first adaptive iteration with Eh ≤ τ . The left col-
umn in Figure 5.3 illustrates the interface barriers for four constant loads f = 0,
−5.9,−8.1,−15 in 2 dimensions for about the same tolerance τ ≈ 0.01; the exterior
curves correspond to ∂Λ∗ whereas the interior curves display ∂Λ∗. For f = 0, the
contact set does not contain the saddle, whereas, for f = −15, it does. This happens
because the solution, being pushed down by f , adheres longer to the obstacle. Dur-
ing the transition between these two extreme cases, the free boundary has a singular
point, namely a “double-cusp” at the origin, for some critical value fcrit. The barrier
sets constructed in section 4 from the discrete solution and the estimator give a reli-
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Fig. 5.4. From balls to bones: Upper barrier ∂Λ∗ ∩ Ω and adaptive grids in 3 dimensions for
tolerance ≈ 0.25 and f = 0,−8.5,−15.1. The distance of the barriers is ≈ 0.1 for all three forces.

able range for fcrit: as long as Λ∗ does not contain the saddle and Λ∗ �= ∅, the true
contact set Λ exists and does not contain the saddle; this happens for 0 ≥ f > −5.9.
For f < −8.1, the lower barrier Λ∗ contains the saddle and exhibits a dumbbell shape,
and so does Λ; hence, fcrit ∈ (−5.9,−8.1). The size of this interval depends on the size
of the estimator Eh and decreases for smaller values of Eh, as documented in Table 5.1.
Although the true interface develops a singularity, it is worth noticing that u ∈W 2

∞(Ω)
and thus no special refinement is needed to approximate either u (or σ). Moreover,
f + ∆χ ≤ −16 in Ω for the 4 loads, which shows that the double-cusp is not due to
lack of stability. The interface estimate of Theorem 4.1 thus applies and provides a
posteriori error control of the entire free boundary including the double-cusp.

A similar situation occurs in 3 dimensions, as depicted in Figure 5.4, for tolerance
≈ 0.25 and values f = 0,−8.5,−15.1. These pictures, as well as Figure 3.1, were
created using the graphics package GRAPE [10]. For tolerance ≈ 0.1, we can predict
that a double-cusp forms for fcrit ∈ (−9.3,−13.9). The interval for other tolerances
is shown in Table 5.1.
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Table 5.1

From balls to bones: A posteriori control of the interval containing fcrit for different tolerances
in 2 dimensions (left) and 3 dimensions (right).

Tolerance Interval for fcrit

τ ≈ 0.5 (−3.3,−17.0)
τ ≈ 0.1 (−5.1,−9.5)
τ ≈ 0.05 (−5.5,−8.8)
τ ≈ 0.01 (−5.9,−8.1)
τ ≈ 0.005 (−6.0,−7.3)
τ ≈ 0.001 (−6.5,−6.9)

Tolerance Interval for fcrit

τ ≈ 0.5 (−8.0,−21.0)
τ ≈ 0.25 (−8.5,−15.1)
τ ≈ 0.1 (−9.3,−13.9)
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1. Introduction. Given a known approximation q ∈ L2(Ω) to some unknown
p ∈ H2(Ω) and a parameter s > 0, the expression

|||q||| := sup
r∈H1

0 (Ω)n\{0}

(∫
Ω

q div r dx

)
/(‖r‖L2(Ω) + s|r|H1(Ω))(1.1)

is discussed as a computable approximation to |p|H1(Ω). (L2, Hm, Hm
0 follow standard

notation for Lebesgue and Sobolev spaces with their respective norms ‖ · ‖L2 , ‖ · ‖Hm

and seminorm |·|Hm .) Indeed, for p ∈ H2
0 (Ω), i.e., if p and ∇p vanish on the boundary

∂Ω of the bounded Lipschitz domain Ω � R
n, there holds

(max{0, |||q||| − √
ns−1‖p− q‖L2(Ω)})2 ≤ |p|2H1(Ω)

≤ |||q|||2 + 2|p|H2(Ω)(2
√
n‖p− q‖L2(Ω) + s|p|H1(Ω)).

(1.2)

The point is that q exclusively belongs to L2(Ω) and is assumed to be close to the
smoother p ∈ H2

0 (Ω). Provided

lim
(s,‖p−q‖L2(Ω))→0

‖p− q‖L2(Ω)/s = 0,

the established estimate guarantees (for fixed p)

lim
(s,‖p−q‖L2(Ω))→0

|||q||| = |p|H1(Ω).

In other words, under some conditions to be discussed below, |||q||| appears to be a
highly accurate approximation to |p|H1(Ω). (Notice carefully that the limit for s→ 0
and q → p is subject to the above side condition ‖p − q‖L2(Ω) = o(s) and so neither
s = 0 nor s = 1 is representative of the results of this paper.)
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The simple proof of (1.2) utilizes the direct consequence

|||p− q||| ≤ √
ns−1‖p− q‖L2(Ω) and |||p||| ≤ |p|H1(Ω)(1.3)

of the definition (1.1) to show the lower bound in (1.2) via

|||q||| ≤ |||p||| + |||p− q||| ≤ |p|H1(Ω) +
√
ns−1‖p− q‖L2(Ω).(1.4)

An integration by parts and the Cauchy and Young inequality lead to

|p|2H1(Ω) =

∫
Ω

∇p · ∇p dx = −
∫

Ω

p∆p dx

=

∫
Ω

(q − p)∆p dx−
∫

Ω

q div∇p dx
≤ √

n‖q − p‖L2(Ω)|p|H2(Ω) + |||q|||(|p|H1(Ω) + s|p|H2(Ω))

≤ |p|H2(Ω)(
√
n‖p− q‖L2(Ω) + s|||q|||) +

1

2
|||q|||2 +

1

2
|p|2H1(Ω)

and so to the upper bound in (1.2) after s|||q||| is estimated with (1.4).
The indicated proof of (1.2) uses integration by parts at some stage and so p = 0

and ∇p = 0 on ∂Ω to avoid any boundary contribution. This paper generalizes (1.2)
for the case p ∈ H2(ω) without any restriction of p on the boundary ∂ω of a Lipschitz
domain ω. One additional argument for that is based on a deeper remark due to
Tartar on some interpolation spaces [Ta].

The task to compute an approximation to |p|H1(ω) arises naturally in the a pos-
teriori error analysis as reported in section 2 below and is (partly) justified in this
paper. There, p = ∂z/∂xj is one component of the gradient of an unknown dual
solution z. A computed approximation zh to z provides a (known) piecewise constant
q = ∂zh/∂xj ∈ L2(ω)\H1(ω). Up to a weight C diam(ω), the interpolation error
by nodal interpolation z − Iz is then bounded by (the sum over all j = 1, . . . , n of)
|p|H1(ω) = |∂z/∂xj |H1(ω) approximated by |||q|||. Two computable estimates ηM ≈ ηE
of |||q||| will be studied in section 4 below. The localized version is discussed in section 5
for a model scenario where strict efficiency and reliability of |||q||| imply that a mesh
much finer than hω = diam(ω) is required to compute q as an accurate approximation
to p on ω.

2. Motivation and main application. Given a Lipschitz domain Ω and a
Sobolev space

H := H1
0 (Ω)m := {v ∈ H1(Ω)m : v = 0 on ∂Ω}

we consider the exact solution u ∈ H of

a(u, v) = b(v) for all v ∈ H(2.1)

and its Galerkin approximation uh ∈ Hh ⊂ H with

a(uh, vh) = b(vh) for all vh ∈ Hh.(2.2)

Here, a : H ×H → R is a bounded bilinear form and b : H → R is a bounded linear
form of the weak form of an elliptic PDE. The error e := u − uh is monitored with
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respect to a particular norm or goal functional. The latter is a linear and bounded
functional J : H → R. To bound or approximate J(e) one considers the dual problem

a(v, z) = J(v) for all v ∈ H(2.3)

with an exact solution z ∈ H. Based on the Galerkin orthogonality

a(e, vh) = 0 for all vh ∈ Hh(2.4)

(which is an immediate consequence of (2.1)–(2.2)), one infers

J(e) = a(e, z) = a(e, z − zh)(2.5)

for any zh ∈ Hh. Typically, the residual a(e, ·) assumes a representation

a(e, v) =

∫
Ω

RΩ · v dx+

∫
∪E
RE · v ds = Res(v)(2.6)

with volume residuals RΩ ∈ L2(Ω)m and edge residuals RE ∈ L2(∪E)m on the skeleton
∪E of all inner-element edges with respect to a regular triangulation T of Ω [AO, BaS].
If a is coercive,

‖z‖H ≤ Cstab‖J‖H∗(2.7)

for some stability constant Cstab > 0. Then, standard a posteriori estimates of the
given linear functional Res (with Res(zh) = 0) prove

a(e, z − zh) = Res(z) ≤ ‖Res ‖H∗ ‖z‖H
≤ ‖J‖H∗ Cstab ‖Res ‖H∗

(2.8)

and so (combining (2.5) and (2.8))

|J(e)| ≤ ‖J‖H∗ Cstab‖Res ‖H∗ .(2.9)

The main disadvantage of this a posteriori estimate is that the local influence of J
and z is not reflected in the global constant ‖J‖H∗ Cstab, i.e., the error estimation is
essentially that of the energy error ‖e‖H ≈ ‖Res ‖H∗ . Any local information needs a
computation of z or of an approximation zh. We refer to [AO, Chapter 8] and [BaS,
section 6.2] for guaranteed lower and upper bounds of J(e) in terms of a parallelogram
identity and global errors ‖αe±α−1(z− zh)‖2 for some parameter α > 0. Becker and
Rannacher [BR] advertised a different and local approach where, given z ∈ H2(Ω),
one selects zh := Iz as the (nodal) interpolant of z and obtains, with some constant
CI > 0,

h2
T ‖z − Iz‖L2(T ) + h

3/2
T ‖z − Iz‖L2(∂T ) ≤ CI |z|H2(T )(2.10)

for any element T ∈ T . Then (2.5)–(2.6) and (2.10) yield

|J(e)| ≤
∑
T∈T

(‖RΩ‖L2(T ) ‖z − Iz‖L2(T ) + ‖RE‖L2(∂T ) ‖z − Iz‖L2(∂T )

)
≤
∑
T∈T

CI

(
h2
T ‖RΩ‖L2(T ) + h

3/2
T ‖RE‖L2(∂T )

)
|z|H2(T ).(2.11)
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The point is that the upper bound involves the unknown H2 seminorm |z|H2(T ) which
is to be replaced by some discrete analogue based on a computed approximation zh.

The main result of this paper, Theorem 3.2, allows for z ∈ H3(ω) an estimate

|z|H2(ω) ≤ c1η + c2‖∇z − q‖1/2
L2(ω),(2.12)

where the constant c1 only depends on the shape of elements (aspect ratio, maxi-
mal angle, etc.) and c2 on ω and ‖z‖H3(ω). The quantity q = ∇zh is a computed
approximation of p = ∇z on which the calculation of η is based. We suppose that
‖∇z − q‖L2(ω) → 0 as the maximal mesh-size h tends to zero. Notice that, here, ω is
fixed and the mesh that covers ω becomes finer and finer. Then, the left-hand side of

(2.12) stays bounded as well as the constants c1 and c2 while ‖∇z − q‖1/2
L2(ω) → 0 (as

a consequence of energy norm convergence of the Galerkin approximation zh to the
exact solution z as h→ 0).

As an application of (2.12) to the goal-oriented a posteriori error estimate (2.11),
suppose that (2.12) holds for ηω := η and any domain ω from a partition P of Ω
subordinated to T (i.e., each domain ω ∈ P is the interior of a union ∪Tω of elements
in Tω ⊂ T such that ∪P = Ω and two distinct ω1 and ω2 in P are disjoint). Then,
(2.11)–(2.12) yield

|J(e)| ≤
∑
ω∈P

CI (c1ηω + h.o.t.)

×
(∑
T∈Tω

(
h2
T ‖RΩ‖L2(T ) + h

3/2
T ‖RE‖L2(∂T )

)2
)1/2

(2.13)

with higher order terms (h.o.t.) which tend to zero as ‖∇z−q‖L2(ω) does with h→ 0.
Notice that, up to h.o.t., the right-hand side of (2.13) is fully computable.

Two examples for the computable quantity η = ηω are suggested in section 4,
namely (with the T -piecewise affine and globally continuous functions S1(T ), with
the jumps [q] across an inner element edge, and with the skeleton ∪Eω of such edges)

η = min
Q∈S1(T )

‖q −Q‖L2(ω) or η = ‖h1/2
E [q]‖L2(∪Eω)

for a piecewise constant q = ∇zh. Some remarks on the efficiency and on the situation
with domains ω that shrink with h→ 0 follow in section 5.

With the above result (2.13), the approach from [BR] is justified for a fixed
partition P and finer and finer triangulations T .

3. Main result. The announced local version of (1.2) aims the estimation of
|p|H1(ω) for a subdomain ω ⊂ Ω. Then, p 
≡ 0 on ∂ω causes technical difficulties.
To overcome them we work with Besov spaces that do not see boundary effects and
employ the following known result.

Theorem 3.1 (Tartar, Brezzi–Marini–Süli). Given a Lipschitz domain ω � R
d

of diameter hω there exists a constant c(ω) > 0 such that

∀t > 0∀v ∈ H1(ω)∃a ∈ L2(ω)∃b ∈ H1
0 (ω), v = a+ b and

t−1/2‖a‖L2(ω) + t1/2|b|H1(ω)

≤ c(ω)‖v‖1/2
L2(ω)

(
|v|2H1(ω) + ‖v‖2

L2(ω)/h
2
ω

)1/4

.

The constant c(ω) depends only on the shape of ω and not on hω.
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Sketch of the proof. The assertion follows from the analysis in [BMS, section 3]
and hence we give solely an introduction to the arguments for a convenient reading.
Two interpolation spaces,

X(∞, ω) = [L2(ω), H1
0 (ω)]1/2,∞ =

◦
B

1/2

2,∞ (ω),

Y (1, ω) = [L2(ω), H1(ω)]1/2,1 = B
1/2
2,1 (ω)

(identified with certain Besov spaces), are compared in a result due to Tartar [Ta],
namely, for all v ∈ H1(ω),

‖v‖X(∞,ω) ≤ c1(ω)‖v‖Y (1,ω).

The two norms are defined by real interpolation of Sobolev spaces with slightly dif-
ferent norms

‖v‖X(∞,ω) = ess sup
0<t<∞

inf{t−1/2‖a‖L2(ω) + t1/2|b|H1(ω) :

v = a+ b, a ∈ L2(ω), b ∈ H1
0 (ω)},

‖v‖Y (1,ω) =

∫ ∞

0

inf{t−3/2‖a‖L2(ω) + t−1/2(|b|2H1(ω) + ‖b‖2
L2(ω)/h

2
ω)1/2 :

v = a+ b, a ∈ L2(ω), b ∈ H1(ω)} dt.

The point is that the function b in ‖v‖X(∞,ω) vanishes on ∂ω (and so only the H1

seminorm arises) while there is no such restriction on b in ‖v‖Y (1,ω) (and hence the
scaled L2 norm arises). Given v ∈ H1(ω) and t > 0, there exist a ∈ L2(ω) and
b ∈ H1

0 (ω) such that v = a+ b and

t−1/2‖a‖L2(ω) + t1/2|b|H1(ω) ≤ 2‖v‖X(∞,ω).

(This follows immediately from the definition of ‖v‖X(∞,ω).) The norm ‖v‖Y (1,ω) is
bounded from above by the interpolation estimate

‖v‖Y (1,ω) ≤ c2(ω)‖v‖1/2
L2(ω)(|v|2H1(ω) + ‖v‖2

L2(ω)/h
2
ω)1/4

in Besov spaces [Tr]. A scaling argument justifies that c2(ω) is hω independent
[BMS]. The combination of the three estimates proves the theorem with c(ω) =
2c1(ω)c2(ω).

The main result of this paper concerns a smooth function p and its approximation
q with a seminorm |||q||| such that

|p|H1(ω) ≤ |||q||| + h.o.t.,

where h.o.t. → 0 as ‖p−q‖L2(ω) +s|||q||| → 0 for fixed p ∈ H2(ω). (Arguing as in (1.4),
the latter follows merely from s→ 0 and ‖p− q‖L2(ω) → 0 for fixed p ∈ H1(ω).)

Theorem 3.2. Suppose p ∈ H2(ω) and q ∈ L2(ω) for a bounded Lipschitz domain
ω in R

n. Let s > 0 and let |||q||| be given by

|||q||| := sup
r∈H1

0 (ω)d\{0}

∫
ω

q div r dx/(‖r‖L2(ω) + s|r|H1(ω)).(3.1)
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Let c(ω) denote the hω-independent constant from Theorem 3.1. Then there holds

(3.2) |p|H1(ω) ≤ |||q||| + c(ω)
√

8
(
|p|2H1(ω)/h

2
ω + |p|2H2(ω)

)1/4

× (√n‖p− q‖L2(ω) + s|||q|||)1/2 .
Proof. Set t := (

√
n‖p − q‖L2(ω) + s|||q|||)/|p|H1(ω) > 0 and choose a1, . . . , an ∈

L2(ω) and b1, . . . , bn ∈ H1
0 (ω) for each j = 1, . . . , n from Theorem 3.1 with aj + bj =

∂p/∂xj and

t−1/2‖aj‖L2(ω) + t1/2|bj |H1(ω)

≤ c(ω)‖∂p/∂xj‖1/2
L2(ω)

(
|∂p/∂xj |2H1(ω) + ‖∂p/∂xj‖2

L2(ω)/h
2
ω

)1/4

.

Write a = (a1, . . . , an) and b as vectors. Cauchy inequalities verify

1/2
(
t−1/2‖a‖L2(ω) + t1/2|b|H1(ω)

)2

≤ t−1‖a‖2
L2(ω) + t|b|2H1(ω)

≤ c(ω)2
d∑
j=1

‖∂p/∂xj‖L2(ω)

(
|∂p/∂xj |2H1(ω) + ‖∂p/∂xj‖2

L2(ω)/h
2
ω

)1/2

≤ c(ω)2|p|H1(ω)(|p|2H2(ω) + |p|2H1(ω)/h
2
ω)1/2.

This and the definition of t yield

‖a‖L2(ω) + t|b|H1(ω) ≤
√

2t c(ω)|p|1/2H1(ω)(|p|2H2(ω) + |p|2H1(ω)/h
2
ω)1/4

≤
√

2 c(ω)
(√
n‖p− q‖L2(ω) + s|||q|||)1/2(3.3)

×
(
|p|2H2(ω) + |p|2H1(ω)/h

2
ω

)1/4

.

On the other hand, Dp = a + b, a Cauchy inequality, and an integration by parts
(notice b = 0 on ∂ω) lead to

|p|2H1(ω) =

∫
ω

a ·Dpdx+

∫
ω

b ·Dpdx(3.4)

≤ ‖a‖L2(ω) |p|H1(ω) −
∫
ω

pdiv b dx.

The definition of |||q||| in (3.1) shows

−
∫
ω

pdiv b dx = −
∫
ω

q div b dx+

∫
ω

(q − p) div b dx

≤ |||q|||(‖b‖L2(ω) + s|b|H1(ω)) + ‖p− q‖L2(ω)

√
n |b|H1(ω).

This, the definition of t, and ‖b‖L2(ω) ≤ ‖a‖L2(ω) + |p|H1(ω) result in

−
∫
ω

pdiv b dx ≤ |||q|||(‖a‖L2(ω) + |p|H1(ω)) + t|b|H1(ω)|p|H1(ω).(3.5)

The combination of (3.4)–(3.5) reads

|p|2H1(ω) ≤ |p|H1(ω)(‖a‖L2(ω) + t|b|H1(ω) + |||q|||) + ‖a‖L2(ω)|||q|||,



2142 CARSTEN CARSTENSEN

and so with α := |p|H1(ω), β := |||q|||, γ := ‖a‖L2(ω) + t|b|H1(ω),

α2 ≤ α(β + γ) + βγ = α(β + 2γ) + βγ − αγ.

This is recast into

α(α+ γ) ≤ α(β + 2γ) + βγ ≤ (α+ γ)(β + 2γ)

and hence shows α ≤ β + 2γ, i.e.,

|p|H1(ω) ≤ |||q||| + 2(‖a‖L2(ω) + t|b|H1(ω)).

This and (3.3) conclude the proof.

4. Computable bounds for |||q|||. This section concerns the estimation of |||q|||
by ηE and ηM for piecewise constant q. Throughout this section and subsequently,
A � B abbreviates an estimate A ≤ CB with a generic constant C (referred to as
the multiplicative constant hidden in A � B) that depends on the dimension n and
on the shape (not the size hω) of the domain ω through c(ω) of Theorem 3.1. The
gradient of a scalar is written ∇ and the functional matrix of a vector valued function
is written D.

Definition 4.1. Let ω be a bounded Lipschitz domain covered by the regular
triangulation Tω. Let Eω denote the set of edges inside ∪Tω ⊃ ω, i.e., for any E ∈
Eω there exist T1, T2 ∈ Tω with E = T1 ∩ T2. Given a triangulation T (resp., a
set E of edges), let Lk(T ) (resp., Lk(E)) denote the T -piecewise (resp., E-piecewise)
polynomials of degree ≤ k and set S1(T ) := L1(T ) ∩ C(∪T ).

Given q ∈ L0(Tω), let [q] ∈ L0(Eω) denote its Eω-piecewise constant jumps across
the skeleton ∪Eω = {x ∈ Ω : x ∈ E ∈ Eω}, i.e., [q]|E := q|T2 − q|T1 , where the normal
νE along E points into T2. Let hE ∈ L0(Eω) denote the Eω-piecewise constant edge
size, hE |E := hE := diam(E) for any E ∈ Eω; recall that hT ∈ L0(Tω) denotes the
Tω-piecewise constant element size, hT |T := hT := diam(T ) for any T ∈ Tω. Then,
let ω̂ := int(∪Tω) and set

ηE := ‖h−1/2
E [q]‖L2(∪Eω) :=

(∑
E∈Eω

h−1
E ‖[q]‖2

L2(E)

)1/2

,(4.1)

ηM := min
Q∈S1(Tω)

‖(q −Q)/hT ‖L2(ω̂).(4.2)

The following theorem essentially asserts equivalence of |||q||| ≈ ηM ≈ ηE whenever
the mesh-size hT ≈ s on ω is equivalent to the parameter s > 0.

Theorem 4.2. Given any q ∈ L0(Tω), define ηM and ηE by (4.1) and (4.2),
respectively. Then there holds

sup
r∈H1

0 (ω)n\{0}

∫
ω

q div r dx/(‖r‖L2(ω) + ‖hTDr‖L2(ω)) � ηM

� ηE � sup
r̂∈H1

0 (ω̂)n\{0}

∫
ω̂

q div r̂ dx/(‖r̂‖L2(ω̂) + ‖hTDr̂‖L2(ω̂)).

Proof. Given any Q ∈ S1(Tω) and r ∈ H1
0 (ω)n (extended by zero outside ω) an
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integration by parts and a Cauchy inequality show

(4.3)

∫
ω

q div r dx =

∫
ω

Qdiv r dx+

∫
ω

(q −Q) div r dx

≤ −
∫
ω

r ·DQdx+
√
n‖hTDr‖L2(ω)‖(q −Q)/hT ‖L2(ω).

Let DT denote the Tω-piecewise action of the gradient operator D, e.g., DT q =
0 almost everywhere in ω. Then, a Cauchy inequality and an elementwise inverse
estimate, i.e., ‖D(Q− q)‖L2(T ) � ‖q −Q‖L2(T )/hT , lead to

−
∫
ω

r ·DQdx ≤ ‖r‖L2(ω)‖DT (q −Q)‖L2(ω)(4.4)

� ‖r‖L2(ω)‖(q −Q)/hT ‖L2(∪Tω).

(Notice that ∪Tω may be larger than ω and, for simplicity, we employ the inverse
estimate on complete elements.) The combination of (4.3)–(4.4) shows

sup
r∈H1

0 (ω)n\{0}

∫
ω

q div r dx/(‖r‖L2(ω) + ‖hTDr‖L2(ω)) � ηM .

The proof of ηM � ηE follows ideas from [C2, CB]. Let (ϕz : z ∈ N ) be a nodal
basis of S1(Tω). Then

∑
z∈N ϕz = 1 almost everywhere on ω̂ := ∪Tω and so, for some

Q =
∑
z∈N qzϕz,

η2
M = ‖(q −Q)/hT ‖2

L2(ω̂) =

∥∥∥∥∥∑
z∈N

(q − qz)ϕz/hT

∥∥∥∥∥
2

L2(ω̂)

=
∑
T∈T

∥∥∥∥∥ ∑
z∈N (T )

(q − qz)ϕz

∥∥∥∥∥
2

L2(T )

/h2
T .

Since N (T ) := {z ∈ N : z ∈ T} has a bounded cardinality,∥∥∥∥∥ ∑
z∈N (T )

(q − qz)ϕz

∥∥∥∥∥
2

L2(T )

�
∑
z∈T

‖(q − qz)ϕz‖2
L2(T ).

With hT ≈ hz for z ∈ N (T ), T ∈ T , we have shown

η2
M � min

(qz : z∈N )

∑
T∈T

∑
z∈N (T )

‖(q − qz)ϕz‖2
L2(T )/h

2
z

= min
(qz : z∈N )

∑
z∈N

‖(q − qz)ϕz‖2
L2(ω̂)/h

2
z(4.5)

=
∑
z∈N

min
qz∈R

‖(q − qz)ϕz‖2
L2(ωz)/h

2
z.

For each node z ∈ N with patch ωz := int(∪{T ∈ Tω : z ∈ T}), q|ωz belongs to a
finite dimensional space L0(Tω|ωz ) := {q|ωz : q ∈ Tω)}. Notice that

|||q|||z,1 := min
qz∈R

‖(q − qz)ϕz‖L2(ωz)/hz,

|||q|||z,2 := ‖h−1/2
E [q]‖L2(∪Ez) with Ez := {E ∈ Eω : z ∈ E},
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define two seminorms on L0(Tω|ωz
) with zero-set P0(ωz) (i.e., |||q|||z,j = 0 implies

q is constant on ωz). Hence ||| · |||z,1 and ||| · |||z,2 are norms on the quotient space
L0(Tω|ωz )/P0(ωz) of a finite dimension ≤ card(Tω) � 1. Since two norms on a finite
dimensional space are equivalent we have

|||q|||z,1 ≈ |||q|||z,2 for all q ∈ L0(Tω).(4.6)

A scaling argument shows that the equivalence constants in (4.6) are hz independent.
Therefore, we deduce in (4.5) that

n2
M �

∑
z∈N

‖h−1/2
E [q]‖2

L2(∪Ez) � η2
E

(since the overlap of (∪Ez : z ∈ N ) is finite). It remains for us to prove the last
asserted inequality with the inverse estimate technique from [V]. For E = T1∩T2 ∈ Eω
let bE denote the edge bubble defined through bE |E ∈ Pd(E), bE |Tj is the product
of all barycentric coordinates λ� on Tj with respect to a vertex of E. We regard
bE ∈ H1

0 (ωE) as a function in H1(Rd) which vanishes outside ωE . Then,

0 ≤ bE ≤ 1, ‖bE‖L2(E) ≈ |E|1/2,∫
E

bE ds ≈ |E|, |bE |H1(ωE) ≈ |ωE |1/2/hE .

Set JE := [q]|E ∈ R and estimate

h−1
E ‖[q]‖2

L2(E) ≈ JE/hE

∫
E

bE [q] ds = JE/hE

∫
E

(bEνE) · [q νE ] ds

for the unit normal vector νE along E. The elementwise application of the Gaussian
divergence theorem to q DbE yields

h−1
E ‖[q]‖2

L2(E) ≈ JE/hE

∫
ωE

(DbE · νE)q dx.

The sum over all E ∈ Eω verifies

η2
E ≈

∫
ω̂

fq dx for f :=
∑
E∈Eω

JE(DbE · νE)/hE .

Since νE is constant, DbE · νE = div(bEνE) and so

η2
E �

∫
ω̂

q div r̂ dx for r̂ :=
∑
E∈Eω

JE(bE/hE) νE ∈ H1
0 (ω̂)n.

It therefore remains to verify

‖r̂‖L2(ω̂) + ‖hTDr̂‖L2(ω̂) � ηE .(4.7)

For each E ∈ Eω we have

‖JEbE νE/hE‖2
L2(ω̂) + h2

E‖JE DbE ⊗ νE/hE‖2
L2(ωE)

≈ |JE |2(‖bE‖2
L2(ωE)/h

2
E + |bE |2H1(ωE))

≈ |JE |2|ωE |/h2
E ≈ hE‖[q]‖2

L2(E).
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Since (ωE : E ∈ Eω) has finite overlap, the sum of the last equivalences over all
E ∈ Eω verifies (4.7). This concludes the proof.

Remark 4.1. With arguments of [C1, C2, V] it can be shown that ηM is equivalent
to

ηA := ‖(q −Aq)/hT ‖L2(ω̂), where Aq =
∑
z∈N

(Aq)(z)ϕz

with the local integral mean (Aq)(z) :=
∫
ωz
q dx/|ωz| of q over the patch ωz of a node

z ∈ N .

5. Discussion. This section is devoted to a discussion about the implications
and limitations of the usage of ‖|q‖| (or some computable approximation thereof)
as an estimator for |p|H1(ω) for a fixed p ∈ H2(Ω) and varying parameters hω (the
diameter of ω ⊂ Ω) or mesh-size hmin,ω and hmax,Ω for the minimal and maximal
mesh-size of the mesh T (used for the computation of q) on ω and Ω, respectively.
Recall that |||q||| defined in (3.1) involves a parameter s > 0 to be chosen properly.

5.1. The concepts of (strict) efficiency and reliability. The estimator |||q|||
is called efficient if (

s−1‖p− q‖L2(ω) � |p|H1(ω)

)
(E)

(since then |||q||| � |p|H1(ω) by the arguments of (1.4)) and called strict efficient if(
s−1‖p− q‖L2(ω) � |p|H1(Ω)

)
(SE)

(since then |||q||| ≤ |p|H1(ω) + o(1)). The notation A � B means that A/B is very
small for small hmax,Ω in the sense that limhmax,Ω→0A/ B = 0. The estimator |||q||| is
called reliable if (|p|H1(ω)/hω + |p|H2(ω)

) (‖p− q‖L2(ω) + s|||q|||) � |||q|||2(R)

(since then |p|H1(ω) � |||q||| by Theorem 3.2) and called strict reliable if(|p|H1(ω)/hω + |p|H2(ω)

) (‖p− q‖L2(ω) + s|||q|||)� |p|2H1(ω)(SR)

(since then |p|H1(ω) ≤ |||q|||+o(1)|p|H1(ω) and so |p|H1(ω) ≤ |||q|||(1+o(1)) for sufficiently
small hmax,Ω).

Notice carefully that (each of) the concepts (E), (SE), (R), (SR) based on (1.4)
and (3.2) are sufficient (but possibly not necessary) conditions for a justification of
|||q||| ≈ |p|H1(ω).

5.2. Implications of (E) and (R). This subsection is devoted to discussing
necessary conditions for (E) and (R). If (E) holds, then

‖p− q‖L2(ω) � s|p|H1(ω).(5.1)

Assuming that q = ∇zh is a first-order finite element approximation of p = ∇z,
the nodal interpolation error |z − Iz|H1(ω) is generically of size ‖hD2z‖L2(ω) and a
lower bound of ‖∇z−∇zh‖L2(ω). For the purpose of this discussion we will therefore
suppose the estimate

hmin,ω|p|H1(ω) � ‖p− q‖L2(ω).(5.2)
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This hypothesis is untrue in very particular situations and we thereby exclude it from
this discussion. Then, (5.1)–(5.2) imply

hmin,ω � s.(5.3)

From (R) and |||q||| � |p|H1(ω) (a consequence of (E)) one deduces(|p|H1(ω)/hω
)
s|||q||| � |||q||| |p|H1(ω)

and so (assuming 0 < |p|H1(ω) |||q|||)
s � hω.(5.4)

In particular, hmin,ω � s � hω. Thus, hω may not be much smaller than the mesh-size
hmin,ω on ω. Moreover, the aforementioned arguments suggest under the hypothesis
(SE), (SR), and (5.2) that

hmin,ω � s� hω.(5.5)

This clearly enforces an approximation of q on a mesh much finer than hω = diam(ω).
The analysis of this paper guarantees |||q||| = |p|H1(ω) + o(1) only if (5.5) holds.

5.3. Theoretical choice of s. The choice of s := ‖p− q‖L2(ω)/|p|H1(ω) imme-
diately implies (E). Furthermore, this and

‖p− q‖L2(ω)

(|p|H1(ω)/hω + |p|H2(ω)

)
� |||q|||2(5.6)

imply (R). Hence, given a fixed p ∈ H2(Ω) and a fixed domain ω, the condition

‖p− q‖L2(ω) → 0 as hmax,Ω → 0

and the above choice of s imply (E) and (R).
Proof. The left-hand side of (5.6) tends to zero and so either there holds (R) for

sufficiently small hmax,Ω or |||q||| → 0 as hmax,Ω → 0. The latter option is excluded for
fixed |p|H1(ω) > 0.

The disadvantage of this choice of s is that it is unknown but required in the
computation of |||q||| in (3.1).

5.4. Asymptotic regime for (hω, hmax,Ω) → 0. To analyze sufficient condi-
tions for (E) and (R) in the limit for (hω, hmax,Ω) → 0 we suppose that

H := hmax,Ω, hω = Hα, s = Hβ , and hmin,ω = Hγ

for some convergence rates α, β, γ > 0. For instance, a uniform mesh leads to γ = 1
and α < 1 indicates that the mesh is finer and finer than the size of the domain ω.
From (5.2)–(5.4) we obtain α ≤ β ≤ γ as necessary conditions for (E) and (R) and
α < β < γ as necessary conditions for (SE) and (SR). Sufficient conditions include
the inverse assumption

|p|H1(ω) + hω |p|H2(ω) � |p|H1(ω)(5.7)

(generically implied for a fixed p ∈ H2(Ω) as ω varies) and the approximation estimate

‖p− q‖L2(ω)/|p|H1(ω) � Hβ .(5.8)
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Then (5.7)–(5.8) and α < β imply (E) and (SR). (The proofs are immediate with the
arguments already mentioned.)

It seems to be an open question to design weaker conditions sufficient for (weaker
versions of) reliability. Theorem 3.2 suggests looking at the constants in (3.2) which,
under the assumptions (5.7)–(5.8), leads to

|p|H1(ω) ≤ |||q||| + cH(β−α)/2 |p|1/2H1(ω)

(|p|H1(ω) + |||q|||)1/2 .(5.9)

In fact, that constant c > 0 depends on n, c(ω), and the constants involved in (5.7)–
(5.8). For instance, if α < β and H is small or if α = β and c < 1 then (5.9) yields
|p|H1(ω) � |||q|||.
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Abstract. We study necessary and sufficient conditions that a nonsingular matrix A can be
B-orthogonally reduced to upper Hessenberg form with small bandwidth. By this we mean the
existence of a decomposition AV = V H, where H is upper Hessenberg with few nonzero bands,
and the columns of V are orthogonal in an inner product generated by a hermitian positive definite
matrix B. The classical example for such a decomposition is the matrix tridiagonalization performed
by the hermitian Lanczos algorithm, also called the orthogonal reduction to tridiagonal form. Does
there exist such a decomposition when A is nonhermitian? In this paper we completely answer
this question. The related (but not equivalent) question of necessary and sufficient conditions on A
for the existence of short-term recurrences for computing B-orthogonal Krylov subspace bases was
completely answered by the fundamental theorem of Faber and Manteuffel [SIAM J. Numer. Anal.,
21 (1984), pp. 352–362]. We give a detailed analysis of B-normality, the central condition in both
the Faber–Manteuffel theorem and our main theorem, and show how the two theorems are related.
Our approach uses only elementary linear algebra tools. We thereby provide new insights into the
principles behind Krylov subspace methods, that are not provided when more sophisticated tools are
employed.
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sition, short-term recurrences, normal matrices, B-normality
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1. Introduction. The decompositional approach to matrix computations, for-
malized by Householder in the 1950s, is counted among the “Top 10” algorithmic
ideas of the 20th century [2]. One of the best known of these decompositions is the
tridiagonalization of a nonsingular hermitian matrix A; see, e.g., [7, Chapter 9.1.2]. In
a nutshell (and without specifying the respective matrix dimensions), for each nonzero
vector v there exists a matrix V with first column v, and a square tridiagonal ma-
trix H, such that AV = V H, and the columns of V are mutually orthogonal in the
Euclidean inner product. This decomposition is computed by the hermitian Lanczos
algorithm, and is sometimes called the orthogonal reduction to tridiagonal form. It is
easy to see, by comparing columns in the matrix equation AV = V H, that the first j
columns of V form a basis of Kj(A, v) ≡ span{v, . . . , Aj−1v}, the jth Krylov subspace
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generated by A and v. The importance of this reduction from a theoretical as well as
from a practical point of view can hardly be underestimated.

When A is nonhermitian, we are naturally led to ask for generalizations of the
orthogonal reduction to tridiagonal form. Specifically, we ask if there exists a hermi-
tian positive definite (HPD) matrix B such that a nonsingular nonhermitian A can
still be B-orthogonally reduced to an upper Hessenberg matrix with small bandwidth.
B-orthogonally here means that the columns of V are orthogonal in the B-inner
product.

This paper studies necessary and sufficient conditions on A that guarantee the
existence of such a B-orthogonal reduction. Our subject seems to be elementary, and
one might suspect that it is covered in many textbooks on numerical linear algebra.
However, while it appears to be common knowledge that the orthogonal reduction to
tridiagonal form does not exist in general, see, e.g., [7, p. 499], we are not aware of
any publication where the potential for generalizations has been thoroughly studied.

On the other hand, the related question of necessary and sufficient conditions
on A for the existence of a short-term recurrence for computing B-orthogonal Krylov
subspace basis vectors was completely solved by the fundamental theorem of Faber
and Manteuffel [4]. Denoting the columns of V by vj , we say that these vectors can
be computed by an (s + 2)-term recurrence, when only the previous s + 1 vectors,
vj−s, . . . , vj , are required to compute vj+1. For example, if the matrix H in the
decomposition AV = V H is tridiagonal, then the vectors vj are computed by a 3-
term recurrence. This is a key recurrence in many algorithms, including the famous
conjugate gradient method. One immediately expects that for a given matrix A the
existence of an (s+2)-term recurrence for computing a B-orthogonal Krylov subspace
basis is equivalent to B-reducibility of A to upper Hessenberg form with bandwidth
s+ 2. However, due to intricate details that are easily overlooked, this expectation is
in general false.

Our paper has the following goals. First, we give a thorough analysis of the
B-reducibility of a nonsingular matrix A to upper Hessenberg form with small band-
width. This is an interesting matrix property that apparently was not studied previ-
ously. Despite common belief, the necessary and sufficient conditions so that A has
this property are not the same as the necessary and sufficient conditions in the Faber–
Manteuffel theorem. This situation deserves to be clarified. Second, the proofs in this
paper use standard tools of linear algebra only. We thereby hope to provide some ad-
ditional insight into the necessity of the conditions in the Faber–Manteuffel theorem,
for which no elementary (linear algebra based) proof is known. Third, we intend to
improve the understanding of B-normality, the central necessary and sufficient con-
dition in our context, by completely characterizing the set of HPD matrices B with
respect to which a given matrix A is B-normal. Finally, our goal is to help in the
general understanding of the foundations of and principles behind Krylov subspace
methods.

The paper is organized as follows. In section 2 we discuss the basic algorithm
for B-orthogonal Hessenberg reduction of a matrix and for computing B-orthogonal
Krylov subspace bases. In section 3 we explain the sufficiency of B-normality in our
context, and study this important concept in detail. In section 4 we discuss the neces-
sity of B-normality. In section 5 we relate our results to the Faber–Manteuffel theorem
and the existence of short-term recurrences for computing B-orthogonal Krylov sub-
space bases. Concluding remarks in section 6 close the paper.

Throughout the paper we assume exact arithmetic. In particular, the word
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“computation” in this paper does not refer to a finite precision computation.

2. B-orthogonal reduction to upper Hessenberg form. Let A be any non-
singular N by N matrix, let v1 be any nonzero N -vector (v1 is assumed to be nonzero
to exclude trivialities), and let

Kj(A, v1) ≡ span {v1, Av1, . . . , Aj−1v1} for j = 1, 2, . . . ,(2.1)

denote the jth Krylov subspace generated by A and v1. It is well known that the
Kj(A, v1) form a nested sequence of subspaces of increasing dimension, and that there
exists an index

d = d(A, v1) ≡ dimKN (A, v1) ,(2.2)

which is often called the grade of v1 with respect to A, for which

K1(A, v1) ⊂ · · · ⊂ Kd−1(A, v1) ⊂ Kd(A, v1) = Kd+1(A, v1) = · · · = KN (A, v1) .

Furthermore, for each v1, d ≤ d(A), where d(A) denotes the degree of the minimal
polynomial of A.

For any N by N HPD matrix B, the function 〈·, ·〉B , defined by 〈x, y〉B ≡ y∗Bx
for N -vectors x and y, is a positive definite inner product. Suppose that, for a given
nonsingular matrix A, vector v1, and HPD matrix B, we want to compute bases of the
Krylov subspaces Kj(A, v1), for j = 1, 2, . . . , d, that are orthogonal with respect to
the inner product 〈·, ·〉B (B-orthogonal). In other words, we want to compute vectors
v1, v2, . . . , vd such that

span {v1, . . . , vj} = Kj(A, v1) , j = 1, . . . , d ,(2.3)

〈vj , vk〉B = 0 , j �= k, j = 1, . . . , d , k = 1, . . . , d .(2.4)

Starting from v1, this familiar and important task is performed by the following
basic algorithm:

vk+1 = Avk −
k∑
j=1

hjkvj , k = 1, . . . , d ,(2.5)

where

hjk =
〈Avk, vj〉B
〈vj , vj〉B .(2.6)

Apparently, this algorithm is nothing but the classical Gram–Schmidt implementation
of Arnoldi’s method; see, e.g., [7, Chapter 9.4.1].

Rewriting (2.5) in the form

Avk = vk+1 +

k∑
j=1

hjkvj , k = 1, . . . , d ,

yields the matrix representation

A [v1, . . . , vk] = [v1, . . . , vk+1]

⎡⎢⎢⎢⎢⎣
h11 · · · h1k

1
. . .

...
. . . hkk

1

⎤⎥⎥⎥⎥⎦ ,(2.7)
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or

AVk = Vk+1Hk+1,k , k = 1, . . . , d− 1 ,(2.8)

where Hk+1,k is a (k + 1) by k unreduced upper Hessenberg matrix. Since vd+1 = 0,
the matrix representation for k = d may be written as

AVd = Vd

⎡⎢⎢⎢⎢⎣
h11 · · · · · · h1d

1
. . .

...
. . .

. . .

1 hdd

⎤⎥⎥⎥⎥⎦ = VdHd ,(2.9)

where Hd is a d by d unreduced upper Hessenberg matrix. The B-orthogonality of
the basis vectors, cf. (2.4), in this notation means that V ∗

d BVd is a diagonal matrix.

For given A, v1, and B, the decomposition (2.9) always exists and conditions
(2.3) and (2.4) define it uniquely up to scaling of the columns of Vd. There are in
fact several different algorithms that realize conditions (2.3) and (2.4). But in exact
arithmetic all these algorithms lead to a decomposition of the form

A(VdD) = (VdD) (D−1HdD) ,

where Vd and Hd are as in (2.9), and D is a nonsingular diagonal matrix. Clearly,
the nonzero pattern of Hd is invariant under diagonal similarity transformation, and
thus, for given A, v1, and B, conditions (2.3) and (2.4) lead to a uniquely defined
nonzero pattern of Hd.

In the following we will be mostly interested in this pattern, particularly in the
upper bandwidth of Hd. We call an upper Hessenberg matrix (s+2)-band Hessenberg,
if it has no nonzero entries above its sth superdiagonal. (Here the 0th superdiagonal
is the diagonal.) This gives rise to the following definition.

Definition 2.1. The nonsingular matrix A is B-reducible to (s + 2)-band Hes-
senberg form if there exists an HPD matrix B such that for each v1, either Hd in the
decomposition (2.9) is (s+ 2)-band Hessenberg, or d ≤ s+ 1.

Note that for each nonsingular matrix A, s ≥ 0 in Definition 2.1, since a 0- or
1-band Hessenberg matrix Hd is singular, which contradicts the nonsingularity of A.
Hence B-reducibility to 2-band Hessenberg (lower bidiagonal) form is the one with
smallest possible bandwidth that may occur. On the other hand, s ≤ d(A)−1 always
holds as well, since no matrix Hd in (2.9) can possibly have more than d(A) − 1
superdiagonals. The condition d ≤ s + 1 in Definition 2.1 covers the trivial cases in
which Hd has at most s+ 2 bands simply because it is of size at most s+ 1 by s+ 1.

The classical example is the one for s = 1, namely the reduction to tridiagonal
form (tridiagonalization) with respect to the Euclidean inner product (i.e., B = I).
For each nonsingular hermitian matrix A and each v1 the decomposition (2.9) exists,
where Hd is a tridiagonal (3-band Hessenberg) matrix and V ∗

d Vd is diagonal; see,
e.g., [7, Chapter 9.1.2].

In the following sections we will study sufficient (section 3) and necessary (sec-
tion 4) conditions that A is B-reducible to (s + 2)-band Hessenberg form. We will
then relate our result to the Faber–Manteuffel theorem, which gives necessary and
sufficient conditions on A so that for each v1, a B-orthogonal Krylov subspace basis
can be computed by an (s+ 2)-term recurrence (section 5).
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3. Sufficiency and characterization of B-normality. Let us consider the
sufficient conditions that a given nonsingular matrix A is B-reducible to (s+ 2)-band
Hessenberg form. A trivial sufficient condition is that the minimal polynomial of A
has degree d(A) ≤ s + 1. Then, for each v1 we obtain d ≤ d(A) ≤ s + 1, and the
second sufficient condition in Definition 2.1 is always satisfied. Thus, if d(A) ≤ s+ 1,
then A is B-reducible to (s+ 2)-band Hessenberg form for each HPD matrix B.

If d(A) > s + 1, we require that there exists an HPD matrix B so that for each
v1 with d > s+ 1 the matrix Hd in (2.9) is (s+ 2)-band Hessenberg, i.e., that

hjk = 0 for j + s+ 1 ≤ k ≤ d .(3.1)

From (2.6) it follows that hjk = 0 if and only if

0 = 〈Avk, vj〉B = 〈vk, A+vj〉B ,

where A+ ≡ B−1A∗B is the B-adjoint of A.

Now suppose that A+ = ps(A) for a polynomial ps of degree s. Then, since each
vj is of the form vj = pj−1(A)v1,

A+vj = ps(A)pj−1(A)v1 ∈ Kj+s(A, v1) .

But then B-orthogonality of vk to span{v1, . . . , vk−1} = Kk−1(A, v1) for all k ≥ 2
shows that (3.1) indeed holds for j + s+ 1 ≤ k ≤ d. We formally state the nontrivial
sufficient condition for B-reducibility of A to (s + 2)-band Hessenberg form in the
following definition.

Definition 3.1. If there exists an HPD matrix B such that

A+ ≡ B−1A∗B = ps(A)

for a polynomial ps of degree s, then the matrix A is called normal of degree s with
respect to B, or short B-normal(s).

Using this definition we can state our main theorem.

Theorem 3.2. The nonsingular matrix A is B-reducible to (s+ 2)-band Hessen-
berg form if and only if either A is B-normal(s), or d(A) ≤ s+ 1.

Above we have shown sufficiency. Before we continue with necessity we will study
the important concept of B-normality in more detail. We start with a collection of
equivalent characterizations.

Theorem 3.3. For any matrix A the following are equivalent:

(1) There exists an HPD matrix B such that A+ = p(A) for a polynomial p.
(2) There exists an HPD matrix B such that AA+ = A+A.
(3) A is normalizable (similar to a normal matrix).
(4) A is diagonalizable.
(5) There exists an HPD matrix B such that A and A+ (for this B) have the

same complete set of B-orthogonal eigenvectors.

Proof. (1) ⇒ (2). Obviously, p(A)A = Ap(A) for each polynomial p.

(2) ⇒ (3). Assume (2) and define the matrix A ≡ B1/2AB−1/2, to which A is
similar. Then AA∗ = A∗A, i.e., A is normal.

(3) ⇔ (4). Suppose that A is normalizable, A = S−1MS withM normal. SinceM
is diagonalizable [8, Condition 11], A is diagonalizable as well. If A is diagonalizable,
A = WDW−1 with D diagonal, it is obviously similar to the normal matrix D.
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(3) ⇒ (1). Again assume that A = S−1MS with M normal. Define B = S∗S,
which is HPD. By [8, Condition 17], M∗ = p(M) for some polynomial p, which implies
A+ = (S∗S)−1A∗(S∗S) = S−1M∗S = S−1p(M)S = p(A).

(3) ⇒ (5). If A = S−1MS with M normal, define B = S∗S, which is HPD.
By [8, Condition 11], there exist a unitary matrix U and a diagonal matrix D such
that M = U∗DU . Hence, A = (US)−1D(US), where the columns of the matrix
(US)−1 form a complete set of eigenvectors of A. It is easy to see that these are
B-orthogonal. In addition, A+ for this B is of the form A+ = (US)−1D∗(US), and
hence has the same set of eigenvectors as A.

(5) ⇒ (2). If there exists an HPD matrix B such that A+ = WΛW−1 and
A = WDW−1, where Λ and D are diagonal, then AA+ = WDΛW−1 = WΛDW−1 =
A+A.

The implications in Theorem 3.3 have appeared in the literature before. In par-
ticular, the equivalence of (1), (2), (4), and (5) was proven in [5, Theorem 5 and
Corollary 6], and later cited and used, for example, in [9, Theorem 4.4] and [1, p. 772].
However, the proofs in [5] are different from ours, as they do not directly make use
of the fact that B-normality is equivalent to normalizability. Because we use this
equivalence our proofs appear to be almost trivial, and the list of conditions in The-
orem 3.3 can be easily extended by exploiting the lists of equivalent conditions of
normality [3, 8], and rephrasing each such condition in terms of normalizability.

We will now characterize the HPD matrices B with respect to which a given
(diagonalizable) matrix is normal. Clearly, the matrix B might not be uniquely
defined. For example, if A itself is HPD, then it is normal with respect to B = I
and B = A.

As shown in Theorem 3.3, A is normal with respect to an HPD matrix B if and
only if it has a complete set of B-orthogonal eigenvectors. Let these eigenvectors wi be
scaled to have B-norm one, i.e. w∗

iBwi = 1, and suppose the wi are the columns of the
matrix W . Then W ∗BW = diag (w∗

iBwi) = I. This is equivalent to B = (WW ∗)−1.
On the other hand, let B = (WW ∗)−1, where the columns of W form any complete
set of eigenvectors of A. Then an easy calculation shows that AA+ = A+A, i.e., that
A is normal with respect to B. We thus have proven the following theorem.

Theorem 3.4. Suppose that the matrix A is diagonalizable. Then the set of all
HPD matrices B with respect to which A is normal is given by

{ (WW ∗)−1 : W is an eigenvector matrix of A } .(3.2)

The characterization (3.2) allows us to derive an expression for the unique B-
adjoint of A in case A is normal with respect to B.

Corollary 3.5. Suppose that the matrix A is diagonalizable, A = WΛW−1,
and that it is normal with respect to an HPD matrix B. Then the B-adjoint of A
corresponding to this B is given by

A+ = W Λ∗W−1 .(3.3)

In particular, the B-adjoint of A is unique for all HPD matrices B with respect to
which A is normal. Moreover, A is B-normal(s) if and only if A is diagonalizable
and ps(Λ) = Λ∗ for a polynomial of degree s.

Proof. Each HPD matrix B with respect to which A is normal is of the form
(3.2). A direct computation shows that A+ = B−1A∗B has the form (3.3), which is
unique since it does not depend on the particular choice of W (similarly to A itself).
For the second part of the corollary, suppose that A is B-normal(s), i.e., A+ = ps(A)
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for a polynomial of degree s. Then A must be diagonalizable, A = WΛW−1, and
(3.3) shows that A+ = WΛ∗W−1 = ps(A) = Wps(Λ)W−1, which yields ps(Λ) = Λ∗.

The proof of the reverse implication is similar.
Remark 3.6. The second part of this corollary was also derived in [9, Theo-

rem B.1]. There the authors used a proof different from ours, and do not comment
on the uniqueness of the B-adjoint in general.

As shown by Corollary 3.5, the B-normal degree of a diagonalizable matrix is de-
termined by the location of its eigenvalues. It is well known that the B-normal(1) ma-
trices are precisely the diagonalizable matrices that have all eigenvalues on a straight
line in the complex plane [4, Lemma 3]. By sufficiency, each such matrix A is B-
reducible to 3-band Hessenberg (tridiagonal) form. The standard examples are the
hermitian and skew-hermitian matrices, that are all I-normal(1). Rare practical ex-
amples of B-normal(1) matrices that are normal with respect to an HPD matrix B �= I
were derived in [6].

When the eigenvalues of the diagonalizable matrix A do not lie on a line, A
must have B-normal degree s > 1. The question then arises about the lowest degree
polynomial ps for which ps(Λ) = Λ∗. A recent result of Khavinson and Świa̧tek [10]
shows that each harmonic polynomial of the form ps(z)−z̄, where ps is a polynomial of
degree s > 1, has at most 3s−2 complex zeros. Consequently, the class of B-normal(s)
matrices with s > 1 contains diagonalizable matrices that may have at most 3s − 2
distinct eigenvalues. This shows that the maximal size of the B-normal(s) matrices
for small s > 1 is severely limited. We illustrate the results of this section by an
example for s = 3.

Example 3.7. Consider the third degree harmonic polynomial

−1

8
z(z2 − 9) − z̄ , which has the 7 roots 0, ±1,

±5 ±√−7

2
.

We use the nonzero roots to define the diagonal nonsingular 6 by 6 matrix

A = diag

(
±1,

1

2
(±5 ±√−7)

)
.

By the second part of Corollary 3.5, this matrix is B-normal(3), and by (3.3) its
unique B-adjoint is given by A+ = A∗ = A. Theorem 3.4 shows that A is normal
with respect to all diagonal HPD matrices B. If we use any such matrix B and any v1
with d = 6 in the basic algorithm (2.5)–(2.6), then sufficiency in Theorem 3.2 shows
that the resulting matrix H6 in (2.9) is 5-band Hessenberg. In fact, A is B-reducible
to 5-band Hessenberg form for any diagonal HPD matrix B.

4. Necessary conditions. In this section we will show that the conditions in
Theorem 3.2 are necessary. To avoid confusion, we will in this section denote the grade
of the vector v1 with respect to A by d(A, v1), cf. (2.2). Furthermore, we assume that
the given nonsingular N by N matrix A is nonderogatory, i.e., that d(A) = N . This
assumption is made for notational convenience, and without loss of generality. In
case A is derogatory, we may in our derivation restrict to starting vectors v1 with
d(A, v1) = d(A) and all results will then hold for N replaced by d(A). We start our
discussion with proving an essential technical lemma.

Lemma 4.1. For a nonsingular and nonderogatory N by N matrix A there exists
an HPD matrix B such that

A+v1 ∈ Ks+1(A, v1) for all v1 with d(A, v1) = N ,(4.1)
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if and only if either A is B-normal(s) for 0 ≤ s ≤ N − 2, or s = N − 1.

Proof. We first prove sufficiency. Suppose that s = N − 1. Then for all v1 with
d(A, v1) = N , Ks+1(A, v1) = KN (A, v1) is equal to the whole (real or complex) N -
dimensional space and thus A+v1 ∈ KN (A, v1) holds for all HPD matrices B. Now
consider that 0 ≤ s ≤ N − 2 and that A is B-normal(s). This means there exists
an HPD matrix B for which A+ = ps(A) for a polynomial ps of degree s. Hence for
each v1, A

+v1 = ps(A)v1 ∈ Ks+1(A, v1).

We next prove necessity, the harder part. Suppose that there exists an HPD
matrix B such that (4.1) holds for some s with 0 ≤ s ≤ N − 2 (in case s = N − 1 we
are done). We need to show that A is B-normal(s).

Let A = [X1, . . . , Xl] diag(J1, . . . , Jl) [X1, . . . , Xl]
−1 denote the Jordan canonical

form of A, with the distinct eigenvalues λ1, . . . , λl. Since A is nonderogatory, only one
Jordan block corresponds to each eigenvalue and, hence, each Xm, m = 1, . . . , l, is a
Jordan chain. Then it is easy to show that the vectors v that satisfy d(A, v) = N are
precisely the vectors that have a nonzero component corresponding to the last vector
of each Jordan chain Xm. As a consequence, when we choose any v with d(A, v) = N ,
and any nonzero scalar γ with γ �= −λm for m = 1, . . . , l, then the vector w ≡ γv+Av
will satisfy d(A, v) = d(A,Av) = d(A,w) = N . In particular, we can find N linearly
independent vectors v, such that v, Av, and w ≡ γv+Av for each nonzero γ �= −λm,
m = 1, . . . , l, satisfy d(A, v) = d(A,Av) = d(A,w) = N .

Suppose that one such vector v is chosen, and let w ≡ γv + Av for some fixed
nonzero γ �= −λm, m = 1, . . . , l. Then d(A,w) = N , so that by (4.1), A+w ∈
Ks+1(A,w). Hence there exist coefficients α(w)

j , j = 0, . . . , s, such that

A+w =

s∑
j=0

α(w)

j Ajw

= γ

s∑
j=0

α(w)

j Ajv +

s∑
j=0

α(w)

j Aj+1v

= γα(w)

0 v +

s∑
j=1

(γα(w)

j + α(w)

j−1)A
jv + α(w)

s As+1v .(4.2)

Similarly, there exist coefficients α(v)

j and α(Av)

j , j = 0, . . . , s, such that

A+w = γA+v + A+(Av)

= γ

s∑
j=0

α(v)

j Ajv +

s∑
j=0

α(Av)

j Aj+1v

= γα(v)

0 v +

s∑
j=1

(γα(v)

j + α(Av)

j−1)Ajv + α(Av)

s As+1v .(4.3)

Now note that since d(A, v) = N and 0 ≤ s ≤ N − 2, the vectors v, . . . , As+1v are
linearly independent. Thus, the equality of (4.2) and (4.3) implies that

α(v)

0 = α(w)

0 ,(4.4)

γα(v)

j + α(Av)

j−1 = γα(w)

j + α(w)

j−1 , j = 1, . . . , s ,(4.5)

α(Av)

s = α(w)

s .(4.6)
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Let us define ηj ≡ α(Av)

j −α(v)

j for j = 0, . . . , s. By construction, the ηj do not depend
on γ. Moreover, we claim that ηj = 0 for j = 0, . . . , s.

If s = 0, then the set of conditions (4.5) is empty and our claim follows directly
from comparing (4.4) and (4.6). To show our claim for 1 ≤ s ≤ N − 2, we rewrite
(4.5) in the equivalent form

α(w)

j = α(v)

j +
1

γ
(α(Av)

j−1 − α(w)

j−1) , j = 1, . . . , s .(4.7)

Then (4.6) and (4.7) for j = s yield

ηs =
1

γ
(α(Av)

s−1 − α(w)

s−1) .

In this formula we can replace α(w)

s−1 by the right-hand side of (4.7) for j = s− 1,

ηs =
1

γ

(
α(Av)

s−1 − α(v)

s−1 −
1

γ
(α(Av)

s−2 − α(w)

s−2)

)
=

1

γ

(
ηs−1 − 1

γ
(α(Av)

s−2 − α(w)

s−2)

)
.

In the same way we now exploit (4.7) for j = s − 2, . . . , 1, and finally use (4.4) to
replace α(w)

0 by α(v)

0 . The result of this process is equivalent to the relation

s∑
j=0

(−1)s−j ηj γj = 0 .(4.8)

The coefficients ηj do not depend on γ, so that the left-hand side of (4.8) is a poly-
nomial in γ of degree at most s. Since γ is allowed to vary almost freely without
violating the assumption d(A, v) = d(A,Av) = d(A,w) = N (see above), but on the
other hand (4.8) must always hold, we conclude that ηj = 0 for j = 0, . . . , s.

To summarize, since d(A, v) = d(A,Av) = N , (4.1) implies that A+v = ps(A)v
and A+Av = qs(A)Av for two polynomials ps and qs of degree at most s, respectively.
But since we have just shown that ps = qs, we receive

A+Av = qs(A)Av = ps(A)Av = Aps(A)v = AA+v .

Since we can find N linearly independent vectors v for which this is true, we conclude
that A+A = AA+, and indeed A must be B-normal(s).

Remark 4.2. This lemma represents a strengthened version of a result of Faber
and Manteuffel [4, Lemma 2]. In their result, (4.1) is replaced by “A+v1 ∈ Ks+1(A, v1)
for all v1,” and their proof of necessity uses an eigenvector v1 of A, i.e., a vector v1 with
d(A, v1) = 1. Our proof is inspired by an idea of Voevodin and Tyrtyshnikov [12].

Necessity in Theorem 3.2. We now come to the main goal of this section,
namely the proof of necessity in Theorem 3.2. Our supposedly necessary condition
reads either A is B-normal(s), or N − 1 ≤ s. We will prove this by assuming the
opposite and then showing that A is not B-reducible to (s+2)-band Hessenberg form.

The opposite of our necessary condition is that A is not B-normal(s) and 0 ≤
s ≤ N − 2. But this is precisely the opposite of the nontrivial necessary condition in
Lemma 4.1. Therefore, Lemma 4.1 implies that for each HPD matrix B there exists
at least one vector v1 with d(A, v1) = N such that A+v1 /∈ Ks+1(A, v1). On the other
hand, since d(A, v1) = N , A+v1 ∈ KN (A, v1). Hence A+v1 is a linear combination of
the basis vectors v1, . . . , vN computed by (2.5),

A+v1 =

N∑
j=1

βjvj ,
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where (at least) one of the coefficients βj , s+ 2 ≤ j ≤ N , is nonzero. Let this be the
coefficient with index k. Then, according to (2.6) and the B-orthogonality conditions
(2.4),

h1k =
〈Avk, v1〉B
〈v1, v1〉B =

〈vk, A+v1〉B
〈v1, v1〉B =

βk 〈vk, vk〉B
〈v1, v1〉B �= 0 ,(4.9)

for an index k with s+2 ≤ k ≤ N . Consequently, A is not B-reducible to (s+2)-band
Hessenberg form, which completes the proof of necessity.

5. The existence of (s+ 2)-term recurrences. We next relate Theorem 3.2
to the existence of an (s + 2)-term recurrence for computing B-orthogonal Krylov
subspace bases.

Suppose that, for a given nonsingular matrix A, vector v1, and HPD matrix B,
only the previous s+ 1 vectors vk, vk−1, . . . , vk−s are required to compute vk+1, k =
1, . . . , d− 1, in (2.5). Then we say that the B-orthogonal basis v1, . . . , vd of Kd(A, v1)
is computed by an (s+ 2)-term recurrence.

Note that the basic algorithm (2.5)–(2.6) has computed all basis vectors v1, . . . , vd
in step k = d − 1. Therefore, in terms of the matrix representation (2.8), the B-
orthogonal basis vectors are computed by an (s + 2)-term recurrence, if Hd,d−1 is
(s+2)-band Hessenberg. We stress that, unlike for the B-reducibility to (s+2)-band
Hessenberg form, we here use Hd,d−1 and not Hd. It is a subtle and easily overlooked
fact that the last column of Hd plays no role for the computation of the basis vectors
v1, . . . , vd. This column indeed may be full, and still the basis vectors are computed
by an (s+ 2)-term recurrence.

Definition 5.1. The nonsingular matrix A admits an (s+2)-term recurrence, if
there exists an HPD matrix B so that for each v1, either Hd,d−1 in the decomposition
(2.8) is (s+ 2)-band Hessenberg, or d ≤ s+ 2.

The difference in the trivial conditions between this definition and Definition 2.1
(d ≤ s+2 versus d ≤ s+1) precisely corresponds to the different roles of the matrices
Hd,d−1 and Hd. We immediately realize that if a nonsingular matrix A is B-reducible
to (s + 2)-band Hessenberg form, then it also admits an (s + 2)-term recurrence.
The reverse implication, however, does not hold. In other words, B-reducibility to
(s + 2)-band Hessenberg form and admissibility of an (s + 2)-term recurrence are in
general not equivalent. As an example, consider any nonsingular 3 by 3 matrix A with
d(A) = 3. Then each v1 with d = 3 leads to an H3 of the form

H3 =

⎡⎣ h11 h12 h13

1 h22 h23

0 1 h33

⎤⎦ .
Trivially A admits a 3-term recurrence as each H3,2 has only 3 nonzero bands (here
s = 1). But B-reducibility to 3-band Hessenberg form requires that h13 = 0 for all v1.
Since d(A) = 3 > s+ 1, this holds by Theorem 3.2 only when A is B-normal(1).

Necessary and sufficient conditions for admissibility of an (s+2)-term recurrence
were proven in the fundamental paper of Faber and Manteuffel [4].

Theorem 5.2 (Faber–Manteuffel theorem). The nonsingular matrix A admits
an (s+ 2)-term recurrence if and only if either A is B-normal(s), or d(A) ≤ s+ 2.

The proof of this result is based on a highly nontrivial and clever construction,
which, unfortunately, provides little insight into the necessity of B-normality. A
similar result was announced by Voevodin [11], but its proof by Voevodin and Tyr-
tyshnikov [12] is difficult to understand and appears to be unknown even to many
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specialists in the field. Comparing Theorem 3.2 with the Faber–Manteuffel theorem
yields the following important observation.

Corollary 5.3. The nonsingular matrix A with d(A) > s+ 2 is B-reducible to
(s+ 2)-band Hessenberg form if and only if it admits an (s+ 2)-term recurrence.

In other words, in all cases of practical interest; i.e., when d(A) is “large” and s
is “small,” the two matrix properties studied in this paper in fact are equivalent.

6. Concluding remarks. The reader may now ask if we successfully tried to
prove necessity in the Faber–Manteuffel theorem using similar elementary (linear al-
gebra) means as for our Theorem 3.2. The answer is yes, we tried, but no, we were
unsuccessful. To explain the main difficulty, at least in our opinion, consider our
proof of necessity in section 4. We assume the opposite of the necessary conditions
and construct a certain nonzero entry h1k, s+ 2 ≤ k ≤ N , in the first row of HN , cf.
(4.9). Hence HN cannot be (s + 2)-band Hessenberg, which leads to a contradiction
showing that the conditions are indeed necessary. Except for the range s+2 ≤ k ≤ N ,
we have no information about the location of the nonzero entry h1k. If we could show
that indeed h1k �= 0 for a k in the range s+ 2 ≤ k ≤ N − 1, then HN,N−1 cannot be
(s + 2)-band Hessenberg either. This could subsequently be used to show necessity
in the Faber–Manteuffel theorem. However, it is apparently quite difficult to “fix” k
inside the range s+ 2 ≤ k ≤ N − 1.
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A PRECONDITIONER FOR THE FETI-DP FORMULATION
WITH MORTAR METHODS IN TWO DIMENSIONS∗

HYEA HYUN KIM† AND CHANG-OCK LEE†

Abstract. In this paper, we consider a dual-primal FETI (FETI-DP) method for elliptic
problems on nonmatching grids. The FETI-DP method is a domain decomposition method that
uses Lagrange multipliers to match solutions continuously across subdomain boundaries in the sense
of dual-primal variables. We use the mortar matching condition as the continuity constraints for the
FETI-DP formulation. We construct a preconditioner for the FETI-DP operator and show that the
condition number of the preconditioned FETI-DP operator is bounded by

C max
i=1,... ,N

{(1 + log (Hi/hi))
2},

where Hi and hi are sizes of domain and mesh for each subdomain, respectively, and C is a constant
independent of Hi’s and hi’s. We allow jumps of coefficients of elliptic problems across subdomain
boundaries. Numerical results are included.

Key words. FETI-DP, nonmatching grids, mortar methods, preconditioner
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1. Introduction. This paper is concerned with preconditioners for an iterative
method for the parallel solution of symmetric, positive definite systems of linear equa-
tions that arise from elliptic boundary value problems discretized by finite elements
on nonconforming meshes. Nonconforming discretizations are important for multi-
physics simulations, contact-impact problems, the generation of meshes and parti-
tions aligned with jumps in diffusion coefficients, hp-adaptive methods, and special
discretizations in the neighborhood of singularities (corners or joints).

Of the many methods for nonmatching meshes, including [3] and [13], we con-
sider the mortar method [1, 2, 17, 18]. In mortar methods, orthogonality relations
between the jumps in the traces across subdomain interfaces are satisfied using a
discrete Lagrange multiplier space. The sparse linear systems that arise in mortar
methods are similar to the systems solved by an iterative substructuring method with
Lagrange multipliers developed for conforming discretizations (see [6, 8, 12, 14] for an
introduction).

Recently the dual-primal FETI (FETI-DP) method introduced by Farhat, Lesoinne,
and Pierson [7] has been applied to mortar finite elements methods [4, 5, 15]. The
primary contribution of our work is using the framework of parallel subspace cor-
rection methods [19] to better formulate the FETI-DP preconditioner for the mortar
matching condition.

The FETI-DP method enforces the continuity of the solution at cross points di-
rectly in the formulation of the dual problem: the degrees of freedom (d.o.f.) at a cross
point remain common to all subdomains sharing the cross point and the continuity of
the remaining d.o.f. on the interfaces are enforced by Lagrange multipliers [10]. The
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d.o.f. are then eliminated and the resulting dual problem for the Lagrange multipliers
is solved by preconditioned conjugate gradients (CGs).

For FETI-DP methods on nonmatching grids, Dryja and Widlund [4] proposed a
preconditioner, the so-called Dirichlet preconditioner, which gives a condition num-
ber bound C(1 + log(H/h))2 with the Neumann–Dirichlet ordering of substructures,
where H and h denote the maximum diameter of subdomains and minimum size of
meshes of all subdomains, respectively. In general cases, that is, without consider-
ing ordered substructures, they obtained C(1 + log(H/h))4 for the condition number
bound. Moreover, in [5], they proposed a different preconditioner, which is similar to
the one in [9], and proved the condition number bound C(1 + log(H/h))2. However,
the constant C in the condition number bound depends on the ratio of meshes be-
tween neighboring subdomains. This restriction is impractical when the coefficients of
elliptic problems are highly discontinuous between subdomains (see Wohlmuth [18]).

In this paper, we formulate an FETI-DP operator in a different way from that
of Dryja and Widlund [4, 5] and propose a Neumann–Dirichlet preconditioner which
gives the condition number bound C(1+log(H/h))2 with the constant C not depend-
ing on the ratio of meshes between neighboring subdomains. The proposed precondi-
tioner is easy to implement and the operator from the nodal values on the interfaces
of subdomains to the Lagrange multiplier space requires only the nodal values on the
slave side. Hence, the cost for multiplying the operator to a vector is reduced by half
compared with preconditioners developed elsewhere (see, e.g., [4, 5]). For the ellip-
tic problems with heterogeneous coefficients, with careful choices of slave and master
sides according to the magnitude of coefficients, the preconditioner gives the same
condition number bound, which does not depend on the coefficients.

In the mortar matching condition, we consider a standard Lagrange multiplier
space introduced by [2]. In the condition number analysis, we use the continuity of

the mortar projection operator in an H
1/2
00 -norm. Hence, our result can be extended

to Lagrange multiplier spaces with this property. A few such Lagrange multiplier
spaces are developed by Wohlmuth [17, 18].

This paper is organized as follows. In section 2, we introduce finite element
spaces and norms and, in section 3, we derive the FETI-DP operator using the mor-
tar matching condition as continuity constraints and propose a preconditioner. In
section 4, we analyze the condition number bound of the preconditioned FETI-DP
operator. Numerical results are provided in section 5. In the numerical tests, we
compare the proposed preconditioner with that of Dryja and Widlund [5] for solving
elliptic problems with highly discontinuous coefficients on noncomparable meshes.

2. Finite element spaces and norms.

2.1. A model problem and Sobolev spaces. Let Ω be a bounded polygonal
domain in R

2 and L2(Ω) be the space of square integrable functions defined in Ω
equipped with the norm ‖ · ‖0,Ω:

‖v‖2
0,Ω :=

∫
Ω

v2 dx.

The space H1(Ω) is the set of functions, which are square integrable up to the first
weak derivatives, and the norm is given by

‖v‖1,Ω :=

(∫
Ω

∇v · ∇v dx+
1

d2
Ω

∫
Ω

v2 dx

)1/2

,
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where dΩ denotes the diameter of Ω.
We consider an FETI-DP method on nonmatching grids for the following elliptic

problem: For f ∈ L2(Ω), find u ∈ H1(Ω) such that

−∇ · (A(x)∇u(x)) + β(x)u(x) = f(x) in Ω,

u(x) = 0 on ΓD,(2.1)

n · (A(x)∇u(x)) = 0 on ΓN .

Here, A(x) = (αij(x)) for i, j = 1, 2 and n is the outward unit vector normal to ΓN .
We assume that αij(x), β(x) ∈ L∞ (Ω), A(x) is uniformly elliptic, β(x) ≥ 0 for all
x ∈ Ω, and |ΓD| �= 0, where |ΓD| denotes the measure of ΓD.

Let Ω be partitioned into nonoverlapping polygonal subdomains {Ωi}Ni=1. We
assume that the partition is geometrically conforming, which means that the subdo-
mains intersect with neighboring subdomains on the whole of an edge or at a vertex.
Ωhi denotes a quasi-uniform triangulation of the subdomain Ωi. The quasi uniformity
means that there exist constants γ and σ such that γhi ≤ dτ ≤ σρτ for all τ ∈ Ωhi ,
where ρτ is the diameter of the circle inscribed in τ , dτ is the diameter of τ , and
hi = maxτ∈Ωh

i
dτ . We note that the meshes need not match across the subdomain

interfaces.
For each subdomain Ωi, we introduce a finite element space

Xi := {v ∈ H1
D(Ωi) : v|τ ∈ P1(τ), τ ∈ Ωhi },

where H1
D(Ωi) := {v ∈ H1(Ωi) : v = 0 on ΓD∩∂Ωi} and P1(τ) is a set of polynomials

of degree ≤ 1 in τ . For (ui, vi) ∈ Xi ×Xi, define a bilinear form

ai(ui, vi) :=

∫
Ωi

A(x)∇ui · ∇vi dx+

∫
Ωi

β(x)uividx.

To get the FETI-DP formulation, we need a finite element space in Ω as follows:

X :=

{
v ∈

N∏
i=1

Xi : v is continuous at subdomain vertices

}
.

By restricting the space Xi on the boundary of the subdomain Ωi, we define

Wi := Xi|∂Ωi ∀i = 1, . . . , N.

Then we let

W :=

{
w ∈

N∏
i=1

Wi : w is continuous at subdomain vertices

}
.(2.2)

In this paper, we will use the same notation for finite element functions and the
corresponding vectors of nodal values. For example, wi is used to denote a finite
element function or the vector of nodal values of that function. The same applies to
the notation for function spaces such as Wi, X, W , etc.

We define Si as the Schur complement matrix obtained from the bilinear form
ai(·, ·) over the finite elements Xi (see page 50 in [11]). Using this operator, a semi-
norm is defined for wi ∈Wi:

|wi|2Si := 〈Siwi, wi〉,
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where 〈·, ·〉 is the l2-inner product of vectors. For w ∈ W , since w is continuous at
subdomain vertices, by summing up these seminorms, we define a norm

‖w‖2
W :=

N∑
i=1

|wi|2Si , wi = w|∂Ωi .(2.3)

Moreover, we define a subspace of W

Wr := {w ∈W : w vanishes at subdomain vertices} .(2.4)

Now, we introduce Sobolev spaces defined on the boundaries of subdomains. The
space H1/2(∂Ωi) is the trace space of H1(Ωi) equipped with the norm

‖wi‖2
1/2,∂Ωi

:= |wi|21/2,∂Ωi
+

1

dΩi

‖wi‖2
0,∂Ωi

,

where

|wi|21/2,∂Ωi
:=

∫
∂Ωi

∫
∂Ωi

|wi(x) − wi(y)|2
|x− y|2 ds(x) ds(y).

For any Γij ∈ ∂Ωi, H
1/2
00 (Γij) is the set of functions in L2(Γij) such that the zero

extension of the function into ∂Ωi is contained in H1/2(∂Ωi). For v ∈ H
1/2
00 (Γij), let

|v|2
H

1/2
00 (Γij)

:= |v|21/2,Γij
+

∫
Γij

v2(x)

dist(x, ∂Γij)
ds,

and the norm is given by

‖v‖
H

1/2
00 (Γij)

:=

(
|v|2

H
1/2
00 (Γij)

+
1

dΩi

‖v‖2
0,Γij

)1/2

.

From section 4.1 in [19], for v ∈ H
1/2
00 (Γij) we have the following relation:

C1‖ṽ‖1/2,∂Ωi
≤ ‖v‖

H
1/2
00 (Γij)

≤ C2‖ṽ‖1/2,∂Ωi
,(2.5)

where the constants C1 and C2 are independent of dΩi and ṽ denotes the zero extension
of v into ∂Ωi.

2.2. Mortar matching conditions. We note that the space X is not contained
in H1(Ω). To approximate the solution of the problem (2.1) in X, we use the mortar
matching condition. More precisely, we construct the Lagrange multiplier space as
follows.

First, let Γij := ∂Ωi ∩∂Ωj . For Γij such that |Γij | �= 0, we distinguish Ωhi |Γij and
Ωhj |Γij , as in Figure 1. We assume that both sides have more than three nodal points
including end points. Then we choose one as a slave side and the other as a master
side and define

mi := {j : |Γij | �= 0, Ωhj |Γij is a master side of Γij},
si := {j : |Γij | �= 0, Ωhj |Γij

is a slave side of Γij}.
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Γij

Ω i

h
Ω j

h

Ω i
h

Γij
Ω

h
j Γij

Fig. 1. Master and slave sides of Γij .

Γ

Γ
ij

ij

Wij

Mij

Fig. 2. Basis functions for Wij and Mij .

For j ∈ mi, Ωhi |Γij
is the slave side of Γij and from the finite elements on the slave

side, we get

Wij := {v|Γij : v ∈ Xi} ∀ j ∈ mi.

Next, let

{φij0 , φij1 , . . . , φijNij
, φijNij+1}

be nodal basis functions for Wij . Moreover, we assume that the basis functions are
sequentially ordered according to the location of nodes on Γij . Let (see Figure 2)

Mij := span{φij0 + φij1 , φ
ij
2 , . . . , φ

ij
Nij−1, φ

ij
Nij

+ φijNij+1}.

Then we take the Lagrange multiplier space

M :=

N∏
i=1

∏
j∈mi

Mij .

Bernardi, Maday, and Patera [2] first introduced this type of Lagrange multiplier
space. They imposed the following mortar matching condition on X, i.e., v ∈ X
satisfies ∫

Γij

(vi − vj)λij ds = 0 ∀ λij ∈Mij , i = 1, . . . , N, j ∈ mi.(2.6)
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In our FETI-DP formulation, we use (2.6) as continuity constraints and define a
bilinear form b(·, ·) : W ×M → R as

b(w, µ) :=

N∑
i=1

∑
j∈mi

∫
Γij

(wi − wj)µij ds ∀(w, µ) ∈W ×M.(2.7)

For |∂Ωi ∩ ∂Ωj | �= 0, we denote ∂Ωi ∩ ∂Ωj as Γij if Ωhi |Γij is a slave side and as
Γji otherwise. We assume that Ωhi |Γij is the slave side and Ωhj |Γij is the master side

of Γij . Denote the basis for Mij by {ξijk }Nij

k=1 and let {φjik }Nji+1
k=0 be the basis functions

for Wj |Γij . Define matrices Biji and Bijj with entries(
Biji

)
lk

=

∫
Γij

ξijl φ
ij
k ds, l = 1, . . . , Nij , k = 0, . . . , Nij + 1,(

Bijj

)
lk

= −
∫

Γij

ξijl φ
ji
k ds, l = 1, . . . , Nij , k = 0, . . . , Nji + 1.

Then we rewrite (2.6) as

Biji w
ij
i +Bijj w

ij
j = 0,

where wiji = vi|Γij
and wijj = vj |Γij

.
Now define Eij : Mij → M , an extension operator from Mij to M by zero, and

Rlij : Wl →Wl|Γij for l = i, j, a restriction operator. Let

Bi =
∑
j∈mi

EijB
ij
i R

i
ij +

∑
j∈si

EjiB
ji
i R

i
ji.

Then the mortar matching condition (2.6) becomes

N∑
i=1

Biwi = 0,

where wi = vi|∂Ωi .
Define

W 0
ij := {v ∈Wij : v = 0 at the end points of Γij}

and let

W 0 =

N∏
i=1

∏
j∈mi

W 0
ij .

For wij ∈ W 0
ij , we define w̃ij ∈ Wi by the zero extension of wij into ∂Ωi. Let

w̃i =
∑
j∈mi

w̃ij and w̃ = (w̃1, . . . , w̃N ). Since w̃ is continuous at subdomain vertices,

w̃ ∈W . Hence for w ∈W 0, we define a norm by

‖w‖W 0 := ‖w̃‖W .(2.8)

Let 〈·, ·〉m be a duality pairing between M and W 0 such that

〈λ,w〉m :=

N∑
i=1

∑
j∈mi

∫
Γij

λijwij ds ∀ (λ,w) ∈M ×W 0.(2.9)
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Using this, we define a dual norm on M by

‖λ‖(W 0)′ := max
w∈W 0\{0}

〈λ,w〉m
‖w‖W 0

.(2.10)

3. FETI-DP formulation.

3.1. FETI-DP operator. In this section, we construct the FETI-DP operator
for the problem (2.1) with the mortar matching condition as constraints. The deriva-
tion of the FETI-DP equation for the Lagrange multipliers follows [10]. However, the
FETI-DP operator with mortar matching condition is new. Dryja and Widlund [4, 5]
eliminate unknowns on both interior and vertex nodal points and impose a mortar
matching condition over Wr in (2.4). Hence, the resulting solution u does not satisfy
the mortar matching condition (2.6). We eliminate only interior nodal points and
impose the mortar matching condition on the function over W in (2.2).

For wi ∈Wi we write

wi =

(
wir
wic

)
,

where r and c stand for the nodal values on the edges and vertices. From now on,
we use the subscript symbol r and c to represent the d.o.f. corresponding to nodes on
the edges and at the vertices, respectively.

Define Wc as the set of vectors which have d.o.f. corresponding to the union
of subdomain vertices, that is, global corner points. For w = (w1, . . . , wN ) ∈ W ,
since w is continuous at subdomain vertices, there exists wc ∈ Wc such that Licwc =
wic for all i = 1, . . . , N , where the matrix Lic consists of 0 and 1 and restricts the value
of wc on the vertices of subdomain Ωi. Hence, for w = (w1, . . . , wN ) ∈W , we write

wi =

(
wir
Licwc

)
∀i for some wc ∈Wc.

Recall that Si is the Schur complement matrix obtained from the bilinear form
ai(·, ·) and let gi be the Schur complement forcing vector obtained from

∫
Ωi
fvi dx.

The matrix Si and vector gi are ordered in the following way:

Si =

(
Sirr Sirc
Sicr Sicc

)
, gi =

(
gir
gic

)
.

Let Bi,r and Bi,c be matrices that consist of the columns of Bi corresponding to the
nodal points on the edges and at the vertices, respectively.

Then the problem (2.1) becomes the following: Find (wr, wc, λ) ∈Wr ×Wc ×M
such that

Srrwr + Srcwc +Btrλ = gr,(3.1)

Scrwr + Sccwc +Btcλ = gc,(3.2)

Brwr +Bcwc = 0,(3.3)

where

Srr = diagi=1,... ,N

(
Sirr
)
,

Src =

⎛⎜⎝ S1
rcL

1
c

...
SNrcL

N
c

⎞⎟⎠ ,
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Scr = Strc,

Scc =

N∑
i=1

(Lic)
tSiccL

i
c,

Br = (B1,r, . . . , BN,r), Bc =

N∑
i=1

Bi,cL
i
c,

gr =

⎛⎜⎝ g1
r
...
gNr

⎞⎟⎠, gc =

N∑
i=1

(Lic)
t gic, wr =

⎛⎜⎝ w1
r
...
wNr

⎞⎟⎠ .

Since Srr is invertible, we solve (3.1) for wr to get

wr = S−1
rr

(
gr − Srcwc −Btrλ

)
.

After substituting wr into (3.3) and (3.2), we obtain

BrS
−1
rr B

t
rλ+

(
BrS

−1
rr Src −Bc

)
wc = BrS

−1
rr gr,(

ScrS
−1
rr B

t
r −Btc

)
λ− (Scc − ScrS

−1
rr Src

)
wc = − (gc − ScrS

−1
rr gr

)
.

Let

FIrr = BrS
−1
rr B

t
r,

FIrc = BrS
−1
rr Src −Bc,

FIcr = ScrS
−1
rr B

t
r −Btc

(
= F tIrc

)
,

FIcc = Scc − ScrS
−1
rr Src,

dr = BrS
−1
rr gr,

dc = gc − ScrS
−1
rr gr.

(3.4)

Then (λ,wc) satisfies (
FIrr FIrc
FIcr −FIcc

)(
λ
wc

)
=

(
dr

−dc
)
.

Eliminating wc in the above equation, we obtain(
FIrr + FIrcF

−1
Icc
FIcr

)
λ = dr − FIrcF

−1
Icc
dc.

Here, FDP = FIrr +FIrcF
−1
Icc
FIcr is called the FETI-DP operator for the problem (2.1).

3.2. Preconditioner. From now on, we will propose F̂−1
DP , a preconditioner for

FDP , which is derived from the dual norm on the Lagrange multiplier space M in the
following sense:

〈F̂DPλ, λ〉 = ‖λ‖2
(W 0)′ .(3.5)

We will derive the matrix form of F̂DP from the above relation. Define Eiij :

W 0
ij →Wi as the extension operator by 0. Then we get

w̃ij = Eiijwij for wij ∈W 0
ij .
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Define Rij : W 0 →W 0
ij to be a restriction operator. For w ∈W 0, we let wij = Rijw.

Hence by (2.8) and (2.3), we get

‖w‖2
W 0 =

N∑
i=1

〈
Si

⎛⎝∑
j∈mi

EiijRijw

⎞⎠ ,
∑
j∈mi

EiijRijw

〉
.

Let Ei =
∑
j∈mi

EiijRij ; then we have

‖w‖2
W 0 = 〈Ŝw, w〉 with Ŝ =

N∑
i=1

(Ei)tSiEi.(3.6)

Recall that

(Biji )lk =

∫
Γij

ξijl φ
ij
k ds, l = 1, . . . , Nij , k = 0, 1, . . . , Nij + 1,

and take (Biji,r)lk = (Biji )lk for l, k = 1, . . . , Nij . Since wij ∈W 0
ij , we have

λtijB
ij
i,rwij =

∫
Γij

λijwij ds.

Let

B̂ = diagi=1,... ,N

(
diagj∈mi

(
Biji,r

))
.

Then, for (w, λ) ∈W 0 ×M , we get

λtB̂w =

N∑
i=1

∑
j∈mi

∫
Γij

λijwij ds,(3.7)

where λij = λ|Γij and wij = w|Γij .
From the definition of the dual norm (2.10), (2.9), (3.7), and (3.6), we obtain

‖λ‖2
(W 0)′ = max

w∈W 0\{0}
〈λ, B̂w〉2
〈Ŝw, w〉 .

Since Ŝ is symmetric and positive definite on W 0, in the above equation the maximum
occurs when B̂tλ = Ŝw. Therefore, we have

‖λ‖2
(W 0)′ = 〈B̂Ŝ−1B̂tλ, λ〉

and let F̂DP = B̂Ŝ−1B̂t. Then we take F̂−1
DP = (B̂Ŝ−1B̂t)−1 as a preconditioner for

FDP and call it a Neumann–Dirichlet preconditioner.
Note that F̂−1

DP = (B̂t)−1ŜB̂−1 is easy to implement due to the block diagonal

structure of B̂ and B̂t = B̂. Therefore, we have

F̂−1
DP =

N∑
i=1

⎛⎝∑
j∈mi

Rtij(B
ij
i,r)

−1(Eiij)
t

⎞⎠Si

⎛⎝∑
j∈mi

Eiij(B
ij
i,r)

−1Rij

⎞⎠(3.8)
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so that the work can be done in parallel in each subdomain. Let

B̂i =
∑
j∈mi

Rtij(B
ij
i,r)

−1(Eiij)
t
.

Moreover, from the operator B̂i, we can see that the preconditioner F̂−1
DP is different

from the preconditioners in [4, 5, 8, 9, 10]. Only on the slave sides of interfaces
are the function values transferred between the spaces Wi and M . Hence, the cost
needed to compute B̂iwi and B̂tiλ is reduced by half compared with other FETI (-DP)
preconditioners.

4. Condition number estimation for the preconditioned FETI-DP op-
erator. The following well-known result is given when ai(u, v) =

∫
Ωi

∇u · ∇v dx (see

Theorem 4.1.3 in [11]). With slight modification, we can obtain a similar result for a
general case.

Lemma 4.1. For wi ∈Wi, we have

C1|wi|21/2,∂Ωi
≤ 〈Siwi, wi〉 ≤ C2‖wi‖2

1/2,∂Ωi
,

where C1 and C2 are constants depending on A(x) and β(x), but independent of Hi

and hi.
In the following, we obtain a formula that is useful for analyzing the condition

number bound and the result is the same as Lemma 4.3 of Mandel and Tezaur [10].
However, in our formulation, the continuity constraints are imposed on w ∈ W , that
is, the d.o.f. on edges and global corners (see (3.3)). The proof can be done similarly
as in Lemma 37 of Tezaur [16].

Lemma 4.2. For λ ∈M , we have

max
w∈W\{0}

b(w, λ)2

‖w‖2
W

= 〈FDPλ, λ〉.

Now, we estimate the lower bound of the condition number for the operator
F̂−1
DPFDP .

Lemma 4.3. For any λ ∈M , we have

max
w∈W\{0}

b(w, λ)2

‖w‖2
W

≥ ‖λ‖(W 0)′ .

Proof. For w ∈ W 0, let w̃i =
∑
j∈mi

w̃ij and w̃ = (w̃1, . . . , w̃N ). Then we have
w̃ ∈W . Hence it follows that

max
w∈W\{0}

b(w, λ)2

‖w‖2
W

≥ max
w∈W 0\{0}

b(w̃, λ)2

‖w̃‖2
W

.(4.1)

Since w̃j = 0 on Γij for j ∈ mi, we have

b(w̃, λ) =

N∑
i=1

∑
j∈mi

∫
Γij

wijλij ds = 〈λ,w〉m.(4.2)

Combining (4.2), (2.8), and (2.10), we obtain

max
w∈W 0\{0}

b(w̃, λ)2

‖w̃‖2
W

= max
w∈W 0\{0}

〈λ,w〉2m
‖w‖2

W 0

= ‖λ‖2
(W 0)′ .(4.3)
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From (4.1) and (4.3), we complete the proof.

To estimate the upper bound for 〈FDPλ, λ〉, we need the following estimate for
‖wi − wj‖2

H
1/2
00 (Γij)

.

Lemma 4.4. For w ∈W , let wi = w|∂Ωi
and wj = w|∂Ωj

. Then we have

‖wi − wj‖2

H
1/2
00 (Γij)

≤ C max
l∈{i,j}

{(
1 + log

Hl

hl

)2
}(

|wi|21/2,∂Ωi
+ |wj |21/2,∂Ωj

)
,

where C is a constant independent of hi’s and Hi’s.

Proof. Let IHw be a linear function on Γij that has the same value as w at the
end points of Γij . From Lemma 5.1 in [10], we have

|wl − IHwl|H1/2
00 (Γij)

≤ C

(
1 + log

Hl

hl

)
|wl|1/2,∂Ωl

for l = i, j.

Using the above bound and the equivalence of | · |
H

1/2
00 (Γij)

and ‖ · ‖
H

1/2
00 (Γij)

, the result

follows.

Definition 4.5. We define a projection πij : H
1/2
00 (Γij) →W 0

ij for v ∈ H
1/2
00 (Γij)

by ∫
Γij

(v − πijv)λij ds = 0 ∀λij ∈Mij .

From Lemma 2.2 in [1], πij is a continuous operator on H
1/2
00 (Γij), i.e., there exists

a constant C such that

‖πijv‖H1/2
00 (Γij)

≤ C‖v‖
H

1/2
00 (Γij)

∀v ∈ H
1/2
00 (Γij).(4.4)

We note that the constant C is independent of Hi’s and hi’s.

Now, we estimate the upper bound for the operator F̂−1
DPFDP .

Lemma 4.6. For λ ∈M , we have

max
w∈W\{0}

b(w, λ)2

‖w‖2
W

≤ C max
i=1,... ,N

{(
1 + log

Hi

hi

)2
}
‖λ‖2

(W 0)′ ,

where C is a constant depending on A(x) and β(x), but independent of hi’s and Hi’s.

Proof. From the definitions of b(w, λ) in (2.7) and πij , we have

b(w, λ)2 =

⎛⎝ N∑
i=1

∑
j∈mi

∫
Γij

πij(wi − wj)λij ds

⎞⎠2

.

We let z ∈W 0 such that z|Γij = πij(wi−wj). Then the above equation is the duality
pairing between λ and z. Hence, using the definition of dual norm on λ, we get

b(w, λ)2 ≤ ‖λ‖2
(W 0)′‖z‖2

W 0 .(4.5)



2170 HYEA HYUN KIM AND CHANG-OCK LEE

Let z̃ = (z̃1, . . . , z̃N ) ∈ W be the zero extension of z. Then from (2.8), (2.3),
Lemma 4.1, (2.5), (4.4), and Lemma 4.4,

‖z‖2
W 0 =

N∑
i=1

〈Siz̃i, z̃i〉

≤ C

N∑
i=1

‖z̃i‖2
1/2,∂Ωi

≤ C

N∑
i=1

∑
j∈mi

‖πij(wi − wj)‖2

H
1/2
00 (Γij)

≤ C

N∑
i=1

∑
j∈mi

‖wi − wj‖2

H
1/2
00 (Γij)

≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}

N∑
i=1

|wi|21/2,∂Ωi

≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
‖w‖2

W .

(4.6)

Here, C denotes a generic constant independent of hi’s and Hi’s, which may
vary from occurrence to occurrence. Combining (4.5) and (4.6), we complete the
proof.

Since the preconditioner F̂−1
DP follows from the dual norm of λ ∈ M (see (3.5)),

combining Lemmas 4.2, 4.3, and 4.6, we obtain the following estimate.
Theorem 4.7. For λ ∈M , we have

〈F̂DPλ, λ〉 ≤ 〈FDPλ, λ〉 ≤ C max
i=1,... ,N

{(
1 + log

Hi

hi

)2
}
〈F̂DPλ, λ〉,

where C is a constant depending on A(x) and β(x), but independent of Hi’s and hi’s.
Corollary 4.8. We have the following condition number estimate:

κ
(
F̂−1
DPFDP

)
≤ C max

i=1,... ,N

{(
1 + log

Hi

hi

)2
}
,

where C is a constant depending on A(x) and β(x), but independent of Hi’s and hi’s.
Remark 4.1. On each Γij , the choices of master and slave sides are arbitrary.
Remark 4.2. In Corollary 4.8, the condition number depends on A(x) and β(x).

Now we consider the problem

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω,

where α(x) is a piecewise constant and has jumps across the subdomain boundaries,
i.e., α(x) = ρi for all x ∈ Ωi for some constant ρi > 0. On Γij , we choose Ωhi |Γij

as
the slave side if ρi ≤ ρj . Otherwise, we choose Ωhi |Γij as the master side. Then we
have

C1ρi|wi|21/2,∂Ωi
≤ 〈Siwi, wi〉 ≤ C2ρi‖wi‖2

1/2,∂Ωi
,



PRECONDITIONER FOR FETI-DP FORMULATION 2171

where C1 and C2 are constants independent of ρi’s, hi’s, and Hi’s. Following the
proof of Lemma 4.6 and using the above inequalities instead of Lemma 4.1, we obtain

‖z‖2
W 0 ≤ C

N∑
i=1

∑
j∈mi

ρi‖wi − wj‖2

H
1/2
00 (Γij)

≤ C

N∑
i=1

∑
j∈mi

{
max
l∈{i,j}

{(
1 + log

Hl

hl

)2
}

×
(
ρi|wi|21/2,∂Ωi

+ ρi|wj |21/2,∂Ωj

)}

≤ C

N∑
i=1

∑
j∈mi

{
max
l∈{i,j}

{(
1 + log

Hl

hl

)2
}

×
(
〈Siwi, wi〉 +

ρi
ρj

〈Sjwj , wj〉
)}

,

where C is a generic constant independent of ρi’s, Hi’s, and hi’s. Since ρi ≤ ρj , we can
see that the constant C in Lemma 4.6 is bounded independently of the coefficients.
Hence, the condition number bound is independent of ρi’s.

5. Numerical results. In this section, we provide numerical tests for the FETI-
DP formulation developed in this paper. Let Ω = [0, 1]× [0, 1] ⊂ R

2 and consider the
following model problem:

−∇ · (α(x, y)∇u) = f in Ω,

u = 0 on ∂Ω.
(5.1)

We compare the proposed preconditioner (3.8) with the preconditioner of Dryja
and Widlund [5] for the cases when α(x, y) = 1 and mesh sizes are comparable between
neighboring subdomains, and when α(x, y) are highly discontinuous across subdomain
interfaces and mesh sizes are not comparable. In the following, we use the notation
F̂−1
KL for the preconditioner (3.8) and use F̂−1

DW for Dryja and Widlund’s. The precon-

ditioner F̂−1
DW is

F̂−1
DW = (BrB̃

t
r)

−1B̃rSrrB̃
t
r(B̃rB

t
r)

−1,

where B̃r is the scaled matrix of Br divided by the mesh parameters of slave and
master sides (see (3.13) in [5]).

First, we compare these two preconditioners for the same problem with non-
matching discretizations. We take α(x, y) = 1 and the exact solution u(x, y) =
y(1 − y) sinπx. The CG iteration continues until the relative residual norm is less
than 10−6. We use n to denote the number of nodes on edges, including end points,
and use N to denote the number of subdomains. In this problem, we use the same n
for all subdomains, divide Ω into rectangular subdomains, as in Figure 3, and denote
each subdomain by Ωij .

To make nonmatching grids across subdomain interfaces, we generate triangula-
tions in each subdomain in the following way: For each subdomain, we have chosen
n random quasi-uniform nodes on each horizontal and vertical edge. Using these
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Ω00

Ω01

Ω10

Ω

Ω

ij

33

Fig. 3. Partition of subdomains when N = 4 × 4.

Table 1

Comparison between the proposed preconditioner F−1
KL and the Dryja–Widlund preconditioner

F−1
DW on nonmatching grids when n increases with N = 4× 4: Iter (number of CG iteration), Cond

(condition number of the preconditioned FETI-DP operator).

F̂−1
KL F̂−1

DW
n− 1 L2-error H1-error

Iter Cond Iter Cond
4 5.0850e-4 6.0126e-2 10 3.07 7 1.94
8 1.2865e-4 3.0128e-2 13 5.67 8 2.68
16 3.2235e-5 1.5072e-2 15 7.68 10 3.69
32 8.0627e-6 7.5374e-3 16 9.99 10 4.80
64 2.0163e-6 3.7688e-3 17 12.6 11 6.14

nodes, we generate nonuniform structured grids in each subdomain. Since we use the
same n for all subdomains, the sizes of meshes between neighboring subdomains are
comparable.

In Table 1, we divide Ω into N = 4 × 4 subdomains (see Figure 3), increase the
number of nodes n, and compute L2- and H1-errors, the number of CG iterations
and condition numbers for those preconditioners. For the H1-error, we compute the
broken H1-norm of errors over all subdomains. Table 2 shows the numerical results
when we fix n − 1 = 4 and increase the number of subdomains N . For the cases
N = 8× 8, 16× 16, and 32× 32, we divide Ω into subdomains in the same manner as
N = 4 × 4. Here, we used the FETI-DP formulation developed in this paper. From
Tables 1 and 2, we can see that our FETI-DP formulation gives O(h2) and O(h)
convergences for L2- and H1-errors, respectively. Furthermore, we can see that both
preconditioners seem to give the log2-growth of the condition number bound and that
the CG iteration of F̂−1

DW is smaller than F̂−1
KL.

Now, we consider the problem (5.1) when α(x, y) is highly discontinuous across
subdomain interfaces and the mesh sizes between subdomains are not comparable. In
this situation, we will compare two preconditioners F̂−1

KL and F̂−1
DW .

We consider the cases of N = 2×2, 4×4, 8×8 subdomains. For each subdomain
Ωij , we choose the coefficient α(x, y) in the following way:

α(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1 if both i and j are even,
250 if i is odd and j is even,
5000 if i is even and j is odd,
10 if both i and j are odd,

and denote them by ρij . In addition, we consider the exact solution u(x, y), which
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Table 2

Comparison between the proposed preconditioner F−1
KL and the Dryja–Widlund preconditioner

F−1
DW on nonmatching grids when N increases with n− 1 = 4: Iter (number of CG iteration), Cond

(condition number of the preconditioned FETI-DP operator).

F̂−1
KL F̂−1

DW
N ×N L2-error H1-error

Iter Cond Iter Cond
4 × 4 5.0850e-4 6.0126e-2 10 3.07 7 1.94
8 × 8 1.1744e-4 2.9900e-2 11 3.22 8 2.13

16 × 16 2.9743e-5 1.4980e-2 12 3.39 8 2.11
32 × 32 7.4318e-6 7.4917e-3 12 3.51 8 2.10

Ω

Ω
ρ

Ω
ρ =10

Ω
ρ=1

00

00

01

01
ρ =5000

11

11

10

10
=250

Fig. 4. Triangulations for the case N = 2 × 2 and max(Hij/hij) = 16.

belongs to H1(Ω), according to the partition of the domain:

u(x, y) =

⎧⎪⎨⎪⎩
p1(x, y) sin(πx) sin(πy)/α(x, y) when N = 2 × 2,

p2(x, y) sin(2πx) sin(2πy)/α(x, y) when N = 4 × 4,

sin(8πx) sin(8πy)/α(x, y) when N = 8 × 8,

where

p1(x, y) = (x− 1/2)(y − 1/2),

p2(x, y) = (x− 1/4)(x− 3/4)(y − 1/4)(y − 3/4).

Following [18, section 1.5.3], we have chosen a different mesh size in each sub-
domain according to the ratio of coefficients between neighboring subdomains, that
is,

hij
hkl

 4

√
ρij
ρkl

,

where hij is the mesh size of the subdomain Ωij , and we use Hij to denote the
size of the subdomain Ωij . Using the mesh sizes of these ratios, we divide each
subdomain into uniform meshes. When N = 2 × 2 and max(Hij/hij) = 16, we



2174 HYEA HYUN KIM AND CHANG-OCK LEE

Table 3

Comparison between the proposed preconditioner F̂−1
KL and the Dryja–Widlund preconditioner

F̂−1
DW for the problem of highly discontinuous coefficients: Iter (number of GC iteration).

F̂−1
KL F̂−1

DW
N max(Hij/hij) L2-error H1-error

Iter Iter
16 3.0571e-5 7.6362e-3 3 17
32 7.8276e-6 3.8249e-3 3 26

2 × 2 64 1.9747e-6 1.9133e-3 4 39
128 4.9571e-7 9.5675e-4 4 50
256 1.2421e-7 4.7839e-4 4 60
16 2.1574e-6 1.0939e-3 4 75

4 × 4 32 5.4460e-7 5.4805e-4 4 81
64 1.3799e-7 2.7415e-4 4 111
128 3.4810e-8 1.3709e-4 4 130
16 1.0262e-3 8.8753e-1 3 113

8 × 8 32 2.4870e-4 4.4462e-1 4 136
64 6.4579e-5 2.2240e-1 4 168

obtain triangulations as in Figure 4 and the triangulations are not comparable between
neighboring subdomains.

In section 1.5.3 of [18], it was shown that a good approximation of the solution is
obtained when the slave side is chosen to give a Lagrange multiplier space of higher
dimension. Hence, choosing the subdomain with smaller hij (smaller ρij) as the
slave side, we can approximate the exact solution more accurately. This observation
coincides with the choices of master and slave sides in Remark 4.2.

Table 3 shows L2- and H1-errors and CG iterations with F̂−1
KL and F̂−1

DW as pre-
conditioners. In CG iteration, we use the same stopping criterion 10−6 as before.
Increasing max(Hij/hij), we observe the O(h2) and O(h) convergences of L2- and
H1-errors, respectively, for all cases of N . Furthermore, we see that the CG iteration
of F̂−1

KL is much smaller than F̂−1
DW . Since, the condition number bound of the precon-

ditioner F̂−1
DW depends on the ratio of meshes between neighboring subdomains, the

preconditioner works inefficiently for these problems with noncomparable meshes.

From our numerical results, we conclude that our formulation gives the correct ap-
proximation of the model problem with nonmatching grids. For the case of continuous
coefficients and comparable meshes between subdomain interfaces, the preconditioner
F̂−1
DW by Dryja and Widlund gives a smaller number of iterations than our precondi-

tioner F̂−1
KL. However, our preconditioner F̂−1

KL turns out to be much more efficient

than F̂−1
DW for the problem of highly discontinuous coefficients on noncomparable

meshes.
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THE ACCURACY OF THE CHEBYSHEV DIFFERENCING
METHOD FOR ANALYTIC FUNCTIONS∗

S. C. REDDY† AND J. A. C. WEIDEMAN‡

Abstract. The Chebyshev spectral collocation method is one of the most powerful tools for
numerical differentiation, particularly when the function under consideration is smooth. An upper
bound on the error, in the discrete maximum norm, is derived here when the function is analytic.
Two model functions are analyzed in detail.

Key words. pseudospectral, spectral collocation, numerical differentiation, Chebyshev methods,
interpolation
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1. Introduction. Let f(x) be a differentiable function defined on a bounded in-
terval, say [−1, 1]. In this interval, choose a discrete grid {xj} consisting of N +1 dis-
tinct points. How does one compute approximations to the derivative values {f ′(xj)}?
One of the most powerful procedures for calculating this is also conceptually the sim-
plest: Fit a polynomial of degree N , say pN (x), through the data values {(xj , f(xj))}.
Then differentiate this polynomial (analytically) and evaluate the derivative at the
gridpoints, i.e., p′N (xj) ≈ f ′(xj).

Approximation theory dictates that {xj} should not be just any set of points.
Recall, e.g., the Runge phenomenon associated with an equidistant point distribution:
those wild oscillations near the endpoints of the interval when a seemingly innocuous
function such as f(x) = 1/(1 + 25x2) is interpolated on [−1, 1]; see, for example, [16,
p. 44]. Good sets of points are the roots or extrema of the Chebyshev polynomials.
First, these points have precisely the right density distribution for avoiding the Runge
phenomenon [16, p. 45]. Second, interpolants based on these sets of points are to
within a relatively small factor of the best min-max polynomial approximation of
f(x) on [−1, 1] [11, p. 160]. Third, these interpolants may be evaluated quickly and
efficiently with the aid of the fast Fourier transform (FFT) [11, p. 91].

The differentiation procedure described above is at the heart of what has become
known as the Chebyshev pseudospectral method or, equivalently, the Chebyshev spec-
tral collocation process. Since its introduction in the 1970s and early 1980s, this idea
has been used in practice to solve a variety of differential equations; case studies are
cited in the survey papers [7], [9], [17] and the monographs [3], [4], [6], [8], [10], [12],
[16].

The Chebyshev differencing method works best when the function is smooth, and
particularly when f(x) can be continued into the complex plane as a function f(z)
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which is analytic in an open neighborhood of [−1, 1]. In this case, the error

EN (f) = max
0≤j≤N

|f ′(xj) − p′N (xj)|

decays at least exponentially fast as N → ∞, a fact mentioned (but not proved) in
the monographs and survey papers listed above. To see a proof, we had to go to the
research literature, and even then we could find only a single reference, namely that
of Tadmor [15].

Tadmor gives very general results, including Sobolev estimates for the error when
one assumes less regularity than analyticity. To get these estimates, Tadmor works in
the space of Chebyshev coefficients. We present a fundamentally different approach
here, which is based in the function space and, therefore, is more in the “spirit” of
the pseudospectral (collocation) process. In the process, the error estimate in [15]
is improved by a factor of O(N3/2). On the negative side, our approach is strictly
limited to functions that are analytic in some open neighborhood of [−1, 1].

2. General error bounds. Let TN (x) denote the Chebyshev polynomial of
degree N . The differentiation process, described in the first paragraph of section 1,
is typically implemented on the set of zeros {sj} of TN+1(x) or on the set of extrema
{tj} of TN (x), including the endpoint extrema at x = ±1. That is, we define for
j = 0, 1, . . . , N ,

Zeros: sj = cos

(
(2j + 1)π

2N + 2

)
,(2.1)

Extrema: tj = cos

(
jπ

N

)
.(2.2)

Sometimes referred to as the Chebyshev points of the second kind, the second set of
nodes is often preferable since it includes the endpoints x = ±1. In the solution of
differential equations, this enables one to incorporate boundary conditions.

These two sets of points share the attractive feature that the derivative of the
interpolant, p′N (x), can be evaluated at the N+1 nodes {sj} (resp., {tj}) via the FFT
in only O(N logN) operations. This stands in contrast to the direct implementation
that requires O(N2) operations. For details, see [4], [6], [16], [17].

We record the following preliminary facts. Assuming N + 1 distinct nodes {xj}
in [−1, 1], the error in polynomial interpolation of the data {(xj , f(xj))} is given by
Hermite’s contour integral [5, p. 68]

f(x) − pN (x) =
1

2πi

∫
Γ

ωN+1(x)

ωN+1(z)

f(z)

(z − x)
dz.(2.3)

Here Γ is a simple closed positively oriented contour in the complex plane that (a)
contains the point x and encloses [−1, 1], and (b) lies in some simply connected region
in which f(z) is analytic. The polynomial ωN+1(x) is defined as

ωN+1(x) = c

N∏
j=0

(x− xj),

where the normalization factor c is immaterial, as it cancels in the Hermite formula.
For the two sets of interpolation nodes (2.1) and (2.2), we use, respectively,

Zeros: ωN+1(x) = TN+1(x),(2.4)

Extrema: ωN+1(x) = TN+1(x) − TN−1(x).(2.5)
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In the latter case the expression ωN+1(x) = (1 − x2)T ′
N (x) is commonly used in the

literature but, owing to the identity [11, p. 35]

(1 − x2)T ′
N (x) =

1

2
N(TN−1(x) − TN+1(x)),

we may use expression (2.5) instead, which is more useful for our purposes here.
By direct differentiation of the Hermite formula (2.3), one obtains an integral

formula for the pointwise error

f ′(x) − p′N (x) =
1

2πi

∫
Γ

(
ω′
N+1(x)

(z − x)
+
ωN+1(x)

(z − x)2

)
f(z)

ωN+1(z)
dz.(2.6)

Evaluating this at x = xj and using the fact that ωN+1(xj) = 0, one gets

f ′(xj) − p′N (xj) =
1

2πi

∫
Γ

ω′
N+1(xj)

ωN+1(z)

f(z)

(z − xj)
dz, j = 0, . . . , N.(2.7)

An appropriate contour Γ for estimating this integral is the ellipse E�, with foci
at ±1 and the sum of its semimajor and semiminor axes equal to � (> 1), i.e.,

E� : z =
1

2
(� eiθ + �−1 e−iθ), 0 ≤ θ ≤ 2π.(2.8)

The reason for choosing this particular contour is that the factor ωN+1(z) appearing
in the integrand of (2.3) and (2.7) is of nearly constant magnitude on the ellipse E�
when N is large.

To show this, we follow the analysis of [11, p. 15]. The starting point is the
following representation formula for the Chebyshev polynomials,

TN (z) =
1

2

[(
z +

√
z2 − 1

)N
+
(
z −

√
z2 − 1

)N]
,

which implies that if z ∈ E�, then

TN (z) =
1

2

[
(� eiθ)N + (�−1 e−iθ)N

]
(2.9)

=
1

2

[
(�N + �−N ) cosNθ + i(�N − �−N ) sinNθ

]
.

Hence

|TN (z)| =
1

2

√
�2N + �−2N + 2 cos 2Nθ,

and therefore

1

2
(�N − �−N ) ≤ |TN (z)| ≤ 1

2
(�N + �−N ), z ∈ E�.

By introducing the positive number η through � = eη, we see that these inequalities
become

sinh(ηN) ≤ |TN (z)| ≤ cosh(ηN), z ∈ E�.(2.10)
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It is now possible to estimate the quantity ωN+1(z) that appears in (2.7). In the
case of Chebyshev zeros (cf. (2.4)), one simply replaces N by N + 1 in (2.10) to get

Zeros: sinh(η(N + 1)) ≤ |ωN+1(z)| ≤ cosh(η(N + 1)).(2.11)

In the case of Chebyshev extrema (cf. (2.5)), one proceeds as follows. From (2.9),

ωN+1(z) = TN+1(z) − TN−1(z) =
1

2
(� eiθ − �−1 e−iθ) (�N eiNθ − �−N e−iNθ)

when z ∈ E�, and therefore

|ωN+1(z)| =
1

2

√
�2 + �−2 − 2 cos 2θ

√
�2N + �−2N − 2 cos 2Nθ.

The minimum value of this quantity occurs when θ = 0, which gives the lower bound
1
2 (�−�−1)(�N −�−N ). When N is odd, the maximum value occurs at θ = π/2, which
gives an upper bound 1

2 (�+�−1)(�N +�−N ). When N is even, the same upper bound
is obtained by maximizing the two terms on the right individually. We have therefore
proved that if z ∈ E�, then

Extrema: 2 sinh(η) sinh(ηN) ≤ |ωN+1(z)| ≤ 2 cosh(η) cosh(ηN).(2.12)

Since the upper and lower bounds in both (2.11) and (2.12) approach one another as
N → ∞, our assertion that |ωN+1(z)| is nearly constant on E� for large N is affirmed.

Bounds on the quantities ω′
N+1(xj) that appear in (2.7) are also required. By

using elementary calculus and standard properties of the Chebyshev polynomials, it
is possible to show that for each N = 1, 2, . . .,

Zeros: max
0≤j≤N

|ω′
N+1(sj)| = (N + 1) csc

(
π

2N + 2

)
≤ (N + 1)2,(2.13)

Extrema: max
0≤j≤N

|ω′
N+1(tj)| = 4N.(2.14)

In each case the maximum is achieved at the extreme two nodes s0 and sN (resp., t0
and tN ). The bound on the right of (2.13) is the quantity max−1≤x≤1 |ω′

N+1(x)|,
which will be used in Remark 6 below (following Theorem 2.1). No such bound is
provided for (2.14), as in fact max−1≤x≤1 |ω′

N+1(x)| = 4N in the case of extrema.
Finally, we record the following properties of the ellipse E�. Its length, say L�,

can of course be expressed as an elliptic function, but as a more easily computable
bound we use Euler’s estimate

L� ≤ π
√
�2 + �−2,(2.15)

which overestimates the perimeter by less than 12 percent. (Better bounds for the
perimeter of an ellipse can be found in [2].) We shall also need the distance from E�
to the interval [−1, 1], say D�, which a quick calculation shows to be

D� =
1

2
(�+ �−1) − 1.(2.16)

The ratio between the perimeter and distance will feature in the error estimate below,
and so we define, for � > 1,

φ(�) =
π
√
�2 + �−2

1
2 (�+ �−1) − 1

= 2π

√
�4 + 1

(�− 1)2
.(2.17)
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Fig. 1. Graphs of the functions φ(�) and ψ(�) defined, respectively, by (2.17) and (4.4).

The graph of this function is shown in Figure 1. A strictly decreasing function on
(1,∞), φ assumes values less than 100 for all � ≥ 1.36 and less than 10 for all � ≥ 4.84,
with asymptotic value 2π as �→ ∞.

We are now in a position to state the theorem.
Theorem 2.1. Let pN (x) be the polynomial interpolant of f(z) at the set of

Chebyshev zeros {sj} defined by (2.1) or extrema {tj} defined by (2.2). Suppose f(z)
is analytic in some ellipse E�, defined by (2.8), with � = eη, η > 0. Then, for each
N ≥ 1, we have

Zeros: max
0≤j≤N

|f ′(sj) − p′N (sj)|(2.18)

≤ 1

2π
C� φ(�)

(N + 1)

sin
(

π
2N+2

) 1

sinh(η(N + 1))
,

Extrema: max
0≤j≤N

|f ′(tj) − p′N (tj)|(2.19)

≤ 1

π
C� φ(�)N

1

sinh(η) sinh(ηN)
.

In both cases, φ(�) is defined by (2.17), and

C� = max
z∈E�

|f(z)|.(2.20)

Proof. Taking absolute values in the error integral (2.7), with Γ = E�, yields

|f ′(xj) − p′N (xj)| ≤ 1

2π
|ω′
N+1(xj)|

∫
E�

|f(z)|
|ωN+1(z)||z − xj | |dz|

≤ 1

2π
|ω′
N+1(xj)|

maxz∈E� |f(z)|
minz∈E�

|ωN+1(z)|
∫
E�

|dz|
|z − xj | .

Taking the maximum over all nodes yields

max
0≤j≤N

|f ′(xj) − p′N (xj)| ≤ 1

2π
max

0≤j≤N
|ω′
N+1(xj)|

maxz∈E� |f(z)|
minz∈E�

|ωN+1(z)|
L�
D�

.

The error bounds (2.18)–(2.19) now follow from (2.11)–(2.17).
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Remark 1. The exponential convergence of the spectral method comes from the
hyperbolic sine term in the denominators of (2.18)–(2.19). This can be made explicit
by using the bound

1

sinh(ηN)
≤ 2 coth(ηN) e−ηN ,

which is sharp to within a factor of 2, and an asymptotic equality in the limit N → ∞,
with η fixed. A large ellipse (i.e., a large region about [−1, 1] in which the function is
analytic) implies large values of ρ and hence η, which means quick convergence.

Remark 2. When the function is entire, i.e., free of singularities in the finite
complex plane, the size of the ellipse E� is not limited by singularities but by the
growth rate of the factor C� as � increases. In this case convergence is typically faster
than exponential, a situation referred to in [3, p. 26] as supergeometric convergence.

Remark 3. The equalities (2.13) and (2.14) give rise to algebraic factors of O(N)
and O(N2), respectively, in the error bounds (2.18) and (2.19). This shows that the
Chebyshev extreme points are slightly better for differentiation than the Chebyshev
zeros, as will also be observed empirically in the numerical experiment below.

Remark 4. Continuing the idea of Remark 3, the algebraic factor in the error
estimate can be minimized by choosing the nodes xj such that the maximum of
|ω′
N+1(x)| on [−1, 1] is minimized. Using the well-known min-max property of the

Chebyshev polynomials, we therefore propose that

ω′
N+1(x) = TN (x).

Integration yields

ωN+1(x) =
1

2

(
TN+1(x)

N + 1
− TN−1(x)

N − 1

)
+ c,

where the constant c may be chosen to make ωN+1(1) = 0 or ωN+1(−1) = 0 (de-
pending on where a boundary condition needs to be enforced). If N is odd, both of
these conditions can, owing to symmetry, be satisfied simultaneously. In addition,
if N is odd, the roots of ωN+1(x) lie in [−1, 1], which is not the case for N even.
With these roots as the nodes of the spectral collocation process, one should obtain
an error estimate similar to (2.18)–(2.19), but with the leading algebraic term of size
O(1) instead of O(N) or O(N2).

In practice this new set of points does indeed seem to give marginally better
accuracy than the other two node sets analyzed here. With N = 15, for example, we
computed the error in the numerical differentiation of the test function (2.21) below,
using a = 2. The maximum error at the grid points were 2.3 × 10−7 and 9.1 × 10−8,
respectively, with Chebyshev zeros and Chebyshev extrema as nodes. The new set of
nodes proposed here yielded an error 4.9 × 10−8.

Remark 5. The algebraic factor in (2.19) is O(N), which improves on the O(N2.5)
factor in [15, eq. (4.18)]. The exponential factors are identical.

Remark 6. It is possible to extend Theorem 2.1 with minimal effort to the contin-
uous rather than the discrete maximum norm. First one applies the triangle inequality
to the integral (2.6). Then one uses elementary bounds such as max−1≤x≤1 |ωN+1(x)| ≤
1 (zeros), max−1≤x≤1 |ωN+1(x)| ≤ 2 (extrema), and the inequality (2.13) to obtain
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Fig. 2. Actual error (dotted curve) and theoretical error bound (thicker curve) in the Chebyshev
derivative of f(x) = 1/(x− a), a = 2.

Zeros: max
−1≤x≤1

|f ′(x) − p′N (x)|

≤ 1

2π
C� L�

(
(N + 1)2

D�
+

1

D2
�

)
1

sinh(η(N + 1))
,

Extrema: max
−1≤x≤1

|f ′(x) − p′N (x)|

≤ 1

2π
C� L�

(
2N

D�
+

1

D2
�

)
1

sinh(η) sinh(ηN)
.

In each case, the asymptotic behavior of the error bound, as N → ∞, is the same as
in Theorem 2.1.

Numerical experiments. We checked the tightness of the bounds in Theorem 2.1
numerically, using

f(x) =
1

x− a
, a > 1,(2.21)

as test function. In Figure 2 we show, as the thinner, dotted lines, the computed error
max0≤j≤N |f ′(xj)−p′N (xj)| as a function of N , for the case a = 2. Also shown, as the
thicker curves, are the theoretical error bounds (2.18)–(2.19). In order to compute
the bounds, one is free to choose the ellipse E�, the only constraint being that it
intersects the real axis between x = 1 and the pole at x = a, i.e.,

1 <
1

2

(
�+ �−1

)
< a =⇒ 1 < � < a+

√
a2 − 1.

For each value of N we computed the right-hand sides of (2.18)–(2.19), for a thousand
values of � in the above interval, and picked the minimum value to determine the best
upper bound.

We note from the figure that for a = 2 the theoretical bound overestimates the
actual error by about one order of magnitude. If we decrease (resp., increase) the
value of a, this overestimation factor increases (resp., decreases).

As a second example, we consider

f(x) =
√
a− x, a > 1,(2.22)
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Fig. 3. Same as Figure 2, but the function is f(x) =
√
a− x, a = 2.

with corresponding error curves shown in Figure 3. Compared to the first example,
one notices (a) that the actual errors in Figure 3 are smaller than in Figure 2 (note
that the scale on the horizontal axis is different in the two figures), and (b) that the
gap between the actual errors and the theoretical error bounds is slightly wider. Both
of these observations will be explained in the next section.

The reason for the gap between the actual errors and the theoretical error bounds
is the fact that the ellipse (2.8) is a general, all-purpose contour that has to cope with
all possible singularities of the function. When specific assumptions regarding the
singularities are made, different contours may yield more precise estimates. This
will be done in the next section, where we investigate these numerical results more
carefully. In fact, we shall obtain an explicit representation for the error in (2.21) and
accurate estimates for the error in (2.22).

3. Analysis of two model functions. The test functions (2.21) and (2.22),
representative of functions with poles and branch-point singularities, respectively,
will be analyzed here with the aid of the contour shown in Figure 4. It consists of a
large circle, centered at the origin and with radius R, and a small circle, centered at
the singularity z = a with radius ε. The larger circle is positively traversed, i.e., runs
counterclockwise, and the small one runs clockwise. The two circles are connected
by two line segments on the real interval [a+ ε, R], as indicated by the arrows in the
figure.

We start with the model function (2.21) and use Chebyshev zeros as collocation
points. The error integral (2.7) thus becomes

f ′(sj) − p′N (sj) =
T ′
N+1(sj)

2πi

∫
Γ

dz

TN+1(z)(z − sj)(z − a)
.

Taking Γ to be the contour in Figure 4, the various contributions to the integral can
be estimated using standard results from complex variable theory; see for example
[14, Ch. 6]. The contribution on the large circle, |z − a| = R, vanishes in the limit
R→ ∞, owing to the polynomial term in the denominator. The contribution along the
connecting line segments cancels, and the contribution on the small circle, |z−a| = ε,
can be evaluated as a residue. The result is the explicit expression for the error that
was announced at the end of section 2, namely

f ′(sj) − p′N (sj) =
T ′
N+1(sj)

TN+1(a)

1

sj − a
, j = 0, 1, . . . , N.(3.1)
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Fig. 4. Contour used in the analysis of the model functions.

A uniform bound on the right-hand side of (3.1) can be obtained by using (2.13)
and the inequality

TN+1(x) >
1

2

(
x+

√
x2 − 1

)N+1

, x > 1.(3.2)

This yields

max
0≤j≤N

|f ′(sj) − p′N (sj)| ≤ 2

a− 1

N + 1

sin( π
2N+2 )

(
a+

√
a2 − 1

)−(N+1)

,(3.3)

a bound that is virtually indistinguishable from the actual error curve in Figure 2(a).
Comparing this tight bound with the general bound (2.18), one concludes that

the latter formula captures the dependence on N perfectly. The gap between the
actual error and the theoretical error bounds observed in Figure 2 is therefore entirely
due to overestimating the constant factor.

Turning to the second model problem (2.21), we choose the branch-cut of
√
a− z

to be the real interval [a,∞). In this case, therefore, the contributions of the real
line segments do not cancel, as one segment is “above” the branch-cut and the other
“below” [14, Sect. 6.6]. In fact, these contributions represent the error completely, as
the contribution on the small circle, |z − a| = ε, vanishes in the limit ε → 0, and so
does the contribution on the large circle, |z| = R, as R→ ∞.

Adding the contributions on [a,∞), one obtains in the case of Chebyshev zeros

f ′(sj) − p′N (sj) =
T ′
N+1(sj)

π

∫ ∞

a

√
x− a

sj − x

dx

TN+1(x)
, j = 0, 1, . . . , N.(3.4)

We have not succeeded in finding a closed form expression for the integral on the
right, but a relatively sharp bound can be obtained as follows.
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Note that for a > 1 and |s| ≤ 1,∫ ∞

a

√
x− a

x− s

dx

TN+1(x)
≤ 1

a− s

∫ ∞

a

√
x− a

TN+1(x)
dx

≤ 2

a− s

∫ ∞

a

√
x− a

(x+
√
x2 − 1)N+1

dx,

where (3.2) was used. The latter integral can be evaluated explicitly in terms of the
beta function, B, and the hypergeometric function, 2F 1; see [13, entry 7, p. 314]. The
result is ∫ ∞

a

√
x− a

(x+
√
x2 − 1)N+1

dx

=

√
a

2
(2a)−NB

(
3

2
, N − 1

2

)
2F 1

(
1

2
N +

1

4
,
1

2
N − 1

4
; 2 +N ;

1

a2

)
.

In order to obtain a form of the 2F 1 function that can be expressed in terms of
elementary functions, we replace the third parameter 2 +N by 1

2 +N , which causes
a relatively small overestimate when N is large. Using entry 15.1.13 from [1, p. 556],
one consequently obtains∫ ∞

a

√
x− a

(x+
√
x2 − 1)N+1

dx ≤ 1

2
√

2
B

(
3

2
, N − 1

2

) (
a+

√
a2 − 1

)−N+1/2

.

Approximating theB function by Stirling’s formula yieldsB( 3
2 , N− 1

2 ) ∼ (
√
π/2)N−(3/2),

N → ∞. This approximation and the above inequalities are now inserted into (3.4)
to obtain an error estimate similar to (3.3):

max
0≤j≤N

|f ′(sj)−p′N (sj)| ≤ 1√
π(a− 1)(2N)3/2

N + 1

sin( π
2N+2 )

(
a+

√
a2 − 1

)−N+1/2

.(3.5)

Numerical verification confirms that this bound is tight. When compared to the data
of Figure 3(a), the gap between this bound and the actual error curve is tiny. In fact,
with a = 2 the right side of (3.5) overestimates the left side by less than a factor of 2
for all N ≥ 3.

By first comparing (3.5) to the analogous expression for the first model function,
equation (3.3), one sees that the errors in the second model function are smaller owing
to the N3/2 factor in the denominator. Next, by comparing (3.5) to the general error
bound (2.18), one notices that the exponential dependence on N is the same. The
leading algebraic factor in (2.18) is, however, overestimated by a factor of O(N3/2),
and this accounts for the widening gap between the actual error and the theoretical
error bound in Figure 3(a).

The results in this section were presented for Chebyshev zeros only, but similar
results can be derived for the extreme points. We omit the details.

4. Second derivatives. The results of section 2 can be generalized in a straight-
forward manner to second derivatives. Differentiating (2.3) twice with respect to x,
and again using the fact that ωN+1(xj) = 0 at the discretization points, we obtain
for j = 0, . . . , N

f ′′(xj) − p′′N (xj) =
1

2πi

∫
Γ

(
2ω′

N+1(xj)

(z − xj)2
+
ω′′
N+1(xj)

(z − xj)

)
f(z)

ωN+1(z)
dz.(4.1)
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The factor |ω′′(xj)| that appears in this formula can be estimated similarly to the
estimation of (2.13)–(2.14), and one obtains for N = 1, 2, . . . ,

Zeros: max
0≤j≤N

|ω′′
N+1(sj)| = (N + 1) cos

(
π

2N + 2

)
csc3

(
π

2N + 2

)
,

≤ 1

3
N(N + 2)(N + 1)2,

Extrema: max
0≤j≤N

|ω′′
N+1(tj)| =

4

3
N(2N2 + 1).

The error bounds are as follows.
Theorem 4.1. Let pN (x) be the polynomial interpolant of f(z) at the set of

Chebyshev zeros {sj} defined by (2.1) or extrema {tj} defined by (2.2). Suppose f(z)
is analytic in some ellipse E�, defined by (2.8), with � = eη, η > 0. Then, for each
N ≥ 2,

Zeros: max
0≤j≤N

|f ′′(sj) − p′′N (sj)|(4.2)

≤ 1

2π
C�

(
αN ψ(�) + βN φ(�)

) 1

sinh(η(N + 1))
,

Extrema: max
0≤j≤N

|f ′′(tj) − p′′N (tj)|(4.3)

≤ 1

2π
C�

(
γN ψ(�) + δN φ(�)

) 1

sinh(η) sinh(ηN)
,

where C� and φ(�) are defined by (2.20) and (2.17), respectively, and

ψ(�) = 4π
�
√
�4 + 1

(�− 1)4
.(4.4)

In addition,

αN = 2(N + 1) csc

(
π

2N + 2

)
, βN = (N + 1) cos

(
π

2N + 2

)
csc3

(
π

2N + 2

)
,

γN = 4N, δN =
2

3
N(2N2 + 1).

Bounds on errors in higher derivatives can also be obtained. For the pth deriva-
tive, the leading algebraic factor scales like O(N2p) for the Chebyshev zeros and like
O(N2p−1) for the Chebyshev extreme points.
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Abstract. Although existing adaptive finite element methods for solving second order elliptic
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right-hand side, we can even allow right-hand sides in H−1(Ω) that lie outside L2(Ω), at least when
they can be sufficiently well approximated by piecewise constants. In our final adaptive algorithm,
all tolerances depend on an a posteriori estimate of the current error instead of an a priori one; this
can be expected to provide quantitative advantages.
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a posteriori error estimator, discontinuous coefficients
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1. Introduction. For solving elliptic boundary value problems for which the so-
lution has singularities, the use of adaptive finite element methods potentially has the
advantage of a significant reduction of the computational cost, compared to nonadap-
tive methods. Although the adaptive methods that can be found in the literature
often exhibit such a reduction, they are, usually, not even proven to converge, let
alone shown to outperform nonadaptive methods. Only quite recently, in the work
of Dörfler [11], which was later extended by Morin, Nochetto, and Siebert in [15],
adaptive methods were constructed that were proven to converge. These methods
are based on an adaptive refinement strategy that guarantees the so-called saturation
property, namely that the difference between the solutions on two consecutive parti-
tions is greater than some multiple of the error in the solution on the first partition.
Exploiting Galerkin orthogonality, convergence then easily follows.

In [3], Binev, Dahmen, and DeVore added a coarsening step to the method from
[15]. Basically the idea of such a step, which has to be applied after each fixed
number of refinement steps, is to undo refinements that ultimately hardly contribute
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to a better approximation. Thanks to this coarsening, under some conditions on the
right-hand side, the resulting adaptive method was proven to be quasi-optimal in the
following sense: if the solution is such that, for some s > 0, the error in energy norm
of the best continuous piecewise linear approximations subordinate to any partition
with n triangles is O(n−s), then given an ε > 0, the adaptive method produces an
approximation with an error less than ε subordinate to a partition with O(ε−1/s)
triangles, in only O(ε−1/s) operations.

In this paper, we consider a method, as developed in [15] and extended with a
coarsening in [3], in a slightly different context: instead of working with conform-
ing partitions produced with the so-called newest vertex bisection method, we con-
sider generally nonconforming partitions produced by only “red-refinement” steps,
i.e., splittings of triangles into four congruent subtriangles. In this setting we extend
the findings from [15] and [3] on some points.

• Following [15], we consider the model problem of Poisson’s equation on a two-
dimensional domain, generalized in the sense that a piecewise constant diffusion tensor
is allowed. Assuming a so-called quasi-monotone distribution of possible jumps that
this tensor may have, all results from this paper will be proven to hold uniformly in
the size of such jumps.
• With an adaptive method, the right-hand side and the discrete Galerkin solution

subordinate to the current partition together determine the next partition via an
a posteriori error estimator. Aiming at proving optimal computational complexity,
following [3] we consider inexact solutions of the discrete systems. In addition to that,
we allow inexact right-hand sides to be used for both setting up the discrete systems
and for the evaluation of the a posteriori error estimator. This generalization can
be used to model the effect of the application of quadrature. Furthermore, it will
allow us to prove quasi-optimality of the adaptive method even for right-hand sides
in H−1(Ω) outside L2(Ω), at least when they can be sufficiently well approximated
by piecewise constants.
• We introduce a new coarsening procedure that, unlike the procedure from [3], is

based on a transformation to a wavelet basis for the space of continuous piecewise
linears subordinate to the adaptively refined partition. We expect our procedure
to have better quantitative properties, although admittedly a final answer can only
be given after performing numerical tests. Both the coarsening from [3] and our
coarsening rely on an adaptive tree approximation algorithm developed by Binev and
DeVore in [5].
• The adaptive finite element method from [3] and our first routine SOLVE1 re-

quire as input an a priori upper bound µ of the convergence rate of the algorithm
without coarsening. When one supplies a µ that is too small, quasi-optimality as a
consequence of the coarsening is not guaranteed. On the other hand, taking a µ that is
unnecessarily close to 1 will result in a quantitatively less attractive algorithm, since,
due to the coarsening, the convergence rate will be limited by this µ. In this paper,
we develop a second routine SOLVE2 in which the tolerances allowed in the inexact
Galerkin solutions and in the approximations of the right-hand side, and those re-
quired in the coarsening, are all some fixed multiples of an a posteriori estimate of the
current error. Apart from the fact that this releases the user from the task of supply-
ing this most critical parameter, the new algorithm benefits from a better convergence
rate than what might appear to be the case from an a priori worst case analysis.

Finally, let us comment on the necessity of applying a coarsening routine. In the
numerical experiments reported in [15], the partitions, although produced without
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coarsening, already seem to have a quasi-optimal cardinality. Of course, this does not
exclude the possibility that there are other examples for which coarsening is necessary.
On the other hand, it is also possible that coarsening is not a necessary ingredient of a
quasi-optimal adaptive algorithm for solving these elliptic problems, but that a proof
of such a fact is eluding us. In any case, we do not consider our construction of a
coarsening routine as being relevant for theoretical purposes only. Instead, we expect
that coarsening will be very useful inside adaptive routines for solving nonstationary
problems.

This paper is organized as follows: In section 2 our model boundary value problem
is described.

In section 3, we introduce the class of admissible partitions, which is the subclass
of all partitions that can be generated by red-refinements for which the generations of
neighboring triangles differ at most by one. We show that any partition can be refined
to an admissible one by increasing the number of triangles by, at most, a constant
factor.

In section 4, we introduce a wavelet basis for the space of continuous piecewise
linears subordinate to any admissible partition. We show that both the basis trans-
formation from wavelet to nodal basis and its inverse can be performed in optimal
computational complexity.

Our coarsening routine is defined in section 5. It is based on a transformation
to wavelet basis, an application of the adaptive tree approximation routine from [5],
and, finally, a construction of a reduced partition subordinate to which the remaining
terms in the wavelet expansion are continuous piecewise linear functions.

In section 6, an a posteriori error estimator is derived. A refinement strategy is
developed that is shown to be convergent also for inexact, but sufficiently accurate,
right-hand sides and discrete solutions.

In section 7, the coarsening routine and the convergent adaptive refinement strat-
egy are combined into an optimal adaptive finite element method.

Finally, in section 8 we derive an optimal adaptive finite element method in which
the tolerances for the errors in the right-hand side and in the discrete solution as well
as for the coarsening routine are determined by an a posteriori estimate of the current
error.

In order to avoid the repeated use of generic but unspecified constants, in this
paper by C <∼ D we mean that C can be bounded by a multiple of D, independent of

parameters which C and D may depend on. Obviously, C >∼ D is defined as D <∼ C,

and C � D as C <∼ D and C >∼ D.

2. Boundary value problem. Let Ω be a polygonal bounded domain in R
2.

We consider the following model boundary value problem in variational form: Given
f ∈ H−1(Ω), find u ∈ H1

0 (Ω) such that

a(u,w) :=

∫
Ω

A∇u · ∇w = f(w), (w ∈ H1
0 (Ω)),(2.1)

where A ∈ L∞(Ω) is a symmetric 2 × 2 matrix with ess infx∈Ωλmin(A(x)) > 0.
Further assumptions on A are collected in the forthcoming Assumption 3.8. Defining
L : H1

0 (Ω) → H−1(Ω) = (H1
0 (Ω))′ by (Lu)(w) = a(u,w), (2.1) can be rewritten as

Lu = f.

In some places we will assume that the right-hand side f ∈ L2(Ω), in which case f(w)
should be interpreted as

∫
Ω
fw.
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Aiming at results that hold uniformly in the size of variations that the spectral
radius ρ := ρ(A) may have, we introduce a weighted L2(Ω)-scalar product

〈u,w〉0 =

∫
Ω

ρuw,

and define the weighted norms

‖w‖0 = 〈w,w〉 1
2
0 , |w|1 = a(w,w)

1
2 , ‖g‖−1 = sup

0 �=w∈H1
0 (Ω)

|g(w)|
|w|1

on L2(Ω), H1
0 (Ω) and H−1(Ω), respectively. Equipped with these norms, L is an

isomorphism between H1
0 (Ω) and H−1(Ω).

For Σ ⊂ Ω, we define |w|1,Σ := (
∫
Σ

A|∇w|2) 1
2 .

3. Partitions of Ω. We shall approximate the solution of (2.1) by continu-
ous piecewise linear functions subordinate to a partition of Ω into triangles. In this
subsection we precisely describe the type of partitions to be considered.

We will use P to denote a partition of Ω, defined as a collection of closed triangles
	 such that Ω = ∪�∈P	 and meas(	 ∩ 	̃) = 0 for any two different 	, 	̃ ∈ P .

When 	 ∩ 	̃ �= ∅, such triangles will be called neighbors. A partition P̃ is called a
refinement of P , when P̃ can be constructed by, for zero or more 	 ∈ P , replacing
	 by the four subtriangles created by connecting the midpoints of edges of 	 or by
a recursive application of this elementary “red” refinement step. The above 	 will
be referred to as being the parent of its four subtriangles, called children of 	. As
expected, children of children of 	 are called grandchildren of 	.

Throughout this paper we consider only partitions P that are refinements of
some fixed initial partition P0 of Ω. Many of our statements will involve constants
that actually depend on P0. However, since P0 is assumed to be fixed, for ease of
presentation we ignore these dependencies. Clearly, any 	 ∈ P is similar to a triangle
from P0. For 	 ∈ P , gen(	) will denote the number of elementary refinement steps
needed to create 	 starting from some 	̃ ∈ P0, where gen(	̃) := 0.

We call v a vertex of P , when there exists a 	 ∈ P such that v is a vertex of 	.
A vertex v of P is called nonhanging when it is a vertex of all 	 ∈ P that contain v,
otherwise it is called a hanging vertex of P . With V̄P or VP we will denote the set
of all nonhanging vertices of P or all nonhanging, interior vertices of P , respectively.
We assume that P0 is conforming, i.e., all its vertices are nonhanging.

A vertex v of P is called regular when for all 	 ∈ P that contain v, gen(	) has
the same value; see Figure 3.1. Note that a regular vertex is nonhanging.

For a vertex v of P , the number of 	 ∈ P that contain v is called the valence of
v in P . The valence of any v of P is less than or equal to the maximum of 6 and the
maximum valence of all vertices of P0. If for a 	 ∈ P , gen(	) = max�̃∈P gen(	̃),
then its edges cannot contain hanging nodes. As a consequence, for such 	, the
number of its neighbors in P is given by the sum of the valences of its vertices minus
the sum of 6 and the number of edges of 	 on ∂Ω; this shows, in particular, that the
number of neighbors is uniformly bounded.

Proposition 3.1. For any partition P of the type we consider, there exists a
unique sequence of partitions

P0, P1, . . . , Pn
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Fig. 3.1. Regular ( ), nonhanging but nonregular (•), and hanging vertices (◦).

with max�∈Pi gen(	) = i, Pn = P , and where Pi+1 is created from Pi by refining
some 	 ∈ Pi with gen(	) = i. For convenience, we set P−1 = ∅ and so VP−1 = ∅.
The following properties are valid:

(i) VPi−1
⊂ VPi

and so VP = ∪ni=0VPi
\VPi−1

with empty mutual intersections;
(ii) a v ∈ VPi\VPi−1 is not a vertex of Pi−1, and so it is a regular vertex of Pi.
Proof. The existence and uniqueness of the sequence (Pi)i and also (i) are

obvious.
Suppose that for some 1 ≤ i ≤ n, v ∈ VPi

\VPi−1
is a vertex of Pi−1; then it is a

hanging vertex of Pi−1. So there is a 	 ∈ Pi−1 with gen(	) < i− 1 that contains v.
However, by definition of the sequence (Pi)i, such a 	 is not refined when going to
Pi, meaning that v is also a hanging vertex of Pi, which gives a contradiction.

Notation 3.2. Throughout this paper, for any partition P (or P̂ , P̃ , etc.),
by (Pi)i (or (P̂i)i, (P̃i)i, etc.) we will always mean the corresponding sequence, as
in Proposition 3.1. When we write P = Pn, we mean that P is a partition with
max�∈P gen(	) = n.

In view of the forthcoming discussion on adaptively refined partitions, we em-
phasize here that given any partition P , the definition of the corresponding sequence
(Pi)i is independent of the way P has been constructed.

Definition 3.3. A partition P a is called admissible when for all neighbors
	, 	̃ ∈ P a, |gen(	) − gen(	̃)| ≤ 1.

As will turn out later, the reason to consider this restricted class of admissible
partitions is given by the following proposition.

Proposition 3.4. Let P a be admissible. For any 	 ∈ P a with i := gen(	) > 0
the vertices of the parent 	̃ ∈ P ai−1 of 	 are regular vertices of P ai−1.

Proof. For i = 1 the statement is true. Now let i > 1. Suppose that some vertex
v of 	̃ is not a regular vertex of P ai−1. Then there exists a 	̂ ∈ P ai−1 with v ∈ 	̂
and gen(	̂) < i− 1. Since, by definition of the sequence (P ai )i, this 	̂ will never be
refined, we get a contradiction with the fact that P a is admissible.

Proposition 3.5. If P a = P an is admissible, then for any 0 ≤ i ≤ n, P ai is also
admissible.

Proof. Suppose P ai is not admissible; then it contains neighbors 	̂,	 with

gen(	̂) < gen(	) − 1. Since gen(	̂) < i, it will never be refined and so P a can-
not be admissible.

Although not all partitions are admissible, any partition has an admissible refine-
ment with a number of triangles which is at most a constant factor larger. Indeed,
given a partition P = Pn, consider the following algorithm to compute the partition
P a = P an .
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Algorithm 3.6.

P a0 := P0

for i = 0, . . . , n do

define P ai+1 as the union of Pi+1 and, when i ≤ n− 2, the collection children
of those 	 ∈ P ai that have a neighbor in Pi with grandchildren in Pi+2

od

Proposition 3.7. The partition P a produced by Algorithm 3.6 is an admissible
refinement of P with #P a <∼ #P .

Proof. The criterion to add children of a 	 ∈ P ai to Pi+1 with the construction of
P ai+1 can only be fulfilled when 	 is a neighbor of a 	̃ ∈ Pi, which was refined when

going to Pi+1, and thus with gen(	̃) = i. As we have seen, since max�∈Pa
i

gen(	) = i,

the number of neighbors in P ai of such a 	̃ is uniformly bounded. So defining λi or
λai as the number of triangles that were refined when going from Pi to Pi+1 or from

P ai to P ai+1, respectively, we have λai
<∼ λi.

Note that (P ai )0≤i≤n corresponds to P a in the sense of Proposition 3.1. Since
each time a triangle in a partition is refined the number of triangles is increased by
3, we conclude that

#P a = #P0 + 3

n−1∑
i=0

λai
<∼ #P0 + 3

n−1∑
i=0

λi = #P.

What is left to show is that P a is admissible. Obviously, the partitions P a0
and P a1 are admissible. Suppose that there exists an 1 ≤ i ≤ n − 1 such that P ai
is admissible, whereas P ai+1 is not. Then, there exist neighbors 	, 	̃ ∈ P ai+1 with

gen(	) − gen(	̃) > 1. Since P ai is admissible, necessarily gen(	) = i + 1 and
gen(	̃) = i− 1.

If 	 ∈ Pi+1, then 	̃ ∈ P ai−1 has a neighbor in Pi−1 with grandchildren in Pi+1.

So, by construction, 	̃ would have been refined when going to P ai , which gives a
contradiction with the assumption that 	̃ ∈ P ai−1.

If 	 ∈ P ai+1\Pi+1, then by construction, its parent 	f ∈ P ai has a neighbor 	̂∈Pi
with grandchildren in Pi+2, whereas obviously also 	f ∈ P ai and 	̃ are neighbors.

Let 	ff ∈ P ai−1 and 	̂f ∈ Pi−1 denote the parents of 	f and 	̂, respectively. We

are going to show that 	̂f and 	̃ are neighbors in P ai−1, meaning, because 	̂f has

grandchildren in Pi+1, that 	̃ must have been refined when going to P ai , resulting in
a contradiction with the assumption that 	̃ ∈ P ai+1. We have to distinguish between

two cases: If 	f is the central subtriangle of 	ff , then both 	ff and 	̂f , and 	ff

and 	̃ share an edge, and so 	̂f and 	̃ are neighbors (cf. left picture in Figure 3.2).
If 	f is a corner subtriangle of 	ff , i.e, 	f and 	ff share a vertex v, then v is also

a vertex of both 	̂f and 	̃, again showing that they are neighbors (cf. right picture
in Figure 3.2).

With P ∗
0 = P0, by induction on i we construct the partition P ∗

i from P ∗
i−1 by

applying a red refinement step to all 	 ∈ P ∗
i−1, i.e., P ∗

i is the result of applying recur-
sively i uniform refinement steps to P0. Note that these definitions are in accordance
with Notation 3.2. We define

V∗ = ∪i≥0VP∗
i
\VP∗

i−1
;

this set contains VP for any partition P = Pn. Obviously, for 0 ≤ i ≤ n, VPi ⊂ VP∗
i
,

and Proposition 3.1(ii) shows that VPi\VPi−1 ⊂ VP∗
i
\VP∗

i−1
.
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	̂f

	f

	̃
	f

	̂f

	̃

v	̂

Fig. 3.2. Illustration with the proof of Proposition 3.7.

Finally, in this subsection, having defined the initial partition P0, we are able to
formulate all assumptions on the coefficient matrix A that we will need.

Assumption 3.8. In addition to assuming that A ∈ L∞(Ω) is a symmetric 2 × 2
matrix with ess infx∈Ωλmin(A(x)) > 0, we assume that A � ρ(A)id, uniformly over
the domain (isotropic diffusion), and that A is piecewise constant with respect to P0.
Further, following [12], we assume that ρ = ρ(A) is quasi-monotone with respect
to P0. That is, defining for v ∈ V̄P0

, P0(v) = {	 ∈ P0 : v ∈ 	} and 	(v) =
argmax{ρ|� : 	 ∈ P0(v)}, we assume that for some absolute constant c > 0, for all

v ∈ V̄P0 and 	 ∈ P0(v) there exist 	 = 	1, . . . ,	m = 	(v) such that 	i shares an
edge with 	i+1 and ρ|�i

≤ cρ|�i+1
. Moreover, if v ∈ V̄P0

\VP 0 , then in addition we

assume that there exists a 	 ∈ P0(v) having an edge on ∂Ω such that ρ|�(v)
≤ cρ|�.

Under these assumptions, all of our results that depend on A should be interpreted
as ones that hold uniformly in (ρ|�)�∈P0 .

4. Finite element spaces and bases, and Galerkin approximations. For
a given partition P , let SP ⊂ H1

0 (Ω) denote the space of continuous, piecewise linear
functions subordinate to P which vanish at ∂Ω. The solution uP ∈ SP of

a(uP , wP ) = f(wP ) (wP ∈ SP ),(4.1)

is called the Galerkin approximation of the solution u of (2.1). Defining LP : SP →
(SP )′ ⊃ H−1(Ω) by (LPuP )(wP ) = a(uP , wP ), the solution of (4.1) is L−1

P f .
On some places we will replace the right-hand side f by some approximation from

S0
P , being defined as the space of functions that are piecewise constant with respect

to P .
If P̃ is a refinement of P , then SP ⊂ SP̃ and S0

P ⊂ S0
P̃

. Each u ∈ SP is uniquely
determined by its values on VP , and so, in particular, #VP = dimSP . Defining, for
v ∈ VP , φvP ∈ SP by

φvP (ṽ) =

{
1, v = ṽ,
0, v �= ṽ ∈ VP ,

the set

{φvP : v ∈ VP }

is a basis for SP , called the nodal basis.
One easily verifies the following result.



AN OPTIMAL ADAPTIVE FINITE ELEMENT METHOD 2195

Lemma 4.1. Let v be a regular vertex of a partition P . Then, with i := gen(	)
for any (and thus all) 	 ∈ P that contain v, we have that φvP∗

i
∈ SP .

Proposition 4.2. For any partition P = Pn, ∪ni=0{φvP∗
i

: v ∈ VPi\VPi−1} is a
basis for SP , called hierarchical basis.

Proof. Proposition 3.1(ii) and Lemma 4.1 show that for v ∈ VPi\VPi−1 , φ
v
P∗

i
∈

SPi ⊂ SP . Since φvP∗
i

vanishes on VPi−1 , by induction on i we conclude that for

given scalars (dv)v∈VP
the interpolation problem of finding scalars (cv)v∈VP

with∑n
i=0

∑
v∈VPi

\VPi−1
cvφ

v
P∗

i
(ṽ) = dṽ (ṽ ∈ VP ) has a unique solution. Since dimSP =

#VP =
∑n
i=0 #(VPi

\VPi−1
) by Proposition 3.1(i), the proof is completed.

Besides the nodal and hierarchical bases, for admissible partitions P a we introduce
another basis for SPa , which, as we shall see, is appropriately called a wavelet basis.

Let v ∈ V∗; then there exists a unique i ∈ N such that v ∈ VP∗
i
\VP∗

i−1
. When

i > 0, v is the midpoint of the common edge of two triangles 	1,	2 ∈ P ∗
i−1. Let

us denote by v1(v), . . . , v4(v) the vertices of these 	1,	2, with v2(v), v3(v) being the
vertices on the edge containing v; see Figure 4.1. For some scalars µv,j which will be
specified later on, with µv,j := 0 when vj(v) ∈ ∂Ω, we define

ψv := φvP∗
i
−

4∑
j=1

µv,jφ
vj(v)
P∗

i−1
,(4.2)

and, for convenience, for v ∈ VP∗
0

we set ψv = φvP∗
0
.

v v4(v)

v2(v)

v3(v)

v1(v)

	1

	2

Fig. 4.1. Definition of vj(v).

Proposition 4.3. If P a is admissible, then

{ψv : v ∈ VPa}(4.3)

is a basis for SPa .
Proof. Obviously {ψv : v ∈ VP0} is a basis for SP0 . Assuming that {ψv : v ∈

VPa
n−1

} is a basis for SPa
n−1

, the same argument as the one that was applied in the
proof of Proposition 4.2 shows that {ψv : v ∈ VPa

n−1
} ∪ {φvP∗

n
: v ∈ VPa

n
\VPa

n−1
} is a

basis for SPa
n
. Proposition 3.1(ii) shows that each v ∈ VPa

n
\VPa

n−1
is the midpoint of

	1,	2 ∈ P an−1 with gen(	1) = gen(	2) = n − 1, both of which are refined in the
transition to P an . Proposition 3.4 shows that each of v1(v), . . . , v4(v), which are the

vertices of 	1 and 	2, is a regular vertex of P an−1, obviously with gen(	̂) = n − 1

for any and thus all 	̂ ∈ P an−1 which contain this vertex. From Lemma 4.1 we now

conclude that
∑4
j=1 µv,jφ

vj(v)
P∗

i−1
∈ SPa

n−1
, from which it follows that also {ψv : v ∈ VPa

n
}

is a basis for SPa
n
.

For P a = P an and wPa ∈ SPa given by its values (wPa(v))v∈V̄Pa , i.e., the coeffi-
cients of its representation with respect to the nodal basis, where wPa(v) := 0 when
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v ∈ V̄Pa\VPa , an application of the following routine yields the coefficients (cv)v∈VPa

of its representation with respect to the wavelet basis (4.3).
Algorithm 4.4.

cv := wPa(v) (v ∈ V̄Pa)
for i = n, . . . , 1 do

cv := cv − 1
2 (cv2(v) + cv3(v)) (v ∈ VPa

i
\VPa

i−1
)

cvj(v) := cvj(v) + cvµv,j (v ∈ VPa
i
\VPa

i−1
, 1 ≤ j ≤ 4)

od

Conversely, if wPa ∈ SPa is given by its coefficients (cv)v∈V̄Pa with respect to the
wavelet basis (4.3), where cv := 0 when v ∈ V̄Pa\VPa , then the values (wPa(v))v∈VPa

are obtained from the following routine.
Algorithm 4.5.

for i = 1, . . . , n do

cvj(v) := cvj(v) − cvµv,j (v ∈ VPa
i
\VPa

i−1
, 1 ≤ j ≤ 4)

cv := cv + 1
2 (cv2(v) + cv3(v)) (v ∈ VPa

i
\VPa

i−1
)

od

wPa(v) := cv (v ∈ VPa)
One directly infers the following result.
Proposition 4.6. Both of the above algorithms for switching between the repre-

sentation of a w ∈ SPa in terms of the nodal basis to its representation in terms of
(4.3), and vice versa, take O(dimSPa) operations.

Now we come to the specification of the coefficients µv,j from (4.2). We take

µv,j =
3(ρ|�1

meas(	1) + ρ|�2
meas(	2))

8
∑

{�∈P∗
i−1,vj(v)∈�} ρ|�meas(	)

when j ∈ {2, 3} and vj(v) �∈ ∂Ω,(4.4)

and µv,j = 0 otherwise. An alternative choice of the coefficients will be discussed
later, in Remark 4.9. When both v2(v), v3(v) �∈ ∂Ω, a simple calculation reveals that,
for i ≥ 1 and v ∈ VP∗

i
\VP∗

i−1
,
∫
Ω
ρψv = 0, so that it is appropriate to call ψv a wavelet.

For coefficient matrices A that satisfy Assumption 3.8, a combination of results
from [19, 18, 12] shows the following result.

Theorem 4.7. With ψ̄v := ψv/|ψv|1,

{ψ̄v : v ∈ V∗}(4.5)

is a Riesz basis for H1
0 (Ω) equipped with | · |1. For the sake of completeness we

emphasize that this result is valid uniformly in (ρ|�)�∈P0
.

Defining |||w|||1 = (
∑
v∈V∗ c̄

2
v)

1
2 , where w =

∑
v∈V∗ c̄vψ̄

v is the unique expansion of

w ∈ H1
0 (Ω), with λΨ̄,ΛΨ̄ > 0 we will denote the largest or smallest constant for which

λΨ̄||| · |||21 ≤ | · |21 ≤ ΛΨ̄||| · |||21(4.6)

and κΨ̄ := ΛΨ̄

λΨ̄
. We note that this equivalence between the | · |1-norm of a function in

H1
0 (Ω) and the �2-norm of its, generally infinite, coefficient vector holds, in particular,

for functions from SPa for admissible P a, which by Proposition 4.3 have a finite
wavelet expansion.

Remark 4.8. Since the proof of Theorem 4.7 can only be deduced by combining
results from different papers, we briefly comment on its derivation. For any 	 ∈
∪i≥0P

∗
i , let I� : C(	) → P1(	) be the nodal value interpolant, consider the bilinear
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form 〈〈u,w〉〉� := 1
3meas(	) ·∑v vertex of � u(v)w(v), and let

〈u,w〉� := 〈〈I�u, I�w〉〉� +

4∑
k=1

[〈〈u,w〉〉�k
− 〈〈I�u, I�w〉〉�k

] ,

where 	1, . . . ,	4 are the children of 	. Note that for u,w ∈ P1(	), 〈u,w〉� =

〈〈u,w〉〉� which is a scalar product on P1(	). Let Y� : C(	)∩∏4
k=1 P1(	k) → P1(	)

be the orthogonal projector with respect to 〈·, ·〉�. Finally, for i ≥ 1, on SP∗
i
× SP∗

i

let

〈u,w〉SP∗
i

:=
∑

�∈P∗
i−1

ρ|�〈u,w〉�.

Using that {φvP∗
i−1

: v ∈ VP∗
i−1

} is an orthogonal set with respect to 〈·, ·〉SP∗
i
, in [18,

section 6] it was shown that for i ≥ 1 the sets

{ψv/‖ψv‖0 : v ∈ VP∗
i
\VP∗

i−1
},

defined by (4.2), (4.4), are uniform Riesz bases for SP∗
i
∩ S

⊥〈 , 〉SP∗
i

P∗
i−1

equipped with

‖ · ‖0, where “uniform” refers both to the parameter i and to (ρ|�)�∈P0
.

With

t := sup
0 �=w∈C(�)∩∏4

k=1 P1(�k)

〈w,w〉� − 〈(I − Y�)w, (I − Y�)w〉�∑4
k=1〈〈w,w〉〉�k

,

whose value is independent of the triangle 	, it follows from [19, Thm. 3.1 and (4.7)]
that in case of constant A = id, for 3

2 > s > log2

√
t the infinite collection

∪i≥0{2(s−1)iψv : v ∈ VP∗
i
\VP∗

i−1
}

is a Riesz basis for Hs
0(Ω). Some calculations show that t = 181

64 , and so
√
t ≈ .7499,

meaning in particular that (4.5) is a Riesz basis for H1
0 (Ω).

With Qi : L2(Ω) → SP∗
i

being the 〈 , 〉0-orthogonal projector onto SP∗
i
, and

Q−1 := 0, for coefficient matrices A that satisfy Assumption 3.8, it was shown in [12]
that

‖w‖2
1 �

∞∑
i=0

4i‖(Qi −Qi−1)w‖2
0 (w ∈ H1

0 (Ω)),

uniformly in (ρ|�)�∈P0
. As was shown in [19], from this result and the fact that t < 1

it even follows that (4.5) is a Riesz basis for H1
0 (Ω) equipped with | · |1, uniformly in

(ρ|�)�∈P0 .

Remark 4.9. For constant A = id, in [8] other values for the coefficients µv,1, . . . ,
µv,4 from (4.2) were proposed; generally, all four of these coefficients are nonzero.
Although uniform refinements of an arbitrary initial partition are considered, just as
outlined above, for admissible P a = P an a subset of the wavelet basis for SP∗

n
spans

SPa . For some s̃ > 0 and s ∈ (−s̃, 3
2 ), the infinite collection of properly scaled wavelets

from [8] is shown to generate a Riesz basis for

Hs(Ω) =

{
Hs

0(Ω) when s ≥ 0,
(H−s

0 (Ω))′ when s < 0.
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On regular “type-I triangulations” of the whole of R
2, the wavelet proposals from

[18, sect. 6] or [8] reduce to the so-called coarse-grid stabilized HB-systems from [13]
with parameters a = 1

8 or a = − 3
16 , respectively. There, it is shown that for these

uniform triangulations the exact Hs(R2) stability ranges are s ∈ (0.022818, 3
2 ) and

s ∈ (−0.440765, 3
2 ), respectively (cf. also [9]).

Finally, numerical results [13, Table 1.2] show that both wavelet bases are also
quantitatively well conditioned (κΨ̄ is approximately 16 or 10, respectively, for A = id
and P0 being the standard regular partition of the unit square into 8 triangles, so that
#VP 0 = 1).

5. A coarsening algorithm. In [6], a coarsening step was introduced into an
adaptive algorithm in the framework of a wavelet method. The idea of such a step,
which has to be applied after each fixed number of iterations that produce increasingly
more accurate approximations, is to remove a possibly large number of small terms in
the current approximation that hardly contribute to its quality but which, because of
their number, spoil the complexity. With wavelet methods such “small terms” stand
for terms in a wavelet expansion with small coefficients, and in our finite element
setting they correspond to a representation of the approximation as a piecewise linear
function subordinate to a locally fine partition, whereas it is close to being linear on
the union of these triangles.

Given some current approximation defined on some partition, in order to find
a more efficient representation without increasing the error too much, one cannot
simply join arbitrary collections of triangles since, generally, their union will not be
a triangle. Instead one can only join groups of all siblings of one parent, that is, one
has to respect the underlying tree structure. In view of this, in [3], for each triangle
in the tree associated to the partition, an error functional was defined. It was shown
that, for any subtree, the �2-norm of these error functionals over the leaves is bounded
by some multiple of the error of the best continuous piecewise linear approximation
subordinate to the partition defined by this subtree. Giving a tolerance that one
allows to be added to the current error, a tree-coarsening algorithm from [5] was run,
which, modulo some constant factor, yields the smallest subtree for which the above
�2-norm is less than this tolerance. The �2-norm could not be shown to be equivalent
to the | · |1-norm of the error in the best approximation. Therefore, this procedure
had to be completed by a number of uniform refinement steps.

In this paper, for the different type of partitions we consider, based on ideas
from [3, 5] an alternative coarsening procedure is developed, which we hope is more
attractive for practical computations. Given a current approximation from SP , in case
P is not admissible, we will first embed it into SPa , where P a is constructed using
Algorithm 3.6. Next, we determine its finite set of wavelet coefficients. Now using
the norm equivalence (4.6), an obvious coarsening procedure would be just to order
these coefficients by their modulus, and then to remove coefficients, starting with the
smallest one, until the tolerance is met. Yet, the task is not to find an approximation
with a minimum number of wavelet coefficients, but to find an approximation from
a finite element space subordinate to a partition that has, modulo some constant
factor, a minimum number of triangles, and the suggested procedure will generally
fail to deliver this. Therefore we will equip the infinite index set V∗ of all wavelets with
a tree structure, and run the algorithm from [5] to find a subtree approximation at a
distance less than or equal to the tolerance, which has, modulo some constant factor,
a minimum number of terms. Since the tree structure will be designed so that for any
subtree Ṽ we can construct a partition P such that span{ψv : v ∈ Ṽ } ⊂ SP , where
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#P <∼ #Ṽ , we will be able to conclude that we found an approximation subordinate to
a partition that has, modulo some constant factor, a minimum number of triangles. An
advantage of our coarsening procedure will be that it not only gives a (quasi-) optimal
partition, but that, at the same time, it also yields a (quasi-) optimal continuous
piecewise linear approximation subordinate to this partition.

The tree structure with which we equip V∗ is defined as follows. The vertices from
VP�

0
are the roots of the tree. For i = 1 and v ∈ VP∗

i
\VP∗

i−1
, we assume that at least

one of the vertices v1(v), . . . , v4(v) is not on ∂Ω, and we just pick one of them to be
the parent of v. Now let i > 1 and v ∈ VP∗

i
\VP∗

i−1
. At least one of v1(v), . . . , v4(v) is

in VP∗
i−1

\VP∗
i−2

, and we may pick just one of them to be the parent of v. In the case
of multiple choices, a deterministic rule to make the selection is given, for example,
by the following: If one of v2(v) or v3(v) is in V̄P∗

i−2
, then the other is in VP∗

i−1
\VP∗

i−2
,

and we define it to be the parent of v. Otherwise, if both v2(v), v3(v) ∈ V̄P∗
i−1

\V̄P∗
i−2

,

then one of the remaining v1(v), v4(v) is in V̄P∗
i−2

, and we call it v1(v), whereas the

other, thus called v4(v), is in V̄P∗
i−1

\V̄P∗
i−2

. After numbering v1(v), v2(v), v3(v) in a
clockwise direction, we select the first of v2(v), v3(v), v4(v) ∈ VP∗

i−1
\VP∗

i−2
to be the

parent of v. The number of children of any parent in this tree is uniformly bounded
and is only dependent on P0.

For w ∈ H1
0 (Ω), let w =

∑
v∈V∗ c̄vψ̄

v be its expansion with respect to (4.5).

Obviously, for any Ṽ ⊂ V∗, its best approximation with respect to |||·|||1 from span{ψ̄v :
v ∈ Ṽ } is

∑
v∈Ṽ c̄vψ̄

v. The squared error E(Ṽ ) of this approximation with respect to

||| · |||1 is E(Ṽ ) =
∑
v∈V∗\Ṽ |c̄v|2.

We will call Ṽ ⊂ V∗ a subtree when it contains all roots VP∗
0
, and when, for

any v ∈ Ṽ , all its ancestors and all its siblings, i.e., those w ∈ V∗ that have the
same parent as v, are also in Ṽ . The set of leaves L(Ṽ ) is defined as the set of
those v ∈ Ṽ which have no children in Ṽ . Defining for v ∈ V∗ the error functional
e(v) :=

∑
v̄ a descendant of v |c̄v̄|2, we have E(Ṽ ) =

∑
v∈L(Ṽ ) e(v).

Following [5], we define a modified error functional ẽ(v) for v ∈ V∗ as follows. For
the roots v ∈ VP∗

0
, ẽ(v) := e(v). Assuming that ẽ(v) has been defined, then for all of

its children v1, . . . , vm,

ẽ(vj) :=

∑m
i=1 e(vi)

e(v) + ẽ(v)
ẽ(v).

Now given a w ∈ H1
0 (Ω) and a tolerance ε > 0, the thresholding second algorithm

from [5] for determining a quasi-optimal subtree approximation runs as follows.
Algorithm 5.1.

Ṽ := VP∗
0

while E(Ṽ ) > ε2 do

compute ρ = maxv∈L(Ṽ ) ẽ(v)

forall v ∈ L(Ṽ ) with ẽ(v) = ρ do add all children of v to Ṽ od

od

Remark 5.2. During the evaluation of Algorithm 5.1, the values ẽ(v) for the
current leaves should be stored as an ordered list. As a consequence, with Ṽ being
the subtree at termination, the operation count of Algorithm 5.1 will contain a term
O(#Ṽ log((#Ṽ )) due to the insertions of ẽ(v) for newly created leaves in this list.
Since the other costs of the algorithm are O(#Ṽ ), asymptotically the cost of these
insertions will dominate. Although it seems unlikely that this will happen with prac-
tical problem sizes, for mathematical completeness we sketch here a modification with
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which the log-factor is avoided (see [1, 14, 20] for solutions of a similar problem in a
wavelet context).

Noting that ẽ(vj) ≤ ∑m
i=1 e(vi) ≤ e(v) ≤ |||w|||21, we may store the current leaves

v in binary bins V0, . . . , Vq, where for 0 ≤ i ≤ q − 1, Vi contains those v with ẽ(v) ∈
(2−(i+1)|||w|||21, 2−i|||w|||21], and the remaining v, thus with ẽ(v) ≤ 2−q|||w|||21, are put into
Vq. Instead of replacing all v ∈ L(Ṽ ) with maximal ẽ(v) by their children, in each
iteration of the while-loop we replace just one v taken from the first nonempty bin by
its children. Again, from

∑m
i=1 e(vi) ≤ e(v) we have ẽ(vj) ≤ ẽ(v) meaning that for

any i, once V0, . . . , Vi got empty they will remain empty.
If q is chosen so that during the iteration we only extract v from bins Vi with

i < q, then the corresponding ẽ(v) will be at most a factor 2 smaller than the current
maximal value of ẽ. As a consequence, one may verify that, with the exception of the
operation-counts, all results proven in [5] about Algorithm 5.1 are also valid for this
modified version (making use of the property

∑m
i=1 e(vi) ≤ e(v), which is stronger

than the assumption made in [5]; only (5.13) of [5] has to be adapted).
With Ṽ being the subtree at termination, the number of operations required

by this modified Algorithm 5.1 is <∼ #Ṽ + q, where q is the maximum number of
bins that have to be generated or inspected for containing leaves. Thinking of the
situation when in the course of the iteration the maximum value of ẽ over the leaves
varies largely in size, note that, generally, q cannot be bounded in terms of #Ṽ .

We will apply the modified Algorithm 5.1 only in the situation when there exists
a finite subtree V̄ ⊂ V∗ such that

e(v) = 0 (v ∈ L(V̄ )),(5.1)

which allows us to make a suitable choice for q. Note that the subtree Ṽ at termination

satisfies Ṽ ⊂ V̄ . The definition of ẽ(v) shows that
∑m
j=1

e(vj)
ẽ(vj)

= 1 + e(v)
ẽ(v) . A recursive

application of this formula gives
∑
v∈L(Ṽ )

e(v)
ẽ(v) = #(Ṽ \L(Ṽ )) + #VP∗

0
≤ #Ṽ ≤ #V̄ ,

and so E(Ṽ ) ≤ #V̄ maxv∈L(Ṽ ) ẽ(v). We conclude that the modified Algorithm 5.1

terminates before any leaf v with ẽ(v) ≤ ε2/#V̄ is replaced by its children. Solving for
the smallest q ∈ N0 with 2−q|||w|||21 = ε2/#V̄ yields q = max{0, �log2(ε

−2|||w|||21#V̄ )�};
such a q thus satisfies the assumption we made earlier.

The analysis of Algorithm 5.1 from [5], together with the additions from the above
remark concerning our slight modification, yields the following result.

Proposition 5.3 (see [5, Corollary 5.3]). The subtree Ṽ yielded by (the modified)
Algorithm 5.1 satisfies E(Ṽ ) ≤ ε2. There exists absolute constants t1, T2 > 0, neces-
sary with t1 ≤ 1 ≤ T2, such that if V̂ is a subtree with E(V̂ ) ≤ t1ε

2, then #Ṽ ≤ T2#V̂ .
The number of evaluations of e and the number of additional arithmetic operations
required by the modified Algorithm 5.1 are <∼ #Ṽ +max{0, log(ε−2|||w|||21#V̄ )}, with V̄
being any subtree satisfying (5.1).

We are now almost ready to define our coarsening routine. Inside this routine,
for some admissible partition P a we will apply the (modified) Algorithm 5.1 to a
wPa ∈ SPa . Such a wPa has an expansion wPa =

∑
v∈VPa

c̄vψ̄
v, i.e., c̄v = 0 for

v ∈ V∗\VPa . Although VPa is nearly a subtree since it contains the roots VP0 as well
as all ancestors of any v ∈ VPa , it may contain v ∈ VPa with siblings outside VPa .
As a consequence, the (modified) Algorithm 5.1 may output a subtree Ṽ containing
such siblings. Yet, since the corresponding wavelet coefficients are zero, these siblings
do not contribute to the approximation and can therefore be discarded. An efficient
way of implementing this is to call the algorithm pretending that V∗ is VPa so that
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siblings outside VPa will never be created. The set V̄ from (5.1) can be taken to be
equal to VPa .
COARSE[P,wP , ε] → [P̃ a, wP̃a ] :
% P = Pn is some admissible partition, wP ∈ SP is given by its values (wP (v))v∈VP

% and ε > 0. The output P̃ a is an admissible partition, and wP̃a ∈ SP̃a is given by
% its values (wP̃a(v))v∈VP̃a .

(i) When P is admissible, let P a = P ; otherwise compute an admissible refine-
ment P a of P by applying Algorithm 3.6. Compute the values (wPa(v))v∈VPa

of wPa := wP .
(ii) Compute the wavelet coefficients (c̄v)v∈VPa of wPa using Algorithm 4.4.
(iii) Compute recursively (e(v))v∈VPa starting with each v ∈ VP 0 as follows:

if v has no children in VPa then e(v) := 0
else e(v) :=

∑
{ṽ∈VPa :ṽ is a child of v} e(ṽ) + c̄2ṽ fi

(iv) Apply the modified Algorithm 5.1, with q :=max{0,�log2(ε
−2|||wPa |||21#VPa)�},

yielding a set Ṽ ⊂ VPa .
(v) Determine a partition P̃ as follows:

P̃0 := P0, i := 1

while Ṽ ∩ (VP∗
i
\VP∗

i−1
) �= ∅ do

construct P̃i from P̃i−1 by refining those 	 ∈ P̃i−1 that

contain a v ∈ Ṽ ∩ (VP∗
i
\VP∗

i−1
), i:=i+1

od

(vi) Apply Algorithm 3.6 to determine an admissible refinement P̃ a of P̃ . Note
that Ṽ ⊂ VP̃ ⊂ VP̃a , and thus that wP̃a :=

∑
v∈Ṽ c̄vψ̄

v ∈ SP̃a .
(vii) Apply Algorithm 4.5 to compute (wP̃a(v))v∈VP̃a .

Theorem 5.4. (a) [P̃ a, wP̃a ] := COARSE[P,wP , ε] satisfies |||wP −wP̃a |||1 ≤ ε.

There exists an absolute constant D > 0, such that for any partition P̂ for which there

exists a wP̂ ∈ SP̂ with |||wP − wP̂ |||1 ≤ t
1
2
1 ε, we have that #P̃ a ≤ D#P̂ .

(b) The call requires <∼ #P + max{0, log(ε−1|||wP |||1)} arithmetic operations.
Proof. (a) The first statement follows by construction. Let (c̄v)v∈V∗ be the wavelet

coefficients in the expansion wP =
∑
v∈V∗ c̄vψ̄v. Let P̂ , wP̂ ∈ SP̂ with |||wP −wP̂ |||1 ≤

t
1
2
1 ε. Let P̂ a be the admissible refinement of P̂ constructed by applying Algorithm 3.6,

and let (c̄v)v∈VP̂a be the wavelet coefficients of wP̂ ∈ SP̂ ⊂ SP̂a . Let V̂ be the

enlargement of VP̂a by adding all siblings of all v ∈ VP̂a to this set. Then V̂ is a

subtree with #V̂ <∼ #VP̂a
<∼ #P̂ a <∼ #P̂ . Because of

E(V̂ ) =
∑

v∈V∗\V̂
|c̄v|2 ≤

∑
v∈V∗

|c̄v − c̄v|2 = |||wP − ŵP |||21 ≤ t1ε
2,

an application of Proposition 5.3 shows that Ṽ constructed in (iv) satisfies #Ṽ ≤
T2#V̂ . The proof is completed by noting that the partitions P̃ and P̃ a constructed
in (v) and (vi) satisfy #P̃ a <∼ #P̃ <∼ #Ṽ .

(b) The number of arithmetic operations required by (i)–(iii) is <∼ #P a <∼ #P .

Since #VPa
<∼ #P a <∼ #P , Proposition 5.3 shows that (iv) requires <∼ #Ṽ +

max{0, log(ε−2|||wP |||21#VPa)} <∼ #P + max{0, log(ε−1|||wP |||1)} arithmetic operations.

The number of arithmetic operations required by (v)–(vii) is <∼ #Ṽ <∼ #P .
Had the unmodified Algorithm 5.1 been applied inside COARSE, the required

number of arithmetic operations would have been <∼ #P log(#P ). In contrast
with such a log-factor, for our application it will turn out that the log-term from
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Theorem 5.4(b) is completely harmless. The next corollary shows that if for u ∈
H1

0 (Ω) and s > 0 the errors of the best approximations from any SP with #P ≤ n are
O(n−s), then given any ε > 0, a partition P and a wP ∈ SP with |u − wP |1 ≤ ε, by
allowing the tolerance to increase by some suitable, sufficiently large constant factor,
the coarsening procedure yields an (admissible) partition P̃ a and a wP̃a ∈ SP̃a with

|u − wP̃a |1 <∼ ε and #P̃ a <∼ ε−1/s, which, in view of the assumption, is the smallest
size, modulo some constant factor, one can generally expect for an approximation
with this accuracy. The short proof of this corollary is based on an argument taken
from [3, proof of Theorem 4.9].

Corollary 5.5. Let γ > t
− 1

2
1 . Then, for any ε > 0, u ∈ H1

0 (Ω), a partition P ,
wP ∈ SP with |||u − wP |||1 ≤ ε, for [P̃ a, wP̃a ] := COARSE[P,wP , γε] we have that
|||u− wP̃a |||1 ≤ (1 + γ)ε, and

P̃ a ≤ D#P̂

for any partition P̂ with infwP̂∈SP̂
|||u− wP̂ |||1 ≤ (t

1
2
1 γ − 1)ε.

Proof. The first statement is an obvious consequence of Theorem 5.4. The second
one also follows from this theorem using that

inf
wP̂∈SP̂

|||wP − wP̂ |||1 ≤ |||u− wP |||1 + inf
wP̂∈SP̂

|||wP̂ − u|||1 ≤ ε+ (t
1
2
1 γ − 1)ε = t

1
2
1 γε.

6. A convergent adaptive refinement strategy. We derive an a posteri-
ori estimate of the error in the Galerkin approximation (4.1) of the solution of the
boundary value problem (2.1) where we temporarily assume that the right-hand side
f ∈ L2(Ω). Second, under the assumption that f is piecewise constant with respect
to the current partition, we derive a refinement strategy which guarantees that the
difference between the Galerkin solutions on the new and old partition is greater than
some fixed multiple of the error estimate for the solution on the old partition. Ex-
ploiting Galerkin orthogonality, we can therefore conclude that the error in the new
solution is less than some absolute constant times the error in the old solution.

This section is largely based on ideas from [15] by Morin, Nochetto, and Siebert on
the construction of an adaptive finite element method that can be proven to converge.
The following are new aspects.

• We consider a different type of partitions (nonconforming ones generated by
red-refinements vs. conforming ones generated by newest vertex bisection).

• Under Assumption 3.8 our results are valid uniformly in the size of jumps of
ρ = ρ(A).

• We use approximations of the right-hand side for setting up the discrete
systems, with which the application of quadrature can be modeled, and, as
in [3], we solve these systems inexactly. We evaluate the a posteriori error
estimator using the inexact discrete solution and the approximate right-hand
side. Because of the latter we can allow right-hand sides in H−1(Ω) that lie
outside L2(Ω), at least when they can be sufficiently well approximated by
piecewise constants.

We start by introducing some notation. We call e an edge of a partition P , when
e is an edge of some 	 ∈ P and e connects two vertices from V̄P . Note that since we
allow nonconforming partitions, not all edges of 	 ∈ P are edges of P . With ĒP or
EP , respectively, we denote the set of all edges of P or all edges of P which are not
part of ∂Ω. Note that for an admissible partition P a, any edge e ∈ EPa is either the
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common edge of 	1,	2 ∈ P a, or it is the common edge of 	1, 	̂, where 	1 ∈ P a

and 	̂ is the parent of four triangles in P a.
For e ∈ EP and u ∈ SP , we set

ηe(u) :=
diam(e)

max{ρ|e− , ρ|e+}
‖[A∇u]e · ne‖2

L2(e)
,

where ne is a unit vector orthogonal to e, [A∇u]e denotes the jump of A∇u in the
direction of ne, and ρ|e± = ρ(x ± δne) for arbitrary x ∈ e and δ > 0 small enough.
For 	 ∈ P and f ∈ L2(Ω), we set

ζ�(f) :=
diam(	)2

ρ|�
‖f‖2

L2(�),

and finally,

E(P, f, u) :=

⎡⎣∑
�∈P

ζ�(f) +
∑
e∈EP

ηe(u)

⎤⎦
1
2

.

The a posteriori error estimate given in the following theorem extends results
from [2, 17] for conforming partitions to admissible nonconforming partitions.

Theorem 6.1. There exists an absolute constant C1, such that for any f ∈ L2(Ω)
and an admissible partition P a, with u := L−1f and uPa := L−1

Paf , we have that

|u− uPa |1 ≤ C1E(P a, f, uPa).

Proof. For any w ∈ H1
0 (Ω), wPa ∈ SPa , by the Galerkin orthogonality and

because A is piecewise constant, integration by parts shows that

a(u− uPa , w) = a(u− uPa , w − wPa) =

∫
Ω

f(w − wPa) − a(uPa , w − wPa)

=
∑

�∈Pa

∫
�
f(w − wPa) −

∑
e∈EPa

∫
e

([A∇uPa ]e · ne)(w − wPa),(6.1)

where n� denotes the unit exterior normal to 	.
It was shown in [16, pp. 17–18] that for any triangle 	 and any of its vertices v,

there exists a ϕ(	, v) ∈ L∞(	) such that
∫
� ϕ(	, v)p = p(v) for all polynomials p

of degree 1, and ‖ϕ(	, v)‖L∞
<∼ meas(	)−1 independently of 	. For each v ∈ VPa

we now select 	v = argmax{ρ|� : 	 ∈ P a, v ∈ 	}, and define wPa ∈ SPa by

wPa(v) =
∫
�v

ϕ(	v, v)w. For v ∈ V̄Pa\VPa , we set 	v = ∅.
We start by estimating the first sum from (6.1). Let 	 ∈ P a, say 	 ∈ P ai .

The triangle 	 has between 0 and 3 hanging vertices. Since P a is admissible, by
Proposition 3.4 each of these hanging vertices is the midpoint of an edge connecting
two vertices from V̄Pa

i−1
. In the following we consider the case when 	 has one hanging

vertex, and so in particular i > 0, but the other cases can be treated similarly.
Let 	̃ ∈ P ai−1 be the parent of 	, v1, v2 the vertices of 	̃ such that the hanging

vertex of 	 is the midpoint of the edge connecting v1 and v2, and let v3 and v4
be the nonhanging vertices of 	; see Figure 6.1. The linear function wPa |� is the

solution of the elementary interpolation problem with data wPa(vi) (1 ≤ i ≤ 4), and
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v2v3

v4

v1

	

	̃
Fig. 6.1. Illustration with the proof of Theorem 6.1.

it is easily seen that ‖wPa‖L2(�)
<∼ diam(	) max1≤i≤4 |wPa(vi)|. By construction,

|wPa(vi)| <∼ diam(	vi)
−1‖w‖L2(�vi

), or, when vi ∈ ∂Ω, wPa(vi) = 0.
Since ρ is quasi-monotone (see Assumption 3.8), there exists a uniformly bounded

collection P a� ⊂ P a such that 	,	v1 , . . . ,	v4 ⊂ P a�, Ω� := ∪�̃⊂Pa
�
	̃ is a simply con-

nected uniformly Lipschitz domain, ρ|� <∼ inf�̃⊂Pa
�
ρ|�̃, and, when one of v1, . . . , v4 is

on ∂Ω, P a� contains a 	̃ having an edge on ∂Ω. From ‖w−wPa‖L2(�)
<∼ ‖w‖L2(Ω�), a

homogeneity argument, and either the fact that our interpolation operator reproduces
any polynomial of first degree, and, in particular, any constant, together with the
Bramble–Hilbert lemma, or, when one of v1, . . . , v4 is on ∂Ω, the Poincaré–Friedrichs
inequality, we infer that

‖w − wPa‖2
L2(�)

<∼ diam(Ω�)2|w|2H1(Ω�)
<∼

diam(	)2

ρ|�
∑

�̃∈Pa
�

ρ|�̃|w|2H1(�).

By applying the Cauchy–Schwarz inequality, we deduce that

∣∣∣∣∣ ∑�∈Pa

∫
�
f(w − wPa)

∣∣∣∣∣
2

<∼
∑

�∈Pa

diam(	)2

ρ|�
‖f‖2

L2(�)

∑
�∈Pa

ρ|�|w|2H1(�).(6.2)

Now we estimate the second sum from (6.1). Let P a = P an and e ∈ EPa , then
e = 	1 ∩	2 for some 	1,	2 ∈ ∪ni=0P

a
i . Let us assume that ρ|�1

≥ ρ|�2
. Note that

either 	1 ∈ P a or it is the parent of four triangles from P a. From the trace theorem
we have ‖w‖L2(e)

<∼ diam(e)−
1
2 ‖w‖L2(�1) + diam(e)

1
2 |w|H1(�1). With v1, v2 ∈ V̄Pa

being the endpoints of e, we have ‖wPa‖L2(e) ≤ diam(e)
1
2 max{|wPa(v1)|, |wPa(v2)|}.

From |wPa(vi)| <∼ diam(	vi)
−1‖w‖L2(�vi

), or, when vi ∈ ∂Ω, wPa(vi) = 0, we find

that ‖w − wPa‖L2(e)
<∼ diam(e)−

1
2 ‖w‖L2(�1∪�v1∪�v2 ) + diam(e)

1
2 |w|H1(�∪�1∪�2).

As above, we can extend 	1,	v1 ,	v2 to a uniformly bounded collection P ae ⊂ P a,
such that Ωe := ∪�̃⊂Pa

e
	̃ is a simply connected uniformly Lipschitz domain, ρ|�1

<∼
inf�̃⊂Pa

e
ρ|�̃, and, when v1 or v2 is on ∂Ω, P ae contains a 	̃ having an edge on ∂Ω.

Using the same arguments as above, we infer that

‖w − wPa‖2
L2(e)

<∼ diam(e)|w|2H1(Ωe)
<∼

diam(e)

max{ρ|e− , ρ|e+}
∑

�̃∈Pa
e

ρ|�̃|w|2
H1(�̃)

.
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By applying the Cauchy–Schwarz inequality, we deduce that∣∣∣∣∣ ∑
e∈EPa

∫
e

([A∇uPa ]e · ne)(w − wPa)

∣∣∣∣∣
2

<∼
∑

e∈EPa

diam(e)

max{ρ|e− , ρ|e+}
‖[A∇uPa ]e · ne‖2

L2(e)

∑
�∈Pa

ρ|�|w|2H1(�).(6.3)

On noting that
∑

�∈Pa ρ|�|w|2H1(�) � |w|21 and by substituting w = u − uPa , the

proof follows from (6.1), (6.2), (6.3).
The next lemma, which is based on [15, Lemma 4.2], gives local lower bounds

on the difference between the Galerkin solution on some partition and a refinement
of this partition. The differences with [15] are that we consider a different class of
partitions, and that our results hold uniformly in the size of jumps of ρ. Furthermore,
we simply assume that the right-hand side f is piecewise constant with respect to the
first partition; for the moment we postpone the analysis in the case of more general f .

Lemma 6.2. Let P a be an admissible partition and P̃ a refinement of P a. Let
fPa ∈ L2(Ω) be piecewise constant with respect to P a, i.e., fPa ∈ S0

Pa , and let
uPa = L−1

PafPa , uP̃ = L−1

P̃
fPa be the corresponding Galerkin solutions.

(a) Let 	1,	2 ∈ P a such that e := 	1 ∩ 	2 ∈ EPa . Assume that VP̃ contains
points interior to 	1, 	2, and e; see Figure 6.2. Then

|uP̃ − uPa |21,�1∪�2

>∼ ηe(uPa) +

2∑
i=1

ζ�i
(fPa).

�1

�2
e

Fig. 6.2. Illustration of Lemma 6.2(a).

(b) Let 	1, 	̂ such that e := 	1 ∩ 	̂ ∈ EPa , 	1 ∈ P a and 	̂ is the parent of
four triangles 	2, . . . ,	5 ∈ P a, numbered such that 	2, 	3 have an edge e2, e3 on e.
Assume that VP̃ contains points interior to 	1, 	2, 	3, e2, and e3; see Figure 6.3.
Then

|uP̃ − uPa |21,�1∪�2∪�3

>∼ ηe(uPa) +

3∑
i=1

ζ�i
(fPa).

(c) Assume that VP̃ contains a point interior to 	 ∈ P a. Then

|uP̃ − uPa |21,� >∼ ζ�(fPa).

Proof. (a) By assumption, there exist ϕ1, ϕ2, ϕ3 ∈ H1
0 (	1 ∪ 	2) ∩ SP̃ with

|ϕi|1 = 1, and such that for i ∈ {1, 2},
supp(ϕi) ⊂ 	i,

∫
�i
ϕi �

meas(�i)

ρ| 12�i

,
∫
�i
ϕ3 �

meas(�i)

max{ρ|
e− ,ρ|e+} 1

2
,
∫
e
ϕ3 �

meas(e)

max{ρ|
e− ,ρ|e+} 1

2
.
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�1

�2

�3

e2

e1

Fig. 6.3. Illustration of Lemma 6.2(b). Open circles correspond to degrees of freedom that are
not used.

For any ϕ =
∑3
i=1 ciϕi, integration by parts shows that∫

�1∪�2

fPaϕ−
∫
e

([A∇uPa ]e · ne)ϕ = a(uP̃ − uPa , ϕ)(6.4)

≤ |uP̃ − uPa |1,�1∪�2 |ϕ|1 <∼ |uP̃ − uPa |1,�1∪�2‖c‖.

Let gj ∈ H1
0 (	1 ∪ 	2)

′ be defined by gj(ϕ) =
ρ| 12�j

diam(�j)meas(�j)
1
2

∫
�j
ϕ when j = 1

or 2, and g3(ϕ) =
max{ρ|

e− ,ρ|e+} 1
2

(diam(e)meas(e))
1
2

∫
e
ϕ, and let Bij := gj(ϕi). Then with dj =

diam(�j)

ρ| 12�j

‖fPa‖L2(�j) when j = 1 or 2, and d3 = diam(e)
1
2

max{ρ|
e− ,ρ|e+} 1

2
‖[A∇u]e · ne‖L2(e),

the left-hand side of (6.4) is
∑3
i,j=1 djciBij . Using (6.4), the statement of the lemma

reduces to the question as to whether supc
〈Bd,c〉
‖c‖

>∼ ‖d‖ or ‖B−1‖ <∼ 1. Since Bii � 1,

and B31,B32
<∼ 1, whereas the other coefficients of B are zero, the proof of (a) is

completed.
Part (b) can be proven similarly to (a). Note that, generally, [A∇uPa ]e has

different values on e2 and e3. The proof of (c) poses no additional difficulties.
As an immediate consequence we have the following result.
Corollary 6.3. Let P a be an admissible partition, fPa ∈ S0

Pa , and let P̃ be a
refinement of P a, such that for some G ⊂ P a, F ⊂ EPa , for all 	 ∈ G, VP̃ satisfies
the conditions from Lemma 6.2(c), and for all e ∈ F , VP̃ satisfies the conditions from

either Lemma 6.2(a) or Lemma 6.2(b) (it is sufficient that P̃ contains all grandchildren
of all 	 ∈ P a which either are in G or have an edge on an e ∈ F ). Then, with uPa =
L−1
PafPa , uP̃ = L−1

P̃
fPa denoting the corresponding Galerkin solutions, we have that

|uP̃ − uPa |21 ≥ c22

{ ∑
�∈F

ζ�(fPa) +
∑
e∈G

ηe(uPa)

}
for some absolute constant c2 > 0.

The way to obtain a convergent adaptive refinement strategy is to select the sets F
and G such that

∑
�∈F ζ�(fPa)+

∑
e∈G ηe(uPa) is bounded from below by some mul-

tiple of
∑

�∈Pa ζ�(fPa) +
∑
e∈EPa

ηe(uPa) = E(P a, fPa , uPa)2. Then, convergence
follows by combining Theorem 6.1 and Corollary 6.3.

Since Lemma 6.2 also applies when uP̃ = L−1

P̃
fPa is replaced by u = L−1fPa , for

later use we state the following result.
Corollary 6.4. Let P a be an admissible partition and let fPa ∈ S0

Pa . With
u := L−1fPa , uPa := L−1

PafPa and c2 the constant from Corollary 6.3, we have that

|u− uPa |1 ≥ c2E(P a, fPa , uPa).
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In Corollary 6.3 it was assumed that the right-hand side f is piecewise constant
with respect to the current partition P a, and that the discrete system is solved exactly.
In the remainder of this section we will relax both of these assumptions.

Lemma 6.5. There exists an absolute constant C3 > 0 such that for any partition
P , f ∈ L2(Ω), uP , ũP ∈ SP ,

|E(P, f, uP ) − E(P, f, ũP )| ≤ C3|uP − ũP |1.

Proof. We have that

|E(P, f, uP )− E(P, f, ũP )| =

[ ∑
�∈P

ζ�(f) +
∑
e∈EP

ηe(uP )

] 1
2

−
[ ∑

�∈P
ζ�(f) +

∑
e∈EP

ηe(ũP )

] 1
2

≤
[ ∑
e∈EP

(ηe(uP )
1
2 − ηe(ũ)

1
2 )2

] 1
2

.

For any e ∈ EP ,

|ηe(uP )
1
2 −ηe(ũP )

1
2 | =

diam(e)
1
2

max{ρ|e− , ρ|e+}
1
2

∣∣‖[A∇uP ]e · ne‖L2(e)−‖[A∇ũP ]e · ne‖L2(e)

∣∣
≤ diam(e)

1
2

max{ρ|e− , ρ|e+}
1
2

‖[A∇(uP − ũP )]e · ne‖L2(e).

The proof is completed by the observation that, for any edge ei of a 	 ∈ P and any
w ∈ P1(	) and unit vector n, by a homogeneity argument we have that

diam(ei)
1
2 ‖A∇w · n‖L2(ei)

<∼ ρ|�|w|H1(�) � ρ|
1
2

�|w|1,�.

For some fixed constant θ ∈ (0, 1], we consider the following refinement procedure.
REFINE[P a, fPa , wPa ] → P̃
% P a is an admissible partition, fPa ∈ S0

Pa , and wPa ∈ SPa .
Select F ⊂ P a, G ⊂ EPa such that∑

�∈F
ζ�(fPa) +

∑
e∈G

ηe(wPa) ≥ θ2 E(P a, fPa , wPa)2.

Determine a refinement P̃ of P a such that for all 	 ∈ F , VP̃ satisfies the condi-
tions from Lemma 6.2(c), and for all e ∈ G, VP̃ satisfies the conditions from either

Lemma 6.2(a) or Lemma 6.2(b), where at the same time each 	̃ ∈ P̃ is either in P a

or it is a child or a grandchild of a 	 ∈ P a.
As long as the selection of F and G is organized so that it does not involve

the exact ordering of all ζ�(fPa) and ηe(wPa) by their moduli (cf. discussion from
Remark 5.2), we have the following result.

Proposition 6.6. The call REFINE[P a, fPa , wPa ] requires a number of arith-
metic operations <∼ #P a.
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As stated before, we would like to consider f ∈ H−1(Ω), possibly outside L2(Ω),
and we will use approximate right-hand sides both for setting up the discrete systems
as well as for the evaluation of the a posteriori error estimator. In fact, since the terms
ζ�(f) are only defined for f ∈ L2(Ω), generally we will need approximate right-hand
sides different from the exact one. The following theorem shows that if REFINE
is called with a sufficiently accurate piecewise constant approximation for the right-
hand side and a sufficiently accurate approximation of the discrete solution, then the
solution on the new partition has an error that is less than the error in the solution
on the previous partition. Together with the coarsening routine from section 5, in the
next two subsections this theorem will be the basis for constructing adaptive finite
element methods that converge with optimal rates.

Theorem 6.7. Let f ∈ H−1(Ω), u = L−1f , let P a be an admissible partition,
fPa ∈ S0

Pa , uPa = L−1
PafPa , ūPa ∈ SPa , P̃ = REFINE[P a, fPa , ūPa ] or a refinement

of it, fP̃ ∈ H−1(Ω) and uP̃ = L−1

P̃
fP̃ . Then

|u− uP̃ |1 ≤
[
1 − 1

2

(
c2θ

C1

)2] 1
2

|u− uPa |1 + 2c2C3|uPa − ūPa |1(6.5)

+ 3‖f − fPa‖−1 + ‖f − fP̃ ‖−1.

Proof. Let û = L−1fPa and ûP̃ = L−1

P̃
fPa . With F ⊂ P a, G ⊂ EPa as determined

in the call REFINE[P a, fPa , ūPa ], Corollary 6.3, two applications of Lemma 6.5, and
Theorem 6.1 show that

|ûP̃ − uPa |1 ≥ c2

[{ ∑
�∈F

ζ�(fPa) +
∑
e∈G

ηe(uPa)

}] 1
2

≥ c2

[{ ∑
�∈F

ζ�(fPa) +
∑
e∈G

ηe(ūPa)

} 1
2

− C3|uPa − ūPa |1
]

≥ c2[θE(P a, fPa , ūPa) − C3|uPa − ūPa |1]
≥ c2[θE(P a, fPa , uPa) − 2C3|uPa − ūPa |1]

≥ c2

[
θ

C1
|û− uPa |1 − 2C3|uPa − ūPa |1

]
.

Since for any scalars a, b, (a− b)2 ≥ 1
2a

2 − b2, we infer that

|ûP̃ − uPa |21 ≥ 1

2

(
c2θ

C1

)2

|û− uPa |21 − 4c22C
2
3 |uPa − ūPa |21.

Since ûP̃ ∈ SP̃ is the Galerkin approximation of û from SP̃ and uPa − ûP̃ ∈ SP̃ ,
we have

|û− ûP̃ |21 = |û− uPa |21 − |uPa − ûP̃ |21
≤
[
1 − 1

2

(
c2θ

C1

)2]
|û− uPa |21 + 4c22C

2
3 |uPa − ūPa |21

≤
{[

1 − 1

2

(
c2θ

C1

)2] 1
2

|û− uPa |1 + 2c2C3|uPa − ūPa |1
}2

,

where we have used that c2 ≤ C1 and thus that 1 − 1
2 ( c2θC1

)2 > 0. The proof is
completed by observing that |u− û|1 = ‖f−fPa‖−1 and |uP̃ − ûP̃ |1 ≤ ‖fP̃ −fPa‖−1 ≤
‖fP̃ − f‖−1 + ‖f − fPa‖−1.
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7. A first optimal adaptive finite element method. We start with a corol-
lary that is an easy consequence of Theorem 6.7. It shows that the reduction of the
error in the exact discrete solutions as a result of refinement extends to a similar re-
duction of the error in sufficiently accurate approximations of these discrete solutions.

Corollary 7.1. For any µ ∈ ([1 − 1
2 ( c2θC1

)2]
1
2 , 1), there exists a sufficiently small

constant δ > 0 such that if for f ∈ H−1(Ω), an admissible partition P a, ūPa ∈ SPa ,
fPa ∈ S0

Pa , P̃ = REFINE[P a, fPa , ūPa ] or a refinement of it, ūP̃ ∈ SP̃ , fP̃ ∈
H−1(Ω) and ε > 0, with u = L−1f , uPa = L−1

PafPa and uP̃ = L−1

P̃
fP̃ , we have that

|u− ūPa |1 ≤ ε and

|uPa − ūPa |1 + ‖f − fPa‖−1 + |uP̃ − ūP̃ |1 + ‖f − fP̃ ‖−1 ≤ 2(1 + µ)δε

then |u− ūP̃ |1 ≤ µε.
Proof. The proof is an easy consequence of Theorem 6.7, |u− ūP̃ |1 ≤ |u− uP̃ |1 +

|uP̃ − ūP̃ |1 and |u− uPa |1 ≤ |u− ūPa |1 + |uPa − ūPa |1.
We assume the availability of the following routine.

GALSOLVE[P a, fPa , u
(0)
Pa , ε] → ūPa

% P a is an admissible partition, fPa ∈ (SPa)′, and u
(0)
Pa ∈ SPa . With uPa := L−1

PafPa ,
% the output ūPa ∈ SPa satisfies

|uPa − ūPa |1 ≤ ε.

% The call requires <∼ max{1, log(ε−1|uPa − u
(0)
Pa |1|)}#P a arithmetic operations.

Thus not only do we assume that we have an iterative solver at our disposal
that converges with a rate independent of the problem size, but, in accordance with
the idea of an adaptive solver, we additionally assume that we have an efficient and
reliable control of the algebraic error. As a consequence the number of iterations to
be performed does not depend on a possibly pessimistic a priori bound on the initial
error. Two possible realizations of GALSOLVE are discussed in the next remark.

Remark 7.2. One can apply conjugate gradients, starting with u0
Pa , to the rep-

resentation of LPauPa = fPa with respect to {ψ̄v : v ∈ VPa}. In each iteration,
that takes � #P a operations, the | · |1-norm of the error is multiplied by a factor
less than or equal to some constant τ < 1 only dependent on κΨ̄, meaning that after

�logτ (ε|uPa − u
(0)
Pa |−1

1 )� iterations the | · |1-norm of the error is ≤ ε. The | · |1-norm
of the error in an approximation for uPa from SPa is less (respectively, greater) than

or equal to λ
− 1

2

Ψ̄
(respectively, Λ

− 1
2

Ψ̄
) times the Euclidean norm of the corresponding

residual vector. So if one stops the iteration as soon as the latter norm is ≤ λ
1
2

Ψ̄
ε, then

the | · |1-norm of the error is ≤ ε, whereas the number of iterations is bounded by

�logτ (κ
− 1

2

Ψ̄
ε|uPa − u

(0)
Pa |−1

1 )� <∼ max{1, log(ε−1|uPa − u
(0)
Pa |1)},

showing that this approach results in a valid routine GALSOLVE.
Alternatively, one may apply the conjugate gradient method to the represen-

tation of LPauPa = fPa with respect to the nodal basis {φvPa : v ∈ VPa} using
a BPX preconditioner where, similarly as above, the Euclidean norm of the resid-
ual of the preconditioned system may serve to develop a stopping criterion. In-
deed, when P a = P an , for 0 ≤ i ≤ n one can select ṼPa

i
⊂ VPa

i
such that both

span{ψ̄v : v ∈ VPa
i
\VPa

i−1
} ⊂ span{φvPa

i
: v ∈ ṼPa

i
} and #ṼPa

i

<∼ #(P ai \P ai−1). Using

(4.6), it can then be proven that on SPa , infu=
∑n

i=0

∑
v∈ṼPa

i

cvi φ
v
Pa
i

|cvi |2|φvPa
i
|21 � |u|21,
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showing that the resulting BPX preconditioner or, more precisely, in view of possible
jumps of ρ the MDS preconditioner (cf. [16]) gives rise to uniformly well-conditioned
systems, whereas it can be implemented in <∼ #P a operations.

Before continuing, let us first explain what we mean by an optimal method for
solving the boundary value problem (2.1). Following [3], we say that a method is
optimal if whenever the solution u is such that for some s > 0 the error of the best
approximation from any SP with #P ≤ n is <∼ n−s, then for any ε > 0, the method

yields a partition P and a wP ∈ SP with |u−wP |1 ≤ ε taking only <∼ #P operations

where #P <∼ ε−1/s. Indeed, note that in view of the assumption on u, the smallest
partition P for which there exists such a wP ∈ SP generally has cardinality � ε−1/s.
A definition of the class of functions u ∈ H1

0 (Ω) for which for some s > 0 the errors
of the best approximations decay as indicated above is given by

As =

{
u ∈ H1

0 (Ω) : sup
n≥0

ns inf
#P≤n

inf
uP∈SP

|u− uP |1 <∞
}
,

where P is any partition of the type we consider.
It is well known that for s ≤ 1

2 , H1
0 (Ω) ∩H1+2s(Ω) ⊂ As. Indeed, for functions

in H1
0 (Ω) ∩H1+2s(Ω), the sequence of errors of the best continuous piecewise linear

approximations subordinate to the sequence of uniform refinements P ∗
i of P0 already

exhibits a decay of <∼ (#P ∗
i )−s. Obviously, the class As contains many more functions

than only those inH1
0 (Ω)∩H1+2s(Ω), which is the reason to consider adaptive methods

anyway. Although the class As is nontrivial for any s > 0, as it contains all u ∈ SP
for any partition P , since we are approximating with piecewise linears only for s ≤ 1

2
membership of As can be guaranteed by imposing suitable smoothness conditions.
For partitions generated by the so-called newest vertex bisection, a characterization
of As for s ≤ 1

2 in terms of Besov spaces can be found in [4]. We expect the same
results to be valid for the type of partitions considered here. The characterization via
Besov spaces, together with regularity results, as in [10], allows one to obtain a priori
knowledge about the class As to which the solution u of the boundary value problem
(2.1) belongs.

With the adaptive refinement strategy from Theorem 6.7 and Corollary 7.1, con-
vergence can be guaranteed only when sufficiently accurate piecewise constant ap-
proximations to the right-hand side f are available. We assume the availability of the
following routine RHS that, as the routine REFINE, may involve a refinement of
the current partition.
RHS[P, f, ε] → [P a, fPa ]
% P is a partition, f ∈ H−1(Ω) and ε > 0. The output consists of an admissible
% refinement P a of P , and an fPa ∈ S0

Pa with ‖f − fPa‖−1 ≤ ε.
Assuming that the solution u ∈ As for some s > 0, the cost of approximating the

right-hand side f using a routine RHS will generally not dominate the other costs
of our adaptive method only if there is some constant cf such that for any ε > 0
and any partition P , for [P a, fPa ] := RHS[P, f, ε] both #P a and the number of

arithmetic operations required by this call are <∼ #P + c
1/s
f ε−1/s. We will call such

a pair (f,RHS) s-optimal. Obviously, given s, such a pair only exists when f ∈ Ās,
defined by

Ās =

{
f ∈ H−1(Ω) : sup

n≥0
ns inf

#P≤n
inf

fP∈S0
P

‖f − fP ‖−1 <∞
}
,

where P is any partition of the type we consider.
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When f ∈ L2(Ω) with ‖ρ− 1
2 f‖L2(Ω)

<∼ 1, the routine RHS can be based on

uniform refinements. Indeed, for some integer i to be determined below, let P̃ denote
the smallest common refinement of the given P and P ∗

i , let P̃ a be its admissible
refinement as a result of applying Algorithm 3.6, and with Q0

P̃a : L2(Ω) → S0
P̃a

denoting the L2(Ω)-orthogonal projector onto S0
P̃a , let fP̃a = Q0

P̃af . For any w ∈
H1

0 (Ω), we have∣∣∣∣∣
∫

Ω

(f − fP̃a)w

∣∣∣∣∣ =
∣∣∣∣∣
∫

Ω

f(w −Q0
P̃aw)

∣∣∣∣∣ ≤ C
∑

�∈P̃a

‖f‖L2(�)diam(	)‖∇w‖L2(�)

≤ C2−i‖ρ− 1
2 f‖L2(Ω)|w|1,

where C > 0 is some absolute constant. By taking i to be the smallest integer such
that 2−iC‖ρ− 1

2 f‖L2(Ω) ≤ ε, we have ‖f − fP̃a‖−1 ≤ ε, and

#P̃ a <∼ #P + #P ∗
i
<∼ #P + (2i)2 <∼ #P + ε−2‖ρ− 1

2 f‖2
L2(Ω).

Thus, when for any 	 ∈ ∪j≥0P
∗
j the evaluation of

∫
� f takes O(1) operations, we may

conclude that for RHS based on this procedure (f,RHS) is s-optimal with s = 1
2 ,

which, as we have seen, covers the range of main interest. Alternatively, instead
of assuming the exact evaluation of

∫
� f , one easily infers that it also suffices to

approximate the integral with an error <∼ ρ
1
2 diam(	), which, in any case, is possible

to accomplish in O(1) operations when ρ−
1
2 f has some piecewise smoothness with

respect to P0.
Obviously, the class Ās is much larger than L2(Ω). Yet, for f �∈ L2(Ω) the

realization of a suitable routine RHS has to depend on the right-hand side at hand.
We give one example.

Example 7.3. Let ρ = 1, and for a sufficiently smooth curve K in Ω, let f ∈
H−1(Ω) be defined by f(w) =

∫
K
w. We define RHS[P, f, ε] by the following steps.

Recursively refine all 	 ∈ P that have nonempty intersection withK, until all those 	
satisfy diam(	) ≤ Cε2 for some constant C > 0. Let P a be the admissible refinement

of the obtained partition. Define fPa ∈ S0
Pa by fPa |� = length(K∩�)

vol(�) (	 ∈ P a). Then

one may verify that by choosing C suitably, we have that ‖f − fPa‖−1 ≤ ε and that
both the number of arithmetic operations required by this call of RHS and #P a are
<∼ #P + ε−2, showing that this (f,RHS) pair is s-optimal with s = 1

2 . Note that
although, depending on the curve, the exact evaluation of f applied to any vP ∈ SP
might not pose any problems, nevertheless the piecewise constant approximations are
required because of the evaluation of the a posteriori error estimator.

We are ready to give our first adaptive finite element method for solving (2.1).
As expected, it is based on the repeated application of the triple REFINE, RHS
and GALSOLVE, the latter two with suitable tolerances, which by Corollary 7.1
give rise to linearly convergent approximations. To obtain an optimal work-accuracy
balance, COARSE is applied after every M iteration of the above triple, with M
being some fixed constant.
SOLVE1[f, ε, ūP0

, ε0] → [P a, ūPa ] :
% The following constants are fixed: δ < 1

3 and it is small enough so that it corresponds

% to a µ < 1 as in Corollary 7.1; γ > t
− 1

2
1 with t1 as in Proposition 5.3; M ∈ N

% such that
(1+γ)κ

1
2
Ψ̄
µM

1−3δ < 1.
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% The input must satisfy f ∈ H−1(Ω) such that a valid routine RHS is available,
% ε > 0, ūP0 ∈ SP0 and ε0 ≥ |u− ūP0 |1.
P a := P0, fPa := fP0 , ūPa := ūP0

if ε ≥ ε0 then N := 0

else N ≥ 1 is the smallest integer with ( µM

1−3δ )
N ((1 + γ)κ

1
2

Ψ̄
)N−1ε0 ≤ ε fi

for i = 1, . . . , N do

if i = 1 then ε1 := ε0
1−3δ

else [P a, ūPa ] := COARSE[P a, ūPa , γλ
− 1

2

Ψ̄
µMεi−1], εi :=

(1+γ)κ
1
2
Ψ̄
µM

1−3δ εi−1 fi

[P a, fPa ] := RHS[P a, f, δεi]
ūPa := GALSOLVE[P a, fPa , ūPa , δεi]
for j = 1, . . . ,M do

P := REFINE[P a, fPa , ūPa ]
[P a, fPa ] := RHS[P, f, δµjεi]
ūPa := GALSOLVE[P a, fPa , ūPa , δµjεi]

od

od

The next theorem shows that SOLVE1 is an optimal method whenever this is
allowed by the (f,RHS) pair.

Theorem 7.4. [P a, ūPa ] := SOLVE1[f, ε, ūP0 , ε0] satisfies |u − ūPa |1 ≤ ε. As-
suming ε0 <∼ |u|1, if for some s > 0, u ∈ As and (f,RHS) is s-optimal, then both #P a

and the number of arithmetic operations required by this call are <∼ max{1, ε−1/s(c
1/s
f +

|u|1/sAs )}.
Proof. For ε ≥ ε0 there is nothing to prove, so let us assume that ε < ε0. By

induction on i we prove that at termination of the if-then-else-fi clause inside the loop
over i,

|u− ūPa |1 ≤ (1 − 3δ)εi.(7.1)

For i = 1, this follows from the input condition on ε0. Let us now assume (7.1) for
some i ≥ 1. Then, after the call [P a, fPa ] := RHS[P a, f, δεi], by definition

‖f − fPa‖−1 ≤ δεi.(7.2)

So, for uPa := L−1
PafPa we have

|u− uPa |1 ≤ |u− L−1fPa |1 + |L−1fPa − uPa |1 ≤ |u− L−1fPa |1 + |L−1fPa − ūPa |1
≤ 2|u− L−1fPa |1 + |u− ūPa |1 = 2‖f − fPa‖−1 + |u− ūPa |1(7.3)

≤ 2δεi + (1 − 3δ)εi = (1 − δ)εi,

where for the second inequality we have used that ūPa ∈ SPa and that uPa is the
best approximation with respect to | · |1 of L−1fPa from SPa . We conclude that after
the update of ūPa by the call of GALSOLVE,

|uPa − ūPa |1 ≤ δεi and so |u− ūPa |1 ≤ |u− uPa |1 + |uPa − ūPa |1 ≤ εi.(7.4)

After the first calls of REFINE, RHS, and GALSOLVE in the inner loop, i.e.,
when j = 1, for the new P a, fPa , ūPa , uPa := L−1

PafPa we have ‖f−fPa‖−1 ≤ δµεi and
|uPa − ūPa |1 ≤ δµεi, and so by (7.2), (7.4), Corollary 7.1 shows that |u− ūPa |1 ≤ µεi.
Repeating this argument for j = 2, . . . ,M shows that at termination of the inner loop
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over j, we have that |u − ūPa |1 ≤ µMεi. In particular, when i = N , we have that

|u − ūPa |1 ≤ µMεN = ( µM

1−3δ )
N ((1 + γ)κ

1
2

Ψ̄
)N−1ε0 ≤ ε by definition of N . Otherwise,

if i < N , then in the next iteration, thus after increasing i by one, just before the

call of COARSE, we have that |||u − ūPa |||1 ≤ λ
− 1

2

Ψ̄
|u − ūPa |1 ≤ λ

− 1
2

Ψ̄
µMεi−1. By

Corollary 5.5, after this call we have

|u− ūPa |1 ≤ Λ
1
2

Ψ̄
|||u− ūPa |||1 ≤ Λ

1
2

Ψ̄
(1 + γ)λ

− 1
2

Ψ̄
µMεi−1 = (1 − 3δ)εi,(7.5)

which completes the proof of (7.1), and thus that of |u− ūPa |1 ≤ ε at termination of
SOLVE1.

Now we will prove that for any i = 1, . . . , N , both #P a at the end of the
outer cycle for this i and the cost of this cycle excluding, for i > 1, the cost of
the COARSE, but including, for i < N , the cost of the COARSE in the next cycle,

are <∼ ε
−1/s
i (c

1/s
f + |u|1/sAs ). Because of

∑N
i=1 ε

−1/s
i

<∼ ε
−1/s
N ≤ ε−1/s this will prove the

statement about the complexity.

At the start of the outer cycle for i = 1, we have #P a <∼ ε
−1/s
i |u|1/sAs , which follows

from #P a = #P0
<∼ 1 and the assumption that ε0 <∼ |u|1. Since, as we have seen,

for i > 1 before the call of COARSE, we have that |||u − ūPa |||1 ≤ λ
− 1

2

Ψ̄
µMεi−1,

Corollary 5.5 shows that after this call, #P a ≤ D#P̂ for any partition P̂ with

infuP̂∈SP̂
|||u − uP̂ |||1 ≤ (t

1
2
1 γ − 1)λ

− 1
2

Ψ̄
µMεi−1. From ||| · |||1 ≤ λ

− 1
2

Ψ̄
| · |1 and u ∈ As,

we find that

#P a ≤ D(#P0 + [(t
1
2
1 γ − 1)µMεi−1]

−1/s|u|1/sAs ) <∼ ε
−1/s
i |u|1/sAs .

Since (f,RHS) is s-optimal and M is a fixed constant, from the properties of RHS
and REFINE we conclude that for any i, at the end of the outer cycle

#P a <∼ ε
−1/s
i (c

1/s
f + |u|1/sAs ),(7.6)

whereas the cost of all calls of RHS and REFINE inside this cycle are also <∼
ε
−1/s
i (c

1/s
f + |u|1/sAs ). Furthermore, for i < N − 1, Theorem 5.4(b) shows that the

cost of COARSE in the next iteration is <∼ #P a + max{0, log(ε−1
i |||ūPa |||1)}. From

log(ε−1
i |||ūPa |||1) ≤ ε

−1/s
i |||ūPa |||1/s1 , |||ūPa |||1 <∼ |ūPa |1 ≤ |u|1 + ε0 <∼ |u|1 ≤ |u|As , and

(7.6), we conclude also that these costs are <∼ ε
−1/s
i (c

1/s
f + |u|1/sAs ).

What is left is to bound the cost of the applications of GALSOLVE. As we have
seen, just before the call GALSOLVE[P a, fPa , ūPa , δεi] outside the inner loop over
j, we have that |u−ūPa |1 ≤ (1−3δ)εi, and with uPa := L−1

PafPa , |u−uPa |1 ≤ (1−δ)εi,
and so |uPa − ūPa |1 ≤ 2(1− 2δ)εi. Since 2(1−2δ)εi

δεi
is a constant, we conclude that the

cost of this call is <∼ #P a.
Let us now consider a call GALSOLVE[P a, fPa , ūPa , δµjεi] inside the loop over

j. Just before this call we have that |u − ūPa |1 ≤ µj−1εi and ‖f − fPa‖−1 ≤ δµjεi.
As in (7.3), for uPa := L−1

PafPa we have

|u− uPa |1 ≤ 2‖f − fPa‖−1 + |u− ūPa |1 ≤ (2δµj + µj−1)εi,

and so |uPa − ūPa |1 ≤ 2(δµj +µj−1)εi. Since (2δµj+µj−1)εi
δµjεi

is a constant, we conclude

that the cost of this call is <∼ #P a, which completes the proof.
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8. An optimal adaptive finite element method with a posteriori error
control. It follows from the proof of Theorem 7.4 that the approximations ūPa on
the sequence of partitions produced by SOLVE1 converge with an asymptotic rate

≤ (
(1+γ)κ

1
2
Ψ̄
µM

1−3δ )1/(M+1), which is close to µ whenM is not too small. Because of the ap-
plication of a coarsening, the asymptotic rate is generally even equal to the above num-

ber. Indeed, after the evaluation of [P a, ūPa ] := COARSE[P a, ‘ūold
Pa ’, γλ

− 1
2

Ψ̄
µMεi−1],

we have that

|u− ūPa |1 ≥ λ
1
2

Ψ̄
|||u− ūPa |||1 ≥ λ

1
2

Ψ̄

∣∣|||ūPa − ūold
Pa |||1 − |||u− ūold

Pa |||1
∣∣ ≥ ((γ−η)−1)µMεi−1,

where η can be arbitrary small, so that this lower bound is only by a constant factor
smaller than the upper bound for |u−ūPa |1 from (7.5). The value µ has to be supplied

by the user. It should be large enough to ensure that indeed λ
− 1

2

Ψ̄
µMεi−1 is an upper

bound for |||u− ūold
Pa |||1, so that the quasi-optimality of the partition after COARSE

is guaranteed by Corollary 5.5. A safe choice of µ will be the result of a worst-case
analysis, and so likely it will be unnecessarily close to 1, resulting in a quantitatively
less attractive algorithm. All adaptive finite element or wavelet methods based on
coarsening introduced so far share this drawback that a judicious choice of such a
parameter µ has to be made.

In this final subsection, we develop a modified routine SOLVE2 in which the
tolerances used in the routines COARSE, RHS, and GALSOLVE will depend
on an a posteriori estimate of the error, instead of an a priori one. Moreover, as
is also suggested in [7], instead of performing a fixed number of iterations of the
REFINE, RHS, GALSOLVE triple between two applications of COARSE, in
SOLVE2 the iteration is stopped as soon as sufficient reduction of the error has taken
place as indicated by the a posteriori error estimator. We will use our estimator E ,
extended with some terms to incorporate the error in the right-hand side and that as
a consequence of the inexact solution of the discrete system; cf. (8.1). One problem is
that a monotone decrease of the a posteriori error estimates cannot be guaranteed. In
Proposition 8.1, however, we show that the error estimates are equivalent to quantities
that do decrease linearly; cf. (8.2) and (8.4).

Proposition 8.1. Let C4 := 1 + C1C3, where C1, C3 > 0 are the constants
from Theorem 6.1 and Lemma 6.5. For f ∈ H−1(Ω), any admissible partition P a,
ūPa ∈ SPa , and fPa ∈ L2(Ω), with u = L−1f , uPa = L−1

PafPa we have

|u− ūPa |1 ≤ C1E(P a, fPa , ūPa) + ‖f − fPa‖−1 + C4|uPa − ūPa |1.(8.1)

With fPa ∈ S0
Pa , and ζPa being an upper bound for ‖f−fPa‖−1+C4|uPa − ūPa |1,

we have that

C1E(P a, fPa , ūPa) + ζPa � |u− ūPa |1 + ζPa .(8.2)

Finally, for any µ ∈ ([1 − 1
2 ( c2θC1

)2]
1
2 , 1), there exists δ̄ > 0 small enough and

C5 > 0 large enough, such that if P̃ = REFINE[P a, fPa , ūPa ] or a refinement of it,
ūP̃ ∈ SP̃ , fP̃ ∈ H−1(Ω), uP̃ := L−1

P̃
fP̃ , and

ζP̃ ≤ δ̄(1 + C4)[C1E(P a, fPa , ūPa) + ζPa ],(8.3)

where thus ζP̃ denotes an upper bound on ‖f − fP̃ ‖−1 + C4|uP̃ − ūP̃ |1; then

|u− ūP̃ |1 + C5ζP̃ ≤ µ[|u− ūPa |1 + C5ζPa ].(8.4)
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Proof. With û := L−1fPa , (8.1) follows from Theorem 6.1 and Lemma 6.5 by

|u− ūPa |1 ≤ |u− û|1 + |û− uPa |1 + |uPa − ūPa |1
≤ ‖f − fPa‖−1 + C1E(P a, fPa , uPa) + |uPa − ūPa |1
≤ ‖f − fPa‖−1 + C1E(P a, fPa , ūPa) + (1 + C1C3)|uPa − ūPa |1.

In one direction, (8.2) follows immediately from (8.1), whereas in the other direc-
tion it is a consequence of Corollary 6.4 in combination with Lemma 6.5.

Theorem 6.7 shows that with C6 := max{ 1+2c2C3

C4
, 3},

|u− ūP̃ |1 + C5ζP̃ ≤
[
1 − 1

2

(
c2θ

C1

)2] 1
2

|u− ūPa |1 + C6(ζPa + ζP̃ ) + C5ζP̃ ,

which, given a µ ∈ ([1 − 1
2 ( c2θC1

)2]
1
2 , 1), is less than or equal to µ[|u − ūPa |1 + C5ζPa ]

if and only if

(C6 + C5)ζP̃ ≤
(
µ−

[
1 − 1

2

(
c2θ

C1

)2] 1
2
)
|u− ūPa |1 + (µC5 − C6)ζPa .

Hence, by selecting the constant C5 >
C6

µ , the proof of (8.4) is completed by observing

that for δ̄ small enough,

δ̄(1+C4)[C1E(P a, fPa , ūPa)+ζPa ] ≤ (µ− [1− 1
2 ( c2θC1

)2]
1
2 )|u− ūPa |1 + (µC5 − C6)ζPa

C6 + C5
,

which is a consequence of (8.2).
We are ready to formulate the adaptive finite element method SOLVE2 in which

the tolerances are controlled by the a posteriori error estimator. Any faster conver-
gence of the approximations produced by the REFINE, RHS, GALSOLVE triple
than appears from a priori estimates can be expected to lead to better quantitative
properties for SOLVE2 than for SOLVE1.
SOLVE2[f, ε, ūP0 , ε0] → [P a, ūPa ] :
% The following constants are fixed: δ̄ is small enough so that it corresponds to a

% µ < 1 as in Proposition 8.1; γ > t
− 1

2
1 with t1 as in Proposition 5.3; and σ ∈ (0, 1).

% The input must satisfy f ∈ H−1(Ω) such that a valid routine RHS is available,
% ε > 0, ūP0

∈ SP0
and ε0 ≥ |u− ūP0

|1.
P a := P0, fPa := fP0 , ūPa := ūP0 , ē := ẽ := ε0
while ē > ε do

if not first iteration then

[P a, ūPa ] := COARSE[P a, ūPa , γλ
− 1

2

Ψ̄
ē], ẽ := (1 + γ)κ

1
2

Ψ̄
ē

fi

[P a, fPa ] := RHS[P a, f, δ̄ẽ]
ūPa := GALSOLVE[P a, fPa , ūPa , δ̄ẽ]
ẽ := C1E(P a, fPa , ūPa) + (1 + C4)δ̄ẽ
while ẽ > σē do

P := REFINE[P a, fPa , ūPa ]
[P a, fPa ] := RHS[P, f, δ̄ẽ]
ūPa := GALSOLVE[P a, fPa , ūPa , δ̄ẽ]
ẽ := C1E(P a, fPa , ūPa) + (1 + C4)δ̄ẽ

od

ē := ẽ
od
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The next theorem shows that SOLVE2 is an optimal method whenever this is
allowed by the (f,RHS) pair.

Theorem 8.2. [P a, ūPa ] := SOLVE1[f, ε, ūP0 , ε0] satisfies |u − ūPa |1 ≤ ε. As-
suming ε0 <∼ |u|1, if for some s > 0, u ∈ As and (f,RHS) is s-optimal, then both #P a

and the number of arithmetic operations required by this call are <∼ max{1, ε−1/s(c
1/s
f +

|u|1/sAs )}.
Proof. At the beginning of a cycle of the outer while-loop, we have that |u −

ūPa |1 ≤ ē, which for a cycle other than the first one is a consequence of Proposition 8.1.
In particular, when the outer loop terminates, we have |u− ūPa |1 ≤ ε.

After the if-then-fi clause, we have that |u − ūPa |1 ≤ ẽ, where ẽ = ē for the

first iteration, and ẽ = (1 + γ)κ
1
2

Ψ̄
ē otherwise (apply Corollary 5.5 and (4.6)). After

the call of RHS, by definition we have ‖f − fPa‖−1 ≤ δ̄ẽ, and so as in (7.3), for
uPa := L−1

PafPa we have |u − uPa |1 ≤ 2‖f − fPa‖−1 + |u − ūPa |1 ≤ (2δ̄ + 1)ẽ.
After the call of GALSOLVE, by definition we have |uPa − ūPa |1 ≤ δ̄ẽ, and so
|u − ūPa |1 ≤ (3δ̄ + 1)ẽ. By applying (8.2), these estimates show that just before
starting the inner while-loop, the new ẽ satisfies

ẽ ≤ Cē(8.5)

for some absolute constant C > 0.
Let us now consider any newly computed ūPa in the inner while-loop, and let

us denote by τ1, τ2 the tolerances that were used in the corresponding calls of
RHS and GALSOLVE and let ζPa = τ1 + C4τ2. We have that ζPa is equal to
(1 +C4)δ̄[C1E(P a, fPa , ūPa) + ζPa ], where in the latter expression P a, fPa , ūPa , and
ζPa refer to the previous partition, right-hand side, approximate solution, and ζPa ,
respectively. Since by assumption δ̄ corresponds to a µ < 1 as in Proposition 8.1,
formula (8.4) shows that in each iteration of the inner loop |u− ūPa |1 +C5ζPa is mul-
tiplied by a factor ≤ µ. Since by (8.2), C1E(P a, fPa , ūPa)+ζPa � |u− ūPa |1 +C5ζPa ,
the geometric decrease of |u− ūPa |1 +C5ζPa together with (8.5) shows that the inner
while-loop terminates within an (absolute) constant number of iterations. After termi-
nation of the inner while-loop, the new ē will be less than or equal to σ < 1 times the
previous ē, showing that SOLVE2 terminates, with, as we have seen, |u− ūPa |1 ≤ ε.

Let us consider any cycle of the outer loop with ē > ε being the value at the

beginning of this cycle. After the if-then-fi clause, we have that #P a <∼ ē−1/s|u|1/sAs ,

which for the first iteration follows from #P0
<∼ 1 and ε0 <∼ |u|1 by assumption, and

which for any other cycle follows from Corollary 5.5 analogously as in the proof of
Theorem 7.4. The properties of RHS and REFINE and the fact that the inner
while-loop terminates within a fixed number of iterations show that at termination of

this outer cycle, #P a <∼ ē−1/s(c
1/s
f +|u|1/sAs ), which, in particular, proves the statement

about #P a at termination of SOLVE2. Furthermore, the cost of all calls of RHS
and REFINE, as well as the cost of COARSE, in the possibly next cycle are <∼
ē−1/s(c

1/s
f + |u|1/sAs ). Assuming, for the moment, that the cost of any application of

GALSOLVE in SOLVE2 on a partition P a is <∼ #P a, by the geometric decrease
of the values of ē at the beginning of the outer while-loop we conclude that the total

cost of SOLVE2 is <∼ ε−1/s(c
1/s
f + |u|1/sAs ).

As we have seen, just before the evaluation of GALSOLVE[P a, fPa , ūPa , δ̄ẽ]
outside the inner while-loop, we have |u − ūPa |1 ≤ ẽ, and with uPa := L−1

PafPa ,
|u− uPa |1 ≤ (2δ̄+ 1)ẽ and so |uPa − ūPa |1 ≤ 2(δ̄+ 1)ẽ. We conclude that the cost of
this call is <∼ #P a.
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Analogously, just before an evaluation of GALSOLVE[P a, fPa , ūPa , δ̄ẽ] inside
the inner while-loop, we have |u − ūPa |1 ≤ ẽ, ‖f − fPa‖−1 ≤ δ̄ẽ, and so, as in (7.3),
with uPa := L−1

PafPa , |u − uPa |1 ≤ 2δ̄ẽ + ẽ and so |uPa − ūPa |1 ≤ 2(δ̄ẽ + ẽ). We

conclude that the cost of such a call is also <∼ #P a.
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Abstract. In this paper we explore the computation of the matrix exponential in a manner
that is consistent with Lie-group structure. Our point of departure is the method of generalized
polar decompositions, which we modify and combine with similarity transformations that bring the
underlying matrix to a form more amenable to efficient computation. We develop techniques valid
for a range of Lie groups: the orthogonal group, the symplectic group, Lorentz, isotropy, and scaling
groups. However, the GPD approach is equally promising in a more general context. Even when
Lie-group structure is not at issue, our algorithm is more efficient in many settings than classical
methods for the computation of the matrix exponential.
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1. Introduction. The approximation of the matrix exponential is among the
oldest and most extensively researched problems in numerical mathematics. Yet,
nineteen dubious ways [15] and many efficient algorithms (cf., for example, [8]) later,
the problem is far from being satisfactorily solved and many challenges remain. This
is true in particular when we wish to approximate an exponential of a matrix Z, say,
which resides in a Lie algebra. This is a central problem in geometric integration,
which arises once we wish to discretize systems of differential equations evolving in
Lie groups (smooth manifolds with group structure) and in homogeneous manifolds
(smooth manifolds which are subjected to transitive group action).

While referring the reader to [10] for a substantive survey of Lie-group methods
and their applications, and to section 2 for formal definitions, it is important to
mention informally a number of salient features of such methods, since they motivate
much of the work of the present paper.

• The tangent space TxG, where G is a Lie group and x ∈ G, is {Zx : Z ∈ g},
where g = TIG and I is the identity of G. Therefore, once we know g, we can describe
all vector fields (hence all differential equations) on G.

• The linear space g is a Lie algebra: it is closed under an antisymmetric binary
operation of commutation.

• The exponential map takes the Lie algebra to “its” Lie group, expg ⊆ G.
• Most finite-dimensional Lie groups in practical applications are comprised of

matrices. Familiar examples are the general linear group GL(R, n) (n × n nonsingu-
lar real matrices), the special linear group SL(R, n) (n × n real matrices with unit
determinant), and the orthogonal group O(R, n) (n× n real orthogonal matrices).
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• All finite-dimensional Lie algebras are isomorphic to Lie algebras of matrices.
In particular, the Lie algebras corresponding to the three Lie groups above are gl(R, n)
(the n× n real matrices), sl(R, n) (n× n real matrices with zero trace), and so(R, n)
(n× n real skew-symmetric matrices), respectively.

• If G is a matrix group (hence g is a matrix algebra) the operations of com-
mutation and exponentiation are the familiar matricial commutator and exponent,
respectively.
Therefore, once a differential equation evolves in a matrix Lie group, it can be always
written in the form

y′ = F (t, y)y, t ≥ 0, y(0) ∈ G,(1.1)

where F : R+ × G → g. Moreover, its solution can be represented (subject to the
usual caveats of convergence) in the form y(t) = exp(Ω(t))y(0), where Ω evolves in
the Lie algebra g. It is possible to replace (1.1) by an equation for Ω, which evolves
in g [10], and there are important benefits in solving the latter, returning to the Lie
group in every time step by means of the exponential map. The main advantage is
that g is a linear space and, as long as we discretize equations therein employing
exclusively linear-space operations and commutators, we can be assured that the
numerical solution stays in g. Thus, once exponentiated, we obtain a numerical
solution that evolves in the Lie group; this is important in the many instances when the
preservation of Lie-group structure is important and in variance with most numerical
methods applied directly in G [10].

The above argument is at the heart of many Lie-group methods (Runge–Kutta–
Munthe-Kaas schemes, Magnus expansions). Other methods, based on different
premises (e.g., Crouch–Grossman methods, Fer expansions and methods based upon
canonical coordinates of the second kind) also require the computation (or approxima-
tion) of the matrix exponential. However, standard methods for the approximation of
the matrix exponential, e.g., Padé approximations and Krylov subspace techniques,
are not guaranteed to map elements from g to G. Thus, having gone to a great length
to respect Lie-algebraic structure, we might well loose the fruits of this endeavor while
computing the exponential! On the positive side, diagonal Padé approximations map
some Lie algebras (“quadratic” algebras: so(R, n), the symplectic algebra, the Lorentz
algebra) to the underlying group. However, it is possible to show that the only an-
alytic function f , that maps sl(R, n) into SL(R, n) consistently with the exponential
function (i.e., f(z) = 1 + z+O

(
z2
)
) is the exponential itself [11]. Also other classical

methods for the approximation of the exponential fail in that case, and this motivates
the development of new breeds of approximation algorithms.

Early inroads into the approximation of the exponential in a Lie-algebraic setting
have been made in [2], using the splitting approach,

etZ ≈ etV1etV2 · · · etVm ,

where each Vk resides in g and the computation of its exponential is easy. The latter
is true when the Vks are of low rank and this, indeed, was the approach introduced
in [2].

Suppose that dimg = s and let X = {X1, X2, . . . , Xs} be a basis of g. In that
case it is possible to represent exp(tZ) for Z ∈ g and sufficiently small |t| in canonical
coordinates of the second kind,

etZ = eg1(t)X1eg2(t)X2 · · · egs(t)Xs ,
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where the scalar functions gk are analytic at the origin. Although the gks are implicitly
defined, it is possible to approximate their truncated Taylor expansion, an approach
adopted in [3]. A naive procedure of this kind might be excessively expensive, but
the cost can be reduced by several orders of magnitude by a clever choice of the basis
X, exploiting the Lie-algebraic structure.

The work underlying the approach of the present paper, generalized polar decom-
positions (GPD), has been introduced in [16] and further elaborated on in [20, 21].
In section 2 we present a brief review of such methods. It suffices to state here that,
while building upon former work in this area, they establish a general framework
which leads to robust and affordable algorithms. Having said this, such algorithms
can be fairly expensive when the required order is high, in particular when they need
to be computed, perhaps repeatedly, in each time step. The purpose of this paper
is to bring together generalized polar decompositions with techniques from numerical
linear algebra, thereby leading to more efficient and cheaper algorithms.

At a conceptual level, we are attempting to marry two types of structures, which
are often incompatible. For example, a viable approach to compute exp tZ for Z ∈
gl(R, n) is to represent Z = V HV ∗, where V is a product of Householder reflections
and H is upper Hessenberg. Since this is a similarity transformation, it is true that
etZ = V etHV ∗ and we need to compute an exponential of an upper-Hessenberg matrix.
As we show in what follows, this can be done very efficiently indeed by a modification
of the GPD technique. Unfortunately, this approach cannot be extended to other Lie
algebras. Thus, suppose that Z resides in the symplectic algebra

sp(n) = {Y ∈ gl(R, 2n) : Y J + JY � = O}, where J =

[
O I
−I O

]
.

In that case, in general, H �∈ sp(n): a Hessenberg form and symplecticity are incom-
patible! This is an illustration of a more general state of affairs, when numerical-
algebraic and Lie-algebraic structures clash. In this paper we present numerical-
algebraic structures which are compatible with a long list of matrix Lie algebras that
occur in applications. Moreover, in each case we need to modify and fine tune the
GPD algorithm to reduce its cost and improve its efficiency.

This is the time to mention that the GPD approach, combined with an upper-
Hessenberg form and the “peel-up” technique, result in an algorithm that compares
favorably, in terms of both cost and accuracy, with classical methods to compute
the exponential of a matrix. Thus, a procedure motivated by retention of specialized
differential-geometric structure, and based on mathematics which might be unfamiliar
to many numerical analysts, is very valuable also in a general context, where Lie-group
structure is not at issue.

The plan of this paper is as follows. In section 2 we consider in greater detail Lie
groups and Lie algebras, introducing requisite theory and notation. This is followed
by a brief review of generalized polar decompositions by means of involutory auto-
morphisms. In section 3 we debate the computation, using GPD, of exponentials of
tridiagonal matrices. We introduce a new approach (the “peel-up” algorithm) which
renders the GPD method substantially more efficient in this setting. The theme of
section 4 is how to bring matrices to an upper-Hessenberg form, or alternative forms
that lend themselves to our approach, by means of similarity transformations. Thus,
for example, symplectic matrices are converted into a so-called butterfly form. We
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discuss the implementation and cost of the “peel-up” technique in all these settings.
Section 5 is devoted to a divide-and-conquer strategy, which, approximating the ex-
ponential of a matrix by computations in lower-dimensional spaces, which can be
performed in unison, lends itself to implementation in parallel architectures. This
strategy is fully compatible with GPD and the retention of Lie-group structure and it
again displays the merits of the “peel-up” approach. Finally, in section 6 we discuss
the calculation of the exponential by GPD and the “peel-up” technique for a range
of more “exotic” Lie groups: the Lorentz group, the isotropy group and the scaling
group. The paper concludes with an appendix, to which we have relegated some of
the more technical calculations.

The issue of stability and conditioning is outside the scope of this paper. Al-
though much of the underlying framework, based upon similarity transformations by
orthogonal matrices, is consistent with good conditioning, stability might become an
issue. We plan to return to this subject area in a subsequent paper, where we will
explore in detail the stability of the GPD technique.

Let us conclude this section anticipating that the proposed method has a com-
plexity of O(n3), both when the exponential is applied to a vector and a matrix. This
might seem quite expensive especially in the case when one needs to compute exp(A)v
if compared to other techniques like Krylov subspace methods, which require gener-
ally O(n2) operations instead [5, 8]. However, let us remind the reader that Krylov
subspace methods also require about 18n3 operations when the exponential is applied
to a matrix. In this case, our methods achieve at least a 50% improvement on the
execution time, depending on the algebra under consideration.

Another important difference with Krylov methods is that while Krylov methods
approximate the exponential to machine precision, the proposed method approximates
the exponential to a given order of accuracy. This makes them particularly suited to
exponential approximations within numerical integrators for ODEs, since the error is
subsumed in that of the integration method and can be controlled by standard error
control techniques for ODEs. For other applications, there exist global error bounds
that depend on the scaling of the matrix [19]. We speculate that these bounds can be
used efficiently in tandem with scaling and squaring to achieve a given accuracy and
we plan to further explore this approach in the next future.

2. Background theory. The natural setting of GPD is Lie-group and Lie-
algebra theory; therefore it is convenient to present the background theory in the lan-
guage of differential geometry. To distinguish between group and algebra elements, it
is usual in differential geometry to denote Lie-group elements with lower-case letters
and Lie-algebra elements with upper-case letters, whether they represent matrices,
vectors or scalars [7]. An arbitrary Lie group will be denoted by G and the corre-
sponding Lie algebra by g. Subspaces of g are also usually denoted by Gothic letters.
We adopt this convention throughout this subsection. Later on, when most of the
computations take place at the algebra level, we will revert to a language that is more
familiar to the numerical analysis community and matrices (except when we want to
emphasize the Lie-group context) will be denoted as usual with capital letters.

Let G ⊆ GL(R, n) be a matrix Lie group with Lie algebra g. Given an involutive
automorphism σ of G, i.e., a one-to-one map G→ G such that

σ(x · y) = σ(x) · σ(y) ∀x, y ∈ G,

σ(σ(x)) = x ∀x ∈ G, σ �= id,

it is possible to show that, for t sufficiently small, every element z = exp(tZ) ∈ G,
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Z ∈ g, can be factorized in the form

z = xy,(2.1)

where σ(y) = y and σ(x) = x−1 [12, 16]. The decomposition (2.1) is called the GPD
of z, in analogy with the case of real matrices with the special choice σ(z) = z−�,
when it reduces to the familiar polar decomposition.

The automorphism σ induces in a natural manner an involutive automorphism
dσ on the Lie algebra g,

dσ(Z) =
d

dt

∣∣∣
t=0

σ(exp(tZ)),(2.2)

which defines a splitting of g into the direct sum of two linear spaces,

g = p ⊕ k,(2.3)

where k = {Z ∈ g : dσ(Z) = Z} is a subalgebra of g, while the set p = {Z ∈ g :
dσ(Z) = −Z} has the structure of a Lie triple system, a linear space closed under the
double commutator,

A,B,C ∈ p =⇒ [A, [B,C]] ∈ p,

where the bracket [A,B] = AB −BA is the standard matrix commutator.

To show that (2.3) is true, denote by Πp : g → p the canonical projection of g

onto the subspace p and by Πk : g → k its projection onto k. Set

P = Πp(Z), K = Πk(Z).

It is easily verified by direct computation that every element Z can be written in a
unique manner as Z = P +K, where

P = Πp(Z) =
1

2
(Z − dσ(Z)), K = Πk(Z) =

1

2
(Z + dσ(Z)).

To keep our presentation relevant to the subject matter of this paper, we refer
the reader to [16, 20] and references therein for a more extensive treatment of such
decompositions. However, it is of fundamental importance to note that the sets k and
p possess the following properties:

[k, k] ⊆ k, [k, p], [p, k] ⊆ p, [p, p] ⊆ k,(2.4)

meaning that for all K1,K2 ∈ k and P1, P2 ∈ p, it is true that [K1,K2] ∈ k,
[K1, P1], [P2,K2] ∈ p, and [P1, P2] ∈ k.

How does the splitting of Z = P + K relate to the factorization (2.1)? It is
possible to show that, for t sufficiently small, the factors x and y in (2.1) are of the
form x = exp(X(t)) and y = exp(Y (t)), whereX(t) ∈ p and Y (t) ∈ k, for all t ∈ [0, t0].
Moreover they can be expanded in series

X(t) =

∞∑
i=1

Xit
i, Y (t) =

∞∑
i=1

Yit
i,
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where the coefficients Xi and Yi can be calculated by means of explicit recurrence
relations from the matrices P and K [20]. The first terms in the expansions of X(t)
and Y (t) are

X = Pt− 1

2
[P,K]t2 − 1

6
[K, [P,K]]t3

+

(
1

24
[P, [P, [P,K]]] − 1

24
[K, [K, [P,K]]]

)
t4

+

(
7

360
[K, [P, [P, [P,K]]]] − 1

120
[K, [K, [K, [P,K]]]]

(2.5)

− 1

180
[[P,K], [P, [P,K]]]

)
t5 + O

(
t6
)
,

Y = Kt− 1

12
[P, [P,K]]t3 +

(
1

120
[P, [P, [P, [P,K]]]] +

1

720
[K, [K, [P, [P,K]]]]

− 1

240
[[P,K], [K, [P,K]]]

)
t5 + O

(
t7
)
.

Since X(t) and Y (t) and their truncations live in p and k, respectively, it is
clearly desirable to choose automorphisms σ such that exponentials of elements in p

(and eventually k) and repeated commutators of P and K are easy to compute.
Assume next that σ1, σ2, . . . , σm is a sequence of involutive automorphisms on G

that satisfies the above conditions. Then, taking σ ≡ σ1, we partition g = p1 ⊕ k1,
and approximate

exp(tZ) ≈ exp(X [1](t)) exp(Y [1](t)),(2.6)

where X [1] and Y [1] are truncations of (2.5) of suitable order.
By the same token, k1 is partitioned as p2 ⊕ k2 by means of the automorphism

σ2, and

exp(Y [1](t)) ≈ exp(X [2](t)) exp(Y [2](t)),

where again X [2] and Y [2] are truncations of (2.5) of suitable order.
The procedure is iterated for m steps, say, so that km is of low dimension and,

therefore, exponentials of its elements are easy to compute exactly.
This algorithm approximates exp(tZ) to a given order of accuracy. In these

circumstances, (2.6) will read

exp(tZ) ≈ F (t, Z) = exp(X [1](t)) · · · exp(X [m](t)) exp(Y [m](t))(2.7)

and it corresponds to the algebra direct-sum decomposition

g = p1 ⊕ · · · ⊕ pm ⊕ km.(2.8)

In some circumstances, it might be more convenient to use a mirrored form of (2.7),

exp(tZ) ≈ exp(Ỹ [m](t)) exp(X̃ [m](t)) · · · exp(X̃ [1](t)).(2.9)

Clearly, the functions Ỹ (t) and X̃(t) and their truncations are related to Y (t) and
X(t). Indeed, in [16] it is easily verified that

Ỹ (t) = Y (t), X̃(t) = −X(−t).
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2.1. On the choice of the order of approximation. As we have mentioned
earlier, one of the core applications of the splitting methods proposed in this paper
is the numerical solution of ODEs on Lie groups by means of Lie-group methods [10]
using exponentials. If, in this context, a numerical integrator of order p is used, it is
reasonable to use an exponential approximation of the same order since the truncation
error of the exponential approximation is subsumed in the truncation error of the
numerical integrator. This is accomplished by truncating the expansions (2.5) to
include all the terms up to O(tp). For instance, if using a numerical integrator of
order four, a reasonable approximation is

X(t) ≈ X1t+X2t
2 +X3t

3 +X4t
4

= Pt− 1

2
[P,K]t2 − 1

6
[K, [P,K]]t3 +

(
1

24
[P, [P, [P,K]]] − 1

24
[K, [K, [P,K]]]

)
t4

for X(t), and, similarly,

Y (t) ≈ Y1t+ Y3t
3 = Kt− 1

12
[P, [P,K]]t3

for Y (t).
In other cases, for example, when the given matrix Z has large entries or is

badly scaled, the methods we propose in this paper should be combined with other
procedures like error control and scaling and squaring.

2.2. On the choice of automorphisms. From this point onward, we are
mostly interested in the algebraic setting; therefore, we revert our notation to the
more familiar in numerical analysis. Matrices (otherwise specified) will be denoted by
capital letters, vectors by boldface letters, et cetera.

To obtain the algebra splitting (2.8), Zanna et al. [21] suggested using automor-
phisms of the type

σ(z) = AdSZ = SzS, z ∈ G,(2.10)

(inner automorphisms), where S ∈ O(n) ∩ G is a suitable involutory matrix (i.e.,
S2 = I) such that SzS ∈ G. Note that, at the algebra level, (2.2) implies that

dσ(Z) = AdSZ = SZS,

in other words, dσ and σ are essentially of the same form.
Consider next an inner automorphism AdS , where

S = diag(−1)s = diag[(−1)s1 , (−1)s2 , . . . , (−1)sn ] si ∈ {0, 1}.(2.11)

Given an arbitrary matrix Z, one has

(SZS)i,j = (−1)si+sjZi,j

consequently,

Pi,j =
1

2
[1 − (−1)si+sj ]Zi,j , Ki,j =

1

2
[1 + (−1)si+sj ]Zi,j .
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Hence, choosing appropriately the vector s, it is possible to dispatch selected rows
and columns of Z to the different subspaces.

For instance, choosing si = 0, i �= k, and sk = 1, we obtain subspaces p and k

with the sparsity structure

p �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 × 0 0 · · · 0
...

... ×
...

...
...

0 · · · 0 × 0 0 · · · 0
× × × 0 × × × ×
0 · · · 0 × 0 0 · · · 0
0 · · · 0 × 0 0 0
...

... ×
...

...
0 · · · 0 × 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× · · · × 0 × × · · · ×
...

... 0
...

...
...

× · · · × 0 × × · · · ×
0 0 0 × 0 0 0 0
× · · · × 0 × × · · · ×
× · · · × 0 × × · · · ×
...

... 0
...

...
...

× · · · × 0 × × · · · ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

respectively.

3. Tridiagonal matrices. Let us assume that Z is a tridiagonal matrix,

Z =

⎡⎢⎢⎢⎢⎣
α1 γ1

β1
. . .

. . .

. . .
. . . γn−1

βn−1 αn

⎤⎥⎥⎥⎥⎦ ,(3.1)

and denote by ei the ith unit vector in R
n.

Definition 3.1. We say that the sequence of automorphisms

AdSi , Si = diag(−1)si , i = 1, . . . , n− 1,(3.2)

constitutes a peel-down approach if s1 = e1 = [1, 0, 0, . . . , 0]�, s2 = e2 = [0, 1, 0, . . . , 0]�,
. . . , sn−1 = en−1 = [0, 0, 0, . . . , 1, 0]�. The choice s1 = en, s2 = en−1, . . . , sn−1 = e2

constitutes a peel-up approach.
The above definition is motivated by the fact that the peel-down approach leads

to the splitting in bordered matrices proposed in [21]; the bordered matrices are
obtained by “peeling” the matrix Z from the top-left corner downwards. In the peel-
up approach, we target rows and columns of Z starting from the bottom-right corner
instead and proceed upwards.

In what follows, we apply a peel-up approach to (3.1) and discuss in detail the
first stage, corresponding to the automorphism AdS1

, s1 = en. The remaining stages
of the peel-up approach share very similar features.

Using Addiag(−1)en to perform the first algebra splitting we obtain Z = P + K,
where

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . . 0 0 γn−1

0 · · · 0 βn−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1 γ1 0 · · · 0

β1 α2
. . .

...

0
. . .

. . . γn−2 0
...

. . . βn−2 αn−1 0
0 · · · 0 0 αn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.(3.3)
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Next, we start computing commutators. We write

P = γn−1en−1e
�
n + βn−1ene

�
n−1,

and commence our computations with

[P,K] = −γn−2γn−1en−2e
�
n + βn−2βn−1ene

�
n−2(3.4)

+ γn−1(αn − αn−1)en−1e
�
n − βn−1(αn − αn−1)ene

�
n−1.

It is immediate to observe that there appears a fill-in in the tridiagonal structure
of X(t) = Pt − 1

2 t
2[P,K] + O

(
t3
)
. In general, the more commutators we take, the

greater the fill-in: two extra nonzero elements (one in the nth row and one in the
nth column) for every extra power of t. In principle, the whole nth row and column
would eventually be filled in. But this is not such bad news as it might appear at a
first glance. Below we explain the reason for this.

3.1. Dealing with fill-in. An important observation is that fill-in of X(t) prop-
agates only in the Lie triple-system p, which consists of rank-2 matrices of the form[

O a

b� 0

]
, a,b ∈ R

m.(3.5)

Therefore, once X(t) is approximated, its exponential can be computed exactly by
means of an expression analogous to the Euler–Rodrigues formula for the exponential
of a skew-symmetric matrix. Assume that A ∈ p is of the form (3.5). Then,

exp(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

I +
sinh θ

θ
A+

1

2

[
sinh(θ/2)

θ/2

]2
A2, a�b > 0, θ =

√
a�b,

I +A+
1

2
A2, a�b = 0,

I +
sin θ

θ
A+

1

2

[
sin(θ/2)

θ/2

]2
A2, a�b < 0, θ =

√
−a�b

(3.6)

[21], where

A2 =

[
ab� 0

0� a�b

]
.

Setting to η1, η2 the coefficients of (3.6), application to a vector yields

exp(A)v = v + η1

[
O a
b� 0

]
v + η2

[
ab� 0
0� ±θ2

]
v,

where the sign of θ2 is chosen according to (3.6). Assume next that w,v ∈ R
k+1,

a,b ∈ R
k. Writing v = [vk, v]

�, w = [wk, w]�, a direct computation reveals that[
wk

w

]
= exp(A)v =

[
vk + ζ1a

ζ2

]
,(3.7)

where

ζ1 = [η1v + η2(b
�vk)],

ζ2 = (1 ± η2θ
2)v + η1(b

�vk).
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Table 3.1

Cost of the computation (including both addition and multiplication) of the exponential (3.6).
The (k, k) column corresponds to the case when a,b are full, the (k, p) corresponds to the case when
a is full while only the last p components of b are nonzero and, finally, the (p, p) column corresponds
to both a and b having only the last p components nonzero.

Cost of exp(A) (k, k) (k, p) (p, p)

a�b 2k 2p 2p
b�vk 2k 2p 2p
ζ1a k k p
wk k k p
total, stage k 6k 2k + 4p 6p

total, summing 1 ≤ k ≤ n (vector) 3n2 n2 + 4pn 6pn

matrix (n vectors) 2n3 n3 + 2pn2 4pn2

When the exponential is applied to a matrix, we apply (3.7) to each column vector.
Note, however, that the scalar product a�b need be computed only once, even if the
matrix columns are distinct.

In passing, we mention that there exists another formula for the exact computa-
tion of the exponential of a matrix as in (3.5), due to Celledoni et al. [2],

exp(A) = I + [ek,k]ϕ(D)

[
l�

e�k

]
,(3.8)

where

k =

[
a
0

]
, l =

[
b
0

]
, D =

(
0 b�a
1 0

)
,

ek is the vector [0, 0, . . . , 0, 1]� ∈ R
k and, finally, ϕ(z) = (ez − 1)/z. This formula

can be shown to have the same computational cost as (3.7).

If a,b have p � n nonzero elements only, say an−p, . . . , an−1, bn−p . . . , bn−1, it
is clear that the computation of exponentials of elements in p requires just O(pn)
operations, when the exponentials are multiplied by a vector, and O

(
pn2
)

operations
when a multiplication by a matrix is required (see Table 3.1). Therefore, the fill-in
in the p part is inconvenient (in principle one would have preferred to preserve the
neater tridiagonal structure), but it is not dangerous insofar as the increase of the
computational cost is concerned.
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Fig. 3.1. Fill-in in the tridiagonal structure at step one, two, and three in the peel-up procedure.
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Fig. 3.2. In the peel-up approach for skew-symmetric matrices, using a Givens rotation to
annihilate sub-diagonal fill-in does not cause further fill-in.
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Fig. 3.3. In the peel-down approach for skew-symmetric matrices, using a Givens rotation
to annihilate sub-diagonal fill-in does cause fill-in that propagates downwards. If the rotations are
chosen to annihilate super-diagonal fill-in instead, there is no fill-in propagation.

More subtle is the case when the fill-in appears in k � Y (t) = Kt− 1
12 t

3[P, [P,K]]+
higher order terms. If such fill-in occurs and is not suitably dealt with, it will prop-
agate further and the tridiagonal structure of the sub-matrices will be lost. The
matrices then become increasingly full, and the cost of the splitting becomes O

(
n3
)
,

as discussed in [21]. Such an instance is displayed below in Figure 3.1, in which we
perform three steps of the peel-up procedure for a tridiagonal symmetric matrix. We
compute the function Y (t) given in (2.5) and truncate the expansion to order six. It
is clearly observed that in each step the number of nonzero elements increases and
that the sub-matrices have a tendency to become full. This is clearly not desirable,
since we do not want to lose the benefits of the original tridiagonal form!

However, two important observations are the following:

• The fill-in in the Y (t) part appears at order five only—truncations of order
one to four are still tridiagonal.

• The number of fill-in elements is usually very small.

Hence it is reasonable to eliminate the fill-in at each step by means of similarity
orthogonal transformations (for instance, Givens rotations). At each step this con-
tributes only O(1) to the cost of the splitting, which is negligible compared to the
total cost of the approximation.

If Z is a skew-symmetric matrix, the fill-in in the Y (t) part is chess board-like.
Givens rotations can be used to eliminate the sub-diagonal fill-in and their transpose
takes care of the super-diagonal fill-in. This is precisely the point when our choice
of the peel-up approach, in preference to peel-down, starts to pay dividends. Using
a peel-down approach, Givens rotations that eliminate the sub-diagonal fill-in cause
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further fill-in that is propagated downwards. However, no fill-in is caused if Givens
rotations are targeted to annihilate super-diagonal fill-ins instead (see and compare
Figures 3.2 and 3.3). For this reason we will restrict our attention to the peel-up
approach instead of the peel-down approach of [21].

3.2. On the computation of commutators. We return to the computation
of commutators and denote by adB = [B, ·] the operator that performs commutation
with B, i.e., adBC = [B,C], ad2

BC = [B, [B,C]], etc.
Our first observation is that the involutions S are usually chosen so that P =

Πp(Z) has low rank, hence only just a few nonzero eigenvalues. Thus, we can use
the theory of minimal polynomials of matrices [9] so that few commutators need
be computed. All the remaining commutators with P can be obtained as linear
combinations of those.

Lemma 3.2. Consider the matrix A of the form (3.5). If ab� �= O, then the
minimal polynomial of adA is

p(λ) = λ(λ− 2θ)(λ+ 2θ)(λ− θ)(λ+ θ)
(3.9)

= λ5 − 5b�aλ3 + 4(b�a)2λ,

where θ =
√

b�a.
If either a or b is zero, then the minimal polynomial is

p(λ) = λ3.(3.10)

Proof. Recall that if A has distinct eigenvalues λ1, λ2, . . . , λm with algebraic
multiplicities r1, r2, . . . , rm, respectively, the minimal polynomial of A has the form

q(λ) =

m∏
i=1

(λ− λi)
gi ,

where gi is the order of the largest Jordan block of A corresponding to the eigenvalue
λi [9].

Let us assume first that b�a �= 0. Imposing Av = λv, we deduce immediately
that the eigenvalues of A are λ = ±θ = ±

√
b�a and λ = 0 with algebraic multiplic-

ities one, one, and n − 2, respectively. It is easily verified that these are also their
geometric multiplicities: for λ = ±θ, eigenvectors are of the form [a,±1]�; for the zero
eigenvalues, eigenvectors are of the form [v1, 0]�, 0 �= v1 ∈ R

n−1, satisfying b�v1 = 0,
furthermore, it is possible to find n− 2 of those that are linearly independent.

Since the eigenvalues and eigenvectors of adA are the form λi − λj and y�
i xj ,

respectively, the λis being eigenvalues of A with left and right eigenvector yi and xi,
respectively, we deduce that adA has eigenvalues

λ = ±2θ, λ = ±θ

with algebraic/geometric multiplicities one each, and

λ = 0

with algebraic and geometric multiplicity n2 − 4. This implies that all Jordan blocks
have size one, from which it follows directly that the minimal polynomial of adA is of
the form e̊q:minpoly.
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Next, if θ = 0 but ab� �= O (namely a,b �= 0) the eigenvectors of A, that we
write as [v1, v2]

�, must obey the conditions

av2 = 0,

b�v1 = 0.

Since a �= 0, it must necessarily be v2 = 0. Therefore, eigenvectors must be of
the form [v1, 0]. Recall that v1 has n − 1 entries (n − 1 free parameters) while the
second equation b�v1 = 0 gives only a linear constraint. This means that we can
find only n−2 linearly independent eigenvectors and two further linearly independent
generalized eigenvectors. In terms of Jordan blocks, this means that A has a Jordan
block of the form

J(0) =

⎡⎣0 1 0
0 0 1
0 0 0

⎤⎦ ,
or two Jordan blocks of the form

J(0) =

[
0 1
0 0

]
.

A simple discussion eliminates the second possibility: if there were two such Jordan
blocks, the minimal polynomial would be λ2, i.e., A2 = O, which is clearly not the
case by direct computation, being ab� �= O. Hence, only the first 3× 3 Jordan block
is admissible. Therefore λ3 is the minimal polynomial of A and, as a consequence,
A3 = O. Passing to the adjoint operator adA, recall that, for an arbitrary matrix C,

adkAC =

k∑
i=0

(
k
i

)
(−1)k−iAiCAk−i, k = 1, 2, . . . .(3.11)

Clearly, ad5
AC = O since in all terms there appears a power Ai with i ≥ 3. For lower

order powers, there are always terms of the type AiCAk−i, where i, k − i ≤ 2. This
means that it is always possible to find a matrix C for which at least one of terms
does not vanish. Hence the minimal polynomial of adA is

p(λ) = λ5.

Finally, in the case when either a = 0 or b = 0, by direct computation,

A2 = O,

corresponding to a Jordan block J(0) =
[
0
0

1
0

]
. Hence the minimal polynomial of A

is λ2. Insofar as adA is concerned, the first power to vanish in (3.11) is ad3
A, and no

lower power vanishes for arbitrary matrices C. Hence the minimal polynomial is

p(λ) = λ3.

This completes the proof of the lemma.
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Trivially, in the case when both a and b are zero, both A = O and adA = O,
hence their minimal polynomial is p(λ) = λ.

Theorem 3.3. Assume that the matrix A is of the form (3.5). Then, for every
k = 1, 2, . . . , commutators by A can be computed as

adkA = [C1 + (−1)kC2]2
kθk + [C3 + (−1)kC4]θ

k, k = 1, 2, . . . ,(3.12)

when θ =
√

b�a �= 0, and

C1 − C2 =
1

6

(
−adA

θ
+

ad3
A

θ3

)
, C3 − C4 =

1

3

(
4adA
θ

− ad3
A

θ3

)
,

(3.13)

C1 + C2 =
1

12

(
−ad2

A

θ2
+

ad4
A

θ4

)
, C3 + C4 =

1

3

(
4ad2

A

θ2
− ad4

A

θ4

)
.

If θ = 0 but a,b �= O, then

adkA = O, k = 5, 6, 7, . . . .

If either a or b is a zero vector, then

adkA = O, k = 3, 4, 5, . . . .

Proof. Recall that the minimal polynomial is the least degree monic polynomial
such that

p(adA) = 0,

hence

ad5
A − 5(b�a)ad3

A + 4(b�a)2adA = O.

Multiplying by adA, ad2
A, . . . , we obtain the recurrence relation

adk+2
A − 5(b�a)adkA + 4(b�a)2adk−2

A = O, k = 3, 4, 5, . . . ,

whose general solution is (3.12). The unknowns C1, C2, C3, C4 are obtained by
requiring that the formula (3.12) is correct for k = 1, 2, 3, 4. We obtain

(C1 − C2) +
1

2
(C3 − C4) =

1

2θ
adA,

(C1 + C2) +
1

4
(C3 + C4) =

1

4θ2
ad2
A,

(C1 − C2) +
1

8
(C3 − C4) =

1

8θ3
ad3
A,

(C1 + C2) +
1

16
(C3 + C4) =

1

16θ4
ad4
A,

and (3.13) follows by direct computation. Thus, (3.12) is determined for both odd
and even values of k.

In other words, given an arbitrary matrix B, the commutator adkAB, k ≥ 5,
can be obtained as a mere linear combination of B, adAB, . . . , ad4

AB. In our case,
taking A ≡ P and taking into account the sparsity of P , the computation of adkP ,
k = 1, 2, 3, 4, is particularly simple. Setting Ei,j = eie

�
j , a matrix with 1 in the (i, j)
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position and 0 otherwise, and applying adP to K (whose elements are as in (3.3)), we
have

[P,K] = cn−2,nEn−2,n + cn,n−2En,n−2

+ cn−1,nEn−1,n + cn,n−1En,n−1,

[P, [P,K]] = dn−2,n−1En−2,n−1 + dn−1,n−2En−1,n−2

+ dn−1,n−1En−1,n−1 + dn,nEn,n,
(3.14)

[P, [P, [P,K]]] = en−2,nEn−2,n + en,n−2En,n−2

+ en−1,nEn−1,n + en,n−1En,n−1,

[P, [P, [P, [P,K]]]] = fn−2,n−1En−2,n−1 + fn−1,n−2En−1,n−2

+ fn−1,n−1En−1,n−1 + fn,nEn,n.

The nonzero coefficients ci,j , di,j , ei,j , fi,j are given by

cn−2,n = −γn−2γn−1, dn−2,n−1 = −βn−1cn−2,n,
cn,n−2 = βn−2βn−1, dn−1,n−2 = γn−1cn,n−2,
cn−1,n = γn−1(αn − αn−1), dn−1,n−1 = γn−1cn,n−1 − βn−1cn−1,n,
cn,n−1 = βn−1(αn − αn−1), dn,n = −dn−1,n−1,
en−2,n = −γn−1dn−2,n−1, fn−2,n−1 = −βn−1en−2,n,
en,n−2 = βn−1dn−1,n−2, fn−1,n−2 = γn−1en,n−2,
en−1,n = 2γn−1dn,n, fn−1,n−1 = γn−1en,n−1 − βn−1en−1,n,
en,n−1 = −2βn−1dn−1,n−1, fn,n = −fn−1,n−1,

(3.15)

where βks and γks originate in (3.3).

Unfortunately, the theory of minimal polynomials is not equally insightful insofar
as commutators with K are concerned. Instead, we have computed the first few such
terms explicitly and they are also in a form that renders their evaluation cheap,

[K, [P,K]] = gn,n−3En,n−3 + gn,n−2En,n−2 + gn,n−1En,n−1(3.16)

+ gn−3,nEn−3,n + gn−2,nEn−2,n + gn−1,nEn−1,n,

[K, [K, [P,K]]] = hn,n−4En,n−4 + hn,n−3En,n−3 + hn,n−2En,n−2

+hn,n−1En,n−1 + hn−4,nEn−4,n + hn−3,nEn−3,n

+hn−2,nEn−2,n + hn−1,nEn−1,n,

[K, [P, [P, [P,K]]]] = in,n−3En,n−3 + in,n−2En,n−2 + in,n−1En,n−1

+ in−3,nEn−3,n + in−2,nEn−2,n + in−1,nEn−1,n,

[K, [K, [K, [P,K]]]] = jn,n−5En,n−5 + jn,n−5En,n−4 + jn,n−3En,n−3

+ jn,n−2En,n−2 + jn,n−1En,n−1

+ jn−5,nEn−5,n + jn−4,nEn−4,n + jn−3,nEn−3,n

+ jn−2,nEn−2,n + jn−1,nEn−1,n,

[[P,K], [P, [P,K]]] = kn,n−2En,n−2 + kn,n−1En,n−1

+ kn−2,nEn−2,n + kn−1,nEn−1,n,

[K, [K, [P, [P,K]]]] = ln−1,n−4En−1,n−4 + ln−1,n−3En−1,n−3

+ ln−1,n−2En−1,n−2 + ln−1,n−1En−1,n−1

+ ln−2,n−3En−2,n−3 + ln−2,n−2En−2,n−2
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+ ln−2,n−1En−2,n−1 + ln−3,n−2En−3,n−2

+ ln−3,n−1En−3,n−1 + ln−4,n−1En−4,n−1,

[[P,K], [K, [P,K]]] = mn,nEn,n +mn−1,n−3En−1,n−3

+mn−1,n−2En−1,n−2 +mn−1,n−1En−1,n−1

+mn−2,n−3En−2,n−3 +mn−2,n−2En−2,n−2

+mn−2,n−1En−2,n−1 +mn−3,n−2En−3,n−2

+mn−3,n−1En−3,n−1.

The nonzero coefficients of (3.16) are reported in the appendix.

Note that, when Z in (3.1) is symmetric or skew-symmetric, only about half of
the coefficients in (3.14) and (3.16) need be computed. To see this, assume that
Z is symmetric as well as P and K. Then, so is [P, [P,K]], [K, [P,K]], . . . , and in
general all terms which include an even number of commutators. Those including
an odd number of commutators, like [P,K], [K, [K, [P,K]]], . . . , are instead skew-
symmetric. Symmetry and skew-symmetry can be transparently taken into account
when computing the coefficients (3.15) and (A.1)–(A.6).

By the same token, when Z is skew-symmetric, so are P and K, and all their com-
mutators. Again, this means that we only need to compute just the under-diagonal
(or over-diagonal) coefficients in (3.14) and (3.16).

3.3. The reduction to a tridiagonal form: Symmetric and skew-sym-
metric matrices. For symmetric and skew-symmetric matrices, the problem of re-
duction to a tridiagonal form is classical, and we briefly review well-known techniques
based on Householder reflections and Lanczos tridiagonalization.

Symmetric and skew-symmetric matrices can be reduced to a tridiagonal form by
means of Householder reflections,

H = I − βvv�, β =
2

‖v‖2
,

which are orthogonal transformations. Since H = H�, it is easily verified that HZH
is symmetric/skew-symmetric if Z is also. The above transformation can be computed
very effectively for symmetric and skew-symmetric matrices thanks to an algorithm
due to Wilkinson, which amounts to n3 operations approximatively (counting both
additions and multiplications) [6]. If counting only multiplications (or only flops, i.e.,
operations of the form av + b), the count reduces to 2

3n
3, consistently with [6].

When Z is sparse and very large, a possible alternative is to use the Lanczos
method, which is particularly attractive when it is cheap to form products of the
form Zv, where v ∈ R

n [6, 18]. Denote by Q = [q1,q2, . . . ,qn] an orthogonal matrix
that tridiagonalizes Z, i.e., Q�ZQ = T , where T is symmetric or skew-symmetric
depending on Z, and tridiagonal. From

ZQ = QT,

one readily obtains the recurrences relations for the unknowns of the problem. The
procedure may break down when, in exact arithmetics, T is reducible. In floating-
point arithmetics it is also possible that the vectors qj might become progressively
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Table 3.2

Comparison of cost of the approximation of the exponential without (ZMK) and with reduction
to tridiagonal form (IZ) for splittings of order 2, 3, 4. Only dominant terms are reported.

Order ZMK IZ

2 Vector Matrix Vector Matrix

Tridiag. – – n3 n3

Order cond. 2
3n

3 2
3n

3 O(n) O(n)

Assembly exp 3n2 2n3 6pn 4pn2

Total 2
3n

3 2 2
3n

3 n3 + O(pn) n3 + 4pn2

Order ZMK IZ

3 Vector Matrix Vector Matrix
Tridiag. – – n3 n3

Order cond. 2 1
2n

3 2 1
2n

3 O(n) O(n)

Assembly exp 3n2 2n3 6pn 4pn2

Total 2 1
2n

3 4 1
2n

3 n3 + O(pn) n3 + 4pn2

Order ZMK IZ

4 Vector Matrix Vector Matrix

Tridiag. – – n3 n3

Order cond. 4n3 4n3 O(n) O(n)

Assembly exp 3n2 2n3 6pn 4pn2

Total 4n3 6n3 n3 + O(pn) n3 + 4pn2

less orthogonal, and, in such cases, a restart process is recommended. We refer the
reader to [6, 18] for further details on the algorithm.

4. Other matrices. When Z is neither symmetric nor skew-symmetric, and,
in particular, when it is not normal, the tridiagonalization process (nonsymmetric
tridiagonalization, i.e., tridiagonalization by similarity transform, not necessarily or-
thonormal) might be either unstable or it might destroy the underlying algebraic
structure [6]. For instance, the tridiagonalization of a matrix in the symplectic alge-
bra sp(n) := {Z : ZJ = −JZ�}, where

J =

[
O I
−I O

]
,(4.1)

might not produce an output in sp(n), and this is not desirable in many applications,
for instance when conservation of Lie-group structure is important. To force the group
structure, it might be more appropriate to look for other sparsity patterns that are
(a) compatible with the algebra structure and (b) retained under commutation.

For matrices in gl(n), sl(n) which do not strictly belong to other subalgebras,
it is more convenient to reduce to an upper-Hessenberg form, by means of orthog-
onal transformations (e.g., Householder reflections). This is a more stable process
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than nonsymmetric tridiagonalization [6]. For generic matrices, reduction to upper-
Hessenberg form costs about 3 1

3n
3 operations [6].

For matrices belonging to other subalgebras, like the symplectic algebra, Lorentz-
type algebras, quadratic algebras, etc., it is possible to consider other specific trans-
formations that preserve the algebraic structure. These will be described at length in
what follows.

4.1. Upper Hessenberg matrices. In this subsection we analyze the first
step of a peel-up approach, as in Definition 3.1, corresponding to the automorphism
AdS1 , where S1 = diag(−1)s1 , s1 = en. The remaining steps, corresponding to
AdS2 ,AdS3 , . . . , corresponding to s2 = en−1, s3 = en−2, . . . , share similar features.
Therefore, Y6 has the sparsity pattern displayed in Figure 4.2.

Assume that Z in gl(n) or in sl(n) is in an upper-Hessenberg form. The matrices
P , K corresponding to the splitting induced by Addiag(−1)en have the sparsity pattern
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P

.

In Figure 4.1 we display the terms required in the generation of Y up to O
(
t6
)
,

with just three filled-in entries, at the (n− 2, n− 4), (n− 1, n− 4) and (n− 1, n− 3)
positions. It thus takes just three Givens rotations to bring Y6 to the same sparsity
pattern as K via similarity transformations.

Next, we proceed to generate X. All the terms up to O
(
t5
)

are
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Therefore, the sparsity patterns of the truncations X2, X3, X4, X5 are
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Fig. 4.1. Commutators required for the generation of Y6 for a matrix in a Hessenberg form.

What about the exponential of Xp? Each such matrix is again of the form (3.5)
and (3.6) still holds. Assume now that a has n nonzero elements, while b has only
p nonzero elements, say bn−p, . . . , bn−1. As displayed in Table 3.1, multiplying a
vector by n − 1 exponentials of matrices of decreasingly small dimension costs just
O
(
pn2
)

flops, while multiplying a matrix in a similar fashion carries the price tag of
1
2n

3 + O
(
n2
)

flops.

What is the cost of computing the commutators? Clearly, one has to take advan-
tage of the sparsity of the matrices under consideration.



MATRIX EXPONENTIALS BY GPD 2237

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Fig. 4.2. Sparsity pattern of Y6 for a matrix in a Hessenberg form.

We commence with the analysis of commutators of the type [A,B], where A ∈ p

and B ∈ k. We write

A =

[
O a
b� 0

]
, B =

[
B1 0
0� B2

]
,

where b� = [0, 0, . . . , bn−q, . . . , bn−1], has only q nonzero elements, B1 is (n − 1) ×
(n− 1) and in a Hessenberg form, while B2 has a single nonzero entry. We have

[A,B] =

[
O aB2 −B1a

b�B1 −B2b
� 0

]
.

Thus, computing [A,B] amounts to the following:
• about n(n − 1) operations for the computation of B1a, since B1 is in a

Hessenberg form. Note that this reduces to about 2qn operations if only the last q
columns of B1 are nonzero.

• (n−1) operations for aB2 and further n−1 operations to compute aB2−B1a,
• about q(q − 1) operations for b�B1, q to compute B2b and further q to

compute b�B1 −B2b
�.

In total, we require about n2 operations (assuming that q � n). Running the com-
mutators over matrices of decreasing dimension, we have in total

n−1∑
j=1

j2 ≈ 1

3
n3

operations. This is the cost of the commutators [P,K], [K, [P,K]], [K, [K, [P,K]]], . . . ,
namely of p-elements with K.

Next, we consider commutators of the form [A1, A2], where A1, A2 ∈ p are bor-
dered matrices. Set

A1 =

[
O a
b� 0

]
, A2 =

[
O c
d� 0

]
,

where only the last q elements of b, d are nonzero. Since

[A1, A2] =

[
ac� − db� 0

0� b�d − c�a

]
,
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it is evident that the computation of these commutators costs about 3q(n− 1) oper-
ations, contributing a total of 3

2qn
2 to the total cost (i.e., summing the contribution

of similar terms over matrices of decreasing dimension). This is the cost of the com-
mutators [P, [P,K]], [P, [P, [P, [P,K]]]], etc. Finally, if C1, C2 ∈ k, with

C1 =

[
B1 0
0� b1

]
, C2 =

[
B2 0
0� b2

]
,

with B1, B2 of dimension n, one has

[C1, C2] =

[
[B1, B2] 0

0� 0

]
.

If only the last p (resp., r) columns of B1, (resp., B2) are nonzero, setting r =
min{p, q}+1, we deduce that the commutators [C1, C2] cost about 6rn operations—an
O
(
n2
)

contribution when the count is carried over matrices of decreasing dimension.

Putting all the bricks together,

• Terms for order 2:

[P,K] → 1

3
n3.

• Order 3:

[K, [P,K]] → 1

3
n3,

[P, [P,K]] → O
(
n2
)
.

• Order 4:

[P, [P, [P,K]]] → O
(
n2
)
,

[K, [K, [P,K]]] → 1

3
n3.

• Order 5:

[K, [P, [P, [P,K]]]] → 1

3
n3,

[K, [K, [K, [P,K]]]] → 2

3
n3,

[[P,K], [P, [P,K]]] → O
(
n2
)
,

[P, [P, [P, [P,K]]]] → O
(
n2
)
,

[[P,K], [K, [P,K]]] → O
(
n2
)
,

[K, [K, [P, [P,K]]]] → O
(
n2
)
.

In Table 4.1 we summarize the cost for the various stages of the exponential
approximation of a generic matrix Z ∈ gl(n) for orders 2, 3, and 4 and compare our
new algorithms with those proposed in [21]. For full matrices, it is evident that the
benefits of our approach appear for orders greater than two. For order 4 the new
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Table 4.1

Comparison of cost of the approximation of the exponential without (ZMK) and with reduction
to Hessenberg form (IZ) for splittings of order 2, 3, 4. Only dominant terms are reported.

Order ZMK IZ

2 Vector Matrix Vector Matrix

Hessenberg – – 3 1
3n

3 3 1
3n

3

Order cond. 1 1
3n

3 1 1
3n

3 1
3n

3 1
3n

3

Assembly exp 3n2 2n3 n2 n3

Total 1 1
3n

3 2 1
3n

3 3 2
3n

3 4 2
3n

3

Order ZMK IZ

3 Vector Matrix Vector Matrix

Hessenberg – – 3 1
3n

3 3 1
3n

3

Order cond. 5n3 5n3 2
3n

3 2
3n

3

Assembly exp 3n2 2n3 n2 n3

Total 5n3 7n3 4n3 5n3

Order ZMK IZ

4 Vector Matrix Vector Matrix

Hessenberg – – 3 1
3n

3 3 1
3n

3

Order cond. 7n3 7n3 n3 n3

Assembly exp 3n2 2n3 n2 n3

Total 7n3 9n3 4 1
3n

3 5 1
3n

3

algorithm is almost 40% faster than the one without transformation to an upper-
Hessenberg form.

4.2. Symplectic matrices. The symplectic group of matrices Sp(n) is the set of
all invertible matricesM of dimension 2n such thatMJM� = J where J is as in (4.1).
The symplectic algebra sp(n) is the set of 2n× 2n matrices such that NJ = −JN�.

A symplectic matrix M ∈ Sp(n) is said to be in a butterfly form if it can be
written as

M =

[
D1 B1

D2 B2

]
,

where D1, D2 are n×n diagonal matrices and B1, B2 are n×n tridiagonal matrices.
This butterfly form was considered by Benner et al. [1] as a starting point of a QR-
type algorithm (the SR-algorithm) to compute the eigenvalues of a symplectic matrix
so that the transformed matrix remains symplectic at each step.

The transformation of a given symplectic matrix to a butterfly form can be per-
formed by the use of three different types of similarity mappings with the following
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matrices:
• Symplectic Givens transformations:

G =

⎡⎢⎢⎢⎢⎢⎢⎣
Ik−1

c s
In−k

Ik−1

−s c
In−k

⎤⎥⎥⎥⎥⎥⎥⎦ .

• Symplectic Householder transformations:

H =

⎡⎢⎢⎣
Ik−1

Q
Ik−1

Q

⎤⎥⎥⎦ , Q = In−k+1 − βvv�, β =
2

‖v‖2
.

• Symplectic Gauss transformations:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik−2

c d
c d

In−k
Ik−2

c−1

c−1

In−k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The following algorithm for reduction to a butterfly form is described in more detail
in [4].

Given a 2n × 2n symplectic matrix M , compute its reduction to a
butterfly form. M will be overwritten by its butterfly form.
for j = 1 : n− 1
for k = n : −1 : j + 1

compute Gk such that (GkM)k+n,j = 0
M = GkMG�

k

end

if j < n− 1 then

compute Hj such that (HjM)j+2:n,j = 0
M = HjMH�

j

end

compute Lj+1 such that (Lj+1M)j+1,j = 0
M = Lj+1ML−1

j+1

for k = n : −1 : j + 1
compute Gk such that (MGk)j,k = 0
M = G�

kMGk
end

if j < n− 1 then

compute Hj such that (MHj)j,j+2+n:2n = 0
M = H�

j MHj

end

end
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The algorithm introduces zeros in the rows by applying one of the above-mentioned
transformations from the right, while zeros in the columns are obtained by applying
the transformations from the left. To maintain similarity, the inverse of each trans-
formation is applied also on the other side. The basic idea of the algorithm is, at
each step j, (i) to bring the jth column of M into the desired form; (ii) to bring the
(n+ j)th row of M into the desired form. For more details, see [4].

Clearly, symplectic transformations can also be used at the algebra level. Our
idea is to reduce a symplectic matrix A ∈ sp(n) to a butterfly form, using the same
algorithm as above. Note that

A ∈ sp(n) ⇔ A =

[
A1 A2

A3 −A�
1

]
,

where A1, A2, A3 are n×n matrices and A2, A3 are symmetric; therefore, a butterfly
matrix B ∈ sp(n) must be of the form

B =

[
B1 B2

B3 −B�
1

]
,

where B1 and B3 are now diagonal, and B2 is tridiagonal and symmetric.

Assume next that B ∈ sp(n) is in a butterfly form. To approximate exp(tB)
we use again a peel-up approach. However, the matrices Si need be appropriately
modified to preserve the sp(n) structure. Set

S̃i = diag(−1)s̃i , s̃i = [si;1, . . . , si;n, si;1, . . . , si;n].(4.2)

In other words, the S̃is can be taken as direct products Si × Si of the matrices Si
in (2.11), and they act in the same manner on the first and the second n rows and
columns of the matrix B.

To have a mental picture of the splitting induced by the automorphisms AdS̃i
,

we set i = n and obtain subspaces p and k with the sparsity structure

p �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 × 0 · · · 0 ×
...

... ×
...

...
...

0 · · · 0 × 0 · · · 0 ×
× × × 0 × × × 0
0 · · · 0 × 0 · · · 0 ×
...

... ×
...

...
...

0 · · · 0 × 0 · · · 0 ×
× × × 0 × × × 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× · · · × 0 × · · · × 0
...

... 0
...

...
...

× · · · × 0 × · · · × 0
0 0 0 × 0 0 0 ×
× · · · × 0 × · · · × 0
...

... 0
...

...
...

× · · · × 0 × · · · × 0
0 0 0 × 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

respectively. Observe that the automorphism targets the 2nth and nth rows and
columns.

The sparsity pattern of the computed terms in the generation of X(t) up to O
(
t5
)

is displayed in Figure 4.3 below.
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Fig. 4.3. The sparsity pattern in the generation of X(t).

It is trivial to observe that [P, [P, [P,K]]] = O. This is not just a consequence of
the reduction to a butterfly form, but of a more general result.

Proposition 4.1. Let A be a 2n × 2n matrix, partitioned in n × n blocks, and
assume that A is of the form [

O A1,2

O O

]
.

Then, for any matrix C ∈M2n,2n, it is true that

[A, [A, [A,C]]] = O.

Proof. Let us partition the matrix C in blocks of the same size of those of A,

C =

[
C1,1 C1,2

C2,1 C2,2

]
.

By direct computation, we observe that

[A,C] =

[
D1,1 D1,2

O D2,2

]
,

where D1,1 = A1,2C2,1, D1,2 = A1,2C2,2 −C1,1A1,2, and D2,2 = −C2,1A1,2. Similarly,

[A, [A,C]] =

[
O F1,2

O O

]
,

where F1,2 = −2A1,2C1,2A1,2. Finally, it is immediate to check that [A, [A, [A,C]]] =
O.

Note that the lemma is valid in the more general case, when A is n× n, A1, 2 is
n1 × n2, and n1 + n2 = n. The (trivial) extension of the proof is left to the reader.
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Fig. 4.4. Commutators in the expansion of Y (t).

The terms required for the generation of Y (t) are displayed in Figure 4.4 and the
superposition of Y5 (darker shade) and X5 (lighter shade) is displayed in Figure 4.5
(for convenience, we have plotted X5 with ×).

In Figure 4.5 we observe that no fill-in is introduced at least up to order 6. This
is most welcome news because we do not need to use extra computation to annihilate
further entries.
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Fig. 4.5. Superposition of X5 (crosses) and Y5 (dots). No fill-in is introduced in the k subalgebra.

4.3. The cost of reduction to a butterfly form. Assume that we have al-
ready partially reduced the matrix M to a butterfly form, where the blocks Lk, Mk,
Nk have dimension k and Nk, Mk are symmetric (see Figure 4.6). To set to zero the
terms in the leading column of Nk we apply symplectic Givens rotations from the left.
Each of these rotations requires about 6k operations (multiplications and additions)
for the update of Lk, Mk, and 3k operations for the update of Nk, for a total of 9k
operations. When we apply their transpose from the right, we can take into account
the symmetry of the (1, 2) and (2, 1) blocks, so that only Lk needs be updated, hence
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Fig. 4.6. A matrix in sp(n) partially reduced to a butterfly form.

further 6k operations, for a total of 15k operations. A similar count holds for the
Givens rotations that are applied to annihilate the top-row elements of Lk, hence in
toto Givens rotations account for 30k. Since for each column/row there are k of those
Givens rotation, for matrices of decreasing dimension, neglecting lower order terms
we have

total cost of Givens rotations ≈ 30
n∑
k=1

k2 ≈ 10n3.

The application of Householder symplectic reflections reduces to the application of
standard Householder to the blocks Lk, Mk, Nk, and costs 3 1

3n
3, n3, and n3, respec-

tively, since the two latter blocks are symmetric. We need to apply two sets of such
Householder reflections for a total of

total cost of Householder reflections ≈ 10
2

3
n3 operations.

Since the cost of Gauss transformations is of a lower order of magnitude, the total
cost of reduction to a butterfly form is

20
2

3
n3 operations,

which is not really prohibitive, given that the matrix has dimension 2n.

5. A divide-and-conquer strategy. In what follows, we shall introduce an
alternative approach that can be particularly useful in the context of very large n
and parallel computing. The main idea is to choose an automorphism AdS so that
the matrix Yp is reducible, hence the exponential of each submatrix can be computed
separately and possibly in parallel.
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Fig. 5.1. Sparsity pattern of matrices in p in the divide-and-conquer approach for skew-
symmetric matrices.

5.1. Skew-symmetric matrices. We again commence our exposition with Z ∈
so(n) and assume that it is already in tridiagonal form. Our point of departure is to
consider an inner automorphism AdG where

G =

[
In1×n1 On1×n2

On2×n1 −In2×n2

]
,

where n1 + n2 = n: an obvious choice is n1 = �n/2�, however, other choices are
possible, e.g., the index corresponding to the least off-diagonal element. Then,

k �
[
K

(1)
n1×n1

On1×n2

On2×n1 K
(2)
n2×n2

]
, p �

[
On1×n1 P

(1)
n1×n2

P
(2)
n2×n1

On2×n2

]
.

Therefore,

K =

[
K1 O
O K2

]
, P =

[
O P1

P2 O

]
.

We stress that both K1 and K2 are tridiagonal while P1 and P2 have a single
nonzero entry, in the lower left and upper right corner, respectively. We write
P1 = c1en1,n1e

�
n2,1, P2 = c2en2,1e

�
n1,n1

, where em,k ∈ R
m is the kth unit vector.

In Figures 5.1 and 5.2 we display the sparsity pattern of elements in p and in
k, respectively, while in Figure 5.3 the matrices X and Y for different orders are
superposed (truncations of X are denoted in lighter shade, while the darker shade
corresponds to truncations of Y ).

The following observations form the basis for an efficient divide-and-conquer al-
gorithm to compute the exponential function in so(n):

• All the commutators, hence also X and Y (up to the requisite order), can be
evaluated in O(1) flops.
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Fig. 5.2. Sparsity pattern of matrices in k in the divide-and-conquer approach for skew-
symmetric matrices.
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Fig. 5.3. Superposition of truncations of X(t) (lighter shade) and Y (t) (darker shade) of order
2, 3, 4, 5 in the divide-and-conquer approach for skew-symmetric matrices.

• The exact exponential of X reduces to that of a small matrix, hence can be
evaluated in O(1) flops.

• Y is a reducible matrix.
• The departure of Y from tridiagonal can be corrected in a small number of

Givens rotations. Because of reducibility, we can act separately on each of the two
components, hence the outcome is two tridiagonal matrices of size n1×n1 and n2×n2,
respectively. Again, the cost is O(1) flops.

We can now continue with the two pieces of Y in a similar vain, splitting them
into progressively smaller pieces. All this is similar to many familiar techniques in
numerical linear algebra, not least domain decomposition. Altogether, we require
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log2 n stages to parcel out the exponential of a tridiagonal Z ∈ so(n) into a product
of rank-2 orthogonal matrices, although in practice this divide-and-conquer technique
can terminate with matrices of higher rank.

5.2. General matrices. Let Z ∈ gl(n) or sl(n) and suppose that we have
already brought it to an upper-Hessenberg form. Proceeding as before, P1 is a dense
matrix, while P2 = cen2,1e

�
n1,n1

.
Again, we can always bring Y into an upper-Hessenberg form in O(1) Givens

rotations. More interesting is the evaluation of expX. Note that

X =

[
O X1

X2 O

]
,

where X1 is n1 × n2 and dense, while X2 is n2 × n1 and zero except for a q × q block
in the upper right corner, where q ≥ 1. Let

V = X1X2, W = X2X1.

Then

X2m =

[
V m O
O Wm

]
, X2m+1 =

[
V m O
O Wm

] [
O X1

X2 O

]
, m ∈ Z+,

therefore,

exp(X) =

[
C(V ) S(V )X1

S(W )X2 C(W )

]
,

where

C(Z) =

∞∑
m=0

Zm

(2m)!
= coshZ1/2, S(Z) =

∞∑
m=0

Zm

(2m+ 1)!
= sinhZ1/2.

We write X1 and X2 in a compound form,

X1 =

[
T1,1 T1,2

T2,1 T2,2

]
, X2 =

[
O R
O O

]
,

where

T1,1 ∈ M(n1−p)×p, T1,2 ∈ M(n1−p)×(n2−p), T2,1 ∈ Mp×p, T2,2 ∈ Mp×(n2−p)

and R ∈ Mp×p, where Mn×m denotes the set of n×m matrices. Therefore,

V =

[
O V1

O V2

]
, W =

[
W1 W2

O O

]
,

where

V1 = T1,1R ∈ M(n1−p)×p, V2 = T2,1R ∈ Mp×p,
W1 = RT2,1 ∈ Mp×p, W2 = RT2,2 ∈ Mp×(n2−p).
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In particular, note that V2,W1 ∈ Mp×p, hence they are square and small!

We can easily prove by induction that

V m =

[
O V1V

m−1
2

O V m2

]
, Wm =

[
Wm

1 Wm−1
1 W2

O O

]
, m ∈ Z.

Therefore, simple calculation affirms that

C(V ) =

[
I V1V

−1
2 [C(V2) − I]

O C(V2)

]
,

C(W ) =

[
C(W1) [C(W1) − I]W−1

1 W2

O I

]
,

S(V )X1 =

[
I V1[S(V2) − I]V −1

2

O S(V2)

] [
T1,1 T1,2

T2,1 T2,2

]
,

S(W )X2 =

[
O S(W1)R
O O

]
.

Given that p� n1, n2 and n1 + n2 = n, we have the following cost (disregarding
lower order terms),

1. Computing C(V ): n1p
2 flops;

2. Computing C(W ): n2p
2 flops;

3. Computing S(V ): n1p
2 flops;

4. Multiplying S(V )X1: n1n2p+ np2;
5. Computing S(W )X2: p

3 flops.1

Hence, altogether the cost is n1n2p: if n1 = n2 = n/2 then the entire cost of computing
the exponential exactly is just 1

4n
2p.

Suppose that n = 2s and n1 = n2 = 2s−1, whence the cost is ≈ p22s−2. Moreover,
we continue with the divide-and-conquer technique. In the next stage we have two
2s−1 × 2s−1 matrices, then four 2s−2 × 2s−2 matrices and so on. The entire cost of
computing all the exponentials then becomes

p

s∑
r=1

22s−r−1 =
1

2
pn(n− 1) ≈ 1

2
pn2.

The above is true on a serial machine. If the calculations for different pieces of the
matrix are performed in parallel, we have instead just a single 2s+1−r×2s+1−r matrix
to deal with in the rth stage and the overall cost is

p

s∑
r=1

2s+1−r ≈ 2p(n− 1).

5.3. The cost of computing commutators. Assume that P and K are as in
Figures 5.4 and 5.5,

P =

[
O P1

P2 O

]
, K =

[
K1 O
O K2

]
,(5.1)

1Note that we do not need to compute S(W ) first—only S(W1).
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Fig. 5.4. Sparsity structure for the first terms in p in the divide-and-conquer approach (upper
Hessenberg matrices).
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Fig. 5.5. Sparsity structure for the first terms in k in the divide-and-conquer approach (upper
Hessenberg matrices).

where the blocks Pi and Ki have dimension k. Note that

[[
O P1

P2 O

]
,

[
O R1

R2 O

]]
=

[
O P1R2 −R1P2

P2R1 −R2P1 O

]
,

(5.2) [[
O P1

P2 O

]
,

[
K1 O
O K2

]]
=

[
O P1K2 −K1P1

P2K1 −K2P1 O

]
.

From (5.2) we conclude that the most expensive commutators are those of the form
[P,K], for which we need to compute P1K2−K1P1, amounting to about 2k3 operations
(counting addition and multiplication). All the remaining commutators are of lower
complexity, which we ignore. For a splitting of order 5 (as depicted in Figure 5.6),
we need to compute seven such commutators, amounting to 14k3. Next, assume that
k = 2s and that there are 2log2 n−s such blocks. For order five, the total cost of
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Fig. 5.6. A superposition of X5 and Y5 in the divide-and-conquer approach (upper Hessenberg
matrices).

commutators (disregarding lower order terms) amounts to

14n

log2 n∑
s=1

22s ≈ 5n3

operations on a serial machine. When implementing this in parallel on log2 n proces-
sors (that is, when the commutators of blocks of dimension 2s are evaluated simulta-
neously), the cost reduces to

14

log2 n∑
s=1

23s ≈ 2n3.

6. Other groups. In this section we discuss briefly GPD for a number of more
unusual Lie groups which, nonetheless, feature in applications.

6.1. Lorentz-type groups SO(p, q). Let

J =

(
Ip O
O −Iq

)
,

and consider the group SO(p, q) = {x : xJx� = J}. As is well known, the corre-
sponding algebra is so(p, q) = {Z : ZJ = −JZ�}. The block form of Z is

Z =

(
Z1 Z2

Z�
2 Z3

)
,

where Z1 and Z3 are skew-symmetric. The most widespread Lorentz-type groups in
applications are SO(3, 1) and SO(5, 2), for which it is not too costly to compute the
exponential exactly given the low dimension. Algorithms for computing the exact
exponential of these matrices have been proposed in [13].

In what follows, we focus instead on the less ordinary case when p + q = n is
large, yet p� q. The basic idea consists of splitting

Z =

(
O Z2

Z�
2 O

)
+

(
Z1 O
O� Z3

)
= P +K
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so that the problem is reduced to computing the exponential of skew-symmetric ma-
trices and that of a (symmetric) bordered matrix.

The only issue that can cause complications is the computation of commutators
with P , K (especially if we desire high order). To do this in a cheaper manner, we
consider the matrix

H =

(
I O
O� H2

)
,

where H2 is the matrix that QR factorizes P (a product of p elementary Householder
reflections). Computing commutators with P (adP ) now costs 2p2q. Commutators
with K are more expensive—at present we do not see how this can be avoided but
perhaps one can exploit skew symmetry.

However, these order conditions are used only once. Once we have split into the
symmetric and skew-symmetric parts, the problem reduces to the approximation of
exponentials of skew-symmetric matrices, which has been described at length earlier
in this paper.

6.2. Isotropy groups. In this section we consider the computation of the ex-
ponential in isotropy groups. Recall that the (left) isotropy group GV at V ∈ Mn×m
is the group of matrices x that leaves V fixed under left multiplication,

GV = {x ∈ GL(n) : xV = V }

(see, for instance, [17]). The corresponding algebra can be easily computed,

gV = {X ∈ gl(n) : XV = V }.

Let us assume that m ≤ n and that V has rank m (if V has rank less then m then it
is possible to ignore some of its columns so that the resulting matrix has full rank). In
that case, the problem essentially reduces to the isotropy group (isomorphic to GV )

GR̃ = {y : yR̃ = R̃}, R̃ =

[
R
O

]
,

where R is m×m upper triangular and GR̃ = Q�GVQ, Q being the orthogonal

matrix that performs the QR factorization of V , i.e., V = QR̃. In what follows, we
abuse notation and write GR instead of GR̃, hoping that this does not cause confusion
of types.

Let us study in greater detail the elements of GR. Assume that

y =

[
y1,1 y1,2
y2,1 y2,2

]
,

where y1,1 is m ×m, y1,2 and y�2,1 are m × (n −m), and y2,2 is (n −m) × (n −m).

Imposing yR̃ = R̃ we obtain the following conditions:

y1,1R = R ⇒ y1,1 = Im×m
y2,1R = O(n−m)×m ⇒ y2,1 = O(n−m)×m

y1,2, y2,2 arbitrary

(recall that R has full rank, hence it is invertible).
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Correspondingly, at the algebra level, we set

Y =

[
Y1,1 Y1,2

Y2,1 Y2,2

]
,

which, in tandem with the algebra conditions, implies

Y1,1 = Om×m,
Y2,1 = O(n−m)×m,

Y1,2, Y2,2 arbitrary.

Note that Y1,2, Y2,2 can be considered as free parameters. Although their action

does not change R̃, they do move points around R̃. As a possible application, in [14]
isotropy at a point is used to improve retention of qualitative features by numerical
integrators for ODEs.

The exponential of Y can be evaluated exactly by the formula

exp(tY ) =

[
Im×m Y1,2φ(Y2,2)
O exp(tY2,2)

]
,

where

φ(Z) = Z−1[exp(Z) − I] =

∞∑
k=0

1

(k + 1)!
Zk.

Thus, the problem reduces to computing the exponential of Y2,2, which is of dimension
(n−m). Now, Y2,2 can be reduced to Hessenberg form and its exponential computed
as in the general GL(n) case.

6.3. Scaling groups. We commence as in the case of the isotropy groups. A
one-parameter curve in the scaling group Gsc

V of V = (v1, . . . ,vm) ∈ R
n×m,

Gsc
V = {x : ∃λ1, λ2, . . . , λm such that xvi = λivi, i = 1, . . . ,m},

satisfies

x(t)V = V Λ(t),

where Λ(t) is a smooth diagonal matrix function [17]. Again, performing a QR de-
composition of V , we find that Gsc

V is isomorphic to Q�Gsc
V Q = Gsc

R̃
, the scaling group

of the upper triangular matrix R̃, where QR̃ = V .
At the algebra level gsc

R , we set

Y =

[
Y1,1 Y1,2

Y2,1 Y2,2

]
,

which, in tandem with the algebra condition

Y R̃ = R̃Λ′(t)

implies that

Y1,1 = RΛ′(t)R−1,

Y2,1 = O(n−m)×m,
Y1,2, Y2,2 arbitrary.
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Again, Y1,2, Y2,2 can be considered as free parameters: their action does not move/scale

R̃ but only the points in its neighborhood. It is also useful to note that Y1,1 is upper
triangular.

Thus, the problem reduces to computing exponentials of block-upper triangular
matrices of the form

Y =

[
Y1,1 Y1,2

O Y2,2

]
,

where Y1,1 is upper triangular.
In general, the exponential of a block triangular matrix can be evaluated exactly

by the formula

exp

(
t

[
A B
O C

])
=

⎡⎣exp(tA)

∫ t

0

e(t−τ)ABeτCdτ

0 exp(tC)

⎤⎦ ,(6.1)

however, the integral might be a difficult to compute exactly. It could be approximated
by quadrature formulae, but this will require the computation of roots of matrices,
adding an extra layer of complexity.

We could again use the divide-and-conquer approach, split

Y = K + P, K =

[
Y1,1 O
O Y2,2

]
, P =

[
O Y2,1

O O

]
.

It can be observed that Y is block upper triangular and so are K and P . Since
triangular (and block triangular) matrices form subalgebras, k and p also consist of
block triangular matrices (in other words, the lower (2,1) block never fills in the p

part).
Now,

[P,K] =

[
O Y1,2Y2,2 − Y1,1Y1,2

O O

]
,

moreover, if P1, P2 ∈ p, it is easily verified that

O = [P1, P2] ∈ k.

In other words, K does not need any order corrections and the only nonzero commu-
tators are those of the form

[K, [K, [. . . , [K, [P,K]]]]]

in the p part.
Moreover, observe that [

O B
O O

]2
= O,

therefore,

exp(tP̃ ) = I + tP̃ , P̃ ∈ p,

while, for matrix K̃ =
[
A
O
O
C

]
∈ k, one has

exp(tK̃) =

[
exp(tA) O

O exp(tC)

]
.

An alternative is to expand the integral in (6.1) in Taylor series and truncate to
appropriate order.



2254 ARIEH ISERLES AND ANTONELLA ZANNA

Appendix A. Herewith, we report the coefficients for the commutators in (3.16).

gn,n−3 = −βn−3cn,n−2,

gn,n−2 = (αn − αn−2)cn,n−2 − βn−2cn,n−1,

gn,n−1 = (αn − αn−1)cn,n−1 − γn−2cn,n−2,
(A.1)

gn−3,n = γn−3cn−2,n,

gn−2,n = −(αn − αn−2)cn−2,n + γn−2cn−1,n,

gn−1,n = −(αn − αn−1)cn−1,n − βn−2cn−2,n,

hn,n−4 = −βn−4gn,n−3,

hn,n−3 = (αn − αn−3)gn,n−3 − βn−3gn,n−2,

hn,n−2 = (αn − αn−2)gn,n−2 − γn−3gn,n−3 − βn−2gn,n−1,

hn,n−1 = (αn − αn−1)gn,n−1 − γn−2gn,n−2,
(A.2)

hn−4,n = γn−4gn−3,n,

hn−3,n = −(αn − αn−3)gn−3,n + γn−3gn−2,n,

hn−2,n = −(αn − αn−2)gn−2,n + βn−3gn−3,n + γn−2gn−1,n,

hn−1,n = −(αn − αn−1)gn−1,n + βn−2gn−2,n,

jn,n−5 = βn−5hn,n−4,

jn,n−4 = (αn − αn−4)hn,n−4 − βn−4hn,n−2,

jn,n−3 = −γn−4hn,n−4 + (αn − αn−3)hn,n−3 − βn−3hn,n−1,

jn,n−2 = −γn−3hn,n−4 + (αn − αn−2)hn,n−2 − βn,2hn,n−1,

jn,n−1 = −γn−2hn,n−2 + (αn − αn−1)hn,n−1,
(A.3)

jn−5,n = γn−5hn−3,n,

jn−4,n = −(αn − αn−4)hn−4,n + γn−4hn−3,n,

jn−3,n = βn−4hn−4,n − (αn − αn−3)hn−4,n + γn−3hn−2,n,

jn−2,n = βn−3hn−3,n − (αn − αn−2)hn−2,n + γn−2hn−1,n,

jn−1,n = βn−2hn−2,n − (αn − αn−1)hn−1,n,

kn,n−2 = cn,n−1dn−1,n−2 − cn,n−2dn,n,

kn,n−1 = cn,n−2dn−2,n−1 − cn,n−1(dn,n − dn−1,n−1),
(A.4)

kn−2,n = cn−2,ndn,n − dn−2,n−1cn−1,n,

kn−1,n = (dn,n − dn−1,n−1)cn−1,n − dn−1,n−2cn−2,n,

ln−1,n−4 = βn−3βn−4dn−1,n−2,

ln−1,n−3 = −βn−3[(2αn−1 − αn−2 − αn−3)dn−1,n−2 − dn−1,n−1βn−2],

ln−1,n−2 = [(αn−1 − αn−2)
2 + 2βn−2γn−2 + βn−3γn−3]dn−1,n−2

− (αn−1 − αn−2)βn−2dn−1,n−1 − 2β2
n−1dn−2,n−1,

ln−1,n−1 = −ln−2,n−2,

ln−2,n−3 = βn−3(−2γn−2dn−1,n−2 + βn−2dn−2,n−1),

ln−2,n−2 = (αn−1 − αn−2)(γn−2dn−1,n−2 + βn−2dn−2,n−1)(A.5)

− 2γn−2βn−2dn−1,n−1,

ln−2,n−1 = [(αn−1 − αn−2)
2 + 2βn−2γn−2 + γn−3βn−3]dn−2,n−1

− (αn−1 − αn−2)γn−2dn−1,n−1,
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ln−3,n−2 = γn−3(γn−2dn−1,n−2 − 2βn−2dn−2,n−1),

ln−3,n−1 = −γn−3[(2αn−1 − αn−2 − αn−3)dn−2,n−1 − γn−2dn−1,n−1],

ln−4,n−1 = γn−3γn−4dn−2,n−1,

mn−1,n−3 = cn−1,ngn,n−3,

mn−1,n−2 = cn−1,ngn,n−2 − cn,n−2gn−1,n,

mn−1,n−1 = cn−1,ngn,n−1 − cn,n−1gn−1,n,

mn−2,n−3 = cn−2,ngn,n−3,

mn−2,n−2 = cn−2,ngn,n−2 − cn,n−2gn−2,n,(A.6)

mn−2,n−3 = cn−2,ngn,n−1 − cn,n−1gn−2,n,

mn−3,n−2 = −cn,n−2gn−3,n,

mn−3,n−1 = −cn,n−1gn−3,n,

mn,n = −(mn−2,n−2 +mn−1,n−1).
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1. Introduction. Much effort has been invested in studying numerical schemes
for stochastic differential equations of the form

dUt = a(Ut) dt+ b(Ut) dWt,(1.1)

where Ut ∈ R
d, a is a function from R

d into itself, W is a Wiener process on R
m, and

b is a function from R
d into R

d×m.
For the so-called weak approximation of (1.1), in which the approximation of

the expectation of functions of U is considered, extensive work is due, for example,
to Talay and his collaborators, work relying on probabilistic methods more involved
than those used in this article (see, e.g., [1], [2], [12] and the references therein).

The question of strong approximation of (1.1), in which the approximation of
sample paths of U is desired, has also been much studied. Mil’shtein, in [8], introduced
the scheme

Ukn+1 = Ukn +

d∑
j=1

bk,j(Un)∆W
j
n + ak(Un)∆t

+

d∑
j1,j2,�=1

b�,j1(Un)
∂bk,j2

∂x�
(Un)

∫ tn+1

tn

(W j1
s −W j1

tn ) dW j2
s ,

(1.2)

which converges to U to the order of ∆t in mean-square error. His method involved
the consideration of a functional analytic Taylor series for the infinitesimal generator
of a semigroup corresponding to U and W . Rümelin later investigated a stochas-
tic analogue of Runge–Kutta (RK) schemes in [10], in which he compared them to
Mil’shtein’s scheme. The RK schemes which he derives can be arranged to converge
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to U when the stochastic integral is interpreted in the sense of Itô, Stratonovich,
or in fact for any stochastic calculus whatsoever. However, the issue of the accu-
racy of these RK schemes (which is not the same as in the deterministic case) is not
fully addressed in [10] and is mostly unresolved. In fact, there are indications that
these stochastic RK schemes are of significantly lower orders of accuracy than their
deterministic counterparts (see [3]).

The book by Kloeden and Platen [6] and the companion volume by Kloeden,
Platen, and Schurz [7] offer a systematic investigation of numerical schemes for (1.1)
in both the sense of Itô and of Stratonovich, the two stochastic calculi which in
applications are by far the most useful. Their methods are analytic and are applicable
to proving the convergence of a wide range of numerical schemes, and they derive a
very general scheme (formula (12.6.2) of [6]) which, for various choices of parameters,
includes stochastic analogues of such deterministic schemes as the explicit and implicit
Euler schemes, the Crank–Nicholson scheme, and the leapfrog scheme.

In the geophysics community, an enormous amount of work has been spent in
developing large, complex numerical models of the oceans and atmosphere. The
questions therefore arise: Is it possible to add stochastic numerical noise to these
already existing models in such a way that it is known to what the scheme converges
(e.g., to the Itô or Stratonovich solution of some stochastic differential equation), to
what order they may be expected to converge, etc.? While we certainly do not answer
these complex questions here, we consider a simple “implicit leapfrog” scheme for a
barotropic model (supplied to us by Cecile Penland and Prashant Sardeshmukh) and
demonstrate one way of adding stochastic noise to it so that these questions can be
answered for the resulting stochastic scheme (section 4).

This scheme and the scheme in section 5 have been applied in investigating El
Niño (see [4]). In this paper, the schemes were used for the numerical timestepping
to determine if a linear inverse model of El Niño (see [9]) can be reconciled with the
observed skew toward warm events in the Pacific. It was found that the observed
skew is well within the range predicted by the model, although the observed trend is
not.

We also propose a stochastic analogue for the deterministic Adams–Bashforth
scheme, using methods similar to those of [6], as an attempt to produce alternate
schemes which are higher order in time (studied in section 3, following the preliminary
results in section 2).

Last, we examine the derivatives of a and b which occur naturally in the above
schemes, and which can prove to be troublesome in certain applications in which these
functions, especially b, are given by physical parametrizations (i.e., by “tables”) and
not by analytic expressions. We consider how these derivatives can be replaced by
finite differences derived from space-discretization while still maintaining the existing
rate of convergence (section 5).

We realize that the results of this article, while very useful in our opinion, are just
some small contribution to an outstanding problem, namely, the numerical analysis
of stochastic differential equations which raise—with more difficulty—the same issues
as in the deterministic case: consistency, convergence, and accuracy. All of these
issues—partly due to the form of the stochastic Taylor formula—are considerably
more difficult than in the deterministic case; in particular, consistency includes here
the issue of the type of stochastic calculus (Itô, Stratonovich, or otherwise) to which
the scheme converges.

In the case of the geoscience scheme, the scheme that we study in section 4
is the closest we could get, at this time, to a scheme actually used in the geo-
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sciences, without any prior information on its consistency, convergence, and accuracy
properties. The version of the Adams–Bashforth scheme studied in section 3 has given
very good numerical results in simulations for simple (one-dimensional) stochastic dif-
ferential equations; see section 6 and forthcoming articles. The numerical example in
section 6 is actually based on a mistake: one of the stochastic processes involved in
the scheme was mistakenly believed to be (and treated as) a Gaussian process; this
did not affect the accuracy of the scheme, which remains at order two as predicted
by the theory. This raises perhaps an interesting probabilistic problem about the ap-
proximation of certain non-Gaussian processes used in numerical schemes. Another
issue of probabilistic nature is raised by the Adams–Bashforth-type scheme studied
in section 3: in several or in high dimensions, a large number of stochastic processes
need to be simulated, which could make the cost prohibitive. It is not excluded that
future probabilistic developments will improve this situation. In particular, the first
author, using some ideas of Gaines and Lyons [5], is trying at this time to develop
methods of generating the needed stochastic increments.

As we have said, there are, of course, a great many mathematical difficulties
which this paper does not address. However, methods involving stochastic noise are
already in common use in numerical simulations for the geosciences and turbulence
(and, no doubt, many other areas in science). As mathematicians, we can attempt
to help these scientists develop the necessary numerical tools, or watch as they do it
themselves.

2. Preliminary results. We consider a stochastic differential equation

dUt = a(t, Ut)dt+ b(t, Ut)dWt(2.1)

for U = (u1, . . . , ud) ∈ R
d, where a : R

+ ×R
d → R

d, b : R
+ ×R

d → R
d×m, and W is

a Wiener process in R
m adapted to a filtration {Ft}t≥0.

We then have the Itô formula, which states that if F : R
+ × R

d → R
d̂, then

Ft = F (t, Ut) satisfies the stochastic differential equation

dFt =

[
∂F

∂t
+ ak(Ft)

∂F

∂uk
+

1

2
bij(Ft)b

kj(Ft)
∂2F

∂ui∂uk

]
dt+ bij(Ft)

∂F

∂ui
dW j

t ;(2.2)

here we use the Einstein convention for repeated indices.
We use the following notation from [6]: We call a row vector α = (j1, j2, . . . , jl),

where each ji ∈ {0, 1, . . . ,m} , a multi-index of length l = �(α) ∈ {1, 2, . . . } . We also
use ν to denote the multi-index of length 0, i.e., �(ν) = 0. We define n(α) to be the
number of entries of α which are 0. For adapted, right-continuous functions f, and
stopping times ρ, τ such that 0 ≤ ρ ≤ τ ≤ T almost surely, we define

Iα[f(·)]ρ,τ =

⎧⎪⎨⎪⎩
f(τ) if �(α) = 0,∫ τ
ρ
Iα−[f(·)]ρ,s ds if �(α) ≥ 1, j�(α) = 0,∫ τ

p
Iα−[f(·)]ρ,s dW j�(α)

s if �(α) ≥ 1, j�(α) �= 0.

(2.3)

Here α− is α with its final component removed.
We define the spaces Hα as follows.
First, Hν is the space of adapted right-continuous stochastic processes f with left

limits such that |f(t)| is almost surely finite for each t ≥ 0. Next, H(0) contains those
elements of Hν such that ∫ t

0

|f(s)| ds <∞(2.4)



2260 BRIAN D. EWALD AND ROGER TÉMAM

almost surely for each t ≥ 0; and H(j) for j �= 0 contains those elements of Hν such
that ∫ t

0

|f(s)|2 ds <∞(2.5)

almost surely for each t ≥ 0. Finally, if �(α) ≥ 2, we define Hα recursively as those
elements of Hν that satisfy

Iα−[f(·)]0,t ∈ H(j�(α))(2.6)

almost surely for all t ≥ 0.
We also define the operators

L0 =
∂

∂t
+ ak

∂

∂uk
+

1

2
bkjblj

∂2

∂uk∂ul
,(2.7)

Lj = bkj
∂

∂uk
,(2.8)

and, if f ∈ Ch(R+ × R
d,R), where h ≥ �(α) + n(α), we set

fα =

{
f if �(α) = 0,
Lj1f−α if �(α) ≥ 1.

(2.9)

Here −α is α with its first component removed.
We note that if f(t, u) ≡ u, then f(0) = a, f(j) = bj , etc. In what follows, unless

explicitly stated otherwise, we will assume that f is this identity function.
A set, A, of multi-indices is said to be a hierarchical set if A �= ∅, supα∈A �(α) <

∞, and −α ∈ A whenever α ∈ A − {ν} . We then define the remainder set B(A)
of A by B(A) = {α | α /∈ A and −α ∈ A} . We can now provide a stochastic Taylor
expansion for U satisfying (2.1): If f : R

+ × R
d → R, then, provided the derivatives

and integrals exist,

f(τ, Uτ ) =
∑
α∈A

Iα[fα(ρ, Uρ)]ρ,τ +
∑

α∈B(A)

Iα[fα(·, U·)]ρ,τ ,(2.10)

where A is some hierarchical set.
Now, for γ = 0.5, 1.0, 1.5, . . . , we set

Aγ =

{
α

∣∣∣∣ �(α) + n(α) ≤ 2γ or �(α) = n(α) = γ +
1

2

}
.(2.11)

We call the stochastic Taylor expansion with A = Aγ the stochastic Taylor expansion
to order γ.

We will make use of the following lemmas in the succeeding sections. In each of
them, U is the solution to (2.1), and tk = k∆t for k = 0, 1, . . . , N is an equipartition
of [0, T ], so that tN = T ; we partly rely on [6] for the proofs.

Lemma 2.1. Suppose Yn is a stochastic process adapted to the filtration Ft at the
equipartition (i.e., Yn is Ftn-measurable), the function f satisfies |f(t, x) − f(t, y)|
≤ K|x− y| for all t ∈ [0, T ] and x, y ∈ R, and α is a multi-index with �(α) ≥ 1. Then

E sup
0≤m≤n

∣∣∣∣∣
m−1∑
k=0

Iα[f(tk, Utk) − f(tk, Yk)]tk,tk+1

∣∣∣∣∣
2

≤ C∆t

n−1∑
k=0

E sup
0≤m≤k

|Utm − Ym|2.
(2.12)
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Proof. For α = (0), we have

E sup
0≤m≤n

∣∣∣∣∣
m−1∑
k=0

(f(tk, Utk) − f(tk, Yk))∆t

∣∣∣∣∣
2

≤ ∆t2E sup
0≤m≤n

m

m−1∑
k=0

|f(tk, Utk) − f(tk, Yk)|2

≤ n∆t2E

n−1∑
k=0

K2|Utk − Yk|2

≤ K2T∆t

n−1∑
k=0

E sup
0≤m≤k

|Utm − Ym|2.

(2.13)

For α = (j),

E sup
0≤m≤n

∣∣∣∣∣
m−1∑
k=0

(f(tk, Utk) − f(tk, Yk))∆W
j
k

∣∣∣∣∣
2

≤ 4E

∣∣∣∣∣
n−1∑
k=0

(f(tk, Utk) − f(tk, Yk))∆W
j
k

∣∣∣∣∣
2

≤ 4

n−1∑
k=0

E|f(tk, Utk) − f(tk, Yk)|2∆t

≤ 4K2∆t

n−1∑
k=0

E sup
0≤m≤k

|Utk − Yk|2.

(2.14)

For longer α’s, we just repeat the above two arguments as necessary.
Lemma 2.2. Suppose the function f satisfies |f(t, x)|2 ≤ K2(1 + |x|2) for all

t ∈ [0, T ] and x ∈ R, and that α is a multi-index with �(α) ≥ 1. Then

E sup
0≤m≤n

∣∣∣∣∣
m−1∑
k=0

Iα[f(·, U·)]tk,tk+1

∣∣∣∣∣
2

≤
{
C∆t2(�(α)−1)(1 + E|U0|2) if �(α) = n(α),
C∆t�(α)+n(α)−1(1 + E|U0|2) if �(α) �= n(α).

(2.15)

Proof. The ideas of this proof are the same as those in the proof of Lemma 2.1,
along with the following bound on the solution Ut (see equation (4.5.16) of [6]):

E sup
t0≤s≤T

|Us|2 ≤ C(1 + E|Ut0 |2).(2.16)

If we apply Lemma 10.8.1 of [6] with g(s) = f(s, Us), we have

E sup
0≤m≤n

∣∣∣∣∣
m−1∑
k=0

Iα[f(·, U·)]tk,tk+1

∣∣∣∣∣
2

≤

⎧⎪⎪⎨⎪⎪⎩
C∆t2(�(α)−1)

∫ tn

t0

E sup
t0≤s≤t

|f(s, Us)|2 dt if �(α) = n(α),

C∆t�(α)+n(α)−1

∫ tn

t0

E sup
t0≤s≤t

|f(s, Us)|2 dt if �(α) �= n(α).

(2.17)
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Here, the constant C depends only on the length of the time interval T − t0 and
on α.

We then apply (2.16) and the growth condition on f , and we have the desired
result.

Lemma 2.3. Suppose that the sequence of positive numbers Zn for n = 0, 1, . . . , N
satisfies the inequality

Zn ≤ C

(
∆t

n∑
k=0

Zk + ∆tγ

)
(2.18)

for some positive constant C and some γ > 0. Then ZN = O(∆tγ) as ∆t→ 0.
Proof. Set ξn = ∆t

∑n
k=0 Zk, so Zn = 1

∆t (ξn − ξn−1), and we have

1

∆t
(ξn − ξn−1) ≤ Cξn + C∆tγ .(2.19)

That is,

(1 − C∆t)ξn ≤ ξn−1 + C∆tγ+1.(2.20)

Therefore,

(1 − C∆t)nξn ≤ (1 − C∆t)n−1ξn−1 + (1 − C∆t)n−1C∆tγ+1,

(1 − C∆t)n−1ξn−1 ≤ (1 − C∆t)n−2ξn−2 + (1 − C∆t)n−2C∆tγ+1,

...

(1 − C∆t)ξ1 ≤ C∆tγ+1,

and, summing,

(1 − C∆t)nξn ≤ (1 + (1 − C∆t) + · · · + (1 − C∆t)n−1))C∆tγ+1

≤ 1 − (1 − C∆t)n

1 − (1 − C∆t)
C∆tγ+1(2.21)

≤ (1 − (1 − C∆t)n)∆tγ .

Since (1 − C∆t)N → e−CT as N = T/∆t→ ∞, we see that ξn ≤ C∆tγ for some
(different) C. Thus, by (2.18),

Zn ≤ C(ξn + ∆tγ) ≤ C∆tγ .(2.22)

3. A stochastic Adams–Bashforth scheme. The deterministic Adams–Bash-
forth scheme for the ordinary differential equation φ′ = F (φ) takes the form

φn+1 = φn +
∆t

2
[3F (φn) − F (φn−1)].(3.1)

This scheme is order ∆t2. We will derive a stochastic version of this scheme which
maintains the same order.

We begin with the stochastic Taylor expansion to order γ = 2.0:

Ut+∆ = Ut + bj∆W j + a∆ + Lj1bj2I(j1,j2) + L0bjI(0,j) + LjaI(j,0)

+ Lj1Lj2bj3I(j1,j2,j3) +
1

2
L0a∆2 + L0Lj1bj2I(0,j1,j2) + Lj1L0bj2I(j1,0,j2)

+ Lj1Lj2aI(j1,j2,0) + Lj1Lj2Lj3bj4I(j1,j2,j3,j4) + R̃∆
2.0(t)

= Ut + a∆ +
1

2
L0a∆2 +M∆(t),

(3.2)
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where each coefficient is at the point (t, Ut), and each stochastic integral is from t to
t+ ∆, ∆ = ∆t. We have also used the Einstein summation convention.

Similarly, for γ = 1.5, we have

a(t+ ∆, Ut+∆) = a+ L0a∆ +N∆(t),(3.3)

where N∆(t) = 1
2L

0L0a∆2 +Lja∆W j +L0LjaI(0,j) +LjL0aI(j,0) +Lj1Lj2aI(j1,j2) +

Lj1Lj2Lj3aI(j1,j2,j3) + R̃∆
1.5(t), and, for γ = 1.0,

L0a(t+ ∆, Ut+∆) = L0a+ P∆(t),(3.4)

where P∆(t) = L0L0a∆ + LjL0a∆W j + Lj1Lj2L0aI(j1,j2) + R̃∆
1.0(t).

Combining these results, we get

Ut+∆ = Ut + [αa(t+ ∆, Ut+∆) + (1 − α)a]∆

+

(
1

2
− α

)
[βL0a(t+ ∆, Ut+∆) + (1 − β)L0a]∆2(3.5)

−α∆N∆(t) −
(

1

2
− α

)
β∆2P∆(t) +M∆(t).

In particular, if t = tn,∆ = 2∆t, α = 0, β = 0, and writing Un = Utn ,

Un+2 = Un + 2a(tn, Un)∆t+ 2L0a(tn, Un)∆t
2 +M2∆t(tn),(3.6)

and if t = tn,∆ = ∆t, α = − 3
2 , β = 0,

Un+1 = Un − 3

2
a(tn+1, Un+1)∆t+

5

2
a(tn, Un)∆t

+ 2L0a(tn, Un)∆t
2 +

3

2
N∆t(tn)∆t+M∆t(tn).

(3.7)

Therefore,

Un+2 = Un+1 + (Un+2 − Un) − (Un+1 − Un)

= Un+1 +

[
3

2
a(tn+1, Un+1) − 1

2
a(tn, Un)

]
∆t(3.8)

− 3

2
∆tN∆t(tn) + (M2∆t(tn) −M∆t(tn)).

This leads us to consider the following stochastic Adams–Bashforth (SAB) scheme:

Yn+2 = Yn+1 +

[
3

2
a(tn+1, Yn+1) − 1

2
a(tn, Yn)

]
∆t

− 3

2
∆tAn(tn, Yn) +Bn(tn, Yn),

(3.9)

in which

An(t, x) = Lja(t, x)∆W j + Lj1Lj2a(t, x)I(j1,j2),(3.10)
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where the random intervals are from time tn to tn+1, and

Bn(t, x) = bj(t, x)∆W j + L0bj(t, x)I(0,j) + Lja(t, x)I(j,0)

+ Lj1bj2(t, x)I(j1,j2) + L0Lj1bj2(t, x)I(0,j1,j2)

+ Lj1L0bj2(t, x)I(j1,0,j2) + Lj1Lj2a(t, x)I(j1,j2,0)

+ Lj1Lj2bj3(t, x)I(j1,j2,j3) + Lj1Lj2Lj3bj4(t, x)I(j1,j2,j3,j4),

(3.11)

where the random intervals are those from time tn to tn+2 minus those from time tn
to tn+1.

We then have the following theorem.
Theorem 3.1. Suppose that the coefficient functions fα satisfy

|fα(t, x) − fα(t, y)| ≤ K|x− y|(3.12)

for all α ∈ A2.0, t ∈ [0, T ], and x, y ∈ R
d;

f−α ∈ C1,2 and fα ∈ Hα(3.13)

for all α ∈ A2.0 ∪ B(A2.0); and

|fα(t, x)| ≤ K(1 + |x|)(3.14)

for all α ∈ A2.0 ∪B(A2.0), t ∈ [0, T ], and x ∈ R
d. Choose ∆t ≤ 1 and set N = T/∆t,

and define tn = n∆t for n = 1, . . . , N . Suppose that Y0 is some (nonrandom) initial
condition and that some appropriate numerical scheme is used to generate Y1 such
that E[|Ut1 − Y1|2 | F0]

1
2 ≤ C∆t2. Then

E

[
sup

0≤n≤N
|Utn − Yn|2 | F0

] 1
2

≤ C∆t2.(3.15)

Proof. First, we note that

Un+2 = Un+1 +

[
3

2
a(tn+1Un+1) − 1

2
a(tn, Un)

]
∆t

− 3

2
∆tAn(tn, Un) +Bn(tn, Un) +Rn,

(3.16)

where

Rn =
3

2
∆t

[
1

2
L0L0a(tn, Un)∆t

2 + L0Lja(tn, Un)I(0,j) + LjL0a(tn, Un)I(j,0)

+Lj1Lj2Lj3a(tn, Un)I(j1,j2,j3) + R̃∆t
1.5(tn)

]
+ R̃2∆t

2.0 (tn) − R̃∆t
2.0(tn).
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If we iterate (3.9) and (3.16), we arrive at⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un = U1 + ∆t

n−2∑
k=0

[
3

2
a(tk+1, Uk+1) − 1

2
a(tk, Uk)

]

− 3

2
∆t

n−2∑
k=0

Ak(tk, Uk) +

n−2∑
k=0

Bk(tk, Uk) +

n−2∑
k=0

Rk,

Yn = Y1 + ∆t

n−2∑
k=0

[
3

2
a(tk+1, Yk+1) − 1

2
a(tk, Yk)

]

− 3

2
∆t

n−2∑
k=0

Ak(tk, Yk) +

n−2∑
k=0

Bk(tk, Yk).

(3.17)

Set ζn = Un − Yn. Then

ζn = ζ1 + ∆t

n−2∑
k=0

[
3

2
(a(tk+1, Uk+1) − a(tk+1, Yk+1)) − 1

2
(a(tk, Uk) − a(tk, Yk))

]

− 3

2
∆t

n−2∑
k=0

(Ak(tk, Uk) −Ak(tk, Yk))(3.18)

+

n−2∑
i=0

(Bk(tk, Uk) −Bk(tk, Yk)) +

n−2∑
k=0

Rk.

Set Zn = E[sup0≤m≤n |ζm|2 | F0].
Then we have

Zn ≤ C

(
E[|ζ1|2|F0] + ∆t2E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

a(tk+1, Uk+1) − a(tk+1, Yk+1)

∣∣∣∣∣
2 ∣∣∣∣F0

]

+ ∆t2E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

a(tk, Uk) − a(tk, Yk)

∣∣∣∣∣
2 ∣∣∣∣F0

]

+ ∆t2E

[
sup

0≤m≤n

∣∣∣∣m−2∑
k=0

(Lja(tk, Uk) − Lja(tk, Yk))∆W
j
k

∣∣∣∣2 ∣∣∣∣F0

]

+ ∆t2E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

(Lj1Lj2a(tk, Uk) − Lj1Lj2a(tk, Yk))I(j1,j2)

∣∣∣∣∣
2 ∣∣∣∣F0

]
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Terms
from
Ak

+
∑
αεA∗

2

E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

Iα [fα(tk, Uk) − fα(tk, Yk)]tk,tk+2

∣∣∣∣∣
2 ∣∣∣∣F0

]

+
∑
αεA∗

2

E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

Iα [fα(tk, Uk) − fα(tk, Yk)]tk,tk+1

∣∣∣∣∣
2 ∣∣∣∣F0

]
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Terms
from
Bk

+ E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

Rk

∣∣∣∣∣
2 ∣∣∣∣F0

])
.
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We go term-by-term:

∆t2E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

a(tk+1, Uk+1) − a(tk+1, Yk+1)

∣∣∣∣∣
2 ∣∣∣∣F0

]

≤ ∆t2n E

[
sup

0≤m≤n

m−2∑
k=0

|a(tk+1, Uk+1) − a(tk+1, Yk+1)|2
∣∣∣∣F0

]

≤ T∆t E

[
n−2∑
k=0

|a(tk+1, Uk+1) − a(tk+1, Yk+1)|2
∣∣∣∣F0

]

≤ C∆t

n−2∑
k=0

E
[|Uk+1 − Yk+1|2 | F0

]
≤ C∆t

n−1∑
k=0

Zk.

(3.19)

Similarly,

∆t2E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

a(tk, Uk) − a(tk, Yk)

∣∣∣∣∣
2 ∣∣∣∣F0

]
≤ C∆t

n−1∑
k=0

Zk.(3.20)

Next, we consider the terms from Ak. From Lemma 2.1 with α = (j),

∆t2E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

(Lja(tk, Uk) − Lja(tk, Yk))∆W
j
tk,tk+1

∣∣∣∣∣
2 ∣∣∣∣F0

]

≤ C∆t

n−2∑
k=0

Zk,

(3.21)

and from Lemma 2.1 with α = (j1, j2),

∆t2E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

(Lj1Lj2a(tk, Uk) − Lj1Lj2a(tk, Yk))I(j1,j2)tk,tk+1

∣∣∣∣∣
2 ∣∣∣∣F0

]

≤ C∆t

n−1∑
k=0

Zk.

(3.22)

Now, we consider the terms from Bk. For α ∈ A∗
2 (i.e., α ∈ A2, �(α) �= n(α)),

E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

Iα [fα(tk, Uk) − fα(tk, Yk)]tk,tk+1

∣∣∣∣∣
2 ∣∣∣∣F0

]
≤ C∆t

n−1∑
k=0

Zk.(3.23)

The other terms from Bk are similar. This leaves only the terms from Rk. From
Lemma 2.2 with α = (0),

∆t2E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

L0L0a(tn, Un)∆t
2

∣∣∣∣∣
2 ∣∣∣∣F0

]

≤ ∆t4E

[
sup

0≤m≤n

∣∣∣∣∣
n−2∑
k=0

L0L0a(tn, Un)

∣∣∣∣∣
2 ∣∣∣∣F0

]
≤ C∆t4(1 + |U0|2).

(3.24)
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For α = (0, j), (j, 0), (j1, j2, j3), by Lemma 2.2

∆t2E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

Iα [aα(tk, Uk)]tk,tk+1

∣∣∣∣∣
2 ∣∣∣∣F0

]
≤ C∆t4(1 + |U0|2), since �(α) + n(α) = 3.

(3.25)

If α ∈ B(Aγ) (here γ = 1.5 or 2.0), we have by Lemma 2.2,

E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

Iα [α(·, U·)]tk,tk+1

∣∣∣∣∣
2 ∣∣∣∣F0

]
≤ C(1 + |U0|2)∆t2γ .(3.26)

Therefore, we have

E

[
sup

0≤m≤n

∣∣∣∣∣
m−2∑
k=0

Rk

∣∣∣∣∣
2 ∣∣∣∣F0

]
≤ C(1 + |U0|2)∆t4.(3.27)

So, overall, we see that

Zn ≤ C

[
Z1 + (1 + |U0|2)∆t4 + ∆t

n−1∑
k=0

Zk

]
.(3.28)

The result then follows from Lemma 2.3.
Remark 3.1. If we truncate An and Bn to

An(t, x) = Lja(t, x)∆W j(3.29)

and

Bn(t, x) = bj(t, x)∆W j + L0bj(t, x)I(0,j) + Lja(t, x)I(j,0)

+ Lj1bj2(t, x)I(j1,j2) + Lj1Lj2bj3(t, x)I(j1,j2,j3),
(3.30)

the same proof will show that the convergence is now to order ∆t
3
2 . We note that

although the order ∆t2 SAB scheme seems to have no obvious advantages over the
standard ∆t2 strong one-step explicit scheme (as in [6]), the order ∆t

3
2 SAB scheme

does have an advantage over the order ∆t
3
2 strong one-step explicit scheme in that

the former lacks the terms involving the second derivative of a which are present in
the latter.

Remark 3.2. It can be shown that the scheme

Yn+2 = Yn+1 +

[
3

2
a(tn+1, Yn+1) − 1

2
a(tn, Yn)

]
∆t

− 3

2
∆tAn(tn, Yn) +Bn(tn, Yn),

(3.31)

in which

An(t, x) = Lja(t, x)∆W j ,(3.32)

where the random intervals are from time tn to tn+1, and

Bn(t, x) = bj(t, x)∆W j + L0bj(t, x)I(0,j) + Lja(t, x)I(j,0)

+ Lj1bj2(t, x)I(j1,j2),
(3.33)



2268 BRIAN D. EWALD AND ROGER TÉMAM

where the random intervals are those from time tn to tn+2 minus those from time tn
to tn+1, converges to the Itô solution in the weak sense to order 2. As can be seen, this
scheme is considerably simpler than the strong scheme, and it avoids the difficulties
with generating the higher-order moments that the strong scheme has.

4. A stochastic “implicit leapfrog” scheme. The barotropic vorticity model
supplied to us by Cecile Penland and Prashant Sardeshmukh of the National Oceanic
and Atmospheric Administration in Boulder, Colorado (see [11]), takes the form

∂ζ

∂t
= −∇ · (vζ) + S − rξ − κ∇4ξ,(4.1)

where ζ = ∇2ψ + f = ξ + f and v = k̂ × ∇ψ. Here, ζ is the total vorticity, v is
the velocity vector, f is the Coriolis term, S is a (deterministic) forcing, r and κ are
constants, and ξ is the local vorticity.

The numerical scheme they provided for this uses spherical harmonics, and, writ-
ing F for −∇ · (vζ), the equation becomes

d

dt
ζmn = Fmn + Smn − rξmn − κ

[
n(n+ 1)

a2

]2
ζmn .(4.2)

Then the scheme has two steps. First, a leapfrog step,

ζ̃mn (t+ ∆t) = ζmn (t− ∆t) + 2∆t[Fmn (t) + Smn (t)],(4.3)

followed by an implicit step,

ζmn (t+ ∆t) =
ζ̃mn (t+ ∆t)

1 + 2∆t

[
r + κ

[
n(n+1)
a2

]2] .(4.4)

If we simplify notation and write a1 for F +S and a2 for −rξ−κ∇4ξ, we see that
this is just an “implicit leapfrog” scheme{

Ỹ (t+ ∆t) = Y (t− ∆t) + 2∆ta1(t, Y (t)),

Y (t+ ∆t) = Ỹ (t+ ∆t) + 2∆ta2(t+ ∆t, Y (t+ ∆t))
(4.5)

for the equation

dU(t) = [a1(t, U(t)) + a2(t, U(t))] dt.(4.6)

Therefore, we consider a stochastic differential equation of the form

dUt = (a1(t, Ut) + a2(t, Ut)) dt+ b(t, Ut) dWt.(4.7)

Note that we have simply added a general diffusion term to the deterministic differ-
ential equation (4.6).

We will consider the scheme{
Ỹn+2 = Yn + 2a1(tn+1, Yn+1)∆t+Mn(Yn) +Mn+1(Yn+1),

Yn+2 = Ỹn+2 + 2a2(tn+2, Yn+2)∆t,
(4.8)

where

Mn(y) = b(tn, y)∆Wn + bb′(tn, y)I(1,1),n.(4.9)
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Theorem 4.1. Suppose that the coefficient functions fα satisfy

|fα(t, x) − fα(t, y)| ≤ K|x− y|(4.10)

for all α ∈ A1.0, t ∈ [0, T ], and x, y ∈ R
d;

f−α ∈ C1,2 and fα ∈ Hα(4.11)

for all α ∈ A1.0 ∪ B(A1.0); and

|fα(t, x)| ≤ K(1 + |x|)(4.12)

for all α ∈ A1.0 ∪B(A1.0), t ∈ [0, T ], and x ∈ R
d. Choose ∆t ≤ 1 and set N = T/∆t,

and define tn = n∆t for n = 1, . . . , N . Suppose that some appropriate numerical
scheme is used to generate Y1 such that E[|Ut1 − Y1|2 | F0]

1
2 ≤ C∆t. Then

E

[
sup

0≤n≤N
|Utn − Yn|2 | F0

] 1
2

≤ C∆t.(4.13)

Proof. We note first that, by Itô’s formula (i.e., the Taylor expansion with γ =
0.0), the solution U to (4.7) satisfies the following equations (where for notational
simplicity we have written Un for Utn):

a1(tn+1, Un+1) = a1(tn, Un) +R∆t,a1

0.0 (tn);

a2(tn+2, Un+2) = a2(tn, Un) +R2∆t,a2

0.0 (tn);(4.14)

a2(tn+2, Un+2) = a2(tn+1, Un+1) +R∆t,a2

0.0 (tn+1).

Therefore we have

Un+2 = Un + (Un+2 − Un+1) + (Un+1 − Un)

= Un + [b(tn+1, Un+1)∆Wn+1 + a1(tn+1, Un+1)∆t

+ a2(tn+1, Un+1)∆t+ bb′(tn+1, Un+1)I(1,1),n+1(4.15)

+R∆t
1.0(tn+1)] + [b(tn, Un)∆Wn + a1(tn, Un)∆t

+ a2(tn, Un)∆t+ bb′(tn, Un)I(1,1),n +R∆t
1.0(tn)].

After substituting (4.14) into this, we see that

Un+2 = [Un + 2a1(tn+1, Un+1)∆t+Mn(Un) +Mn+1(Un+1)]

+ 2a2(tn+2, Un+2)∆t+Rn;
(4.16)

here

Rn = R∆t
1.0(tn) +R∆t

1.0(tn+1) − ∆t[R∆t,a1

0.0 (tn)

+ R2∆t,a2

0.0 (tn) +R∆t,a2

0.0 (tn+1)].
(4.17)

If we iterate (4.16), we arrive at

Un = Un∗ + 2∆t

[
[n/2]∑
k=1

a1(t2k−1+n∗ , U2k−1+n∗) +

[n/2]∑
k=1

a2(t2k+n∗ , U2k+n∗)

]

+

n−1∑
k=n∗

Mn(Un) +

[n/2]∑
k=0

R2k−2+n∗ ;

(4.18)

here n∗ is 0 if n is even and 1 if n is odd.
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Similarly, we have for Y

Yn = Yn∗ + 2∆t

⎡⎣[n/2]∑
k=1

a1(t2k−1+n∗ , Y2k−1+n∗) +

[n/2]∑
k=1

a2(t2k+n∗ , Y2k+n∗)

⎤⎦
+

n−1∑
k=n∗

Mn(Yn).

(4.19)

Let us set Zn = E[sup0≤m≤n |Um − Ym|2 | F0]. Then, by subtracting (4.19) from
(4.18) and then squaring and taking expectations, we find

Zn ≤ CE

[
sup

0≤m≤n
Zm∗ + ∆t2A2

1,m + ∆t2A2
2,m

+

(
m−1∑
k=m∗

Mk(Uk) −Mk(Yk)

)2

+

(
[m/2]∑
k=0

R2k−2+m∗

)2 ∣∣∣∣∣F0

]
.

(4.20)

In (4.20),

A1,n =

[n/2]∑
k=1

a1(t2k−1+n∗ , U2k−1+n∗) − a1(t2k−1+n∗ , Y2k−1+n∗)(4.21)

and

A2,n =

[n/2]∑
k=1

a2(t2k+n∗ , U2k+n∗) − a2(t2k+n∗ , Y2k+n∗).(4.22)

We then have the following estimates (where we omit the dependence on t when
it is clear):

∆t2E

[
sup

0≤m≤n
A2

1,m

]
≤ ∆t2E

[
sup

0≤m≤n

[m
2

] [m/2]∑
k=1

[a1(U2k−1+n∗) − a1(Y2k−1+n∗)]2

]

≤ K∆t2nE

[
n∑
k=1

(Uk − Yk)
2

]
≤ KT∆t

n∑
k=1

Zk.(4.23)

Similarly,

∆t2E

[
sup

0≤m≤n
A2

2,n

]
≤ KT∆t

n∑
k=1

Zk.(4.24)

There are two terms in Mk. For the first one, from Lemma 2.1, with α = (1), we
obtain

E

[
sup

0≤m≤n

∣∣∣∣∣
m−1∑
k=m∗

[b(Uk) − b(Yk)]∆Wk

∣∣∣∣∣
2 ]

≤ C∆t

n∑
k=0

Zk.(4.25)

The second term is similar, with α = (1, 1).
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Finally, we show a representative term from the remainder R. From Lemma 2.2,
with α = (1, 0),

E

[
sup

0≤m≤n

∣∣∣∣∣
m−1∑
k=0

∫ tk+1

tk

∫ s

tk

L0b(Ur) dr dWs

∣∣∣∣∣
2 ]

≤ C∆t2(1 + U2
0 ).(4.26)

The remaining terms from R give similar bounds.
Taking all of these estimates into account, we have the inequality

Zn ≤ K

[
Z1 + ∆t

n∑
k=0

Zk + ∆t2

]
.(4.27)

Therefore, from Lemma 2.3, we see that

E

[
sup

o≤n≤N
|Un − Yn|2

∣∣∣∣∣ F0

] 1
2

= O(∆t).(4.28)

Remark 4.1. It is possible to show that the scheme⎧⎪⎨⎪⎩
Ỹn+2 = Yn + 2a1(tn+1, Yn+1)∆t+ b(tn, Yn)∆Wn

+ b(tn+1, Yn+1)∆Wn+1,

Yn+2 = Ỹn+2 + 2a2(tn+2, Yn+2)∆t

(4.29)

converges to the Itô solution in the weak sense to order 1. Again, it can be seen that
the weak scheme is simpler than the strong scheme to the same order. However, we
also note that the weak order 1 Stratonovich scheme⎧⎪⎨⎪⎩

Ỹn+2 = Yn + 2a1(tn+1, Yn+1)∆t+ bb′(tn+1, Yn+1)(∆Wn+1)
2

+ b(tn, Yn)∆Wn + b(tn+1, Yn+1)∆Wn+1,

Yn+2 = Ỹn+2 + 2a2(tn+2, Yn+2)∆t

(4.30)

is not appreciably simpler than the strong order 1 Stratonovich scheme{
Ỹn+2 = Yn + 2a1(tn+1, Yn+1)∆t+Mn(Yn) +Mn+1(Yn+1),

Yn+2 = Ỹn+2 + 2a2(tn+2, Yn+2)∆t,
(4.31)

where

Mn(y) = b(tn, y)∆Wn +
1

2
bb′(tn, y)(∆Wn)

2.(4.32)

5. Discretization of spatial derivatives by finite differences. It sometimes
happens in applications that the functions a and b may only be known empirically
(i.e., in tables) rather than analytically. In such cases, analytic derivatives of these
functions can be difficult to obtain. It is therefore useful to replace these derivatives by
discrete approximations. As a first example, consider this modification of Mil’shtein’s
scheme:

Ŷ kn+1 = Ŷ kn +

d∑
j=1

bk,j(Ŷn)∆W
j
n + ak(Ŷn)∆t

+

d∑
j1,j2,�=1

1

∆x
b�,j1(Ŷn)(b

k,j2(Ŷn + ∆xe�) − bk,j2(Ŷn))I(j1,j2),n,(5.1)
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where e� is the vector (0, . . . , 0, 1, 0, . . . , 0), with 1 in the �th position, and we have
chosen ∆x > 0. We have also suppressed the dependence of a and b on time to
simplify notation.

We then have the following theorem.
Theorem 5.1. Suppose that a and b have the regularity required for Mil’shtein’s

scheme to converge to the solution U to order ∆t. Then

E

[
sup

0≤n≤N
|Un − Ŷn|2

] 1
2

= O(max{∆t,∆x∆t 1
2 }).(5.2)

Note that if we want to maintain the order of convergence of Mil’shtein’s scheme,
we need that ∆x = O(∆t

1
2 ).

Proof. We denote Mil’shtein’s scheme by Y and recall that it satisfies

E

[
sup

0≤n≤N
|Yn − Un|2

] 1
2

= O(∆t).(5.3)

First, we see that (using Einstein’s summation convention on repeated indices)

Ŷ kn+1 − Y kn+1 = Ŷ kn − Y kn + (bk,j(Ŷn) − bk,j(Yn))∆W
j
n + (ak(Ŷn) − ak(Yn))∆t

+

[
b�,j1(Ŷn)

1

∆x
(bk,j2(Ŷn + ∆xe�) − bk,j2(Ŷn))(5.4)

− b�,j1(Yn)
∂bk,j2

∂x�
(Yn)

]
I(j1,j2),n.

Iterating this, we have

Ŷ kn − Y kn = Ŷ k0 − Y k0 +

n−1∑
i=0

(bk,j(Ŷi) − bk,j(Yi))∆W
j
i +

n−1∑
i=0

(ak(Ŷi) − ak(Yi))∆t

+
n−1∑
i=0

[
b�,j1(Ŷi)

1

∆x
(bk,j2(Ŷi + ∆xe�) − bk,j2(Ŷi))(5.5)

− b�,j1(Yi)
∂bk,j2

∂x�
(Yi)

]
I(j1,j2),i.

Set

Zn = E

[
sup

0≤m≤n
|Ŷn − Yn|2

]
.(5.6)

We then have the estimates

E

⎡⎣ sup
0≤m≤n

∣∣∣∣∣
m−1∑
i=0

(bk,j(Ŷi) − bk,j(Yi))∆W
j
i

∣∣∣∣∣
2
⎤⎦

≤ 4E

⎡⎣∣∣∣∣∣
n−1∑
i=0

(bk,j(Ŷi) − bk,j(Yi))∆W
j
i

∣∣∣∣∣
2
⎤⎦

≤ 4E

[
n−1∑
i=0

|bk,j(Ŷi) − bk,j(Yi)|2∆t
]

≤ C∆t

n−1∑
i=0

Zi,
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and

E

⎡⎣ sup
0≤m≤n

∣∣∣∣∣
m−1∑
i=0

(ak(Ŷi) − ak(Yi))∆t

∣∣∣∣∣
2
⎤⎦ ≤ ∆t2nE

[
n−1∑
i=0

|ak(Ŷi) − ak(Yi)|2
]

≤ C∆t
n−1∑
i=0

Zi,

and, finally,

E

[
sup

0≤m≤n

∣∣∣∣∣
m−1∑
i=0

[
b�,j1(Ŷi)

1

∆x
[bk,j2(Ŷi + ∆xe�) − bk,j2(Ŷi)]

− b�,j1(Yi)
∂bk,j2

∂x�
(Yi)

]
I(j1,j2),i

∣∣∣∣2
]

≤ C∆t2
n−1∑
i=0

E

[
b�,j1(Ŷi)

1

∆x
[bk,j2(Ŷi + ∆xe�) − bk,j2(Ŷi)] − b�,j1(Yi)

∂bk,j2

∂x�
(Yi)

]2

≤ C∆t2
n−1∑
i=0

E

[
b�,j1(Ŷi)

∂bk,j2

∂x�
(Ŷi) − b�,j1(Yi)

∂bk,j2

∂x�
(Yi)

]2

+C∆t2
n−1∑
i=0

b�,j1(Ŷi)
2

[
1

∆x
(bk,j2(Ŷi + ∆xe�) − bk,j2(Ŷi)) − ∂bk,j2

∂x�
(Ŷi)

]2

≤ C∆t2
n−1∑
i=0

Zi + C∆t∆x2.

Therefore, altogether we have

Zn ≤ C∆t

n−1∑
k=0

Zk + C∆t∆x2,(5.7)

and an application of Lemma 2.3 implies that

E

[
sup

0≤n≤N
|Yn − Ŷn|2

] 1
2

= O(∆x∆t
1
2 ).(5.8)

We can apply a similar idea to the SAB scheme. That is, if we replace An and
Bn in the order ∆t

3
2 scheme (see Remark 3.1) by, for instance (with, again, Einstein’s

summation convention in effect),

An(t, x) = bkj(t, x)
1

∆x
[a(t, x+ ∆xek) − a(t, x)]∆W j ,(5.9)

where ek = (0, . . . , 0, 1, 0, . . . , 0), with the 1 in the kth position, and
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Bn(t, x) = bj(t, x)∆W j +
1

∆t
[bj(t+ ∆t, x) − bj(t, x)]I(0,j),n

+ ak(t, x)
1

∆x
[bj(t, x+ ∆xek) − bj(t, x)]I(0,j),n

+ bki(t, x)b�i(t, x)
1

8∆x2
[bj(t, x+ ∆x(ei + e�)) − bj(t, x+ ∆x(ei − e�))

− bj(t, x+ ∆x(e� − ei)) + bj(t, x− ∆x(ei + e�))]I(0,j),n

+ bkj1(t, x)
1

2∆x
[bj2(t, x+ ∆xek) − bj2(t, x− ∆xek)]I(j1,j2),n

+ bkj(t, x)
1

∆x
[a(t, x+ ∆xek) − a(t, x)]I(j,0),n

+ bk1j1(t, x)
1

4∆x2
[bk2j2(t, x+ ∆xek1) − bk2j2(t− x+ ∆xek1)]

[bj3(t, x+ ∆xek2) − bj3(t, x− ∆xek1)]I(j1,j2,j3),n

+ bk1j1(t, x)bk2,j2(t, x)
1

4∆x2

[bj3(t, x+ ∆x(ek1 + ek2)) − bj3(t, x+ ∆x(ek1 − ek2))

− bj3(t, x+ ∆x(ek2 − ek1)) + bj3(t, x− ∆x(ek1 + ek2))]I(j1,j2,j3),n,

we could then prove that this scheme converges to order max{∆t 3
2 ,∆t

1
2 ∆x} in a

similar fashion.

6. Numerical simulation. The object of this section is to test numerically the
accuracy of the scheme of section 3 and compare it to the theoretical result above
(i.e., O(∆t2) accuracy) and to the accuracy of the Euler and Mil’shtein schemes

(respectively, O(∆t
1
2 ) and O(∆t)). All the numerical results below are consistent

with the theoretical ones.
We consider the following equation:

dXt = β2 sinhXt cosh2Xt dt+ β cosh2Xt dWt,(6.1)

with β = 1
10 and X0 = 1

2 . This has the exact solution

Xt = arctanh(βWt + tanhX0),(6.2)

respectively. This can be easily verified using Itô’s formula and is just one of many
possible examples listed in [6].

We computed approximate solutions Yn using the Euler and Mil’shtein schemes
and the SAB scheme from section 3. Then we computed the following error:

e =

√
E

(
sup

0≤n≤N
|Xn − Yn|2

)
.(6.3)

To estimate the mean value needed, we used 500 sample trajectories.
In Figure 6.1, the order of each scheme is given by the slope of the corresponding

line. So we can see that the orders are 1
2 for Euler, 1 for Mil’shtein, and 2 for the

SAB of section 3.
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Fig. 6.1. Results obtained with the stochastic equation (6.1).

Note that for the SAB scheme, the stochastic integral I(0,1,1) (which is difficult
to generate) was approximated by a normal law. The results tend to show that this
does not affect the accuracy (at least in these two cases). We will try to improve this
point, which seems to raise interesting probabilistic questions, as already mentioned
in the introduction.
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Abstract. We study multiple shooting methods for the numerical solution of nonlinear boundary
value problems for unstructured nonlinear systems of differential-algebraic equations with arbitrary
index. We give a convergence analysis and demonstrate the results with some numerical examples.

Key words. nonlinear boundary value problem, differential-algebraic equations, multiple shoot-
ing
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1. Introduction. In this paper we consider the numerical solution of nonlinear
boundary value problems for systems of differential-algebraic equations of arbitrary
index by means of multiple shooting techniques. Multiple shooting is well studied and
widely used for ordinary differential equations (see [1]) and also for special classes of
systems of differential-algebraic equations (DAEs); see [15, 18].

In this paper we study general nonlinear DAE boundary value problems, i.e.,
problems of the form

(a) F (t, x, ẋ) = 0,
(b) r(x(t), x(t)) = 0,

(1.1)

where F : [t, t] × Dx × Dẋ → R
n, r : Dx × Dx → R

d with Dx,Dẋ ⊆ R
n open. The

integer d denotes the number of differential components of x. A precise definition will
follow in the next section.

The typical feature of shooting methods is that the solution of (1.1) is achieved
through the solution of initial value problems, where it is implicitly assumed that
they are well conditioned and can be solved sufficiently accurately. The boundary
condition, together with the continuity conditions in the case of multiple shooting,
then form a system of nonlinear equations for the initial values. In contrast to the
application of shooting methods for the solution of ordinary differential equations,
however, a problem arises for DAEs due to the fact that initial values have to be
consistent with all explicit and hidden algebraic constraints. But even starting with a
consistent initial guess, the iterative solver for the nonlinear equation will, in general,
produce corrections that lead to inconsistent intermediate iterates. For this reason,
shooting methods for nonlinear DAE boundary value problems were considered only
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in very special cases, where the algebraic constraints are known explicitly [18], or
where they can be accessed due to the special structure of the equation [5, 15].

For general linear problems with variable coefficients, the set of consistent initial
values at a given point forms an affine space which is numerically accessible; see [9, 12].
Based on this knowledge, shooting methods were developed for this case in [20].
Generalizing this approach to the general nonlinear case is the subject of the present
paper. The new method that we present is able to treat boundary value problems
for general DAEs of a given arbitrary index, i.e., there are no assumptions on the
structure of the equations besides the requirement that the DAE can be assigned a
certain kind of index. Note that such an assumption is indispensable because we need
existence and uniqueness results on which we can base our method.

The paper is organized as follows. In section 2, we state some preliminaries on
the theory of DAEs. In particular, we give the basic index definition and some further
results that we need for the construction and investigation of the presented approach.
In section 3 we discuss the local uniqueness of solutions of (1.1) via single shooting.
A multiple shooting approach is then presented in section 4 together with a special
Gauß–Newton-like method. In particular, we show that the arising linear equations
can be reduced to shooting systems as they are obtained by multiple shooting for a
system of d ordinary differential equations. In section 5, we then discuss the results
of a number of numerical experiments. Finally, we give some conclusions in section 6.

2. Preliminaries. In general, the solution of a DAE may depend on derivatives
of (1.1a). In particular, we must perform so many differentiations such that we can
deduce all algebraic constraints that (1.1a) imposes on possible values for x(t). As-
suming in the following that all occurring functions are sufficiently smooth, we first
introduce the so-called derivative array functions (see [2, 3])

F�(t, x, ẋ, . . . , x
(�+1)) =

⎡⎢⎢⎢⎣
F (t, x, ẋ)
d
dtF (t, x, ẋ)

...
( ddt )

�F (t, x, ẋ)

⎤⎥⎥⎥⎦(2.1)

that are obtained from (1.1a) by successive differentiation with respect to t. Note that
we treat (t, x, ẋ, . . . , x(�+1)) here as independent variables such that F� is a function
from some subset of R

(�+2)n+1 into R
(�+1)n. Partial derivatives will be denoted by

corresponding subscripts as, e.g., in

F�;x = ∂
∂xF�, F�;ẋ,...,x(�+1) =

[
∂
∂ẋF� · · · ∂

∂x(�+1)F�
]
.

The following hypothesis states the central requirements on the DAE (1.1a);
see [10].

Hypothesis 2.1. There exist (nonnegative) integers µ, a, and d such that for all
values (t, x, ẋ, . . . , x(µ+1)) ∈ Lµ with

Lµ = {(t, x, ẋ, . . . , x(µ+1)) ∈ R
(µ+2)n+1 | Fµ(t, x, ẋ, . . . , x(µ+1)) = 0} �= ∅(2.2)

associated with F the following properties hold:
1. We have

rankFµ;ẋ,...,x(µ+1)(t, x, ẋ, . . . , x(µ+1)) = (µ+ 1)n− a
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such that there exists a smooth matrix function Ẑ2 on Lµ with orthonormal
columns and size ((µ+ 1)n, a) satisfying

ẐT2 Fµ;ẋ,...,x(µ+1) = 0 on Lµ.

2. We have

rank ẐT2 Fµ;x(t, x, ẋ, . . . , x
(µ+1)) = a

such that there exists a smooth matrix function T̂2 on Lµ with orthonormal
columns and size (n, d), where d = n− a, satisfying

ẐT2 Fµ;xT̂2 = 0 on Lµ.

3. We have

rankFẋT̂2(t, x, ẋ, . . . , x
(µ+1)) = d

such that there exists a smooth matrix function Ẑ1 on Lµ with orthonormal
columns and size (n, d) satisfying

rank ẐT1 FẋT̂2 = d on Lµ.

The minimal number µ (if it exists), such that Hypothesis 2.1 is fulfilled, is called
the strangeness index of F . The numbers a and d denote the size of the algebraic and
differential part of (1.1a). In particular, the choice of initial values is restricted by
a algebraic constraints. More specific, for an initial value problem consisting of (1.1a)
together with x(t0) = x0 to be solvable, the initial value x0 must be extendable to a

point (t0, x0, ẋ0, . . . , x
(µ+1)
0 ) in Lµ. This requirement can be reduced to a conditions

on x0 itself; see [10] for more details.
A typical ingredient in the investigation of numerical methods for boundary value

problems is the assumption that a solution of the given problem does exist. We
therefore assume that there exists a sufficiently smooth solution x∗ ∈ C1([t, t],Rn) of
(1.1) in the sense that

(a) F (t, x∗(t), ẋ∗(t)) = 0 for all t ∈ [t, t],

(b) Fµ(t, x
∗(t), P (t)) = 0 for all t ∈ [t, t],

(c) r(x∗(t), x∗(t)) = 0,

(2.3)

where P : [t, t] → R
(µ+1)n is some smooth function that coincides with ẋ∗ in the first

n components; see [11, Theorem 3] for sufficient conditions for such a function to
exist.

Restricting the projectors Ẑ1, Ẑ2, T̂2 of Hypothesis 2.1 to the path (t, x∗(t), P (t))
which lies in Lµ due to (2.3b), we obtain functions

Z1 : [t, t] → R
n,d, Z2 : [t, t] → R

(µ+1)n,a, T2 : [t, t] → R
n,d(2.4)

that satisfy

(a) Z2(t)
TFµ;ẋ,...,x(µ+1)(t, x∗(t), P (t)) = 0 for all t ∈ [t, t],

(b) Z2(t)
TFµ;x(t, x

∗(t), P (t))T2(t) = 0 for all t ∈ [t, t],

(c) rankZ1(t)
TFẋ(t, x

∗(t), ẋ∗(t))T2(t) = d for all t ∈ [t, t].

(2.5)
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In addition, there exist smooth functions

Z ′
2 : [t, t] → R

(µ+1)n,(µ+1)n−a, T1 : [t, t] → R
(µ+1)n,a,

T ′
2 : [t, t] → R

n,a, T ′
1 : [t, t] → R

(µ+1)n,(µ+1)n−a,
(2.6)

such that the matrix valued functions [Z ′
2, Z2], [T ′

1, T1], and [T ′
2, T2] are pointwise

orthogonal and, furthermore,

Z ′
2(t)

TFµ;ẋ,...,x(µ+1)(t, x∗(t), P (t))T1(t) = 0 for all t ∈ [t, t].(2.7)

It has been shown in [10] that for every

(t0, x0, ẋ0, . . . , x
(µ+1)
0 ) ∈ Lµ

the DAE (1.1a), if it satisfies Hypothesis 2.1, locally defines a function x from a
neighborhood of t0 into R

n. In particular, the x so obtained solves a DAE of dif-
ferentiation index at most one that is extracted from the derivative array equations
Fµ(t, x, ẋ, . . . , x

(µ+1)) = 0. This solution can be extended until the boundary of the
set where Fµ is defined is reached. Since

(t0, x
∗(t0), P (t0)) ∈ Lµ, t0 ∈ [t, t],

defines a solution on [t, t], the same holds for every (t0, x0, y0) ∈ Lµ in a neighborhood
of (t0, x

∗(t0), P (t0)).
In this section we have briefly presented some results on the solution and formu-

lation of general nonlinear systems of DAEs. In the next section we use these results
to analyze the single shooting method and the local uniqueness of solutions to the
resulting nonlinear systems.

3. Single shooting and local uniqueness. In this section, which is of a more
theoretical nature, we discuss the single shooting method. If initial value problems
are uniquely solvable, then we can see the value of the solution at a certain point as a
function of the initial value. This means that the boundary condition of a boundary
value problem also becomes a function of the initial value. Therefore, a solution of a
boundary value problem is said to be locally unique if the corresponding initial value
is a locally unique solution of the boundary condition. For DAEs we must, of course,
take into account that an initial condition must be consistent in the sense that there is
a related point in the set Lµ.

For this reason we locally define a (nonlinear) projection onto Lµ by considering
the nonlinear system

(a) Fµ(t, x̂, ŷ) = 0,

(b) T2(t)
T (x̂− x) = 0,

(c) T1(t)
T (ŷ − y) = 0

(3.1)

in the unknowns (x, y, x̂, ŷ).
If we write (3.1) as

H(x, y, x̂, ŷ) = 0,(3.2)
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then a solution of this system is given by (x∗(t), P (t), x∗(t), P (t)). Since the Jacobian
with respect to x̂, ŷ satisfies

rankHx̂,ŷ(x
∗(t), P (t), x∗(t), P (t))

= rank

⎡⎣Fµ;x(t, x
∗(t), P (t)) Fµ;y(t, x

∗(t), P (t))
T2(t)

T 0
0 T1(t)

T

⎤⎦

= rank

⎡⎢⎢⎣
Z ′

2(t)
TFµ;x(t, x

∗(t), P (t)) Z ′
2(t)

TFµ;y(t, x
∗(t), P (t))

Z2(t)
TFµ;x(t, x

∗(t), P (t)) 0
T2(t)

T 0
0 T1(t)

T

⎤⎥⎥⎦ ,
and since by construction the matrices[

Z ′
2(t)

TFµ;y(t, x
∗(t), P (t))

T1(t)
T

]
,

[
Z2(t)

TFµ;x(t, x
∗(t), P (t))

T2(t)
T

]
are nonsingular for all t ∈ [t, t], it follows that Hx̂,ŷ(x

∗(t), P (t), x∗(t), P (t)) is non-
singular. We can therefore solve locally for (x̂, ŷ) obtaining a function S according
to

(x̂, ŷ) = S(x, y).(3.3)

Since Fµ(t, S(x, y)) = 0, we have that (t, S(x, y)) ∈ Lµ for every (x, y) in a
neighborhood of (x∗(t), P (t)). Observing that the initial value problem for (1.1a)
together with (t, S(x∗(t), P (t))) ∈ Lµ is solvable on the whole interval [t, t], the initial
value problem remains solvable on the whole interval [t, t] with an initial condition
given by (t, x, y) from a neighborhood Lµ∩U of (t, x∗(t), P (t)). Thus the DAE defines
a flow

Φ : V → R
n, V = {(x, y) | (t, x, y) ∈ Lµ ∩ U}(3.4)

that maps (x, y) ∈ V on the final value x(t) of the solution x of the associated initial
value problem.

For later use, we will need the derivatives of S at (x∗(t), P (t)). These are given
by

Hx̂,ŷ(x
∗(t), P (t), x∗(t), P (t))Sx,y(x

∗(t), P (t))

= −Hx,y(x
∗(t), P (t), x∗(t), P (t)),

i.e., ⎡⎣Fµ,x(t, x∗(t), P (t)) Fµ;y(t, x
∗(t), P (t))

T2(t)
T 0

0 T1(t)
T

⎤⎦Sx,y(x∗(t), P (t))=

⎡⎣ 0 0
T2(t)

T 0
0 T1(t)

T

⎤⎦.
Let the columns of W be orthonormal and span kernelFµ;x,y(t, x

∗(t), P (t)). Setting

W̃ =

[
T2(t) 0

0 T1(t)

]
,(3.5)
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we see that W̃TW is nonsingular, since Hx̂,ŷ(x
∗(t), P (t), x∗(t), P (t)) is nonsingular,

and we have

Sx,y(x
∗(t), P (t)) = W (W̃TW )−1W̃T .(3.6)

We then have the following theorem on the local uniqueness of solutions of bound-
ary value problems for DAEs.

Theorem 3.1. The function x∗ in (2.3) is a locally unique solution of the bound-
ary value problem (1.1) in the sense that (x∗(t), P (t)) is a solution of

(a) Fµ(t, x, y) = 0,

(b) T1(t)
T (y − P (t)) = 0,

(c) r(x,Φ(S(x, y))) = 0,

(3.7)

with nonsingular Jacobian if and only if

E = CT2(t) +DΦx,y(x
∗(t), P (t))Sx(x

∗(t), P (t))T2(t)(3.8)

is nonsingular, where C = rxa(x∗(t), x∗(t)) and D = rxb
(x∗(t), x∗(t)).

Proof. Obviously, (x, y) = (x∗(t), P (t)) is a solution of (3.7). Moreover, the
Jacobian J of (3.7) is given by

J =

⎡⎣ Fµ;x Fµ;y

0 T1(t)
T

C +DΦx,ySx DΦx,y)Sy

⎤⎦ ,
where we have omitted the arguments t, x∗(t), P (t). So we have that rankJ is equal
to

rank

⎡⎢⎢⎣
Z ′T

2 Fµ;xT
′
2 Z ′T

2 Fµ;xT2 Z ′T
2 Fµ;yT

′
1 0

ZT2 Fµ;xT
′
2 0 0 0

0 0 0 I
(C +DΦx,ySx)T

′
2 (C +DΦx,ySx)T2 DΦx,ySyT

′
1 DΦx,ySyT1

⎤⎥⎥⎦ .
Since

Sx = W (W̃TW )−1

[
TT2
0

]
, Sy = W (W̃TW )−1

[
0
TT1

]
by (3.5), we have SxT

′
2 = 0 and SyT

′
1 = 0 by (2.6). Moreover, ZT2 Fµ;xT

′
2 and

Z ′T
2 Fµ;yT

′
1 are nonsingular by construction. Thus J has full rank if and only if

E = (C +DΦx,ySx)T2

has full rank.
Remark 3.2. In the case of linear boundary value problems, i.e., problems (1.1)

where F and r are linear, condition (3.8) coincides with that given in [14, 20, 21] and
thus yields global uniqueness of the solution x∗

Proof. Since we do not need this result further in the course of this paper, we
give the proof in the appendix.
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4. Multiple shooting. It is well known that in single shooting, one is faced
with the difficulty that the arising initial value problems may be unstable. This may
lead to large solution components or even to the problem that the solution does not
extend until t due to errors in the initial guess. To overcome these difficulties, in
multiple shooting the solution interval is split beforehand into smaller subintervals
according to

t = t0 < t1 < · · · < tN−1 < tN = t, N ∈ N.(4.1)

Given initial guesses

(xi, yi) ∈ R
(µ+2)n, i = 0, . . . , N,(4.2)

at these points, the idea is to project (ti, xi, yi) onto Lµ and to solve the associated
initial value problems on [ti, ti+1], requiring that the pieces correspond to a continuous
solution on the whole interval and that the boundary condition is satisfied.

In contrast to section 3 which was merely dedicated to a theoretical investigation,
in this section we present a method that can actually be implemented. We therefore
are not allowed to use functions such as Z2 or T2 in the definition of the procedure.
Instead, we must look for computationally available quantities.

Given (ti, xi, yi) as an initial guess for a point on Lµ, we can solve Fµ(ti, x, y) = 0
by the Gauß–Newton method (see, e.g., [16]) to obtain (ti, x̃i, ỹi) ∈ Lµ. Of course,
we must require that the guess (ti, xi, yi) is good enough to guarantee convergence.
Applying Hypothesis 2.1, we can then compute quantities Z̃2,i and T̃2,i, where the

columns form orthonormal bases of corangeFµ;y(ti, x̃i, ỹi) and kernel Z̃T2,iFµ;x(ti, x̃i, ỹi),

respectively. In the same way, we can determine quantities Z̃ ′
2,i and T̃1,i.

Similar to (3.1), the system

(a) Fµ(ti, x̂i, ŷi) = 0,

(b) T̃T2,i(x̂i − xi) = 0,

(c) T̃T1,i(ŷi − yi) = 0

(4.3)

locally defines functions Si according to

(x̂i, ŷi) = Si(xi, yi)(4.4)

in such a way that (ti, Si(xi, yi)) ∈ Lµ. Defining Wi to have columns that form an
orthonormal basis of kernelFµ;x,y(ti, x̂i, ŷi) with (ti, x̂i, ŷi) ∈ Lµ and setting

W̃i =

[
T̃2,i 0

0 T̃1,i

]
,(4.5)

we obtain

Si;x,y(x̂i, ŷi) = Wi(W̃
T
i Wi)

−1W̃T
i(4.6)

similar to (3.6) as long as W̃T
i Wi is invertible. As was done with Φ in section 3,

we define flows Φi that map initial values (x̂i, ŷi) with (ti, x̂i, ŷi) ∈ Lµ on the value
x(ti+1) of the solution x of the corresponding initial value problem.

The multiple shooting system is then given by

(a) Fµ(ti, xi, yi) = 0, i = 0, . . . , N,

(b) T̃T2,i+1(xi+1 − Φi(Si(xi, yi))) = 0, i = 0, . . . , N − 1,

(c) r(x0, xN ) = 0.

(4.7)
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Comparing with the single shooting method of section 3, (3.7a) is now required in
(4.7a) at all mesh points ti with corresponding unknowns (xi, yi). Besides the bound-
ary condition (4.7c), we impose continuity conditions for the differential components
in (4.7b). Condition (3.7b), which was responsible for local uniqueness of the solution
in (3.7), cannot be used here because it involves knowledge of the actual solution.
Thus, in the present form, system (4.7) is underdetermined. It is therefore solved
by a Gauß–Newton-type iteration method which we present in what follows. In the
course of the presentation, we will select a suitable generalized inverse of the Jacobian
by additional conditions which will turn out to be the appropriate replacement for
(3.7b).

Given approximations (xi, yi), the Gauß–Newton-type method is defined by the
corrections (∆xi,∆yi) that are added to (xi, yi) to get updated approximations. In
the (underdetermined) ordinary Gauß–Newton method, these corrections satisfy the
linearized equations

(a) Fµ;x(ti, xi, yi)∆xi + Fµ;y(ti, xi, yi)∆yi = −Fµ(ti, xi, yi),
(b) T̃T2,i+1(∆xi+1 − Φi;x,y(Si(xi, yi))(Si;x(xi, yi)∆xi + Si;y(xi, yi)∆yi))

= −T̃T2,i+1(xi+1 − Φi(Si(xi, yi))),

(c) rxa(x0, xN )∆x0 + rxb
(x0, xN )∆xN = −r(x0, xN ).

(4.8)

For an efficient numerical method, however, the structure and the properties of the
Jacobian should be utilized. In the following, we will perturb the coefficient matrix
in such a way that the system decouples into smaller systems of reasonable size. In
particular, the perturbations that we apply will tend to zero when the (xi, yi) con-
verge to a solution of (4.7) resulting in a Gauß–Newton-like process with superlinear
convergence rate; cf. [4].

In a solution of (4.7), the matrices Fµ;y(ti, xi, yi) will have rank deficiency a. We

therefore perturb Fµ;y(ti, xi, yi) to matrices M̃i with rank deficiency a. The only
condition we must require is that these perturbations tend to zero when the matrices
Fµ;y(ti, xi, yi) tend to matrices with rank deficiency a. One possibility for achieving
this is to neglect the a smallest singular values of Fµ;y(ti, xi, yi); see, e.g., [6]. The
equations (4.8a) are thus replaced by

Fµ;x(ti, xi, yi)∆xi + M̃i∆yi = −Fµ(ti, xi, yi).(4.9)

Let the columns of Z2,i form an orthonormal basis of corange M̃i and let [Z ′
2,i, Z2,i]

be orthogonal. Relation (4.9) then splits into

(a) Z ′T
2,iFµ;x(ti, xi, yi)∆xi + Z ′T

2,iM̃i∆yi = −Z ′T
2,iFµ(ti, xi, yi),

(b) ZT2,iFµ;x(ti, xi, yi)∆xi = −ZT2,iFµ(ti, xi, yi).
(4.10)

Requiring in addition that

T̃T1,i∆yi = 0(4.11)

as a substitute for (3.7b) and observing that[
Z ′T

2,iM̃i

T̃T1,i

]
is nonsingular for sufficiently good initial guesses (xi, yi), it follows that we can solve
(4.10a) with (4.11) for ∆yi in terms of ∆xi.
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Let the columns of the matrix T2,i form an orthonormal basis of the space

kernelZT2,iFµ;x(ti, xi, yi). For sufficiently good initial guesses (xi, yi), T̃
T
2,iT2,i is also

nonsingular. Thus, there exists a matrix T ′
2,i such that [T ′

2,i, T2,i] is nonsingular and

T̃T2,iT
′
2,i = 0.(4.12)

Defining ∆v′i and ∆vi by the relation

∆xi = T ′
2,i∆v

′
i + T2,i∆vi,(4.13)

(4.10b) becomes

ZT2,iFµ;x(ti, xi, yi)T
′
2,i∆v

′
i = −ZT2,iFµ(ti, xi, yi).(4.14)

Since ZT2,iFµ;x(ti, xi, yi)T
′
2,i is nonsingular by construction, (4.14) can be solved for ∆v′i.

Turning to (4.8b), we know that at a solution of (4.8), the relations

(a) Si;x(xi, yi)∆xi = Wi(W̃
T
i Wi)

−1

[
T̃T2,i
0

]
T2,i∆vi = Si;x(xi, yi)T2,i∆vi,

(b) Si;y(xi, yi)∆yi = Wi(W̃
T
i Wi)

−1

[
0

T̃T1,i

]
∆yi = 0

(4.15)

hold because of (4.11) and (4.12). Thus, we replace (4.8b) by

T̃T2,i+1T2,i+1∆vi+1 − T̃T2,i+1Φi;x,y(Si(xi, yi))Si;x(xi, yi)T2,i∆vi

= −T̃T2,i+1(xi+1 − Φi(Si(xi, yi))),
(4.16)

which is again a perturbation that tends to zero when the iteration converges. The
main advantage of (4.16) is that we need only the derivative Φi;x,y(Si(xi, yi))Si;x(xi, yi)
in the direction of the d columns of T2,i. In particular, if we use numerical differentia-
tion to approximate this derivative, then we need only solve d initial value problems.

Finally, we write (4.8c) in the form

rxa
(x0, xN )T2,0∆v0 + rxb

(x0, xN )T2,N∆vN

= −r(x0, xN ) − rxa(x0, xN )T ′
2,0∆v

′
0 − rxb

(x0, xN )T ′
2,N∆v′N .

(4.17)

Setting

(a) Gi = T̃T2,i+1Φi;x,y(Si(xi, yi))Si;x(xi, yi)T2,i, i = 0, . . . , N − 1,

(b) Ji = T̃T2,iT2,i, i = 1, . . . , N,

(c) C̃ = rxa(x0, xN )T2,0, D̃ = rxb
(x0, xN )T2,N ,

(4.18)

the linear system that we have to solve for the unknowns ∆vi has the shooting-like
coefficient matrix

ẼN =

⎡⎢⎢⎢⎢⎢⎣
−G0 J1

−G1 J2

. . .
. . .

−GN−1 JN
C̃ D̃

⎤⎥⎥⎥⎥⎥⎦ .(4.19)
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This system can be solved by standard methods such as Gaussian elimination with
pivoting [6]. Since the blocks Ji are invertible for sufficiently good initial guesses
(xi, yi), it follows that the matrix ẼN is nonsingular if and only if

EN = C̃ + D̃(J−1
N GN−1)(J

−1
N−1GN−2) · · · (J−1

2 G1)(J
−1
1 G0)(4.20)

is nonsingular. Thus, for the method to work, it suffices to show that this is the case
at least at the solution and therefore in some neighborhood of it.

At a solution (xi, yi) = (x∗(ti), y∗i ), the matrix EN takes the form

EN = CT2,0 +DT2,N

i=0∏
i=N−1

[
(T̃T2,i+1T2,i+1)

−1T̃T2,i+1

×Φi;x,y(Si(xi, yi))Si;x(xi, yi)T2,i

]
.(4.21)

To take into account that Φi(Si(x, y)) is consistent at ti+1 for (x, y) in a neighborhood
of (xi, yi) as the value of a solution of the DAE on [ti, ti+1], we consider the system

(a) Fµ(ti, x, ŷ) + Z2,iα = 0,

(b) T̃T1,i(ŷ − yi) = 0.
(4.22)

Writing this as

Hi(x, ŷ, α) = 0,(4.23)

we know that Hi(xi, yi, 0) = 0. Since

rankHi;ŷ,α(xi, yi, 0)

= rank

[
Fµ;y(ti, xi, yi) Z2,i

T̃T1,i 0

]
= rank

⎡⎣Z ′T
2,iFµ;y(ti, xi, yi) 0

0 I

T̃T1,i 0

⎤⎦ ,
the construction of Z ′

2,i and T̃1,i guarantees that the matrix Hi;ŷ,α(xi, yi, 0) is nonsin-
gular. Thus, (4.22) locally defines functions Ki and Li according to

ŷ = Ki(x), α = Li(x).(4.24)

For all x with Li(x) = 0 we have Fµ(ti, x,Ki(x)) = 0 and x is consistent at ti.
Furthermore, differentiating

Fµ(ti, x,Ki(x)) + Z2,iLi(x) = 0,

evaluating at xi and multiplying by ZT2,i yields

Li;x(xi) = −ZT2,iFµ;x(ti, xi, yi).

Hence, Li;x has full row rank in a neighborhood of xi, and all solutions of Li(x) = 0
form a manifold of dimension d = n − a which is a submanifold of the manifold of
consistent values at point ti. Since the dimension of the latter manifold is also d
(see [10]), they must coincide.

Thus, given an x that is consistent at ti, the function Ki yields a ŷ such that
(ti, x, ŷ) ∈ Lµ while Li(x) = 0. In particular,

Fµ(ti+1,Φi(Si(x, y)),Ki+1(Φi(Si(x, y)))) = 0(4.25)
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holds in a neighborhood of (xi, yi). Differentiating this relation with respect to (x, y)
and setting (x, y) = (xi, yi), we obtain

Fµ;x(ti+1, xi+1, yi+1)Φi;x,y(Si(xi, yi))Si;x,y(xi, yi)

+Fµ;y(ti+1, xi+1, yi+1)Ki+1;x(xi+1)Φi;x,y(Si(xi, yi))Si;x,y(xi, yi) = 0.

Multiplying with ZT2,i+1 from the left finally yields

ZT2,i+1Fµ;x(ti+1, xi+1, yi+1)Φi;x,y(Si(xi, yi))Si;x,y(xi, yi) = 0.(4.26)

Hence, the columns of Φi;x,y(Si(xi, yi))Si;x,y(xi, yi) lie in the kernel of the matrix
ZT2,i+1Fµ;x(ti+1, xi+1, yi+1), which in turn is spanned by the columns of T2,i+1. Since

the expression T2,i+1(T̃
T
2,i+1T2,i+1)

−1T̃T2,i+1 is a projector on this kernel, we have

T2,i+1(T̃
T
2,i+1T2,i+1)

−1T̃T2,i+1Φi;x,y(Si(xi, yi))Si;x,y(xi, yi)

= Φi;x,y(Si(xi, yi))Si;x,y(xi, yi).
(4.27)

Thus, (4.21) reduces to

EN = CT2,0 +D

[
i=0∏

i=N−1

Φi;x,y(Si(xi, yi))Si;x(xi, yi)

]
T2,0.(4.28)

Finally, defining

Ψi(x) = (x,Ki(x))(4.29)

and using T̃T1,iKi;x(xi) = 0, which holds due to (4.22b), we find that

Si;x,y(xi, yi)Ψi;x(xi)

= Wi(W̃
T
i Wi)

−1

[
T̃T2,i 0

0 T̃T1,i

] [
I

Ki;x(xi)

]

= Wi(W̃
T
i Wi)

−1

[
T̃T2,i
0

]
= Si;x(xi, yi).

Hence, (4.28) becomes

EN = CT2,0 +D

[
i=0∏

i=N−1

Φi;x,y(Si(xi, yi))Si;x,y(xi, yi)Ψi;x(xi)

]
T2,0.(4.30)

Comparing with (3.8), the term in brackets in (4.30) is nothing more than the deriva-
tive Φx,yS̃x of Φ ◦ S̃ decomposed according to

Φ ◦ S̃ = (ΦN−1 ◦ SN−1) ◦ (ΨN−1 ◦ ΦN−2 ◦ SN−2) ◦ · · · ◦ (Ψ1 ◦ Φ0 ◦ S0),(4.31)

where S̃ differs from S by replacing T1(t), T2(t) with T̃1,0, T̃2,0 in (3.1). This means
that for sufficiently good initial guesses, the matrix EN is nonsingular when E of (3.8)
is nonsingular, i.e., when there is a locally unique solution of the boundary value
problem in the sense of Theorem 3.1.
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Summarizing the results obtained, we have the following convergence theorem.
Theorem 4.1. Suppose that the boundary value problem (1.1) satisfies Hypothe-

sis 2.1 and that (1.1) has a locally unique solution according to Theorem 3.1. Then,
for sufficiently good initial guesses, the iterates of the Gauß–Newton-like procedure
developed in the course of this section converge superlinearly to a solution of (4.7).

Proof. Writing the Gauß–Newton-like procedure for (4.7) in the form

zν+1 = zν −A−
ν F(zν),

where Aν is the chosen perturbation of Fz(zν) and A−
ν denotes the chosen pseudoin-

verse due to (4.11), we have

AνA−
ν = I,

since A−
ν yields a solution of the perturbed linear system. Thus, we get

zν+1 − zν = −A−
ν F(zν)

= −A−
ν

[F(zν) −F(zν−1) −Aν−1(zν − zν−1)
]

= −A−
ν

[F(zν−1 + s(zν − zν−1))
∣∣s=1

s=0
−Fz(zν−1)(zν − zν−1)

−(Aν−1 −Fz(zν−1))(zν − zν−1)
]

= −A−
ν

[∫ 1

0
(Fz(zν−1+s(zν − zν−1)) −Fz(zν−1))(zν − zν−1) ds

−(Aν−1 −Fz(zν−1))(zν − zν−1)
]
.

Introducing constants β, γ, and δν according to

‖A−
ν ‖ ≤ β, ‖Fz(u) −Fz(v)‖ ≤ γ‖u− v‖, ‖Aν −Fz(zν)‖ = δν

for some vector norm and its corresponding matrix norm (recalling that we assume
sufficient smoothness for the data), we obtain the estimate

‖zν+1 − zν‖ ≤ 1

2
βγ‖zν − zν−1‖2 + βδν−1‖zν − zν−1‖.

Since δν → 0 when zν converges to a solution, superlinear convergence follows as
in [4].

Remark 4.2. In all steps of the above construction, we were forced to include
the equation Fµ = 0 in order to get hold of all algebraic constraints posed by the given
DAE. For problems with structure it is often much easier to address these algebraic
constraints. Sometimes one can even simply write them down. In both cases, the
approach presented above can be simplified to obtain more efficient procedures. In
particular, one can replace the equation Fµ = 0 by a simpler one that determines the
algebraic constraints, or even replace it by them if they are known explicitly.

Remark 4.3. As already mentioned, the main problem in the construction of
shooting methods for DAEs is how to deal with inconsistent intermediate iterates. In
the method presented here, we used (locally defined) nonlinear projections on Lµ to get
consistent initial values. A second possibility would have been to shift the manifold Lµ

in such a way that the given inconsistent iterate then lies in the shifted manifold. In
the case of single shooting, if

(x̂, ŷ) = S(x0, y0),

then we would define

L̂µ = {(t, x, y) ∈ R
(µ+2)n+1 | Fµ(t, x− x0 + x̂, y − y0 + ŷ) = 0}

and solve the arising initial value problem with respect to L̂µ. The same idea is used
by [18] in the form of so-called relaxed algebraic constraints when these are explicitly
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available. One can show that using the technique of shifting the manifold would yield
a method with the same properties as the new method we have presented. However,
the method of shifting the manifold has the disadvantage that it requires modifying Fµ
for use in the initial value solver.

5. Numerical experiments. The procedure of section 4 has been implemented
in FORTRAN in the form of a research code. All rank decisions, computations of kernel
and corange matrices and their complements, as well as the solution of linear equa-
tions, are performed on the basis of singular value decompositions. In particular, no
concern was laid on efficiency questions. Due to that, all multiple shooting codes
designed for special structured DAEs should outperform the present implementation.
All computations were done on a Sun Blade 100 workstation with 500 MHz in IEEE

double precision.
The following examples cover a large variety of problem classes of different struc-

ture and differentiation index. In all examples, the Gauß–Newton-like procedure of
Theorem 4.1 was terminated as soon as ‖∆zν‖2 ≤ 10−5, where ∆zν = zν+1 − zν . The
entries Gi of (4.19) were approximated by numerical differentiation according to

Giej = 1
η T̃

T
2,i+1[Φi(Si(xi + ηT2,iej , yi)) − Φi(xi, yi)],

j = 1, . . . , d, i = 0, . . . , N − 1,

where ej is the jth canonical basis vector of R
d. We used the choice η = 10−7. All

initial value problems occurring were solved with GENDA of [13] using the tolerance
10−5.

Example 5.1. In [7], the model of a periodically driven electronic amplifier is
given. The equations with n = 5 for the unknowns (U1, . . . , U5) read as

(UE(t) − U1)/R0 + C1(U̇2 − U̇1) = 0,

(UB − U2)/R2 − U2/R1 + C1(U̇1 − U̇2) − 0.01f(U2 − U3) = 0,

f(U2 − U3) − U3/R3 − C2U̇3 = 0,

(UB − U4)/R4 + C3(U̇5 − U̇4) − 0.99f(U2 − U3) = 0,

−U5/R5 + C3(U̇4 − U̇5) = 0

with

UE(t) = 0.4 sin(200πt), UB = 6,

f(U) = 10−6(exp(U/0.026) − 1),

R0 = 1000, R1 = · · · = R5 = 9000,

C1 = 10−6, C2 = 2 · 10−6, C3 = 3 · 10−6.

The problem is known to satisfy Hypothesis 2.1 with µ = 0, d = 3, and a = 2. If we
ask for the periodic response of the amplifier, we are led to the boundary conditions

Ul(0) = Ul(0.01), l = 2, 3, 5;

thus t = 0 and t = 0.01. We used N = 1 and determined the initial guess for the
unknowns (xi, yi), i = 0, . . . , N , by integration starting with

(0, V1, V1, UB , 0, 0, 0, V2, 0, 0) ∈ Lµ,

where V1 = UB
R1

R1+R2
and V2 = − V1

R3C2
.
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Table 5.1

Results for Example 5.1.

ν ‖∆zν‖2

0 0.339D+02

1 0.113D-02

2 0.107D-04

3 0.168D-08

Fig. 5.1. Periodic response for Example 5.1.

Then the presented method successfully computed a periodic solution in about
3.1 seconds. The behavior of the Gauß–Newton-like method is given in Table 5.1.
One component of the periodic response of the amplifier is shown in Figure 5.1.

Example 5.2. In [17], a multibody system with nonholonomic constraint is pre-
sented. The model equations for the unknowns (ϕ, zG, zZ , λ) are given by

IRϕ̈ = u,
mGz̈G + d1(żG − żZ) + c1(zG − zZ) = λ,
mZ z̈Z + d1(żZ − żG) + c1(zZ − zG) = 0,
żG = vUϕ,

where

IR = 0.002,
vU = 2.8,

mG = 3,
c1 = 250,

mZ = 10,
d1 = 10.

We ask for the time T when, starting from the trivial equilibrium, the maximal allowed
ϕmax = 0.27 is reached for an external force u = 0.001. The boundary conditions are
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Table 5.2

Results for Example 5.2.

ν ‖∆zν‖2

0 0.727D+00

1 0.405D-01

2 0.345D-04

3 0.107D-09

then given by

ϕ(0) = zG(0) = zZ(0) = ϕ̇(0) = żZ(0) = 0, ϕ(T ) = 0.27.

Writing the model equations as a first order system and transforming the unknown
interval [0, T ] to [0, 1], thus introducing T as further unknown, we get a problem with
n = 8 in the unknowns (ϕ, zG, zZ , ϕ̇, żG, żZ , λ, T ). Hypothesis 2.1 is here satisfied with
µ = 1, d = 6, and a = 2. We set N = 1 and took T = 1 to get initial guesses for (xi, yi)
by integration starting with the equilibrium state. Table 5.2 shows the behavior of
the Gauß–Newton-like procedure. The computing time was about 4.3 seconds.

Example 5.3. A pendulum in two space dimensions is modeled by

ṗ1 = v1, v̇1 = 2p1λ,
ṗ2 = v2, v̇2 = 2p2λ− g,
p2
1 + p2

2 = 1

with the gravity constant g = 9.81. The unknowns are (p1, p2, v1, v2, λ). In [15] this
problem, together with the boundary conditions

v2(0) = 0, p1(0.55) = 0,(5.1)

was used to test an implementation of a multiple shooting method for DAEs with
µ = 1. Since for the above formulation we have µ = 2 together with d = 2 and a = 3,
in [15] it was necessary to replace the constraint by its differentiated form

2p1ṗ1 + 2p2ṗ2 = 2p1v1 + 2p2v2 = 0

and to add a further boundary condition due to the additional dynamics introduced.
Here we can solve this problem in its original formulation. Instead of (5.1), we also
used the boundary conditions

v2(0) = v2(2.5) = 0,(5.2)

thus seeking a periodic orbit. Observe that we must fix the phase of the solution,
since the problem is autonomous.

Starting in both cases with the initial guess

x0 = (1, 0.3, 0, 0, 1),
ẍ0 = (0,−g, 0, 0, 0),

ẋ0 = (0, 0, 0,−g, 0),

x
(3)
0 = (0, 0, 0, 0, 0)

and using N = 1, we obtained solutions according to Table 5.3. The computing times
were 3.5 and 14.6 seconds, respectively.
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Table 5.3

Results for Example 5.3.

Boundary condition (5.1)
ν ‖∆zν‖2

0 0.101D+04

1 0.346D+03

2 0.924D+01

3 0.130D+00

4 0.524D-04

5 0.273D-09

Boundary condition (5.2)

ν ‖∆zν‖2

0 0.542D+02

1 0.403D+02

2 0.208D+02

3 0.183D+01

4 0.341D-02

5 0.120D-08

Example 5.4. In [19], the model of a (two-dimensional) truck is given. It has the
form of a standard multibody system

ṗ = v,

Mv̇ = f(p, v, u, u̇) − gp(p)
Tλ,

g(p) = 0,

where p are the (generalized) positions, v the corresponding velocities, and λ the
forces introduced by the constraint g(p) = 0. In the truck model, p and v have eleven
components and λ is scalar. Hypothesis 2.1 is fulfilled with µ = 2, d = 20, and a = 3.
The (scalar) function u models the road profile and is chosen here to be

u(t) = τ sin(20πt).

Asking as in [20] for the periodic response of the system for τ = 0.05, we require the
boundary conditions

pl(0) = pl(0.1), l = 1, . . . , 9, 11,
vl(0) = vl(0.1), l = 1, . . . , 9, 11.

This problem suffers from an extremely bad scaling and high nonlinearity. Therefore,
we applied a (fixed) scaling to get reasonable condition numbers and used classical
homotopy according to

τ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}
to get the desired solution. The homotopy was started with the equilibrium state for
τ = 0. The course of the Gauß–Newton-like procedure for N = 2 can be found in
Table 5.4. The overall computing time was about 84 minutes, with roughly 10 seconds
for the solution of a single initial value problem. In particular, more than 95% of the
computing time is used for time integration, as is typical for a multiple shooting
approach. In this respect, the efficiency of a multiple shooting code mostly depends
on the efficiency of the initial value solver.

Example 5.5. The so-called Lotka–Volterra system is the simplest model for a
predator/prey interaction and consists (in normalized form) of the two differential
equations

ẋ1 = x1(1 − x2), ẋ2 = −cx2(1 − x1)

with some constant c > 0. It is well known that the quantity

H = c(x1 − log x1) + (x2 − log x2)
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Table 5.4

Values ‖∆zν‖2 for the homotopy of Example 5.4.

ν τ = 0.01 τ = 0.02 τ = 0.03 τ = 0.04 τ = 0.05

0 0.440D+04 0.481D+04 0.523D+04 0.527D+04 0.464D+04

1 0.639D+03 0.610D+03 0.610D+03 0.762D+03 0.949D+03

2 0.370D+02 0.442D+02 0.354D+02 0.215D+02 0.132D+02

3 0.110D-01 0.359D-01 0.825D-01 0.614D-01 0.288D-01

4 0.984D-05 0.881D-07 0.421D-05 0.119D-04 0.140D-04

5 — — — 0.635D-08 0.133D-07

Table 5.5

Results for Example 5.5.

ν ‖∆zν‖2

0 0.203D+01

1 0.491D+00

2 0.486D-01

3 0.236D-03

4 0.240D-08

stays constant along every componentwise positive solution and that therefore every
such solution is periodic. In order to compute a periodic orbit for a given value of H,
we can use the above equation for H as the algebraic constraint for the Lotka–Volterra
system. But then the system would be overdetermined. We therefore combine the two
differential equations such that the resulting relation defines a flow on the manifold
defined by the algebraic constraint. Observing that we must fix the phase of the
periodic orbit in order to fix a locally unique solution, we obtain the boundary value
problem

(1 − x1)ẋ2 − c(1 − x2)ẋ1 + cx2(1 − x1)
2 + cx1(1 − x2)

2 = 0,
c(x1 − log x1) + (x2 − log x2) −H = 0,
x1(0) = x1(T ), x1(0) = 1.

Note that the derivatives ẋ1 and ẋ2 now have solution dependent factors. Transform-
ing the problem finally to the unit interval and using x3 = H and x4 = T as further
unknowns, the boundary value problem to solve reads as

(1 − x1)ẋ2 − c(1 − x2)ẋ1 + cx2(1 − x1)
2x4 + cx1(1 − x2)

2x4 = 0,
c(x1 − log x1) + (x2 − log x2) − x3 = 0, ẋ3 = 0, ẋ4 = 0,
x1(0) = x1(1), x1(0) = 1, x3(0) = H.

It has differentiation index one and satisfies Hypothesis 2.1 with µ = 0, d = 3, and
a = 1. Starting with

x0 = (1.0, 0.6, 2.1, 6.0), ẋ0 = (3.2, 0, 0, 0)

for the choice c = 1, H = 2.2 and using N = 1, we successfully obtained the solution
which has a period T = 6.4943. The computation took about 0.8 seconds, and the
convergence behavior is reported in Table 5.5.

In summary, we have demonstrated that the multiple shooting method presented
is able to solve problems with different values of the index and different structures. The
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tables show that the Gauß–Newton-like method developed has very good convergence
properties. Indeed, for the examples presented they cannot be distinguished from
quadratic convergence.

6. Conclusions. We have presented a multiple shooting approach for the solu-
tion of nonlinear boundary value problems for differential-algebraic systems of
arbitrary index and without special structure requirements. Using a specific Gauß–
Newton-like method for the solution of the nonlinear system of boundary and
continuity conditions we have proved superlinear convergence of the method. We
have implemented the method on the basis of a new general solver for DAEs of arbi-
trary index [13] and demonstrated the numerical properties of the method for several
examples.

Appendix. Proof of Remark 3.2. In the linear case, the derivative array
equations (2.1) have the form

M�(t)

⎡⎢⎣ ẋ
...

x�+1

⎤⎥⎦ = N�(t)x+ g�(t)

with

M� : [t, t] → R
(�+1)n,(�+1)n, N� : [t, t] → R

(�+1)n,n, g� : [t, t] → R
(�+1)n.

Defining

E1(t) = Z1(t)
TM0(t), A1(t) = Z1(t)

TN0(t), f1(t) = Z1(t)
T g0(t),

A2(t) = Z2(t)
TNµ(t), f2(t) = Z2(t)

T gµ(t),

with Z1, Z2 as in the nonlinear case, the given solution x∗ satisfies the linear DAE[
E1(t)

0

]
ẋ =

[
A1(t)
A2(t)

]
x+

[
f1(t)
f2(t)

]
,

which has vanishing strangeness index; see [8, 9]. Following the theory presented
there, pointwise nonsingular (smooth) matrix functions P,Q : [t, t] → R

n,n exist such
that

P (t)

[
E1(t)

0

]
Q(t) =

[
I 0
0 0

]
,

P (t)

[
A1(t)
A2(t)

]
Q(t) − P (t)

[
E1(t)

0

]
Q̇(t) =

[
0 0
0 I

]
,

transforming the DAE to [
I 0
0 0

]
˙̃x =

[
0 0
0 I

]
x̃+

[
f̃1(t)

f̃2(t)

]
with

x(t) = Q(t)x̃(t) = Q(t)

[
x̃1(t)
x̃2(t)

]
,

[
f̃1(t)

f̃2(t)

]
= P (t)

[
f1(t)
f2(t)

]
.
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Hence, all solutions have the form

x(t) = Q(t)

⎡⎢⎣ x̃1(t) +
∫ t
t
f̃1(s) ds

−f̃2(t)

⎤⎥⎦ ,
implying that

Φx,y(x, y) = Q(t)

[
I 0
0 0

] [
Q(t)−1 0

]
.

The equations (3.1) that define S take the form

Mµ(t)ŷ −Nµ(t)x̂− gµ(t) = 0, T2(t)
T (x̂− x) = 0, T1(t)

T (ŷ − y) = 0.

Multiplying the first relation with Z2(t)
T , we obtain

Z2(t)
TNµ(t)x̂ = −Z2(t)

T gµ(t)

and therefore (recalling the definition of A2 and f2)

x̂ =

[
A2(t)
T2(t)

T

]−1 [ −f2(t)
T2(t)

Tx

]
.

A similar argument yields

ŷ =

[
Z ′

2(t)
TMµ(t)

T1(t)
T

]−1 [
Z ′

2(t)
TNµ(t)x̂+ Z ′

2(t)
T gµ(t)

T1(t)
T y

]
.

Altogether, we have

Φx,y(x, y)Sx(x, y) = Q(t)

[
I 0
0 0

]
Q(t)−1

[
A2(t)
T2(t)

T

]−1 [
0

T2(t)
T

]
and therefore

E = CT2(t) +DQ(t)

[
I 0
0 0

]
Q(t)−1

[
A2(t)
T2(t)

T

]−1 [
0
I

]
.

Following [20], the transformation P has the block structure

P (t) =

[
P11(t) P12(t)

0 P22(t)

]
,

where P22 : [t, t] → R
a,a is pointwise nonsingular. Hence,

P22(t)A2(t)Q(t) = [ 0 I ]

and Q(t) has the form

Q(t) = [T2(t)U ∗ ]

with some nonsingular matrix U ∈ R
d,d. In particular,

Q(t)

[
U−1

0

]
= T2(t).
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Defining [C11 C12 ] = CQ(t), [D11 D12 ] = DQ(t), and using[
A2(t)
T2(t)

T

]
T2(t) =

[
0
I

]
,

we find

E = CQ(t)Q(t)−1T2(t) +DQ(t)

[
I 0
0 0

]
Q(t)−1T2(t)

= [ C11 C22 ]

[
U−1

0

]
+ [D11 D22 ]

[
I 0
0 0

] [
U−1

0

]
= (C11 +D11)U

−1.

Thus, E is nonsingular if and only if C11 +D11 is nonsingular.
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Abstract. This paper provides a theoretical analysis of a higher-order, FFT-based integral equa-
tion method introduced recently [IEEE Trans. Antennas and Propagation, 48 (2000), pp. 1862–1864]
for the evaluation of transverse electric–polarized electromagnetic scattering from a bounded, pene-
trable inhomogeneity in two-dimensional space. Roughly speaking, this method is based on Fourier
smoothing of the integral operator and the refractive index n(x). Here we prove that the solu-
tion of the resulting integral equation approximates the solution of the exact integral equation with
higher-order accuracy, even when n(x) is a discontinuous function—as suggested by the numerical
experiments contained in the paper mentioned above. In detail, we relate the convergence rates of
the computed interior and exterior fields to the regularity of the scatterer, and we demonstrate, with
a few numerical examples, that the predicted convergence rates are achieved in practice.
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1. Introduction. Scattering problems find application in a wide range of fields,
including communications, materials science, plasma physics, biology, medicine, radar,
and remote sensing. The evaluation of useful numerical solutions for scattering prob-
lems remains a highly challenging problem, requiring novel mathematical approaches
and powerful computational tools. An integral equation method [7, 8] introduced
recently for the evaluation of time-harmonic, transverse electric (TE)–polarized, elec-
tromagnetic scattering by bounded inhomogeneities in two dimensions has proven
highly competitive with currently available approaches. (Note that there is some am-
biguity in the naming of the polarization [28, p. R5], with some authors referring
to this setting as transverse magnetic (TM)–polarized scattering. To be precise, we
consider the case in which the electric field is parallel to the cylindrical axis of the
scatterer.) In this paper, we provide a theoretical analysis of the higher-order conver-
gence of this approach. More specifically, we prove that the approximating integral
equation used in this method, which is based on Fourier approximation of the integral
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operator, yields higher-order convergence in the L∞-norm even when the refractive
index n(x) is a discontinuous function. Furthermore, we relate the convergence rates
of the computed interior and exterior fields to the regularity of the scatterer, and we
demonstrate, with a few numerical examples, that the predicted convergence rates are
achieved in practice.

Given an incident field ui, we denote by u the total electric field—which equals
the sum of ui and the resulting scattered field us:

u = ui + us.(1.1)

Calling λ the wavelength of the incident field and κ = 2π
λ the wavenumber, the total

field u satisfies [9, p. 2]

∆u+ κ2n2(x)u = 0, x ∈ R
3,(1.2)

where the given incident field ui is assumed to satisfy

∆ui + κ2ui = 0, x ∈ R
3.(1.3)

Finally, to guarantee that the scattered wave is outgoing, us is required to satisfy the
Sommerfeld radiation condition [9, p. 67]

lim
r→∞

√
r

(
∂us

∂r
− iκus

)
= 0.(1.4)

The algorithms available for computing solutions to this problem fall into two
broad classes: (1) finite element and finite difference methods and (2) integral equa-
tion methods. Use of finite element and finite difference methods can be advantageous
in that, unlike other methods, they lead to sparse linear systems. Their primary dis-
advantage, on the other hand, lies in the fact that in order to satisfy the Sommerfeld
radiation condition (1.4), a relatively large computational domain containing the scat-
terer must be used, together with appropriate absorbing boundary conditions on the
boundary of the computational domain (see, for example, [10, 17, 18, 26, 32]). Thus,
these procedures give rise to very large numbers of unknowns and, thus, to very large
linear systems.

A second class of algorithms is based on the use of integral equations. An ap-
propriate integral formulation for our two-dimensional TE problem is given by the
Lippmann–Schwinger integral equation [9, p. 214], [24],

u(x) = ui(x) − κ2

∫
g(x− y)m(y)u(y)dy,(1.5)

where g(x) = i
4H

1
0 (κ|x|) is the fundamental solution of the Helmholtz equation in two

dimensions and m is the compactly supported function m = 1− n2. Integral equation
approaches are advantageous in a number of ways: they require only discretization
of the equation on the scatterer itself, and the solutions they produce satisfy the ra-
diation condition at infinity automatically. Direct use of integral equation methods
is costly, however, since they lead to dense linear systems: a straightforward com-
putation of the required convolution requires O(N2) operations per iteration of an
iterative linear solver. As mentioned above, however, the higher-order integral method
that we analyze in this paper, in which the complexity of the convolution evaluation
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is reduced to O(N logN) operations per iteration, is highly competitive with finite
element or finite difference approaches.

Fast solvers for (1.5), based on the fast Fourier transform (FFT), have been avail-
able for some time [3, 31, 33]. In these solvers, the convolution with the fundamental
solution is computed via Fourier transforms, which can, in turn, be evaluated with
low complexity by means of FFTs. These methods do give rise to a reduced complex-
ity for a given discretization but, unfortunately, they are only first-order accurate for
discontinuous scatterers. Low-order accuracy results since, for a general nonsmooth
and/or nonperiodic function, the FFT provides a poor approximation to the Fourier
transform. Our approach also uses FFTs to achieve a reduced complexity but, unlike
previous FFT methods, it yields, in addition, higher-order accuracy.

Despite the significant advantages exhibited by higher-order methods over their
low-order counterparts (see, for example, Appendix B), only limited attempts have
been made to develop higher-order methods for the problem under consideration. A
higher-order method was proposed in [23] on the basis of a locally corrected Nyström
discretization; the complexity of this method, however, is O(N2), where N is the total
number of unknowns used.

In [27], Vainikko presents two O(N logN) methods for solving (1.5). The first
applies to m in the Sobolev space Wµ,2 and yields O(hµ) L2-convergence in the
near and the far fields. We instead consider piecewise-smooth m ∈ Ck,α (which are
arguably the appropriate spaces for scatterers arising in practice). (For the precise
definition of the function spaces that we consider, see Definitions 2.4 and 2.5.) In
comparing Vainikko’s approach with our method, note that a piecewise-smooth m ∈
C0,α which does not belong to C1 can, at best, belong to W 2,2 [22, p. 197], [11, p. 194],
for which Vainikko’s method predicts O(h2) L∞-convergence in both the near and the
far field. Our method, on the other hand, achieves O(h3) and O(h5) L∞-convergence
in the near and far fields, respectively (see section 3.2 for our convergence results).
More generally, a piecewise-smooth m ∈ Ck,α for k ≥ 1 which does not belong to
Ck+1 can, at best, belong to W k+2,2, for which Vainikko’s result predicts O(hk+2)
L∞-convergence in both the near and far field, whereas our method achieves O(hk+3)
L∞-convergence in the near field and O(hk+6) L∞-convergence in the far field.

The second method proposed in [27] applies to piecewise-smooth (possibly dis-
continuous) m and yields O(h2(1+ | log h|)) L∞-convergence in the near and far fields.
(This method requires evaluation of the volume fraction of each discretization cell on
each side of a discontinuity in m = 1 − n2.) For such inhomogeneities, our method
yields O(h2) and O(h3) L∞-convergence in the near and far fields, respectively. Thus,
our approach, which applies to smooth as well as discontinuous refractive indices, is
both fast—it runs in O(N logN) operations—and higher-order accurate, substantially
exceeding the convergence rates of Vainikko’s approach, especially in the far field.

Our method is based on recasting the last term of the integral equation (1.5) by
means of the polar coordinate form

(Ku)(a, φ) = −κ2

∫
g(a, φ; r, θ)m(r, θ)u(r, θ)r dr dθ.(1.6)

An approximate integral equation is obtained from (1.6) by replacing the kernel g
by a truncation of its Fourier representation with respect to its angular variables—
which, as is known, is given by the addition theorem for the Hankel function; see
section 2. As we show in this paper, the solution of this approximate integral equation
approximates the solution of the exact integral equation with higher-order accuracy,
even for discontinuous functions n(x).
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The higher-order convergence of this method relies on the following important
fact: although the Fourier representation of the fundamental solution converges slowly,
the resulting Fourier representation of the integral converges rapidly; clearly, such ac-
curacy improvements for integrated quantities can only occur through a process of
error cancellation. In this paper, we prove that this approach does indeed yield
higher-order convergence (at least third-order in the exterior field) even in the case
of discontinuous inhomogeneities. More precisely, we derive bounds on the conver-
gence rates for the interior and exterior fields as they depend on the regularity of the
scatterer (see Theorem 3.5 and Corollaries 3.9 and 3.10).

Our present analysis considers neither a specific numerical discretization for the
radial integration nor the method used to solve the resulting linear system. Here
we focus instead on the exact solution of the approximate integral equation resulting
from the polar Fourier approximation of the fundamental solution, as described briefly
above and in detail in section 2; this exact solution of the approximate equation is
to be viewed as an approximate solution of the exact equation (1.5). The details
of the complete numerical implementation are given in their original form in [7, 8]
as well as in the more recent presentations [5, 14], which contain several significant
improvements.

As discussed in section 4, our approximate integral formulation allows us to re-
place the (possibly discontinuous) function n in polar coordinates by its truncated
Fourier series of certain orders without introducing additional errors. This fact al-
lows us to compute the corresponding angular integrals exactly by means of FFTs.
(In [14, 15, 16], similar ideas are used in the construction of a fast, higher-order method
for the Helmholtz equation in three dimensions.) To conclude this paper we present a
number of computational examples that demonstrate that the predicted convergence
rates are achieved in practice.

(Note that a direct application of the methods presented in this paper to dis-
continuous scatterers for either TM or three-dimensional electromagnetic scattering
would yield rates of convergence lower than those for the TE case considered here—
since in such cases the normal derivatives of the solution are not continuous across
surfaces of discontinuity of the refractive index. As shown in [6], however, the conver-
gence rates of our method for all of these problems—TE, TM, and three-dimensional
electromagnetic scattering—can be improved significantly by appropriate treatment
of thin volumetric regions around surfaces where either discontinuities or reduced
regularity of the refractive index occur.)

2. An approximate integral equation. As mentioned in the introduction, our
approach produces numerical solutions of (1.5) through consideration of a sequence of
approximate integral equations, which result as the fundamental solution is replaced
by a truncated Fourier series in an angular variable. In this section we describe our
approximate integral equations, and we show that (1) they admit unique solutions
and (2) the inverse operators for the approximate problems are uniformly bounded.

To introduce our approximate integral equations we begin by recalling an addition
theorem: using polar coordinates x = aeiφ and y = reiθ, the addition theorem for the
Hankel function reads [9, p. 67]

H1
0 (κ|aeiφ − reiθ|) =

∞∑
�=−∞

J�(a, r)ei�(φ−θ),
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where, calling J� and H1
� the Bessel and Hankel functions of order �, we have denoted

J�(a, r) = H1
� (κmax(a, r)) J�(κmin(a, r)).(2.1)

This identity allows us to obtain another expression for the integral operator K of
(1.5),

(Ku)(a, φ) = − iκ
2

4

∫
H1

0 (κ|x− y|)m(y)u(y)dy =

∞∑
�=−∞

(K�u)(a)e
i�φ,

where, using an annular region R0 ≤ a ≤ R1 containing the support of m, we have
set

(K�u)(a) = − iκ
2

4

∫ R1

R0

J�(a, r)
[∫ 2π

0

m(r, θ)u(r, θ)e−i�θdθ
]
r dr.(2.2)

Truncating this Fourier series as well as the corresponding Fourier series for the inci-
dent field, we obtain the approximate integral equation

v(a, φ) = ui,M (a, φ) + (KMv)(a, φ),(2.3)

where

ui,M (a, φ) =

M∑
�=−M

ui�(a)e
i�φ,(2.4)

(KMv)(a, φ) =

M∑
�=−M

(K�v)(a)e
i�φ.(2.5)

Here and throughout this paper we use a superscript M to denote the truncated
Fourier series of order M of a given function.

Decomposing (2.3) into Fourier modes, we observe that a solution of this equation
must satisfy

v�(a) =

{
ui�(a) + (K�v)(a) for |�| ≤M,

0 for |�| > M.
(2.6)

Hence,

v(a, φ) = vM (a, φ)

and solving (2.3) is equivalent to solving the following system of one-dimensional
integral equations:

v�(a) − (K�v
M )(a) = ui�(a), � = −M, . . . ,M.(2.7)

To prove existence and uniqueness for this approximate integral equation, we make
use of the following technical lemma.

Lemma 2.1. There exists a constant C > 0 depending only on R0, R1, and κ
such that ∥∥∥∥∥

∫ R1

R0

|J�(a, r)|r dr
∥∥∥∥∥
∞

≤ C

�2
,



HIGHER-ORDER FOURIER APPROXIMATION IN SCATTERING 2303

where J�(a, r) is defined in (2.1).
This result, which is proven in Appendix A, allows us to establish the following

lemma. (Note: In the bound above and in all similar bounds in this paper, we abuse
the notation slightly for � = 0, in which case the expression on the left-hand side is
assumed to be bounded.)

Lemma 2.2. For any m ∈ L∞,

‖K −KM‖∞ → 0

as M → ∞, where the operator norm is the one induced by the L∞-norm.
Proof. Let u ∈ L∞. Then∫ 2π

0

|m(r, θ)u(r, θ)e−i�θ|dθ ≤ 2π‖m‖∞‖u‖∞.

Hence, for M ≥ 0,

‖(K −KM )u‖∞ ≤ πκ2

2
‖m‖∞‖u‖∞

∑
|�|>M

∥∥∥∥∥
∫ R1

R0

|J�(a, r)|r dr
∥∥∥∥∥
∞

= O
⎛⎝ ∑

|�|>M

1

�2

⎞⎠ ‖u‖∞

= O(M−1)‖u‖∞.
Therefore, ‖K −KM‖∞ = O(M−1) → 0 as M → ∞.

Remark 2.3. The following proof of the existence and uniform boundedness of
(I−KM )−1 depends crucially on the existence and boundedness of (I−K)−1. By the
Riesz–Fredholm theory (see, for example, [20, p. 29]), since K is a compact operator
on L∞, (I −K)−1 exists and is bounded if I −K is injective. The injectivity of this
operator is equivalent to the uniqueness of solutions of the corresponding Helmholtz
equation (1.2). The uniqueness result relevant for our setting follows from correspond-
ing (more general) results for acoustic scattering proved in [30] under assumptions that
we state more precisely below with the help of the following definitions.

Definition 2.4. Given a compact set D ⊂ R
n, we say that a function f has

piecewise continuous derivatives of order k on D, denoted by f ∈ Ckpw(D), if and only
if there exist a finite number of open, disjoint subsets of D, denoted by D1, D2, . . . , Dp,
such that D =

⋃p
i=1Di and there exist functions fi ∈ Ck(Di) such that f |Di = fi|Di .

In an entirely analogous fashion we define spaces of functions with piecewise-Hölder
continuous derivatives of order k on D, denoted by Ck,αpw (D).

Definition 2.5. We say that the scattering inhomogeneity m belongs to M
if and only if (1) m ∈ C0,α

pw (D) for some compact set D that properly contains the
support of m and (2) each of the corresponding subsets D1, D2, . . . , Dp, as defined in
Definition 2.4, has a Lipschitz boundary.

Remark 2.6. With these definitions, we can state the unique solvability result
for (1.5), which is based on the uniqueness result of [30], more precisely: I−K admits
a bounded inverse on L∞ for each m ∈ M. Hence, throughout this paper, we will
assume that m ∈ M. Note that the uniqueness result of [30] makes use of a unique
continuation result due to Heinz [13], which assumes C1 boundary regularity of the
subsets Di defined above. However, more recent unique continuation results make
much weaker assumptions (see [19] and the references therein) and hence allow us
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to relax the C1 regularity assumption to Lipschitz regularity (which suffices to allow
integration by parts in obtaining the appropriate weak formulation).

We can now establish the following theorem.
Theorem 2.7. Given m ∈ M, for M sufficiently large the operators (I−KM )−1

exist on L∞ and are uniformly bounded. Thus, given any incident field ui, (2.3)
admits a unique solution v ∈ L∞ for all M sufficiently large.

Proof. Since, by the discussion above, I −K has a bounded inverse, Lemma 2.2
and [20, Theorem 10.1, p. 142] imply that for all sufficiently large M the inverse
operators (I −KM )−1 exist and are uniformly bounded.

3. Error bounds. The approximate integral equation (2.3) was obtained by
truncating the Fourier series of both the incident field ui and the integral operator
K at each radius; as mentioned above, the exact solution v of this approximate
equation is to be viewed as an approximate solution of the exact equation (1.5). As
it happens, the function v is a higher-order approximation of the exact solution u of
(1.5). Roughly speaking, this result follows from the fact that the integral operator
Ku and the incident field ui are smooth and periodic functions of the angular variable,
which are thus approximated to higher-order by their truncated Fourier series.

In this section we derive bounds on the error implicit in the approximation of u
by v. Of course the full numerical implementation of the method introduces additional
errors (e.g., errors arising from radial numerical quadratures), but here we study the
accuracy with which v approximates the exact solution u only. Higher-order methods
for computing the required radial integrals are discussed in [5, 7, 8, 14].

3.1. Error in approximated Fourier modes. The error in the solution vM

of the approximate integral equation (2.3) at a point x = (a, φ) ∈ R
2 is given by

|u(x) − vM (x)| ≤ |(u− uM )(x)| + |uM (x) − vM (x)|,(3.1)

where (u− uM ) is the “tail” of the Fourier series of u,

(u− uM )(a, φ) =
∑

|�|>M
u�(a)e

i�φ.

In this section, we derive a bound on the second term on the right-hand side of (3.1).
Subtracting the identities (see (2.6))

uM = ui,M +KMu,

vM = ui,M +KMvM ,

we obtain

uM − vM = KM (u− vM )

= KM (uM − vM ) +KM (u− uM ).

In view of Theorem 2.7 and calling

εM = ‖uM − vM‖∞,(3.2)

we obtain

εM ≤ B‖KM (u− uM )‖∞
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for sufficiently large M , where B is a uniform bound on ‖(I −KM )−1‖.
To bound KM (u− uM ), we note that

‖KM (u− uM )‖∞ ≤
M∑

�=−M
‖K�(u− uM )‖∞

and ∫ 2π

0

m(r, θ)(u− uM )(r, θ)e−i�θdθ = 2π
∑

|j|>M
m�−j(r)uj(r).

Therefore, by Lemma 2.1,

‖K�(u− uM )‖∞ ≤ C

�2

∑
|j|>M

‖m�−j‖∞‖uj‖∞.(3.3)

We will bound this expression through consideration of bounds on the Fourier
coefficients of m and u. To this end, we make use of the following lemma, which is
a slight variation of a classical result [34, pp. 48, 71] and can be proved by multiple
integrations by parts.

Lemma 3.1. If g is a 2π-periodic function such that g ∈ Ck([0, 2π]) with g(n)(0) =
g(n)(2π) for n = 0, . . . , k, and g(k+1) is of bounded variation, then the Fourier coef-
ficients c� of g satisfy |c�| ≤ C|�|−(k+2) for some constant C. If g(1) is of bounded
variation on [0, 2π], then |c�| ≤ C|�|−1.

The following useful theorem describes the dependence of the regularity of u on
the regularity of m. Variations on the results for the Newtonian potential (see [2,
p. 223], [11, pp. 78–80], and [12, pp. 53, 56]) give us the following result.

Theorem 3.2. Let D be an open set which properly contains the compact support
of m ∈ M, and let u be the solution of (1.5) on D for a given incident field ui. Then
u ∈ C1,α(D). Furthermore, if Ω is an open subset of D and m ∈ Ck,α(Ω), then
u ∈ Ck+2,α(Ω).

Remark 3.3. Since Ω is an arbitrary bounded, open set, this theorem relates the
local regularity of u to the local regularity of m.

To bound the discrete convolution in (3.3) we also need results on the decay rates
of the Fourier coefficients of m and u.

Lemma 3.4. Let m ∈ M. Define the annular region A = {(a, φ) : 0 ≤ R0 ≤ a ≤
R1} such that A properly contains the support of m. If m ∈ Ck,α(A) ∩ Ck+2

pw (A) for
k ≥ 0, then the Fourier coefficients of the total field u satisfy

‖u�‖∞ ≤ C

|�|k+4
.

If m ∈ C1
pw(A), then the Fourier coefficients of the total field u satisfy

‖u�‖∞ ≤ C

|�|3 .

Proof. From (2.2), we see that the coefficients in the Fourier series representation
of (1.5) are given by

u�(a) = ui�(a) −
iπκ2

2

∫ R1

R0

J�(a, r)(mu)�(r)r dr.
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Since m ∈ Ck,α(A) ∩ Ck+2
pw (A), Theorem 3.2 implies that u ∈ Ck+2,α(A) and hence,

mu ∈ Ck,α(A) ∩ Ck+2
pw (A). Therefore, by Lemma 3.1, the Fourier coefficients of mu

satisfy

‖(mu)�‖∞ ≤ C1

|�|k+2
.

Again by Theorem 3.2, since ui solves the homogeneous Helmholtz equation (1.3),
ui ∈ C∞(R2). Thus, the Fourier coefficients ui� decay faster than |�|−p for any positive
integer p as �→ ∞. Therefore, by Lemma 2.1, we obtain

‖u�‖∞ ≤ C2

�2
C1

|�|k+2

≤ C

|�|k+4
.

The proof for m ∈ C1
pw is similar.

We can now establish the main result of this paper.
Theorem 3.5. Let m ∈ M. Define the annular region A = {(a, φ) : 0 ≤ R0 ≤

a ≤ R1} such that A properly contains the support of m.
If m ∈ C1

pw(A), then as M → ∞

εM = ‖uM − vM‖ ≤ B‖KM (u− uM )‖ = O
(

1

M3

)
.

If m ∈ C0,α(A) ∩ C2
pw(A), then as M → ∞

εM = O
(

1

M5

)
.

If m ∈ Ck,α(A) ∩ Ck+2
pw (A) for k ≥ 1, then as M → ∞

εM = O
(

1

Mk+6

)
.

Proof. We seek a bound on ‖KM (u − uM )‖∞ ≤ ∑M
�=−M ‖K�(u − uM )‖∞. By

Lemma 3.4, we obtain

‖K�(u− uM )‖∞ ≤ C1

�2

∑
|j|>M

1

|�− j|k+2

1

|j|k+4

=
C1

�2

∑
j>M

1

jk+4

(
1

(j − �)k+2
+

1

(j + �)k+2

)
≤ 2C1

�2

∑
j>M

1

jk+4

1

(j − |�|)k+2

for � = −M, . . . ,M . This expression also holds for m ∈ C1,α
pw (A) with k = −1.

Clearly, it suffices to bound ‖K�(u− uM )‖∞ for � = 0, . . . ,M .
Thus, for k ≥ 0, we obtain∑

j>M

1

jk+4

1

(j − �)k+2
≤ 1

Mk+4

C2

(M + 1 − �)k+1
.
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For k = −1(m ∈ C1,α
pw (A)), on the other hand, we find that

∑
j>M

1

j3
1

j − �
≤ 1

M2

1

�

∑
j>M

(
1

j − �
− 1

j

)

≤ 1

M2

C3

�
log

(
M + 1

M + 1 − �

)
≤ 1

M2

C3

M + 1 − �
,

since log x ≤ x− 1 for x > 0.
To obtain the final result, it suffices to consider sums of the following form:

M∑
�=1

1

�2
1

(M + 1 − �)p

for p = 1, 2, . . . . First, for p ≥ 2,

M∑
�=1

1

�2
1

(M + 1 − �)p
≤

M∑
�=1

1

�2
1

(M + 1 − �)2

≤ 2

�M
2 �∑
�=1

1

�2
1

(M + 1 − �)2

= O
(

1

M2

)
as M → ∞. Finally, for p = 1, we obtain

M∑
�=1

1

�2
1

M + 1 − �
=

�M
2 �∑
�=1

1

�2
1

M + 1 − �
+

M∑
�=�M

2 �+1

1

�2
1

M + 1 − �

= O
(

1

M

)
+ O

(
logM

M2

)
= O

(
1

M

)
as M → ∞. Combining these results, the theorem follows.

Remark 3.6. Of course, there are many other conditions on m for which the
corresponding convergence rates could be determined; for instance, one might remove
the requirement of Hölder continuity. In every case, the convergence rates are directly
determined by the rate of decay of the Fourier coefficients of m and u. We do not
attempt to provide a comprehensive listing of all possible regularity conditions and
their corresponding convergence rates.

Remark 3.7. Numerical experiments indicate that the bounds of Theorem 3.5
are tight. The resulting convergence rates depend on k in a particularly interesting
way. As we have shown, the method exhibits third-order convergence for m ∈ C1

pw(A),
fifth-order convergence for m ∈ C0,α(A)∩C2

pw(A), and seventh-order convergence for
m ∈ C1,α(A) ∩ C3

pw(A). This rather interesting and unexpected k-dependence of the
convergence rates is observed in the numerical examples of section 5.
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3.2. Total error in the interior and exterior fields. Up to this point, we
have computed only convergence rates for the approximated modes, i.e., the modes
of order � with |�| ≤ M . Given these convergence rates, we can now easily estimate
the total error. We make a distinction here between two types of error: the interior
field error (the error on the domain of integration A = {(a, φ) : 0 ≤ R0 ≤ a ≤ R1})
and the exterior field error (the error outside of A). The interior field error is simply
the difference between the true solution u(x) and the solution vM (x) of (2.3) on A.
Clearly, on A we have

‖u− vM‖∞ ≤ ‖uM − vM‖∞ + ‖u− uM‖∞
≤ εM + τM ,

where εM is defined in (3.2) and τM = ‖u− uM‖∞.
Remark 3.8. Note that the decay rate of (u − uM )(x0) for a particular point

x0 ∈ A, as opposed to the maximum error in all of A, depends on the regularity of m
in a neighborhood of the circle with radius r0 = |x0| centered at the origin. Hence, in
general, the convergence rate of vM (x0) to u(x0) may vary with the choice of x0 ∈ A.
In particular, the regularity of m in a neighborhood of the circle with radius r0 = |x0|
centered at the origin determines the regularity of u in that neighborhood and hence
also determines the decay rate of the Fourier coefficients u�(r0). This decay rate in
turn determines whether εM or (u − uM )(x0) dominates the convergence rate. The
pointwise convergence rate is of limited usefulness, however; the following corollary to
Theorem 3.5 provides a bound on the maximum error in the computed interior field.

Corollary 3.9 (interior field error). If m ∈ Ck,α(A) ∩ Ck+2
pw (A), then the

interior field error is given by

‖u− vM‖∞ = O
(

1

Mk+3

)
.

This result holds with k = −1 for m ∈ C1
pw(A).

Proof. By Lemma 3.4,

τM =
∑
�>M

C

�k+4
= O

(
1

Mk+3

)
as M → ∞. Clearly, by Theorem 3.5, τM dominates εM for every k. The proof for
m ∈ C1

pw(A) is similar.
Before discussing convergence rates in the exterior field, we describe how to extend

the approximate solution vM , which we have computed only on the interior of A, to
the exterior field. Since the integration in (1.5) is performed only over the support of
m, one can easily see that, given the solution u on the boundary of A, the solution
in the rest of R

2 can be computed simply by an appropriate scaling of the Fourier
modes of us on the (circular) inner and outer boundaries of A at radii R0 and R1,
respectively. More precisely, we find that

us�(a) =

⎧⎪⎪⎨⎪⎪⎩
J�(κa)

J�(κR0)
us�(R0) if 0 ≤ a < R0,

H1
� (κa)

H1
� (κR1)

us�(R1) if a > R1.

(3.4)

Our approximate solution vM is extended to the exterior of A by the same procedure.
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Corollary 3.10 (exterior field error). Let m ∈ M. Given x0 /∈ A, extend the
approximate solution vM to the exterior of A by means of (3.4) above. More precisely,
for � = −M, . . . ,M , let r0 = |x0| and define

v�(r0) = ui�(r0) +

⎧⎪⎪⎨⎪⎪⎩
J�(κr0)

J�(κR0)
[v�(R0) − ui�(R0)] if 0 ≤ r0 < R0,

H1
� (κr0)

H1
� (κR1)

[v�(R1) − ui�(R1)] if r0 > R1.

(Note: If R0 = 0, then the integration domain is a disc and, hence, only the part of
the equation above corresponding to r0 > R1 applies.) Then, the exterior field error
at x0 /∈ A is given by

|u(x0) − vM (x0)| = O(εM )

as M → ∞, where εM , defined in (3.2), has bounds given by Theorem 3.5.
Proof. Assume that r0 > R1; the proof for 0 ≤ r0 < R0 is similar. Defining the

scaling factors β�(r0) at radius r0 by

β�(r0) =
H1
� (κr0)

H1
� (κR1)

,(3.5)

we have

|u(x0) − vM (x0)| ≤
M∑

�=−M
|β�(r0)| |u�(R1) − v�(R1)| + |(u− uM )(x0)|

≤ εM

M∑
�=−M

|β�(r0)| + |(u− uM )(x0)|.

As before, let S denote the circle of radius r0 about the origin. Since r0 = |x0| >
R1, there exists a neighborhood N(S) of S such that m|N(S) = 0. Therefore, u ∈
C∞(N(S)) and |(u − uM )(x0)| ≤ C

Mp for any integer p > 0. This implies that
|(u− uM )(x0)| is always dominated by εM .

Since the Hankel function H1
� (z) = J�(z) + i Y�(z), where Y�(z) is the Neumann

function of order �, we complete the proof by using the asymptotic expressions for J�
and Y� [1, p. 365] for fixed z and as �→ ∞ through positive real values,

J�(z) ∼ 1√
2π�

(ez
2�

)�
,

Y�(z) ∼ −
√

2

π�

(ez
2�

)−�
.

Therefore, from these asymptotic expressions and from (3.5), we obtain

|β�(r0)|2 =

∣∣∣∣ Y�(κr0)Y�(κR1)

∣∣∣∣2 1 +
∣∣∣ J�(κr0)Y�(κr0)

∣∣∣2
1 +

∣∣∣ J�(κR1)
Y�(κR1)

∣∣∣2
∼
(
R1

r0

)2�
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as �→ ∞. This implies that |β�(r0)| is summable. We conclude that as M → ∞

|u(x0) − vM (x0)| = O(εM ).

Note that while u ∈ C∞ on the exterior of A, this function may be much less
regular on the interior of A (in general, u ∈ C1,α for m ∈ M). Hence, the decay of
u−uM on the exterior of A is superalgebraic, whereas u−uM may decay as slowly as
O(M−2) on the interior of A. This fact is responsible for the interesting result that
the method converges more rapidly on the exterior of A than on the interior (where
u− uM may dominate εM ).

These remarks are particularly relevant in the evaluation of radar cross sections,
an important measure in many applications. The evaluation of radar cross sections
requires the computation of the far field. Although Corollary 3.10 does not directly
address the error in the far field, we obtain an approximate far field by a scaling of
the Fourier modes of vM just as in the computation of the exterior field. As in [4, p.
6], we define the far field, u∞, by the asymptotic representation of the scattered field
as r → ∞, i.e.,

us(r, φ) = ei(κr−
π
4 )

√
2

πκr
[u∞(φ) + O(r−1)].

From (3.4) and the asymptotic expression for H1
� (z) for fixed � as z → ∞ [1, p. 364],

we obtain the Fourier modes of u∞ by a simple scaling of the Fourier modes of us:

(u∞)� =
us�(R1)

i�H1
� (κR1)

.

If we define the approximate far field v∞ in the same way, we can prove that

‖u∞ − v∞‖ = O(εM )

as M → ∞. The proof of this fact is nearly identical to that of Corollary 3.10.

The predicted convergence rates in both the interior field and the far field are
verified through several computational examples in section 5.

4. Computation of the angular integral. We have proven that the solution
to the approximate integral equation (2.3) provides a higher-order approximation to
the solution of the exact integral equation (1.5) for the scattering problem. However,
to this point, we have not discussed any methods for computing the required angular
and radial integrals. This paper primarily addresses the theoretical aspects of the
method; for a discussion of a particular efficient, higher-order radial integrator, we
refer to [5, 7, 8, 14]. On the other hand, with regards to the angular integrals, we
show below that the Fourier coefficients of m(r, θ)vM (r, θ) can be computed efficiently
and exactly (except for roundoff) by means of FFTs.

The required angular integrals are given by

I�(r) =

∫ 2π

0

m(r, θ)vM (r, θ)e−i�θdθ,(4.1)

where vM solves the approximate integral equation (2.3). We can express this integral
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in terms of the Fourier coefficients of m and v, i.e.,

I�(r) =

∫ 2π

0

⎛⎝ ∞∑
j=−∞

mj(r)e
ijθ

⎞⎠⎛⎝ M∑
k=−M

vk(r)e
ikθ

⎞⎠ e−i�θdθ

(4.2)

= 2π

M∑
k=−M

m�−k(r)vk(r),

where � = −M, . . . ,M . Hence, we obtain a finite discrete convolution of Fourier
coefficients ofm and v at each radius; since |�| ≤M and |k| ≤M , we have |�−k| ≤ 2M .
Thus, as stated above, given the Fourier coefficients m�(r) for |�| ≤ 2M , we can
compute the required angular integrals exactly. Furthermore, as is well known, such
discrete convolutions may be evaluated (with no discretization error) with the help of
FFTs [25, pp. 531–537] so that the computational cost at each radius is of the order
of M logM .

This method of computing the angular integrals has an interesting implication
concerning the dependence of the solution u on the inhomogeneity m. Indeed, since
the computation involves only modes m�, |�| ≤ 2M , replacing m with m2M in the
integral equation yields no additional error, i.e.,

I�(r) =

∫ 2π

0

m2M (r, θ)vM (r, θ)e−i�θdθ.(4.3)

Hence, in a sense, the truncation of the Fourier series of the integral operator implies
an associated truncation of the Fourier series of the refractive index—as a result
of the band-limited nature of the solution vM . Thus, surprisingly, the low-order
approximation of a discontinuous refractive index at each radius by its truncated
Fourier series yields no additional error beyond that of our original, higher-order
truncation of the Fourier series of K. This points to the interesting cancellation
of errors phenomenon mentioned briefly in the introduction: the large errors in the
Fourier approximation of the refractive index cancel in the discrete integration process
yielding small errors—high-order accurate approximations—in the evaluation of I�(r).

Note that the discrete-convolution approach to the evaluation of I�(r) (� =
−M, . . . ,M) is equivalent to trapezoidal rule integration of (4.3) with a sufficiently
large number of integration points Nθ. This follows from the fact that the trape-
zoidal rule with Nθ points on the interval [0, 2π] integrates the Fourier modes eikθ for

|k| < Nθ exactly: using Nθ points in the trapezoidal rule to approximate
∫ 2π

0
eikθdθ,

we obtain

2π

Nθ

Nθ−1∑
j=0

e2πijk/Nθ =

{
2π if k = pNθ for p ∈ Z,

0 otherwise.

Therefore, since the largest mode in the integrand of (4.3) is 2M+M+M = 4M , if we
choose Nθ = cM , where c > 4, the trapezoidal rule computes (4.3) exactly (except for
roundoff) and the use of FFTs yields a complexity of O(M logM). Algorithmically,
this is entirely equivalent to computing the discrete convolution (4.2) using FFTs.

5. Computational examples. In this section, we illustrate the performance
of the two-dimensional algorithm for a variety of scattering configurations. We first
study the convergence of the method for two scatterers for which analytical solutions
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are known. We then verify that the algorithm achieves the predicted convergence
rates for three scatterers of varying degrees of regularity.

In each case, we compute the near and far fields produced under plane wave
incidence, ui(x, y) = eiκx. To compute the maximum error in the near field, we
evaluate the solution computed by our method on an evenly spaced polar grid. On this
grid, we evaluate the maximum absolute error as compared with either the analytical
solution (when it is available) or the solution computed with a finer discretization.
The maximum error in the far field is computed similarly by interpolating to an evenly
spaced angular grid.

The results for each example are given in the accompanying figures and tables.
The figures include visualizations of −m(x) = n2(x) − 1 and the computed near
field intensity, |vM |2. The tables provide values for the number of modes M in the
approximate solution vM , the wall-clock time required, and the maximum absolute
errors in the near and far field denoted by εnfu and εffu , respectively. Additionally,
the ratios of the errors at successive levels of discretization are listed to illustrate the
convergence rates. For some discretizations, the accuracy in the computed solution has
reached either machine-precision accuracy (actually just less than machine precision
due to round-off errors), the accuracy of the radial integration, or the tolerance of the
linear solver. In such a case, we observe no improvement in the error of the solution
as we refine the discretization and hence, to indicate a converged solution, we write
“Conv.” in the ratio column.

Our main goal in this section is to verify the convergence rates established in
Theorem 3.5 and Corollaries 3.9 and 3.10. Hence, in this section, we are primar-
ily concerned with the convergence in the number of Fourier modes M , rather than
the convergence in the number of radial points. We also seek to demonstrate the
O(M logM) complexity of the angular integration method. We therefore fix the
number of radial points at a sufficiently large value and we hold the number of it-
erations of the linear solver (GMRES) fixed at a value that produces a sufficiently
accurate solution of the linear system. This isolates the dependence of the times and
errors on M and allows us to confirm the computational complexity and the predicted
convergence rates. All of these results were computed using a 700 MHz Pentium III
Xeon workstation.

We first compute the scattering by two obstacles for which an analytical solution
is known: (1) a cylindrically symmetric scatterer centered at the origin with piecewise-
constant refractive index and (2) a disc centered at (1λ, 0) with constant refractive
index.

The results for the first example are presented in Figure 5.1 and Table 5.1. Here
the inner disc has a radius equal to 1λ and a refractive index n = 2; the outer annulus
has an outer radius of 2λ and a refractive index n = 3. Thus, this scatterer has a
diameter of 10 interior wavelengths. (Perhaps the best indication of the difficulty of a
scattering problem is given by the size of the scatterer in terms of interior wavelengths,
since the numerical method must resolve these wavelengths to provide any accuracy.)
One may also observe that the method obtains an exponential convergence rate. This
occurs despite the discontinuity in the refractive index because, at each radius, the
refractive index is a C∞ function of the angular variable. Finally, we observe that the
time required is consistent with an O(M logM) complexity.

The results for the second example are presented in Figure 5.2 and Table 5.2. Here
the disc is centered at (1λ, 0) and has a diameter of 1λ and a refractive index n =

√
2.

Thus, it has a diameter of
√

2 interior wavelengths. As opposed to the previous
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(a) Scatterer (−m = n2 − 1) (b) Near Field Intensity (|u|2)
Fig. 5.1. Visualizations for a radially layered scatterer. Diameter = 10 interior wavelengths.

Table 5.1

Convergence rate for a radially layered scatterer. Diameter = 10 interior wavelengths.

M Time εnf
u Ratio εffu Ratio

15 3.05s 8.50e-2 4.28e-2

30 3.83s 1.13e-9 7.52e+7 5.46e-13 7.83e+10

60 5.46s 1.68e-12 6.73e+2 4.97e-13 Conv.

(a) Scatterer (−m = n2 − 1) (b) Near Field Intensity (|u|2)
Fig. 5.2. Visualizations for an off-center disc. Diameter =

√
2 interior wavelengths.

Table 5.2

Convergence for an off-center disc. Diameter =
√

2 interior wavelengths.

M Time εnf
u Ratio εffu Ratio

15 7s 6.22e-2

30 13s 5.95e-3 10.45 1.58e-3 18.80

60 25s 1.13e-3 5.27 1.83e-4 8.63

120 49s 2.83e-4 3.99 2.27e-5 8.06

240 99s 5.99e-5 4.72 2.84e-6 7.99

480 194s 6.65e-6 9.01 3.56e-7 7.98

960 386s 1.99e-6 3.34 4.42e-8 8.05

1920 808s 2.75e-7 7.24 4.21e-9 10.50

example, however, we do not observe an exponential rate of convergence despite the
fact that the disc has a constant refractive index. Since the disc is not centered at
the origin, the refractive index at each radius is actually a discontinuous function of
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(a) Scatterer (−m = n2 − 1) (b) Near Field Intensity (|u|2)
Fig. 5.3. Visualizations for a discontinuous scatterer. Annulus thickness ≈ 4.33 interior

wavelengths.

Table 5.3

Convergence rate for a discontinuous scatterer. Annulus thickness ≈ 4.33 interior wavelengths.

M Time εnf
u Ratio εffu Ratio

60 27s 3.24e-2 2.07e-2

120 52s 4.69e-3 6.91 1.95e-3 10.62

240 109s 6.23e-4 7.53 2.32e-4 8.41

480 228s 9.71e-5 6.42 2.87e-5 8.08

960 458s 1.04e-5 9.34 3.53e-6 8.13

1920 898s 1.45e-6 7.17 3.83e-7 9.22

the angular variable. Since the analytical solution in this case is known, the off-center
disc provides direct verification of the predicted convergence rates for a discontinuous
refractive index. The table shows excellent agreement with the predicted third-order
convergence in the far field. The convergence in the near field is less steady, but is
consistent with the predicted second-order convergence in the near field. As in the
previous example, we observe that the computing time scales appropriately with M .

We now illustrate the convergence of the method for a series of three simple
scatterers of increasing degrees of regularity. In each case, m(x) = 1 − n2(x) is given
in the following form:

m(r, θ) =

⎧⎪⎨⎪⎩−3

2
− 1

2π

∑
|�|≥1

(
i

�

)k+2

ei�θ for
5

2
λ ≤ r ≤ 5λ,

0 otherwise.

Note that for each integer k, this series becomes either a sine or cosine series with real
coefficients. If k = −1, m is discontinuous and piecewise smooth as a function of θ.
Further, for any integer k ≥ 0, m ∈ Ck,α∩C∞

pw as a function of θ. The three examples
that follow illustrate the convergence of the method for k = −1, 0, 1. Because these
scatterers are fully inhomogeneous, their size in terms of interior wavelengths is not
easily defined. Note, however, that each annular scatterer has a radial thickness of
2.5λ in terms of incident wavelengths; if the refractive index were constant within the
annulus and equal to the maximum, then the radial thickness of the annulus would be
approximately 4.33, 4.15, and 4.54 interior wavelengths for k = −1, 0, 1, respectively.

The results for k = −1 are found in Figure 5.3 and Table 5.3. The predicted
second-order convergence in the near field is exceeded and the third-order convergence
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(a) Scatterer (−m = n2 − 1) (b) Near Field Intensity (|u|2)
Fig. 5.4. Visualizations for a C0,α scatterer. Annulus thickness ≈ 4.15 interior wavelengths.

Table 5.4

Convergence rate for a C0,α scatterer. Annulus thickness ≈ 4.15 interior wavelengths.

M Time εnf
u Ratio εffu Ratio

60 23s 9.33e-4 7.06e-6

120 50s 8.91e-5 10.47 1.30e-7 54.31

240 105s 1.15e-5 7.75 3.86e-9 33.68

480 212s 1.46e-6 7.88 1.17e-10 32.99

960 565s 1.83e-7 7.97 1.73e-11 Conv.

1920 1136s 1.98e-8 9.24 1.85e-11 Conv.

(a) Scatterer (−m = n2 − 1) (b) Near Field Intensity (|u|2)
Fig. 5.5. Visualizations for a C1,α scatterer. Annulus thickness ≈ 4.55 interior wavelengths.

Table 5.5

Convergence rate for a C1,α scatterer. Annulus thickness ≈ 4.55 interior wavelengths.

M Time εnf
u Ratio εffu Ratio

60 36s 2.16e-5 7.33e-9

120 72s 4.81e-7 44.91 1.06e-11 691.51

240 160s 1.05e-8 45.81 4.50e-12 Conv.

480 331s 4.76e-10 22.06 4.52e-12 Conv.

960 561s 1.36e-11 35.0 4.61e-12 Conv.

1920 1172s 1.94e-12 Conv. 4.72e-12 Conv.

in the far field is readily observed. The results of k = 0 are found in Figure 5.4 and
Table 5.4. In this case, the predicted third-order convergence in the near field and
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fifth-order convergence in the far field are both matched quite precisely. This example
clearly illustrates the interesting jump in the far field convergence rate from third-
order for a discontinuous refractive index to fifth-order for a C0,α refractive index.
Finally, the results for k = 1 are found in Figure 5.5 and Table 5.5. In this case,
the predicted fourth- and seventh-order convergence rates in the near and far fields,
respectively, are clearly exceeded. However, because convergence is so rapid, it is
difficult to observe a definite pattern, especially in the far field convergence. In each
of these cases, we note that the computing time scales appropriately with M . Finally,
we mention that even the largest of these examples required less than 20 minutes and
less than 700 MB of memory.

Appendix A. Bound on Fourier coefficients of the fundamental solution.
To prove that solutions to the approximate integral equation (2.3) exist and to bound
the convergence rate of the method, we need a bound on the decay rate of the Fourier
coefficients of the fundamental solution J�(a, r) defined in (2.1). This decay rate is
given in Lemma 2.1.

According to [1, p. 362], for all integers � ≥ 0 and for any real, nonnegative z,

|J�(z)| ≤ 1

�!

(z
2

)�
≤ z�

�!
.(A.1)

The following lemma provides a similar bound for |Y�(z)|.
Lemma A.1. Let z ∈ R with 0 ≤ z ≤ R. For all integers � ≥ 1,

|Y�(z)| ≤ C
(�− 1)!

z�
,

and for � = 0,

|Y�(z)| ≤ C| log(z)|,
where C > 0 depends only on R.

Proof. By [4, p. 51], Y�(z) is given for any nonnegative integer � by

Y�(z) =
2

π
J�(z) log

(z
2

)
− 1

π

�−1∑
k=0

(�− k − 1)!

k!

(z
2

)2k−�

(A.2)

− 1

π

∞∑
k=0

ψ(�+ k) + ψ(k)

(−1)kk!(k + �)!

(z
2

)2k+�

,

where ψ(0) = −γ ≈ −0.5772 and ψ(k) = −γ +
∑k
j=1

1
j for k ≥ 1.

To bound the second term in (A.2), we find that

�−1∑
k=0

(�− k − 1)!

k!

(z
2

)2k

≤ (�− 1)!

∞∑
k=0

1

k!

[(z
2

)2
]k

≤ (�− 1)! e(
R
2 )

2 ≤ C1(R)(�− 1)!.

Now note that for k ≥ 1, |ψ(0)| ≤ 1 and 0 ≤ ψ(k) ≤ −γ + k ≤ k.
Hence, for a bound on the third term in (A.2), we obtain

∞∑
k=0

|ψ(�+ k) + ψ(k)|
k!(k + �)!

(z
2

)2k+�

≤ 2

∞∑
k=0

1

k!

[(R/2)2]
�
2+k

(�+ k − 1)!
≤ C2(R),
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since

[(R/2)2]
�
2+k

(�+ k − 1)!
≤ C3(R).

These bounds together with (A.1) yield the desired result.
We now turn to the proof of the main lemma.
Proof of Lemma 2.1. First note that∫ R1

R0

|J�(a, r)|r dr = |H1
� (κa)|

∫ a

R0

|J�(κr)|r dr + |J�(κa)|
∫ R1

a

|H1
� (κr)|r dr

≤ |J�(κa)|
∫ R1

R0

|J�(κr)|r dr + |J�(κa)|
∫ R1

a

|Y�(κr)|r dr

+ |Y�(κa)|
∫ a

R0

|J�(κr)|r dr
≤ IJ,J + IJ,Y + IY,J ,

where

IJ,J = |J�(κa)|
∫ R1

0

|J�(κr)|r dr,

IJ,Y = |J�(κa)|
∫ R1

a

|Y�(κr)|r dr,

IY,J = |Y�(κa)|
∫ a

0

|J�(κr)|r dr.

Note that |J−�(z)| = |(−1)�J�(z)| = |J�(z)| and similarly |Y−�(z)| = |Y�(z)|. Hence,
it suffices to bound these integrals for � ≥ 0.

Thus, for � ≥ 0, by (A.1),

IJ,J ≤ 1

(�!)2
R2

1(κR1)
2l ≤ CJ,J

�2
,

where CJ,J > 0 depends only on κ and R1. By (A.1) and Lemma A.1, we find that
for � > 2,

IJ,Y ≤ C
(κa)�

�!

∫ R1

a

(�− 1)!

(κr)�
r dr

= C
R1

2

�(�− 2)

[(
a

R1

)2

−
(
a

R1

)�]
≤ CJ,Y

�2
.

A similar argument shows that IJ,Y is also bounded for � = 0, 1, 2. Finally, for � ≥ 1,
we find that

IY,J ≤ C
(�− 1)!

(κa)�

∫ a

0

(κr)�

�!
r dr

=
a2

�(�+ 2)
≤ CY,J

�2
.

It is not difficult to show that this same bound holds for � = 0.
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Table B.1

Relative errors in trapezoidal rule integration.

N Error Ratio

1 2.5e-1

2 9.5e-2 2.6

4 3.5e-2 2.7

8 1.3e-2 2.7

8192 4.2e-7

N Error Ratio

1 4.8e-2

2 1.2e-2 4.0

4 2.9e-3 4.1

8 7.4e-4 3.9

8192 7.0e-10

N Error Ratio

1 5.5e-1

2 6.0e-2 9.2

4 3.1e-4 1.9e+2

8 7.2e-10 4.3e+5

16 2.1e-23 3.4e+13

(a)
∫ 1/2
0

√
xdx ≈ 0.2357 (b)

∫ π/4
0 ecos

2 xdx ≈ 1.8009 (c)
∫ π
0 ecos

2 xdx ≈ 5.5084

Appendix B. Higher-order integration via the trapezoidal rule. When
used to integrate a smooth and periodic function over its period, the trapezoidal
rule obtains a truly extraordinary convergence rate (see [21, section 9.4] and [29]).
As with our numerical method, this convergence behavior is due to the rapid decay
of the function’s Fourier coefficients (see Lemma 3.1). Since this fact may yet be
unfamiliar to some readers, we illustrate trapezoidal rule convergence through three
simple, one-dimensional integrals.

In Table B.1, we give the relative errors obtained when computing the integrals
of the functions

√
x and ecos

2 x by means of the trapezoidal rule with N points. In Ta-

ble B.1(a), we observe less than second-order convergence when computing
∫ 1/2

0

√
xdx,

which is a result of the singularity in its first derivative at the origin. Table B.1(b)

shows second-order convergence when computing
∫ π/4
0

ecos
2 xdx, which agrees with

the well-known convergence rate predicted for the trapezoidal rule when integrating
C2 functions. Finally, in Table B.1(c), we observe an exponential convergence rate

when computing
∫ π
0
ecos

2 x, the same function integrated in Table B.1(b). Note that
in this example a relative error of 7 × 10−10 is obtained with 8 points, whereas in
Table B.1(b), 8192 points are required for similar accuracy. This extraordinary con-
vergence rate results because we are integrating a smooth and periodic function over
its period.
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Abstract. The equilibrated residual method for a posteriori error estimation is extended to
nonconforming finite element schemes for the approximation of linear second order elliptic equations
where the permeability coefficient is allowed to undergo large jumps in value across interfaces between
differing media. The estimator is shown to provide a computable upper bound on the error and, up to
a constant depending only on the geometry, provides two-sided bounds on the error. The robustness
of the estimator is also studied and the dependence of the constant on the jumps in permeability is
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1. Introduction. A posteriori error estimation for conforming finite element
schemes has been the subject of extensive investigation, and such methods are now
routinely incorporated in adaptive finite element procedures by the engineering and
scientific computing communities. In contrast, the treatment of nonconforming meth-
ods [8] has been subject to sporadic yet sustained attention over the past decade.

The early work of Agouzal [1] was concerned with a posteriori error estimation for
nonconforming finite element approximation of Poisson-type problems. The impor-
tant contribution of Dari et al. [10] presented an explicit a posteriori error estimator
based on evaluation of norms of residuals supplemented by jumps in fluxes across
interelement edges and showed that the estimator provides two-sided bounds on the
error up to generic, unknown constants that are independent of the mesh size. This
was subsequently extended to nonconforming mixed finite element approximation of
Stokes flow [9] and non-Newtonian flow [3]. The application of hierarchic basis esti-
mators to nonconforming finite element approximation was considered by Hoppe and
Wohlmuth [16], where the usual hierarchic basis estimator is augmented with an ad-
ditional term comparing the nonconforming approximation with a smoothed approxi-
mation. Two-sided bounds were obtained [16] under the assumption that a saturation
condition is valid. In a related approach, Schieweck [18] proposed a residual-based
estimator supplemented with the same additional term as in [16]. However, the anal-
ysis of efficiency in [18] was based on additional rather strong assumptions on the
regularity of the mesh and the true solution. Carstensen, Bartels, and Jansche [6] de-
rived estimators based on gradient averaging (or smoothing) techniques and obtained
two-sided bounds. All of the above estimators involve generic, unknown constants
and as such provide refinement indicators rather than actual numerical bounds on the
error.
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Destuynder and Métivet [12] derived a posteriori bounds for the error in a con-
forming approximation obtained by smoothing the nonconforming approximation.
Explicit, computable upper bounds on the error measured in the energy norm were
obtained for approximation of Poisson’s equation. To show that the bounds are effi-
cient, the authors made additional regularity assumptions on the mesh and the true
solution and showed that the estimator decays at the same rate as the true error. Un-
fortunately, these regularity assumptions on the mesh and the true solution generally
fail to hold in the context of the solution of practical problems on adaptively refined
meshes.

A technique that has proved particularly effective and robust for a posteriori
estimation of the error in conforming finite element schemes is the equilibrated residual
method, as described, for example, in [2]. One goal of the present work is to extend
the equilibrated residual method to nonconforming finite element schemes for the
approximation of a linear second order elliptic problem with variable permeability.
The permeability is assumed to be piecewise constant on subdomains corresponding
to different media but is allowed to undergo large jumps across interfaces. Particular
attention is paid to the robustness of the a posteriori error estimator with respect to
the size of the jumps. This issue has also been studied in the setting of conforming
finite element approximation by Bernardi and Verfürth [4].

The approach is based on the idea of Dari et al. [10] involving an orthogonal
(Helmholtz) decomposition of the error into a conforming part and a nonconforming
part. The conforming part is treated using a modification of the standard equilibrated
residual method where the weakened continuity requirements for a nonconforming el-
ement are fully exploited. Indeed, the usual procedure for conforming approximation
can be dramatically simplified to the extent that in its final form the estimator re-
sembles an explicit estimator, but with the advantage that there are no unknown
constants. The remaining nonconforming part of the error is estimated using the
difference between the nonconforming approximation and a smoothed nonconforming
approximation, similarly to [16], and this is shown to give an upper bound without
recourse to unknown constants. The final form of the estimator resembles those de-
rived in [10, 12, 16, 18]. However, one byproduct of the method of derivation is that
the estimator can be shown to provide computable upper bounds on the error—a
feature characteristic of the equilibrated residual method. Furthermore, the bounds
are shown to be efficient in the sense that the estimator is bounded above by the true
error up to a constant depending only on the shape of the elements. This result is
proved without additional assumptions on the regularity of the true solution and the
mesh is allowed to be locally refined, as would be the case of adaptive refinements.
However, in order to circumvent the saturation assumption [16], we shall assume that
the oscillation of the data is sufficiently small. This extends the ideas of Dörfler and
Nochetto [13] to nonconforming finite element approximation. Moreover, the analysis
takes full account of the large jumps in the permeability across material interfaces and
shows that the estimator is robust with respect to the jumps in certain circumstances
(such as if the hypothesis assumed by Bernardi and Verfürth [4] is satisfied).

Gradient smoothing procedures are frequently adopted in the setting of conform-
ing finite element approximation. However, for the nonconforming schemes considered
here, smoothing is applied directly to the (discontinuous) finite element approxima-
tion, as opposed to its gradient. Interestingly, in the case of Laplace’s equation, the
exact solution of the local residual problem vanishes identically. This means that
the estimator reduces to a recovery-based estimator, and in view of the upper bound
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property, we arrive at the somewhat surprising observation1 that the recovery-based
estimator provides a guaranteed upper bound on the error (even though the true
solution may have singularities and the mesh may be highly unstructured).

The remainder of this paper is organized as follows. After describing the details
of the finite element scheme and the conditions on the mesh, the decomposition of the
error into a conforming and nonconforming component is presented. The main results
of the paper are then outlined, and illustrative numerical examples are presented.
Subsequent sections are concerned with the derivation of the upper and lower bounds
for each source of error.

2. Preliminaries.

2.1. Model problem. Consider the model problem

−div(Agradu) = f in Ω(2.1)

subject to u = q on ΓD and n · Agradu = g on ΓN , where Ω is a plane polygonal
domain, and the disjoint sets ΓD and ΓN form a partitioning of the boundary Γ =
∂Ω of the domain. The data satisfy f ∈ L2(Ω), g ∈ L2(ΓN ), q ∈ H1(ΓD) and
A ∈ L∞(Ω; R2×2) is positive definite. For simplicity, it will be assumed that the
permeability matrix A is piecewise constant on subdomains of Ω. However, the value
of A across a subdomain boundary may undergo jumps of many orders of magnitude,
corresponding to transition between regions of widely differing permeability.

The variational form of the problem consists of finding u ∈ H1(Ω) such that u = q
on ΓD and

(Agradu,grad v) = (f, v) +

∫
ΓN

gv ds ∀v ∈ H1
E(Ω),(2.2)

where H1
E(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}. In general, we shall use the notation

(·, ·)ω to denote the integral inner product over a region ω, and omit the subscript in
the case where ω is the physical domain Ω.

Consider a family of partitions {P} of the domain Ω into the union of nonover-
lapping, shape regular triangular elements such that the nonempty intersection of a
distinct pair of elements is a single common node or single common edge. The family
of partitions is assumed to be locally quasi-uniform in the sense that the ratio of the
diameters of any pair of neighboring elements is uniformly bounded above and below
over the whole family.

In addition, whenever possible, the partitioning is chosen to reflect the structure
of the permeability matrix in the sense that individual elements do not straddle a sub-
domain boundary where the value of A undergoes a large jump. This requirement
is reflected in the assumption that, for every element K ∈ P, there exist positive
constants λK and ΛK satisfying

λK ‖p‖2
L2(K) ≤ (Ap,p)K ≤ ΛK ‖p‖2

L2(K) , p ∈ L2(K)2,(2.3)

such that the ratio ΥK = ΛK/λK is uniformly bounded over the whole family of par-
titions. It will be important to develop a posteriori error estimators whose reliability
and efficiency is insensitive to the magnitude of the jumps in permeability between
differing regions but which are allowed to depend on the variation of A within a region.

1We are grateful to an anonymous reviewer for drawing our attention to the fact that this
observation was first reported in [14].
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2.2. Nonconforming finite element approximation. Let N index the set
of element vertices, let ∂P denote the set of element edges, let M = {mγ : γ ∈ ∂P}
denote the set of points located at midpoints of edges, and let P1 denote the space of
polynomials of total degree at most one. The Crouzeix–Raviart finite element space [8]
is defined by

Xnc =
{
v : Ω → R : v|K ∈ P1 ∀K ∈ P, v is continuous at mγ ∈ M\Γ} ,

with the subspace Xnc
E defined by

Xnc
E = {v ∈ Xnc : v(mγ) = 0 for γ ⊂ ΓD} .

Functions belonging to the space Xnc and Xnc
E may have discontinuities across element

interfaces, meaning that Xnc is not a subspace of H1(Ω) and therefore constitutes a
nonconforming approximation space [5, 7]. The nonconforming finite element approx-
imation of problem (2.2) consists of finding unc ∈ Xnc such that

(Agradnc unc,gradnc v) = (f, v) +
∫
ΓN

gv ds ∀v ∈ Xnc
E ,

unc(mγ) = q(mγ) ∀γ ⊂ ΓD,
(2.4)

where gradnc denotes the operator defined by

(gradnc v)|K = grad(v|K), K ∈ P.

A Lagrange-type basis {θγ} for the space Xnc may be constructed by choosing θγ ∈
Xnc to be the function uniquely defined by the conditions

θγ(mγ′) = δγγ′ , γ′ ∈ ∂P.(2.5)

A nonconforming interpolation operator Πnc : H1(Ω) → Xnc is defined by the
conditions ∫

γ

Πnc v ds =

∫
γ

v ds ∀γ ∈ ∂P.(2.6)

The representation of the operator relative to the basis (2.5) is given by

Πnc v =
∑
γ⊂∂P

vγθγ ,(2.7)

where vγ denotes the average value of v on an edge γ. Observe that the restriction
of Πnc v to a particular element K is defined entirely in terms of the averages of the
function v on the edges of the element and, moreover, Πnc locally preserves constants.
These properties (in conjunction with standard scaling arguments) may be used to
deduce that there exists a positive constant C depending only on the shape of the
element such that the following local elementwise approximation property holds:

‖v − Πnc v‖L2(K) + h
1/2
K ‖v − Πnc v‖L2(∂K) ≤ ChK ‖grad v‖L2(K) .(2.8)
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2.3. Data oscillation. It will be necessary to impose some notion of regular-
ity on the underlying problem. Often, a saturation condition [16] is assumed, but
this assumption makes reference to the (unknown) true solution u, meaning that it
is difficult to verify a priori. Dörfler and Nochetto [13], working in the context of
conforming piecewise affine approximation, showed that the saturation assumption
can be removed in favor of an assumption on the magnitude of the data oscillation.
This condition has the advantage of being formulated directly in terms of the known
data for the problem and can therefore be verified a priori. We shall show that a
similar conclusion holds in the nonconforming setting considered here.

The oscillation of the data f ∈ L2(Ω) over the finite element partition P = {K}
is defined by

osc(f, {K : K ∈ P})2 =
∑
K∈P

meas(K)
∥∥f − fK

∥∥2

L2(K)
,(2.9)

where fK is the average value of f over element K. The data oscillation quantifies
the variation in the data f with respect to the partition P. Likewise, the oscillation
of the Neumann data g is defined by

osc(g, {γ : γ ⊂ ΓN})2 =
∑
γ⊂ΓN

meas(γ)
∥∥g − gγ

∥∥2

L2(γ)
.(2.10)

The appropriate quantity for the Dirichlet data turns out to be

osc (∂q/∂s, {γ : γ ⊂ ΓD})2 =
∑
γ⊂ΓD

meas(γ)

∥∥∥∥∂q∂s − µγ

∥∥∥∥2

L2(γ)

.

Here gγ and µγ denote the average value of g and ∂q/∂s on edge γ.

2.4. Path permeability. Let Ωn denote the patch composed from those ele-
ments with a vertex located at xn, and let K, K ′ ⊂ Ωn be distinct elements. It
is useful to introduce the notion of permeability λKK′ between a pair of elements.
Roughly speaking, this measures the permeability of the “most permeable” route be-
tween the elements. The precise definition is based on the observation that there is
always at least one connected path ℘(K,K ′) ⊂ P passing from K to K ′ through
adjacent elements belonging to the patch Ωn. The smallest permeability of all the
elements in the path ℘(K,K ′) is given by min {λM : M ∈ ℘(K,K ′)}. If xn is an in-
terior vertex, then there are two such paths, and in this case we take ℘(K,K ′) to be
the path ℘∗(K,K ′), which maximizes the value of this quantity, and define

λKK′ = min {λM : M ∈ ℘∗(K,K ′)} .(2.11)

If a vertex xn of element K lies on the Dirichlet boundary ΓD, then the element may
be linked to ΓD by a connected path ℘(K,ΓD) passing through adjacent elements as
before. The permeability λKΓD

between element K and the Dirichlet boundary is
then defined using (2.11) with ℘∗(K,ΓD) in place of ℘∗(K,K ′). The ratio

ΥKK′ =
min(ΛK ,ΛK′)

λKK′
(2.12)

measures path permeability relative to the least permeable of the two elements K and
K ′ at the endpoints of the path.
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Fig. 2.1. Value of relative path permeability (2.12) for some typical configurations. (a) Node
on interface: ΥKK′ = 1. (b) Node at crosspoint of three subdomains. ΥKK′ = 1. (c) Node
at crosspoint of four subdomains (ε � 1). ΥKK′ = 1/max(min(1, α), ε). (d) Node on Dirichlet
boundary. ΥKΓD

= Λ2/max(min(λ1, λ2),min(λ2, λ3)).

If Ωn is contained either within a subdomain, on the interface between two subdo-
mains, or at the crosspoint of three subdomains, then the relative path permeability
is always unity; see Figure 2.1(a)–(b). However, the relative path permeability may
be arbitrarily large at crosspoints where four or more subdomains meet, as would be
the case in Figure 2.1(c) if α � 1. This means that the relative path permeability
remains bounded only under additional hypotheses. For example, if, as in Bernardi
and Verfürth [4, Hypothesis 2.7], it is assumed that there is always a path between
any two elements on which the permeability increases monotonically, then the relative
path permeability is always unity, even at boundary nodes xn ∈ ΓD.

3. A posteriori error estimator.

3.1. Decomposition of the error. The purpose of the present work is to de-
velop methods for obtaining computable estimators for the error e = u − unc in the
nonconforming approximation measured in the energy norm denoted by (Agradnc e,
gradnc e)

1/2. The following Helmholtz-type decomposition is essentially taken from
Dari et al. [10].

Lemma 3.1. Let

H =

{
w ∈ H1(Ω) :

∫
Ω

w dx = 0 and
∂w

∂s
= 0 on ΓN

}
.

The error e may be decomposed into the form

Agradnc e = Agradφ+ curl ψ,(3.1)

where φ ∈ H1
E(Ω) satisfies

(Agradφ,grad v) = (Agradnc e,grad v) ∀v ∈ H1
E(Ω)(3.2)
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and ψ ∈ H satisfies

(A−1 curl ψ, curlw) = (gradnc e, curlw) ∀w ∈ H.(3.3)

Moreover,

(Agradnc e,gradnc e) = (Agradφ,gradφ) + (A−1 curl ψ, curl ψ).(3.4)

Proof. An application of the Lax–Milgram lemma shows that φ exists and is
unique. Denote w = A(gradnc e − gradφ) ∈ L2(Ω)2. With the aid of Green’s
formula and (3.2), we deduce that

0 =

∫
Ω

v divw dx+

∫
Γ

vn ·w ds ∀v ∈ H1
E(Ω).

Consequently, w is divergence free in Ω and n ·w = 0 on ΓN . Applying Theorem 3.1
in [15] shows that there exists ψ ∈ H1(Ω)/R such that

A(gradnc e− gradφ) = w = curl ψ.

Furthermore, n · curl ψ = n · w = 0 on ΓN , and we conclude that ψ ∈ H. The
characterization (3.3) and the orthogonality property (3.4) hold, provided that∫

Ω

gradφ · curlw dx = 0 ∀w ∈ H.

This follows directly from an integration by parts on recalling that φ vanishes on ΓD
while n · curlw vanishes on ΓN .

Lemma 3.1 means that the error e in the nonconforming approximation may be
split into two parts, as in (3.1). The nature of the contributions ψ and φ defined
in Lemma 3.1 may be identified as follows. First, suppose that the nonconforming
approximation unc happens to be conforming, by which we mean u − unc ∈ H1

E(Ω).
The right-hand side of (3.3) then simplifies to

(gradnc e, curlw) = (grad e, curlw) =

∫
Γ

en · curlw ds = 0,

since e vanishes on ΓD and n · curlw = 0 on ΓN for w ∈ H. Hence, if the approxi-
mation unc is conforming, then the contribution ψ vanishes. For this reason, we shall
refer to ψ as the nonconforming error. The remaining contribution, φ, is referred to
as the conforming error.

The splitting of the error into nonconforming and conforming components defines
an orthogonal decomposition in the sense that the Pythagorean identity (3.4) holds.
This means that the problem of obtaining a posteriori error estimators for the total
error reduces to the derivation of estimators for the conforming and nonconforming
errors independently. An estimator for the total error is then given by summing the
estimators for the independent contributions.

3.2. Statement of main result. We summarize the results to be proved in
sections 5 and 6. For K ∈ P, let σK denote the function σK = − 1

2fK(x − xK),
where xK denotes the element centroid. The estimator for the conforming error is
defined in terms of σK as follows:

η2
cf,K =

(
A−1σK ,σK

)
K

=
1

48
meas(K)f

2

K

3∑
�=1

w�
� A

−1w�,(3.5)
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where w� is the position vector of vertex � of the element relative to the centroid.
The estimator for the nonconforming error is defined in terms of a piecewise affine

function S(unc) on P obtained by smoothing the nonconforming approximation with
values at vertices given by

S(unc)(xn) =

⎧⎪⎨⎪⎩
q(xn) if x ∈ ΓD,∑

K∈Ωn

ωK,n unc|K(xn) otherwise,
(3.6)

where the weights ωK,n are defined by

ωK,n =
Λ

1/2
K∑

K′⊂Ωn
Λ

1/2
K′

.(3.7)

The estimator on element K is then given by

η2
nc,K = (Agradnc(unc −S(unc)),gradnc(unc −S(unc)))K .(3.8)

The main result may now be stated. For ease of exposition, we suppose the
Dirichlet data is homogeneous, although this assumption is subsequently relaxed.

Theorem 3.2. Let ∆K denote the local data oscillation on element K given by

∆K = osc(f,K) + osc(g, {γ ⊂ ΓN ∩ ∂K}),(3.9)

and let ΥKK′ be the relative path permeability defined in (2.12). Then the conforming
error may be estimated as

(Agradφ,gradφ) ≤
∑
K∈P

(ηcf,K + Cλ
−1/2
K ∆K)2(3.10)

and

cηcf,K ≤ Υ
1/2
K (Agradφ,gradφ)

1/2
K + λ

−1/2
K osc(f,K).(3.11)

Furthermore, the nonconforming error may be estimated as

(A−1 curl ψ, curl ψ) ≤
∑
K∈P

η2
nc,K(3.12)

and

cη2
nc,K ≤ (A−1 curl ψ, curl ψ)

K̃

∑
K′⊂K̃

ΥKK′ ,(3.13)

where K̃ denotes the patch formed from those elements sharing a common vertex
with element K, and c and C are positive constants that depend only on the element
geometry. Consequently, the total error may be estimated as

(Agradnc e,gradnc e) ≤
∑
K∈P

(ηcf,K + Cλ
−1/2
K ∆K)2 + η2

nc,K(3.14)

along with a corresponding lower bound on the total error.
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Proof. The estimates for the conforming error are proved in Lemmas 5.2 and 5.3,
while the estimates for the nonconforming error are proved in Lemma 6.2 and The-
orem 6.4. The upper and lower bounds on the total error follow at once from
(3.4).

The resulting estimator is reminiscent of the estimators found in [10, 12, 16, 18].
Here, it is shown that the estimator provides a numerical upper bound for the total
global error which does not involve unknown constants. Moreover, the estimator is
shown to be efficient and robust (provided the relative path permeability remains
bounded) without additional assumptions on the regularity of the true solution or on
the mesh.

4. Numerical examples. The behavior of the estimator (3.14) is illustrated for
some simple representative problems in this section.

4.1. Laplacian on L-shaped domain. Figure 4.1 shows the sequence of adap-
tively refined meshes for the solution of Laplace’s equation on an L-shaped domain
with pure Dirichlet boundary conditions chosen so that the solution is given by
u(r, θ) = r2/3 sin(2θ/3). The conforming error vanishes in this case and the local
error estimator on element K reduces to ηnc,K .

The effectivity index is found to vary in the range 1.5–1.6 in this example, as
shown in Table 4.1. The sequence of meshes was constructed adaptively by selecting
for refinement all elements where the local error indicator exceeds 30% of the value
of the largest local indicator.

Fig. 4.1. Sequence of adaptively refined meshes for Laplace example.
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Table 4.1

Comparison of estimated and true error for L-shaped domain.

Ndofs True Estimated Effectivity
44 8.87(-2) 2.26(-1) 1.60
99 4.02(-2) 9.97(-2) 1.57
154 2.15(-2) 5.15(-2) 1.55
209 1.41(-2) 3.25(-2) 1.52
264 1.11(-2) 2.50(-2) 1.50
446 5.86(-3) 1.35(-2) 1.52
640 3.86(-3) 8.84(-3) 1.51
933 2.60(-3) 5.96(-3) 1.51
1487 1.57(-3) 3.57(-3) 1.51

Fig. 4.2. Sequence of adaptively refined meshes for Poisson problem.

4.2. Nonzero source term. Figure 4.2 shows the sequence of adaptively refined
meshes for the solution of Poisson’s equation with homogeneous Dirichlet boundary
conditions and source term chosen so that the solution is given by u(r, θ) = (r2/3 −
r2) sin(2θ/3). In this example, the conforming and nonconforming errors are both
nonzero. The performance of the error estimator is shown in Table 4.2 along with the
contributions from the conforming and nonconforming components of the error.

4.3. Variable permeability. The performance of the estimator in the case of
variable permeability will be illustrated by considering the simple problem on the
domain shown in Figure 4.3 with scalar permeability A = a�I on Ω� and prescribed
flux g = n · grad(x2 − y2) on ∂Ω. The true solution on subdomain Ω� is given by
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Table 4.2

Comparison of estimated and true error for Poisson.

Ndofs True Estimated Conforming Nonconforming Effectivity
36 4.75(-1) 8.86(-1) 2.13(-1) 6.73(-1) 1.37
119 1.92(-1) 3.58(-1) 7.37(-2) 2.85(-1) 1.36
219 1.11(-1) 2.15(-1) 4.43(-2) 1.70(-1) 1.39
384 6.62(-2) 1.28(-1) 2.73(-2) 1.00(-1) 1.39
647 3.99(-2) 7.61(-2) 1.54(-2) 6.07(-2) 1.38
923 2.61(-2) 5.19(-2) 1.08(-2) 4.11(-2) 1.41
1377 1.84(-2) 3.62(-2) 7.94(-3) 2.82(-2) 1.40
2633 9.05(-3) 1.71(-2) 3.59(-3) 1.35(-2) 1.38
3302 7.10(-3) 1.36(-2) 3.06(-3) 1.05(-2) 1.38

y

(−1,−1)

(1,1)

xΩ

Ω

Ω

Ω

2

3

4

1

Fig. 4.3. Geometry and subdomains for problem with variable permeability.

u(x, y) = (x2−y2)/a�. Consider the situation where the local permeability is given by
a1 = 1, a2 = α2, a3 = 1, and a4 = α4 with an initial mesh consisting of four elements
coinciding with the subdomains shown in Figure 4.3.

The smoothing operator S may in principle be constructed using any choice of
weights satisfying the condition ∑

K⊂Ωn

ωK,n = 1.(4.1)

This requirement leaves considerable latitude in the selection of the weights. For
instance, one might even choose all but one of weights to vanish, as suggested by
Schieweck [18]. The obvious choice whereby the weights are chosen to be equal has
been utilized by Oswald [17] in the context of multigrid methods. An alternative
choice, advocated by Destuynder and Métivet [12, eqn. (17)], is to take ωK,n propor-
tional to the area of element K. If the mesh is locally quasi-uniform, then the latter
two choices are not significantly different. Here, we are specifically concerned with the
approximation of problems with highly varying local permeability, and the choice of
weights given in (3.7) reflects this by depending on the value of the local permeabil-
ity. The weights (3.7) are equal if the node xn is located inside a subdomain where
the local permeability is constant but differ markedly on interfaces and crosspoints
between subdomains.

The ratio of the estimated error to the true error, Eff(α), of the estimators ob-
tained using the standard smoothing operator S with equal weighting and the esti-
mator obtained using the weighted smoothing operator with weights depending on
the permeability as in (3.7) can be computed explicitly on the initial mesh. For the
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Fig. 4.4. Comparison of standard estimator with weighted scheme for model problem with
variable permeability.

standard scheme, we obtain

Eff(α)2 =

⎧⎪⎨⎪⎩
3

8
α4 + O(1) as α→ ∞,

15

32
α−4 + O(α−2) as α→ 0,

while for the weighted estimator,

Eff(α)2 =

⎧⎪⎨⎪⎩
27

4
+ O(α−1) as α→ ∞,

39

8
+ O(α) as α→ 0.

The performance of the standard estimator clearly degenerates rapidly as the local
permeability α is varied. The performance of the estimators when α2 is taken to be
0.1 is presented in Figure 4.4. As would be expected, as the mesh is refined, both
estimators tend to give the same value. However, even with this relatively modest
value of α, the standard scheme provides very poor estimates for the error on the
coarser meshes. The distribution of the local error estimates is compared with the
actual local errors, as shown in Figure 4.5. Obviously, the estimators coincide away
from interfaces. However, on interfaces and at the crosspoint, it is observed that the
weighted estimator gives a more accurate picture of the distribution of the true error.
Here, the true error was used to construct the sequence of adaptively refined meshes.
Essentially the same sequence of meshes would be obtained if the weighted estimator
were used, while if the standard estimator were to be used, then one would obtain a
completely different sequence of meshes.

4.4. Neither term can be dropped from the estimator. The fact that the
estimator provides an upper bound for the solution of the Laplace equation shows
that the nonconforming term must be present in the estimator. It is less clear that
the interior residual term must also be present. Consider the Poisson equation on
a unit square with pure Neumann data chosen so that the true solution is given
by 3x2 − 2xy + 3y2. Observe that the oscillation of f vanishes. Suppose that the
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Fig. 4.5. Distribution of true local error (left) and estimated local error for weighted (center)
and standard (right) estimators applied to model problem with variable permeability.

solution is approximated using the mesh obtained by subdividing the square into a
uniform mesh of right-angled triangles with hypotenuse in the direction (1, 1). In
this scenario, it is found that the nonconforming finite element approximation unc

is actually conforming, which means that the nonconforming term vanishes, yet the
true error is obviously nonzero. This example shows that the interior residual term is
essential for the upper bound and therefore cannot be removed in general.

5. Estimation of the conforming error.

5.1. Upper bound. Our objective is to derive a representation formula for the
conforming component φ of the error in terms of quantities that can be evaluated
explicitly or estimated in terms of the data oscillation. The following preparatory
result will be useful in this direction. Let xK denote the centroid of element K, and
define

σK = −1

2
fK(x− xK),(5.1)

where fK denotes the (constant) average value of the data f on element K. The
function σK has the following property.

Lemma 5.1. Let σK be defined as in (5.1). Then

(σK ,grad v)K = (fK , v − Πnc v)K ∀v ∈ H1
E(K),(5.2)
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where Πnc is the nonconforming interpolation operator defined in (2.6).
Proof. Let v ∈ H1

E(K). Then integration by parts gives

(σK ,grad v)K = −
∫
K

v divσK dx+

∫
∂K

vnK · σK ds,

where nK denotes the unit outward normal on ∂K. Inserting the expression for σK
into the first term on the right-hand side gives

−
∫
K

v divσK dx = (fK , v)K

since fK is constant. It therefore suffices to show that the second term satisfies∫
∂K

vnK · σK ds = −(fK ,Πnc v)K .(5.3)

Substituting the expression for σK gives∫
∂K

vnK · σK ds = −1

2
fK

∑
γ⊂∂K

∫
γ

vnK · (x− xK) ds.

Elementary geometry reveals that nK · (x− xK)|γ = 2 meas(K)/3 meas(γ), and hence∫
γ

vnK · (x− xK) ds =
2

3
meas(K)vγ ,

where vγ denotes the average value of v on the edge γ, and the left-hand side of (5.3)
may therefore be written in the form∫

∂K

vnK · σK ds = −1

3
meas(K)fK

∑
γ⊂∂K

vγ .(5.4)

An elementary computation using (2.6) reveals that∫
K

Πnc v dx =
1

3
meas(K)

∑
γ⊂∂K

vγ ,

and the identity (5.3) now follows by combining this result with (5.4).
We now turn to the error representation formula. Let v ∈ H1

E(Ω) be given; then,
using (3.2) and (2.2), we have

(Agradφ,grad v) = (Agradnc e,grad v)

= (f, v) +
∫
ΓN

gv ds− (Agradnc unc,grad v).
(5.5)

By integrating by parts and observing that div(Agradnc unc) vanishes, we obtain

(Agradnc unc,grad(v − Πnc v))K =

∫
∂K

nK ·Agradnc unc|K (v − Πnc v) ds = 0,

(5.6)
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where the final step follows from the definition of Πnc and the fact that the normal
component of Agradnc unc is piecewise constant on the element edges. Accumulating
contributions over all elements shows that, in view of (2.4),

(Agradnc unc,grad v) = (Agradnc unc,gradΠnc v)

= (f,Πnc v) +
∫
ΓN

gΠnc v ds.
(5.7)

Equation (5.5) may therefore be rewritten as

(Agradφ,grad v) = (f, v − Πnc v) +

∫
ΓN

g(v − Πnc v) ds.(5.8)

Thanks to Lemma 5.1,

(f, v − Πnc v)K = (σK ,grad v)K + (f − fK , v − Πnc v)K ,

while properties of the nonconforming interpolation operator mean that∫
γ

gγ(v − Πnc v) ds = 0,

where gγ is the (constant) average value of g on an edge γ ⊂ ΓN . With the aid of
these results, we arrive at the following representation formula for the conforming
component of the error:

(Agradφ,grad v) =
∑
K∈P

RK(v)(5.9)

for all v ∈ H1
E(Ω), where

RK(v) = (σK ,grad v)K + (f − fK , v − Πnc v)K +
∑

γ⊂ΓN∩∂K

∫
γ

(g − gγ)(v − Πnc v) ds.

The first term is estimated using a Cauchy–Schwarz inequality to obtain

(σK ,grad v)K ≤ (A−1σK ,σK)1/2(Agrad v,grad v)
1/2
K ,

while the remaining terms are estimated in terms of the data oscillation (2.9) and (2.10)
using (2.3) and (2.8) to derive

(f − fK , v − Πnc v)K ≤ Cλ
−1/2
K osc(f,K)(Agrad v,grad v)

1/2
K

and ∑
γ⊂ΓN∩∂K

∫
γ

(g − gγ)(v − Πnc v) ds

≤ Cλ
−1/2
K osc(g, {γ ⊂ ΓN ∩ ∂K})(Agrad v,grad v)

1/2
K .

By inserting these bounds into (5.9), choosing v = φ, and using a discrete Cauchy–
Schwarz inequality, we arrive at the following estimate for the conforming component
of the error.
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Lemma 5.2. Let σK be defined as in (5.1); then there exists a positive constant
C depending only on the element geometry, such that

(Agradφ,gradφ) ≤
∑
K∈P

{
(A−1σK ,σK)1/2 + Cλ

−1/2
K ∆K

}2

,(5.10)

where

∆K = osc(f,K) + osc(g, {γ ⊂ ΓN ∩ ∂K})(5.11)

measures the local data oscillation over element K.
Remark 1. The estimator for the conforming error derived above may be regarded

as the generalization of the equilibrated residual method [2] to nonconforming finite
element approximation. Specifically, we define piecewise constant flux functions gK ∈
L2(∂K) by the rule

gK =
1

hγ
{(gradnc unc,gradnc θγ)K − (f, θγ)K} on γ ⊂ ∂K\ΓN(5.12)

with gK = g on γ ⊂ ∂K ∩ ΓN . Choosing v = θγ in (2.4) shows that gK + gK′ = 0 on
∂K ∩ ∂K ′. An elementary computation using properties (2.6) and (5.6) reveals that

(f, v − Πnc v)K +

∫
∂K∩ΓN

g(v − Πnc v) ds

= (f, v)K +

∫
∂K

gKv ds− (Agradnc unc,grad v)K ∀v ∈ H1
E(K),

where H1
E(K) = {v|K : v ∈ H1

E(Ω)}, and it is trivially seen that both sides vanish
whenever v is an affine function. It follows that {gK} is a set of equilibrated fluxes in
the sense of [2] and, thanks to (5.8), the conforming error may be decomposed into
local contributions,

(Agradφ,grad v) =
∑
K∈P

{
(f, v)K +

∫
∂K

gKv ds− (Agradnc unc,grad v)K

}

for all v ∈ H1
E(Ω), which is the starting point for the analysis of the equilibrated

residual method.

5.2. Local lower bounds. The next result shows that the estimator suggested
by Lemma 5.2 provides a lower bound for the conforming component of the error up
to local data oscillation.

Lemma 5.3. There exists positive constant c depending only on the element
geometry, such that

c(A−1σK ,σK)
1/2
K ≤ Υ

1/2
K (Agradφ,gradφ)

1/2
K + λ

−1/2
K osc(f,K).(5.13)

Proof. Let χ ∈ H1
0 (K) be the cubic (bubble) function whose value is unity at the

element centroid. Then, up to constants independent of the element size hK ,∫
K

χdx ≈ h2
K ; ‖χ‖L2(K) ≈ hK ; ‖gradχ‖L2(K) ≈ 1.
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Thanks to (2.3), the latter estimate implies that (Agradχ,gradχ)K ≤ CΛK . Choos-
ing v = χ in (5.8) gives

(Agradφ,gradχ) = (f, χ)K

since Πnc χ = 0. Equally well, for constant fK ,

fK(1, χ)K = (Agradφ,gradχ)K − (f − fK , χ)K ,

and so, applying Cauchy–Schwarz inequalities and the properties of χ recorded above,
we deduce that∣∣fK(1, χ)K

∣∣ ≤ C
{

Λ
1/2
K (Agradφ,gradφ)

1/2
K + hK

∥∥f − fK
∥∥
L2(K)

}
.

Again exploiting properties of χ, we deduce that, up to constants depending only on
the element geometry, hK

∥∥fK∥∥L2(K)
≈ ∣∣fK(1, χ)K

∣∣ and hence

hK
∥∥fK∥∥L2(K)

≤ C
{

Λ
1/2
K (Agradφ,gradφ)

1/2
K + osc(f,K)

}
.(5.14)

Using (2.3) and (3.5), we deduce that

(A−1σK ,σK)K ≤ Cλ−1
K h2

K

∥∥fK∥∥2

L2(K)
,

and then, thanks to (5.14), we obtain

(A−1σK ,σK)
1/2
K ≤ C

{
Υ

1/2
K (Agradφ,gradφ)

1/2
K + λ

−1/2
K osc(f,K)

}
as claimed.

6. Estimation of the nonconforming error. We turn to the problem of es-
timation of the nonconforming component of the total error defined by (3.3). The
following result forms the basis for developing upper bounds.

Lemma 6.1. Let ψ be defined in (3.3). Then

(A−1 curl ψ, curl ψ) = min
u∗∈H1(Ω):
u∗=q on ΓD

(Agradnc(u
∗ − unc),gradnc(u

∗ − unc)).(6.1)

Proof. Let u∗ ∈ H1(Ω) satisfy u∗ = q on ΓD. In particular, u− u∗ ∈ H1
E(Ω), and

hence, applying Green’s formula gives for each w ∈ H,

(gradnc(u− u∗), curlw) =

∫
∂Ω

(u− u∗)
∂w

∂s
ds = 0

since the first term vanishes on ΓD, while the second vanishes on ΓN . Consequently,

(A−1 curl ψ, curlw) = (gradnc e, curlw) = (gradnc(u
∗ − unc), curlw).

Therefore, choosing w = ψ and applying a Cauchy–Schwarz inequality reveals that

(A−1 curl ψ, curl ψ) ≤ (Agradnc(u
∗ − unc),gradnc(u

∗ − unc)).

It remains to show that the lower bound is attained. Let φ ∈ H1
E(Ω) be defined as in

(3.2), and choose u∗ to be the function u− φ. Identity (3.1) reveals that

Agradnc(u
∗ − unc) = Agradnc(e− φ) = curl ψ,



ROBUST A POSTERIORI ERROR ESTIMATION 2337

which shows the lower bound is attained.
The significance of Lemma 6.1 is, given any admissible function u∗ in (6.1), we

immediately obtain an upper bound on the nonconforming error. The accuracy of
the bound will of course depend on the particular choice of function u∗. Equally
well, the ease with which the bound may be evaluated will depend on the actual
form of the function. Simple choices of u∗ are ruled out by the condition on the
Dirichlet boundary (except those where the Dirichlet data q is trivial), and it will be
worthwhile to relax this restriction (at the expense of introducing an oscillation term
for the Dirichlet data). We shall base our choice of u∗ on a continuous, piecewise
affine function S(unc) obtained by postprocessing the nonconforming approximation.
The restriction of the function S(unc) to the Dirichlet boundary is chosen to be the
continuous piecewise linear interpolant qI of the Dirichlet data q at element vertices
on ΓD.

Lemma 6.2. Let S(unc) be any piecewise affine function whose restriction to the
Dirichlet boundary ΓD coincides with qI . Then there exists a constant C depending
only on the shape of the elements, such that

(A−1 curl ψ, curl ψ)1/2 ≤ (Agradnc(unc −S(unc)),gradnc(unc −S(unc)))
1/2

+ CΛ
1/2
ΓD

osc (∂q/∂s, {γ : γ ⊂ ΓD}) ,(6.2)

where ΛΓD
= max {ΛK : K has an edge on ΓD}.

Proof. First, let γ ⊂ ∂P ∩ ΓD and observe that q − qI ∈ H
1/2
00 (γ). Moreover, the

convexity of the H
1/2
00 -norm and standard (one-dimensional) approximation properties

of the interpolant reveal that

‖q − qI‖2

H
1/2
00 (γ)

≤ Chγ ‖∂q/∂s‖2
L2(γ)

.

The same argument applies if we replace q by q− αs, where α ∈ R is arbitrary and s
denotes the arc-length, yielding the estimate

‖q − qI‖H1/2
00 (γ)

≤ Cmeas(γ) inf
α∈R

‖∂q/∂s− α‖2
L2(γ)

= C osc(∂q/∂s, γ)2.(6.3)

The function u∗ is then chosen to be u∗ = S(unc) + ξ. The function ξ ∈ H1(Ω) is
defined elementwise by ξ|K = q−qI on ∂K∩ΓD, ξ|K = 0 on ∂K\ΓD and extended onto
the domain interior as a harmonic function so that ‖ξ‖H1(K) ≤ C ‖q − qI‖H1/2

00 (∂K∩ΓD)
.

Hence, thanks to (2.3) and (6.3),

(Agrad ξ,grad ξ)1/2 ≤ CΛ
1/2
K osc(∂q/∂s, {γ : γ ⊂ ΓD}).

Inserting this choice of u∗ in Lemma 6.1 and applying the triangle inequality gives
the result claimed.

6.1. Local smoothing operator. Given a particular choice of the function
S(unc), Lemma 6.2 shows how to obtain a computable upper bound. The tightness
of the bound and the efficiency of the resulting estimator will hinge on the particular
construction chosen for S.

The affine function S(unc) is uniquely defined by the values at the nodes of the
partition given in (3.6). It is clear that S is a linear operator. The next result shows
that S is continuous and can be bounded in terms of the choice of weights and the
path permeability between elements discussed in section 2.4.
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Lemma 6.3. Let n ∈ N and K ∈ Ωn. Then∣∣unc|K(xn) − S(unc)(xn)
∣∣

≤ C

⎧⎪⎪⎨⎪⎪⎩
(
A−1 curl ψ, curl ψ

)1/2
Ωn

∑
K′⊂Ωn

ωK′,nλ
−1/2
KK′ if xn �∈ ΓD,

λ
−1/2
KΓD

(
A−1 curl ψ, curl ψ

)1/2
Ωn

+ osc(∂q/∂s, {γ ∈ En ∩ ΓD})
if xn ∈ ΓD.

Proof. Case (i): xn �∈ ΓD. Inserting definition (3.6) and using property (4.1), we
obtain

unc|K(xn) − S(unc)(xn) =
∑

K′⊂Ωn

ωK′,n
(
unc|K(xn) − unc|K′(xn)

)
.(6.4)

To begin with, we consider the contribution to this quantity arising when an element
K ′ shares a common edge γ with element K.

An elementary computation reveals that

unc|K(xn) − unc|K′(xn) =
hγ
2

[
∂ unc

∂s

]
γ

, γ = ∂K ∩ ∂K ′.(6.5)

Let βγ denote the continuous piecewise quadratic function that takes the value 3/4
at the midpoint of edge γ and vanishes at all remaining nodes and midpoints. The
function βγ is supported on the patch K ∪K ′. In (3.3), we choose w ∈ H to be the
difference between βγ and its (constant) average value over the domain Ω to obtain

(A−1 curl ψ, curl βγ)K∪K′ = (gradnc e, curl βγ).

Integration by parts allows the right-hand side to be rewritten in the form

(A−1 curl ψ, curl βγ)K∪K′ =

∫
γ

[
∂ unc

∂s

]
γ

βγ ds =
hγ
2

[
∂ unc

∂s

]
γ

,

where the fact that the jump is constant on an interior edge has been used. Together
with (6.5), this identity implies

unc|K(xn) − unc|K′(xn) = (A−1 curl ψ, curl βγ)K∪K′ .(6.6)

This relation is valid for pairs of elements K and K ′ sharing a common edge γ.
More generally, suppose elements K and K ′ share only a common node xn. The
path ℘∗(K,K ′) appearing in (2.11) links the elements K and K ′ by a set of elements
having a common endpoint at xn. The set of edges shared by these elements is
denoted by ∂℘∗(K,K ′). Relation (6.6) holds on each edge along the path, and so,
by summing (6.6) over edges, we obtain a telescoping sum of differences of unc across
neighboring edges, which simplifies to give

unc|K(xn) − unc|K′(xn) =
(
A−1 curl ψ, curl βKK′

)
,

where βKK′ =
∑
γ∈∂℘∗(K,K′) βγ . Applying the Cauchy–Schwarz inequality gives the

upper bound∣∣unc|K(xn) − unc|K′(xn)
∣∣(6.7)

≤ (A−1 curl ψ, curl ψ
)1/2
Ωn

(
A−1 curl βKK′ , curl βKK′

)1/2
.
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The permeability on each element in the path ℘∗(K,K ′) is bounded below by λKK′ ,
implying that(

A−1 curl βKK′ , curl βKK′
) ≤ λ−1

KK′ ‖curl βKK′‖2 ≤ Cλ−1
KK′ ,

where C depends only on the shape of the elements. Inserting this estimate into (6.7)
and recalling (6.4) completes the proof in the first case.

Case (ii). If xn ∈ ΓD, then S(unc) interpolates the Dirichlet data q at the node,
so

unc|K(xn) − S(unc)(xn) = unc|K(xn) − q(xn).

First consider the case when element K abuts the Dirichlet boundary ΓD. It is not
difficult to show that

unc|K(xn) − q(xn) =
hγ
2

∂ unc

∂s

∣∣∣∣
γ

− (q(xn) − q(mγ)) .(6.8)

Let µγ denote the average value of ∂q/∂s on edge γ,

(
A−1 curl ψ, curl βγ

)
=
hγ
2

∂ unc

∂s

∣∣∣∣
γ

−
∫
γ

(
∂q

∂s
− µγ

)
βγ ds− 1

2
(q(xn) − q(xm)) .

Subtracting this from (6.8) gives

unc|K(xn) − S(unc)(xn)

=
(
A−1 curl ψ, curl βγ

)
+

∫
γ

(
∂q

∂s
− µγ

)
βγ ds+ q(mγ) − 1

2
(q(xn) + q(xm)) .

Applying the Peano kernel theorem [11], we write

q(mγ) − 1

2
(q(xn) + q(xm)) =

∫
γ

∂q

∂s
w ds =

∫
γ

(
∂q

∂s
− µγ

)
w ds,

where w = 1/2 on (xm,mγ) and w = −1/2 on (mγ ,xn). As a consequence, we
obtain

unc|K(xn) − S(unc)(xn) =
(
A−1 curl ψ, curl βγ

)
+

∫
γ

(
∂q

∂s
− µγ

)
(βγ − w) ds.

Bounding the second term above by the oscillation of ∂q/∂s on γ leads to the estimate∣∣unc|K(xn) − S(unc)(xn)
∣∣

≤ Cλ
−1/2
KΓD

(
A−1 curl ψ, curl ψ

)1/2
Ωn

+ C osc(∂q/∂s, γ).

This proves the result in the case of an element K ∈ Ωn which has an edge γ on ΓD.
The result may be extended to cover a general element K ′ ⊂ Ωn by connecting to the
exterior boundary along the path ℘∗(K,ΓD) and arguing as before.
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6.2. Efficiency of the estimator. The next result concerns the efficiency of
the estimator when the weights are chosen as in (3.7).

Theorem 6.4. Let S(unc) denote the postprocessed approximation defined in
(3.6). If K ∈ P has no vertices belonging to ΓD, then there exists a positive constant
c, independent of any mesh size, such that

c (Agradnc(unc −S(unc)),gradnc(unc −S(unc)))K

≤ (A−1 curl ψ, curl ψ)
K̃

∑
K′⊂K̃

ΥKK′ ,(6.9)

where K̃ denotes the patch formed from those elements sharing a common vertex with
element K. In the case where K has a vertex xn ∈ ΓD, then the same estimate holds
if the right-hand side is supplemented with the term

ΥKΓD
(A−1 curl ψ, curl ψ)

K̃
+ osc(∂q/∂s, {γ ∈ En ∩ ΓD})2,(6.10)

where En denotes the set of edges having an endpoint at xn.
Proof. Applying (2.3) and an inverse estimate shows that the left-hand side

of (6.9) is bounded above by

CΛKh
−2
K ‖unc −S(unc)‖2

L2(K) ,

and then evaluating this integral (using, for instance, the quadrature rule based on
edge midpoints which is exact for quadratic functions) gives

CΛK
∑
γ⊂∂K

|unc(mγ) − S(unc)(mγ)|2 .

The restriction of unc|K −S(unc) to an edge γ ⊂ ∂K is a linear function of arc-length,
which means that the value at the midpoint mγ is the average of the values at the
endpoints of the edge, and therefore

|unc(mγ) − S(unc)(mγ)| ≤ 1

2

∑
xn∈γ

∣∣unc|K(xn) − S(unc)(xn)
∣∣ .

Hence,

(Agradnc(unc −S(unc)),gradnc(unc −S(unc)))K

≤ CΛK
∑

xn∈K

∣∣unc|K(xn) − S(unc)(xn)
∣∣2 .(6.11)

Suppose that no vertex of K belongs to ΓD; then the first estimate in Lemma 6.3
gives the following upper bound for (6.11)

∑
xn∈K

(
A−1 curl ψ, curl ψ

)
Ωn

≤
∑

K′⊂Ωn

min(ΛK ,ΛK′)

λKK′
,

which in turn may be bounded above by the right-hand side of (6.11). If K has a
vertex xn ∈ ΓD, then the second estimate in Lemma 6.3 must be used, which gives
rise to the additional term (6.10).
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FOR THE FINITE ELEMENT METHOD AT A POINT,

WITH AN APPLICATION TO IMPROVED SUPERCONVERGENCE
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WITH RESPECT TO A POINT∗
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Abstract. We first derive a variety of local error estimates for u − uh at a point x0, where
uh belongs to a finite element space Sh

r and is an approximation to u satisfying the local equations
A(u− uh, ϕ) = F (ϕ) for all ϕ in Sh

r with compact support in a neighborhood of x0. Here the A(·, ·)
are bilinear forms associated with second order elliptic equations and the F are linear functionals.
In the case that F ≡ 0 our results coincide with those of Schatz [SIAM J. Numer. Anal., 38
(2000), pp. 1269–1293] but are improvements when F �= 0. We apply these results to improve the
superconvergence error estimates obtained by Schatz, Sloan, and Wahlbin [SIAM J. Numer. Anal.,
33 (1996), pp. 505–521] at points x0 where the subspaces are symmetric with respect to x0.

Key words. finite elements, weighted pointwise estimates, superconvergence, symmetry

AMS subject classifications. 65N30, 65N15
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1. Introduction, preliminaries, and statement of results. Our aim here
is twofold. On the one hand we shall extend part of the results in Schatz [11] on
finite element error estimates at a point, in particular those that deal with the per-
turbations of forms. These will then be applied to improve the results by Schatz,
Sloan, and Wahlbin [12] on superconvergence at so-called symmetry points of sub-
spaces.

The paper [11] dealt with two types of interior error estimates at a point for
finite element approximations of solutions of second order elliptic problems. Roughly
speaking, let Bd ⊂⊂ Ω ⊂⊂ R

N , N ≥ 2, and let A(·, ·) be the usual type of locally
defined bilinear form associated with the weak formulation of a second order elliptic
problem on Bd (see below for a precise definition). Suppose further that uh is a
finite element approximation to a solution u. The first type of estimates derived
in [11] were for u − uh satisfying, for all ϕ in an appropriate finite element space
on Bd,

A(u− uh, ϕ) = 0.(1.1)

We shall be concerned with the second type of estimate, extensions of the first,
that deal with u− uh satisfying a more general equation of the form

A(u− uh, ϕ) = F (ϕ).(1.2)

Here F (ϕ) is a linear functional with certain technical properties which will be de-
scribed in detail below. We remark that F (φ) may depend on u− uh.
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Typically, nonvanishing F arise in a variety of different problems. They often
may be identified as perturbation terms of the bilinear form A. This includes some
problems that, in the literature, are called “variational crimes” (see, e.g., Brenner and
Scott [2]). As an example related to superconvergence, we note that in Nitsche and
Schatz [8], they arose in proving superconvergence estimates for difference quotients
of u − uh on translation invariant meshes. In general, for u − uh satisfying (1.1),
difference quotients of u− uh do not satisfy (1.1) but rather an equation of the form
(1.2).

In this paper the application we give is to prove superconvergence at a point with
respect to which the mesh is symmetric. As in [12], we shall use the odd and even
parts of the error to prove our results. In general the odd and even parts do not
satisfy an equation of the form (1.1) but rather an equation of the form (1.2). For
additional relevant problems see [2] and [18].

There are a great many papers in the literature devoted to maximum norm esti-
mates on irregular grids. We shall mention a few where additional references may be
found. In addition to the papers referred to above, we cite Natterer [6], Scott [16],
Nitsche [7], Rannacher and Scott [9], Schatz and Wahlbin [14], and Schatz [10]. The
paper most relevant to our work here is [11].

There is an enormous literature on superconvergence. Besides the main refer-
ence [12] given above, we mention two monographs devoted to superconvergence,
namely, [5] and [18].

In section 1.1 we give some preliminaries for interior estimates, and section 1.2
contains statements of the main results on error estimates at a point with perturbed
forms. Theorem 1 is concerned with estimates for the error u − uh, and Theorem 2
deals with first derivatives of the error. Corollaries 1 and 2 are so-called asymptotic
expansion inequalities that are useful for our application to superconvergence. These
expansions are simple consequences of Theorems 1 and 2. Section 1.3 contains pre-
liminaries for our study of the symmetry theory of superconvergence, and section 1.4
contains statements of the main results. In particular, Theorem 3 is concerned with
superconvergence of u − uh, and Theorem 4 deals with superconvergence for first
derivatives of u − uh. In section 1.5 we give applications of the estimates to specific
boundary value problems.

Section 2 contains a proof of Theorem 1, and a discussion of the proof of The-
orem 2 is given in section 2.1. Theorem 3 is proved in section 3, and Theorem 4
is proved in section 4. Finally, the appendix contains the main assumptions on the
subspaces.

1.1. Notation and preliminaries. Let Ω be a bounded domain in R
N , N ≥ 1.

For m ≥ 0 an integer, and 1 ≤ p ≤ ∞, Wm
p (Ω) will denote the usual Sobolev space

of functions having distributional derivatives up to order m in Lp. The norm is given
for 1 ≤ p <∞ by

‖u‖Wm
p (Ω) =

( ∑
|α|≤m

‖Dαu‖pLp(Ω)

)1/p

with the usual modification for p = ∞. W̊m
p (Ω) is the closure of C∞

0 (Ω) with respect
to the norm of Wm

p (Ω). Furthermore, |u|Wm
p (Ω) will denote the seminorm

|u|Wm
p (Ω) =

( ∑
|α|=m

‖Dαu‖pLp(Ω)

)1/p

.
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For m > 0, W−m
p (Ω) is the dual of W̊m

q (Ω) with the norm

‖u‖W−m
p (Ω) = sup

v∈W̊m
q (Ω)

‖v‖Wm
q (Ω)=1

∫
Ω

uvdx,
1

p
+

1

q
= 1.

For given x0 ∈ R
N and d > 0, let

Bd = Bd(x0) = {x ∈ R
N : |x− x0| < d},

the ball of radius d centered at x0. Suppose now that u satisfies the local equation in
Bd(x0) ⊂⊂ Ω,

Lu = −
N∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

N∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f in Bd(x0).(1.3)

It will be assumed that the coefficients of L are smooth and that L is uniformly elliptic
in Bd(x0). That is, there exists a constant Cell > 0, independent of x ∈ Bd(x0) such
that for all ζ ∈ R

N

Cell|ζ|2 ≤
N∑

i,j=1

aijζiζj .

In weak form, u ∈W 1
2 (Bd(x0)) satisfies the local equations

A(u, v) ≡
∫
Bd

(
N∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
+

N∑
i=1

bi
∂u

∂xi
v + cuv

)
dx

=

∫
Bd

fvdx ≡ (f, v) for all v ∈ W̊ 1
2 (Bd(x0)).

(1.4)

Consider now a finite element approximation uh of u. To this end, for each
0 < h < 1

2 and integer r ≥ 2, let Shr (Ω) ⊂ W 1
∞(Ω) be a one-parameter family of

finite element spaces defined on a disjoint partition {τh} of Ω that covers Bd(x0). It
will be assumed that the partition is quasi-uniform of size h. Furthermore, it will be
assumed that Assumptions A.1–A.4 of the appendix are satisfied. These are essentially
the same assumptions as in [11]. They are satisfied by large classes of finite element
spaces, e.g., by conforming piecewise polynomials defined on quasi-uniform partitions
of Ω of size h, whose restriction to each disjoint set τh of the partition contains all
polynomials of degree ≤ r − 1. The spaces we use have the standard approximation
property that they can approximate functions to order hr and derivatives to order
hr−1 in L∞.

We shall consider approximations uh ∈ Shr (Bd) satisfying the local equations

A(u− uh, ϕ) = F (ϕ) for all ϕ ∈ S̊hr (Bd),(1.5)

where F (ϕ) is a linear functional on S̊hr (Bd). Here S̊hr (Bd) is the subspace of functions
ϕ ∈ Shr (Bd), whose support is contained in Bd.

Before stating our first results, we shall need to introduce various weighted Sobo-
lev norms. Let x0 ∈ R

N and s ∈ R be fixed and let y ∈ R
N be arbitrary. Consider

the weight function

σsx0,h(y) =
( h

|x0 − y| + h

)s
(1.6)
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and, for p = 1,∞ the weighted seminorms

|u|W j
p (Bd),x0,s

=
∑
|α|=j

‖σsx0,h(y)D
αu(y)‖Lp(Bd)(1.7)

and the norms

‖u‖Wm
p (Bd),x0,s =

m∑
j=0

|u|W j
p (Bd),x0,s

.(1.8)

We shall need some norms for the linear functional F that will allow us to obtain
estimates for (u− uh)(x0) and ∂

∂xi
(u− uh)(x0). We shall first introduce these norms

and then try to motivate their choice, after stating our main results in section 1.2.
We begin with the simplest. For u ∈ W̊ 1

1 (Bd) and s ∈ R let

‖u‖W 0,1
1 (Bd),x0,s

= h−1‖u‖L1(Bd),x0,s+1 + ‖∇u‖L1(Bd),x0,s.(1.9)

Then we define the norm of a linear functional bounded with respect to this norm,

|||F |||W 0,−1∞ (Bd),x0,s
= sup

ϕ∈ϕ∈W̊1
1 (Bd)

‖ϕ‖
W

0,1
1 (Bd),x0,−s

=1

F (ϕ).(1.10)

Furthermore, let � > k be an arbitrary but fixed integer, where k = 1, 2.
For u ∈ W̊ �

1 (Bd), we define the norm

‖u‖W 0,�,k
j (Bd),x0

=

�∑
j=0

∑
|α|=j

(
ln

1

h

)j ∫
Bd

(|x− x0| + h)j−k|Dαu|dx,(1.11)

where j = 1 if N = 2, k = 2, and j = 0 and j = 0 otherwise. Then we define the
norm of a linear functional bounded with respect to this norm,

|||F |||W 0,−�,k∞ (Bd),x0
= sup

ϕ∈W̊�
1 (Bd)

‖ϕ‖
W

0,�,k
1 (Bd),x0

=1

F (ϕ).(1.12)

We are now in a position to state our main results for interior estimates.

1.2. A statement of results for interior error estimates. We begin with
error estimates for (u− uh).

Theorem 1. Suppose that the assumptions on the finite element spaces Shr (Bd)
given in A.1–A.4 are satisfied on Bd(x0). Let 1 ≤ p ≤ ∞, t be a nonnegative integer
and 0 ≤ s ≤ r − 2 be given. There exist positive constants C and k, which depend at
most on p, t, N , s, Cell, the maximum norms of the coefficients of A and a sufficient
number of their derivatives in Bd(x0), and the constants in Assumptions A.1–A.4,
such that if u ∈W 1

∞(Bd(x0)) and uh ∈ Shr (Bd) satisfy (1.5), where d ≥ kh, then

‖u− uh‖L∞(Bh(x0)) ≤ Ch
(

ln
d

h

)s
min

χ∈Sh
r (Bd(x0))

‖u− χ‖W 1∞(Bd(x0)),x0,s

+ Cd−t−N/p‖u− uh‖W−t
p (Bd(x0))

+ C
(
h
(

ln
d

h

)s
|||F |||W 0,−1∞ (Bd(x0)),x0,s

+
(

ln
d

h

)
|||F |||W 0,−r,2∞ (Bd(x0)),x0

)
.

(1.13)

Here s = 0 if 0 ≤ s < r − 2, and s = 1 if s = r − 2.
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We again remark that in the case that F ≡ 0, Theorem 1 coincides with Theo-
rem 1.1 of [11]. However, in the case that F 	≡ 0, then Theorem 1 is an improvement
in that the norms of F are weaker.

The next result is the analogue of Theorem 1 for first derivatives of u− uh.
Theorem 2. Suppose that A.1–A.4, the assumptions on the finite element spaces

Sh1 (∞) given in the appendix, are satisfied on Bd(x0). Let 1 ≤ p ≤ ∞, t be a
nonnegative integer and 0 ≤ s ≤ r − 1 be given. There exist positive constants C
and k, which depend at most on p, t, N , s, Cell, the maximum norms of the coeffi-
cients of A and a sufficient number of their derivatives in Bd(x0), and the constants
in A.1–A.4, such that if u ∈ W 1

∞(Bd(x0)) and uh ∈ Shr (Bd(x0)) satisfy (1.5) with
d ≥ kh, then

‖u− uh‖W 1∞(Bh(x0))

≤ C
(

ln
d

h

)s
min

χ∈Sh
r (Bd(x0))

(
|u− χ|W 1∞(Bd(x0)),x0,s + d−1|u− χ|L∞(Bd(x0)),x0,s

)
+ Cd−t−N/p−1‖u− uh‖W−t

p (Bd(x0))
(1.14)

+ C
(

ln
d

h

)s
|||F |||W 0,−1∞ (Bd(x0)),x0,s

+ C
(

ln
d

h

)
|||F |||W 0,−r,1∞ (Bd(x0)),x0

.

Here s = 0 if 0 ≤ s < r − 1, and s = 1 if s = r − 1.
Analogous to the remark made for Theorem 1, we remark that in the case that

F ≡ 0, Theorem 2 coincides with Theorem 1.2 of [11], and in the case F 	= 0,
Theorem 2 is an improvement in that the norms of F are weaker.

Let us digress to motivate the choice of norms for the functional F . We limit
ourselves to a discussion of Theorem 1. The choice in Theorem 2 follows in an analo-
gous fashion. In Theorem 1, the contribution to the error |(u− uh)(x0)| made by the
functional F may be seen in (2.14), in the case d = 1, to be a term of the form

|F (wgx0

h (x))|.
Here w(x) ∈ C∞

0 (B1/2(x0)) is a cutoff function, and gx0

h (x) is the Galerkin approxi-
mation to gx0(x) on B1(x0), where gx0(x) is a smoothed Green’s function for a certain
auxilliary problem. Using the triangle inequality we have

|F (wgx0

h (x))| ≤ |F (wgx0(x))| + |F (w(gx0(x) − gx0

h (x))|.
The idea now is to treat these two terms separately, requiring F to have different
properties in each case.

For the first term on the right we can require that F be bounded when acting on
any space in which gx0(x) is bounded. We shall prove in Lemma 2 that

‖gx0(·)‖W 0,r,2
1 (B1(x0)),x0

≤ C ln
1

h
.

Note that this norm was designed to capture the behavior of the smoothed Green’s
function and it is natural to bound F (wgx0(x)) by

|F (wgx0(x))| ≤ |||F |||W 0,−r,2∞ (B1(x0)),x0
‖wg‖W 0,r,2

1 (B1(x0)),x0

≤ C ln
1

h
|||F |||W 0,−r,2∞ (B1(x0)),x0

.



PERTURBATIONS OF FORMS AND ERROR ESTIMATES 2347

Similarly for the second term F (w(gx0 − gx0

h )), we seek a norm with respect to which
w(gx0(x) − gx0

h (x)) is bounded. From (2.11) we have that for 0 ≤ s ≤ r − 2, gx0

h (x)
approximates gx0(x) according to

‖gx0(x) − gx0

h (x)‖W 0,1
1 (Bd(x0)),x0,−s ≤ Ch

(
ln

1

h

)s
.

Using this we easily obtain

|F (w(gx0(x)−gx0

h (x)))| ≤ |||F |||W 0,−1∞ (Bd(x0)),x0,s
‖w(gx0(x)−gx0

h (x))‖W 0,1
1 (B1(x0)),x0,−s

≤ Ch
(

ln
1

h

)s
|||F |||W 0,−1∞ (Bd(x)),x0,s

.

We shall now state some simple consequences of Theorems 1 and 2, so-called error
expansion inequalities, that will be the basic estimates used in our superconvergence
study to be given in section 1.4. We shall need a strengthened form of A.1 that we
state here as a separate assumption.

Assumption A.5. Assume that for p = ∞ and for D1 ⊂⊂ D ⊂ Bd(x0), with
dist(D1, ∂D) ≥ k0h, the function χ ∈ Shr (D) in A.1 satisfies

‖u− χ‖W 1∞(D1) ≤ Chr−1|u|W r∞(D),(1.15)

where | · |W r∞(D) is the seminorm defined in (1.7).
Corollary 1. Suppose that the conditions of Theorem 1 hold and in addition

Assumption A.5 holds. Let u ∈W γ(Bd(x0)), where γ is an integer r+1 ≤ γ ≤ 2r−2.

Let Ĉ > 0 be a fixed but arbitrary constant with Ĉh ≤ d, and let x̂ satisfy |x0−x̂| ≤ Ĉh.
Then (1.13) holds with

Ch
(

ln
d

h

)s
min

χ∈Sh
r (Bd(x0))

‖u− χ‖W 1∞(Bd(x0)),x0,s(1.16)

in (1.14) replaced by

C
(

ln
d

h

)γ(
hr
∑
|α|=r

|Dαu(x̂)| + · · · + hγ−1
∑

|α|=γ−1

|Dαu(x̂)| + hγ |u|Wγ∞(Bd(x0))

)
.

(1.17)

Here γ = 0 if r + 1 ≤ γ < 2r − 2 and γ = 1 if γ = 2r − 2. C is the same as in
Theorem 1 except that it also depends on Ĉ.

The corresponding error expansion inequality for first derivatives of the error is
as follows.

Corollary 2. Suppose that the conditions of Theorem 2 hold and in addition
Assumption A.5 holds. Let u ∈W γ+1

∞ (Bd(x0)), where γ is an integer r ≤ γ ≤ 2r− 2.

Let Ĉ be an arbitrary but fixed positive constant with Ĉh < d, and let x̂ satisfy
|x0 − x̂| ≤ Ĉh. Then (1.14) holds with

C
(

ln
d

h

)s
min

χ∈Sh
r (Bd(x0))

(|u− χ|W 1∞(Bd(x0)),x0,s + d−1|u− χ|L∞(Bd(x0)),x0,s

)
(1.18)

replaced by

C
(

ln
d

h

)γ(
hr−1

∑
|α|=r

|Dαu(x̂)| + · · · + hγ−1
∑
|α|=γ

|Dαu(x̂)| + hγ |u|Wγ+1∞ (Bd(x0))

)
.

(1.19)
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Here γ = 0 if r ≤ γ < 2r− 2 and γ = 1 if γ = 2r− 2. C is the same as in Theorem 2
except that it also depends on Ĉ.

1.3. Superconvergence and subspaces symmetric with respect to a
point—preliminaries. In [12], a new theory was presented for obtaining super-
convergence. Assuming now that u− uh satisfies

A(u− uh, ϕ) = 0 for all ϕ ∈ S̊hr (Bd(x0)),(1.20)

superconvergence at a point x0 was achieved by requiring the subspaces to be sym-
metric with respect to x0 in Bd(x0), which is defined as follows.

Assumption A.6. Let x0 and d > 0 be given with Bd(x0) ⊂⊂ Ω. Assume that
whenever ϕ(x) ∈ Shr (Bd(x0)), then ϕ(x) = ϕ(x0−(x−x0)) also belongs to Shr (Bd(x0)).
In this case we shall call x0 a symmetry point of Shr (Bd(x0)).

Let us now turn to some simple examples of finite element spaces that satisfy
Assumptions A.1–A.6. Let {τh} be a quasi-uniform partition of size h of Ω (which
obviously covers Bd(x0)). For our finite element spaces Shr (Bd(x0)), we shall start
with the set of functions that are in C�(Bd(x0)) for some integer 0 ≤ � ≤ r − 2 and
that, on each element τh, are polynomials of the form

ϕ(x) =
∑
α∈I

Cαx
α, Cα arbitrary constants.(1.21)

Here, I is a fixed set of multi-indices. Many well-known finite element spaces fitting
this description satisfy Assumptions A.1–A.5. It is easy to see that A.6 is satisfied if
and only if

(i) the partition {τh} is invariant under the antipodal mapping x→ x0− (x−x0),
and

(ii) functions of the form (1.21) are invariant in form under the same antipodal
mapping x→ x0 − (x− x0).

We refer the reader to the examples of partitions {τh} satisfying (i) that are given
in [12], and granting these we only have to check (ii). If α ∈ I, α = (α1, . . . , αN ), a
multi-index, then xα transforms to (2x0 − x)α, and it is easy to see via a binomial
expansion that α ∈ I, if and only if β ∈ I for every multi-index β ≤ α. This is a nec-
essary and sufficient condition that functions of the form (1.21), defined on partitions
satisfying (i), satisfy A.6. A simple example is Pr−1(τh), the set of polynomials of
degree ≤ r− 1. In this case α ∈ I, if and only if |α| ≤ r− 1. Another simple example
is Qr−1(τh), the tensor products of one-dimensional polynomials of degree r − 1. In
this case α ∈ I if and only if αi ≤ r − 1 for i = 1, . . . , N .

1.4. Statement of results for superconvergence at symmetry points.
We are now in a position to state our main superconvergence results. Applications to
specific boundary value problems are given in section 1.5. We begin with estimates
for the error (u− uh)(x0) at a symmetry point x0.

Theorem 3. Suppose that the conditions of Corollary 1 hold and in addition A.6
is satisfied. Then if r ≥ 3 is odd,

|(u− uh)(x0)| ≤ C
[
hr+1

(
ln
d

h

)2

‖u‖W r+1∞ (Bd(x0))
+
(
ln
d

h

)
d−t−N/p‖e‖W−t

p (Bd(x0))

]
.

(1.22)

Remark. We point out that the first term on the right side of (1.22) is supercon-
vergent of order hr+1(ln d

h )2 and hence superconvergence of the same order will occur
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at x0 provided a similar bound holds for the second term on the right which measures
the effects of the discretization error from outside of Bd(x0). As is customary, this
can be determined separately for each particular global problem. Examples are given
in the next section.

Our next result involves superconvergent approximations to first derivatives at
symmetry points x0. As noted in [12], uh may not be differentiable at x0, in which

case our result will give many possible approximations to ∂u
∂xi

(x0) given by ∂ûh(x0,β)
∂xi

,

where β is any unit vector such that for 0 ≤ s ≤ s0 sufficiently small, ∂uh

∂xi
has both

left- and right-hand limits as s→ 0 along the line x = x0 + sβ. We then define

∂ûh
∂xi

(x0, β) =
1

2
lim
s→0

(∂uh(x0 + sβ)

∂xi
+
∂uh(x− sβ)

∂xi

)
.

Our result is then as follows.
Theorem 4. Suppose that the conditions of Corollary 2 hold and in addition A.6

is satisfied. Then if r ≥ 2 is even and i = 1, . . . , N ,∣∣∣ ∂u
∂xi

(x0) − ∂û(x0, β)

∂xi

∣∣∣
≤ C

(
hr
(

ln
d

h

)2

‖u‖W r+1∞ (Bd(x0))
+ ln

(d
h

)
d−1−t−N/p‖e‖W−t

p (Bd(x0)

)
.

(1.23)

Remark. The first term on the right side of (1.23) is superconvergent of order
hr(ln d

h )2, and we now give specific examples in which the second term on the right
also exhibits superconvergent behavior.

1.5. Examples: Applications to specific boundary value problems. In
this section we apply our results to the finite element method for approximating the
solutions of various boundary value problems. For simplicity we restrict ourselves to
the examples treated in section 3 of [12]. The superconvergence results given below
are all significant improvements of those given there. Our boundary value problems
will be of the form

Lu = −
N∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

N∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f in Ω(1.24)

with some boundary condition on ∂Ω.
It will be assumed that the coefficients of L are smooth and satisfy a uniform

ellipticity conditon on Ω.
Example 1. Let the form (1.4) be defined on all of Ω and coercive on W 1

2 (Ω)
so that it corresponds to a problem with homogeneous conormal derivative boundary
conditions. Suppose that ∂Ω is smooth and that the triangulations fit the boundary
exactly. Furthermore, suppose that the subspaces have the property that for any
1 ≤ q ≤ ∞,

min
χ∈Sh

r (Ω)
‖u− χ‖W 1

q (Ω) ≤ Chr−1‖u‖W r
q (Ω).(1.25)

We investigate the standard finite element method

A(u− uh, ϕ) = 0 for all ϕ ∈ Shr (Ω).(1.26)
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It is well known (see, for example, [12, Example 3.1]) that

‖e‖W 2−r∞ (Ω) ≤ Ch2r−2
(

ln
1

h

)
‖u‖W r∞(Ω).(1.27)

Applying (1.29) to Theorem 3, we obtain at symmetry points x0 that if r ≥ 3 is odd
and u is sufficiently smooth, then

|e(x0)| ≤ C(u)
(

ln
1

h

)2

(hr+1 + d2−rh2r−2)

≤ C(u)
(

ln
1

h

)2

hr+1 for d ≥ h1− 1
r−2 (r ≥ 3 odd).

(1.28)

Thus if we disregard logarithmic factors we have superconvergence of one order higher
than the global optimal rate, provided the subspace satisfies the symmetry condition

in an 0
(
h1− 1

r−2
)

neighborhood of x0.
The corresponding result for first derivatives is for r ≥ 2 and even. In this case

it follows from (1.27) and (1.23) that∣∣∣ ∂u
∂xi

(x0) − ∂ûh(x0, β)

∂xi

∣∣∣
≤ C(u)

(
ln

1

h

)2

(hr + d1−rh2r−2)

≤ C(u)
(

ln
1

h

)2

(hr) for d ≥ h1− 1
r−1 (r ≥ 2, even).

(1.29)

We also note that a superconvergence rate of order hr+ε for e(x0) can be achieved
with d ≥ h1− ε

r−2 , and a superconvergence rate of order hr−1+ε for first derivatives can
be achieved with d ≥ h1− ε

r−1 . This indicates that we can obtain superconvergence
fairly close to boundaries.

Example 2 (Dirichlet’s problem on smooth domains in R
N

). Here we consider ho-
mogeneous Dirichlet boundary conditions u = 0 on ∂Ω. For our finite element spaces
we take isoparametric elements defined on a mesh that approximates the boundary
to order hr and that vanish on the approximate boundary. For u sufficiently smooth
it was proved in Schatz and Wahlbin [15] that

‖e‖L∞(Ω) ≤ Chr
(

ln
1

h

)r
.(1.30)

Applying this to (1.23) we obtain for the derivatives∣∣∣∂u(x0)

∂xi
− ∂ûh(x0, β)

∂xi

∣∣∣ ≤ C
(

ln
1

h

)2(
hr‖u‖W r+1∞ (Bd(x0))

+ hrd−1
)

≤ C
(

ln
1

h

)2

hr

(1.31)

for r ≥ 2 even and d = 0(1).
Results analogous to (1.28) and (1.29) would hold if (1.27) were satisfied. This can

be accomplished, for example, by using superparametric elements that approximate
the boundary to order h2r−2.
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Example 3 (Dirichlet problems on smooth plane domains). Scott [16], [17] treated
Dirichlet problems on plane smooth domains in a special way so that

‖e‖W 2−r
2 (Ω) ≤ Ch2r−2.(1.32)

In this case it is easily seen that the superconvergence estimate (1.28) holds this time

with d ≥ Ch
r−3
r−1 . Furthermore, (1.29) holds with d ≥ Ch

r−2
r .

Example 4 (Dirichlet problems on plane polygonal domains). Consider the prob-
lem

−∆u = f in Ω, u = 0 on ∂Ω,

where Ω is a plane polygonal domain. The behavior of solutions for f sufficiently
smooth is well known (see, for example, Grisvard [3, Theorem 5.1.3.5]), and using
suitable mesh refinements if necessary [1], we can assume that

min
χ∈Sh

r (Ω)
‖u− χ‖W 1

2 (Ω) ≤ Chr−1‖f‖W r−2
2 (Ω).

A standard duality argument gives that (1.32) holds.
Then for Bd(x) ⊂⊂ Ω on which the meshes are not refined and for which Corol-

laries 1 and 2 hold, the same results as for Example 3 hold.

2. A proof of Theorem 1. The proof of Theorem 1 is quite lengthy. Parts of it
have a great deal in common with the proof of Theorem 1.1 of [11]. We give an outline
of the common parts and details on what is new. We shall simplify by considering
only the case d = 1. The case d < 1 follows from this by a scaling argument.
Without loss of generality we may assume that A is coercive on W 1

2 (B1). The case
of noncoercive A can be easily reduced to this case (see, e.g., [11]) Furthermore, the
proof may be reduced in a now-standard way to estimates for an auxilliary Neumann
problem with homogeneous conormal derivative boundary conditions as follows. Let
w(x) ∈ C∞

0 (RN ) be a cutoff function with 0 ≤ w(x) ≤ 1, w(x) ≡ 1 for |x− x0| ≤ .25,
and w(x) ≡ 0 for |x − x0| ≥ .5. Set û = wu and let (û)h be the finite element
approximation of û defined by

A(û− (û)h, ϕ) = F (wϕ) for all ϕ ∈ Shr (B1).(2.1)

Using the triangle inequality,

‖u− uh‖L∞(Bh) ≤ ‖û− (û)h‖L∞(Bh) + ‖(û)h − uh‖L∞(Bh).(2.2)

The remainder of this section is devoted to proving the following lemma, from
which (1.13) follows.

Lemma 1. With u, uh, û, and (û) defined above,

‖û− (û)h‖L∞(Bh) ≤ C
(
h
(

ln
1

h

)s
‖û‖W 1∞(B1),x0,s

+ h
(

ln
1

h

)s
|||F |||W 0,−1∞ (B1),x0,s

+
(

ln
1

h

)
|||F |||W 0,−r,2∞ (B1),x0

)
(2.3)
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and

‖(û)h − uh‖L∞(Bh) ≤ C
(
h‖û‖W 1∞(B1),x0,s + ‖u− uh‖W−t

p (B1)

+ h|||F |||W 0,−1∞ (B1),x0,s
+ |||F |||W 0,−r,2∞ (B1),x0

)
.

(2.4)

Before proceeding with a proof of this lemma, let us show how Theorem 1 follows.
Since

‖û‖W 1∞(B1),x0,s ≤ C‖u‖W 1∞(B1)x0,s,

from (2.3), (2.4), and (2.2), we have that

‖u− uh‖L∞(Bh) ≤ C
(
h
(

ln
1

h

)s
‖u‖W 1∞(B1),x0,s + ‖u− uh‖W−t

p (B1)

+ h
(

ln
1

h

)s
|||F |||W 0,−1∞ (B1),x0,s

+
(

ln
1

h

)
|||F |||W 0,−r,2∞ (B1),x0

)
.

(2.5)

The inequality (1.14) follows easily on applying (2.5) to u−uh ≡ u−χ− (uh−χ)
for any χ ∈ Shr (B1).

We first prove the estimate (2.3). For this purpose let k be a fixed positive integer,
and let ψ ∈ W̊ r−2

2 (Bkh) with ‖ψ‖W r−2
2 (Bkh) = 1. Define gx0(y) as the unique solution

of

A(v, gx0) = (v, h−N/2+2−rψ) for all v ∈W 1
2 (B1(x0)).(2.6)

Note that gx0(y) ∈ W r
2 (B1) and h−N/2+2−r‖ψ‖L1(Bkh) ≤ C, so that gx0 may be

thought of as a smoothed and renormalized Green’s function, in general smoother than
that defined in [11]. Furthermore, let gx0

h ∈ Shr (B1) be its finite element approximation
defined by

A(ϕ, gx0 − gx0

h ) = 0 for all ϕ ∈ Shr (B1).(2.7)

The following estimates play a critical role in our new results.
Lemma 2. For gx0 and gx0

h as defined above,

‖gx0‖W j
2 (B1)

≤ Ch−N/2−j+2 for j = 2, . . . , r(2.8)

and

‖gx0‖W 0,r,2
1 (B1),x0

≤ C ln
1

h
.(2.9)

Furthermore,

‖gx0 − gx0

h ‖W 1
1 (B1),x0,−s ≤ Ch

(
ln

1

h

)s
(2.10)

and

‖gx0 − gx0

h ‖W 0,1
1 (B.5),x0,−s ≤ Ch

(
ln

1

h

)s
,(2.11)
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where the constants C are independent of ψ.
Let us first show how, using this, one may estimate ‖û − (û)h‖L∞(Bh) in (2.2).

Letting ê = û − (û)h and using standard inverse properties of Shr (B1), we have for
any χ ∈ Shr (B1) that there is a k > 0, sufficiently large but fixed, such that

‖ê‖L∞(Bh) ≤ C‖û− χ‖L∞(Bkh) + Ch−N/2+2−r‖ê‖W 2−r
2 (Bkh).(2.12)

Then by duality,

h−N/2+2−r‖ê‖W 2−r
2 (Bkh) = sup

ψ∈W̊
r−2
2 (Bkh)

‖ψ‖
W

r−2
2 (Bkh)

=1

(ê, h−N/2+2−rψ).(2.13)

Now for each such ψ, we have in view of (2.1) and (2.7) that

(ê, h−N/2+2−rψ) = A(ê, gx0) = A(ê, gx0 − gx0

h ) + F (wgx0

h )

= A(û− χ, gx0 − gx0

h ) + F (w(gx0

h − gx0)) + F (wgx0).
(2.14)

Combining (2.12), (2.13), and (2.14) with Lemma 2 we arrive at

‖ê‖L∞(Bh) ≤ C
(
‖û −χ‖L∞(Bkh) + ‖û− χ‖W 1∞(B1),x0,s‖gx0 − gx0

h ‖W 1
1 (B1),x0,−s

+ |||F |||W 0,−1∞ (B.5),x0,s
‖gx0 − gx0

h ‖W 0,1
1 (B.5),x0,−s

+ |||F |||W 0,−r,2∞ (B1),x0
‖gx0‖W 0,r,2

1 (B1),x0

)
≤ C

(
h
(

ln
1

h

)s
‖û‖W 1∞(B1),x0,s + h

(
ln

1

h

)s
|||F |||W 0,−1∞ (B1),x0,s

+
(

ln
1

h

)
|||F |||W 0,−r,2∞ (B1),x0

)
,

which completes the proof of (2.3), once we have proved Lemma 2.
Proof of Lemma 2. The inequality (2.8) follows from a standard a priori estimate

and Poincaré’s inequality. In fact, for j = 2, . . . , r,

‖gx0‖W j
2 (B1)

≤ Ch−N/2+2−r‖ψ‖W j−2
2 (Bkh) ≤ Ch−N/2−j‖ψ‖W r−2

2 (Bkh).

We prove (2.9) in three steps. Set

Mα =

∫
B1

(|x− x0| + h)j−2|Dαgx0 |dx, |α| = j.

Step 1. We begin by estimating Mα for j = 2, . . . , r:

Mα ≤
∫
B2kh

(|x− x0| + h)j−2|Dαgx0 |dx+

J∑
j=0

∫
Ω�

(|x− x0| + h)j−2|Dαgx0 |dx
(2.15)

= Iin +

J∑
�=0

I�.
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Here for � = 0, . . . , J = [ln2
1
kh ] + 1, Ω� is the annulus

Ω� = {x : 2�−1 ≤ |x− x0| ≤ 2−�}.

Now using (2.8),

|Iin| ≤ Chj−2+N/2‖gx0‖W j
2 (B1)

≤ C.(2.16)

Furthermore, for any � = 0, . . . , J and any j = 2, . . . , r, and d� = 2−�,

|I�| ≤ Cdj+N� ‖Dα
x g

x0‖L∞(Ω�).(2.17)

Now let Gx(y) be the Green’s function for the auxilliary Neumann problem. It follows
that since x ∈ Ω� and Ω� ∩Bkh = φ, then

Dα
x g

x0(x) = h−N/2+2−r
∫
Bkh

ψ(y)Dα
xG

x(y)dy.

By an estimate of Krasovskii [4] we have for N ≥ 2,

|Dα
xD

β
yG

x(y)| ≤ C

⎧⎪⎪⎨⎪⎪⎩
(

ln
1

|x− y|
)

+ 1 if N = 2 and |α| + |β| = 0,

1

|x− y|N−2+|α|+|β| otherwise.

(2.18)

Thus for |α| = j ≥ 2

‖Dα
xG

x(y)‖L∞(Ω�) ≤
C

dN−2+j
�

, x ∈ Ω�, y ∈ Bkh.

Hence it follows from this that

‖Dα
x g

x0‖L∞(Ω�) ≤ h−N/2+2−r‖ψ‖L1(Bkh)d
−N−j+2
� ≤ Cd−N−j+2

� ,

where we used the Cauchy–Schwarz and Poincaré inequalities. Combining this last
inequality with (2.17) we arrive at

|I�| ≤ C.(2.19)

Summing (2.19) over � and adding the result to (2.16) we finally obtain from
(2.15) that for any |α| = j and j = 2, . . . , r,

Mα ≤ C ln
1

h
,(2.20)

which completes Step 1.
Step 2. We estimate Mα for j = 1 and N ≥ 2, or j = 0 and N ≥ 3. In this case

Mα ≤ h−N/2+2−r
∫
B1

(|x− x0| + h)j−2

(∫
Bkh

|ψ(y)| |DαGx(y)|dy
)
dx

≤ h−N/2+2−r
∫
Bkh

|ψ(y)|
(∫

B1

(|x− x0| + h)j−2|DαGx(y)|dx
)
dy,
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where we interchanged orders of integration. Setting ρ = |x − y| and σ = |x − x0| it
follows that

Mα ≤ Ch−N/2+2−r
∫
Bkh

|ψ(y)|
(∫ 3/2

0

(σ + h)j−2ρ1−jdρ
)
dy,

where we used (2.18). Now let j = 1; then

Mα ≤ Ch−N/2+2−r
∫
Bkh

|ψ(y)|
(∫ 2

0

(σ + h)−1dσ

)
≤ Ch−N/2+2−r ln

1

h
‖ψ‖L1(Bkh) ≤ C ln

1

h
.

(2.21)

In the case that j = 0 and N ≥ 3, it follows from (2.18) that

Mα ≤ Ch−N/2+2−r
∫
Bkh

|ψ(y)|
(∫ 3/2

0

ρ

(σ + h)2
dρ

)
dy

≤ Ch−N/2+2−r
∫
Bkh

|ψ(y)|
(∫ 2

0

(σ + h)−1dσ

)
dy

≤ C ln
1

h
,

(2.22)

where we used ρ ≤ σ + 2kh ≤ 2k(σ + h). This completes Step 2.
Step 3. j = 0 and N = 2. Again using (2.18) we have

(2.23)

Mα ≤ Ch−N/2+2−r
∫
Bkh

|ψ(y)|
(∫

B1

(
ln 1

|x−y| + 1
)

(|x− x0| + h)2
dx

)
dy

≤ Ch−N/2+2−r
∫
Bkh

|ψ(y)|
(∫ h

0

ρ
(
ln 1

ρ + 1
)

(σ + h)2
dρ+

∫ 1.5

h

ρ
(
ln 1

ρ + 1
)

(σ + h)2
dρ

)
dy.

Furthermore, ∫ h

0

ρ
(
ln 1

ρ + 1)

(σ + h)2
dρ ≤ 1

h2

∫ h

0

ρ
(

ln
1

ρ
+ 1
)
dρ ≤ C ln

1

h
,(2.24)

which is obtained by integrating the last integral by parts. Again, since ρ ≤ 2k(σ+h),∫ 1.5

h

ρ
(
ln 1

ρ + 1)

(σ + h)2
dρ ≤ C

(
ln

1

h

)∫ 2

0

(σ + h)−1dσ ≤ C
(

ln
1

h

)2

.(2.25)

Substituting (2.24) and (2.25) into (2.23) we obtain for j = 0 and N = 2,

Mα ≤ C
(

ln
1

h

)2

for |α| = j = 0 and N = 2,(2.26)

which completes Step 3. The inequality (2.9) now easily follows from (2.20), (2.21),
(2.22), and (2.26).

We next note that the inequality (2.10) was proved in Lemma 2.7 of [11] for a
less smoothed Green’s function than that treated here. The proof given there yields
the result (2.10). This completes the proof of Lemma 2.
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Remark. The extra smoothness of the smoothed Green’s function constructed
here was used in the inequalities (2.8) and (2.9) and could be used to estimate higher
derivatives of the error in (2.11).

We now turn to the proof of (2.4). To begin with, notice that (û)h − uh, where
û = wu, is discrete “A harmonic” on B.25; i.e., it satisfies

A((û)h − uh, ϕ) = 0 for all ϕ ∈ S̊hr (B.25).(2.27)

It was proved in [13] (see also [11]) that

‖(û)h − uh‖L∞(Bh) ≤ C‖(û)h − uh‖W−t′
p′ (B.25)

≤ C
(
‖u− uh‖W−t′

p′ (B1)
+ ‖û− (û)h‖W−t′

p′ (B1)

)
,

(2.28)

where t′ ≥ 0 and 1 ≤ p′ ≤ ∞ are arbitrary. Now t′ may be chosen so large and p′ = 1,
so that for arbitrary t ≥ 0 and 1 ≤ p ≤ ∞ (2.28) becomes

‖(û)h − uh‖L∞(Bh) ≤ C
(
‖u− uh‖W−t

p (B1)
+ ‖û− (û)h‖W−λ

2 (B1)

)
,(2.29)

where λ = max(r− 2, [N/2]) and [N/2] denotes the integer part of N/2. The proof of
(2.4), and hence of Theorem 1, is complete once we have shown that

‖ û− (û)h‖W−λ
2 (B1)

≤ C
(
h‖û‖W 1∞(B1),x0,s + h|||F |||W 0,−1∞ (B1),x0,s

+ ln
1

h
|||F |||W 0,−r,2∞ (B1),x0

)
.

(2.30)

The proof of this follows by a standard duality argument that we shall just outline.

‖ê‖W−λ
2 (B1)

= sup
η∈W̊λ

2 (B1)

‖η‖
Wλ

2 (B1)
=1

(ê, η).(2.31)

For each such η let z ∈W r
2 (B1) satisfy

A(v, z) = (v, η) for all v ∈W 1
2 (B1)(2.32)

and let zh ∈ Shr (B1) satisfy

A(ϕ, z − zh) = 0 for all ϕ ∈ Shr (B1).(2.33)

Then

(ê, η) = A(ê, z) = A(ê, z − zh) + F (wzh)

= A(û, z − zh) + F (w(zh − z)) + F (wz).

This together with (2.31) yields

‖ê‖W−λ
2 (B1)

≤ C
(
‖û‖W 1∞(B1),x0,s‖z − zh‖W 1

1 (B1),x0,−s

+ |||F |||W 0,−1∞ (B.5),x0,s
‖z − zh‖W 0,1

1 (B.5),x0,s

+ |||F |||W 0,−r,2∞ (B.5),x0
‖z‖W 0,r,2

1 (B.5),x0

)
.

(2.34)
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The inequality (2.30) now easily follows from (2.34) and the following lemma.

Lemma 3. With z and zh defined as above,

‖z − zh‖W 1
1 (B1),x0,−s ≤ Ch,(2.35)

‖z − zh‖W 0,1
1 (B.5),x0,−s ≤ Ch,(2.36)

‖z‖W 0,r,2
1 (B1),x0

≤ C
(

ln
1

h

)
.(2.37)

Proof. We begin by noting that

‖z‖Wλ+2
2 (B1)

≤ C‖η‖Wλ
2 (B1) ≤ C.(2.38)

Then a crude estimate yields

‖z − zh‖W 1
1 (B1),x0,−s ≤ Ch−s‖z − zh‖W 1

2 (B1) ≤ Chr−1−s‖z‖W r
2 (B1) ≤ Ch,(2.39)

where we used (2.38) and the fact that 0 ≤ s ≤ r − 2. This proves (2.35). We leave
the proof of (2.36) to the reader.

To prove (2.37) we let

Pα =

∫
B1

(|x− x0| + h)j−2|Dα(ωz)|dx, |α| = j, j = 0, . . . , r.

When j = 2, . . . , r,

Pα ≤ C‖Dα(ωz)‖L2(B1) ≤ C‖η‖W r−2
2 (B1)

≤ C.(2.40)

In the case that j = 0, 1 we have

Pα = ‖(|x− x0| + h)j−2‖L1(B1)‖Dα(ωz)‖L∞(B1).

Now

‖(|x− x0| + h)j−2‖L1(B1) ≤ C

⎧⎪⎨⎪⎩
ln

1

h
when j = 0 and N = 2,

1 when j = 0 and N ≥ 3 or j = 1 and N ≥ 2.

Thus in this case we certainly have

Pα ≤ C ln
1

h
, j = 0, 1, |α| = j.(2.41)

The inequality (2.37) now easily follows from (2.40) and (2.41).

This completes the proof of Lemma 3 and Theorem 1.
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2.1. A sketch of the proof of Theorem 2. In general outline, the proof of
Theorem 2 follows that of Theorem 1. We give only a sketch of the proof and indicate
the differences. We again restrict ourselves to the case d = 1 and this time, using
û− (û)h, the solution of (2.1), we have instead of (2.2), that for any i = 1, . . . , N ,

∥∥∥ ∂

∂xi
(u− uh)

∥∥∥
L∞(Bh)

≤
∥∥∥ ∂

∂xi
(û− (û)h)

∥∥∥
L∞(Bh)

+
∥∥∥ ∂

∂xi
((û)h − uh)

∥∥∥
L∞(Bh)

.

(2.42)

Then instead of Lemma 1 we have the following lemma.

Lemma 4. With u, uh, û, and ûh as in Lemma 1,∥∥∥ ∂

∂xi
(û− (û)h)

∥∥∥
L∞(Bh)

≤ C
((

ln
1

h

)s
‖û‖W 1∞(B1),x0,s +

(
ln

1

h

)s
|||F |||W 0,−1∞ (B1),x0,s

+
(

ln
1

h

)
|||F |||W 0,−r,1∞ (B1),x0

)
(2.43)

and ∥∥∥ ∂

∂xi
((û)h − uh)

∥∥∥
L∞(Bn)

≤ C
(
‖u‖W 1∞(B1),x0,s + ‖u− uh‖W−t

p (B1)

+ |||F |||W 0,−1∞ (B1),x0,s
+ |||F |||W 0,−r,1∞ (B1),x0

)
.

(2.44)

The proof of Theorem 2 follows easily from (2.40), (2.43), and (2.44). Therefore
we need only prove (2.43) and (2.44).

To prove (2.43), let ψ ∈ W̊ r−1
2 (Bkh) with ‖ψ‖W r−1

2 (Bkh) = 1, and define g̃x0 as

the solution of

A(v, g̃x0) =
(
v,−h−N/2−r+1 ∂ψ

∂xi

)
.(2.45)

Furthermore, let g̃x0

h be the finite element approximation defined by

A(v, g̃x0 − g̃x0

h ) = 0 for all v ∈W 1
2 (B1).(2.46)

The analogue of Lemma 2 is as follows.

Lemma 5. Let g̃x0 and g̃x0

h as defined above. Then

‖g̃x0‖W j
2 (B1)

≤ Ch−N/2−j+1 for j = 1, . . . , r,(2.47)

‖g̃x0‖W 0,r,1
1 (B1),x0

≤ C ln
1

h
,(2.48)
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‖g̃x0 − g̃x0

h ‖W 1
1 (B1),x0,−s ≤ C

(
ln

1

h

)s
,(2.49)

‖g̃x0 − g̃x0

h ‖W 0,1
1 (B1/2),x0,−s ≤ C

(
ln

1

h

)
.(2.50)

The proof of Lemma 5 follows along the lines of Lemma 2 and is left for the
reader.

To prove (2.43) we first find, with ê = û− (û)h, that for any χ ∈ Shr (B1),

∥∥∥ ∂ê
∂xi

∥∥∥
L∞(Bh)

≤
∥∥∥∂(û− χ)

∂xi

∥∥∥
L∞(Bkh)

+ h−N/2+1−r
∥∥∥ ∂ê
∂xi

∥∥∥
W 1−r

2 (Bkh)
.(2.51)

By duality and integration by parts

h−N/2+1−r
∥∥∥ ∂ê
∂xi

∥∥∥
W 1−r

2 (Bkh)
= sup

ψ∈W̊
r−1
2 (Bkh)

‖ψ‖
W

r−1
2 (Bkh)

=1

(
ê,−h−N/2+1−r ∂ψ

∂xi

)
.(2.52)

For each such ψ

(
ê,−hN/2+1−r ∂ψ

∂xi

)
= A(ê, g̃x0 − g̃x0

h ) + F (w(̃gx0

h − g̃x0)) + F (wg̃x0).

It follows that ∣∣∣(ê,−hN/2+1−r ∂ψ
∂xi

)∣∣∣
≤ C

(
‖û− χ‖W 1∞(B1),x0,s‖g̃x0 − g̃x0

h ‖W 1
1 (B1),x0,−s

+ |||F |||W 0,−1∞ (B1),x0,s
‖g̃x0 − g̃x0

h ‖W 0,1
1 (B1/2),x0,−s

+ |||F |||W 0,−r,1∞ (B1),x0
‖g̃x0‖W 0,r,1

1 (B1),x0

)
.

(2.53)

The inequality (2.43) now follows by combining (2.48), (2.52), and (2.53) with Lem-
ma 5.

The proof of (2.44) follows the proof of (2.4) very closely except that instead of
(2.21), we now use

∥∥∥ ∂

∂xi
((û)h − uh)

∥∥∥
L∞(Bh)

≤ C‖(û)h − uh‖W−t
p (B.25)

,

which was proved in [14] (see also [11]). We leave the details to the reader.

3. A proof of Theorem 3. Consider e(x) = e(x0 − (x − x0)), where e(x) =
u(x) − uh(x). For any ϕ ∈ S̊hr (Bd(x0)), e(x) satisfies (after a change of variables
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y = x0 − (x− x0))

A(e, ϕ) =

∫
Bd(x0)

(
N∑

i,j=1

aij
∂e

∂xi

∂ϕ

∂xj
+

N∑
i=1

bi
∂e

∂xi
ϕ+ ceϕ

)
dx

= (−1)N
∫
Bd(x0)

(
N∑

i,j=1

aij
∂e

∂yi

∂ϕ

∂yj
−

N∑
i=1

bi
∂e

∂y
ϕ+ Ceϕ

)
dy

= (−1)NA(e, ϕ)

+ (−1)N
∫
Bd(x0)

(
N∑

i,j=1

(aij − aij)
∂e

∂yi

∂ϕ

∂yj
−

N∑
i=1

(bi + bi)
∂e

∂yi
ϕ

)
dy

+ (−1)N
∫
Bd(x0)

(C − C)eϕdy.

(3.1)

Since ϕ ∈ S̊hr (Bd(x0)), A(e, ϕ) = 0, and it follows that (3.1) may be rewritten as

A(e, ϕ) = 2(−1)N
∫
Bd(x0)

(
N∑

i,j=1

aij,odd
∂e

∂yi

∂ϕ

∂yj
−

N∑
i=1

bi,even
∂e

∂yi
ϕ+ Coddeϕ

)
dy

(3.2)
= 2(−1)n[F1(ϕ) + F2(ϕ) + F3(ϕ)] ≡ F (ϕ).

Here, for any function w(x)

weven =
w(x) + w(x)

2
, wodd =

w(x) − w(x)

2
.

Note that since A(e, ϕ) = 0 for all ϕ ∈ S̊hr (Bd(x0)), then

A(eeven, ϕ) = F (ϕ) for all ϕ ∈ S̊hr (Bd(x0)).(3.3)

Applying Corollary 1 to eeven = ueven − uh,even with the choice γ = r + 1, we obtain
that at the symmetry point x0 where eeven(x0) = e(x0),

|e(x0)| ≤ C

[(
ln
d

h

)r(
hr
∑
|α|=r

|Dαueven(x0)| + hr+1‖ueven‖W r+1∞ (Bd(x0))

)

+ d−t−N/p‖eeven‖W−t
p (Bd(x0))

]

+C ln
(d
h

)[
h|||F |||W 0,−1∞ (Bd(x0)),x0,r−2 + |||F |||W 0,−r,1∞ (Bd(x0)),x0

]
.

Here r = 1 if r = 3, and r = 0 otherwise. Since r is odd, Dαueven(x0) = 0 for all
|α| = r and it easily follows that

|e(x0)| ≤ C
[(

ln
d

h

)r
hr+1‖u‖W r+1∞ (Bd(x0))

+ d−t−N/p‖e‖W−t
p (Bd(x0))

]
(3.4)

+ C
(

ln
d

h

)[
h|||F |||W 0,−1∞ (Bd(x0),x0,r−2 + |||F |||W 0,−r,1∞ (Bd(x0)),x0

]
.

We now estimate the last two terms on the right side of (3.4).
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We begin by estimating F3(ϕ) defined in (3.2). Setting Bd ≡ Bd(x0),

|F3(ϕ)| =
∣∣∣ ∫
Bd

Coddeϕdy
∣∣∣ ≤ C‖e‖W−1∞ (Bd)‖ϕ‖W 1

1 (Bd)

≤ C‖e‖W−1∞ (Bd)‖ϕ‖W 0,−1
1 (Bd),x0,r−2 for all ϕ ∈ W̊ r

1 (Bd).

(3.5)

On the other hand,

|F3(ϕ)| ≤ C‖e‖W−2∞ (Bd)‖ϕ‖W 2
1 (Bd)

≤ C‖e‖W−2∞ (Bd)‖ϕ‖W 0,r,2
1 (Bd),x0

for all ϕ ∈ W̊ r
1 (Bd).

(3.6)

Hence taken together, (3.5) and (3.6) imply(
ln
d

h

)[
h|||F3|||W 0,−1∞ (Bd),x0,r−2 + |||F3|||W 0,−r∞ (Bd),x0

]
≤ C

(
ln
d

h

)[
h‖e‖W−1∞ (Bd) + ‖e‖W−2∞ (Bd)

]
.

(3.7)

To estimate F2(ϕ) we use the triangle inequality and integration by parts to obtain

|F2(ϕ)| ≤
N∑
i=1

∣∣∣ ∫
Bd

bi,even
∂e

∂yi
ϕdy

∣∣∣
≤

N∑
i=1

(∣∣∣ ∫
Bd

e
(
bi,even

∂ϕ

∂yi

)
dy
∣∣∣+ ∣∣∣ ∫

Bd

e
∂bi,even
∂xi

ϕdy
∣∣∣)

≤ C‖e‖L∞(Bd)‖ϕ‖W 1
1 (Bd) ≤ C‖e‖L∞(Bd)‖ϕ‖W 0,1

1 (Bd),x0,r−2.

(3.8)

Furthermore,

|F2(ϕ)| ≤ C‖e‖W−1∞ (Bd)‖ϕ‖W 2
1 (Bd) ≤ C‖e‖W−1∞ (Bd)‖ϕ‖W 0,r,2

1 (Bd),x0
.(3.9)

Taken together, (3.8) and (3.9) imply(
ln
d

h

)[
h|||F2|||W 0,−1∞ (Bd)x0,r−2 + |||F2|||W 0,−r,2∞ (Bd),x0

]
(3.10)

≤ C
(

ln
d

h

)[
h‖e‖L∞(Bd) + ‖e‖W−1∞ (Bd)

]
.

Last, we estimate F1(ϕ). On the one hand we have

|F1(ϕ)| ≤
N∑

i,j=1

∣∣∣ ∫
Bd

aij,odd
∂e

∂yi

∂ϕ

∂yj
dy
∣∣∣

≤
N∑

i,j=1

∥∥∥ ∂e
∂yi

∥∥∥
L∞(Bd)

∥∥∥aij,odd
∂ϕ

∂yj

∥∥∥
L1(Bd)

≤ Ch‖e‖W 1∞(Bd)‖ϕ‖W 1
1 (Bd),x0,−1,

(3.11)

where in the last step we used

|aij,odd| ≤ C|x− x0|.(3.12)
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Furthermore, using integration by parts and the triangle inequality,

|F1(ϕ)| ≤
N∑

i,j=1

(∣∣∣∣ ∫
Bd

e
∂aij,odd

∂yi

∂ϕ

∂yj
dy

∣∣∣∣+ ∣∣∣∣ ∫
Bd

eaij,odd
∂2ϕ

∂yi∂yj
dy

∣∣∣∣)

≤ C‖e‖W−1∞ (Bd)

(
‖ϕ‖W 2

1 (Bd) +

N∑
i,j=1

∥∥∥aij,odd
∂2ϕ

∂yi∂yj

∥∥∥
W 1

1 (Bd)

)
.

A simple calculation shows that

N∑
i,j=1

∥∥∥aij,odd
∂2ϕ

∂yi∂yj

∥∥∥
W 1

1 (Bd)
≤ C‖ϕ‖W 0,r,2

1 (Bd),x0
,

where we again used (3.12). This leads to

|F1(ϕ)| ≤ C‖e‖W−1∞ (Bd)‖ϕ‖W 0,r,2
1 (Bd),x0

.(3.13)

Taken together, (3.11) and (3.13) imply that(
ln
d

h

) [
h|||F1|||W 0,−1∞ (Bd),x0,r−2 + |||F1|||W 0,−r,2∞ (Bd),x0

]
≤ C

(
ln
d

h

)[
h2‖e‖W 1∞(Bd) + ‖e‖W−1∞ (Bd)

]
.

(3.14)

Combining (3.14), (3.10), and (3.7) we arrive at(
ln
d

h

)[
h|||F |||W 0,−1∞ (Bd),x0,r−2 + |||F |||W 0,−r,2∞ (Bd),x0

]
≤ C

(
ln
d

h

)[
h2‖e‖W 1∞(Bd) + h‖e‖L∞(Bd) + ‖e‖W−1∞ (Bd)

]
.

(3.15)

Now with an inconsequential change in domains, it follows from (3.4) and (3.15)
that

|e(x0)| ≤ C
(
hr+1

(
ln
d

h

)r
‖u‖W r+1∞ (Bd/2)

+ d−t−N/p‖e‖W−t
p (Bd/2)

)
+
(

ln
d

h

)(
h2‖e‖W 1∞(Bd/2) + h‖e‖L∞(Bd/2) + ‖e‖W−1∞ (Bd/2)

)
.

(3.16)

Now it was proved in [14], and may be seen from (1.15), that for r ≥ 3 and d ≥ kh

h2‖e‖W 1∞(Bd/2) ≤ C
(
hr+1‖u‖W r∞(Bd) + h2d−1−N/p−t‖e‖W−t

p (Bd)

)
,(3.17)

and from (1.13),

h‖e‖L∞(Bd/2) ≤ C
(
hr+1‖u‖W r∞(Bd) + hd−N/p−t‖e‖W−t

p (Bd)

)
.(3.18)

Furthermore, it is not difficult to show by a local duality argument that for t ≥ 1 and
r ≥ 3

‖e‖W−1∞ (Bd/2)
≤ C

(
hr+1

(
ln
d

h

)
‖u‖W r∞(Bd) + d1−N/p−t‖e‖W−t

p (Bd)

)
.(3.19)

Substituting (3.17), (3.18), and (3.19) into (3.16), we easily arrive at

|e(x0)| ≤ C
((

ln
d

h

)2

hr+1‖u‖W r+1∞ (Bd) +
(

ln
d

h

)
d−N/p−t‖e‖W−t

p (Bd)

)
.(3.20)

This completes the proof of Theorem 3.
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4. A proof of Theorem 4. In view of (3.2) and (1.20), we have that

A(eodd, ϕ) = −F (ϕ) for all ϕ ∈ S̊hr (Bd(x0)).(4.1)

Then using (1.20) of Corollary 2 and the fact that since r ≥ 2 is even, Dαuodd(x0) = 0
for all |α| = r, we obtain

‖ eodd‖W 1∞(Bh(x0))

≤ C
[
hr
(

ln
d

h

)r
‖u‖W r+1∞ (Bd(x0))

+ d−1−t−N/p‖e‖W−t
p (Bd(x0))

]
+
(

ln
d

h

)[
|||F |||W 0,−1∞ (Bd(x0)),x0,r−1 + |||F |||W 0,−r,1∞ (Bd(x0)),x0

]
.

(4.2)

Proceeding as in the proof of (3.7) we arrive at(
ln
d

h

) (
|||F |||W 0,−1∞ (Bd),x0,r−1 + |||F |||W 0,−r,1∞ (Bd),x0

)
≤
(

ln
d

h

)(
‖e‖L∞(Bd) + h‖e‖W 1∞(Bd)

)
.

(4.3)

Using (3.17) and (3.18) in (4.3), again after an inconsequential change in domains,
and substituting the result into (4.2) we obtain

‖ eodd‖W 1∞(Bh(x0))

≤ C
(
hr
(

ln
d

h

)2

‖u‖W r+1∞ (Bd) +
(

ln
d

h

)
d−1−N/p−t‖e‖W−t

p (Bd)

)
.

(4.4)

By definition,

∂

∂xi
eodd(x) =

( ∂e(x)
∂xi

+ ∂e
∂xi

(x0 − (x− x0))

2

)
,

wherever these derivatives exist. The inequality (1.23) now follows on setting x−x0 =
sβ for an appropriate direction β and scalar 0 ≤ s ≤ s0 and taking the limit as s→ 0.
This completes the proof of Theorem 4.

Appendix. Assumed properties of finite element spaces. We now state
our assumptions on the finite element spaces used in this paper. They are the same as
those used in [11], which in turn are essentially the same, with some simplifications,
as those used in [13] and [14].

Let D ⊂⊂ Ω ⊂ R
N and for r ≥ 2 an integer and 0 < h < 1 a parameter, Shr (D)

will denote a family of finite dimensional subspaces of W 1
∞(D). For G ⊆ D, Shr (G) is

the restriction of Shr (D) to G and

S̊hr (G) = ϕ : ϕ ∈ Shr (G), supp(ϕ) ⊂ G.

We assume that there exist positive constants k0, δ, c1, c2, c3 so that the follow-
ing Assumptions A.1–A.4 are satisfied for any D1 ⊂⊂ D2 ⊂⊂ D3 ⊂⊂ D4 with
dist(Di, ∂Di+1) ≥ k0h, i = 1, 2, 3.

Assumption A.1 (approximation). For each v ∈ W �
p(D2) there exists a χ ∈

Shr (D2) such that if t = 0, 1, 1 ≤ � ≤ r, and 1 ≤ p ≤ ∞,

‖w − χ‖W t
p(D1) ≤ c1h

�−t‖v‖W �
p(D2).(A.1)
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In addition there exists a χ such that

‖v − χ‖W 1∞(D1) ≤ c1h
r−1−N/p‖v‖W r

p (D2).(A.2)

Furthermore, if supp(v) ⊆ D1, then χ ∈ S̊h(D2).
Assumption A.2 (inverse properties). For � = 0, 1, t ≥ 0 an integer, and 1 ≤ q ≤

p ≤ ∞,

‖χ‖W �
p(D1) ≤ c2h

−[Nq −N
p ]−�−t‖χ‖W−t

q (D2)
for all χ ∈ Shr (D2).(A.3)

Furthermore, for any τh ⊂ Bd and integer j = 1, . . . , r − 2,

‖χ‖W 1+j
1 (τh) ≤ Ch−j‖χ‖W 1

1 (τh).(A.4)

Assumption A.3 (superapproximation). Let ω ∈ C∞
0 (D3); then for each χ ∈

Shr (D4) there exists an η ∈ S̊hr (D4) such that for � = 0, 1

‖ωχ− η‖W �
2 (D4) ≤ c3h‖ω‖W δ∞(D3)‖χ‖W �

2 (D4).(A.5)

Furthermore, if ω ≡ 1 on D2, then η = χ in D1 and

‖ωχ− η‖W �
2 (D4) ≤ c3h‖ω‖W δ∞(D3)‖χ‖W �

2 (D4\D1).(A.6)

Assumption A.4 (scaling). Let x ∈ D and d ≥ k0h be such that Bd(x) ⊆
D. The linear transformation z = (y − x)/d takes Bd(x) = {y : |y − x| < d}
into a new domain B̂1(x) and Shr (Bd(x)) into a new function space Ŝ

h/d
r (B̂1(x)).

Then Ŝ
h/d
r (B̂1(x)) satisfies A.1, A.2, and A.3 with h replaced by h/d. The constants

occurring in A.1, A.2, and A.3 remain the same and are independent of d.
For a discussion of these properties see [13].
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Abstract. We discuss an a posteriori error estimate for the numerical solution of boundary
value problems for nonlinear systems of ordinary differential equations with a singularity of the first
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1. Introduction. In this paper, we discuss the numerical solution of singular
boundary value problems of the form

z′(t) =
M(t)

t
z(t) + f(t, z(t)), t ∈ (0, 1],(1.1a)

Baz(0) +Bbz(1) = β,(1.1b)

z ∈ C[0, 1],(1.1c)

where z is an n-dimensional real function, M is a smooth n × n matrix, and f is
an n-dimensional smooth function on a suitable domain. Ba and Bb are constant
r × n matrices, with r < n. In section 3 we will demonstrate that condition (1.1c) is
equivalent to a set of n − r linearly independent conditions z(0) must satisfy. These
boundary conditions are augmented by (1.1b) to yield an isolated solution z. In
this paper, we restrict our attention to the class of singular boundary value problems
which are equivalent to a well-posed singular initial value problem, where all boundary
conditions are posed at t = 0. In this case, a shooting argument can be used to derive
a representation of the solution convenient for our analysis. This implies certain
restrictions on the spectrum of the matrix M(0), which will be discussed in section 3.

The search for an efficient numerical method to solve problems (1.1) is strongly
motivated by numerous applications from physics, chemistry, mechanics, or ecology;
see, for example, [15], [28]. Also, research activities in related fields, like the com-
putation of connecting orbits in dynamical systems [21] or singular Sturm–Liouville
problems [6], may benefit from techniques developed for problems of the form (1.1).
The problem class discussed in this paper, where M(0) has no eigenvalues with pos-
itive real parts, arises in applications from mechanics (buckling of spherical shells
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[22], [25]), chemical reactor theory (cf. [14]), and avalanche dynamics (see [18] and
[19]). Moreover, Dirichlet problems for certain nonlinear elliptic equations lead to
this problem class when certain symmetries are present; see [23]. The computation of
self-similar solution profiles for the nonlinear Schrödinger equation is also essentially
reduced to this problem type; see [7]. However, our restriction on the spectrum of
M(0) excludes problems of the type

y′′(t) +
1

t
y′(t) − 1

t2
y(t) = f(t)

(see [20], [22]) from the treatment. The first order system resulting from the Euler
transformation z(t) = (y(t), ty′(t)) does not belong to the class considered here.

To compute the numerical solution of (1.1), we use polynomial collocation at
collocation points placed in the interior of every collocation interval. Collocation has
been used in one of the best established standard codes for (regular) boundary value
problems, COLSYS (COLNEW); see [1] and [2]. In COLSYS, (superconvergent)
collocation at Gaussian points is used; cf. [8]. Our decision to use collocation was
motivated by its advantageous convergence properties for (1.1), while in the presence
of a singularity other high order methods show order reductions and become inefficient
(see, for example, [11]). For linear problems (1.1) which can equivalently be posed as
initial value problems, it was shown in [10] that the convergence order of collocation
methods is at least equal to the stage order of the method. We will discuss the
restrictions implied by the latter requirement in section 3. For the general class (1.1),
numerical evidence suggests that the convergence order is at least equal to the stage
order for both the linear and the nonlinear case;1 cf. [5]. However, we cannot expect to
observe superconvergence (cf. [8]) when collocation is applied to (1.1) in general. At
most, a convergence order of O(| ln(h)|n0−1hm+1), for some positive integer n0, holds
for a method of stage order m; see [10]. Consequently, a restriction to collocation
at an even number of equidistant points, which implies that the convergence order
is at most O(hm), does not limit the method’s accuracy significantly. We use these
collocation nodes in practice, since it turns out that the error of the error estimate
we propose in this paper is O(| ln(h)|n0−1hm+1). This means that the estimate is
asymptotically correct when the order of the collocation method is not higher than
the stage order.

Our main aim was to construct an efficient asymptotically correct error estimate
for the global error of the numerical solution obtained by collocation. This estimate,
introduced in [5], is based on the defect correction principle, which was first considered
in [29] for the estimation of the global error of Runge–Kutta methods. In [29], the
estimate for the error at the mesh points is obtained by applying the (high order)
basic numerical scheme twice, to the original and to a suitably defined “neighboring
problem.” An extension of this idea proposed in [12], [24] avoids the second application
of the high order scheme, using a cheap low order method instead. Again, this estimate
is asymptotically correct at the mesh points only. A further modification proposed
by the authors provides an error estimate which is asymptotically correct at both
the mesh and the collocation points. The analysis of this estimate in the context of
nonlinear regular problems was given in [5]. It could be shown that for a collocation
method of stage order O(hm), the error of the estimate (the difference between the
global error and its estimate) is of order O(hm+1). Numerical evidence suggests that

1The analysis given in [26] for second order problems might provide tools to prove this assertion.
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this is also true for singular problems. In this paper, we will prove this assertion for
the class of singular problems (1.1).

The collocation method and error estimate described in this paper were also im-
plemented in the Matlab code sbvp designed especially to solve singular boundary
value problems. The error estimate yields a reliable basis for a mesh selection proce-
dure which enables an efficient computation of the numerical solution. A description
of the code and experimental evidence of its advantageous properties are given in [4].

The paper is organized as follows: The analytical properties of (1.1) which were
discussed in detail in [9] are briefly recapitulated in section 3. In section 4.1, the
results for collocation methods according to [10] are given. Using these results, we
derive new, refined bounds for the errors of the numerical solution and its derivative,
and we extend these results to the nonlinear case. This analysis is carried out in
section 4.2. In section 5 we use these estimates for the collocation solution in order
to prove that our version of the error estimate is asymptotically correct for problem
(1.1). Finally, in section 6 we give a numerical example which illustrates the theory.

2. Preliminaries. Throughout the paper, the following notation is used. We
denote by R

n the space of real vectors of dimension n and use | · |,
|x| = |(x1, x2, . . . , xn)

T | := max
1≤i≤n

|xi|,

to denote the maximum norm in R
n. Cpn[0, 1] is the space of real vector-valued func-

tions which are p times continuously differentiable on [0, 1]. For functions y ∈ C0
n[0, 1]

we define the maximum norm,

‖y‖[0,1] := max
0≤t≤1

|y(t)|,

or more generally for an interval J ⊆ [0, 1],

‖y‖J := max
t∈J

|y(t)|.

Cpn×n [0, 1] is the space of real n× n matrices with columns in Cpn[0, 1]. For a matrix
A = (aij)

n
i,j=1, A ∈ C0

n×n[0, 1], ‖A‖[0,1] is the induced norm,

‖A‖[0,1] = max
0≤t≤1

|A(t)| = max
0≤t≤1

(
max

1≤i≤n

n∑
j=1

|aij(t)|
)
.

Where there is no confusion, we will omit the subscripts n and n × n and denote
C[0, 1] = C0[0, 1].

For the numerical analysis, we define meshes

∆ := (τ0, τ1, . . . , τN ),

and hi := τi+1 − τi, i = 0, . . . , N − 1, τ0 = 0, τN = 1. On ∆, we define corresponding
grid vectors

u∆ := (u0, . . . , uN ) ∈ R
(N+1)n.

The norm on the space of grid vectors is given by

‖u∆‖∆ := max
0≤k≤N

|uk|.
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For a continuous function y ∈ C[0, 1], we denote by R∆ the pointwise projection onto
the space of grid vectors,

R∆(y) := (y(τ0), . . . , y(τN )).

For collocation, m points spaced at distances hiδj , j = 1, . . . ,m, are inserted in each
subinterval Ji := [τi, τi+1]. This yields the (fine) grid2 (see Figure 2.1)

∆m :=

{
ti,j : ti,j = τi + hi

j∑
k=0

δk, i = 0, . . . , N − 1, j = 0, . . . ,m+ 1

}
.(2.1)

We restrict ourselves to grids where δ1 > 0 to avoid a special treatment of the sin-
gular point t = 0. For the analysis of collocation methods, we allow δm+1 = 0. In
the discussion of the error estimate, we use the further restriction δm+1 > 0. This
requirement is satisfied for equidistant collocation points which we use in practice (see
section 1), where

δj :=
1

m+ 1
, j = 1, . . . ,m+ 1.(2.2)

For a grid ∆m, u∆m , ‖ · ‖∆m , and R∆m are defined accordingly.

τ0 . . . τi

. . . ti,j . . .

τi+1 . . . τN

δjhi︷︸︸︷
︸ ︷︷ ︸

hi

Fig. 2.1. The computational grid.

3. Analytical results. In this section we discuss the analytical properties of
(1.1); cf. [9]. Here, we assume all eigenvalues of M(0) have nonpositive real parts.
Moreover, the only eigenvalue ofM(0) on the imaginary axis is zero. These restrictions
are necessary to ensure that we can use a shooting argument to derive a representation
of the solution convenient for our theory.3

First, we treat the linear case,

z′(t) =
M(t)

t
z(t) + f(t), t ∈ (0, 1],(3.1a)

Baz(0) +Bbz(1) = β,(3.1b)

z ∈ C[0, 1],(3.1c)

where Ba, Bb ∈ R
r×n, r < n, are constant matrices, and β ∈ R

r is a constant vector.
Throughout, we assume M ∈ C1[0, 1]. Consequently, we can rewrite M(t) and

obtain

M(t) = M(0) + tC(t)(3.2)

2For convenience, we denote τi by ti,0 ≡ ti−1,m+1, i = 1, . . . , N − 1. Moreover, we define
δ0 := 0, δm+1 := (ti,m+1 − ti,m)/hi. Note that we choose the same distribution of collocation points

in every subinterval Ji, and that
∑m+1

j=0
δj = 1 holds for i = 0, . . . , N − 1.

3Note, however, that we do not use shooting when we actually compute the numerical solution.
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with a continuous matrix C(t).
Let X0 be the kernel of M(0) and let R be a projection onto X0, where the rank

of R is equal to r. We define

S := In −R,

where we denote by In the n×n identity matrix. The necessary and sufficient condition
for z to be continuous on [0, 1] is

Sz(0) = 0.

This yields

z(0) = (S +R)z(0) = Rz(0),

and due to

M(0)z(0) = MRz(0) = 0

it follows that (3.1c) is equivalent to z(0) ∈ ker(M(0)). These conditions are aug-
mented by (3.1b) to yield a unique solution.

We denote by Ẽ the n × r matrix consisting of a maximal set of linearly inde-
pendent columns of R. Moreover, let Z(t) = (Z1(t), . . . , Zr(t)) be the fundamental
solution matrix of the initial value problem

Z ′(t) =
M(t)

t
Z(t), t ∈ (0, 1],(3.3a)

Z(0) = Ẽ.(3.3b)

The necessary and sufficient condition for problem (3.1) to have a unique solution is
that the r × r matrix Q,

Q := BaẼ +BbZ(1),(3.4)

be nonsingular. In this case, we can represent the solution z of (3.1) by

z(t) =
r∑

k=1

akZk(t) + z̃(t),(3.5)

where z̃ is the solution of

z̃′(t) =
M(t)

t
z̃(t) + f(t), t ∈ (0, 1],(3.6a)

z̃(0) = 0.(3.6b)

The coefficients a = (a1, . . . , ar) are uniquely determined by Qa = β −Bbz̃(1).
For the solution of the linear problem (3.1), z ∈ Ck+1[0, 1] holds if f ∈ Ck[0, 1]

and M ∈ Ck+1[0, 1].
Now we discuss the nonlinear problem4

z′(t) =
M(t)

t
z(t) + f(t, z(t)), t ∈ (0, 1],(3.7a)

Baz(0) +Bbz(1) = β,(3.7b)

M(0)z(0) = 0.(3.7c)

In order to formulate analogous smoothness properties for z, we make the following
assumptions:

4Again, we assume that M(0) has only eigenvalues with negative real parts or the eigenvalue 0.
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1. f : D1 → R
n is a nonlinear mapping, where D1 ⊆ [0, 1]×R

n is a suitable set.
2. Equation (3.7) has a solution z ∈ C[0, 1] ∩C1(0, 1]. With this solution and a
ρ > 0 we associate the closed balls

Sρ(z(t)) := {x ∈ R
n : |z(t) − x| ≤ ρ}

and the tube

Tρ(z) := {(t, x) : t ∈ [0, 1], x ∈ Sρ(z(t))}.

3. f(t, z) is continuously differentiable with respect to z, and ∂f(t,z)
∂z is continuous

on Tρ(z).
4. The solution z is isolated. This means that

u′(t) =
M(t)

t
u(t) +A(t)u(t), t ∈ (0, 1],

Bau(0) +Bbu(1) = 0,

M(0)u(0) = 0,

where

A(t) :=
∂f

∂z
(t, z(t))

has only the trivial solution.

Under these assumptions and for f ∈ Ck(Tρ(z)), M ∈ Ck+1[0, 1], the solution z of
(3.7) satisfies z ∈ Ck+1[0, 1].

For further details and proofs see [9].

4. Collocation methods. In this section, we derive new, refined error bounds
for collocation methods applied to (1.1), relying on earlier results formulated in [10].
Moreover, we extend the convergence analysis to the nonlinear case. For reasons of
simplicity, we restrict the discussion to equidistant meshes, hi = h, i = 0, . . . , N − 1,
because the results from [10] are formulated for this situation. However, the results
also hold for nonuniform meshes which have a limited variation in the stepsizes; see [10,
section 6].

Let us denote by B the Banach space of continuous, piecewise polynomial func-
tions q ∈ Pm of degree ≤ m, m ∈ N (m is called the stage order of the method),
equipped with the norm ‖ · ‖[0,1]. As an approximation for the exact solution z
of (1.1), we define an element of B which satisfies the differential equation (1.1a)
at a finite number of points and which is subject to the same boundary condi-
tions. Since we require the numerical solution to satisfy (1.1c), we introduce the
space B1 ⊂ B, such that M(0)q(0) = 0 ∀ q ∈ B1. Thus, we are seeking a function
p(t) = pi(t), t ∈ Ji, i = 0, . . . , N − 1, in B1 which satisfies

p′i(ti,j)=
M(ti,j)

ti,j
pi(ti,j)+f(ti,j , pi(ti,j)), i = 0, . . . , N−1, j = 1, . . . ,m,(4.1a)

Bap(0) +Bbp(1) = β.(4.1b)

We consider collocation on general grids ∆m as defined in section 1, subject to the
restriction δ1 > 0.
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4.1. Earlier results. In [10], collocation methods for linear problems were stud-
ied. For the analysis of the nonlinear case in section 4.2, bounds for the collocation
solution p ∈ B1 need to be specified. Here, the relevant preliminaries from [10] are
recapitulated.

Thus, we consider the solution p ∈ B1 of

p′(ti,j) =
M(ti,j)

ti,j
p(ti,j) + f(ti,j), i = 0, . . . , N − 1, j = 1, . . . ,m,(4.2a)

Bap(0) +Bbp(1) = β.(4.2b)

Lemma 4.1. For µ, β ∈ {0, 1} and arbitrary constants ci,j, there exists a unique
p ∈ B1 which satisfies

p′(ti,j) =
M(0)

ti,j
p(ti,j) +

M(0)µ

tβi,j
ci,j , i = 0, . . . , N − 1, j = 1, . . . ,m,(4.3a)

p(0) = 0.(4.3b)

Furthermore,

‖p‖Ji ≤ const. τ1−β
i+1 | ln(h)|(β(n0−µ))+Ci, i = 0, . . . , N − 1,(4.4)

where n0 is the dimension of the largest Jordan block of M(0) corresponding to the
eigenvalue 0,

(x)+ :=

{
x, x ≥ 0,
0, x < 0,

and

Ci := max
l = 0, . . . , i
j = 1, . . . ,m

|cl,j |.

Proof. See [10, Lemma 4.4].
The following result is a slightly modified version of [10, Theorem 4.1].
Theorem 4.2. For µ, β ∈ {0, 1}, consider the problem

p′(ti,j) =
M(ti,j)

ti,j
p(ti,j) +

M(0)µ

tβi,j
ci,j , i = 0, . . . , N − 1, j = 1, . . . ,m,(4.5a)

p(0) = δ ∈ ker(M(0)).(4.5b)

There exists a unique solution of (4.5) when h is sufficiently small, and this solution
satisfies

‖p‖Ji ≤ const. (|δ| + τ1−β
i+1 | ln(h)|(β(n0−µ))+Ci), i = 0, . . . , i0,(4.6)

for a suitable i0 ≤ N − 1.
Proof. In [10, Theorem 4.1], the estimate following [10, formula (4.15)] can be

replaced by

‖p‖Ji ≤ κ(τi+1‖p‖[0,τi+1] + |δ| + τ1−β
i+1 | ln(h)|(β(n0−µ))+Ci), i = 0, . . . , i0,(4.7)

if the results of [10, Lemma 4.4] are suitably applied. Substitution of the bound for p
derived in [10, Theorem 4.1] into the right-hand side of (4.7) yields the result.
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Note that the existence of the solution of (4.5) and the estimate (4.6) are shown
only on an interval [0, b], where b is sufficiently small (but independent of h). Thus, we
need to use classical theory for regular problems to ensure the existence of the solution
on the whole interval. In what follows, we treat the underlying singular problems only
on the restricted interval, and we apply classical results for collocation from [3], and
the error estimate analysis for regular problems from [5], to complete the proofs.

4.2. New error bounds. First, we use Theorem 4.2 to derive bounds for the
solution p ∈ B1 of the general linear problem (4.2) and for its derivative p′. By the
superposition principle, p can be written in the form

p(t) =

r∑
k=1

bkPk(t) + p̃(t),(4.8)

analogous to (3.5) for the exact solution. Here, P (t) = (P1(1), . . . , Pr(t)) is the n× r
matrix solution of

P ′(ti,j) =
M(ti,j)

ti,j
P (ti,j), i = 0, . . . , N − 1, j = 1, . . . ,m,(4.9a)

P (0) = Ẽ,(4.9b)

whose columns are in B1, and p̃ satisfies

p̃′(ti,j) =
M(ti,j)

ti,j
p̃(ti,j) + f(ti,j), i = 0, . . . , N − 1, j = 1, . . . ,m,(4.10a)

p̃(0) = 0.(4.10b)

It was shown in [10, Theorem 4.4] that the representation (4.8) is well defined. Of
course, the coefficients bk could be computed in principle from the boundary condi-
tions, as in the case of the analytical problem; the representation (4.8) is used only
to describe the structure of the solution p, and therefore we refrain from specifying
bk explicitly. Next, we derive convergence results for the quantities appearing in the
representation (4.8) using arguments similar to those given in [10, Theorem 4.2].

Consider the solutions z and q of (3.1a) and (4.2a), respectively, subject to the
initial conditions z(0) = q(0) = δ ∈ ker(M(0)). We define an error function e ∈ B1

by

e′(ti,j) = z′(ti,j) − q′(ti,j), i = 0, . . . , N − 1, j = 1, . . . ,m,

e(0) = 0.

From standard results for interpolation (see, for example, [13]), we conclude that

e(t) = z(t) − q(t) + tO(hm)

if z is sufficiently smooth, whence

e′(ti,j) =
M(ti,j)

ti,j
e(ti,j) +O(hm), i = 0, . . . , N − 1, j = 1, . . . ,m,(4.11a)

e(0) = 0.(4.11b)

Now, Theorem 4.2 yields

‖e‖Ji ≤ τi+1O(hm), i = 0, . . . , i0,(4.12)
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and consequently

‖z − q‖Ji ≤ τi+1O(hm), i = 0, . . . , i0.(4.13)

It follows from (4.11a) and (4.12) that e′(ti,j) = O(hm), which implies

‖z′ − q′‖[0,1] = O(hm).(4.14)

Finally, we show that the residual of q with respect to (3.1a) has the same asymptotic
quality. Since q ∈ C[0, 1] and q′ has only a finite number of jump discontinuities in
[0, 1], we can use the representations

q(t) = δ + t

∫ 1

0

q′(st) ds,(4.15a)

z(t) = δ + t

∫ 1

0

z′(st) ds(4.15b)

to conclude that

q′(t) − M(t)

t
q(t) − f(t) = q′(t) − z′(t) +

M(t)

t
t

∫ 1

0

(q′(st) − z′(st)) ds

= O(hm), t ∈ [0, 1].(4.16)

This means that the refined bounds (4.13), (4.14), and (4.16) hold for the funda-
mental modes Pk and the particular solution p̃ in (4.8). To show that these bounds
also hold for the solution p of (4.2), we have to estimate the differences |ak − bk| for
k = 1, . . . , r. We substitute (3.5) and (4.8) into (3.1b) and obtain a system of linear
equations for ak − bk. This system is nonsingular since Q from (3.4) is nonsingular
and P (1) = Z(1) +O(hm). This implies

bk = ak +O(hm), k = 1, . . . , r;(4.17)

see also [10, Theorem 4.5].
Consequently, the following result holds.
Theorem 4.3. Consider the solution p ∈ B1 of (4.2) as an approximation of the

(sufficiently smooth5) solution z of (3.1). Then, for a sufficiently small stepsize h and
a suitable i0 ≤ N − 1, the following bounds hold:

z(t) − p(t) = ẼO(hm) + τi+1O(hm), t ∈ Ji, i = 0, . . . , i0,(4.18a)

‖z′ − p′‖[0,1] = O(hm),(4.18b) ∣∣∣∣p′(t) − M(t)

t
p(t) − f(t)

∣∣∣∣ = O(hm), t ∈ [0, 1].(4.18c)

Proof. The result follows immediately on noting that P (t) can also be written in
a form given by (4.15a), and therefore

z(t) − p(t) =
r∑

k=1

ak(Zk(t) − Pk(t)) +

r∑
k=1

(ak − bk)Pk(t) + z̃(t) − p̃(t)

= τi+1O(hm) + (Ẽ + tO(1))O(hm) + τi+1O(hm), t ∈ Ji.

5We require that z ∈ Cm+1[0, 1], which holds if f ∈ Cm[0, 1] and M ∈ Cm+1[0, 1].
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The bounds (4.18b) and (4.18c) are direct consequences of this representation.
To prove the analogous convergence results for nonlinear problems, we use tech-

niques developed in [17]. In order to show the existence of the solution and derive the
error bounds, we rewrite the problem in an abstract Banach space setting and apply
the Banach fixed point theorem. The arguments are similar to those given in the proof
of [17, Theorem 3.6], but we cannot use this theorem directly, because some of the
assumptions made there are violated and, also, a refined error estimate is required.
Therefore, we need to repeat the main steps of the proof.

We write the collocation problem as an operator equation

F (p) = 0,(4.19)

where F : B1 → B2 is defined by

F (p)=

(
p′(ti,j) − M(ti,j)

ti,j
p(ti,j) − f(ti,j , p(ti,j)), i = 0, . . . , N − 1, j = 1, . . . ,m

Bap(0) +Bbp(1) − β

)
,

and B1 and B2 are Banach spaces,

B1 = ({q ∈ Pm : M(0)q(0) = 0}, ‖ · ‖[0,1]), B2 = (RNmn+r, | · |).

For p ∈ B1, the Fréchet derivative DF (p) : B1 → B2 of F is given by

DF (p)q =(
q′(ti,j) − M(ti,j)

ti,j
q(ti,j) −D2f(ti,j , p(ti,j))q(ti,j), i = 0, . . . , N − 1, j = 1, . . . ,m

Baq(0) +Bbq(1)

)
,

where D2f(t, z) is the Fréchet derivative of f with respect to z.
If D2f is Lipschitz, then DF also satisfies a Lipschitz condition with the same

constant,

|(DF (p1) −DF (p2))q| =

∣∣∣∣( (D2f(ti,j , p1(ti,j)) −D2f(ti,j , p2(ti,j)))q(ti,j) ∀ i, j
0

)∣∣∣∣
≤ L‖p1 − p2‖[0,1]‖q‖[0,1].

For the convergence proof, we require all assumptions from section 3 to hold. In
particular, this means that an isolated, smooth solution z of (1.1) exists. Using this
function, we now construct an auxiliary element pref ∈ B1 for the proof of the existence
of a solution p of (4.1). We require that pref satisfy

p′ref(ti,j) = z′(ti,j), i = 0, . . . , N − 1, j = 1, . . . ,m,(4.20a)

Bapref(0) +Bbpref(1) = β.(4.20b)

Since p′ref is a piecewise polynomial of degree ≤ m − 1, it is uniquely defined by the
system (4.20a). Moreover,

‖z′ − p′ref‖[0,1] = O(hm).(4.21)

Representing pref by means of (4.15a), we conclude that

z(t) − pref(t) = Ẽ(r1 − r2) + tO(hm), r1, r2 ∈ R
r.
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Substitution into (4.20b) yields

(Ba +Bb)Ẽ(r1 − r2) = O(hm).

For further analysis, we assume that

Q̃ := (Ba +Bb)Ẽ is nonsingular.(4.22)

This implies r1 − r2 = O(hm), and consequently

z(t) − pref(t) = ẼO(hm) + tO(hm).(4.23)

Remark. Assumption (4.22) is quite natural. If we require that boundary value
problems consisting of (1.1a) posed on intervals (0, b], 0 < b ≤ 1, and boundary
conditions M(0)z(0) = 0 and Baz(0)+Bbz(b) = β have unique, continuous solutions,
then (4.22) follows. Moreover, we can interpret (4.20) as the (regular) collocation
problem associated with the boundary value problem

y′(t) = z′(t), t ∈ (0, 1],

Bay(0) +Bby(1) = β,

M(0)y(0) = 0.

Obviously, y(t) = z(t) is a solution of this reconstruction problem, and if we require
the solution to be unique, then (4.22) must hold. Note that (4.22) always holds for
problems with separated boundary conditions.

We now use (4.23) to derive the following relation:

F (pref) =

(
p′ref(ti,j) − M(ti,j)

ti,j
pref(ti,j) − f(ti,j , pref(ti,j)) ∀ i, j

Bapref(0) +Bbpref(1) − β

)

=

⎛⎝ p′ref(ti,j) − z′(ti,j) − M(ti,j)
ti,j

(pref(ti,j) − z(ti,j))

−f(ti,j , pref(ti,j)) + f(ti,j , z(ti,j)) ∀ i, j
0

⎞⎠
=

(
M(0)
ti,j

(ẼO(hm) + ti,jO(hm)) +O(hm) ∀ i, j
0

)

=

(
O(hm)

0

)
.(4.24)

Finally, we give an estimate for DF−1(pref). Note that

q := DF−1(pref)

((
γi,j ∀ i, j
β̃

))
is the solution of the linear collocation problem

q′(ti,j) =
M(ti,j)

ti,j
q(ti,j) +D2f(ti,j , pref(ti,j))q(ti,j) + γi,j ∀ i, j,(4.25a)

Baq(0) +Bbq(1) = β̃.(4.25b)

Since for sufficiently small h, pref is in Tρ(z), this problem is well defined. Finally,
from Theorem 4.2, we have

‖q‖Ji ≤ const. (|β̃| + τi+1γi),(4.26)
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where

γi = max
l = 0, . . . , i
j = 1, . . . ,m

|γl,j |.

With these preliminary results we can prove the next theorem.
Theorem 4.4. Let z be an isolated, sufficiently smooth solution of (1.1). For

sufficiently small h and ρ > 0, the nonlinear collocation scheme (4.1) has a unique
solution p in the tube Tρ(z) around z. Moreover, the estimates (4.18) hold.

Proof. We proceed in a manner similar to the proof of [17, Theorem 3.6]. Define
a mapping G : B1 → B1,

G(q) := q −DF−1(pref)F (q).(4.27)

Obviously, F (p) = 0 is equivalent to the fixed point equation G(p) = p. We use the
Banach fixed point theorem to show that this equation has a unique solution in a
suitably chosen closed ball

K := K(pref , ρ0) := {q ∈ B1 : ‖q − pref‖[0,1] ≤ ρ0}.
To show that G is a contraction, we write

q := G(p1) −G(p2) = DF−1(pref)(DF (pref) − D̂F (p1, p2))(p1 − p2)

for p1, p2 ∈ K, where

D̂F (p1, p2) :=

∫ 1

0

DF (τp1 + (1 − τ)p2) dτ.

Consequently, q is the solution of the scheme (4.25), where∣∣∣∣( γi,j ∀ i, j
β̃

)∣∣∣∣ = ∣∣∣∣∫ 1

0

(DF (pref) −DF (τp1 + (1 − τ)p2)) dτ(p1 − p2)

∣∣∣∣
≤ Lρ0‖p1 − p2‖[0,1]

due to the Lipschitz condition which DF satisfies. Thus, it follows from (4.26) that G
is a contraction with constant L̃ < 1 if ρ0 is sufficiently small. To show that G maps
K into itself, we estimate for q ∈ K,

‖pref −G(q)‖[0,1] ≤ ‖pref −G(pref)‖[0,1] + ‖G(pref) −G(q)‖[0,1],

where pref −G(pref) = DF−1(pref)F (pref) is the solution of (4.25) with γi,j = O(hm)

and β̃ = 0; cf. (4.24). Thus,

‖pref −G(q)‖[0,1] ≤ O(hm) + L̃ρ0 ≤ ρ0,(4.28)

provided that h is sufficiently small. The Banach fixed point theorem now implies
that a solution p ∈ B1 of (4.1) exists.

We now prove the convergence results (4.18). From

‖pref − p‖Ji = ‖pref −G(p)‖Ji ≤ ‖pref −G(pref)‖Ji + ‖G(pref) −G(p)‖Ji
≤ τi+1O(hm) + L̃‖pref − p‖Ji
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we have ‖pref − p‖Ji ≤ τi+1O(hm), which together with (4.23) yields

z(t) − p(t) = z(t) − pref(t) + pref(t) − p(t)

= ẼO(hm) + tO(hm) + τi+1O(hm), t ∈ Ji.(4.29)

Consequently, (4.18a) follows. Next, we choose a piecewise polynomial function e ∈ B1

satisfying e′(ti,j) = z′(ti,j)−p′(ti,j). Therefore, e′(t) = z′(t)−p′(t)+O(hm). Moreover,
(4.29) implies

e′(ti,j) = z′(ti,j) − p′(ti,j)

=
M(ti,j)

ti,j
(z(ti,j) − p(ti,j)) + f(ti,j , z(ti,j)) − f(ti,j , p(ti,j))

= O(hm), i = 0, . . . , N − 1, j = 1, . . . ,m.

Thus e′(t) = O(hm) = z′(t) − p′(t) + O(hm) and (4.18b) follows. Finally, (4.18c) is
shown by using (4.18b), (4.29), and the Lipschitz condition for f in

p′(t) − M(t)

t
p′(t) − f(t, p(t))

= p′(t) − z′(t) +
M(t)

t
(p(t) − z(t)) − f(t, p(t)) + f(t, z(t))

= O(hm), t ∈ [0, 1].

Under the previous assumptions we can also show that Newton’s method con-
verges quadratically when it is applied to compute the collocation solution p, provided
that the starting approximation p[0] is chosen sufficiently close to pref .

Theorem 4.5. Let all assumptions of Theorem 4.4 hold. Newton’s method con-
verges quadratically to the solution p ∈ K(pref , ρ0) of (4.1) if the starting iterate p[0]

is chosen in a ball K(pref , ρ1), ρ1 ≤ ρ0, provided that ρ0, ρ1, and the stepsize h are
sufficiently small.

Proof. The proof is analogous to that of [17, Theorem 3.7], taking into account
the modifications made earlier in the proof of Theorem 4.4.

We write6

DF (q) = DF (pref)(I +DF−1(pref)(DF (q) −DF (pref)))

for q ∈ K(pref , ρ0) and use the bound for DF−1(pref), the Lipschitz condition for DF ,
and the Banach lemma to show that DF−1(q) is bounded if ρ0 is sufficiently small,

‖DF−1(q)‖[0,1] ≤ Kρ0 ,(4.30)

where Kρ0 is a constant depending on ρ0. Furthermore, let p[0] ∈ K(pref , ρ1); then

p[1] − p[0] = −DF−1(p[0])F (p[0])

= −DF−1(p[0])F (pref) +DF−1(p[0])(D̂F (pref , p
[0])(pref − p[0]))

6I is the identical mapping on the space of operators mapping B1 → B2, that is, I : DF (pref) �→
DF (pref).
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holds, with D̂F (p1, p2) specified in Theorem 4.4. Using the Lipschitz condition for
DF , we obtain

‖DF−1(p[0])D̂F (pref , p
[0])(pref − p[0])‖[0,1]

= ‖pref − p[0] +DF−1(p[0])(D̂F (pref , p
[0]) −DF (p[0]))(pref − p[0])‖[0,1]

≤
(

1 +
Lρ1

2
Kρ0

)
ρ1 =: Cρ1.

Finally, we conclude

‖p[1] − p[0]‖[0,1] ≤ Kρ0O(hm) + Cρ1.

Consider a ball K(p[0], r). For a sufficiently small ρ1 it is possible to choose the radius
r ≤ ρ0 in such a way that K(p[0], r) ⊆ K(pref , ρ0). Moreover, let

‖DF−1(p[0])(DF (q1) −DF (q2))‖[0,1] ≤ ω(‖q1 − q2‖[0,1]) ∀ q1, q2 ∈ K(p[0], r),

and choose r such that the condition ω(r) = 2Kρ0Lr ≤ 1/2 holds. Consequently,

‖p[1] − p[0]‖[0,1] ≤ Kρ0O(hm) + Cρ1 ≤ (1 − 2ω(r))r,

provided that ρ1 and h are sufficiently small; cf. [16, formula (6c)]. This implies that
the assumptions of [16, Theorem 1] are satisfied and the quadratic convergence of
Newton’s method in K(p[0], r) follows.

5. The error estimate. In this section, we analyze an error estimate based on
the defect correction principle for the numerical solution p on the collocation grid ∆m.
For reasons explained in section 1, it is sufficient for practical purposes to consider
equidistant collocation (cf. (2.2)), where we choose m even. However, the argument
is valid on any collocation grid with ti,m < ti,m+1, i = 0, . . . , N − 1.

Our estimate was introduced in [5], where it was shown to be asymptotically
correct for regular problems. The numerical solution p obtained by collocation is used
to define a “neighboring problem” to (1.1). The original and neighboring problems
are solved by the backward Euler method at the points ti,j , i = 0, . . . , N − 1, j =
1, . . . ,m+1. This yields the grid vectors7 ξi,j and πi,j as the solutions of the following
schemes, subject to boundary conditions (1.1b) and (1.1c):

ξi,j − ξi,j−1

ti,j − ti,j−1
=
M(ti,j)

ti,j
ξi,j + f(ti,j , ξi,j), and(5.1a)

πi,j − πi,j−1

ti,j − ti,j−1
=
M(ti,j)

ti,j
πi,j + f(ti,j , πi,j) + d̄i,j ,(5.1b)

where d̄i,j is a defect term defined by

d̄i,j :=
p(ti,j) − p(ti,j−1)

ti,j − ti,j−1
−
m+1∑
k=1

αj,k

(
M(ti,k)

ti,k
p(ti,k) + f(ti,k, p(ti,k))

)
.(5.2)

Here, the coefficients αj,k are chosen in such a way that the quadrature rules given
by

1

ti,j − ti,j−1

∫ ti,j

ti,j−1

ϕ(τ) dτ ≈
m+1∑
k=1

αj,kϕ(ti,k)

7Here and in Theorem 5.1, we assume throughout i = 0, . . . , N − 1, j = 1, . . . ,m+ 1.
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have precision m+ 1.
In the next theorem, we show that the difference ξ∆m −π∆m is an asymptotically

correct estimate for the global error of the collocation solution, R∆m(z) −R∆m(p).
Theorem 5.1. Assume that the singular boundary value problem (1.1) has an

isolated (sufficiently smooth8) solution z. Then, provided that h is sufficiently small,
the following estimate holds:

‖(R∆m(z) −R∆m(p)) − (ξ∆m − π∆m)‖∆m = O(| ln(h)|n0−1hm+1),(5.3)

with n0 specified in Lemma 4.1.
Proof. The general idea of the proof is similar to that for regular problems. In

particular, the smooth nonlinear part in the right-hand side of (1.1a) can be treated
analogously. Therefore, we give a general outline of the proof here and discuss those
aspects which are crucial for the singular case. For further technical details we refer
the reader to [5].

Let

ε∆m := ξ∆m −R∆m(z), ε̄∆m := π∆m −R∆m(p);(5.4)

then the quantity to be estimated is

ε̃∆m := (R∆m(p) −R∆m(z)) − (π∆m − ξ∆m) = ε∆m − ε̄∆m .(5.5)

Here, ε∆m , the error of the backward Euler scheme applied to the original problem,
satisfies

εi,j − εi,j−1

ti,j − ti,j−1
=
M(ti,j)

ti,j
ξi,j + f(ti,j , ξi,j) − z(ti,j) − z(ti,j−1)

ti,j − ti,j−1
(5.6)

=
M(ti,j)

ti,j
ξi,j + f(ti,j , ξi,j)

−
m+1∑
k=1

αj,k

(
M(ti,k)

ti,k
z(ti,k) + f(ti,k, z(ti,k))

)
+O(hm+1),

since the αj,k define quadrature rules of precision O(hm+1). Moreover, ε̄∆m satisfies

ε̄i,j − ε̄i,j−1

ti,j − ti,j−1
=
M(ti,j)

ti,j
πi,j + f(ti,j , πi,j) + d̄i,j − p(ti,j) − p(ti,j−1)

ti,j − ti,j−1
(5.7)

=
M(ti,j)

ti,j
πi,j + f(ti,j , πi,j)

−
m+1∑
k=1

αj,k

(
M(ti,k)

ti,k
p(ti,k) + f(ti,k, p(ti,k))

)
.

Both (5.6) and (5.7) hold for i = 0, . . . , N − 1, j = 1, . . . ,m+ 1, and ε∆m as well as
ε̄∆m satisfy homogeneous boundary conditions.

In order to proceed, we use Taylor’s theorem to conclude that

f(ti,j , ξi,j) − f(ti,j , z(ti,j)) =

∫ 1

0

D2f(ti,j , z(ti,j) + τ(ξi,j − z(ti,j))) dτ · εi,j
=: A(ti,j)εi,j ,(5.8)

8In fact, we require z ∈ Cm+2[0, 1].
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and analogously

f(ti,j , πi,j) − f(ti,j , p(ti,j)) =: Ā(ti,j)ε̄i,j .(5.9)

Next, we note that due to (4.18c),

d̄i,j =
p(ti,j) − p(ti,j−1)

ti,j − ti,j−1
−
m+1∑
k=1

αj,k

(
M(ti,k)

ti,k
p(ti,k) + f(ti,k, p(ti,k))

)

=
1

ti,j − ti,j−1

∫ ti,j

ti,j−1

p′(τ) dτ −
m+1∑
k=1

αj,kp
′(ti,k)

+ αj,m+1

(
p′(ti,m+1) − M(ti,m+1)

ti,m+1
p(ti,m+1) − f(ti,m+1, p(ti,m+1))

)
= O(hm).(5.10)

From this we conclude that ξi,j = πi,j +O(hm) using the following argument.
The backward Euler schemes (5.1a) and (5.1b) can be written as collocation

methods with m = 1 and the collocating condition posed at the right endpoint of
each interval [ti,j−1, ti,j ]. Thus, we discuss the collocation solutions ξ(t), π(t) of two
singular boundary value problems whose right-hand sides differ by a term O(hm).
This term can be assumed to be smooth if a suitable interpolant g of d̄i,j is used.
More precisely, ξ(t) is an approximation to the solution z of (1.1), and π(t) is an
approximation to the solution of

z′def(t) =
M(t)

t
zdef(t) + f(t, zdef(t)) + g(t), t ∈ (0, 1],

Bazdef(0) +Bbzdef(1) = β,

M(0)zdef(0) = 0.

For (1.1), we make the assumption that the analytical problem is stable in the sense
that

‖z − zdef‖[0,1] ≤ const. ‖g‖[0,1] = O(hm)

holds. For results on this type of stability analysis, see [27].
As in section 4 we can prove that (locally) unique solutions ξ(t) and π(t) of (5.1a)

and (5.1b) exist in a neighborhood of z and zdef , respectively.
Subtracting (5.1b) from (5.1a) and using Taylor expansion about π(ti,j), we can

show that q(t) := ξ(t) − π(t) satisfies the linear scheme

q(ti,j) − q(ti,j−1)

ti,j − ti,j−1
=
M(ti,j) + ti,jB(ti,j)

ti,j
q(ti,j) +O(hm),

with a suitable, bounded matrix B and homogeneous boundary conditions. Since this
is equivalent to a collocation scheme, we may use [10, Theorem 4.4] with γ = δ = 0
(or alternatively a combination of stability results from section 4) to conclude that
‖R∆m(q)‖∆m = ‖ξ∆m − π∆m‖∆m = O(hm).

Since εi,j = O(h) and ε̄i,j = O(h), we may finally write (see [5])

Ā(ti,j)ε̄i,j = A(ti,j)ε̄i,j + (Ā(ti,j) −A(ti,j))ε̄i,j = A(ti,j)ε̄i,j +O(hm+1).
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Now we use (5.8), (5.9) to rewrite (5.6), (5.7) and obtain

εi,j − εi,j−1

ti,j − ti,j−1
=
M(ti,j)

ti,j
εi,j +A(ti,j)εi,j +

M(ti,j)

ti,j
z(ti,j) + f(ti,j , z(ti,j))

−
m+1∑
k=1

αj,k

(
M(ti,k)

ti,k
z(ti,k) + f(ti,k, z(ti,k))

)
+O(hm+1)(5.11)

and

ε̄i,j − ε̄i,j−1

ti,j − ti,j−1
=
M(ti,j)

ti,j
ε̄i,j +A(ti,j)ε̄i,j +

M(ti,j)

ti,j
p(ti,j) + f(ti,j , p(ti,j))

−
m+1∑
k=1

αj,k

(
M(ti,k)

ti,k
p(ti,k) + f(ti,k, p(ti,k))

)
+O(hm+1).(5.12)

Systems (5.11) and (5.12) are a pair of “parallel” backward Euler schemes, with related
inhomogeneous terms. Let us use the shorthand notation φ(t) := f(t, p(t))−f(t, z(t)).
It can be shown that for the difference in the smooth parts of the inhomogeneous
terms, the estimate

|φ(ti,j) −
m+1∑
k=1

αj,kφ(ti,k)| ≤ const. hi‖φ′‖Ji

≤ const. hi(‖z − p‖Ji + ‖z′ − p′‖Ji) ≤ O(hm+1)(5.13)

holds. To see this we use Taylor expansion of φ(ti,k) about ti,j and the fact that∑m+1
k=1 αj,k = 1 ∀j; see [5]. The estimate finally follows from Theorem 4.4.

In the next step, we derive a representation for the difference in the singular
terms occurring in the inhomogeneous parts of schemes (5.11) and (5.12). With
ε(t) := z(t) − p(t) and with σ := ti,j + τ(ti,k − ti,j), we rewrite

M(ti,j)

ti,j
ε(ti,j) −

m+1∑
k=1

αj,k
M(ti,k)

ti,k
ε(ti,k)(5.14)

=
M(ti,j)

ti,j
ε(ti,j) −

m+1∑
k=1

αj,k

(
M(ti,j)

ti,j
ε(ti,j)

+

∫ 1

0

d

dσ

(
M(σ)

σ
ε(σ)

)
dτ(ti,k − ti,j)

)

=
m+1∑
k=1

αj,k(ti,j − ti,k)

∫ 1

0

(
M(0)

σ
ε′(σ)

− M(0)

σ2
ε(σ) + C ′(σ)ε(σ) + C(σ)ε′(σ)

)
dτ

=
M(0)

ti,j
O(hm+1) +O(hm+1)

on noting that

1

σ
≤ m

ti,j
, k = 1, . . . ,m+ 1, j = 1, . . . ,m, τ ∈ [0, 1],
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and using the results of Theorem 4.4.

Altogether, we have shown that the error of the error estimate ε̃∆m (cf. (5.5))
satisfies a linear Euler difference scheme

ε̃i,j − ε̃i,j−1

ti,j − ti,j−1
=
M(ti,j)

ti,j
ε̃i,j +A(ti,j)ε̃i,j +

M(0)

ti,j
O(hm+1) +O(hm+1) ∀ i, j,(5.15a)

Baε̃0,0 +Bbε̃N−1,m+1 = 0,(5.15b)

M(0)ε̃0,0 = 0.(5.15c)

This scheme can also be interpreted as a collocation scheme with m = 1 where the
only collocation point is the right endpoint of every collocation interval. To estimate
the solution of (5.15) we use a representation according to (4.8) for ε̃∆m . Then we
apply Theorem 4.2 to derive bounds for the quantities occurring in (4.8), and we
conclude that altogether the estimate (5.3) holds for the solution of (5.15).

Remark. Obviously, the arguments used to prove the last theorem are valid for
any choice of collocation nodes. The only necessary restriction is ti,m+1 > ti,m.
However, if we consider superconvergent schemes, the error estimate is no longer
asymptotically correct, because the basic collocation solution has a higher convergence
order in that case. Therefore we restrict ourselves to an even number of equidistant
collocation points. This restriction is not severe, since in the case of singular problems,
the highest convergence order that can generally be expected at the mesh points τi is
O(| ln(h)|n0−1hm+1); see [10].

Finally, we would like to mention an alternative variant of our error estimate
closely related to the so-called version B of defect correction according to Stetter [24].
If instead of (5.1) we solve

ζi,j − ζi,j−1

ti,j − ti,j−1
=
M(ti,j)

ti,j
ζi,j +D(ti,j)ζi,j − d̄i,j ,(5.16)

where

D(ti,j) := D2f(ti,j , p(ti,j)),

then ζi,j is an asymptotically correct error estimate. To see this, we note that the
difference between this error estimate and the estimate analyzed earlier in this paper,

xi,j := (ξi,j − πi,j) − ζi,j ,

satisfies

xi,j − xi,j−1

ti,j − ti,j−1
=
M(ti,j)

ti,j
xi,j + f(ti,j , ξi,j) − f(ti,j , πi,j) −D(ti,j)ζi,j

=
M(ti,j)

ti,j
xi,j +O(hm+1).

Consequently, the error of this error estimate has a bound analogous to (5.3). Note
that for linear problems, this alternative error estimate coincides with the variant
discussed earlier in the paper. For nonlinear problems, the practical usability and
numerical stability of the new estimate still has to be carefully assessed.
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6. Numerical examples. To illustrate the theory, we first consider the follow-
ing nonlinear problem:

z′(t) =
1

t

(
0 1
0 −1

)
z(t) + t

(
0

− 2(t2+2)+8
(t2+2)2 z2

1(t) + 8t2

(t2+2)2 z
3
1(t)

)
,(6.1a) (

0 1
0 0

)
z(0) +

(
0 0
1 0

)
z(1) =

(
0

1/ ln(3)

)
.(6.1b)

Its exact solution is

z(t) =

(
1

ln(t2 + 2)
,− 2t2

(t2 + 2) ln2(t2 + 2)

)T
.

The computations were carried out with the subroutines from our Matlab code
sbvp (cf. [4]) on fixed, equidistant grids. For the purpose of determining the empirical
convergence orders the mesh adaptation strategy was disabled. The tests were per-
formed in IEEE double precision with EPS ≈ 1.11 · 10−16. In Table 6.1, we give the
exact global errors errcoll of the collocation solutions for the respective mesh width
h and the convergence orders pcoll computed from the errors for two consecutive
stepsizes. Moreover, the errors of the error estimate with respect to the exact global
errors, errest, are recorded, together with associated empirical convergence orders pest.
In accordance with the theoretical results from sections 4 and 5, convergence orders
O(h4) for collocation and O(h5) for the error estimate are observed. This illustrates
the asymptotical correctness of the error estimate analyzed in this paper. Test runs
given in [4] demonstrate that this error estimate can be used as a dependable basis for
a mesh adaptation algorithm, providing an efficient, high precision numerical solver.

Table 6.1

Convergence orders of collocation and error estimate for (6.1).

h errcoll pcoll errest pest

2−2 1.5763e−04 2.2232e−05
2−3 9.5865e−06 4.04 6.5978e−07 5.07
2−4 5.9574e−07 4.01 1.7873e−08 5.21
2−5 3.7189e−08 4.00 5.1077e−10 5.13
2−6 2.3237e−09 4.00 1.5205e−11 5.07
2−7 1.4522e−10 4.00 4.6274e−13 5.04
2−8 9.0772e−12 4.00 1.4655e−14 4.98

Finally, we demonstrate the favorable performance of our error estimate for a
practically relevant example from applications. The following boundary value problem
is a model from the theory of shallow spherical shells; see [22], [25]. The transformation
of the original two-dimensional system of second order to the first order form yields

z′(t) =
1

t

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
0 0 −2 0
0 0 0 −2

⎞⎟⎟⎠ z(t) + t

⎛⎜⎜⎝
0
0

z2(t)(−µ2 + z1(t)) − 2γ
z1(t)(µ

2 − 1
2z1(t))

⎞⎟⎟⎠ ,(6.2)

where the eigenvalues of M(0) are λ = 0, 0, −2, −2. The boundary conditions read
z3(0) = z4(0) = z1(1) = 0, z4(1) + 2/3z2(1) = 0, and the parameters are chosen
as µ = 9, γ = 6000. We solve (6.2) using our code sbvp [4] equipped with the
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Fig. 6.1. Solution, global error, and error estimate for (6.2).

error estimate from section 5 and the adaptive mesh selection routine. The numerical
solution satisfies a mixed tolerance requirement with absolute and relative tolerance
equal to 10−4 at a mesh containing 124 mesh points, where the variation in the mesh
width is just below 2. In Figure 6.1 four components of the numerical solution are
given, and the estimate of the global error on the final mesh is compared with the error
of the collocation solution. In order to calculate the error of the collocation solution
we used a reference solution computed with tolerances 5 · 10−6. The maximum of
the error estimate is 0.0038367, and the maximum of the error with respect to the
reference solution is 0.003706. For most of the integration interval, the estimate
slightly overestimates the “true” error.

Acknowledgment. We wish to thank the referees for their valuable suggestions,
in particular for pointing out the alternative variant (5.16).
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problemen mit Anwendung auf singuläre Probleme der nichtlinearen Schalentheorie, Tech-
nical report, TUM-MATH-7733, Technische Universität München, 1977.

[23] R. D. Russell and L. F. Shampine, Numerical methods for singular boundary value problems,
SIAM J. Numer. Anal., 12 (1975), pp. 13–36.

[24] H. J. Stetter, The defect correction principle and discretization methods, Numer. Math., 29
(1978), pp. 425–443.

[25] H. Weinitschke, On the stability problem for shallow spherical shells, J. Math. and Phys., 38
(1959), pp. 209–231.

[26] E. B. Weinmüller, Collocation for singular boundary value problems of second order, SIAM
J. Numer. Anal., 23 (1986), pp. 1062–1095.

[27] E. B. Weinmüller, Stability of singular boundary value problems and their discretization by
finite differences, SIAM J. Numer. Anal., 26 (1989), pp. 180–213.

[28] C.-Y. Yeh, A.-B. Chen, D. Nicholson, and W. Butler, Full-potential Korringa-Kohn-
Rostoker band theory applied to the Mathieu potential, Phys. Rev. B, 42 (1990), pp. 10976–
10982.

[29] P. Zadunaisky, On the estimation of errors propagated in the numerical integration of ODEs,
Numer. Math., 27 (1976), pp. 21–39.



A FIRST-ORDER SYSTEM LEAST SQUARES FINITE ELEMENT
METHOD FOR THE SHALLOW WATER EQUATIONS∗

GERHARD STARKE†

SIAM J. NUMER. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 42, No. 6, pp. 2387–2407

Abstract. A least squares finite element method for the first-order system of the shallow water
equations is proposed and studied. The method combines a characteristic-based time discretization
with a least squares finite element approach which approximates the water level and the velocity
field in H1 and H(div), respectively. The linearized least squares functional is shown to be ellip-
tic, uniformly as the time-step size τ approaches zero, with respect to a suitably weighted norm.
Moreover, Lipschitz continuity of the Fréchet derivative is shown with respect to this norm. This
implies that the local evaluation of the nonlinear least squares functional constitutes an a posteriori
error estimator on which an adaptive refinement technique may be based. The efficiency of such an
adaptive finite element approach is tested numerically for a test problem involving the surface flow
in a widening channel leading to a recirculating velocity field.

Key words. least squares finite element method, first-order system, shallow water equations,
method of characteristics

AMS subject classifications. 65M60, 65M15
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1. Introduction. The numerical simulation of surface flow by the system of
shallow water equations is of interest for the prediction of, for example, water levels
in coastal regions or flood zones. The shallow water equations which are obtained from
depth-averaging the Navier–Stokes equations for fluid flow simplify the flow model to
a two-dimensional situation. This reduction is permissible under certain assumptions
including the fact that the horizontal dimension of the domain is much larger than the
vertical one. A lot of effort has been dedicated to the development of accurate and
efficient numerical methods for the approximate solution of shallow water equations
in recent years. Time discretization based on characteristics has become a standard
approach to the numerical simulation of surface flows in the meantime; see, e.g., [18, 9,
14, 17, 2, 12, 8, 10]. The discretization in time based on a coordinate transformation
along the characteristics is also used in the analytical study of a numerical approach
to the shallow water equations in [7].

Most often, the finite element discretization of the shallow water system uses
piecewise quadratic approximations for the velocity components and piecewise lin-
ear elements for the elevation (see, e.g., [11]). This combination of finite element
spaces constitutes the well-known Taylor–Hood elements and is known to be sta-
ble for the mixed variational formulation of the Stokes problem. If viscosity is ne-
glected in the shallow water model, the velocity field need only be H(div)-conforming
and Raviart–Thomas elements may be used for its approximation. The lowest-order
Raviart–Thomas spaces for the velocity field combined with piecewise constants for
the elevation are used in [12, 8] for this purpose. The resulting mixed finite element ap-
proach for the two-dimensional shallow water equations is contained as a special case
in the more general Quasi-three-dimensional multilayer approach treated in [12, 8].
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The mixed finite element method by Raviart and Thomas was also employed in [10]
where the emphasis was on the incorporation of transparent boundary conditions into
the weak formulation.

In this paper, we present a least squares finite element method for the system of
shallow water equations. This method does not require the finite element spaces for
velocity and elevation to satisfy a compatibility condition. Raviart–Thomas spaces (of
arbitrary degree) for the velocity field may be combined with H1-conforming elements
(of arbitrary degree) for the elevation, for example. The elementwise evaluation of the
least squares functional constitutes an a posteriori error estimator at no additional
cost. This a posteriori error estimator gives rise to adaptive refinement strategies
which dramatically increase the accuracy and efficiency of numerical methods in many
practical situations (see [3] for a study of such techniques in the least squares finite ele-
ment context). The use of the local evaluation of nonlinear least squares functionals as
an a posteriori error estimator was previously studied in connection to subsurface flow
problems in [16, 15]. For surface flow in domains with complicated boundaries, like
coastal regions, adaptivity is mandatory to achieve satisfactory results at reasonable
computational cost. Adaptive mesh refinement techniques based on error indicators
which are conceptually different from the ones derived in this paper are proposed and
tested for shallow water flow in [11].

For the above reasons, among others, least squares finite element methods have
become increasingly popular in recent years for a number of different application
problems; see [5] for an overview. Several least squares formulations for the Navier–
Stokes equations have been studied in [4, 6] where the partial derivatives of the velocity
field are introduced as additional variables.

In section 2 we introduce the system of shallow water equations and describe the
time discretization using a coordinate transformation along the characteristics. The
least squares variational formulation in the space of the resulting system is investigated
in section 3. In particular, ellipticity of the linearized least squares functional and
Lipschitz continuity of the Fréchet derivative is shown with respect to a properly
weighted norm. Section 4 treats the discretization by appropriate finite element spaces
including adaptive refinement strategies and the solution of the resulting nonlinear
least squares problems by Gauss–Newton iterations. Finally, computational results for
a test problem modelling recirculating shallow water flow in a channel are presented
in section 5.

2. The shallow water equations and method of characteristics. The pro-
cess variables to be determined areH, the total elevation above the sea bottom, and u,
the depth-averaged horizontal velocities. The system of the shallow water equations
is then given by

∂tH + div(Hu) = 0,
(2.1)

∂tu + (u · ∇)u + g∇(H −Hb) + cf
u|u|
H

+ F = 0,

to be satisfied in a region Ω ⊂ R
2, where Hb denotes the bathymetric depth under

the reference plane, g is the acceleration due to gravity, cf is the so-called Chezy
coefficient for the bottom friction term, and F comprises additional body and surface
forces (cf. [7]). Note that we have neglected the fluid viscosity in (2.1), an assumption
that is often admissible in practical situations (see, e.g., [8, 12, 10]).

In order to properly take into account the hyperbolic nature of system (2.1),
characteristic-based time discretizations are widely used for the shallow water equa-
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tions. To this end, the system (2.1) is reformulated with respect to transformed
time-space coordinates. The time coordinate is replaced by the local direction of the
characteristics while the spatial coordinates remain unchanged. The characteristic
curves X(t; s,x) associated with the system (2.1) are given by

d

dt
X(t; s,x) = u(t,X(t; s,x)) for t > 0,

X(s; s,x) = x,

where X(t; s,x) is the characteristic curve, parametrized by t, passing through the
time-space point (s,x). For the transformed process variables

Ĥ(t,x) = H(t,X(t; s,x)) and û(t,x) = u(t,X(t; s,x)),

we have

∂tĤ = ∂tH + u · ∇H,
∂tû = ∂tu + (u · ∇)u.

With respect to the transformed coordinates, (2.1) therefore turns into

∂tĤ + Ĥ div û = 0,

∂tû + g∇(Ĥ −Hb) + cf
û|û|
Ĥ

+ F = 0.

Using an implicit Euler time discretization we end up with a first-order system of the
form

H − Ĥold

τ
+H div u = 0 for all x ∈ Ω,

(2.2)
u − ûold

τ
+ g∇(H −Hb) + cf

u|u|
H

+ F = 0 for all x ∈ Ω

for each time step. Here, τ denotes the time-step length, H and u stand for the
unknown solutions at the current time t, while Ĥold and ûold are the solutions at
the previous time level t − τ evaluated at the point x̂ backwards along the charac-
teristic. An implicit Euler scheme is usually sufficient for the approximation of the
characteristics. In that case we obtain x̂ = x − τu.

Initial conditions prescribed for H and u allow the time-stepping procedure to
start from time t = 0. Furthermore, we consider the boundary conditions

H = HD for all x ∈ ΓD,
(2.3)

u · n = 0 for all x ∈ ΓN ,

where ΓD and ΓN are boundary segments such that ΓD ∪ ΓN = ∂Ω. Physically, this
means that at each boundary point either the elevation is prescribed or the normal
velocity is set to zero.

3. Least squares formulation of the time-discretized first-order system.
Our variational formulation for the solution of the first-order system (2.2) with bound-
ary conditions (2.3) will be based on the spaces

H1
ΓD

(Ω) = {η ∈ H1(Ω) : η = 0 on ΓD},
HΓN

(div,Ω) = {v ∈ H(div,Ω) : v · n = 0 on ΓN}.
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In addition to the standard norm in L2(Ω) which we denote by ‖ · ‖0,Ω, we will also
make use of the supremum norm ‖ · ‖∞,Ω on L∞(Ω) and the Sobolev space

W 1,∞(Ω) = {η ∈ L∞(Ω) : ∇η ∈ L∞(Ω)2}.

Multiplying the first-order system (2.2) with τ leads to

R(H,u; Ĥold, ûold) =

⎛⎝ H − Ĥold + τH div u

u − ûold + τ

(
g∇(H −Hb) + cf

u|u|
H

+ F

)⎞⎠ = 0.(3.1)

Our aim is to solve (3.1) for H = HD+Ĥ with Ĥ ∈ H1
ΓD

(Ω) and for u ∈ HΓN
(div,Ω).

To this end, we consider the least squares minimization problem of finding (Ĥ,u) ∈
H1

ΓD
(Ω) ×HΓN

(div,Ω) such that

‖R(HD + Ĥ,u; Ĥold, ûold)‖2
0,Ω ≤ ‖R(HD + η,v; Ĥold, ûold)‖2

0,Ω(3.2)

holds for all (η,v) ∈ H1
ΓD

(Ω) ×HΓN
(div,Ω).

For the linearization, the Fréchet derivative of R with respect to (H,u) is of
interest. It is given by

J (H,u)[η,v] =

⎛⎝ η + τ(H div v + η div u)

v + τg∇η + τcf

( |u|
H

v +
u

|u|H (u · v)

)
− τcf

u|u|
H2

η

⎞⎠ .(3.3)

For the well-posedness of the least squares minimization problem (3.2) we need to
establish an equivalence of the type

α|||(η,v)|||2 ≤ ‖J (H,u)[η,v]‖2
0,Ω ≤ β|||(η,v)|||2

for all (η,v) ∈ H1
ΓD

(Ω)×HΓN
(div,Ω) with positive constants α, β which are indepen-

dent of τ and with respect to a suitable norm |||(·, ·)|||. Such an equivalence will also
be needed in the next section for the well-posedness of the linear subproblems in a
Gauss–Newton iteration and for deriving the property of the least squares functional
as an a posteriori error estimator.

Let us start by considering the special case H ≡ H̄ > 0, u ≡ 0 which is the
unique solution of a stationary problem with constant water level. For this rather
simple situation we obtain

J (H̄,0)[η,v] =

(
η + τH̄ div v
v + τg∇η

)
,

which is obviously uniformly equivalent to

J̃ (H̄,0)[η,v] =

(
H̄−1/2η + τH̄1/2 div v
g−1/2v + τg1/2∇η

)
in the sense that

min{H̄, g}‖J̃ (H̄,0)[η,v]‖2
0,Ω ≤ ‖J (H̄,0)[η,v]‖2

0,Ω ≤ max{H̄, g}‖J̃ (H̄,0)[η,v]‖2
0,Ω
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holds for all (η,v) ∈ H1
ΓD

(Ω) ×HΓN
(div,Ω). The identity

‖J̃ (H̄,0)[η,v]‖2
0,Ω = H̄−1‖η‖2

0,Ω + τ2H̄‖div v‖2
0,Ω + g−1‖v‖2

0,Ω + τ2g‖∇η‖2
0,Ω

(the cross terms vanish due to integration by parts) suggests the use of the norm

|||(η,v)||| = (‖η‖2
0,Ω + τ2‖div v‖2

0,Ω + ‖v‖2
0,Ω + τ2‖∇η‖2

0,Ω)1/2(3.4)

on H1
ΓD

(Ω) ×HΓN
(div,Ω).

For the investigation of the general case, it is convenient to use a transformation
of variables. To this end, we write (3.3) as

J (H,u)[η,v] =

(
(1 + τ div u)η + τH div v

D(H,u)v + τg∇η − τcf
u|u|
H2

η

)
,(3.5)

where the matrix

D(H,u) =

(
1 + τcf

|u|
H

)(
1 0
0 1

)
+

τcf
|u|H

(
u2

1 u1u2

u1u2 u2
2

)
is invertible with

D(H,u)−1 =
1

1 + τcf
|u|
H

(
1 0
0 1

)
− τcf

|u|H(1 + τcf
|u|
H )(1 + 2τcf

|u|
H )

(
u2

1 u1u2

u1u2 u2
2

)
.

Of course, this formula is valid only for u �= 0, and for vanishing u we simply have
D(H,u) = I. Note that, in particular,

D(H,u)−1u =
1

1 + τcf
|u|
H

(
1 − τcf

|u|
H

1 + 2τcf
|u|
H

)
u =

1

1 + 2τcf
|u|
H

u.(3.6)

Obviously, for any z ∈ HΓN
(div,Ω),

z ·D(H,u)z =

(
1 + τcf

|u|
H

)
|z|2 + τcf

1

|u|H (u · z)2 ≥
(

1 + τcf
|u|
H

)
|z|2.(3.7)

Similarly, for D(H,u)−1 the estimate

z ·D(H,u)−1z =
1

1 + τcf
|u|
H

(
|z|2 − τcf (u · z)2

|u|H(1 + 2τcf
|u|
H )

)
(3.8)

≥ 1

1 + τcf
|u|
H

|z|2
(

1 − τcf
|u|

H(1 + 2τcf
|u|
H )

)
=

|z|2
1 + 2τcf

|u|
H

holds.
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In what follows, we abbreviate our notation by omitting the dependence of D on
H and u. Inserting

v = w + τcf
|u|
H2

(D−1u)η

into (3.5), J (H,u)[η,v] turns into

J̃ (H,u)[η,w] =

⎛⎝(1 + τ div u)η + τH div w + τ2cfH div

( |u|
H2

(D−1u)η

)
Dw + τg∇η

⎞⎠ .(3.9)

Lemma 3.1. If H ∈ W 1,∞(Ω), u ∈ W 1,∞(Ω)2, and H ≥ H∗ with a constant
H∗ > 0, then, for any η ∈ H1

ΓD
(Ω), the mapping

v 
→ v − τcf
|u|
H2

(D−1u)η =: w

is bijective in HΓN
(div,Ω). Moreover, there is a constant γ > 0 which is independent

of τ such that, under the above transformation,

1

γ
|||(η,v)||| ≤ |||(η,w)||| ≤ γ|||(η,v)|||(3.10)

holds, uniformly as τ → 0, for all (η,v) ∈ H1
ΓD

(Ω) ×HΓN
(div,Ω).

Proof. Since n · u = 0 on ΓN , (3.6) implies that also n · (D−1u) = 0 on ΓN .
Therefore, n · v = 0 on ΓN if and only if n · w = 0 on ΓN . Moreover, from (3.6) we
obtain

|u|
H2

(D−1u) =
|u|

H(H + 2τcf |u|)u(3.11)

leading to ∥∥∥∥ |u|H2
(D−1u)

∥∥∥∥
∞,Ω

≤
∥∥∥ u

H

∥∥∥2

∞,Ω
≤
(‖u‖∞,Ω

H∗

)2

=: C1.(3.12)

From (3.11) we also obtain

div

( |u|
H2

(D−1u)

)
=u · ∇

( |u|
H(H + 2τcf |u|)

)
+

|u|
H(H + 2τcf |u|) div u

=
u · (H2∇(|u|) − 2|u|(H + τcf |u|)∇H)

H2(H + 2τcf |u|)2 +
|u|

H(H + 2τcf |u|) div u.

Using |∇(|u|)| ≤ |∇u| the above identity leads to∥∥∥∥div

( |u|
H2

(D−1u)

)∥∥∥∥
∞,Ω

≤
∥∥∥∥ |u| |∇u|

H2

∥∥∥∥
∞,Ω

+ 2

∥∥∥∥ |u|2|∇H|
H3

∥∥∥∥
∞,Ω

+

∥∥∥∥ |u| |div u|
H2

∥∥∥∥
∞,Ω

(3.13)

≤ 2
∥∥∥ u

H

∥∥∥
∞,Ω

(∥∥∥∥∇u

H

∥∥∥∥
∞,Ω

+
∥∥∥ u

H

∥∥∥
∞,Ω

∥∥∥∥∇HH
∥∥∥∥
∞,Ω

)

≤ 2
‖u‖∞,Ω

H∗

(‖∇u‖∞,Ω

H∗
+

‖u‖∞,Ω‖∇H‖∞,Ω

H2∗

)
=: C2.
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Therefore,

‖w‖0,Ω =

∥∥∥∥v − τcf
|u|
H2

(D−1u)η

∥∥∥∥
0,Ω

≤ ‖v‖0,Ω + τcf

∥∥∥∥ |u|H2
(D−1u)

∥∥∥∥
∞,Ω

‖η‖0,Ω

≤ ‖v‖0,Ω + τcfC1‖η‖0,Ω

and

‖div w‖0,Ω =

∥∥∥∥div v − τcf div

( |u|
H2

(D−1u)

)
η − τcf

|u|
H2

(D−1u) · ∇η
∥∥∥∥

0,Ω

≤ ‖div v‖0,Ω + τcf

∥∥∥∥div

( |u|
H2

(D−1u)

)∥∥∥∥
∞,Ω

‖η‖0,Ω

+ τcf

∥∥∥∥ |u|H2
(D−1u)

∥∥∥∥
∞,Ω

‖∇η‖0,Ω

≤ ‖div v‖0,Ω + τcfC2‖η‖0,Ω + cfC1τ‖∇η‖0,Ω,

which leads to

|||(η,w)|||2 = ‖η‖2
0,Ω + τ2‖∇η‖2

0,Ω + ‖w‖2
0,Ω + τ2‖div w‖2

0,Ω

≤ (1 + 2τ2c2f (C
2
1 + C2

2 ))‖η‖2
0,Ω + (1 + 2c2fC

2
1 )τ2‖∇η‖2

0,Ω

+ 2‖v‖2
0,Ω + 2τ2‖div v‖2

0,Ω.

This proves the right inequality in (3.10) with γ = 1+max{1, 2τ2c2f (C
2
1 +C2

2 ), 2c2fC
2
1}.

The left inequality follows similarly.

Remark. The linear first-order operator in (3.9) may be reformulated as a second-
order operator with respect to η alone. For the resulting second-order differential
equation

(1 + τ div u)η + τ2H div

(
cf

|u|
H2

(D−1u)η − gD−1∇η
)

= 0,

however, the unique solvability can only be guaranteed under additional conditions on
the coefficients of the operator. In the following theorem ellipticity of the associated
least squares functional is established under suitable conditions on the coefficients
which are formulated as restrictions on the time-step size.

Theorem 3.2. Assume as in Lemma 3.1 that H ∈ W 1,∞(Ω), u ∈ W 1,∞(Ω)2,
and that there is a positive constant H∗ such that H ≥ H∗ holds. If, moreover, the
time-step size τ satisfies the condition

τ ≤ min

{
1

2‖div u‖∞,Ω
,

1

(8cfC2H∗)1/2
,

g

4cfC1(H∗(1 + 2τcfC
1/2
1 ))1/2

}
,(3.14)

where H∗ = ‖H‖∞,Ω and C1 and C2 are the constants defined in (3.12) and (3.13),
respectively, then there are positive constants α and β such that

α|||(η,v)|||2 ≤ ‖J (H,u)[η,v]‖2
0,Ω ≤ β|||(η,v)|||2(3.15)

holds for all (η,v) ∈ H1
ΓD

(Ω) ×HΓN
(div,Ω), uniformly as τ → 0.
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Proof. In view of Lemma 3.1 we only need to show that

α̃|||(η,w)|||2 ≤ ‖J̃ (H,u)[η,w]‖2
0,Ω ≤ β̃|||(η,w)|||2

holds for all (η,w) ∈ H1
ΓD

(Ω)×HΓN
(div,Ω), uniformly in τ . Moreover, J̃ (H,u)[η,w]

is equivalent to

J ◦(H,u)[η,w] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1 + τ div u

H

)1/2

η + τ

(
H

1 + τ div u

)1/2

div w + · · ·

· · · + τ2cf

(
H

1 + τ div u

)1/2

div

( |u|
H2

(D−1u)η

)
1

(2g)1/2
D1/2w + τ

(g
2

)1/2

D−1/2∇η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
in the sense that

min

{
H∗(1 − τ‖div u‖∞,Ω), 2g

(
1 − τcf

‖u‖∞,Ω

H∗

)}
‖J ◦(H,u)[η,w]‖2

0,Ω

≤ ‖J̃ (H,u)[η,w]‖2
0,Ω

≤ max

{
H∗(1 + τ‖div u‖∞,Ω), 2g

(
1 + 2τcf

‖u‖∞,Ω

H∗

)}
‖J ◦(H,u)[η,w]‖2

0,Ω

holds for all (η,w) ∈ H1
ΓD

(Ω) ×HΓN
(div,Ω), uniformly in τ . Note that it is possible

to take the square roots above since 1 + τ div u > 0 in Ω due to (3.14). Therefore, all
that is left to show is that

α◦|||(η,w)|||2 ≤ ‖J ◦(H,u)[η,w]‖2
0,Ω ≤ β◦|||(η,w)|||2(3.16)

holds for all (η,w) ∈ H1
ΓD

(Ω) × HΓN
(div,Ω) with constants α◦ and β◦ which are

independent of τ . We only prove the left inequality in (3.16) which is the hard part.

Using (3.12) and (3.13) again, we obtain∥∥∥∥∥
(

H

1 + τ div u

)1/2

div

( |u|
H2

(D−1u)η

)∥∥∥∥∥
0,Ω

≤
∥∥∥∥ H

1 + τ div u

∥∥∥∥1/2

∞,Ω

(∥∥∥∥div

( |u|
H2

(D−1u)

)∥∥∥∥
∞,Ω

‖η‖0,Ω +

∥∥∥∥ |u|H2
(D−1u)

∥∥∥∥
∞,Ω

‖∇η‖0,Ω

)

≤
(

H∗

1 − τ‖div u‖∞,Ω

)1/2

(C2‖η‖0,Ω + C1‖∇η‖0,Ω).

Combined with the restriction on the time-step size (3.14), this leads to∥∥∥∥∥
(

H

1 + τ div u

)1/2

div

( |u|
H2

(D−1u)η

)∥∥∥∥∥
0,Ω

≤ (2H∗)1/2(C2‖η‖0,Ω + C1‖∇η‖0,Ω).
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This implies

‖J ◦(H,u)[η,w]‖2
0,Ω

≥ 1

2

∥∥∥∥∥
(

1 + τ div u

H

)1/2

η + τ

(
H

1 + τ div u

)1/2

div w

∥∥∥∥∥
2

Ω

− 2τ4c2fH
∗(C2‖η‖0,Ω +C1‖∇η‖0,Ω)2 +

∥∥∥∥ 1

(2g)1/2
D1/2w + τ

(g
2

)1/2

D−1/2∇η
∥∥∥∥2

0,Ω

=
1

2

∥∥∥∥∥
(

1 + τ div u

H

)1/2

η

∥∥∥∥∥
2

0,Ω

+
τ2

2

∥∥∥∥∥
(

H

1 + τ div u

)1/2

div w

∥∥∥∥∥
2

0,Ω

− 2τ4c2fH
∗(C2‖η‖0,Ω + C1‖∇η‖0,Ω)2 +

1

2g
‖D1/2w‖2

0,Ω +
g

2
τ2‖D−1/2∇η‖2

0,Ω,

where we used the identity (η,div w)0,Ω + (w,∇η)0,Ω = 0. Using (3.7) and (3.8), this
may be further bounded from below to obtain

‖J ◦(H,u)[η,w]‖2
0,Ω

≥ 1 − τ‖div u‖∞,Ω

2H∗ ‖η‖2
0,Ω +

τ2H∗
2(1 + τ‖div u‖∞,Ω)

‖div w‖2
0,Ω

− 4τ4c2fH
∗(C2

2‖η‖2
0,Ω + C2

1‖∇η‖2
0,Ω) +

1

2g
‖w‖2

0,Ω +
gτ2

2(1 + 2τcfC
1/2
1 )

‖∇η‖2
0,Ω

≥
(

1

4H∗ − 4τ4c2fH
∗C2

2

)
‖η‖2

0,Ω +

(
gτ2

2(1 + 2τcfC
1/2
1 )

− 4τ4c2fH
∗C2

1

)
‖∇η‖2

0,Ω

+
1

2g
‖w‖2

0,Ω +
τ2H∗

2(1 + τ‖div u‖∞,Ω)
‖div w‖2

0,Ω.

The restriction on the time-step size (3.14) leads finally to

‖J ◦(H,u)[η,w]‖2
0,Ω ≥ 1

8H∗ ‖η‖2
0,Ω +

g

4(1 + 2τcfC
1/2
1 )

τ2‖∇η‖2
0,Ω

+
1

2g
‖w‖2

0,Ω +
H∗

2(1 + τ‖div u‖∞,Ω)
τ2‖div w‖2

0,Ω.

Remark. Theorem 3.2 shows that the least squares minimization problem (3.2) is
well-posed in a neighborhood of the solution (H,u) of the nonlinear elliptic problem
(3.1).

We end this section by showing that the Fréchet derivative J associated with our
least squares formulation is Lipschitz continuous. The derivation of a posteriori error
estimators in the next section will be done on the basis of this result. It is also useful
in the convergence study of Gauss–Newton methods for the iterative solution of the
discrete nonlinear variational problems.

Lemma 3.3. For u, ū ∈ L2(Ω)2,∥∥∥∥ 1

|ū|
(
ū2

1 ū1ū2

ū1ū2 ū2
2

)
− 1

|u|
(
u2

1 u1u2

u1u2 u2
2

)∥∥∥∥
0,Ω

≤ 3‖ū − u‖0,Ω.(3.17)
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Proof. Using elementary matrix calculations,∣∣∣∣ 1

|ū|
(
ū2

1 ū1ū2

ū1ū2 ū2
2

)
− 1

|u|
(
u2

1 u1u2

u1u2 u2
2

)∣∣∣∣2 =

∣∣∣∣ ūūT

|ū| − uuT

|u|
∣∣∣∣2

= |ū|2 + |u|2 − 2
(uT ū)2

|u| |ū|
(3.18)

= |u + (ū − u)|2 + |u|2 − 2
(uT (u + (ū − u)))2

|u| |u + (ū − u)|
= 2|u|2 + 2uT (ū − u) + |ū − u|2 − 2

|u|4 + 2|u|2uT (ū − u) + (uT (ū − u))2

|u|2(1 + 2
|u|2 u

T (ū − u) + |ū−u|2
|u|2 )1/2

is obtained. The two cases |ū − u| ≥ |u| and |ū − u| ≤ |u| are considered separately.
For the first case, |ū − u| ≥ |u| implies∣∣∣∣ ūūT

|ū| − uuT

|u|
∣∣∣∣2 ≤ 2|u|2 + 2uT (ū − u) + |ū − u|2 ≤ 5|ū − u|2.(3.19)

For the second case, |ū − u| ≤ |u| implies

2

|u|2 uT (ū − u) +
1

|u|2 |ū − u|2 ≤ 3

which leads to(
1 +

2

|u|2 uT (ū − u) +
1

|u|2 |ū − u|2
)−1/2

≥ 1 − 1

|u|2 uT (ū − u) − 1

2|u|2 |ū − u|2.

Combined with (3.18), we therefore obtain∣∣∣∣ ūūT

|ū| − uuT

|u|
∣∣∣∣2

≤ 2|u|2 + 2uT (ū − u) + |ū − u|2

− 2

(
|u|2 + 2uT (ū − u) +

(uT (ū − u))2

|u|2
)(

1 − 1

|u|2 uT (ū − u) − |ū − u|2
2|u|2

)
(3.20)

= 2
(uT (ū − u))2

|u|2 + 2
(uT (ū − u))3

|u|4 + 2|ū − u|2 +
uT (ū − u)|ū − u|2

|u|4

+ 2
(uT (ū − u))2|ū − u|2

|u|2 ≤ 4|ū − u|2 + 4
|ū − u|3

|u| +
|ū − u|4
|u|2 ≤ 9|ū − u|2.

The estimate (3.17) follows from integrating (3.19) and (3.20) over Ω.
Theorem 3.4. Assume that u, ū ∈ W 1,∞(Ω)2 with u · n = 0 on ΓN , H, H̄ ∈

H1(Ω) with H = H̄ = HD on ΓD, and that there is a positive constant H∗ such that
H ≥ H∗ and H̄ ≥ H∗ uniformly in Ω. Then,

‖J (H̄, ū)[η,v] − J (H,u)[η,v]‖0,Ω ≤ L|||(H̄ −H, ū − u)||| |||(η,v)|||,(3.21)

uniformly as τ → 0, for all (η,v) ∈ H1
ΓD

(Ω) × HΓN
(div,Ω), where the constant L

does not depend on τ .
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Proof. Equation (3.5) implies

‖J (H̄, ū)[η,v] − J (H,u)[η,v]‖0,Ω

=

∥∥∥∥∥∥
⎛⎝ τ div(ū − u)η + τ(H̄ −H) div v

(D(H̄, ū) −D(H,u))v − τcf

(
ū|ū|
H̄2

− u|u|
H2

)
η

⎞⎠∥∥∥∥∥∥
0,Ω

≤ τ‖div(ū − u)‖0,Ω‖η‖0,Ω + τ‖H̄ −H‖0,Ω‖div v‖0,Ω
(3.22)

+ ‖D(H̄, ū) −D(H,u)‖0,Ω‖v‖0,Ω + τcf

∥∥∥∥ ū|ū|H̄2
− u|u|

H2

∥∥∥∥
0,Ω

‖η‖0,Ω

≤
√

2

(
τ2‖div(ū − u)‖2

0,Ω + ‖H̄ −H‖2
0,Ω

+ ‖D(H̄, ū) −D(H,u)‖2
0,Ω + τ2c2f

∥∥∥∥ ū|ū|H̄2
− u|u|

H2

∥∥∥∥2

0,Ω

)1/2

|||(η,v)|||.

The definition of D(H,u) (cf. (3.5)) implies

D(H̄, ū) −D(H,u) = τcf

(( |ū|
H̄

− |u|
H

)(
1 0
0 1

)
+

1

|ū|H̄
(
ū2

1 ū1ū2

ū1ū2 ū2
2

)
− 1

|u|H
(
u2

1 u1u2

u1u2 u2
2

))
and therefore

‖D(H̄, ū) −D(H,u)‖0,Ω

≤ τcf

(√
2

∥∥∥∥ |ū|H̄ − |u|
H

∥∥∥∥
0,Ω

+

∥∥∥∥( 1

H̄
− 1

H

)
1

|u|
(
u2

1 u1u2

u1u2 u2
2

)∥∥∥∥
0,Ω

+

∥∥∥∥ 1

H̄

(
1

|ū|
(
ū2

1 ū1ū2

ū1ū2 ū2
2

)
− 1

|u|
(
u2

1 u1u2

u1u2 u2
2

))∥∥∥∥
0,Ω

)

≤ τcf

(√
2

H∗
‖|ū| − |u|‖0,Ω + (1 +

√
2)‖u‖∞,Ω

∥∥∥∥ 1

H̄
− 1

H

∥∥∥∥
0,Ω

+
1

H∗

∥∥∥∥ 1

|ū|
(
ū2

1 ū1ū2

ū1ū2 ū2
2

)
− 1

|u|
(
u2

1 u1u2

u1u2 u2
2

)∥∥∥∥
0,Ω

)

≤ τcf

(√
2

H∗
‖ū − u‖0,Ω +

1 +
√

2

H2∗
‖u‖∞,Ω‖H̄ −H‖0,Ω +

3

H∗
‖ū − u‖0,Ω

)
,

where we used (3.17) for estimating the last term. Moreover,∥∥∥∥ ū|ū|H̄2
− u|u|

H2

∥∥∥∥
0,Ω

=

∥∥∥∥ |ū|H̄2
(ū − u) +

u

H̄2
(|ū| − |u|) + u|u|

(
1

H̄
+

1

H

)
H − H̄

H̄H

∥∥∥∥
0,Ω

≤ ‖ū‖∞,Ω + ‖u‖∞,Ω

H2∗
‖ū − u‖0,Ω + 2

‖u‖2
∞,Ω

H3∗
‖H̄ −H‖0,Ω.
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Inserting all this into (3.22) implies

‖J (H̄, ū)[η,v] − J (H,u)[η,v]‖0,Ω

≤
√

2

(
τ2‖div(ū − u)‖2

0,Ω + ‖H̄ −H‖2
0,Ω

+ 2τ2c2f

(
11

H2∗
‖ū − u‖2

0,Ω +
6

H4∗
‖u‖2

∞,Ω‖H̄ −H‖2
0,Ω

)
+ 2τ2c2f

(
(‖ū‖∞,Ω + ‖u‖∞,Ω)2

H4∗
‖ū − u‖2

0,Ω

+ 4
‖u‖4

∞,Ω

H6∗
‖H̄ −H‖2

0,Ω

))1/2

|||(η,v)|||

which proves (3.21).

We end this section with an investigation of the behavior of the least squares
functional near the solution (H,u) of (3.1). Using the fact that R(H,u; Ĥold, ûold) = 0
and the Lipschitz continuity shown in Theorem 3.4, it can be shown that for (H̄, ū),
(H̃, ũ) sufficiently close to (H,u), up to quadratic terms in (H̄ − H̃, ū − ũ),

(R(H̄, ū; Ĥold, ûold),J (H̄, ū)[H̄ − H̃, ū − ũ])0,Ω

− (R(H̃, ũ; Ĥold, ûold),J (H̃, ũ)[H̄ − H̃, ū − ũ])0,Ω

= (R(H̄, ū; Ĥold, ûold) −R(H,u; Ĥold, ûold),J (H̄, ū)[H̄ − H̃, ū − ũ])0,Ω

− (R(H̃, ũ; Ĥold, ûold) −R(H,u; Ĥold, ûold),J (H̃, ũ)[H̄ − H̃, ū − ũ])0,Ω

≈ (J (H,u)[H̄ −H, ū − u],J (H,u)[H̄ − H̃, ū − ũ])0,Ω

− (J (H,u)[H̃ −H, ũ − u],J (H,u)[H̄ − H̃, ū − ũ])0,Ω

= (J (H,u)[H̄ − H̃, ū − ũ],J (H,u)[H̄ − H̃, ū − ũ])0,Ω.

Combined with (3.15), this implies that

(R(H̄, ū; Ĥold, ûold),J (H̄, ū)[H̄ − H̃, ū − ũ])0,Ω

− (R(H̃, ũ; Ĥold, ûold),J (H̃, ũ)[H̄ − H̃, ū − ũ])0,Ω ≥ ᾰ|||(H̄ − H̃, ū − ũ)|||2

holds with a constant ᾰ > 0. This condition is equivalent to the statement that the
least squares functional ‖R(H̄, ū; Ĥold, ûold)‖2

0,Ω is uniformly convex in a neighbor-
hood of (H,u) (cf. [1, section 4.3.4]).

4. Finite element discretization, approximate mass balance, and Gauss–
Newton iteration. The least squares finite element method consists in setting
the minimization problem (3.2) in finite-dimensional subspaces Qh ⊂ H1

ΓD
(Ω) and

Vh ⊂ HΓN
(div,Ω). Suitable finite element spaces are standard H1-conforming piece-

wise polynomial functions for Qh and the H(div)-conforming Raviart–Thomas ele-
ments for Vh. The minimization problem in these finite-dimensional spaces has a
unique solution in a neighborhood of (H,u) since the least squares functional is uni-
formly convex (cf. [1, section 3.2.2]).
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The following general relation holds between the residual R and its derivative J :

R(Hh,uh; Ĥ
old, ûold) = R(Hh,uh; Ĥ

old, ûold) −R(H,u; Ĥold, ûold)

= J (H,u)[Hh −H,uh − u]

+

∫ 1

0

(J (H + s(Hh −H),u + s(uh − u)) − J (H,u)) [Hh −H,uh − u] ds.

Using the Lipschitz continuity of J shown in Theorem 3.4, this leads to

‖R(Hh,uh; Ĥ
old, ûold)‖0,Ω ≤ ‖J (H,u)[Hh−H,uh−u]‖0,Ω +

L

2
|||(Hh−H,uh−u)|||2

and

‖R(Hh,uh; Ĥ
old, ûold)‖0,Ω ≥ ‖J (H,u)[Hh−H,uh−u]‖0,Ω− L

2
|||(Hh−H,uh−u)|||2.

Combined with Theorem 3.2, this implies that there exist positive constants
...
α and...

β , such that

...
α |||(Hh −H,uh − u)|||2 ≤ ‖R(Hh,uh; Ĥ

old, ûold)‖2
0,Ω ≤ ...

β |||(Hh −H,uh − u)|||2
(4.1)

holds if |||(Hh −H,uh − u)||| is sufficiently small. The practical implication of (4.1)
is that for a given triangulation Th of Ω, the local evaluation of the least squares
functional,

‖R(Hh,uh; Ĥ
old, ûold)‖2

0,T for each T ∈ Th,
serves as an a posteriori error estimator. Note that only the constants

...
α and

...
β affect

the sharpness of this a posteriori error estimator.
For some applications, it is of special importance that the mass balance error

which is associated with the first equation in (2.2) is small. More precisely, let T be
a fixed triangulation of Ω, then a measure for the local mass balance error is given by

M(Hh,uh) =
∑
K∈T

∣∣∣∣∫
K

(Hh − Ĥold + τHh div uh) dx

∣∣∣∣ .(4.2)

For the Raviart–Thomas mixed finite element method employed in [8, 12], this mass
balance error is zero (up to interpolation errors for Ĥold on the current triangulation).
In our least squares approach M(Hh,uh) does not vanish, in general, but it is rather
small, and decreases with refinement, as illustrated by the numerical results in the next
section. Similar results were observed in connection to the study of mass conservation
of a least squares mixed finite element method applied to variably saturated subsurface
flow (see [16]).

For the solution of the discrete version of (3.2), i.e., to find (Ĥh,uh) ∈ Qh × Vh

such that

‖R(HD + Ĥh,uh; Ĥ
old, ûold)‖2

0,Ω ≤ ‖R(HD + ηh,vh; Ĥ
old, ûold)‖2

0,Ω(4.3)

holds for all (ηh,vh) ∈ Qh × Vh, we use a Gauss–Newton iteration with suitable
stopping criterion (see [16, 15]). The kth Gauss–Newton step consists of computing
δHh ∈ Qh and δuh ∈ Vh such that∥∥∥R(H(k)

h ,u
(k)
h ; Ĥold, ûold

)
+ J

(
H

(k)
h ,u

(k)
h

)
[δHh , δ

u
h]
∥∥∥2

0,Ω



2400 GERHARD STARKE

is minimized, and setting

H
(k+1)
h = H

(k)
h + δHh , u

(k+1)
h = u

(k)
h + δuh.

This is equivalent to the variational formulation of finding δHh ∈ Qh and δuh ∈ Vh

such that

(
J
(
H

(k)
h ,u

(k)
h

)
[δHh , δ

u
h] + R

(
H

(k)
h ,u

(k)
h ; Ĥold, ûold

)
,J
(
H

(k)
h ,u

(k)
h

)
[ηh,vh]

)
0,Ω

= 0

(4.4)

for all ηh ∈ Qh and vh ∈ Vh. The size of the algebraic residual(
R
(
H

(k)
h ,u

(k)
h ; Ĥold, ûold

)
,J
(
H

(k)
h ,u

(k)
h

)
[ηh,vh]

)
0,Ω

may be used as a stopping criterion for the Gauss–Newton iteration (cf. [15]). In gen-

eral, the Gauss–Newton iteration converges only locally, i.e., if (H
(0)
h ,u

(0)
h ) is already

sufficiently close to (Hh,uh). Therefore, the scheme has to be combined with a line
search or trust region strategy to ensure convergence (cf. [13, Chapter 10]). The lin-
ear variational problems (4.4) arising in each Gauss–Newton step may most efficiently
be solved by multilevel methods (see [15] for such a strategy for a related nonlinear
least squares formulation). Embedding such an inexact Gauss–Newton iteration into
a full multigrid framework can lead to an overall method with a computational cost
which grows only linearly in the dimension of the system. This requires the careful
adjustment of the different tolerances for the linear and nonlinear algebraic errors
with respect to the discretization error (cf. [15]).

5. Computational results. This section is concerned with the validation of
our least squares approach by numerical results obtained for a test example of shallow
water flow taken from [8]. The recirculation of the flow behind an abrupt widening of
a channel is only captured by sufficiently fine meshes. Adaptive refinement strategies
are helpful for this purpose.

The domain Ω is best defined by its boundary ∂Ω = ΓD ∪ ΓN with ΓD and ΓN
given by

ΓD = {x = (x1, x2) : x1 = 100, 0 ≤ x2 ≤ 100}
∪{x = (x1, x2) : x1 = 1100, 0 ≤ x2 ≤ 200},

ΓN = {x = (x1, x2) : x2 = 0, 100 ≤ x1 ≤ 1100}
∪{x = (x1, x2) : x2 = 100, 100 ≤ x1 ≤ 200}
∪{x = (x1, x2) : x1 = 200, 100 ≤ x2 ≤ 200}
∪{x = (x1, x2) : x2 = 200, 200 ≤ x1 ≤ 1100}.

As boundary conditions on ΓD we have

H(x) = 2 +
1

4
sin

(
tπ

300

)
if x1 = 100,

H(x) = 2 if x1 = 1100,

modelling a water level that varies with t at the left end of Ω while keeping the ele-
vation constant at the right boundary. On ΓN the normal component of the velocity,
u ·n, is set to zero. The Chezy coefficient was chosen as cf = 0.002725 which is taken
from [8]. The initial conditions at t = 0 are H ≡ 2 and u ≡ 0.

The time discretization is done with a time-step size τ of 5 seconds. These
rather small time steps are chosen in order to resolve the variation of the inflow
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boundary conditions with sufficient accuracy. Moreover, our experiments showed
that for larger time-step sizes the cost associated with the Gauss–Newton iteration
for solving the nonlinear systems in each time step is growing significantly. For the
space discretization, piecewise quadratic functions are used for Qh and combined with
quadratic Raviart–Thomas spaces for Vh. Starting from a coarse initial triangulation,
four steps of adaptive refinement based on the local evaluation of the least squares
functional described in the previous section are performed. With a given tolerance ε
for the desired value of the functional minimum, all triangles are refined which satisfy

‖R(Hh,uh; Ĥ
old, ûold)‖2

0,T >
ε

#elements

for the local contribution to the least squares functional.
We present the results of our computations at various stages of the time evolution.

As it can be seen in Figures 5.1 and 5.2, at t = 100 a sink begins to form behind
the reentrant corner. At t = 200 the recirculation phase starts, gaining in strength
until t = 300. Afterwards, at t = 400, the flow starts turning until it is directed
backwards at t = 500. For t = 600 this cycle starts again resembling the results
for t = 100. Figure 5.3 shows the local distribution of the least squares functional
for the same times on a logarithmic scale. For each of the shown time steps lighter
zones starting from the reentrant corner with relatively large contributions to the least
squares functional can be clearly identified. The use of this error estimator results in
the adaptively refined triangulations shown in Figure 5.4. Obviously, a high level of
refinement is reached primarily in the recirculation zone in order to resolve the local
variation of the water level and velocity field in this area.

Tables 5.1 to 5.6 show the reduction of the least squares functional on the re-
sulting sequence of adaptively refined triangulations. The dimensions of the finite
element spaces Qh and Vh are denoted by NQ and NV , respectively. The optimal
convergence behavior achievable with piecewise quadratic finite elements would result
in a reduction of the least squares functional proportional to (NQ + NV )−2. Such a
behavior is only reached in our numerical tests for t = 200 and 300. For the other
times only (NQ +NV )−µ with µ well below 2 is reached in average for the reduction
of the least squares functional. This suboptimal convergence behavior indicates that
the adaptive refinement strategy based on a fixed tolerance for the local contribution
of the functional may not be appropriate at these time steps. On the other hand, this
phenomenon may also be due to the nonlinear nature of the problem which is possibly
not resolved on all refinement levels shown. Note that the reduction exponent µ moves
somewhat closer to 2 on finer levels in most of the time steps shown. Interestingly,
the largest deviation from the expected optimal convergence behavior is seen at those
time steps where relative large recirculation zones are present.

Also shown is the mass balance error M(Hh,uh) associated with these time steps.
The coarsest triangulation (level 0) is used for T in the definition of M(Hh,uh) in
(4.2). Our numerical results indicate that the decrease in the mass balance error is at
least as fast as for the least squares functional. Note that the computed mass balance
error needs to be related to the typical size of the mass variation∣∣∣∣∫

Ω

(H − Ĥold) dx

∣∣∣∣ ≈ |Ω| |∆H| = 1.7 · 105|∆H|.

The inflow boundary conditions suggest that ∆H is in the range of 10−3τ = 5 · 10−3

which leads to an overall mass variation in the range of 103. The relative mass balance
error in Tables 5.1 to 5.6 is therefore on the order of 10−4 to 10−3 on the finest level.
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Fig. 5.1. Elevation for t = 100, 200, 300, 400, 500, and 600.
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Fig. 5.2. Velocity field for t = 100, 200, 300, 400, 500, and 600.
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Fig. 5.3. Least squares functional on level 3 for t = 100, 200, 300, 400, 500, and 600.
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Fig. 5.4. Adaptively refined triangulations for t = 100, 200, 300, 400, 500, and 600.
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Table 5.1

Least squares functional for t = 100.

l 0 1 2 3 4

# Elements 461 801 1325 2075 3001

NQ 972 1668 2724 4230 6090

NV 2254 3938 6550 10294 14916

Functional 31.39 15.66 7.63 2.50 1.21

Reduction exponent µ — 1.26 1.43 2.49 1.97

Mass balance error 68.55 27.63 13.18 5.01 2.14

Table 5.2

Least squares functional for t = 200.

l 0 1 2 3 4

# Elements 461 820 1342 2117 2926

NQ 972 1705 2761 4312 5933

NV 2254 4034 6632 10506 14548

Functional 92.50 15.41 5.01 2.85 1.49

Reduction exponent µ — 3.11 2.28 1.24 2.00

Mass balance error 65.36 5.88 2.48 1.53 1.07

Table 5.3

Least squares functional for t = 300.

l 0 1 2 3 4

# Elements 461 812 1547 2962 4760

NQ 972 1687 3172 6005 9597

NV 2254 3996 7656 14728 23722

Functional 30.99 7.08 2.08 0.54 0.13

Reduction exponent µ — 2.61 1.90 2.06 3.01

Mass balance error 51.55 6.58 1.68 0.83 0.65

Table 5.4

Least squares functional for t = 400.

l 0 1 2 3 4

# Elements 461 800 1593 3076 4968

NQ 972 1665 3270 6241 10037

NV 2254 3934 7880 15290 24738

Functional 80.53 21.67 19.92 9.49 5.50

Reduction exponent µ — 2.38 0.12 1.13 1.14

Mass balance error 110.87 25.68 23.74 8.51 3.81

Table 5.5

Least squares functional for t = 500.

l 0 1 2 3 4

# Elements 461 751 1293 2189 3179

NQ 972 1566 2666 4472 6462

NV 2254 3690 6384 10850 15790

Functional 52.42 25.14 7.95 6.45 2.41

Reduction exponent µ — 1.51 2.12 0.40 2.64

Mass balance error 84.87 12.78 6.74 4.20 2.08
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Table 5.6

Least squares functional for t = 600.

l 0 1 2 3 4

# Elements 461 784 1343 2216 3428

NQ 972 1631 2762 4517 6951

NV 2254 3856 6638 10994 17044

Functional 115.03 71.01 36.41 13.20 5.66

Reduction exponent µ — 0.91 1.24 2.03 1.94

Mass balance error 129.10 50.23 23.91 9.84 4.29

Acknowledgment. I am thankful to the anonymous referees for helpful com-
ments and suggestions.

REFERENCES

[1] K. E. Atkinson and W. Han, Theoretical Numerical Analysis, Springer, New York, 2001.
[2] J. Behrens, Atmospheric and ocean modeling with an adaptive finite element solver for the

shallow-water equations, Appl. Numer. Math., 26 (1998), pp. 217–226.
[3] M. Berndt, T. A. Manteuffel, and S. F. McCormick, Local error estimates and adaptive

refinement for first-order system least squares, Electron. Trans. Numer. Anal., 6 (1997),
pp. 35–43.

[4] P. Bochev, Z. Cai, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-flux
first-order system least-squares principles for the Navier–Stokes equations: Part I, SIAM
J. Numer. Anal., 35 (1998), pp. 990–1009.

[5] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM
Rev., 40 (1998), pp. 789–837.

[6] P. Bochev, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-flux least-squares
principles for the Navier–Stokes equations: Part II, SIAM J. Numer. Anal., 36 (1999),
pp. 1125–1144.

[7] C. N. Dawson and M. Martinez-Canales, A characteristic-Galerkin approximation to a
system of shallow water equations, Numer. Math., 86 (2000), pp. 239–256.

[8] L. Fontana, E. Miglio, A. Quarteroni, and F. Saleri, A finite element method for 3D
hydrostatic water flows, Comput. Vis. Sci., 2 (1999), pp. 85–93.

[9] R. Hinkelmann and W. Zielke, A parallel 2D Lagrangian-Eulerian model for the shallow
water equations, in Computing in Civil and Building Engineering, Vol. 1, P. J. Pahl and H.
Werner, eds., A. A. Balkema Publishers, Rotterdam, The Netherlands, 1995, pp. 537–543.

[10] A. Holstad and I. Lie, Transparent boundary conditions for the shallow water equations with
a mixed finite element formulation, Appl. Numer. Math., 44 (2003), pp. 109–138.

[11] M. Marrocu and D. Ambrosi, Mesh adaptation strategies for shallow water flow, Internat.
J. Numer. Methods Fluids, 31 (1999), pp. 497–512.

[12] E. Miglio, A. Quarteroni, and F. Saleri, Finite element approximation of quasi-3D shallow
water equations, Comput. Methods Appl. Mech. Engrg., 174 (1999), pp. 355–369.

[13] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999.
[14] J. Petera and V. Nassehi, A new two-dimensional finite element model for the shallow

water equations using a Lagrangian framework constructed along fluid particle trajectories,
Internat. J. Numer. Methods Engrg., 39 (1996), pp. 4159–4182.

[15] G. Starke, Gauss-Newton multilevel methods for least-squares finite element computations of
variably saturated subsurface flow, Computing, 64 (2000), pp. 323–338.

[16] G. Starke, Least-squares mixed finite element solution of variably saturated subsurface flow
problems, SIAM J. Sci. Comput., 21 (2000), pp. 1869–1885.

[17] R. A. Walters and V. Casulli, A robust finite element model for hydrostatic surface water
flows, Comm. Numer. Methods Engrg., 14 (1998), pp. 931–940.

[18] O. C. Zienkiewicz and P. Ortiz, A split-characteristic based finite element model for the
shallow water equations, Internat. J. Numer. Methods Fluids, 20 (1995), pp. 1061–1080.



RECONSTRUCTION OF CLOSELY SPACED SMALL INCLUSIONS∗

HABIB AMMARI† , HYEONBAE KANG‡ , EUNJOO KIM‡ , AND MIKYOUNG LIM‡

SIAM J. NUMER. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 42, No. 6, pp. 2408–2428

Abstract. In this paper we establish an explicit asymptotic formula for the steady state volt-
age perturbations caused by closely spaced small conductivity inhomogeneities. Based on this new
formula we design a very effective numerical method to identify the location and some geometric
features of these inhomogeneities from a finite number of boundary measurements. The viability of
our approach is documented by numerical examples.

Key words. conductivity imaging, closely spaced small inhomogeneities, polarization tensors
of multiple inclusions, numerical reconstruction algorithms
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1. Introduction. The problem of determining interior information about a me-
dium from boundary field measurements is one that is not, in general, well posed.
If, however, in advance we have additional structural information about the medium,
then we may be able to determine specific features with higher resolution. One par-
ticular very promising line of work has been concerned with the reconstruction of
small well-separated inhomogeneities. While efficient algorithms to determine the lo-
cation and/or shape of the small inhomogeneities have been developed in that case
[3, 5, 6, 7, 8, 10, 17, 18, 23, 28, 4], it remains an interesting open problem to adapt these
numerical methods to the close-to-touching case. In this paper, we will concentrate
on the reconstruction of conductivity inhomogeneities in a specific setting, namely
a bounded domain consisting of a homogeneous conducting background medium in
which are embedded closely spaced conducting inhomogeneities of small diameter. We
believe that our results can be extended, with some modifications, to the case of the
Helmholtz equation, the full Maxwell equations, and the Lamé system, as well as to
the setting of thin inhomogeneities.

Our objective in this work is threefold. Our first goal is to provide an explicit
derivation of the leading order boundary perturbations resulting from the presence
of an arbitrary number of closely spaced small conductivity inhomogeneities. This
formula expresses the voltage potential in terms of the background potential, a certain
Neumann function, and the relevant polarization tensors of multiple inclusions and, in
a most natural way, generalizes those already derived for a finite set of well-separated
small inhomogeneities [1, 10, 16]. Our second goal is to investigate some important
properties of these new polarization tensors such as symmetry and positivity. We also
estimate their eigenvalues in terms of the total volume of the inclusions and explicitly
compute them in the multidisk case. These results do not seem to be available in the
literature. In the case of a single inhomogeneity these polarization tensors are reduced
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to the classical Pólya–Szegö polarization tensor which has been extensively studied
[10, 16, 21, 25, 26] and higher-order polarization tensors which have been introduced
in [1, 2]. It should also be noted that Cheng and Greengard gave in Theorem 2.2 of
their interesting paper [11] a solution to the two- and three-disk conductivity problem
based on a method of images. Our calculations provide a more general way of solving
the multidisk problem.

Our third goal is to apply our explicit asymptotic formula for the purpose of iden-
tifying the location and the polarization tensor of closely spaced small inhomogeneities
from finitely many current-voltage pairs measured on the boundary.

To fix notation, consider a homogeneous conducting object which occupies a
bounded Lipschitz domain Ω ⊂ R

d, d = 2 or 3. We will assume, for the sake of
simplicity, that its conductivity is equal to 1. The background voltage potential, U ,
is the solution to the boundary value problem⎧⎪⎨⎪⎩

∆U = 0 in Ω,

∂U

∂ν

∣∣
∂Ω

= g.

Here ν denotes the unit outward normal to the domain Ω and g represents the applied
boundary current; it belongs to the set L2

0(∂Ω) = {g ∈ L2(∂Ω),
∫
∂Ω
g = 0}.

Let D denote a set of m closely spaced inhomogeneities inside Ω

D = ∪ml=1Dl := ∪ml=1(εBl + z),

where z ∈ Ω, ε > 0 is small, and Bl for l = 1, . . . ,m is a bounded Lipschitz domain
in R

d. Throughout this paper we suppose that
(H1) the setD is well separated from the boundary ∂Ω (i.e., dist(D, ∂Ω) > d0 > 0);
(H2) there exist positive constants C1 and C2 such that

C1 ≤ diamBl ≤ C2, and C1 ≤ dist(Bl, Bl′) ≤ C2, l �= l′;

(H3) and the conductivity of the inhomogeneity Dl for l = 1, . . . ,m is equal to
some positive constant kl �= 1.
The conductivity profile of Ω is then

γ(x) =

{
kl, x ∈ Dl,
1, x ∈ Ω \D.(1.1)

The voltage potential in the presence of the set D of conductivity inhomogeneities is
denoted u. It is the solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇ ·
(
χ

(
Ω \

m⋃
l=1

Dl

)
+

m∑
l=1

klχ(Dl)

)
∇u = 0 in Ω,

∂u

∂ν

∣∣
∂Ω

= g.

We normalize both the potentials U and u by requiring that
∫
∂Ω
u =

∫
∂Ω
U = 0.

It should be noted that Capdeboscq and Vogelius, in their interesting paper [9],
derived a very general representation formula for the boundary voltage perturbations
caused by internal conductivity inhomogeneities of small volume fraction. Rather
than directly applying this general formula for finding the location and geometric
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features of D we derive a more explicit one in the particular case of close-to-touching
small inhomogeneities from which it is possible to extract very specific information
about D. The numerical examples presented in this paper show that this explicit
formula leads to a very effective computational algorithm.

This paper is organized as follows. In section 2, we review some basic facts on the
layer potentials of the Laplacian which constitute the basic tools of the present work.
In section 3, we give mathematical definitions of the polarization tensors of multiple
inclusions. In particular, we rigorously establish some useful properties of these new
polarization tensors, carefully study their properties of symmetry and positivity, and
estimate their eigenvalues in terms of the total volume of the inclusions. In section 4,
we explicitly compute these polarization tensors in the multidisk case. In section 5,
we visualize the first-order polarization tensor of multiple inclusions in terms of an
equivalent ellipse. In section 6, we rigorously justify the derivation of our asymptotic
formula. In section 7, we propose a numerical algorithm based on the asymptotic
formula to detect the location and size of closely spaced inclusions. This algorithm
makes it possible to find the first-order polarization tensor as well.

2. Layer potentials for the Laplacian. In this section, let us review some
well-known properties of the layer potentials for the Laplacian and prove a decompo-
sition formula of the solution u to the following transmission problem:⎧⎪⎪⎨⎪⎪⎩

∇ ·
(
χ

(
Ω \

m⋃
l=1

Bl

)
+

m∑
l=1

klχ(Bl)

)
∇u = 0 in R

d,

u(x) −H(x) = O(|x|1−d) as |x| → ∞,

(2.1)

where H is a harmonic function in R
d.

The theory of layer potentials has been developed in relation to the boundary
value problems. Let D be a bounded domain in R

d, d ≥ 2. We assume that ∂D is
Lipschitz. Let Γ(x) be the fundamental solution of the Laplacian ∆:

Γ(x) =

⎧⎪⎪⎨⎪⎪⎩
1

2π
ln |x|, d = 2,

1

(2 − d)ωd
|x|2−d, d ≥ 3,

(2.2)

where ωd is the area of the (d − 1)-dimensional unit sphere. The single and double
layer potentials of the density function φ on D are defined by

SDφ(x) :=

∫
∂D

Γ(x− y)φ(y)dσ(y), x ∈ R
d,(2.3)

DDφ(x) :=

∫
∂D

∂

∂νy
Γ(x− y)φ(y)dσ(y), x ∈ R

d \ ∂D.(2.4)

For a function u defined on R
d \ ∂D, we denote

∂

∂ν±
u(x) := lim

t→0+
〈∇u(x± tνx), νx〉, x ∈ ∂D,

if the limit exists. Here νx is the outward unit normal to ∂D at x.
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The proof of the following trace formula can be found in [14, 15, 24] (for Lipschitz
domains, see [27]):

∂

∂ν±
SDφ(x) =

(
± 1

2
I + K∗

D

)
φ(x), x ∈ ∂D,(2.5)

(DDφ)|± =

(
∓ 1

2
I + KD

)
φ(x), x ∈ ∂D,(2.6)

where

KDφ(x) =
1

ωd
p.v.

∫
∂D

〈y − x, νy〉
|x− y|d φ(y)dσ(y)

and K∗
D is the L2-adjoint of KD. When ∂D is Lipschitz, KD is a singular integral

operator and known to be bounded on L2(∂Ω) [12]. Let L2
0(∂D) := {f ∈ L2(∂D) :∫

∂D
fdσ = 0}. The following results are due to Verchota and Escauriaza, Fabes, and

Verchota.
Theorem 2.1 (see [13], [27]). λI − K∗

D is invertible on L2
0(∂D) if |λ| ≥ 1

2 , and
for λ ∈ (−∞,− 1

2 ] ∪ ( 1
2 ,∞), λI −K∗

D is invertible on L2(∂D).
The following theorem will be very useful in the next section.
Theorem 2.2. Let H be a harmonic function in R

d for d = 2 or 3. Let u be
the solution of the transmission problem (2.1). There are unique functions ϕ(j) ∈
L2

0(∂Bj), j = 1, . . . ,m, such that

u(x) = H(x) +

m∑
j=1

SBj
ϕ(j)(x).(2.7)

The potential ϕ(j), j = 1, . . . ,m, satisfy

(λjI −K∗
Bj

)ϕ(j) −
∑
k �=j

∂(SBk
ϕ(k))

∂ν(j)

∣∣∣∣
∂Bj

=
∂H

∂ν(j)

∣∣∣∣
∂Bj

on ∂Bj , j = 1, . . . ,m,

(2.8)

where ν(j) denotes the outward unit normal to ∂Bj and

λj =
kj + 1

2(kj − 1)
, j = 1, . . . ,m.

Proof. It is easy to see from (2.5) that u defined by (2.7) and (2.8) is the solution
of (2.1). Thus it is enough to show that the integral equation (2.8) has a unique
solution.

Let X := L2
0(∂B1) × · · · × L2

0(∂Bm). We prove that the operator T : X → X
defined by

T (ϕ(1), . . . , ϕ(m)) = T0(ϕ
(1), . . . , ϕ(m)) + T1(ϕ

(1), . . . , ϕ(m))

:=
(
(λ1I −K∗

B1
)ϕ(1), . . . , (λmI −K∗

Bm
)ϕ(m)

)
−
⎛⎝∑
k �=1

∂(SBk
ϕ(k))

∂ν(1)

∣∣∣∣∣
∂B1

, . . . ,
∑
k �=m

∂(SBk
ϕ(k))

∂ν(m)

∣∣∣∣∣
∂Bm

⎞⎠
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is invertible. By Theorem 2.1, T0 is invertible on X. On the other hand, it is easy
to see that T1 is a compact operator on X. Thus, by the Fredholm alternative, it
suffices to show that T is injective on X. If T (ϕ(1), . . . , ϕ(m)) = 0, then u(x) :=∑m
j=1 SBjϕ

(j)(x), x ∈ R
d, is the solution of (2.1) with H = 0. By the uniqueness

of the solution to (2.1), we get u ≡ 0. In particular, SBjϕ
(j) is smooth across ∂Bj ,

j = 1, . . . ,m. Therefore, ϕ(j) =
∂(SBj

ϕ(j))

∂ν(j)

∣∣
+
− ∂(SBj

ϕ(j))

∂ν(j)

∣∣
− = 0. This completes the

proof.

3. Polarization tensors of multiple inclusions. Our aim in this section is
to introduce new concepts of polarization tensors of multiple inclusions which gener-
alize the Pólya–Szegö tensor. These concepts are defined in a way analogous to the
generalized polarization tensors introduced in [1, 2]. A novel result of this paper is
a proof of symmetry and positive-definiteness of these polarization tensors. We also
obtain estimations of their eigenvalues in terms of the total volume of the inclusions.
These results will turn out to be crucial for our approach to determine the location
and some geometric features of closely spaced small conductivity inclusions.

Definition 3.1. Let α = (α1, . . . , αd), β = (β1, . . . , βd) ∈ N
d be multi-indices.

For l = 1, . . . ,m let ϕ
(l)
α be the solution of

(λlI −K∗
Bl

)ϕ(l)
α −

∑
k �=l

∂(SBk
ϕ

(k)
α )

∂ν(l)

∣∣∣∣
∂Bl

=
∂xα

∂ν(l)

∣∣∣∣
∂Bl

on ∂Bl.(3.1)

Then the polarization tensor M = (mαβ) is defined to be

mαβ =

m∑
l=1

∫
∂Bl

xβϕ(l)
α (x)dσ.(3.2)

If |α| = |β| = 1, we denote mαβ by mij, i, j = 1, . . . , d. We call mij the first-order
polarization tensor.

Theorem 3.2. The polarization tensor M is symmetric. More precisely, if aα
and bβ are constants such that

∑
α aαy

α and
∑
β bβy

β are harmonic polynomials, then∑
α,β

aαbβmαβ =
∑
α,β

aαbβmβα.(3.3)

Proof. Put f(y) :=
∑
α aαy

α, g(y) :=
∑
β bβy

β , ϕ(l) :=
∑
α aαϕ

(l)
α , and ψ(l) :=∑

β bβϕ
(l)
β . Then one can easily see that

∑
α,β

aαbβmαβ =

m∑
l=1

∫
∂Bl

gϕ(l)dσ and
∑
α,β

aαbβmβα =

m∑
l=1

∫
∂Bl

fψ(l)dσ.

We also put

Φ(x) :=

m∑
l=1

SBl
ϕ(l) and Ψ(x) :=

m∑
l=1

SBl
ψ(l).

From the definition of ϕ
(l)
α , one can readily get

kj
∂(f + Φ)

∂ν(j)

∣∣∣∣
−

=
∂(f + Φ)

∂ν(j)

∣∣∣∣
+

on ∂Bj ,(3.4)
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and the same relation holds for g + Ψ. From (3.1) we obtain

∂(SBl
ϕ(l))

∂ν(l)

∣∣∣∣
+

− kl
∂(SBl

ϕ(l))

∂ν(l)

∣∣∣∣
−

=
∑
α

aα

[
∂(SBl

ϕ
(l)
α )

∂ν(l)

∣∣∣∣
+

− kl
∂(SBl

ϕ
(l)
α )

∂ν(l)

∣∣∣∣
−

]

= (kl − 1)
∑
α

aα
∂

∂ν(l)

[
xα +

∑
j �=l

SBjϕ
(j)
α

]

= (kl − 1)
∂

∂ν(l)

[
f +

∑
j �=l

SBjϕ
(j)
α

]
.

Thus, it follows from (3.4) that

ϕ(l) =
∂(SBl

ϕ(l))

∂ν(l)

∣∣∣∣
+

− ∂(SBl
ϕ(l))

∂ν(l)

∣∣∣∣
−

= (kl − 1)
∂(f + Φ)

∂ν(l)

∣∣∣∣
−

on ∂Bl.(3.5)

Therefore, we get∑
α,β

aαbβmαβ =

m∑
l=1

(kl− 1)

∫
∂Bl

g
∂(f + Φ)

∂ν

∣∣∣∣
−
dσ

=

m∑
l=1

(kl− 1)

∫
∂Bl

(g+ Ψ)
∂(f + Φ)

∂ν

∣∣∣∣
−
dσ−

m∑
l=1

(kl− 1)

∫
∂Bl

Ψ
∂(f + Φ)

∂ν

∣∣∣∣
−
dσ

(3.6)

=

m∑
l=1

(kl− 1)

∫
∂Bl

(g+ Ψ)
∂(f + Φ)

∂ν

∣∣∣∣
−
dσ

−
m∑
l=1

∫
∂Bl

Ψ

[
∂(SBl

ϕ(l))

∂ν

∣∣∣∣
+

− ∂(SBl
ϕ(l))

∂ν

∣∣∣∣
−

]
dσ.

Observe now that
m∑
l=1

∫
∂Bl

Ψ
∂(SBl

ϕ(l))

∂ν

∣∣∣∣
+

dσ =
∑
j,l

∫
∂Bl

SBjψ
(j) ∂(SBl

ϕ(l))

∂ν

∣∣∣∣
+

dσ

= −
m∑
l=1

∫
R

d\Bl

∇SBl
ψ(l) · ∇SBl

ϕ(l)dx− 1

2

∑
l �=j

∫
R

d\Bl∪Bj

∇SBjψ
(j) · ∇SBl

ϕ(l)dx,

and
m∑
l=1

∫
∂Bl

Ψ
∂(SBl

ϕ(l))

∂ν

∣∣∣∣
−
dσ =

∑
j,l

∫
Bl

∇SBjψ
(j) · ∇SBl

ϕ(l)dx

=

m∑
l=1

∫
Bl

∇SBl
ψ(l) · ∇SBl

ϕ(l)dx+
1

2

∑
j �=l

∫
Bl∪Bj

∇SBjψ
(j) · ∇SBl

ϕ(l)dx,

to finally arrive at

(3.7) ∑
α,β

aαbβmαβ =

m∑
l=1

(kl − 1)〈(g + Ψ), (f + Φ)〉Bl
+

m∑
l=1

〈SBl
ψ(l),SBl

ϕ(l)〉
R

d

+
1

2

∑
j �=l

〈SBjψ
(j),SBl

ϕ(l)〉
R

d .
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Here, the notation 〈u, v〉D :=
∫
D
∇u·∇vdx has been used. The symmetry (3.3) follows

immediately from (3.7) and the proof is complete.
Theorem 3.3. Suppose that either kl − 1 > 0 or kl − 1 < 0 for all l = 1, . . . ,m.

Let

κ := max
1≤l≤m

∣∣∣∣1 − 1

kl

∣∣∣∣ .
For any aα such that

∑
α aαy

α is harmonic,∣∣∣∣∣∑
α,β

aαaβmαβ

∣∣∣∣∣ ≥ |κ− 1|
m+ 1

m∑
l=1

|kl − 1|
∫
Bl

∣∣∣∣∣∇
(∑

α

aαy
α

)∣∣∣∣∣
2

dy.(3.8)

In particular, if kl − 1 > 0 (resp., < 0) for all l = 1, . . . ,m, then (mij) is positive

(resp., negative) definite and if
∑d
i=1 a

2
i = 1, then∣∣∣∣∣∑

i,j

aiajmij

∣∣∣∣∣ ≥ |κ− 1|
m+ 1

m∑
l=1

|kl − 1||Bl|.(3.9)

Here |B| is the volume of B.
Proof. Suppose that either kl − 1 > 0 or kl − 1 < 0 for all l = 1, . . . ,m. Define

the quadratic form QD(u) by

QD(u) := 〈u, u〉D.
It then follows from (3.7) that∑

α,β

aαaβmαβ =

m∑
l=1

(kl − 1)QBl
(f + Φ) +

m∑
l=1

Q
R

d(SBl
ϕ(l))

+
1

2

∑
j �=l

〈SBj
ϕ(j),SBl

ϕ(l)〉
R

d

=

m∑
l=1

(kl − 1)QBl
(f + Φ) +Q

R
d(Φ).

(3.10)

On the other hand, because of (3.4), we get

(kj − 1)
∂f

∂ν(j)
=

∂Φ

∂ν(j)

∣∣∣∣
+

− kj
∂Φ

∂ν(j)

∣∣∣∣
−

on ∂Bj , j = 1, . . . , d.

Thus, it follows from (3.5) that∑
α,β

aαaβmαβ =

m∑
l=1

(kl − 1)

∫
∂Bl

f
∂(f + Φ)

∂ν

∣∣∣∣
−
dσ

=

m∑
l=1

(kl − 1)QBl
(f) +

m∑
l=1

(kl − 1)

∫
∂Bl

∂f

∂ν
Φdσ

=

m∑
l=1

(kl − 1)QBl
(f) +

m∑
l=1

∫
∂Bl

∂Φ

∂ν

∣∣∣∣
+

Φdσ −
m∑
l=1

kl

∫
∂Bl

∂Φ

∂ν

∣∣∣∣
−

Φdσ

=

m∑
l=1

(kl − 1)QBl
(f) −

m∑
l=1

Q
R

d(Φ) −
m∑
l=1

(kl − 1)QBl
(Φ).(3.11)
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By equating (3.10) and (3.11) we have

m∑
l=1

(kl − 1)QBl
(f + Φ) +Q

R
d(Φ)

=

m∑
l=1

(kl − 1)QBl
(f) −

m∑
l=1

Q
R

d(Φ) −
m∑
l=1

(kl − 1)QBl
(Φ).

(3.12)

Since the left-hand side of (3.12) is positive, one can claim that

m∑
l=1

(kl − 1)QBl
(f) ≥

m∑
l=1

klQBl
(Φ).(3.13)

It also follows from (3.12) that

Q
R

d(Φ) =
1

m+ 1

m∑
l=1

(kl − 1) [QBl
(f) −QBl

(f + Φ) −QBl
(Φ)] .(3.14)

Substituting (3.14) into (3.10), we obtain

∑
α,β

aαaβmαβ =
m

m+ 1

m∑
l=1

(kl − 1)QBl
(f + Φ) +

1

m+ 1

m∑
l=1

(kl − 1) [QBl
(f) −QBl

(Φ)] ,

(3.15)

and hence ∑
α,β

aαaβmαβ ≥ 1

m+ 1

m∑
l=1

(kl − 1) [QBl
(f) −QBl

(Φ)] .(3.16)

By (3.13) we get

m∑
l=1

(kl − 1)QBl
(Φ) =

m∑
l=1

(kl − 1)

kl
klQBl

(Φ)

≤ κ

m∑
l=1

klQBl
(Φ) ≤ κ

m∑
l=1

(kl − 1)QBl
(f),

and hence (3.8) follows immediately from (3.16). This completes the proof.

4. Explicit formulae for the polarization tensors of multiple disks. In
this section, we explicitly compute the solution ϕ(l) of the integral equation (2.8) in
the case where all of the domains Bl are two-dimensional disks. Let Bl = B(zl, rl) be
the disk with center zl and radius rl for l = 1, . . . ,m. Let Rl, l = 1, . . . ,m, be the
reflection with respect to the disk Bl, i.e.,

Rl(x) :=
r2l (x− zl)

|x− zl|2 + zl.

We also define the reflection of a function f by

(Rlf)(x) = f(Rl(x)), x ∈ R
2, l = 1, . . . ,m.
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The following lemma will be useful later.
Lemma 4.1. For a function u harmonic in Bl, we have

SBl

(
∂u

∂ν(l)

∣∣∣∣
∂Bl

)
(x) = −1

2
Rlu(x) +

1

2
u(zl) for x ∈ R

2 \Bl.(4.1)

Proof. By (2.5), we have

∂

∂ν
SBl

(
∂u

∂ν(l)

∣∣∣∣
¶Bl

)
(x) =

(
1

2
I + K∗

Bl

)(
∂u

∂ν(l)

∣∣∣∣
∂Bl

)
+ (x).

Since Bl is a disk and
∫
∂Bl

∂u
∂ν dσ = 0, one can get that K∗

Bl
( ∂u
∂ν(l)

∣∣
∂Bl

) = 0 on ∂Bl.

We refer the reader to [19] for a proof of this fact. Therefore, we get

∂

∂ν
SBl

(
∂u

∂ν(l)

∣∣∣∣
∂Bl

)
(x) =

1

2

∂u

∂ν(l)

∣∣∣∣
∂Bl

+ (x),

and thus

SBl

(
∂u

∂ν(l)

∣∣∣∣
∂Bl

)
(x) = −1

2
Rlu(x) + C

for some constant C. Since
∫
∂Bl

∂u
∂ν(l) dσ = 0 and hence SBl

( ∂u
∂ν(l)

∣∣
∂Bl

)(x) → 0 as

|x| → ∞, we have C = (1/2)u(zl). This completes the proof.
Our main result in this section is the following.
Theorem 4.2. For l = 1, . . . ,m, let

Sl = {Θ = (k1, . . . , kn) | n ∈ N, ki ∈ {1, . . . ,m} such that k1 �= l and ki �= ki+1} .

For Θ = (k1, . . . , kn) ∈ Sl, let

RΘ = Rk1Rk2 · · ·Rkn and ΛΘ =

n∏
i=1

(
− 1

2λki

)
.

Then, for a given harmonic function H, the solution of (2.8) is given by

ϕ(l) =
1

λl

∑
Θ∈Sl

ΛΘ
∂

∂νl
(RΘH)

∣∣
∂Bl

+
1

λl

∂H

∂νl

∣∣∣∣
∂Bl

, l = 1, . . . ,m,(4.2)

provided that

min
1≤i �=j≤m

dist(Bi, Bj) > (
√
m− 1 − 1) max

1≤i≤m
ri.(4.3)

The series in (4.2) converges absolutely.
Proof. We first prove that the series in (4.2) converges absolutely on ∂Bl. Observe

that

|∇(RΘH)(x)| ≤ |RΘ∇H(x)|
n∏
i=1

|DRki(Rki−1
. . . Rk1(x))|.(4.4)
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Assuming (4.3) and using

|DRj(x)| ≤
r2j

|x− zj |2 , x ∈ R
2 \Bj , j = 1, . . . ,m,(4.5)

it follows from (4.4) that for x ∈ ∂Bl we have

|∇(RΘH)(x)| ≤M ·
n∏
i=1

r2ki
(d+ rki)

2
≤M ·

(
rmax

(d+ rmax)

)2n

< M

(
s

m− 1

)n
(4.6)

for some s < 1, where

d = min
1≤i �=j≤m

dist(Bi, Bj), rmax = max
1≤i≤m

ri, and M = ‖∇H‖L∞(
⋃m

k=1 Bk) .

Note that the number of those Θ’s which have n components is (m − 1)n. It can be
deduced from (4.6) that for x ∈ ∂Bl,∑

Θ∈Sl

∣∣∣∣ΛΘ
∂

∂νl
(RΘH)(x)

∣∣∣∣ ≤M

∞∑
n=1

(
s

m− 1

)n
(m− 1)n < C

for some constant C independent of x.
We now prove that ϕ(l) satisfies (2.8). Let us first observe the following: for each

l = 1, . . . ,m,

∪k �=l{(k,Θ), (k) | Θ ∈ Sk} = Sl.(4.7)

Recalling that K∗
Bl
ϕ(l) = 0, l = 1, . . . ,m, and using (4.1), (4.2), and (4.7), we arrive

at ∑
k �=l

∂(SBk
ϕ(k))

∂ν(l)

∣∣
Bl

=
∑
k �=l

∂

∂ν(l)

(
−1

2λk
Rk

[ ∑
Θ∈Sk

ΛΘ(RΘH) +H

])

=
∑
Θ∈Sl

ΛΘ
∂

∂ν(l)
(RΘH)

= λlϕ
(l) − ∂H

∂ν(l)

∣∣
∂Bl

,

which is exactly the desired result.
As an immediate application of the above theorem we obtain the following explicit

form of the first-order polarization tensor.
Theorem 4.3. Suppose d = 2. The first-order polarization tensor mij is given

by

mij =

m∑
l=1

|Bl| 1

λl

[∑
Θ∈Sl

ΛΘ
∂

∂xj
(RΘ(xi))(zl) + δij

]
, i, j = 1, 2.(4.8)

Proof. Let H(x) = xi and ϕ
(l)
i be the corresponding solution of (2.8). Then by

(4.2), we have

ϕ
(l)
i =

1

λl

∂

∂ν(l)

[∑
Θ∈Sl

ΛΘ(RΘ(xi)) +H

]
, i = 1, 2, l = 1, . . . ,m.
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It then follows from the divergence theorem and the mean value property of harmonic
functions that

∫
∂Bl

xjϕ
(l)
i dσ =

1

λl

[∑
Θ∈Sl

ΛΘ

∫
∂Bl

xj
∂

∂ν(l)
(RΘ(xi))(x)dσ +

∫
∂Bl

xj
∂

∂ν(l)
xidσ

]

=
1

λl

[∑
Θ∈Sl

ΛΘ

∫
Bl

∂

∂xj
(RΘ(xi))(x)dσ + δij |Bl|

]

= |Bl| 1

λl

[∑
Θ∈Sl

ΛΘ
∂

∂xj
(RΘ(xi))(zl) + δij

]
.

Thus we get the explicit expression (4.8) as desired.

Let us now write formulae (4.2) and (4.8) in a more explicit way assuming that
there are only two inclusions. We note that in this case the assumption (4.3) is
trivially fulfilled. If m = 2, then RΘ for Θ ∈ S1 takes the form

RΘ = (R2R1)
kR2R

n
1 for some k = 0, 1, . . . , and n = 0, 1,(4.9)

and RΘ for Θ ∈ S2 takes the form

RΘ = (R1R2)
kR1R

n
2 for some k = 0, 1, . . . , and n = 0, 1.(4.10)

Here R0
j = I, j = 1, 2.

Corollary 4.4. If m = 2, then

ϕ(1) =
1

λ1

∞∑
k=0

1

(4λ1λ2)k
∂

∂ν(1)

[
(R2R1)

k

(
I − 1

2λ2
R2

)
H

] ∣∣∣∣
∂B1

,

ϕ(2) =
1

λ2

∞∑
k=0

1

(4λ1λ2)k
∂

∂ν(2)

[
(R1R2)

k

(
I − 1

2λ1
R1

)
H

] ∣∣∣∣
∂B2

.

(4.11)

Proof. It follows from (4.2), (4.9), and (4.10) that

ϕ(1) =
1

λ1

∂

∂ν(1)

[ ∞∑
k=0

1

(4λ1λ2)k
(R2R1)

k

(
− 1

2λ2
R2 +

1

4λ1λ2
R2R1

)
H +H

] ∣∣∣∣∣
∂B1

,

ϕ(2) =
1

λ2

∂

∂ν(2)

[ ∞∑
k=0

1

(4λ1λ2)k
(R1R2)

k

(
− 1

2λ1
R1 +

1

4λ1λ2
R1R2

)
H +H

] ∣∣∣∣∣
∂B2

.

By rearranging the summations, we get (4.11).
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Corollary 4.5. Let m = 2. Suppose that the centers of the disks B1 and B2

are on the x1-axis. Then the polarization tensor mij is given by

m12 = m21 = 0,

m11 =
|B1|
λ1

+
|B2|
λ2

+
|B1|
λ1

∞∑
k=0

1

(4λ1λ2)k

[
(R2R1)

k

(
1

2λ2
g2 +

1

4λ1λ2
R2(g1)g2

)k−1∏
i=0

(R2R1)
i(R2(g1)g2)

]
(z1)

+
|B2|
λ2

∞∑
k=0

1

(4λ1λ2)k

[
(R1R2)

k

(
1

2λ1
g1 +

1

4λ1λ2
R1(g2)g1

)k−1∏
i=0

(R1R2)
i(R1(g2)g1)

]
(z2),

m22 =
|B1|
λ1

+
|B2|
λ2

+
|B1|
λ1

∞∑
k=0

1

(4λ1λ2)k

[
(R2R1)

k

(
− 1

2λ2
g2+

1

4λ1λ2
R2(g1)g2

)k−1∏
i=0

(R2R1)
i(R2(g1)g2)

]
(z1)

+
|B2|
λ2

∞∑
k=0

1

(4λ1λ2)k

[
(R1R2)

k

(
− 1

2λ1
g1+

1

4λ1λ2
R1(g2)g1

)k−1∏
i=0

(R1R2)
i(R1(g2)g1)

]
(z2),

where the functions g1 and g2 are defined by

gj(x) :=
r2j

|x− zj |2 , x ∈ R
2 \Bj , j = 1, 2.

Proof. By Theorem 4.3, (4.9), and (4.10), we have

mij =
|B1|
λ1

[ ∞∑
k=0

(4λ1λ2)
−k ∂

∂xj

(
(R2R1)

k

(
− 1

2λ2
R2+

1

4λ1λ2
R2R1

)
(xi)

)
(z1) + δij

]

+
|B2|
λ2

[ ∞∑
k=0

(4λ1λ2)
−k ∂

∂xj

(
(R1R2)

k

(
− 1

2λ1
R1+

1

4λ1λ2
R1R2

)
(xi)

)
(z2) + δij

]
.

Easy computations show that for x on the x1-axis,

DRBj (x) = gj(x)

( −1 0
0 1

)
, j = 1, 2,

and

∇Rjf(x) = (Rj∇f)(x)gj(x)

( −1 0
0 1

)
, j = 1, 2.

Therefore, we get for H = xi

∇
(
(R2R1)

kR2(H)
)
(x) = ∇H ·

[
(R2R1)

kg2(x)

k−1∏
i=0

(R2R1)
i(R2(g1)g2)(x)

](−1 0
0 1

)
,

∇
(
(R2R1)

kR2R1(H)
)
(x) = ∇H ·

[
k∏
i=0

(R2R1)
i(R2(g1)g2)(x)

](−1 0
0 1

)
.

One can get similar formulae for ∇((R1R2)
kR1(H)) and ∇((R1R2)

kR1R2(H)). By
substituting these formulae into the first equation of the proof, we obtain Corol-
lary 4.5.
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5. Representation by equivalent ellipses. Let mij be the first-order po-
larization tensor of the inclusions ∪ml=1Bl. We define the overall conductivity k̄ of
B = ∪ml=1Bl by

k̄ − 1

k̄ + 1

m∑
l=1

|Bl| :=

m∑
l=1

kl − 1

kl + 1
|Bl|,(5.1)

and its center z̄ by

k̄ − 1

k̄ + 1
z̄

m∑
l=1

|Bl| =

m∑
l=1

kl − 1

kl + 1

∫
Bl

xdx.(5.2)

Note that if kl is the same for all l, then k̄ = kl and z̄ is the center of mass of B.
Figure 7.1, at the end of the last section, shows that the center z̄ is a very good match
with the center reconstructed by the boundary measurements.

In this section we represent and visualize the multiple inclusions ∪ml=1Bl by means
of an ellipse, E , of center z̄ with the same polarization tensor. We call E the equivalent
ellipse of ∪ml=1Bl. It will turn out that if we consider the problem of determining the
collection D of the closely spaced small inhomogeneities Dl, the only information of
real interest that could be reconstructed from boundary measurements is exactly E .
This will be shown in the last section.

At this point let us review a method to find an ellipse from a given first-order
polarization tensor. This method is due to Brühl et al. [8]. Let E ′ be an ellipse whose
focal line is on either the x1- or the x2-axis. We suppose that its semimajor axis is of
length a and its semiminor axis is of length b. Let E =RE ′, where R =

(
cos θ − sin θ
sin θ cos θ

)
.

Let M be the polarization tensor of E . We want to recover a, b, and θ from M knowing
the conductivity k = k̄.

The polarization tensor M ′ for E ′ takes the form

M ′ = (k − 1)|E ′|
( a+b
a+kb 0

0 a+b
b+ka

)
,(5.3)

and that of E is given by M = RM ′RT . Suppose that the eigenvalues of M are λ1 and
λ2 and the corresponding eigenvectors of unit length are (e11, e12)

T and (e21, e22)
T .

Then it is shown in [8] that

a =

√
p

πq
, b =

√
pq

π
, θ = arctan

e21
e11

,(5.4)

where

1

p
=
k − 1

k + 1

(
1

λ1
+

1

λ2

)
and q =

λ2 − kλ1

λ1 − kλ2
.(5.5)

We now show some numerical examples of equivalent ellipses. We represent the
set of inclusions B = ∪ml=1Bl by an equivalent ellipse of center z̄ and conductivity k̄.
We assume that the inclusion Bl takes the following form:

∂Bl = {(al0 + al1 cos(t) + al2 cos(2t), bl0 + bl1 sin(t) + bl2 sin(2t)
) |0 ≤ t < 2π}.

In order to evaluate the first-order polarization tensor of multiple inclusions, we solve
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1 0. 5 0 0.5 1
1

0. 5

0

0.5

1

(k
1
,k

2
)=(1.5,1.5)

 1  0.5 0 0.5 1
 1

 0.5

0

0.5

1

(k
1
,k

2
)=(1.5,3.0)

 1  0.5 0 0.5 1
 1

 0.5

0

0.5

1

(k
1
,k

2
)=(1.5,15.0)

ai0, a
i
1, a

i
2, b

i
0, b

i
1, b

i
2 ki k̄ a b θ z̄

1.5 1.5 0.313 0.256 0.322 (-0.000, 0.400)
1.5

-0.3,0.2,0, 0.3,0.2,0 1.5 2.077 0.307 0.261 0.322 (0.129, 0.443)
0.3,0.2,0, 0.5,0.2,0 3

1.5 3.324 0.301 0.266 0.322 (0.188, 0.463)
15

Fig. 5.1. When the two disks have the same radius and the conductivity of the one on the
right-hand side is increasing, the equivalent ellipse is moving toward the right inclusion. In the
table, k̄ and z̄ are the overall conductivity and center defined by (5.1) and (5.2) and a, b, θ are the
semiaxes’ lengths and angle of orientation measured in radian of the equivalent ellipse.

2 1 0 1 2
2

1

0

1

2

(r
1
,r

2
)=(0.2,0.2)

 2  1 0 1 2
 2

 1

0

1

2

(r
1
,r

2
)=(0.2,0.4)

 2  1 0 1 2
 2

 1

0

1

2

(r
1
,r

2
)=(0.2,0.8)

ki ai0, a
i
1, a

i
2, b

i
0, b

i
1, b

i
2 k̄ a b θ z̄

-1,0.2,0, 0,0.2,0 1.5 0.317 0.254 0 (-0.700, 0.000)
-0.4,0.2,0, 0,0.2,0

1.5 -1,0.2,0, 0,0.2,0 1.5 0.478 0.420 0 (-0.200, 0.000)
1.5 0,0.2,0, 0,0.2,0

-1,0.2,0, 0,0.2,0 1.5 0.844 0.806 0 (0.694, 0.000)
0.8,0.2,0, 0,0.2,0

Fig. 5.2. When the conductivities of the two disks are the same and the radius of the disk on
the right-hand side is increasing, the equivalent ellipse is moving toward the right inclusion.

the integral equation (6.4) with H(x) = xi to find ϕ
(l)
i for i = 1, 2 and l = 1, . . . ,m

and then calculate mij =
∑m
l=1

∫
∂Bl

xjϕ
(l)
i (x)dσ.

Figures 5.1 and 5.2 show how the equivalent ellipse changes as the conductivi-
ties and the sizes of the inhomogeneities Bl vary. The solid line represents the actual
inhomogeneities and the dash lines are the effective ellipses. Figure 7.1 exhibits equiv-
alent ellipses of other configurations.
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6. Derivation of the asymptotic formula. In the remainder of this paper,
we consider the problem of determining the location and the polarization tensor of a
set of closely spaced small inclusions from boundary measurements. Our algorithm
makes use of a new asymptotic expansion of the voltage potentials in the presence of
a set of close-to-touching small conductivity inhomogeneities. Since this formula can
be obtained following the arguments presented in [1], we only outline its derivation
leaving the details to the reader.

In this section, we use the notation stated at the beginning of this paper and
suppose that assumptions (H1), (H2), and (H3) hold.

Based on the arguments given in [19, 20], the following theorem was proved in
[22].

Theorem 6.1. The solution u of the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇ ·
(
χ

(
Ω \

m⋃
j=1

Dj

)
+

m∑
j=1

kjχ(Dj)

)
∇u = 0 in Ω,

∂u

∂ν

∣∣
∂Ω

= g

(6.1)

can be represented as

u(x) = H(x) +

m∑
j=1

SDj
ψ(j)(x), x ∈ Ω,(6.2)

where the harmonic function H is given by

H(x) = −SΩ(g)(x) + DΩ(f)(x), x ∈ Ω, f := u|∂Ω,(6.3)

and ψ(j) ∈ L2
0(∂Dj), j = 1, . . . ,m, satisfies the integral equation

(λjI −K∗
Dj

)ψ(j) −
∑
k �=j

∂(SDk
ψ(k))

∂ν(j)

∣∣∣∣
∂Dj

=
∂H

∂ν(j)

∣∣∣∣
∂Dj

on ∂Dj , j = 1, . . . ,m.

(6.4)

Moreover, for all n ∈ N, there exist a constant Cn = C(n,Ω, dist(D, ∂Ω)) independent
of |D| and the conductivities kj , j = 1, . . . ,m, such that

‖H‖Cn(D) ≤ Cn‖g‖L2(∂Ω).(6.5)

Let N(x, z) be the Neumann function for ∆ in Ω corresponding to a Dirac mass
at z; that is, N is the solution to⎧⎪⎨⎪⎩

∆xN(x, z) = −δz in Ω,

∂N

∂ν

∣∣
∂Ω

= − 1

|∂Ω| .
(6.6)

In addition, we assume that∫
∂Ω

N(x, y)dσ(x) = 0 for y ∈ Ω.(6.7)

Let us fix one more notation. For D, a subset of Ω, let

NDf(x) :=

∫
∂D

N(x, y)f(y)dσ(y).

Then following the same lines of [1], one can prove the following theorem.
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Theorem 6.2. Let U be the background solution, i.e., the solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆U = 0 in Ω,

∂U

∂ν

∣∣
∂Ω

= g ∈ L2
0(∂Ω),∫

∂Ω

U(x)dσ(x) = 0.

(6.8)

Then the solution u of (6.1) can be represented as

u(x) = U(x) −
m∑
j=1

NDjψ
(j)(x), x ∈ ∂Ω,(6.9)

where ψ(j), j = 1, . . . ,m, is defined by (6.4).
For x ∈ ∂Ω, by using the change of variables y = x−z

ε we may write

m∑
j=1

NDjψ
(j)(x) = εd−1

m∑
j=1

∫
∂Bj

N(x, εy + z)ψ(j)(εy + z)dσ(y).(6.10)

As in [1], we expand the Neumann function as

N(x, εy + z) =
∞∑

|β|=0

1

β!
ε|β|∂βzN(x, z)yβ .(6.11)

We then use the uniqueness of the solution to the integral equation (3.1) and the
expansion of the harmonic function H,

H(x) := H(z) +

∞∑
|α|=1

1

α!
(∂αH)(z)(x− z)α, x ∈ D,

to show that

ψ(j)(εy + z) =

∞∑
|α|=1

ε|α|−1

α!
(∂αH)(z)ϕ(j)

α (y), y ∈ ∂Bj ,(6.12)

where ϕ
(j)
α is the solution of (3.1). Substituting (6.11) and (6.12) into (6.10), we

obtain

m∑
j=1

NDj
ψ(j)(x) =

∞∑
|α|=1

∞∑
|β|=0

ε|α|+|β|+d−2

α!β!
(∂αH)(z)∂βzN(x, z)

m∑
j=1

∫
∂Bj

yβϕ(j)
α (y)dσ(y).

If β = 0, then
∫
∂Bj

ϕ
(j)
α (y)dσ(y) = 0 for j = 1, . . . ,m, and hence we get

m∑
j=1

NDjψ
(j)(x) =

∞∑
|α|=1

∞∑
|β|=1

ε|α|+|β|+d−2

α!β!
(∂αH)(z)∂βzN(x, z)mαβ ,(6.13)

where mαβ is the polarization tensor.
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We now convert the formula (6.13) to the one given solely by U and its derivatives,
not H. Using formula (4.10) of [1], one can show that

|∂αH(z) − ∂αU(z)| ≤ Cεd‖g‖L2(∂Ω) for α ∈ N,

where C is independent of ε and g. We finally have the following theorem.

Theorem 6.3. The following pointwise asymptotic expansion holds uniformly in
x ∈ ∂Ω for d = 2 or 3:

u(x) = U(x) −
d∑

|α|=1

d∑
|β|=1

ε|α|+|β|+d−2

α!β!
(∂αU)(z)∂βzN(x, z)mαβ +O(ε2d),(6.14)

where the remainders O(ε2d) are dominated by Cε2d‖g‖L2(∂Ω) for some constant C
independent of x ∈ ∂Ω.

7. Detection of closely spaced inclusions. In this section, we present an
algorithm to reconstruct the first-order polarization tensor and the center of closely
spaced small inclusions from a finite number of boundary measurements and show
some results of numerical experiments. The algorithm is based on the asymptotic
expansion formula (6.14) and represents the generalization of the numerical methods
derived in [6] and [17] for determining well-separated conductivity inhomogeneities.
For g ∈ L2

0(∂Ω), define the harmonic function H[g](x), x ∈ R
d \ Ω, by

H[g](x) := −SΩ(g)(x) + DΩ(u|∂Ω)(x), x ∈ R
d \ Ω̄,(7.1)

where u is the solution of (6.1). Then by substituting (6.14) into (7.1) and us-
ing a simple formula DΩ(N(· − z))(x) = Γ(x − z) for z ∈ Ω and x ∈ R

d \ Ω, we
get

H[g](x) = −
d∑

|α|=1

d∑
|β|=1

ε|α|+|β|+d−2

α!β!
(∂αU)(z)∂βz Γ(x− z)mαβ +O(ε2d).(7.2)

Assume for the sake of simplicity that d = 2. Our reconstruction procedure is the
following.

Detection Algorithm.

(D1) For gj =
∂xj

∂ν , j = 1, 2, measure u|∂Ω.
(D2) Compute the first-order polarization tensor ε2M = ε2(mij) for D by

ε2mij = lim
t→∞ 2πtH[gi](tej).(7.3)

(D3) Compute hj = limt→∞ 2πtH[g3](tej) for g3 = ∂(x1x2)
∂ν , j = 1, 2. Then the

center is estimated by solving

z = (h1, h2)(ε
2M)−1.(7.4)

(D4) Let the overall conductivity k̄ = ∞ if the polarization tensor M is positive
definite. Otherwise assume k̄ = 0. Using the similar method in [8] as ex-
plained in section 5, we obtain the shape of the equivalent ellipse.
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Fig. 7.1. Reconstruction of closely spaced small inhomogeneities. The dash line is the equivalent
ellipse and the dash-dot line is the detected ellipse. The table for numerical values is given in
Table 7.1.
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Table 7.1

Table for Figure 7.1. Here k̄, z̄ are the overall conductivity and center defined by (5.1) and
(5.2). ā, b̄, and θ̄ are semiaxis lengths and the angle of orientation of the equivalent ellipse while a,
b, and θ are those of the detected ellipse, assuming k = ∞. z is the detected center.

ki ai0, a
i
1, a

i
2, b

i
0, b

i
1, b

i
2 k̄ ā b̄ θ̄ z̄

k a b θ z

100 5.5, 0.2, 0, 5.2, 0.2, 0 60.079 0.511 0.468 0.000 (4.838, 4.900)
100 5.5, 0.2, 0, 4.6, 0.2, 0 ∞ 0.502 0.461 0.000 (4.856, 4.899)
50 4.5, 0.4, 0, 4.9, 0.4, 0
1.5 -7.4, 0.2, 0, -4, 0.2, 0 1.5 0.474 0.190 0.000 (-6.844, -4.000)
1.5 -6.4, 0.5, 0, -4, 0.1, 0 ∞ 0.146 0.123 0.000 (-6.875, -4.000)
100 0.1, 0.2, 0, 0, 0.2, 0
100 -0.3, 0.2, 0, -0.4, 0.2, 0 3.88 0.511 0.315 0.785 (-0.236, -0.336)
1.5 -0.7, 0.2, 0, -0.8, 0.2, 0 ∞ 0.355 0.267 0.785 (-0.233, -0.333)
1.5 -1.1, 0.2, 0,-1.2, 0.2, 0
5 2.9, 0.4, 0, -2.7, 0.1, 0 18.655 0.491 0.365 0.443 (2.494, -3.375)

100 2.5, 0.25, 0.2, -3.3, 0.25, 0.05 ∞ 0.458 0.351 0.443 (2.434, -3.321)
50 2.0, 0.2, 0, -4.0, 0.2, 0
5 4.5, 0.15, 0.2, -3, 0.25, 0.05
5 5.2, 0.1, 0, -3, 0.4, 0 5 0.507 0.419 -0.000 (5.502, -3.000)
5 5.8, 0.15, 0.2, -3, 0.25,0.05 ∞ 0.401 0.353 -0.000 (5.436, -3.000)
5 6.6, 0.2, 0, -3, 0.2, 0

100 6.0, 0.25, 0.2, 4.6, 0.25, 0.05 100 0.549 0.331 -0.089 (5.728, 4.772)
100 5.5, 0.4, 0, 5.2, 0.1, 0 ∞ 0.540 0.329 -0.089 (5.712, 4.817)
100 5.2, 0.2, 0, 4.7, 0.2, 0

In order to collect data u|∂Ω in step (D1), we solve the direct problem (6.1) as
follows: Using the formula (6.2) and the jump relations (2.5) and (2.6), we have the
following equation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u =

u

2
+ KΩu− SΩg +

m∑
i=1

SDiψ
(i) on ∂Ω,

(λjI −K∗
Dj

)ψ(j) −
∑
k �=j

∂(SDk
ψ(k))

∂ν(j)

∣∣∣∣
∂Dj

=
∂H

∂ν(j)

∣∣∣∣
∂Dj

on ∂Dj , j = 1, . . . ,m.

(7.5)

We solve the integral equation using the collocation method and obtain u|∂Ω on ∂Ω
for given data g.

A few words are required for the step (D4). In order to find the overall con-
ductivity, it is necessary to know the individual conductivity kl and the size of Bl,
l = 1, . . . ,m, which seems impossible. Thus we assume a priori that k̄ is either ∞ or
0 depending upon the sign of the detected polarization tensor. Therefore, it is natural
that our algorithm gives better information when the conductivity contrast between
the background and inclusions is high.

We illustrate in Figure 7.1 the viability of this algorithm. For rigorous justifi-
cation of the validity of this algorithm the reader is referred to [6, 17]. It should
also be noted that although our algorithm is only described and tested in the two-
dimensional case, we are confident that it works in the three-dimensional case as
well.

Acknowledgment. We would like to thank June-Yub Lee for helpful conversa-
tion on numerical computations.
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[14] E.B. Fabes, M. Jodeit, and N.M. Riviére, Potential techniques for boundary value problems
on C1 domains, Acta Math., 141 (1978), pp. 165–186.

[15] G.B. Folland, Introduction to Partial Differential Equations, Princeton University Press,
Princeton, 1976.

[16] A. Friedman and M. Vogelius, Identification of small inhomogeneities of extreme conductiv-
ity by boundary measurements: A theorem on continuous dependence, Arch. Ration. Mech.
Anal., 105 (1989), pp. 299–326.

[17] H. Kang, E. Kim, and K. Kim, Anisotropic polarization tensors and detection of an anisotropic
inclusion, SIAM J. Appl. Math. 63 (2003), pp. 1276–1291.

[18] H. Kang, E. Kim, and J. Lee, Identification of elastic inclusions and elastic moment tensors
by boundary measurements, Inverse Problems, 19 (2003), pp. 703–724.

[19] H. Kang and J.K. Seo, The layer potential technique for the inverse conductivity problem,
Inverse Problems, 12 (1996), pp. 267–278.

[20] H. Kang and J.K. Seo, Recent progress in the inverse conductivity problem with single mea-
surement, in Inverse Problems and Related Fields, CRC Press, Boca Raton, FL, 2000, pp.
69–80.

[21] R.E. Kleinman and T.B.A. Senior, Rayleigh Scattering. Low and High Frequency Asymp-
totics, V.K. Varadan and V.V. Varadan, eds., North–Holland, Amsterdam, 1986, pp. 1–70.

[22] O. Kwon and J.-K. Seo, Total size estimation and identification of multiple anomalies in the
inverse conductivity problem, Inverse Problems, 17 (2001), pp. 59–75.

[23] O. Kwon, J.K. Seo, and J.R. Yoon, A real-time algorithm for the location search of discon-
tinuous conductivities with one measurement, Comm. Pure Appl. Math., 55 (2002), pp.
1–29.

[24] A. Nachmann, Reconstructions from boundary measurements, Ann. of Math. (2), 128 (1988),
pp. 531–576.



2428 H. AMMARI, H. KANG, E. KIM, AND M. LIM
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Abstract. We consider the approximation properties of quadrilateral finite element spaces of
vector fields defined by the Piola transform, extending results previously obtained for scalar approx-
imation. The finite element spaces are constructed starting with a given finite dimensional space
of vector fields on a square reference element, which is then transformed to a space of vector fields
on each convex quadrilateral element via the Piola transform associated to a bilinear isomorphism
of the square onto the element. For affine isomorphisms, a necessary and sufficient condition for
approximation of order r + 1 in L2 is that each component of the given space of functions on the
reference element contain all polynomial functions of total degree at most r. In the case of bilinear
isomorphisms, the situation is more complicated and we give a precise characterization of what is
needed for optimal order L2-approximation of the function and of its divergence. As applications,
we demonstrate degradation of the convergence order on quadrilateral meshes as compared to rect-
angular meshes for some standard finite element approximations of H(div). We also derive new
estimates for approximation by quadrilateral Raviart–Thomas elements (requiring less regularity)
and propose a new quadrilateral finite element space which provides optimal order approximation in
H(div). Finally, we demonstrate the theory with numerical computations of mixed and least squares
finite element approximations of the solution of Poisson’s equation.

Key words. quadrilateral, finite element, approximation, mixed finite element
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1. Introduction. Many mixed finite element methods are based on variational
principles employing the space H(div,Ω) consisting of L2 vector fields with diver-
gence in L2. For such methods, finite element subspaces of H(div,Ω) are generally
constructed starting from a space of reference shape functions on a reference element,
typically the unit simplex or unit square in two dimensions. See, e.g., [4] for nu-
merous examples. These shape functions are then transformed to general triangular,
rectangular, or quadrilateral elements via polynomial diffeomorphisms and the Piola
transform. For the case of triangular and rectangular (or more generally parallel-
ogram) elements, i.e., the case of affine isomorphisms, the order of approximation
so achieved can be easily determined from the highest degree of complete polynomial
space contained in the space of reference shape functions. In the case of arbitrary con-
vex quadrilaterals with bilinear diffeomorphisms, the situation is less well understood.
In this paper, we determine precisely what reference shape functions are needed to
obtain a given order of approximation in L2 andH(div,Ω) by such elements. It turns
out that the accuracy of some of the standard H(div,Ω) finite elements is lower for
general quadrilateral elements than for rectangular elements.

Let K̂ be a reference element, the closure of an open set in R
2, and let F : K̂ → R

2

be a diffeomorphism of K̂ onto an actual element K = F (K̂). For functions in
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H(div,Ω) the natural way to transform functions from K̂ to K is via the Piola
transform. Namely, given a function û : K̂ → R

2, we define u = P F û : K → R
2 by

u(x) = JF (x̂)−1DF (x̂)û(x̂),(1.1)

where x = F (x̂), and DF (x̂) is the Jacobian matrix of the mapping F and JF (x̂)
its determinant. The transform has the property that if u = P F û, p = p̂ ◦ F−1 for
some p̂ : K̂ → R, and n and n̂ denote the unit outward normals on ∂K and ∂K̂,
respectively, then∫

K

divup dx =

∫
K̂

d̂iv ûp̂ dx̂,

∫
∂K

u · np ds =

∫
∂K̂

û · n̂p̂ dŝ.

Since continuity of u ·n is necessary for finite element subspaces of H(div,Ω), use of
the Piola transform facilitates the definition of finite element subspaces of H(div,Ω)
by mapping from a reference element. Another important property of the Piola trans-
form, which follows directly from the chain rule and which we shall use frequently
below, is that if G is a diffeomorphism whose domain is K, then

PG◦F = PG ◦ P F .(1.2)

Using the Piola transform, a standard construction of a finite element subspace
proceeds as follows. Let K̂ be a fixed reference element, typically either the unit
simplex or the unit square. Let V̂ ⊂ H(div, K̂) be a finite-dimensional space of
vector fields on K̂, typically polynomial, the space of reference shape functions. Now
suppose we are given a mesh Th consisting of elements K, each of which is the image
of K̂ under some given diffeomorphism: K = FK(K̂). Via the Piola transform we

then obtain the space P FK
V̂ of shape functions on K. Finally we define the finite

element space as

Sh = {v ∈H(div,Ω) | v|K ∈ P FK
V̂ ∀K ∈ Th}.

Recall that Sh may be characterized as the subspace of

V h := {v ∈ L2(Ω) | v|K ∈ P FK
V̂ ∀K ∈ Th},

consisting of vector fields whose normal component is continuous across interelement
edges.

We now recall a few examples of this construction in the case where K̂ is the
unit square. If we restrict to linear diffeomorphisms F , the resulting finite elements
K = F (K̂) will be parallelograms (or, with the further restriction to diagonal lin-
ear diffeomorphisms, rectangles). If we allow general bilinear diffeomorphisms, the
resulting finite elements can be arbitrary convex quadrilaterals. The best known ex-
ample of shape functions on the reference square for construction of H(div,Ω) finite

element spaces is the Raviart–Thomas space of index r ≥ 0 for which V̂ is taken to
be RT r := Pr+1,r(K̂) × Pr,r+1(K̂). Here and below Ps,t(K̂) denotes the space of

polynomial functions on K̂ of degree at most s in x̂1 and at most t in x̂2. Thus a
basis for RT r is given by the 2(r + 1)(r + 2) vector fields

(x̂i1x̂
j
2, 0), (0, x̂j1x̂

i
2), 0 ≤ i ≤ r + 1, 0 ≤ j ≤ r.(1.3)
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A second example is given by choosing V̂ to be the Brezzi–Douglas–Marini space of
index r ≥ 1, V̂ = BDMr, which is the span of Pr(K̂) and the two additional vec-
tor fields curl(x̂r+1

1 x̂2) and curl(x̂1x̂
r+1
2 ). Another possibility is the Brezzi–Douglas–

Fortin–Marini space V̂ = BDFMr+1, r ≥ 0, which is the subspace of codimension 2
of Pr+1(K̂) spanned by (x̂i1x̂

j
2, 0) and (0, x̂j1x̂

i
2) for nonnegative i and j with i+j ≤ r+1

and j ≤ r. We note that for each of these choices V̂ strictly contains Pr(K̂) but does
not contain Pr+1(K̂). Note that BDM0 is not defined, BDFM1 = RT 0, and
BDMr � BDFMr+1 � RT r for r ≥ 1. More information about these spaces can
be found in [4, section III.3.2].

One of the basic issues in finite element theory concerns the approximation prop-
erties of finite element spaces. Namely, under certain regularity assumptions on the
mesh Th, for a given smooth vector field u : Ω → R

2 one usually estimates the error
(in some norm to be made more precise) in the best approximation of u by vector
fields in Sh as a quantity involving powers of h, the maximum element diameter. For
instance, given a shape-regular sequence of triangular or parallelogram meshes Th of
Ω with Sh the corresponding Raviart–Thomas spaces of index r ≥ 0, then for any
vector field u smooth enough that the right-hand sides of the next expressions make
sense, there exists πhu ∈ Sh such that (cf. [4])

‖u− πhu‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω),

‖div(u− πhu)‖L2(Ω) ≤ Chr+1|divu|Hr+1(Ω).

In the case of more general shape-regular convex quadrilaterals, the best known
estimate appears to be the one obtained by Thomas in [12]:

‖u− πhu‖L2(Ω) ≤ Chr+1[|u|Hr+1(Ω) + h|divu|Hr+1(Ω)],

‖div(u− πhu)‖L2(Ω) ≤ Chr|divu|Hr+1(Ω).

Note that the order in h for the L2 estimate on u is the same as for the parallelogram
meshes, but additional regularity is required, while the estimate for divu is one order
lower in h. As we shall see below, the latter estimate cannot be improved. However,
in section 4 of this paper, we use a modification of the usual scaling argument to
obtain the improved L2 estimate

‖u− πhu‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω).

We restrict our presentation to two-dimensional domains, the three-dimensional
case being considerably more complicated. We hope to address this issue in future
work. We observe that in [9] the construction of H(div,Ω) elements on hexahedrons
has been considered. The point of view of [9] is somewhat different from ours in that
the elements are not obtained by applying the Piola transform starting from a fixed
set of basis functions on the unit cube. Other papers dealing with modifications of
standard shape functions for the approximation of vector fields are [11, 8]; in the
first paper a simple lowest-order two-dimensional element is proposed (which is not
obtained via the Piola transform), while in the second paper a construction based on
macroelements is presented.

In this paper, we adapt the theory presented in [1] to the case of vector elements
defined by the Piola transform, seeking necessary conditions for L2-approximation of
order r+1 for u and divu. More specifically, we shall prove in section 3 that in order
for the L2 error in the best approximation of u by functions in V h to be of order
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r + 1, the space V̂ must contain Sr, where Sr is the subspace of codimension one of
RT r spanned by the vector fields in (1.3) except that the two fields (x̂r+1

1 x̂r2, 0) and
(0, x̂r1x̂

r+1
2 ) are replaced by the single vector field (x̂r+1

1 x̂r2,−x̂r1x̂r+1
2 ). To establish

this result, we shall exhibit a domain Ω and a sequence Th of meshes of it, and prove
that whenever Sr is not contained in V̂ , there exists a smooth vector field u on Ω
such that

inf
v∈V h

‖u− v‖L2(Ω) 	= o(hr).

The example is far from pathological. The domain is simply a square, the mesh se-
quence does not degenerate in any sense—in fact all the elements of all the meshes
in the sequence are similar to a single right trapezoid—and the function u is a poly-
nomial. We use the same mesh sequence to establish a necessary condition for order
r + 1 approximation to divu, namely that div V̂ ⊇ Rr, where Rr is the subspace of
codimension one of Qr+1, the space of polynomials of degree ≤ r + 1 in each vari-
able separately, spanned by the monomials in Qr+1 except x̂r+1

1 x̂r+1
2 . A consequence

of these results, also discussed in section 3, is that while the Raviart–Thomas space
of index r achieves order r + 1 approximation in L2 for quadrilateral meshes as for
rectangular meshes, the order of approximation of the divergence is only of order r
in the quadrilateral case (but of order r + 1 for rectangular meshes). Thus, in the
case r = 0, there is no convergence in H(div,Ω). For the Brezzi–Douglas–Marini and
Brezzi–Douglas–Fortin–Marini spaces, the order of convergence is severely reduced on
general quadrilateral meshes not only for divu but also for u.

In section 4, we show that the necessary conditions for order r+1 approximation of
u and divu established in section 3 are also sufficient. The argument used allows us to
obtain the previously mentioned improved estimate for approximation by quadrilateral
Raviart–Thomas elements. In section 5, we devise a new finite element subspace of
H(div,Ω) which gives optimal order approximation in both �2 and H(div,Ω) on
general convex quadrilaterals. In sections 6 and 7, we present applications of these
results to the approximation of second order elliptic partial differential equations by
mixed and least squares finite element methods. In particular, we show that despite
the lower order of approximation of the divergence by Raviart–Thomas quadrilateral
elements, the mixed method approximation of the scalar and vector variable retain
optimal order convergence orders in L2. By contrast, error estimates for the least
squares method indicate a possible loss of convergence for both the scalar and vector
variable. In the final section, we illustrate the positive results with some numerical
examples and confirm the degradation of accuracy on quadrilateral meshes in the
cases predicted by our theory.

2. Approximation theory of vector fields on rectangular meshes. In this
preliminary section of the paper we adapt to vector fields the results presented in the
corresponding section of [1] for scalar functions. Although the Piola transform is used
in the definition of the finite elements, its simple expression on rectangular meshes
requires only minor changes in the proof given in [1] and so we give only a statement
of the results.

Let K be any square with edges parallel to the axes, namely K = FK(K̂) with

FK(x̂) = xK + hK x̂,(2.1)

where xK ∈ R
2 is the lower left corner of K and hK > 0 is its side length. The

Piola transform of û ∈ L2(K̂) is simply given by (P FK
û)(x) = h−1

K û(x̂) where
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x = FK x̂. We also have the simple expressions div(P FK
û)(x) = h−2

K d̂iv û(x̂) and
‖P FK

û‖L2(K) = ‖û‖L2(K̂).

Let Ω denote the unit square (Ω and K̂ both denote the unit square, but we use
the notation Ω when we think of it as a domain, while we use K̂ when we think of it
as a reference element), and for n a positive integer, let Uh be the uniform mesh of Ω

into n2 subsquares of side length h = 1/n. Given a subspace V̂ of L2(K̂) we define

V h = {u : Ω → R
2 | u|K ∈ P FK

V̂ ∀K ∈ Uh}.(2.2)

In this definition, when we write u|K ∈ P FK
V̂ we mean only that u|K agrees with a

function in P FK
V̂ almost everywhere, and so do not impose any interelement conti-

nuity. Then we have the following approximation results.
Theorem 2.1. Let V̂ be a finite-dimensional subspace of L2(K̂) and r be a

nonnegative integer. The following conditions are equivalent:
(i) There is a constant C such that infv∈V h

‖u − v‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω)

for all u ∈Hr+1(Ω).
(ii) infv∈V h

‖u− v‖L2(Ω) = o(hr) for all u ∈ Pr(Ω).

(iii) V̂ ⊇ Pr(K̂).

Theorem 2.2. Let V̂ be a finite-dimensional subspace of L2(K̂) and r be a
nonnegative integer. The following conditions are equivalent:

(i) There is a constant C such that

inf
v∈V h

‖divu− div v‖L2(Ω) ≤ Chr+1|divu|Hr+1(Ω)

for all u ∈Hr+1(Ω) with divu ∈ Hr+1(Ω).
(ii) infv∈V h

‖divu− div v‖L2(Ω) = o(hr) for all u with divu ∈ Pr(Ω).

(iii) d̂iv V̂ ⊇ Pr(K̂).
Remark. Since we do not impose interelement continuity in the definition of V h,

in Theorem 2.2 div v should be interpreted as the divergence applied elementwise to
v ∈ V h.

3. A necessary condition for optimal approximation of vector fields
on general quadrilateral meshes. In this section, we determine the properties
of the finite element approximating spaces that are necessary for order r + 1 L2-
approximation of a vector field and its divergence on quadrilateral meshes. The
construction of the finite element spaces proceeds as in the previous section. We
start with the reference shape functions, a finite-dimensional space V̂ of vector fields
on the unit square K̂ = [0, 1] × [0, 1] (typically V̂ consists of polynomials). Given
an arbitrary convex quadrilateral K and a bilinear isomorphism FK of the reference
element K̂ onto K, the shape functions on K are then taken to be P FK

V̂ . (Note
that there are eight possible choices for the bilinear isomorphism FK , but the space
P FK

V̂ does not depend on the particular choice whenever V̂ is invariant under the
symmetries of the square, which is usually the case in practice. When that is not
the case, which we shall allow, it is necessary to specify not only the elements K but
for each a choice of bilinear isomorphism from the reference element to K.) Finally,
given a quadrilateral mesh T of a two-dimensional domain Ω, we can then construct
the space of vector fields V (T) consisting of functions on Ω which belong to P FK

V̂
when restricted to a generic quadrilateral K ∈ T.

It follows from the results of the previous section that if we consider the sequence
Th = Uh of meshes of the unit square into congruent subsquares of side length h = 1/n,
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then the approximation estimate

inf
v∈V (Th)

‖u− v‖L2(Ω) = o(hr) ∀ u ∈ Pr(Ω)(3.1)

is valid only if V̂ ⊇ Pr(K̂) and the estimate

inf
v∈V (Th)

‖divu− div v‖L2(Ω) = o(hr) ∀ u with divu ∈ Pr(Ω)(3.2)

is valid only if d̂iv(V̂ ) ⊇ Pr(K̂). In this section we show that for these estimates

to hold for more general quadrilateral mesh sequences Th, stronger conditions on V̂
are required.

Before stating the main results of this section, we briefly recall a measure for the
shape regularity of a convex quadrilateralK, cf. [7, A.2, pp. 104–105] or [13]. From the
quadrilateral K we obtain four triangles by the four possible choices of three vertices
from the vertices of K, and we define ρK as the smallest diameter of the inscribed
circles to these four triangles. The shape constant of K is then σK := hK/ρK , where
hK = diam(K). A bound on σK implies a bound on the ratio of any two sides of K
and also a bound away from 0 and π for its angles (and conversely such bounds imply
an upper bound on σK). It also implies bounds on the Lipschitz constant of h−1

K FK
and its inverse. The shape constant of a mesh Th consisting of convex quadrilaterals
is then defined to be the supremum of the shape constants σK for K ∈ Th, and a
family Th of such meshes is called shape-regular if the shape constants for the meshes
can be uniformly bounded.

The following two theorems give necessary conditions on the shape functions in or-
der to ensure estimates like (3.1) and (3.2) on arbitrary quadrilateral mesh sequences.
The spaces Sr and Rr were defined in section 1.

Theorem 3.1. Suppose that the estimate (3.1) holds whenever Th is a shape-

regular sequence of quadrilateral meshes of a two-dimensional domain Ω. Then V̂ ⊇
Sr.

Theorem 3.2. Suppose that the estimate (3.2) holds whenever Th is a shape-

regular sequence of quadrilateral meshes of a two-dimensional domain Ω. Then d̂iv V̂ ⊇
Rr.

In order to establish the theorems, we shall make use of two results analogous to
Theorem 4 of [1]. To state these results, we introduce some specific bilinear mappings.
For α > 0, let F α and Gα denote the mappings

F α(x̂) = (x̂1, (α+ x̂1)x̂2), Gα(x̂) = F α(x̂2, x̂1),(3.3)

each of which maps the unit square K̂ to the quadrilateral Kα with vertices (0, 0),
(1, 0), (1, α+ 1), and (0, α).

Lemma 3.3. Let V̂ be a space of vector fields on K̂ such that P F V̂ ⊇ Pr(F (K̂))

when F is any of the four bilinear isomorphisms F 1, F 2, G1, andG2. Then V̂ ⊇ Sr.
Lemma 3.4. Let V̂ be a space of vector fields on K̂ such that divP F V̂ ⊇

Pr(F (K̂)) when F is any of the four bilinear isomorphisms F 1, F 2, G1, and G2.

Then d̂iv V̂ ⊇ Rr.
We postpone the proof of these lemmas to the end of the section. Now, based on

Lemma 3.3 and Theorem 2.1, we establish Theorem 3.1.
Proof of Theorem 3.1. To establish the theorem, we assume that V̂ � Sr and

exhibit a sequence Th of shape regular meshes (h = 1, 1/2, 1/3, . . . ) of the unit square
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Fig. 1. (a) The mesh T1 of the unit square into four trapezoids. (b) The mesh Th (here h = 1/8)
composed of translated dilates of T1.

for which the estimate (3.1) does not hold. We know, by Lemma 3.3, that for either

α = 1 or α = 2 either P FαV̂ or PGαV̂ does not contain Pr(K
α). We fix this value

of α and, without loss of generality, suppose that

P FαV̂ � Pr(K
α).(3.4)

Set β = α/(1 + 2α). As shown in Figure 1(a), we define a mesh T1 consisting of
four congruent elements K1, . . . ,K4, with the vertices of K1 given by (0, 0), (1/2, 0),
(1/2, 1−β), and (0, β). For h = 1/n, we construct the mesh Th by partitioning the unit
square into n2 subsquares K and meshing each subsquare K with the mesh obtained
by applying FK , given by (2.1), to T1 as shown in Figure 1(b). For each element T
of the mesh Th there is a natural way to construct a bilinear mapping F from the
unit square onto T based on the mapping F α. The first step is to compose F α with
the linear isomorphism E(x) = (x1/2, x2/(1+2α)) to obtain a bilinear map from the
unit square onto the trapezoid K1. Composing further with the natural isometries of
K1 onto K2, K3, and K4, we obtain bilinear maps F j from the unit square onto each
of the trapezoids Kj , j = 1, . . . , 4. Finally, further composition with the map FK
(consisting of dilation and translation) taking the unit square onto the subsquare K
containing T , defines a bilinear diffeomorphism of the unit square onto T .

Having specified the mesh Th and a bilinear map from the unit square onto each
element of the mesh, we have determined the space V (Th) based on the shape func-

tions in V̂ . We need to show that the estimate (3.1) does not hold. To do so, we
observe that V (Th) coincides precisely with the space V h constructed at the start of
section 2 (see (2.2)) if we use V (T1) as the space of shape functions on the unit square
to begin the construction. This observation is easily verified in view of the composition
property (1.2) of the Piola transform. Thus we may invoke Theorem 2.1 to conclude
that (3.1) does not hold if we can show that V (T1) � Pr(K̂). Now, by construction,

the functions in V (T1) restrict to functions in P F1V̂ on K1 = F 1K̂, so it is enough

to show that P F1V̂ � Pr(K1). But F 1 = E ◦F α and, hence, P F1V̂ = PE(P FαV̂ ).
Now E is a linear isomorphism of Kα onto K1, and so PE is a linear isomorphism of
Pr(K

α) onto Pr(K1). Thus P F1V̂ ⊇ Pr(K1) if and only if P FαV̂ ⊇ Pr(K
α) and

so the theorem is complete in view of (3.4).
Proof of Theorem 3.2. The proof is essentially identical to the preceding one,

except that Lemma 3.4 and Theorem 2.2 are used in place of Lemma 3.3 and Theo-
rem 2.1.

Before turning to the proof of Lemmas 3.3 and 3.4, we draw some implications
from Theorems 3.1 and 3.2 for the approximation properties of the extensions of stan-
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dard finite element subspaces of H(div,Ω) from rectangular meshes to quadrilateral
meshes. By definition, Sr ⊆ RT r, so Theorem 3.1 does not contradict the possibility
that the Raviart–Thomas space of index r achieves order r + 1 approximation in L2

on quadrilateral meshes, just as for rectangular meshes. This is indeed the case (see
the discussion in section 1). But divRT r = Qr which contains Rr−1 but not Rr.
Thus we may conclude from Theorem 3.2 that the best possible order of approxima-
tion to the divergence in L2 for the Raviart–Thomas space of index r is only r on
quadrilateral meshes, one degree lower than for rectangular meshes, and, in particu-
lar, there is no convergence for r = 0. (This lower order is achieved, as discussed in
section 1.) In contrast to the Raviart–Thomas spaces, for the Brezzi–Douglas–Marini
and Brezzi–Douglas–Fortin–Marini spaces there is a loss of L2-approximation order
on quadrilateral meshes. Both BDMr and BDFMr+1 contain Pr, which is enough
to ensure order r+1 approximation in L2 on rectangular meshes. However, it is easy
to check that BDMr contains S�(r−1)/2� but not S�(r+1)/2� so that the best possi-
ble order of approximation for the Brezzi–Douglas–Marini space of index r on general
quadrilateral meshes is (r+1)/2�, a substantial loss of accuracy in comparison to the

rectangular case. For the divergence, we have d̂ivBDMr = Pr−1(K̂) which contains
R�(r−2)/2� but not R�r/2�. Therefore the best possible order of approximation for
the divergence for the Brezzi–Douglas–Marini space of index r on general quadrilat-
eral meshes is R�r/2�. Similarly, the best possible order of L2-approximation for the
Brezzi–Douglas–Fortin–Marini space of index r + 1 on general quadrilateral meshes
is (r + 2)/2�, while since d̂ivBDFMr+1 = Pr(K̂), the best possible rate for the
divergence is (r+ 1)/2�. We specifically note that in the lowest index cases, namely

when V̂ = RT 0, BDM1, or BDFM1 (which is identical to RT 0), the best approx-
imation in H(div,Ω) does not converge in H(div,Ω) for general quadrilateral mesh
sequences. Section 8 of this paper contains a numerical confirmation of this result.

We conclude this section with the proofs of Lemmas 3.3 and 3.4.
Proof of Lemma 3.3. By hypothesis P F V̂ ⊇ Pr(F (K̂)) or, equivalently, V̂ ⊇

P−1
F [Pr(F (K̂))], for F = F 1, F 2, G1, and G2. Thus it is sufficient to prove that

Sr ⊆ Σr := P−1
F 1 [Pr(K

1)] + P−1
F 2 [Pr(K

2)] + P−1
G1 [Pr(K

1)] + P−1
G2 [Pr(K

2)].(3.5)

We will prove this using induction on r.
Now for any diffeomorphism F : K̂ → K and any u : K → R

2, we have, directly
from the definition of the Piola transform, that

(P−1
F u)(x̂) = JF (x̂)DF (x̂)−1u(x) =

⎛⎜⎜⎝
∂F2

∂x̂2
(x̂) −∂F1

∂x̂2
(x̂)

−∂F2

∂x̂1
(x̂)

∂F1

∂x̂1
(x̂)

⎞⎟⎟⎠u(x).(3.6)

Specializing to the case where F = F α or Gα given by (3.3), we have

(P−1
Fαu)(x̂) =

(
α+ x̂1 0
−x̂2 1

)
u(x), (P−1

Gαu)(x̂) =

(
x̂1 −1

−α− x̂2 0

)
u(x).

Thus, when u(x) is the constant vector field (1, 0), (P−1
F 1u)(x̂) = (1 + x̂1,−x̂2), and

when u(x) ≡ (0, 1), (P−1
F 1u)(x̂) = (0, 1) and (P−1

G1u)(x̂) = (−1, 0). These three vector
fields span S0, which establishes (3.5) in the case r = 0.

Suppose now that Sr−1 ⊆ Σr−1 for some r ≥ 1. To complete the induction we
need to show that Sr ⊆ Σr. Now Sr is spanned by Sr−1 plus the 4r + 4 additional
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vector fields

(x̂i1x̂
r
2, 0) and (0, x̂r1x̂

i
2), 0 ≤ i ≤ r,

(x̂r+1
1 x̂j2, 0) and (0, x̂j1x̂

r+1
2 ), 0 ≤ j ≤ r − 1,

(x̂r1x̂
r−1
2 , 0) and (x̂r+1

1 x̂r2,−x̂r1x̂r+1
2 ).

Pick 0 ≤ i ≤ r, and set F = Gα and u(x) = (0,−xr−i1 xi2) ∈ Pr(K
α). Note that

x = Gαx̂ = (x̂2, (α+ x̂2)x̂1). Then

(P−1
Gαu)(x̂) = (xr−i1 xi2, 0) = (x̂r−i2 (α+ x̂2)

ix̂i1, 0) = (x̂i1x̂
r
2, 0) + iα(x̂i1x̂

r−1
2 , 0)

(mod Sr−1).

Since Sr−1 ⊆ Σr by the inductive hypothesis, and since we may take both α = 1 and
α = 2, we conclude that (x̂i1x̂

r
2, 0) ∈ Σr (for 0 ≤ i ≤ r) and also that (x̂r1x̂

r−1
2 , 0) ∈ Σr.

In a similar way, setting F = F α and u(x) = (0, xr−i1 xi2), we conclude that

(0, x̂r1x̂
i
2) ∈ Σr, 0 ≤ i ≤ r. The choice F = F α and u(x) = (xr−j1 xj2, 0) together with

the fact that Σr ⊇ Qr × Qr, which is a consequence of the proof thus far, implies
that (x̂r+1

1 x̂j2, 0) ∈ Σr for 0 ≤ j ≤ r − 1. The choice F = Gα with the same choice of

u similarly implies that (0, x̂j1x̂
r+1
2 ) ∈ Σr for 0 ≤ j ≤ r − 1.

Finally, with u(x) = (xr2, 0), we find that (P−1
F 1u)(x̂) = (x̂r+1

1 x̂r2,−x̂r1x̂r+1
2 )

(mod Qr ×Qr), which completes the proof of (3.5) and so the lemma.

Proof of Lemma 3.4. The hypothesis is that divP F V̂ ⊇ Pr(F (K̂)) for F =

F 1, F 2, G1, and G2. Now d̂iv û(x̂) = JF (x̂) div(P F û)(F x̂), so d̂iv V̂ contains
all functions on K̂ of the form x̂ �→ JF (x̂)p(F x̂) with p ∈ Pr(F (K̂)) and F ∈
{F 1,F 2,G1,G2}. To prove the lemma, it suffices to show that the span of such
functions, call it Σr, contains Rr. Note that JF α(x̂) = α+x̂1 and JGα(x̂) = −α−x̂2.

For r = 0, we take p ≡ 1 and F = F 1, F 2, and G1, and find that Σr contains
1 + x̂1, 2 + x̂1, and −1 − x̂2. These three functions span R0, so Σ0 ⊇ R0.

We continue the proof that Σr ⊇ Rr by induction on r. Now Rr is the span of
Rr−1 and the 2r + 3 additional functions x̂r+1

1 x̂i2 and x̂i1x̂
r+1
2 , 0 ≤ i ≤ r, and x̂r1x̂

r
2.

Taking p(x) = xr−i1 xi2 and F = F α we find that the function x̂ �→ x̂r−i1 (α+ x̂1)
i+1x̂i2

belongs to Σr. Modulo Rr−1 (which is contained in Σr by the inductive hypothesis),
this is equal to the function x̂ �→ x̂r+1

1 x̂i2 + (i + 1)αx̂r1x̂
i
2. Using both α = 1 and 2,

we conclude that x̂r+1
1 x̂i2 belongs to Σr for 0 ≤ i ≤ r and that x̂r1x̂

r
2 does as well.

The same choice of p with F = Gα shows that Σr contains the functions x̂i1x̂
r+1
2 ,

0 ≤ i ≤ r, and completes the proof.

4. Sufficient conditions for optimal order approximation. In this section
we show that the necessary conditions we have obtained in the previous section are
also sufficient for approximation of order r + 1 in L2 and H(div,Ω). To state this
more precisely, we recall the construction of projection operators for H(div) finite

elements. We suppose that we are given a bounded projection π̂ : Hr+1(K̂) → V̂

(typically this operator is specified via a unisolvent set of degrees of freedom for V̂ ).

We then define the corresponding projection πK : Hr+1(K) → P F V̂ for an arbitrary
element K = F (K̂) via the Piola transform, as expressed in this commuting diagram:

Hr+1(K̂)
π̂−−−−→ V̂

P F

⏐⏐� ⏐⏐�P F

Hr+1(K) −−−−→
πK

P F V̂

.
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That is, πK = P F ◦ π̂ ◦ P−1
F . Finally a global projection operator πh : Hr+1(Ω) →

V (Th) is defined piecewise: (πhu)|K = πK(u|K). (The degrees of freedom used to
define π̂ will determine the degree of interelement continuity enjoyed by πhu. In
particular, for the standard H(div) finite element spaces discussed previously, the
degrees of freedom ensure that on any edge ê of K̂, (π̂u) · n̂ on ê depends only on
u · n on ê. From this it results that πhu ∈H(div).)

The following two theorems contain the main results of this section.
Theorem 4.1. Let π̂ : Hr+1(K̂) → V̂ be a bounded projection operator. Given

a quadrilateral mesh Th of a domain Ω, let πh : Hr+1(Ω) → V (Th) be defined as

above. Suppose that V̂ ⊇ Sr. Then there exists a constant C depending only on the
bound for π̂ and on the shape regularity of Th, such that

‖u− πhu‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω)(4.1)

for all u ∈Hr+1(Ω).

Theorem 4.2. Let π̂ : Hr+1(K̂) → V̂ be a bounded projection operator. Given
a quadrilateral mesh Th of a domain Ω, let πh : Hr+1(Ω) → V (Th) be defined as

above. Suppose that d̂iv V̂ ⊇ Rr. Suppose also that there exists a bounded projection
operator Π̂ : Hr+1(K̂) → d̂iv V̂ such that

d̂iv π̂û = Π̂ d̂iv û ∀û ∈Hr+1(K̂) with d̂iv û ∈ Hr+1(K̂).(4.2)

Then there exists a constant C depending only on the bounds for π̂ and Π̂ and on the
shape regularity of Th, such that

‖divu− divπhu‖L2(Ω) ≤ Chr+1|divu|Hr+1(Ω)(4.3)

for all u ∈Hr+1(Ω) with divu ∈ Hr+1(Ω).
Remarks. 1. It follows immediately that if the hypotheses of both theorems are

met, then πh furnishes order r + 1 approximation in H(div,Ω):

‖u− πhu‖H(div,Ω) ≤ Chr+1(|u|Hr+1(Ω) + |divu|Hr+1(Ω))

for all u ∈Hr+1(Ω) with divu ∈ Hr+1(Ω).
2. The commutativity hypothesis involving the projection Π̂ plays a major role

in the theory of H(div,Ω) finite elements. It is satisfied in the case of the Raviart–
Thomas, Brezzi–Douglas–Marini, and Brezzi–Douglas–Fortin–Marini elements, as well
as for the new elements introduced in the next sections, with Π̂ equal to the L2 pro-
jection onto d̂iv V̂ .

3. When applied to the Raviart–Thomas elements of index r, Theorem 4.1 gives

‖u− πhu‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω)

and Theorem 4.2 gives

‖divu− divπhu‖L2(Ω) ≤ Chr|divu|Hr+1(Ω).

The latter estimate is proved in [12], but the former estimate appears to be new. It
improves on the estimate given in [12]:

‖u− πhu‖L2(Ω) ≤ Chr+1[|u|Hr+1(Ω) + h|divu|Hr+1(Ω)].
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The proofs of the theorems depend on the following two lemmas which are
strengthened converses of Lemmas 3.3 and 3.4.

Lemma 4.3. Let V̂ be a space of vector fields on K̂ containing Sr. Then P F V̂ ⊇
Pr(K) for all bilinear isomorphisms F of K̂ onto convex quadrilaterals K = F (K̂).

Proof. It is sufficient to show that Sr ⊇ P−1
F [Pr(K)], since then the hypothesis

V̂ ⊇ Sr implies that

P F V̂ ⊇ P FSr ⊇ P FP
−1
F [Pr(K)] = Pr(K).

Now (3.6) tells us that

P−1
F u =

(
∂F2/∂x̂2 −∂F1/∂x̂2

−∂F2/∂x̂1 ∂F1/∂x̂1

)
(u ◦ F ).

Since u ∈ Pr(K) and F is bilinear, u ◦ F ∈ Qr(K̂). Also, again in view of the
bilinearity of F , the matrix appearing in this equation is the sum of a constant
matrix field and one of the form (x̂1,−x̂2)

T (a2,−a1) (where ai ∈ R is the coefficient
of x̂1x̂2 in Fi). It follows immediately that P−1

F u ∈ Sr.
Lemma 4.4. Let V̂ be a space of vector fields on K̂ such that d̂iv V̂ ⊇ Rr. Then

divP F V̂ ⊇ Pr(K) for all bilinear isomorphisms F of K̂ onto convex quadrilaterals
K = F (K̂).

Proof. Let p ∈ Pr(K) be arbitrary. Choose any u ∈ H(div,Ω) such that
divu = p. From the identity

(d̂ivP−1
F u)(x̂) = JF (x̂)(divu)(x),

we have d̂ivP−1
F u = JF · (p ◦F ). Now p ∈ Pr(K) and F is bilinear, so p ◦F belongs

to Qr(K̂) and JF is linear. Thus q̂ := d̂ivP−1
F u ∈ Rr.

Invoking the hypothesis that Rr ⊆ d̂iv V̂ , we can find v̂ ∈ V̂ such that d̂iv v̂ = q̂.
Then

p(x) = divu(x) = JF (x̂)−1(d̂ivP−1
F u)(x̂)

= JF (x̂)−1q̂(x̂) = JF (x̂)−1 d̂iv v̂(x̂) = divP F v̂(x).

This shows that p ∈ divP F V̂ as required.
Proof of Theorem 4.1. We will show that if V̂ ⊇ Sr and K is any convex quadri-

lateral, then

‖u− πKu‖L2(K) ≤ Chr+1
K |u|Hr+1(K) ∀u ∈Hr+1(K),(4.4)

where hK = diam(K) and the constant C depends only on π̂ and the shape constant
for K. The theorem follows easily by squaring both sides and summing over the
elements.

We establish (4.4) in two steps. First we prove it under the additional assumption
that hK = 1, and then we use a simple scaling argument to obtain it for arbitrary K.

For the first part we use the Bramble–Hilbert lemma. In view of Lemma 4.3 and
the fact that π̂ is a projection onto V̂ , it follows that πKu = u for all u ∈ Pr(K).
Now under the assumption that hK = 1, the Piola transform P FK

is bounded and
invertible both from L2(K̂) to L2(K) and fromHr+1(K̂) toHr+1(K) with bounds in
both norms depending only on the shape constant. A similar statement holds for P−1

FK
.
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Since π̂ is bounded from Hr+1(K̂) to L2(K̂), it follows that πK = P FK
◦ π̂ ◦ P−1

FK

is bounded from Hr+1(K) to L2(K) with bound depending only on the bound for π̂
and the shape constant for K. The map u �→ u−πKu is then similarly bounded and
moreover vanishes on Pr(K). Therefore,

‖u− πKu‖L2(K) ≤ ‖I − πK‖L(Hr+1(K),L2(K)) inf
p∈Pr(K)

‖u− p‖Hr+1(K).

Now the Bramble–Hilbert lemma states that the last infimum can be bounded by
c|u|Hr+1(K), where c depends only on r and the shape regularity of K (see, e.g., [2,
Lemma 4.3.8]). The estimate (4.4) then follows for hK = 1 with C = c‖I −
πK‖L(Hr+1(K),�2(K)).

To complete the proof, let K be an arbitrary convex quadrilateral, and denote
by M : K → K̃ := h−1

K K the dilation M(x) = h−1
K x. Then the bilinear maps FK

and F K̃ of the reference element K̂ onto K and K̃, respectively, are related by the
equation F K̃ = M ◦FK , from which it follows easily that πK̃ = PM ◦πK ◦P−1

M . Of
course, PM has a very simple form:

PMu(x̃) = hKu(hK x̃).

Now for any u ∈Hr+1(K), let ũ = PMu ∈Hr+1(K̃). It is then easy to check that

‖u− πKu‖L2(K) = ‖P−1
M (ũ− πK̃ũ)‖L2(K) = ‖ũ− πK̃ũ‖L2(K̃)

≤ C|ũ|Hr+1(K̃) = Chr+1
K |u|Hr+1(K),

where we obtained the inequality from the already established result for elements of
unit diameter.

Proof of Theorem 4.2. As for the previous theorem, it suffices to prove a local
result:

‖divu− divπKu‖L2(K) ≤ Chr+1
K |divu|Hr+1(K)

(4.5) ∀u ∈Hr+1(K) with divu ∈ Hr+1(K),

where C depends only on the bounds for π̂ and Π̂ and the shape constant of K.
Define ΛK : L2(K) → L2(K) by

ΛKp(x) = JF (x̂)−1Π̂[JF · (p ◦ F )](x̂),(4.6)

i.e., ΛKp = {JF−1 · Π̂[JF · (p ◦ F )]} ◦ F−1. Then

divπKu(x) = div(P FK
π̂P−1

FK
u)(x) = JF (x̂)−1 d̂iv(π̂P−1

FK
u)(x̂)

= JF (x̂)−1Π̂(d̂ivP−1
FK
u)(x̂) = JF (x̂)−1Π̂[JF · (divu) ◦ F ](x̂).

That is, divπKu = ΛK(divu). Thus,

‖divu− divπKu‖L2(K) = ‖divu− ΛK(divu)‖L2(K)

and (4.5) will hold if we can prove that

‖p− ΛKp‖L2(K) ≤ Chr+1
K |p|Hr+1(K) ∀p ∈ Hr+1(K).(4.7)

The proof of (4.7) is again given first in the case of elements of unit diameter. Then
ΛK is bounded uniformly from Hr+1(K) to L2(K) for elements K with uniformly
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Fig. 2. Element diagrams indicating the degrees of freedom for ABF0 and ABF1.

bounded shape constant. Now, as noted in the proof of Lemma 4.4, if p ∈ Pr(K),

then JF · (p ◦ F ) ∈ Rr ⊆ d̂iv V̂ . Since Π̂ is a projection onto d̂iv V̂ , it follows that
ΛKp = p for p ∈ Pr(K). Thus the Bramble–Hilbert lemma implies (4.7) under the
restriction hK = 1. To extend to elements of arbitrary diameter, we again use a
dilation.

5. Construction of spaces with optimal order H(div,Ω) approxima-
tion. We have previously shown that none of the standard finite element approxi-
mations of H(div,Ω) (i.e., the Raviart–Thomas, Brezzi–Douglas–Marini, or Brezzi–
Douglas–Fortin–Marini spaces) maintain the same order of approximation on general
convex quadrilaterals as they do on rectangles. In this section, we use the condi-
tions determined in the previous sections to construct finite element subspaces of
H(div,Ω) which do have this property. To obtain approximation of order r + 1
in H(div,Ω) on general convex quadrilaterals, we require that the space of ref-

erence shape functions V̂ ⊇ Sr and d̂iv V̂ ⊇ Rr. A space with this property is
ABFr := Pr+2,r(K̂) × Pr,r+2(K̂), for which d̂ivABFr = Rr.

As degrees of freedom for ABFr on the reference element, we take∫
ê

û · n̂q̂ dŝ, q̂ ∈ Pr(ê) for each edge ê of K̂(5.1) ∫
K̂

û · φ̂ dx̂, φ̂ ∈ Pr−1,r(K̂) × Pr,r−1(K̂),(5.2) ∫
K̂

d̂iv ûx̂r+1
1 x̂i2 dx̂,

∫
K̂

d̂iv ûx̂i1x̂
r+1
2 dx̂, i = 0, . . . , r.(5.3)

Note that (5.1) and (5.2) are the standard degrees of freedom for the Raviart–Thomas
elements on the reference square. In all we have specified 4(r+1)+2r(r+1)+2(r+1) =
2(r + 3)(r + 1) = dimABFr degrees of freedom. Since the new degrees of freedom,
with respect to the standard Raviart–Thomas elements, are local, we remark that the
implementation of the new space ABFr should not be more expensive than that of
RT r. Figure 2 indicates the degrees of freedom for the first two cases r = 0 and 1.

In order to see that these choices of V̂ and degrees of freedom determine a finite
element subspace of H(div,Ω), we need to show that the degrees of freedom are
unisolvent, and that if the degrees of freedom on an edge ê vanish, then û · n̂ vanishes
on e (this will ensure that the assembled finite element space belongs to H(div,Ω)).
The second point is immediate. On any edge ê of K̂, u · n ∈ Pr(ê), so the vanishing
of the degrees of freedom (5.1) associated to ê does indeed ensure that û · n̂ ≡ 0.

We now verify unisolvence by showing that if û ∈ ABFr and all the quanti-
ties (5.1)–(5.3) vanish, then û = 0. If q̂ ∈ Qr(K̂), then q̂|ê ∈ Pr(ê) for any edge ê of
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K̂, and ∇̂q̂ ∈ Pr−1,r(K̂) × Pr,r−1(K̂). Therefore,∫
K̂

d̂iv ûq̂ dx̂ =

∫
∂K̂

û · n̂q̂ ds−
∫
K̂

û · ∇̂q̂ dx̂ = 0, q̂ ∈ Qr(K̂).

In view of (5.3) we then have that∫
K̂

d̂iv ûq̂ dx̂ = 0, q̂ ∈ Rr.

Since d̂iv û ∈ Rr we conclude that d̂iv û = 0. Now we may write

û =

r∑
i=0

[ai(x̂
r+2
1 x̂i2, 0) + bi(0, x̂

i
1x̂
r+2
2 )] + v̂

with v̂ ∈ RT r. Since

0 = d̂iv û =

r∑
i=1

(r + 2)(aix̂
r+1
1 x̂i2 + bix̂

i
1x̂
r+1
2 ) + d̂iv v̂,

and d̂iv v̂ ∈ Qr, it follows that ai = bi = 0 and so û = v̂ ∈ RT r. Since (5.1), (5.2)
are unisolvent degrees of freedom for RT r [4, Proposition III.3.4], we conclude that
û = 0.

We also note that a small variant of the first part of this argument establishes
the commutativity property (4.2) with π̂ : H1(K̂) → ABFr the projection deter-
mined by the degrees of freedom (5.1)–(5.3) and Π̂ the L2-projection onto Rr =

d̂ivABFr. Thus, all the hypotheses of Theorems 4.1 and 4.2 are satisfied and the
estimates (4.1) and (4.3) hold on general quadrilateral meshes for finite element spaces
based on ABFr.

6. Application to mixed finite element methods. One of the main applica-
tions of finite element subspaces of H(div,Ω) is to the approximation of second order
elliptic boundary value problems by mixed finite element methods. For the model
problem ∆p = f in Ω, p = 0 on ∂Ω, the mixed formulation is the following: Find
u ∈H(div,Ω) and p ∈ L2(Ω) such that

(u,v) + (p,div v) = 0 ∀v ∈H(div,Ω),

(divu, q) = (f, q) ∀q ∈ L2(Ω),

where (·, ·) denotes the L2(Ω) inner product. For Sh ⊆ H(div,Ω) and Wh ⊆ L2(Ω),
the mixed finite element approximation seeks uh ∈ Sh and ph ∈Wh such that

(uh,v) + (ph,div v) = 0 ∀v ∈ Sh,
(divuh, q) = (f, q) ∀q ∈Wh.

The pair (Sh,Wh) is said to be stable if the following conditions are satisfied:

(v,v) ≥ c‖v‖2
H(div,Ω) ∀v ∈ Zh = {v ∈ Sh : (div v, q) = 0 ∀q ∈Wh},(6.1)

sup
v∈Sh

(div v, q)

‖v‖H(div,Ω)
≥ c‖q‖L2(Ω) ∀q ∈Wh.(6.2)
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By Brezzi’s theorem [3], if (Sh,Wh) is a stable pair, then the quasioptimality estimate

‖u− uh‖H(div,Ω) + ‖p− ph‖L2(Ω) ≤ C
(

inf
v∈Sh

‖u− v‖H(div,Ω) + inf
q∈Wh

‖p− q‖L2(Ω)

)(6.3)

holds with C depending only on Ω and the constant c entering into the stability
conditions.

For the space Sh we will take V (Th)∩H(div,Ω), where Th is an arbitrary quadri-
lateral mesh and V (Th) is constructed as described at the start of section 3 starting

from a space of reference shape functions V̂ on the unit square. To specify the corre-
sponding space Wh, we first define a space of reference shape functions Ŵ = d̂iv V̂ ,
next define the space of shape functions on K by WK = {ŵ ◦ F−1

K | ŵ ∈ Ŵ}, and
then set

Wh = {w ∈ L2(Ω) | w|K ∈WK}.

Now suppose that V̂ is any one of the previously considered spaces RT r, BDMr,
BDFMr+1, or ABFr. Associated with each of these spaces is a unisolvent set
of degrees of freedom. These are given in (5.1) and (5.2) for RT r, by (5.1)–(5.3)

for ABFr, and, for BDMr and BDFMr+1, by (5.1) and
∫
K̂
û · φ̂ dx̂ with φ̂ in

Pr−2(K̂) or Pr−1(K̂), respectively. These degrees of freedom determine the pro-

jection π̂ : H1(K̂) → V̂ and then, by the construction described at the start of
section 4, the projection πh : H1(Ω) → Sh. Moreover, the degrees of freedom ensure
the commutativity property (4.2) where Π̂ is the L2(K̂) projection onto Ŵ . From
these observations it is straightforward to derive the stability conditions (6.1) and
(6.2), as we shall now do.

Given v ∈ Zh and K ∈ Th, let v̂ = P−1
FK

(v|K) ∈ V̂ , q̂ = d̂iv v̂ ∈ Ŵ , and

q = q̂ ◦ F−1
K ∈ WK . Then (div v, q)L2(K) = 0 (because we can extend q to Ω by

zero and obtain a function in Wh and div v is orthogonal to Wh since v ∈ Zh).

But (div v, q)L2(K) = (d̂iv v̂, q̂)L2(K̂) = ‖ d̂iv v̂‖2
L2(K), so d̂iv v̂ = 0 and therefore

div v = [(JFK)−1 d̂iv v̂]◦F−1
K = 0. Thus, if v ∈ Zh, then div v = 0, and (6.1) follows

immediately with c = 1.
To prove (6.2), we shall show that for any given q ∈Wh there exists v ∈ Sh with

(div v, q) = ‖q‖L2(Ω)(6.4)

and

‖v‖H(div,Ω) ≤ C‖q‖L2(Ω).(6.5)

As usual, we start by noting that there exists u ∈ H1(Ω) with divu = q and
‖u‖H1(Ω) ≤ C‖q‖L2(Ω) and letting v = πhu. Now (divπhu, q) = (divu, q) when-
ever q ∈ Wh, as follows directly from the construction of πh, the commutativity
property (4.2), and the properties of the Piola transform. Therefore (6.4) holds.

To prove (6.5) we note that in each case V̂ ⊇ S0, so Theorem 4.1 gives the esti-
mate ‖u − πhu‖L2(Ω) ≤ Ch‖u‖H1(Ω), and so, by the triangle inequality, ‖v‖L2(Ω) ≤
C‖q‖L2(Ω). Also, on any element K, div v = divπKu = ΛK(divu) = ΛKq, where ΛK
is defined by (4.6), which implies that ‖div v‖L2(Ω) ≤ C‖q‖L2(Ω). This establishes
(6.5) and completes the proof of stability.
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Remark. Note that we do not have Wh = divSh on general quadrilateral meshes,
although this is the case on rectangular meshes. With that choice of Wh it would be
easy to prove (6.1) but the proof of (6.2) would not be clear.

We now turn our attention to error estimates for mixed methods. Having estab-
lished stability, we can combine the quasioptimality estimate (6.3) with the bounds
for the approximation error given by Theorems 4.1 and 4.2 (and Theorem 1 of [1]
for the approximation error for p) to obtain error bounds. For the ABFr method
this gives

‖u− uh‖H(div,Ω) + ‖p− ph‖L2(Ω) ≤ Chr+1(|u|Hr+1(Ω) + |divu|Hr+1(Ω) + |p|Hr+1(Ω)).

But for the RT r method it gives only an O(hr) bound, and no convergence at all for
r = 0, because of the decreased approximation for the divergence (and the approxi-
mation orders are even lower for BDMr and BDFMr+1).

It is possible to improve on this by following the approach of [6] and [5], as
we now do. First we define ΠK : L2(K) → WK by ΠKp = (Π̂p̂) ◦ F−1

K with p̂ =
p ◦ FK , and then we define Πh : L2(Ω) → Wh by Πhp|K = ΠK(p|K). It follows that

(p− ΠKp,div v)L2(K) = (p̂− Π̂p̂, d̂ivP−1
FK
v)L2(K), so

(p− Πhp,div v) = 0 ∀v ∈ Sh.
We then have the following error estimates.

Theorem 6.1.

‖u− uh‖L2(Ω) ≤ ‖u− πhu‖L2(Ω),

‖divuh‖L2(Ω) ≤ C‖divu‖L2(Ω),

‖div(u− uh)‖L2(Ω) ≤ C‖div(u− πhu)‖L2(Ω),

‖Πhp− ph‖2
L2(Ω) = (u− uh,U − πhU) + (div[u− uh], P − ΠhP ),

where P is the solution to the Dirichlet problem −∆P = Πhp − ph in Ω, P = 0 on
∂Ω and U = gradP .

Proof. Using the error equations

(u− uh,v) + (p− ph,div v) = 0 ∀v ∈ Sh, (div[u− uh], q) = 0 ∀q ∈Wh,

we obtain

(u− uh,πhu− uh) = (p− ph,div[uh − πhu]) = (Πhp− ph,div[uh − πhu])

= (Πhp− ph,div[uh − u]) = 0.

Hence, ‖u− uh‖2
L2(Ω) = (u− uh,u− πhu) and it easily follows that

‖u− uh‖L2(Ω) ≤ ‖u− πhu‖L2(Ω).

To estimate ‖div(u− uh)‖L2(Ω), we observe that if v ∈ Sh and we define

q(x) =

{
|JFK(x̂)|div v(x), x ∈ K,

0, x ∈ Ω \K,
then q ∈Wh. Therefore, from the error equation we have

(div(u− uh), |JFK |div v)K = 0.
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Choosing v = uh, it easily follows that

‖|JFK |1/2 divuh‖L2(K) ≤ ‖|JFK |1/2 divu‖L2(K),

and so ‖divuh‖L2(K) ≤ C‖divu‖L2(K) with C depending on the shape constant for
K. Choosing v = πhu− uh, it also follows that

‖|JFK |1/2 div(u− uh)‖L2(K) ≤ ‖|JFK |1/2 div(u− πhu)‖L2(K),

so ‖div(u − uh)‖L2(K) ≤ C‖div(u − πhu)‖L2(K). Summing over all quadrilaterals,
we obtain

‖divuh‖L2(Ω) ≤ C‖divu‖L2(Ω), ‖div(u− uh)‖L2(Ω) ≤ C‖div(u− πhu)‖L2(Ω).

To estimate ‖p − ph‖L2(Ω), we define P as the solution to the Dirichlet problem
∆P = Πhp− ph in Ω, P = 0 on ∂Ω, and set U = gradP . Then

‖Πhp− ph‖2
L2(Ω) = (divU ,Πhp− ph) = (divπhU ,Πhp− ph) = −(u− uh,πhU)

= (u− uh,U − πhU) − (u− uh,U)

= (u− uh,U − πhU) + (div[u− uh], P )

= (u− uh,U − πhU) + (div[u− uh], P − ΠhP ).

To obtain order of convergence estimates, one needs to apply the approximation
properties of a particular space. For the Raviart–Thomas elements of index r we
obtain the following estimates.

Theorem 6.2. Suppose (uh, ph) is the mixed method approximation to (u, p)

obtained when V̂ is the Raviart–Thomas reference space of index r and suppose that
the domain Ω is convex. Then for p ∈ Hr+2(Ω),

‖u− uh‖L2(Ω) ≤ Chr+1‖u‖Hr+1(Ω),

‖div(u− uh)‖L2(Ω) ≤ Chr‖divu‖Hr(Ω),

‖p− ph‖L2(Ω) ≤
{
Chr+1‖p‖Hr+1(Ω) (r ≥ 1),
Ch‖p‖H2(Ω) (r = 0).

Proof. It follows from [7, section I.A.2] that ‖p − Πhp‖L2(Ω) ≤ Chk+1‖p‖k+1,Ω,
0 ≤ k ≤ r, and it follows from Theorems 4.1 and 4.2 that, for 0 ≤ k ≤ r,

‖u− πhu‖L2(Ω) ≤ Chk+1‖u‖Hk+1(Ω), ‖div[u− πhu]‖L2(Ω) ≤ Chk‖divu‖Hk(Ω).

Inserting these results in Theorem 6.1, we immediately obtain the first two estimates
of Theorem 6.2. From the last estimate of Theorem 6.1, we also obtain

‖Πhp− ph‖L2(Ω) ≤ C(h‖u− uh‖L2(Ω) + hmin(1+r,2)‖div(u− uh)‖L2(Ω)).

Here we have used elliptic regularity, which holds under the assumption that Ω
is convex, to bound ‖U‖H1(Ω) = ‖P‖H2(Ω) by ‖Πhp− ph‖L2(Ω). Hence, for r ≥ 1 and
0 ≤ k ≤ r, we obtain

‖Πhp− ph‖L2(Ω) ≤ Chk+2(‖u‖Hk+1(Ω) + ‖divu‖Hk(Ω)) ≤ Chk+2‖u‖Hk+1(Ω).

Choosing k = r − 1 and k = r, we obtain for r ≥ 1

‖Πhp− ph‖L2(Ω) ≤ Chr+1‖u‖Hr(Ω), ‖Πhp− ph‖L2(Ω) ≤ Chr+2‖u‖Hr+1(Ω),

and for r = 0, ‖Πhp− ph‖L2(Ω) ≤ Ch‖u‖1,Ω. The final estimates of the theorem now
follow directly by the triangle inequality.
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7. Application to least squares methods. A standard finite element least
squares approximation of the Dirichlet problem ∆p = f in Ω, p = 0 on ∂Ω seeks
ph ∈Wh ⊆ H1

0 (Ω) and uh ∈ Sh ⊆H(div,Ω) minimizing

J(q,v) = ‖v − grad q‖2
L2(Ω) + ‖div v + f‖2

L2(Ω)

over Wh×Sh. For any choices of subspaces this satisfies the quasioptimality estimate
(cf. [10])

‖p− ph‖H1(Ω) + ‖u− uh‖H(div,Ω) ≤ C
(

inf
p∈Wh

‖p− q‖H1(Ω) + inf
v∈Sh

‖u− v‖H(div,Ω)

)
.

If we take Wh to be the standard H1 finite element space based on reference shape
functions Qr+1 and use the ABFr space for Sh, we immediately obtain

‖p− ph‖H1(Ω) +‖u−uh‖H(div,Ω) ≤ Chr+1(‖p‖Hr+1(Ω)+‖u‖Hr+1(Ω)+‖divu‖Hr+1(Ω)).

However, the quasioptimality estimate suggests that if we choose the same Wh but use
the RT r elements for Sh, the lower rate of approximation of divu may negatively
influence the approximation of both variables.

Next, we use a duality argument to obtain a second estimate, which provides
improved convergence for p in L2 when the ABF spaces are used, but again suggests
difficulties for the RT spaces. We shall henceforth assume that the domain Ω is
convex so that we have 2-regularity for the Dirichlet problem for the Laplacian. Define
w ∈H(div,Ω) and r ∈ H1

0 (Ω) as solution of the dual problem∫
Ω

(w −∇r) · v dx+

∫
Ω

divw div v dx = 0 ∀v ∈H(div,Ω),(7.1) ∫
Ω

(w −∇r) · ∇q dx = −
∫

Ω

(p− ph)q dx ∀q ∈ H1
0 (Ω).(7.2)

This problem has a unique solution, since if p− ph were to vanish, then we could take
v = w and q = r, subtract the equations, and conclude that w = ∇r, divw = 0 with
r ∈ H1

0 (Ω), which implies that w and r vanish. For general p − ph, the solution of
the dual problem may be written as w = ∇(r+ g) where g ∈ H2(Ω)∩H1

0 (Ω) satisfies
∆g = p− ph and r ∈ H2(Ω) ∩H1

0 (Ω) satisfies ∆r = g − p+ ph (so divw = g). Note
that ‖r‖H2(Ω) + ‖w‖H1(Ω) + ‖divw‖H2(Ω) ≤ C‖p − ph‖L2(Ω). Choosing q = p − ph,
v = u− uh, subtracting (7.2) from (7.1), and using the error equations∫

Ω

(u− uh −∇[p− ph]) · v dx+

∫
Ω

div(u− uh) div v dx = 0 ∀v ∈ Sh,∫
Ω

(u− uh −∇[p− ph]) · ∇q dx = 0 ∀q ∈Wh,

one obtains the estimate

‖p−ph‖2
L2(Ω) ≤ C(‖r−rI‖H1(Ω)+‖w−wI‖H(div,Ω))(‖p−ph‖H1(Ω)+‖u−uh‖H(div,Ω))

for all wI ∈ Sh and rI ∈ Wh. This estimate will furnish an improved order of
convergence for p in L2 as compared to H1 if Sh has good approximation properties
in H(div,Ω). For the ABFr space (still with Wh based on Qr+1) we obtain

‖p− ph‖L2(Ω) ≤ Chr+2(‖p‖Hr+1(Ω) + ‖u‖Hr+r(Ω) + ‖divu‖Hr+1(Ω)).
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But for the RT 0 space we obtain no convergence whatsoever. Numerical computa-
tions reported in the next section verify these findings for both the scalar and the
vector variable: with Wh taken to be the usual four node H1 elements based on Q1

and Sh based on ABF0, we obtain convergence of order 1 for u in H(div,Ω) and of
order 2 for p in L2(Ω), but if we use RT 0 elements instead there is no L2 convergence
for u or p.

The numerical computations of the next section also exhibit second order conver-
gence for divu in L2(Ω) when approximated by the ABF0 method on square meshes.
We close this section by showing that

‖div(u− uh)‖L2(Ω) = O(hr+2)

when the ABFr elements are used on rectangular meshes. Now define w ∈H(div,Ω)
and r ∈ H1

0 (Ω) by∫
Ω

(w −∇r) · v dx+

∫
Ω

divw div v dx =

∫
Ω

div(u− uh) div v dx ∀v ∈H(div,Ω),∫
Ω

(w −∇r) · ∇q dx = 0 ∀q ∈ H1
0 (Ω).

Then ∆r = div(u − uh) and w = ∇r, and so ‖r‖H2(Ω) + ‖w‖H1(Ω) ≤ C‖div(u −
uh)‖L2(Ω). Taking v = u− uh, q = p− ph and using the error equations, we obtain

‖div(u− uh)‖2
L2(Ω) =

∫
Ω

(w −wI −∇[r − rI ]) · (u− uh −∇[p− ph]) dx

+

∫
Ω

div(w −wI) div(u− uh) dx

for any wI ∈ Sh and rI ∈Wh. Taking wI = πhw and rI a standard interpolant of r,
the first integral on the right-hand side is bounded by

Ch‖div(u− uh)‖L2(Ω)(‖p− ph‖H1(Ω) + ‖u− uh‖H(div,Ω))

≤ Chr+2‖div(u− uh)‖L2(Ω)(‖p‖Hr+1(Ω) + ‖u‖Hr+1(Ω) + ‖divu‖Hr+1(Ω)).

To bound the second integral, we note that, in the rectangular case, divπhw =
Πh divw with Πh the L2-projection into divV h, and also, in the rectangular case,
divV h contains all piecewise polynomials of degree at most r+1, so ‖q−Πhq‖L2(Ω) ≤
Chr+2‖q‖Hr+2(Ω) for all q. Therefore,∫

Ω

div(w −wI) div(u− uh) dx =

∫
Ω

divw[divu− Πh(divu)] dx

≤ C‖div(u− uh)‖L2(Ω)h
r+2‖divu‖Hr+2(Ω).

Combining these estimates, we conclude that

‖div(u− uh)‖L2(Ω) ≤ Chr+2(‖p‖Hr+1(Ω) + ‖u‖Hr+1(Ω) + ‖divu‖Hr+2(Ω)).

8. Numerical results. In this section, we illustrate our results with several nu-
merical examples using two sequences of meshes. The first is a uniform mesh of the
unit square into n2 subsquares and the second is a mesh of trapezoids as shown in Fig-
ure 1(b) (with the notation of Theorem 3.1, here α = 1 and β = 1/3). In the first of
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Table 1

Errors and orders of convergence for the piecewise H(div,Ω) projection into discontinuous
BDM1 and discontinuous BDFM2.

Piecewise H(div,Ω) projection into BDM1 on square meshes

‖u − πhu‖L2(Ω) ‖ div(u − πhu)‖L2(Ω)

n err. % order err. % order

2 1.94e−02 13.010 2.11e−01 30.151
4 5.08e−03 3.405 1.9 1.15e−01 16.428 0.9
8 1.28e−03 0.861 2.0 5.86e−02 8.375 1.0

16 3.22e−04 0.216 2.0 2.94e−02 4.207 1.0
32 8.05e−05 0.054 2.0 1.47e−01 2.106 1.0
64 2.01e−05 0.013 2.0 7.36e−03 1.053 1.0

Piecewise H(div,Ω) projection into BDM1 on trapezoidal meshes

‖u − πhu‖L2(Ω) ‖ div(u − πhu)‖L2(Ω)

n err. % order err. % order

2 2.57e−02 17.243 2.63e−01 37.646
4 7.89e−03 5.291 1.7 1.83e−01 26.109 0.5
8 2.80e−03 1.879 1.5 1.50e−01 21.430 0.3

16 1.21e−03 0.811 1.2 1.40e−01 20.031 0.1
32 5.78e−04 0.387 1.1 1.37e−01 19.662 0.0
64 2.85e−04 0.191 1.0 1.37e−01 19.568 0.0

Piecewise H(div,Ω) projection into BDFM2 on square meshes

‖u − πhu‖L2(Ω) ‖ div(u − πhu)‖L2(Ω)

n err. % order err. % order

2 1.52e−02 10.206 5.27e−02 7.538
4 3.80e−03 2.552 2.0 1.32e−02 1.884 2.0
8 9.51e−04 0.638 2.0 3.29e−03 0.471 2.0

16 2.38e−04 0.159 2.0 8.24e−04 0.118 2.0
32 5.94e−05 0.040 2.0 2.06e−04 0.029 2.0
64 1.49e−05 0.010 2.0 5.15e−05 0.007 2.0

Piecewise H(div,Ω) projection into BDFM2 on trapezoidal meshes

‖u − πhu‖L2(Ω) ‖ div(u − πhu)‖L2(Ω)

n err. % order err. % order

2 1.86e−02 12.502 6.85e−02 9.791
4 5.07e−03 3.399 1.9 3.52e−02 5.040 1.0
8 1.38e−03 0.926 1.9 1.77e−02 2.538 1.0

16 4.29e−04 0.288 1.7 8.89e−03 1.271 1.0
32 1.66e−04 0.111 1.4 4.45e−03 0.636 1.0
64 7.56e−05 0.051 1.1 2.22e−03 0.318 1.0

these examples (see Table 1), we demonstrate the decreased orders of convergence of
the BDM1 and BDFM2 spaces by computing the piecewise H(div,Ω) projection
of a simple smooth function, u = grad[x1(1 − x1)x2(1 − x2)], into the discontinuous
versions of these spaces. On a rectangular mesh, the space BDFM2 gives second
order approximation of both components of the vector and of its divergence. This is
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Table 2

Errors and orders of convergence for the mixed approximation to Poisson’s equation.

RT 0 on square meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 1.84e−02 55.28 6.09e−02 40.83 2.11e−01 30.15
4 1.04e−02 31.07 0.8 3.32e−02 22.24 0.9 1.15e−01 16.43 0.9
8 5.33e−03 15.99 1.0 1.69e−02 11.34 1.0 5.86e−02 8.38 1.0

16 2.68e−03 8.05 1.0 8.49e−03 5.70 1.0 2.94e−02 4.21 1.0
32 1.34e−03 4.03 1.0 4.25e−03 2.85 1.0 1.47e−02 2.11 1.0

RT 0 on trapezoidal meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 1.84e−02 55.08 6.34e−02 42.55 2.67e−01 38.14
4 1.08e−02 32.37 0.8 3.63e−02 24.38 0.8 1.85e−01 26.51 0.5
8 5.60e−03 16.80 0.9 1.91e−02 12.83 0.9 1.53e−01 21.82 0.3

16 2.83e−03 8.48 1.0 9.81e−03 6.58 1.0 1.43e−01 20.42 0.1
32 1.42e−03 4.25 1.0 4.97e−03 3.33 1.0 1.40e−01 20.05 0.0

ABF0 on square meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 2.49e−02 74.59 6.89e−02 64.21 5.27e−02 7.54
4 1.36e−02 40.65 0.9 3.42e−02 22.97 1.0 1.32e−02 1.88 2.0
8 7.03e−03 21.08 1.0 1.70e−02 11.43 1.0 3.29e−03 0.47 2.0

16 3.70e−03 11.10 0.9 8.51e−03 5.71 1.0 8.24e−04 0.12 2.0
32 1.93e−03 5.78 0.9 4.25e−03 2.85 1.0 2.06e−04 0.03 2.0

ABF0 on trapezoidal meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 2.31e−02 69.38 6.59e−02 44.20 6.91e−02 9.89
4 1.33e−02 39.98 0.8 3.58e−02 24.04 0.9 3.58e−02 5.12 0.9
8 7.22e−03 21.66 0.9 1.85e−02 12.41 1.0 1.81e−02 2.58 1.0

16 3.84e−03 11.51 0.9 9.43e−03 6.33 1.0 9.05e−03 1.30 1.0
32 2.00e−03 5.99 0.9 4.77e−03 3.20 1.0 4.53e−03 0.65 1.0

confirmed in the approximation of the piecewise H(div,Ω) projection. On a trape-
zoidal mesh, BDFM2 gives only first order approximation of both components of
the vector and of its divergence, and this is also confirmed in the approximation of
the piecewise H(div,Ω) projection. On a rectangular mesh, the space BDM1 gives
second order approximation of both components of the vector, but only first order
approximation of its divergence. On a trapezoidal mesh these orders of convergence
are reduced to first order for the approximation of both components of the vector
and the approximation of the divergence shows no convergence. These theoretical
convergence orders are also confirmed in the computations. Although we do not in-
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Table 3

Errors and orders of convergence for the least squares approximation to Poisson’s equation.

RT 0 on square meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 2.61e−01 52.28 1.07e+00 48.03 5.78e+00 58.58
4 7.71e−02 15.42 1.8 5.15−01 23.19 1.1 3.09e+00 31.34 0.9
8 2.01e−02 4.01 1.9 2.53e−01 11.41 1.0 1.57e+00 15.94 1.0

16 5.07e−03 1.01 2.0 1.26e−01 5.68 1.0 7.90e−01 8.00 1.0
32 1.27e−03 0.25 2.0 6.30e−02 2.84 1.0 3.95e−01 4.01 1.0
64 3.18e−04 0.06 2.0 3.15e−02 1.42 1.0 1.98e−01 2.00 1.0

RT 0 on trapezoidal meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 2.95e−01 58.96 1.24e+00 55.74 6.03e+00 61.07
4 1.08e−01 21.67 1.4 6.05−01 27.26 1.0 3.68e+00 37.25 0.7
8 4.29e−02 8.58 1.3 3.10e−01 13.97 1.0 2.50e+00 25.37 0.6

16 2.51e−02 5.01 0.8 1.72e−01 7.74 0.9 2.09e+00 21.16 0.3
32 2.06e−02 4.12 0.3 1.13e−01 5.09 0.6 1.97e+00 19.96 0.1
64 1.95e−02 3.89 0.1 9.27e−02 4.17 0.3 1.94e+00 19.64 0.0

ABF0 on square meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 1.42e−01 28.46 1.04e+00 46.77 2.19e+00 22.18
4 3.35e−02 6.70 2.1 5.10e−01 22.98 1.0 5.88e−01 9.96 1.9
8 8.22e−03 1.64 2.0 2.53e−01 11.38 1.0 1.50e−01 1.52 2.0

16 2.04e−03 0.41 2.0 1.26e−01 5.67 1.0 3.76e−02 0.38 2.0
32 5.10e−04 0.10 2.0 6.30e−02 2.84 1.0 8.41e−03 0.10 2.0

ABF0 on trapezoidal meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 1.89e−01 37.74 1.17e+00 52.86 3.0e+00 31.39
4 5.49e−02 10.98 1.8 5.61e−01 25.24 1.1 1.12e+00 11.32 1.5
8 1.45e−02 2.89 1.9 2.80e−01 12.62 1.0 5.00e−01 5.07 1.2

16 3.67e−03 0.73 1.9 1.40e−01 6.32 1.0 2.42e−01 2.45 1.0
32 9.20e−04 0.18 2.0 7.02e−02 3.16 1.0 1.20e−01 1.21 1.0

clude the details of the computations, the same convergence orders are observed in
computations of the L2(Ω), rather than the piecewise H(div,Ω) projection.

The second computation, reported in Table 2, illustrates our results on the conver-
gence orders of RT 0 and ABF0 for the approximation of Poisson’s equation by the
standard mixed finite element method. The exact solution is p = x1(1−x1)x2(1−x2).
As expected, on a trapezoidal mesh, RT 0 gives a first order approximation to the
scalar and vector variable (the same as on a rectangular mesh), but there is no con-
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vergence of the approximation of the divergence of the vector variable in contrast
to the standard first order approximation seen on rectangles. When ABF0 is used
instead, there is an improvement in the convergence order of the divergence of the
vector variable.

Finally, Table 3 shows the difference in the convergence orders of RT 0 and ABF0

coupled with Q1 for the scalar variable for the approximation of Poisson’s equation
by a standard least squares finite element method. Again the exact solution is p =
x1(1 − x1)x2(1 − x2). When RT 0 is used, the poor approximation of the divergence
on trapezoidal meshes results in poor approximation of both the scalar and vector
variable, while on a rectangle the scalar variable is approximated to second order and
the vector variable and its divergence to first order. When ABF0 is used instead, one
achieves second order convergence for the scalar variable and first order convergence
for the vector variable on both rectangular and quadrilateral meshes. The divergence
of the vector variable is approximated to second order on rectangles and to first order
on trapezoids, as predicted by the theory.
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Abstract. This is the third part of a series of papers on least-squares Galerkin methods for
parabolic initial-boundary value problems. These methods are based on the minimization of a least-
squares functional for an equivalent first-order system over space and time with respect to suitable
discrete spaces. This paper presents the derivation and analysis of one-step methods for semidis-
cretization in time from least-squares principles for semilinear parabolic problems. One of the most
important features of the least-squares methodology is a built-in a posteriori estimate for the approx-
imation error. For the presentation in this paper, we focus our attention on the specific combination
of piecewise linear, not necessarily continuous, functions in time with continuous piecewise linear for
the flux and scalar variables, respectively. For the resulting method, a convergence result is shown
for the scalar variable.
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1. Introduction. Efficient computation of accurate approximations to initial-
boundary value problems for parabolic partial differential equations requires adaptive
techniques. Both the step-size for the discretization in time as well as the choice of
mesh for the spatial discretization need to be adapted to local features of the solution
using appropriate error estimators. One of the strengths of the least-squares Galerkin
approach presented in this series of papers is that it provides such an a posteriori
error estimator automatically by evaluating the associated least-squares functional.
The purpose of this third paper is to prove convergence of the least-squares method
for the semilinear case with respect to the time discretization. For this semilinear case
we will observe an order reduction. Adaptive strategies for time-step control, based
on a posteriori error estimators, were derived for the backward Euler discretization
in [13] and in the framework of discontinuous Galerkin methods in a series of papers
[6, 7, 8, 9, 10] for linear and nonlinear parabolic problems. See also [25, section 12] for
the linear case. A different approach to adaptive time-stepping based on extrapolation
principles was established for the linear case in [2, 3, 4] and for the nonlinear case
in [15]. In [26], four least-squares Galerkin approaches are used to approximate a
numerical solution of a first-order convection-diffusion system in H1(Ω) ×H(div,Ω).

The least-squares Galerkin methodology presented here is conceptually different
from all these previous approaches to adaptivity for parabolic problems. Our approach
is based on the reformulation of the parabolic problem as a first-order system by
introducing the flux u as an additional variable. A suitable least-squares functional is
then minimized with respect to discrete spaces in order to construct approximations
for the scalar variable p and for the flux u simultaneously. In [18] the equivalence
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of the least-squares functional to the consistency error for the linear case is proved,
which implies that it provides an a posteriori error estimator to be used for the
adaptive control of the time steps. In the semilinear case, the equivalence of the
least-squares functional to the consistency error is an open problem. In this case we
have only numerical evidence (cf. [17]), which implies that it provides an a posteriori
error estimator to be used for the adaptive control of the time steps. In the fully
discrete case, which will be considered in the fourth part of this series of papers, the
least-squares functional provides an a posteriori error estimator for the approximation
error in time and space. The use of least-squares functionals associated with first-
order systems for a posteriori error estimation for elliptic boundary value problems
is studied in [1] and, in particular for nonlinear problems, in [23]. At first sight, it
may seem that the extension to more variables by changing to the first-order system
formulation leads to an increase in computational work which would make the least-
squares approach inefficient. However, a fair comparison of different methods is not
so simple since the overall goal is to gain a certain required accuracy at minimal cost.
For example, the discontinuous Galerkin method using piecewise linear functions has
similar approximation properties in time for p (second order in the semilinear case) to
the method discussed in this paper. The discontinuous Galerkin method requires two
spatial approximations for p in this case, while the least-squares method described
below needs one for p and two for u. A detailed comparison of the amount of work
involved in the computation would also need to account for the availability of fast
solvers for the elliptic subproblems. However, such a detailed study is far beyond the
scope of this paper. In many practical applications, the flux u is actually of interest
in itself and the approximation property of the least-squares Galerkin method for this
variable then becomes important.

In the rest of this paper, we proceed as follows. First we introduce in section 2
the spaces that will be used in this work. To define the derivative for L2-functions
we need to introduce a tool called distributions. Section 3 presents the least-squares
Galerkin framework and derives the associated variational formulations. In section 4,
the representation of the discrete evolution in terms of solution of a nonlinear equation
is derived which is the basis for the convergence analysis. The convergence analysis of
the approximation error in time with respect to the H1-norm is carried out in section
5. Finally, section 6 addresses the issues related to the solution of the elliptic problems
at each time step.

2. Distributions and other spaces. Distributions give a useful tool to define
and handle with Sobolev space and derivation in the weak form. Next, we will use
the same notation as that of [22]. In this section, we give some definition of standard
spaces using distributions. For d ∈ N, let Ω ⊂ R

d be a bounded domain with smooth
boundary and let us define, for short,

D(Ω) = C∞
0 (Ω).

In D(Ω) we observe the following concept of convergence: for a sequence (ϕn)n∈N ⊂
D(Ω) and ϕ ∈ D(Ω) we say the sequence ϕn converges in D(Ω) to ϕ or ϕn

D−→ ϕ iff
there is a compact K ⊂ Ω, where suppϕn ⊂ K for all n ∈ N, and for all α,

∂αϕn −→ ∂αϕ uniformly in Ω.

Now we are in the position to define D′(Ω) as the space of linear and continuous
functionals on D(Ω). The functionals contained in D′(Ω) are called distributions. We
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call F : D(Ω) → R continuous iff for all (ϕn)n∈N ⊂ D(Ω) and ϕ ∈ D(Ω) with ϕn
D→ ϕ

it follows that F (ϕn)
R→ F (ϕ). Now we observe the following concept of convergence

on D′(Ω): For (Fn)n∈N ⊂ D′(Ω) and F ∈ D′(Ω), we say Fn
D′
→ F iff Fn(ϕ)

R→ F (ϕ)
for all ϕ ∈ D(Ω). Obviously each f ∈ Lp(Ω) ∪ Cm(Ω), 1 ≤ p ≤ ∞, m ∈ N0 ∪ {∞},
could generate the following distribution:

Ff : D(Ω) → R,

where

Ff (ϕ) := 〈Ff , ϕ〉 :=

∫
Ω

f(x)ϕ(x) dx.

For such a function we identify f with its generated distribution Ff . In the above
equation, Ff operates on the left-hand side like a functional and on the middle and
right-hand sides like a function in the inner product 〈·, ·〉. We will prefer the inner
product notation 〈·, ·〉, but we will use both notations whenever the situation could
be better understood.

For α = (α1, . . . , αd) ∈ N
d
0, we set |α| :=

∑d
i=1 αi and for F ∈ D′(Ω), we define

the (weak) derivation as the following distribution:

∂αF : D(Ω) → R,

〈∂αF,ϕ〉 = (−1)|α| 〈F, ∂αϕ〉 .

Notice that this “new definition” is an expansion of the definition of derivation in
the classical sense. For F ∈ D′(Ω) we say ∂αF ∈ Lp(Ω) iff there is gα ∈ Lp(Ω), where

∂αF (ϕ) =

∫
Ω

gα(x)ϕ(x) dx ∀ϕ ∈ D(Ω).

2.1. Sobolev spaces. Now we are able to define Sobolev spaces: For k ∈ N0 let

Hk(Ω) =
{
v ∈ L2(Ω)

∣∣ ∂αv ∈ L2(Ω) ∀α ∈ N
d
0, |α| ≤ k

}
be the Sobolev space of order k.

2.2. H(div)-space. Now we define for a distribution F ∈ (D′(Ω))
d

the distribu-
tive divergence divF ∈ D′(Ω),

divF (ϕ) = −F (∇ϕ) ∀ϕ ∈ D(Ω),

that will be used in the next sections. We can now introduce the H(div)-space as

H(div,Ω) =
{
v ∈ (L2(Ω))d

∣∣ divv ∈ L2(Ω)
}
.

3. Least-squares Galerkin formulation in time. In this section we introduce
the parabolic semilinear problem. Furthermore we formulate the Galerkin approxi-
mation in time. For detailed information, the reader is referred to [18].

Let Ω ⊂ R
2 be a bounded polygonal domain and assume the boundary of Ω is

divided in ΓD and ΓN . Furthermore let n be the exterior unit normal on ΓN . Assume
a, c ∈ L∞(Ω) and that a(x) ≥ a, c(x) ≥ c for all x ∈ Ω with positive constants a, c.
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For f̂ : Ω × R × R
2 → R and Λ : Ω → R, we consider the first-order system

formulation of the semilinear parabolic equation,

c(x) ∂tp(t, x) + div u(t, x) + f̂(x, p(t, x),∇p(t, x)) = 0 ∀(t, x) ∈ (0, T ) × Ω,

u(t, x) + a(x) ∇p(t, x) = 0 ∀(t, x) ∈ (0, T ) × Ω,

u(t, x) · n(x) = 0 ∀(t, x) ∈ (0, T ) × ΓN ,

p(t, x) = 0 ∀(t, x) ∈ (0, T ) × ΓD,

p(0, x) = Λ(x) ∀x ∈ Ω,

(3.1)

with some T > 0. We are interested in a scalar function p : [0, T ] × Ω → R and a
vector function u : [0, T ]×Ω → R

2 that solve (3.1). More general boundary conditions
can be handled in the standard way by a suitable modification of the right-hand side
f̂ . Obviously, the system in (3.1) does not always have a solution. In the following

observation we restrict f̂ and Λ such that the existence of a unique solution can be
guaranteed. Let us define the following spaces:

HΓN
(div,Ω) = {v ∈ H(div,Ω) | n · v = 0 on ΓN } ,
H1

ΓD
(Ω) = {q ∈ H1(Ω) | q = 0 on ΓD } ,

where H1(Ω) and H(div,Ω) were defined in the last section. Furthermore we define
for a Hilbert space H the following spaces:

L2((0, T );H) =

{
v : (0, T ) → H

∣∣∣∣∣
∫ T

0

‖v‖2
H <∞

}
,

H1((0, T );H) =
{
v : (0, T ) → H

∣∣ ∂tv ∈ L2((0, T );H)
}
.

For each q ∈ H1
ΓD

(Ω), we define

Iq : Ω → R,

Iq(x) = f̂(x, q(x),∇q(x)),
for short, and set

f(q) := Iq.
Assuming f ∈ C1(H1

ΓD
(Ω);L2(Ω)) and Λ ∈ H1

ΓD
(Ω), we now replace (3.1) by

c∂tp+ divu+ f(p) = 0 in (0, T ) × Ω,

u+ a ∇p = 0 in (0, T ) × Ω,

u · n = 0 on (0, T ) × ΓN ,

p = 0 on (0, T ) × ΓD,

p(0) = Λ in Ω,

(3.2)

which has a unique solution (u, p) ∈ L2 ((0, T );HΓN
(div,Ω)) × H1((0, T );H1

ΓD
(Ω))

depending continuously on the given initial and boundary data (see, e.g., [24, section
15.1]). For symmetry, we replace the first and second equations of (3.2) with the
equivalent first-order system

c1/2∂tp+ c−1/2divu+ c−1/2f(p) = 0,

a−1/2u+ a1/2 ∇p = 0.
(3.3)
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Obviously, the solution (u, p) ∈ L2 ((0, T );HΓN
(div,Ω))×H1

(
(0, T );H1

ΓD
(Ω)
)

of (3.3)
minimizes the least-squares functional

F̃(u, p) =

∫ T

0

(
α
∥∥∥ c1/2∂tp+ c−1/2(divu+ f(p))

∥∥∥2

0,Ω
+
∥∥∥a−1/2 u+ a1/2∇p

∥∥∥2

0,Ω

)
ds ,

where α > 0 has to be chosen later. The choice of the weight α was in the first part
of this series of papers the main decision to get a functional that could be used as an
a posteriori error estimator (see [18, 19]). On the other hand, if F̃(u, p) = 0, then
(u, p) is a solution of (3.3).

For the time discretization, we choose subspaces

Vτ ((0, T );HΓN
(div,Ω)) ⊂ L2((0, T );HΓN

(div,Ω)) ,(3.4)

Qτ ((0, T );H1
ΓD

(Ω)) ⊂ H1((0, T );H1
ΓD

(Ω))(3.5)

and perform the minimization of the least-squares functional in these spaces. The
subindex τ emphasizes that these spaces are semidiscrete spaces. Appropriate choices
include the combination of piecewise polynomial, not necessarily continuous, functions
for Vτ with piecewise polynomial continuous functions for Qτ on a subdivision  =
{0 = t0 < t1 < · · · < tM = T} of [0, T ] with step-sizes τj = tj − tj−1, j = 1, . . . ,M .
However, due to the continuity requirement for Qτ , minimizing the least-squares
functional with respect to these spaces generally leads to a coupling of all M + 1
time-levels. Now we set α = τ and consider one-step methods that consist of stepping
only from one time-level t to the next t+τ by minimizing the least-squares functional

F̂(uτ , pτ ) =

∫ t+τ

t

(
τ
∥∥∥c1/2∂t(pτ (s)) + c−1/2

[
div(uτ (s)) + f(pτ (s))

]∥∥∥2

0,Ω

+
∥∥∥a−1/2uτ (s) + a1/2∇(pτ (s))

∥∥∥2

0,Ω

)
ds.

(3.6)

Throughout the rest of this paper, the symbols � and � indicate that the in-
equality holds up to constants that are independent of the discretization parameter
τ . Similarly, the symbol � stands for equivalence independently of discretization
parameters.

4. Variational formulation for the nonlinear least-squares functional.
In this section, the representation of the discrete evolution in terms of solution of a
nonlinear equation is derived which is the basis for the convergence analysis. Our aim
is to minimize the least-squares functional (3.6) in Ṽτ × Q̃τ , where

Ṽτ =
{ (

1 − σ

τ

)
v1 +

σ

τ
v2

∣∣∣ v1, v2 ∈ HΓN
(div,Ω)

}
,

Q̃τ =
{σ
τ
q
∣∣∣ q ∈ H1

ΓD
(Ω)
}
.

For short, let us set

pτ (t+ σ) =
(
1 − σ

τ

)
pτ (t) + p̂τ (σ)

and

qτ (σ) =
(
1 − σ

τ

)
pτ (t) + q̂τ (σ),
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where p̂τ , q̂τ ∈ Q̃τ .
Our aim is to find (uτ , p̂τ ) ∈ Ṽτ × Q̃τ with

F̂ (uτ , pτ ) = min
(vτ ,q̂τ )∈Ṽτ×Q̃τ

F̂ (vτ , qτ ) .(4.1)

Roughly speaking, our one-step method assumes a given pτ (t) (for t = 0, we start with
pτ (0) = p(0) = Λ) and computes in each step a pτ (t+τ) = (1− τ

τ )pτ (t)+p̂τ (τ) = p̂τ (τ),

p̂τ ∈ Q̃τ , for the next step. Actually, this assumption leads to a coupling of all M + 1
time-levels with respect to the scalar variable pτ . With the choice of the above spaces,
we can simplify the minimization problem (4.1) to analyze the observed method. We
are interested in the exact evolution operator. Let us define the operator A as

A :DA ⊂ H1
ΓD

(Ω) → L2(Ω),

(c1/2 A c1/2p, q)0,Ω = (a∇p,∇q)0,Ω ∀q ∈ H1
ΓD

(Ω) .
(4.2)

Formally, we may write A = −c−1/2div (a ∇) c−1/2. Note that the operator A is
bijective as a mapping from

DA = {q ∈ H1
ΓD

(Ω) |a∇q ∈ HΓN
(div,Ω)}

to L2(Ω). Now we can define the evolution operator. We deduce from [24, Chapter
15.1] that

E(t+ τ ; t) : H1
ΓD

(Ω) → H1
ΓD

(Ω),

E(t+ τ ; t) p(t) = p(t+ τ) = c−1/2 exp(−τA) c1/2p(t)

− c−1/2

∫ τ

0

(exp(−(τ − σ)A))c−1/2f(p(t+ σ)) dσ .

(4.3)

Next, we define the discrete evolution operator

Ed(t+ τ ; t) :H1
ΓD

(Ω) → H1
ΓD

(Ω),

Ed(t+ τ ; t)pτ (t) = pτ (t+ τ),
(4.4)

where pτ (t) is the initial value of our one-step method and pτ (t+ τ) its solution using
the minimization method (4.1). We will see later that a unique solution exists if τ is
small enough. The following theorem gives pτ (t+ τ) = Ed(t+ τ ; t)pτ (t) as a solution
of a nonlinear equation depending on pτ (t).

Theorem 4.1. The solution Ed(t + τ ; t)pτ (t) of the minimization method (4.1)
fulfills the following nonlinear equation (in the sense of distributions):∫ τ

0

c1/2
[
I + σ

(
c−1/2f ′(pτ (t+ σ))c−1/2 +A

)][
c1/2

pτ (t+ τ) − pτ (t)

τ

+Ac1/2pτ (t+ σ) + c−1/2f(pτ (t+ σ))

]
dσ = 0,

where f ′ is the derivation of f .
Proof. We will separate the minimization problem (4.1) in two different variational

problems. From the first variational problem we gain a formula for c−1/2divu. Setting
that formula in the second variational problem and simplifying leads finally to our
result.
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The minimization problem (4.1) is equivalent to the variational problem: Find
(uτ , pτ ) ∈ Ṽτ × Q̃τ , such that∫ τ

0

[
τ
(
c1/2∂tpτ (t+ σ) + c−1/2divuτ (t+ σ) + c−1/2f(pτ (t+ σ)),

c1/2∂tq(σ) + c−1/2 divv(σ) + c−1/2f ′(pτ (t+ σ))q(σ)
)

0,Ω

+
(
a−1/2uτ (t+ σ) + a1/2∇pτ (t+ σ), a−1/2v(σ) + a1/2∇q(σ)

)
0,Ω

]
dσ = 0

(4.5)

for all (v, q) ∈ Ṽτ × Q̃τ . This formula includes two different variational formulations
in spaces Ṽτ and Q̃τ , which we will separate. We deduce the first equation from (4.5)
and (3.2) as

∫ τ

0

[
τ
(
c1/2∂tpτ (t+ σ) + c−1/2divuτ (t+ σ) + c−1/2f(pτ (t+ σ)), c−1/2divv(σ)

)
0,Ω

+
(
a−1/2uτ (t+ σ) + a1/2∇pτ (t+ σ), a−1/2v(σ)

)
0,Ω

]
dσ = 0

for all v ∈ Ṽτ . If we define

DA2 = {q ∈ DA |Aq ∈ DA},

D̂τ =
{σ
τ
q1 +

(
1 − σ

τ

)
q2 | q1, q2 ∈ DA2

}
and set v = −a∇q, where q ∈ D̂τ , then we get c−1/2divv = Ac1/2q. Hence, we obtain∫ τ

0

[
τ
(
c1/2∂tpτ (t+ σ) + c−1/2[divuτ (t+ σ) + f(pτ (t+ σ))], Ac1/2q(σ)

)
0,Ω

−
(
a−1/2uτ (t+ σ) + a1/2∇pτ (t+ σ), a1/2∇q(σ)

)
0,Ω

]
dσ = 0

(4.6)

for all q ∈ D̂τ . Again using the definition of A, we write∫ τ

0

[(
c1/2∂tpτ (t+ σ) + c−1/2f(pτ (t+ σ)) +

1

τ
c1/2pτ (t+ σ), τAc1/2q(σ)

)
0,Ω

+
(
c−1/2divuτ (t+ σ), (I + τA)c1/2q(σ)

)
0,Ω

]
dσ = 0

for all q ∈ D̂τ . Furthermore, we use the fact that the operators (I + τA) and τA are
bijective and self-adjoint to make the equivalent reformulation∫ τ

0

[(
(I + τA)−1

[
c1/2∂tpτ (t+ σ) + c−1/2f(pτ (t+ σ))

+
1

τ
c1/2pτ (t+ σ)

]
, (I + τA)(τA)c1/2q(σ)

)
0,Ω

+
(
(τA)−1c−1/2divuτ (t+ σ), (τA)(I + τA)c1/2q(σ)

)
0,Ω

]
dσ = 0
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to obtain∫ τ

0

[(
(I + τA)−1

[
c1/2∂tpτ (t+ σ) + c−1/2f(pτ (t+ σ)) +

1

τ
c1/2p(t+ σ)

]
+ (τA)−1c−1/2divuτ (t+ σ), (I + τA)τAc1/2q(σ)

)
0,Ω

]
dσ = 0

(4.7)

for all q ∈ D̂τ . Defining

L̂τ =
{σ
τ
q1 +

(
1 − σ

τ

)
q2
∣∣ q1, q2 ∈ L2(Ω)

}
,

we observe that (I + τA)τAc1/2 : D̂τ → L̂τ is one-to-one. Hence, (4.7) leads to

c−1/2divuτ = −(I + τA)−1
(
τA[c1/2∂tpτ + c−1/2f(pτ )] +Ac1/2pτ

)
(4.8)

in L̂τ .
Now, we obtain the second equation from (4.5):∫ τ

0

[
τ
(
c1/2∂tpτ (t+ σ) + c−1/2[divuτ (t+ σ) + f(pτ (t+ σ))], c−1/2∂tq(σ)

+ f ′(pτ (t+ σ)) c1/2q(σ)
)

0,Ω

]
dσ

+

∫ τ

0

[(
a−1/2uτ (t+ σ) + a1/2∇pτ (t+ σ), a1/2∇q(σ)

)
0,Ω

]
dσ︸ ︷︷ ︸

=:K

= 0

(4.9)

for all q ∈ Q̃τ . Restricting (4.9) to q ∈ Q̃τ ∩ D̂τ and using (4.6) lead to

K =

∫ τ

0

[
τ
(
c1/2∂tpτ (t+ σ) + c−1/2[divuτ (t+ σ) + f(pτ (t+ σ))], Ac1/2q(σ)

)
0,Ω

]
dσ

for all q ∈ Q̃τ ∩ D̂τ . Hence, we obtain∫ τ

0

[
τ
(
c1/2∂tpτ (t+ σ) + c−1/2[divuτ (t+ σ) + f(pτ (t+ σ))], c1/2∂tq(σ)

+ c−1/2f ′(pτ (t+ σ))q(σ) +Ac1/2q(σ)
)

0,Ω

]
dσ = 0

for all q ∈ Q̃τ ∩ D̂τ . If we replace c−1/2divu by the right-hand side of (4.8) and note
that 1 − z

1+z = 1
1+z , we deduce∫ τ

0

[
τ
(
(I + τA)−1

[
c1/2∂tpτ (t+ σ) +Ac1/2pτ (t+ σ) + c−1/2f(pτ (t+ σ))

]
, c1/2∂tq(σ)

+ c−1/2f ′(pτ (t+ σ))q(σ) +A c1/2q(σ)
)

0,Ω

]
dσ = 0

for all q ∈ Q̃τ ∩ D̂τ . Since q ∈ Q̃τ ∩ D̂τ (i.e., q(σ) = σ
τ q̂, q̂ ∈ DA2), we have∫ τ

0

[
τ
(
(I + τA)−1

[
c1/2∂tpτ (t+ σ) +Ac1/2pτ (t+ σ) + c−1/2f(pτ (t+ σ))

]
,
1

τ
c1/2q̂

+ c−1/2f ′(pτ (t+ σ))c−1/2σ

τ
c1/2q̂ +A

σ

τ
c1/2q̂

)
0,Ω

]
dσ = 0
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for all q̂ ∈ DA2 . Equivalence reformulation leads to〈∫ τ

0

c1/2
[
I + σ

(
c−1/2f ′(pτ (t+ σ))c−1/2 +A

)][
c1/2∂tpτ (t+ σ)

+Ac1/2pτ (t+ σ) + c−1/2f(pτ (t+ σ))
]
dσ, (I + τA)−1q̂

)〉
= 0

for all q̂ ∈ DA2 . Since C∞
0 (Ω) ⊂ (I + τA)−1DA2 = DA3 , we obtain〈∫ τ

0

c1/2
[
I + σ

(
c−1/2f ′(pτ (t+ σ))c−1/2 +A

)][
c1/2∂tpτ (t+ σ)

+Ac1/2pτ (t+ σ) + c−1/2f(pτ (t+ σ))
]
dσ, ϕ

〉
= 0

for all ϕ ∈ C∞
0 (Ω).

To construct a numerical method, we should replace the integral∫ τ

0

c1/2
[
I + σ

(
c−1/2f ′(pτ (t+ σ))c−1/2 +A

)][
c1/2∂tpτ (t+ σ)

+ Ac1/2pτ (t+ σ) + c−1/2f(pτ (t+ σ))
]
dσ

by computable terms. For simplicity, we assume a ≡ c ≡ 1. We could get the general
case by modifying this special case. We deduce from Theorem 4.1 that∫ τ

0

[
I + σ(A+ f ′(pτ (t+ σ)))

][
∂tpτ (t+ σ) +Apτ (t+ σ) + f(pτ (t+ σ))

]
dσ = 0.

Computing the integral, we obtain

pτ (t+ τ) = r2,2(τA)pτ (t) − r0,2(τA)

[∫ τ

0

(I + σA)f(pτ (t+ σ)) dσ

−
∫ τ

0

σf ′(pτ (t+ σ))(∂tpτ (t+ σ) +Apτ (t+ σ) + f(pτ (t+ σ))) dσ

]
,

(4.10)

where

r2,2(z) =
1 − z2

6

1 + z + z2

3

and

r0,2(z) =
1

1 + z + z2

3

.

The above operators are defined in the sense of the standard definition by eigenvalues
of A. For further information the reader is referred to [18, 19]. If we now set f(p) ≡
const, we observe the same result as in [18, Lemma 3.1]. Hence, Theorem 4.1 is a
generalization of [18, Lemma 3.1].
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5. Convergence theory. In this section, the convergence analysis of the ap-
proximation error in time with respect to the H1-norm is observed, which is the main
result of this paper. Define for a mesh  = {0 = t�0 < t�1 < · · · < t�M� = T} with

step-sizes τ�j = t�j − t�j−1, j = 1, . . . ,M�:

τmin,� :=
M�
min
j=1

τ�j

and

τ� :=
M�
max
j=1

τ�j .

We use  as an index for the mesh points tj , step-sizes τj , and the number of mesh
points M of an observed mesh  whenever we would like to emphasize that the choice
of these parameters depends on the mesh .

Furthermore, we assume that

τ�
τmin,�

� 1(5.1)

for each observed  ⊂ [0, T ]. The following theorem shows the second-order conver-
gence of the minimizing method (4.1).

Let us define for α̃ ≥ 0

Hα̃ := DAα̃/2 ⊂ L2(Ω).

Hα̃ is a Hilbert space with respect to the inner product

〈q1, q2〉α̃ := (A
α̃
2 q1, A

α̃
2 q2)0,Ω

(cf. [21, p. 195]). Let ‖ · ‖α̃ := (〈·, ·〉α̃)
1
2 be the associated norm. Furthermore, put

H−α̃ := (Hα̃)′ =

{
q̃ ∈ D′

∣∣∣∣ sup
q∈Hα̃

〈q̃, q〉
‖q‖α̃ <∞

}
as the dual space of Hα̃. Our assumption f ∈ C1(H1

ΓD
(Ω);L2(Ω)) leads to the fact

that f is local Lipschitz. Next, consider the exact solution p ∈ H1((0, T );H1
ΓD

(Ω)) of
(3.1). Let Lt be the Lipschitz constant of f in a neighborhood B(p(t), δt) ⊂ H1

ΓD
(Ω)

(i.e., the open ball with center p(t) and radius δt in H1
ΓD

(Ω)) of the exact solution
p(t) of (3.1). Furthermore set L = supt∈[0,T ] Lt < ∞ and δ = inft∈[0,T ] δt > 0. To
prepare a short notation for the next theorem, we define

g(τ, σ, q) = r0,2(τA)σf ′(q) [Aq + f(q)] ∀q ∈ H1
ΓD

(Ω).(5.2)

Generally, with our current assumptions, g(τ, σ, ·) is not well-posed. If we assume
that f : H−1 → H−2 and f(H1) ⊂ H0 = L2(Ω), we receive a well-posed g(τ, σ, ·):
Starting with

q ∈ H1 =︸︷︷︸
cf. [14, Theorem 2.23]

H1
ΓD

(Ω),
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we get

Aq︸︷︷︸
∈H−1

+ f(q)︸︷︷︸
∈H0

∈ H−1.

For each q̂ ∈ H−1 the linear operator f ′(q̂) maps H−1 into H−2, since we assume
f : H−1 → H−2, and hence σf ′(q) [Aq + f(q)] ∈ H−2. Finally we have r0,2(τA) :
H−2 → H2 ⊂ H1 = H1

ΓD
(Ω), which leads to g(τ, σ, q) = r0,2(τA)σf ′(q) [Aq +f(q)] ∈

H1
ΓD

(Ω). Furthermore, we assume that the function g(τ, σ, ·) is local Lipschitz for all
σ, τ ∈ [0, T ], σ ≤ τ .

Let L̃t,τ,σ be the Lipschitz constant of g(τ, σ, ·) in a neighborhood B(p(t), δ̃t,τ,σ) ⊂
H1

ΓD
(Ω) of the solution p(t) of (3.2). Defining

L̃ = max
t,τ,σ∈[0,T ]

{L̃t,τ,σ} <∞,

δ̃ = min
t,τ,σ∈[0,T ]

{δ̃t,τ,σ} > 0,

δ̂ = min{δ̃, δ},

and

L̂ = max{L̃, L},

we deduce

‖f(q) − f(p(t))‖0,Ω ≤ L̂‖q − p(t)‖1,Ω

and

‖g(τ, σ, q) − g(τ, σ, p(t))‖1,Ω ≤ L̂‖q − p(t)‖1,Ω

for all q ∈ H1
ΓD

(Ω) with ‖q − p(t)‖1,Ω < δ̂.
Before we formulate the theorem, we recall the well-known Gronwall lemma.
Lemma 5.1 (Gronwall’s lemma (for weakly singular kernels)). Assume â, b̂, α̂, β̂

are nonnegative constants, with α̂, β̂ < 1, and 0 < T < ∞. There is a constant
C = C(â, b̂, α̂, β̂) <∞ such that for any integrable function v : [0, T ] → R satisfying

0 ≤ v(t) ≤ ât−α̂ + b̂

∫ t

0

(t− s)−β̂v(s)ds

for t a.e. in [0, T ], we have

v(t) ≤ âCt−α̂

a.e. on 0 < t ≤ T .
Proof. This is a special case of [12, Lemma 7.1.1]. The proof is an elementary

iteration argument, followed by Lebesgue’s dominated convergence theorem.
Finally, we present the main convergence theorem of this paper.
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Theorem 5.2. Assume that f : H−1 → H−2, where its restriction on H1
ΓD

(Ω) is
in C1(H1

ΓD
(Ω);L2(Ω)), i.e.,

f∣∣H1
ΓD

(Ω)
∈ C1(H1

ΓD
(Ω);L2(Ω)).

Furthermore, let p ∈ C2([0, T ];H1
ΓD

(Ω)) be the exact solution of (3.2) and assume
that the function g(τ, σ, ·) defined in (5.2) is local Lipschitz for all σ, τ ∈ [0, T ], σ ≤
τ . There are a τ∗ and a constant C, such that for all observed meshes  which
satisfy (5.1)

(
remember that  = {0 < t�1 < · · · < t�M�−1 < T} ⊂ [0, T ] with step-

sizes τ�j = t�j − t�j−1, j = 1, . . . ,M�, and τ� ≤ τ∗
)
, the solution of our minimizing

problem (4.1) pτ (t
�
n ) satisfies

‖pτ (t�n ) − p(t�n )‖1,Ω ≤ C τ2
�(5.3)

for all 0 ≤ n ≤M�.
Proof. We will separate the proof in three parts: In parts (a) and (c) we show

max
t∈[0,T ]

‖qτ (t) − p(t)‖1,Ω < δ̂

for sufficiently small τ�. We need this result to use the Lipschitz property of f and
g(τ, σ, ·). Due to this Lipschitz property we show in part (b) an upper estimation

‖pτ (t�n )−p(t�n )‖1,Ω ≤ const. τ2
�+const. τ�

n−1∑
j=1

((n−j+1)τ�)−
1
2 ‖pτ (t�j )−p(t�j )‖1,Ω

and use Gronwall’s lemma (Lemma 5.1) to get the main result.
(a) In this part of the proof we will show that there is a qτ ∈ Qτ such that

max
t∈[0,T ]

‖qτ (t) − p(t)‖1,Ω < δ̂.(5.4)

Remember that Qτ defined in (3.5) is a subset of H1((0, T );H1
ΓD

(Ω)) with piecewise
linear continuous functions on the observed subdivision  ⊂ [0, T ]. For a given

mesh {0 < t�1 < · · · < t�M�−1 < T} =  ⊂ [0, T ], we define I�p to be the linear

spline of p. It is known from the interpolation theory (cf. [5, Theorem 7.3]) that
maxt∈[0,T ] ‖I�p(t) − p(t)‖1,Ω ≤ C1τ

2
�, where C1 is a constant which only depends on

supt∈[0,T ] ‖∂2
t p(t)‖1,Ω <∞. Setting τ∗ ≤ min{1, δ̂

2C1
} =: ε0, we have

max
t∈[0,T ]

‖I�p(t) − p(t)‖1,Ω ≤ C1ε
2
0 ≤ C1ε0 ≤ δ̂C1

2C1
≤ δ̂

2
.

Let qj ∈ H1
ΓD

(Ω) such that ‖qj − p(t�j )‖1,Ω < δ̂
2 for j = 1, . . . ,M� and q0 = p0. If we

define

qτ (t) =
t− t�j−1

τ�j
qj +

(
1 − t− t�j−1

τ�j

)
qj−1

for given t ∈ [t�j−1, t
�
j ], 1 ≤ j ≤M�, then we get

max
t∈[0,T ]

‖qτ (t) − p(t)‖1,Ω ≤ max
t∈[0,T ]

‖I�p(t) − p(t)‖1,Ω + max
t∈[0,T ]

‖qτ (t) − I�p(t)‖1,Ω < δ.
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If we assume that τ∗ is chosen, such that

‖pτ (t�j ) − p(t�j )‖1,Ω ≤ j
δ̂

3M�
(5.5)

for j = 0, . . . ,M�, then we get, together with the above considerations,

max
t∈[0,T ]

‖pτ (t) − p(t)‖1,Ω < δ̂(5.6)

for all observed . We will prove (5.5) later in part (c). We should note that the
result in (5.6) allows us to use the local Lipschitz property of f and g.

(b) In this part, our goal is to prove the main result using the so-called defect
equation.

(i) First we reformulate the defect equation in a form where estimation with
powers of τ� becomes obvious. Set p̂n = p(t�n ), n = 0, . . . ,M�, for short. For
0 < n ≤M�, we get

p̂n = Ed(t
�
n ; t�n−1)p̂n−1 −Ed(t�n ; t�n−1)p̂n−1 + p̂n︸ ︷︷ ︸

=:dn

,(5.7)

where dn is the so-called defect and the discrete evolution operator Ed(t
�
n ; t�n−1) was

defined in (4.4). Hence, using Theorem 4.1 and (4.10) to reformulate the defect, we
obtain

dn = − r2,2(τ
�
n A)p̂n−1 + p̂n

− r0,2(τ
�
n A)

[ ∫ τ�
n

0

(I + σA)(∂tp(t
�
n−1 + σ) +Ap(t�n−1 + σ)) dσ

−
∫ τ�

n

0

σf ′(p(t�n + σ)) (∂tp(t
�
n + σ) +Ap(t�n + σ) + f(p(t�n + σ)))︸ ︷︷ ︸

=0

dσ

]
.

(5.8)

Integration by parts leads to

r0,2(τ
�
n A)

∫ τ�
n

0

(I + σA)︸ ︷︷ ︸
=:U(σ)

∂tp(t
�
n + σ)︸ ︷︷ ︸

=:V′(σ)

dσ

= r0,2(τ
�
n A)

[
U(σ)V(σ)

∣∣∣∣τ
�
n

0

−
∫ τ�

n

0

U ′(σ)V(σ)dσ

]

= r0,2(τ
�
n A)

[
(I + τ�n A)p̂n − p̂n−1 −

∫ τ�
n

0

Ap(t�n−1 + σ) dσ

]
.

(5.9)

Using (5.9) in (5.8) and simplifying, we get

dn = (r0,2(τ
�
n A) − r2,2(τ

�
n A))p̂n−1 + (I − (I + τ�n A) r0,2(τ

�
n A))p̂n

− r0,2(τ
�
n A)

∫ τ�
n

0

σA2p(t�n−1 + σ) dσ.
(5.10)
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If we notice that

r0,2(τ
�
n A)

∫ τ�
n

0

σA2I�p(t
�
n−1 + σ) dσ = r0,2(τ

�
n A)

(
τ�n

2

3
A2p̂n +

τ�n
2

6
A2p̂n−1

)
,

(5.11)

we can expand (5.10) with I�p as follows:

dn = −
∫ τ�

n

0

σA2r0,2(τ
�
n A)(p(t�n−1 + σ) − I�p(t

�
n−1 + σ)) dσ.(5.12)

Again, using [5, Theorem 7.3], for σ ∈ [0, τ�n ], we have

p(t�n−1 + σ) − I�p(t
�
n−1 + σ) =

1

2
∂2
t p(t

�
n−1 + θσ)σ(σ − τ�n ), where θσ ∈ (0, τ�n ) .

(5.13)

(ii) Our next goal is to get an estimation like

‖en‖1,Ω ≤ const. τ2
� + const. τ�

n−1∑
j=1

((n− j + 1)τ�)−
1
2 ‖ej‖1,Ω,

and use Gronwall’s lemma (Lemma 5.1) to get the main result.

First we use the chain rule to write ∂tf(q(t)) = f ′(q(t)) ∂tq(t) for all q ∈
H1((0, T ) ;H1

ΓD
(Ω)). Hence, integration by parts leads to

∫ τ�
n

0

σ︸︷︷︸
=:U(σ)

[f ′(pτ (t
�
n−1 + σ)) ∂tpτ (t

�
n−1 + σ) − f ′(p(t�n−1 + σ)) ∂tp(t

�
n−1 + σ)]︸ ︷︷ ︸

=:V′(σ)

dσ

= U(σ)V(σ)

∣∣∣∣τ
�
n

0

−
∫ τ�

n

0

U ′(σ)V(σ)dσ

= τ�n (f(pn) − f(p̂n)) −
∫ τ�

n

0

f(pτ (t
�
n−1 + σ)) − f(p(t�n−1 + σ)) dσ.

(5.14)

Now define

R(t�j , t
�
n ) =

n∏
i=j+1

r2,2(τ
�
i A),

Σj+1(σ) = f(pτ (t
�
j + σ)) − f(I�p(t

�
j + σ)),

and

Σ̂j+1(σ) = f(I�p(t
�
j + σ)) − f(p(t�j + σ)).

Let ej = pτ (t
�
j ) − p(t�j ) be the error for j = 0, . . . ,M�. Hence, we deduce the
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following from (5.14), (4.10), the defect equation (5.7), and the definition of g in (5.2):

en = r2,2(τ
�
n A)en−1 − τ�n r0,2(τ

�
n A)(f(pn) − f(p̂n))

−
∫ τ�

n

0

r0,2(τ
�
n A)σAΣn(σ) dσ −

∫ τ�
n

0

r0,2(τ
�
n A)σAΣ̂n(σ) dσ

−
∫ τ�

n

0

g(τ�n , σ, pτ (t
�
n−1 + σ)) − g(τ�n , σ, p(t

�
n−1 + σ))︸ ︷︷ ︸

=:Gn(σ)

dσ + dn.

This way we get recursively (noting that e0 = 0)

en =

n−1∑
j=0

R(t�j+1, t
�
n )

[
dj+1 + τ�n r0,2(τ

�
n A)(f(pn) − f(p̂n))

−
∫ τ�

j+1

0

r0,2(τ
�
j+1A)(σA)(Σj+1(σ) + Σ̂j+1(σ)) + Gj+1(σ)dσ

]
.

(5.15)

For short, we set

S(t�j+1, t
�
n ) = (I + τ�j+1A)r0,2(τ

�
j+1A)R(t�j+1, t

�
n )

and notice that

‖σA r0,2(τA)q‖1,Ω ≤ ‖(I + σA) r0,2(τA)q‖1,Ω ≤ ‖(I + τA) r0,2(τA)q‖1,Ω

for all j = 1, . . . ,M�, q ∈ H1
ΓD

(Ω), and σ ∈ [0, τ ]. Hence, we can deduce from (5.15)

and the local Lipschitz property of g(τ�j , σ, ·) that

‖en‖1,Ω �

∥∥∥∥∥∥
n−1∑
j=0

S(t�j+1, t
�
n )

(∫ τ�
j+1

0

Σ̂j+1(σ)dσ + τ�j+1Σ̂j+1(τ
�
j+1)

) ∥∥∥∥∥∥
1,Ω

+

∥∥∥∥∥∥
n−1∑
j=0

R(t�j+1, t
�
n )dj+1

∥∥∥∥∥∥
1,Ω

+

∥∥∥∥∥∥
n−1∑
j=0

S(t�j+1, t
�
n )

(∫ τ�
j+1

0

Σj+1(σ) dσ + τ�j+1Σj+1(τ
�
j+1)

)∥∥∥∥∥∥
1,Ω

+

∥∥∥∥∥∥
n−1∑
j=0

∫ τ�
j+1

0

pτ (t
�
j + σ) − p(t�j + σ)dσ

∥∥∥∥∥∥
1,Ω

= : ‖I1‖1,Ω + ‖I2‖1,Ω + ‖I3‖1,Ω + ‖I4‖1,Ω.

Now, our aim is to estimate each of the terms ‖Ii‖1,Ω, i = 1, 2, 3, 4. To estimate
‖I1‖1,Ω, let us define

ρ2,2(z) =
1 + 5

6z + z2

6

1 + z + z2

3

,
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ρ̃2,2(z) =
1 − z2

6

1 + 5
6z + z2

6

,

and

ξ(t�j , t
�
n ) =

n∏
i=j+1

ρ2,2(τ
�
i A), j = 0, . . . ,M� − 1.

The Poincaré–Friedrichs inequality leads to

‖I1‖1,Ω � ‖∇I1‖0,Ω � ‖AI1‖0,Ω.

The local Lipschitz property of f , along with (5.4) and (5.13), leads to

max
σ∈[0,t�n ]

‖Σ̂j+1(σ)‖0,Ω ≤ L max
σ∈[0,t�n ]

‖I�p(t�j + σ) − p(t�j + σ)‖1,Ω � τ2
�.(5.16)

For Hilbert spaces (H, ‖ · ‖H) and (Ĥ, ‖ · ‖Ĥ), let L(H, Ĥ) be the space of linear

continuous operators T : H → Ĥ and let

‖T ‖H→Ĥ = sup
0 �=q∈H

‖T q‖Ĥ
‖q‖H

be the underlying operator norm on L(H, Ĥ). Observing that ρ2,2 is positive and
decreases on [0,∞) and that supx∈(0,∞) |ρ̃2,2(x)| = 1, together with the fact that
r2,2 = ρ2,2ρ̃2,2, we could easily deduce the following by the formula of the geometric
series:

‖I1‖1,Ω �‖AI1‖0,Ω � τ2
�

∥∥∥∥∥∥
n−1∑
j=0

S(t�j+1, t
�
n )τ�j+1A

∥∥∥∥∥∥
L2→L2

� τ2
�

∥∥∥∥∥∥
n−1∑
j=0

ξ(t�j+1, t
�
n )r0,2(τmin,� A)τ� A

∥∥∥∥∥∥
L2→L2

� τ2
�

∥∥∥∥∥∥
n−1∑
j=0

ρ2,2(τmin,� A)n−j−1r0,2(τmin,� A)τ� A

∥∥∥∥∥∥
L2→L2

� τ2
�
∥∥(I − ρ2,2(τmin,� A))−1r0,2(τmin,� A)τ�A

∥∥
L2→L2

= τ2
�
∥∥6(τmin,� A+ τ2

min,� A2)−1r0,2(τmin,� A)−1r0,2(τmin,� A)τ�A
∥∥
L2→L2

� τ2
�
∥∥(I + τmin,� A)−1

∥∥
L2→L2 � τ2

�.

(5.17)

To estimate ‖I2‖1,Ω, we define

ϕ2,2(z) =
1 + z + z2

6

1 + z + z2

3

and

ϕ̃2,2(z) =
1 − z2

6

1 + z + z2

6

,
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and we note that ϕ2,2 is a positive decreasing function on [0,∞), that supx∈(0,∞) |ϕ̃2,2(x)|
= 1, and that r2,2 = ϕ2,2ϕ̃2,2. Again, using the geometric series, (5.12) and (5.13)
lead to

‖I2‖1,Ω �

∥∥∥∥∥∥
n−1∑
j=0

R(t�j+1, t
�
n ) r0,2(τ

�
j+1A)

∫ τ�
j+1

0

A2σ2(σ − τ�j+1)dσ

∥∥∥∥∥∥
H1

ΓD
→H1

ΓD

=

∥∥∥∥∥∥
n−1∑
j=0

R(t�j+1, t
�
n ) r0,2(τ

�
j+1A)

1

12
τ�j+1

4
A2

∥∥∥∥∥∥
H1

ΓD
→H1

ΓD

≤︸︷︷︸
sup

x∈(0,∞)

|ϕ̃2,2(x)|=1

∥∥∥∥∥∥
n−1∑
j=0

ϕ2,2(τmin,� A)n−j−1 r0,2(τmin,� A)τ4
�A

2

∥∥∥∥∥∥
H1

ΓD
→H1

ΓD

� τ2
�
∥∥(I − r2,2((τmin,� A))−1 r0,2(τmin,� A)τ2

�A
2
∥∥
H1

ΓD
→H1

ΓD

= τ2
�
∥∥6(τmin,� A)−2r0,2(τmin,� A)−1 r0,2(τmin,� A)τ2

�A
2
∥∥
H1

ΓD
→H1

ΓD

= τ2
� 6

(
τ�

τmin,�

)2

� τ2
�.

(5.18)

To estimate ‖I3‖1,Ω we proceed as in (5.18) with

‖I3‖1,Ω �

∥∥∥∥∥∥
n−1∑
j=0

Opj

(∫ τ�
j+1

0

Σj+1(σ)dσ + τ�j+1Σj+1(τ
�
j+1)

)∥∥∥∥∥∥
1,Ω

,(5.19)

where we set

Opj = ϕ2,2(τmin,�A)n−j−1(I + τ�A)r0,2(τ�A), j = 0, . . . , n− 1,

for short. Again, using the local Lipschitz property of f and the inequality (5.4), we
deduce ∫ τ�

j+1

0

‖Σj+1(σ)‖0,Ω dσ ≤ L̂

∫ τ�
j+1

0

‖pτ (t�j + σ) − I�p(t
�
j + σ)‖1,Ω dσ

= L̂
τ�j+1

2
(‖ej‖1,Ω + ‖ej+1‖1,Ω).

(5.20)

Combining (5.19) and (5.20) leads to

‖I3‖1,Ω � τ�
n−1∑
j=0

‖Opj‖L2→H1
ΓD

(‖ej+1‖1,Ω + ‖ej‖1,Ω).(5.21)

For j = n− 1, we get

‖Opn−1‖L2→H1
ΓD

= ‖(I + τ�A)r0,2(τ�A)‖L2→H1
ΓD

� τ
−1/2
� .
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Assumption (5.1), the inequality nτmin,� ≤ t�n ≤ nτ�, and the fact that ϕ2,2(∞) = 1
2

lead to

‖Opj‖L2→H1
ΓD

� ‖ϕ2,2(τmin,�A)n−j−1 − 2j+1−n‖L2→H1
ΓD

+ ‖2j+1−n(I + τ�A)r0,2(τ�A)‖L2→H1
ΓD

� t�n−j+1

−1/2
+ ‖ 2j+1−n︸ ︷︷ ︸

�(n−j+1)−1/2

(I + τ�A)r0,2(τ�A)‖L2→H1
ΓD

� t�n−j+1

−1/2

for j = 0, . . . , n−2 (cf. [11, Theorem 1.1]). For the last term ‖I4‖1,Ω, we immediately
see the following:

‖I4‖1,Ω � τ2
� + τ�

n−1∑
j=0

(‖ej‖1,Ω + ‖ej+1‖1,Ω).

Putting all our estimations together, we deduce

‖en‖1,Ω � ‖I1‖1,Ω + ‖I2‖1,Ω + ‖I3‖1,Ω + ‖I4‖1,Ω

� τ2
� + τ�

n−1∑
j=0

t�n−j+1

−1/2
(‖ej‖1,Ω + ‖ej+1‖1,Ω)

� τ2
� + τ�

n∑
j=1

t�n−j+1

−1/2‖ej‖1,Ω.

This means that the error satisfies

‖en‖1,Ω ≤ C2τ
2
� + C2τ�

n∑
j=1

t̂
−1/2
n−j+1‖ej‖1,Ω,

with t̂j = jτ�, j = 0, . . . , n, where C2 is a constant. Now we get (1−C2τ
1/2
� ) ≥ 1

2 > 0

if we choose τ∗ small enough, say τ∗ ≤ min{ε3, 1
4C2

2
}, where we will give ε3 in part

(c) of the proof. Setting C = 2C2 we easily get

‖en‖1,Ω ≤ C2

1 − C2τ
1/2
�︸ ︷︷ ︸

≤ C2

1− C2
2C2

= 2C2

τ2
� +

C2τ�
1 − C2τ

1/2
�

n−1∑
j=1

t̂
−1/2
n−j+1‖ej‖1,Ω

≤ Cτ2
� + Cτ�

n−1∑
j=1

t̂
−1/2
n−j+1‖ej‖1,Ω.

(5.22)

Now, let us define v(t) = ‖ej‖1,Ω for t ∈ [t̂j−1, t̂j), j = 1, . . . , n. One may deduce∫ t

0

(t− s)−1/2v(s) ds ≥
m−1∑
j=1

∫ t̂j

t̂j−1

( t− s︸︷︷︸
≤ t̂m−t̂j−1

)−1/2 ds ‖ej‖1,Ω

≥ τ�
m−1∑
j=1

t̂
−1/2
m−j+1‖ej‖1,Ω

(5.23)
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for m = 1, . . . , n and t ∈ [t̂m−1, t̂m). For each t ∈ [0, t̂n), we choose m ∈ {1, . . . , n},
such that t ∈ [t̂m−1, t̂m). From (5.22) and (5.23) we obtain

v(t) = ‖em‖1,Ω ≤ C τ2
� + C τ�

n−1∑
j=1

t̂
−1/2
n−j+1‖ej‖1,Ω ≤ C τ2

� + C

∫ t

0

(t− s)−1/2v(s) ds.

Setting â = C τ2
�, b̂ = C, α̂ = 0, and β̂ = 1

2 , Gronwall’s lemma (Lemma 5.1) leads to

‖en‖1,Ω � τ2
�.

(c) Our aim now is to choose τ∗ to prove (5.5) for j = 0, . . . ,M�. We show this
by induction on j ∈ {0, 1, . . . ,M�}.

Initial step. For j = 0, we have pτ (0) = p(0) = p0, and hence (5.5) is true.

Inductive step. To show (5.5) for j+1, set γ1 := δ̂
6M�

< δ̂
2 and γ2 := (2j+1)δ̂

6M�
< δ̂

2 .

Consider the function

D : B(p(t�j+1), γ1) ⊂ H1
ΓD

(Ω) → B(p(t�j+1), γ1),

D(q) := r2,2(τ
�
j+1A)p(t�j ) −

∫ τ�
j+1

0

r0,2(τ
�
j+1A)σAf(q̃(σ)) + g(τ�j+1, σ, q̃(σ))dσ,

where q̃(σ) := (1− (σ/τ�j+1))p(t
�
j ) + (σ/τ�j+1) q (B(p(t�j+1), γ1) is the closed ball with

center p(t�j+1) and radius γ1). From

‖p(t�j + σ) − q̃(σ)‖1,Ω ≤ ‖p(t�j + σ) − I�p(t
�
j + σ)‖1,Ω + ‖q̃(σ) − I�p(t

�
j + σ)‖1,Ω

≤ C1τ
2
�︸ ︷︷ ︸

≤ δ̂
2 , because τ∗ ≤ ε0

+ ‖q − p(t�j+1)‖1,Ω︸ ︷︷ ︸
≤γ1< δ̂

2

< δ̂

we obtain by basic estimations

‖p(t�j+1) −D(q)‖1,Ω

≤ c1
2
τ�j+1

−1/2
∫ τ�

j+1

0

‖f(p(t�j + σ)) − f(q̃(σ))‖0,Ω

+ ‖g(τ�j+1, σ, p(t
�
j + σ)) − g(τ�j+1, σ, q̃(σ))‖1,Ω dσ + ‖dj+1‖1,Ω︸ ︷︷ ︸

≤Ĉτ�
j+1

2
cf. (5.18)

≤ c1L̂τ
�
j+1

−1/2
∫ τ�

j+1

0

‖p(t�j + σ) − q̃(σ)‖1,Ω︸ ︷︷ ︸
<δ̂

+ Ĉτ�j+1

1/2 ≤ τ�j+1

1/2
(c1L̂δ̂ + Ĉ),

where c1 and Ĉ are constants. On the one hand, for τ∗ ≤ min{ε0, (γ1/(c1L̂δ̂ + Ĉ))2} =:

ε1, D(q) ∈ B(p(t�j+1), γ1). So D is well-defined. One the other hand, we get

‖D(q1) −D(q2)‖1,Ω ≤ c1L̂τ
�
j+1

1/2‖q1 − q2‖1,Ω.



LEAST SQUARES FOR PARABOLIC PROBLEMS III 2471

For τ∗ ≤ min{ε1, (1/2c1L̂)2} =: ε2 and all q1, q2 ∈ B(p(t�j+1), γ1) we obtain

‖D(q1) −D(q2)‖1,Ω ≤ 1

2
‖q1 − q2‖1,Ω.

Hence, Banach’s fixed-point theorem leads to convergence of the sequence qm+1 :=

D(qm), where q0 ∈ B(p(t�j+1), γ1).
Setting p• := limm→∞ qm, we deduce

‖p• − p(t�j+1)‖1,Ω ≤ γ1.(5.24)

Furthermore, define the function

D̃ : B(p•, γ2) ⊂ H1
ΓD

(Ω) → B(p•, γ2),

where

D̃(q) = r2,2(τ
�
j+1A)pτ (t

�
j ) −

∫ τ�
j+1

0

r0,2(τ
�
j+1A)σAf(q̂(σ)) + g(τ�j+1, σ, q̂(σ))dσ,

and q̂(σ) := (1− (σ/τ�j+1))pτ (t
�
j )+(σ/τ�j+1)q. Using the assumption of the induction

for j, we obtain

‖p̃•(σ) − q̂(σ)‖1,Ω ≤ max{‖pτ (t�j ) − p(t�j )‖1,Ω︸ ︷︷ ︸
≤ jδ̂

3M�

, ‖p• − q‖1,Ω} < δ̂

2
,

which leads to

‖p• − D̃(q)‖1,Ω = ‖D(p•) − D̃(q)‖1,Ω ≤ ‖p(t�j ) − pτ (t
�
j )‖1,Ω

+
c1
2
τ�j+1

−1/2
∫ τ�

j+1

0

‖f(p̃•(σ)) − f(q̂(σ))‖0,Ω

+ ‖g(τ�j+1, σ, p̃
•(σ)) − g(τ�j+1, σ, q̂(σ))‖1,Ω dσ

≤ jδ

3M�
+ c1L̂τ

�
j+1

1/2
γ2.

For τ∗ ≤ min{ε2, (δ̂/c1L̂γ26M�)2} =: ε3, we obtain

jδ̂

3M�
+ c1L̂τ

�
j+1

1/2
γ2 ≤ jδ̂

3M�
+

δ̂

6M�
=

(2j + 1)δ̂

6M�
= γ2.

Hence, D̃ is well-defined. On the other hand, for τ∗ ≤ ε2 and all q1, q2 ∈ B(p•, γ2) we
get

‖D̃(q1) − D̃(q2)‖1,Ω ≤ 1

2
‖q1 − q2‖1,Ω.

This leads to convergence of the sequence qm+1 := D̃(qm) using Banach’s fixed-point
theorem, where again q0 ∈ B(p•, γ2). Hence, for the limit of the fixed-point iteration
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we know pτ (t
�
j+1) = limm→∞ qm+1, and so we have ‖p• − pτ (t

�
j+1)‖1,Ω ≤ γ2. Putting

this result together with (5.24), we get

‖p(t�j+1)−pτ (t�j+1)‖1,Ω ≤ ‖p•−p(t�j+1)‖1,Ω+‖p•−pτ (t�j+1)‖1,Ω ≤ γ1+γ2 =
(j+1)δ̂

3M�
.

Now we are interested in a result for the whole interval [0, T ].
Corollary 5.3. With the conditions of Theorem 5.2, we get

max
t∈[0,T ]

‖p(t) − pτ (t)‖1,Ω ≤ Cτ2
�.

Proof. Let t̂ ∈ [0, T ] such that

max
t∈[0,T ]

‖p(t) − pτ (t)‖1,Ω = ‖p(t̂) − pτ (t̂)‖1,Ω.

From the triangle inequality we obtain

‖p(t̂) − pτ (t̂)‖1,Ω ≤ ‖p(t̂) − I�p(t̂)‖1,Ω + ‖I�p(t̂) − pτ (t̂)‖1,Ω.(5.25)

To estimate the first term on the right-hand side, we use the interpolation theory to
get

‖p(t̂) − I�p(t̂)‖1,Ω ≤ C1τ
2
�.

Now choose 0 ≤ n ≤ M� such that t̂ ∈ [t�n , t
�
n+1]. The functions I�p and pτ are

linear on [t�n , t
�
n+1]; hence we get

‖I�p(t̂) − pτ (t̂)‖1,Ω ≤ max{‖en‖0,Ω, ‖en+1‖1,Ω} ≤︸︷︷︸
cf. Theorem 5.2

C∗τ2
�.

6. The minimization problem. This section addresses the issues related to
the solution of the elliptic problems at each time step. We approximate now the
least-squares functional F̂ with Simpson’s rule and get

F̂ (uτ , pτ ) ≈ 1

6
‖p+
τ − pτ (t) + τ div u−τ + τ f(pτ (t))‖2

0,Ω

+
2

3

∥∥∥p+
τ − pτ (t) + τ

1

2
(div u−τ + div u+

τ ) + τf

(
p+
τ + pτ (t)

2

)∥∥∥∥2

0,Ω

+
1

6
‖p+
τ − pτ (t) + τ div u+

τ + τf(p+
τ )‖2

0,Ω

+
τ

6
‖u−τ + a1/2∇pτ (t)‖2

0,Ω +
τ

6
‖u+

τ + ∇p+
τ ‖2

0,Ω

+
τ

6
‖(u−τ + u+

τ ) + (∇pτ (t) + ∇p+
τ )‖2

0,Ω = F(u−τ , u
+
τ , p

+
τ ; pτ (t)).

(6.1)

Now our goal is to minimize the least-squares functional F in HΓN
(div,Ω)2×H1

ΓD
(Ω).

Obviously we see

F(u−τ , u
+
τ , p

+
τ ; pτ (t)) = ‖R(u−τ , u

+
τ , p

+
τ ; pτ (t))‖2

0,Ω,(6.2)
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where

R(u−τ , u
+
τ , p

+
τ ; pτ (t)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
6

(p+
τ − pτ (t) + τdivu−τ + τ f(pτ (t)))√

2
3 (p+

τ − pτ (t) + τ
2div(u−τ + u+

τ ) + τ f(
p+τ +pτ (t)

2 ))

1√
6

(p+
τ − pτ (t) + τdivu+

τ + τf(p+
τ ))√

τ
6 ( u−τ + ∇pτ (t))√

τ
6 ( u−τ + u+

τ + ∇pτ (t) + ∇p+
τ )√

τ
6 ( u+

τ + ∇p+
τ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Considering F on HΓN
(div,Ω)2 ×H1

ΓD
(Ω) and (4.1) lead to

F ′(u−τ , u
+
τ , p

+
τ ; pτ (t)) ≡ 0 in HΓN

(div,Ω)2 ×H1
ΓD

(Ω),(6.3)

where

F ′(u−τ , u
+
τ , p

+
τ ; pτ (t)) : HΓN

(div,Ω)2 ×H1
ΓD

(Ω) −→ R,

F ′(u−τ , u
+
τ , p

+
τ ; pτ (t))

⎛⎝ v−τ
v+
τ

qτ

⎞⎠
=

⎛⎝R(u−τ , u
+
τ , p

+
τ ; pτ (t)),JR(u−τ , u

+
τ , p

+
τ )

⎛⎝ v−τ
v+
τ

qτ

⎞⎠⎞⎠
0,Ω

,

(6.4)

and

JR(u−τ , u
+
τ , p

+
τ ) = (∂jRi)i=1,...,6,j=1,...,3

is the Jacobi matrix of R at the point (u−τ , u
+
τ , p

+
τ ). Elementary calculus leads to

JR(u−τ , u
+
τ , p

+
τ ) : HΓN

(div,Ω)2 ×H1
ΓD

(Ω) −→ (L2(Ω))9,

where

JR(u−τ , u
+
τ , p

+
τ ) =

1√
6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τdiv 0 1

2 τdiv 2 τdiv 4 + 2τf ′(p
+
τ +pτ (t)

2 )

0 τdiv 1 + τf ′(p+
τ )

√
τ 0 0

√
τ

√
τ

√
τ∇

0
√
τ

√
τ∇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Now we obtain from (6.3) and (6.4) that (4.1) is equivalent to⎛⎝R(u−τ , u
+
τ , p

+
τ ; pτ (t)),JR(u−τ , u

+
τ , p

+
τ )

⎛⎝ v−τ
v+
τ

qτ

⎞⎠⎞⎠
0,Ω

= 0(6.5)

for all (v−τ , v
+
τ , qτ ) ∈ V 2

τ ×Qτ .

There are several solution methods which directly use this nonlinear variational
formulation. One of them is the nonlinear conjugate gradient method (cf. [20, section
5.2]), which in each step constructs a descent direction with the help of the gradient
(6.4). The study of this solution is beyond the scope of this paper. Alternatively,
one can first linearize this nonlinear minimization problem to use methods of New-
ton or Gauss–Newton type. We will choose this way to receive the fully discrete
approximation in the next part of this paper.

The minimization problem of this paper could also be generalized for nonau-
tonomous problems. The proof of the convergence result in this case is a little differ-
ent from the technique observed here. Interested readers are referred to [16, Chapters
3, 4].

Acknowledgments. The author would like to thank Travis Austin, Michael
Florig, and Gerhard Starke for reading this manuscript and for their suggestions.
Furthermore the author is very thankful to the anonymous referees for helpful com-
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A V-CYCLE MULTIGRID APPROACH FOR MORTAR FINITE
ELEMENTS∗

BARBARA I. WOHLMUTH†

Abstract. Mortar methods, based on dual Lagrange multipliers, provide a flexible tool for the
numerical approximation of partial differential equations. The associated finite element spaces are, in
general, nonconforming and nonnested. Optimal multigrid results have previously been established
for W-cycle and the variable V-cycle multigrid methods. In this paper, we introduce a new multigrid
method based on a nested sequence of modified mortar spaces for which we can establish that the V-
cycle with one smoothing step has contraction numbers uniformly bounded away from one. To obtain
nested mortar spaces, we apply a product form of certain corrections at the interfaces. Numerical
results demonstrate the efficiency of the resulting multigrid solver.

Key words. dual space, mortar finite elements, multigrid methods, nonmatching triangulations

AMS subject classifications. 65N30, 65N55
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1. Introduction. Nonconforming domain decomposition techniques, such as
mortar methods, provide a more flexible approach than standard conforming approx-
imations of elliptic problems. Different physical models, discretization schemes, and
nonmatching triangulations of the domain can be coupled across interior interfaces
by using mortar methods. There has also been substantial progress in establishing a
theoretical foundation. The central issue is the choice of interface conditions that en-
sure stable and optimal discretization schemes for the problem as a whole. Within the
framework of mortar methods, the information transfer across the interfaces is given
in terms of a weak continuity condition. The jump of the solution at the interfaces is
controlled by suitable Lagrange multiplier spaces [6, 7] satisfying an approximation
property and a uniform inf-sup condition [5].

In this paper, we will use dual Lagrange multipliers which yield locally defined
basis functions; see, e.g., [26]. Dual Lagrange multipliers provide the same accuracy as
standard multipliers [6, 7] and give rise to more efficient iterative solvers and sparser
local stiffness matrices. In particular, no mass matrices have to be inverted at the
interfaces, and the mortar projection can be computed locally. The numerical solution
of the resulting linear systems can be based on a symmetric positive definite system
or on an equivalent saddle point formulation. Many different iterative solvers have
been introduced and analyzed, among them iterative substructuring methods, which
have been applied successfully to mortar finite elements; see [1, 2, 3, 17]. The Schur
complement plays an important role in the construction of efficient iterative solvers
based on the saddle point formulation. Using the techniques introduced in [12], multi-
grid methods for the indefinite system have been successfully analyzed in the mortar
setting; see [8, 9]. The exact solution of an approximative Schur complement can be
replaced by an inexact solution; see [25, 30]. A cascadic multigrid method is analyzed

∗Received by the editors July 1, 2003; accepted for publication (in revised form) June 22,
2004; published electronically March 31, 2005. This work was supported in part by the Deutsche
Forschungsgemeinschaft, SFB 404, C12.

http://www.siam.org/journals/sinum/42-6/43092.html
†Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffen-

waldring 57, D-70569 Stuttgart, Germany (wohlmuth@mathematik.uni-stuttgart.de, http://www.
ians.uni-stuttgart.de/nmh).

2476



A V-CYCLE MULTIGRID METHOD FOR MORTAR ELEMENTS 2477

in [10]. A first optimal multigrid convergence result for the positive definite formula-
tion on the constrained space can be found in [18, 19]. Convergence rates which are
uniformly bounded away from one are established for a variable V-cycle result and nu-
merical results illustrate the performance. In [28], a positive definite mesh dependent
bilinear form is considered on the unconstrained product space. Based on a modified
transfer operator and a modified smoother, level independent W-cycle convergence
results can be established if the number of smoothing steps is large enough. General
results for multigrid algorithms for nonconforming finite elements are also given in
[14, 15].

In this paper, we will work with the positive definite system and consider a mod-
ified multigrid approach. Our new iterative solver is based on a nested sequence of
finite element spaces. To obtain a hierarchy of nested spaces, the nonconforming
mortar spaces have to be modified at the interfaces. To preserve the complexity of a
standard multigrid algorithm, such modifications must be kept local. The construc-
tion of the nested spaces is based on a multiplicative correction on each level. A
suitable modification of the spaces at the crosspoints yields optimal best approxima-
tions results and a condition number which is bounded as in the standard conforming
case. As a result we obtain contraction numbers uniformly bounded away from one
with respect to the refinement level for the V-cycle with one smoothing step. For
simplicity of notation, we will talk about level independent convergence rates. The
algebraic formulation of the prolongation can be easily obtained from the standard
transfer operator and a local postprocessing of smaller complexity.

The rest of this paper is organized as follows: In section 2, we briefly review the
mortar finite element method. We introduce a hierarchy of nested spaces in section
3. These spaces satisfy the mortar condition with respect to the finest triangulation.
In section 4, we establish optimal multigrid convergence results in terms of a best
approximation property and a bound on the condition number. In section 5, we
consider the algebraic formulation of the problem in more detail and show that the
modifications can easily be carried out in a local postprocessing step. Finally in
section 6, we illustrate the numerical performance of our new multigrid approach.

2. The elliptic problem and the mortar method. We will consider the
following elliptic second order boundary value problem:

−div(a∇u) = f in Ω,
u = 0 on ∂Ω.

(2.1)

Here, 0 < a0 ≤ a ∈ L∞(Ω), f ∈ L2(Ω), and Ω ⊂ R
2 is a bounded polygonal

domain. Let Ω be decomposed into K nonoverlapping polygonal subdomains Ωk
such that Ω =

⋃K
k=1 Ωk. The intersection between the boundaries of any pair of

subdomains ∂Ωl ∩ ∂Ωk, k �= l, is assumed to be either empty, a vertex, or a common
edge. We will talk about an interface only in the latter case. A point is a crosspoint
if it is in Ω and an endpoint of an interface. The set of crosspoints is denoted by C.
On each subdomain, we define a quasi-uniform simplicial triangulation Tk and denote
the finite-dimensional space of conforming piecewise linear finite elements on Tk, with
homogeneous Dirichlet boundary conditions on ∂Ω∩∂Ωk, by Xk. The mortar method
can now be characterized by discrete Lagrange multiplier spaces Mm defined on the
interfaces γm, 1 ≤ m ≤ M , of the decomposition. For each interface, there exists
a pair 1 ≤ l(m) < k(m) ≤ K such that γm = ∂Ωl(m) ∩ ∂Ωk(m). Moreover, each
interface γm is associated with a one-dimensional mesh Sm, inherited from either
Tk(m) or Tl(m). Thus, the elements of Sm are boundary edges of either Tl(m) or
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Tk(m). The subdomain from which the interface γm inherits its mesh is called the
slave subdomain Ωs(m) and the one opposite is the master subdomain Ωm(m). We
denote the trace space, Xs(m), restricted to γm, and with zero boundary conditions
by Wm; i.e., Wm := {w ∈ H1

0 (γm), w = v|γm with v ∈ Xs(m)}.
Following the approach in [6, 7], the mortar approximation uh can be obtained

as the solution of a positive definite nonconforming variational problem. It is defined
on a subspace Vh of the unconstrained product space Xh := {v ∈ L2(Ω) | v|Ωk

∈
Xk, 1 ≤ k ≤ K}. The elements of Vh satisfy a weak matching condition across the
interfaces, and Vh is given by

Vh :=
{
v ∈ Xh | b(v, µ) = 0, µ ∈Mh

}
,

where Mh :=
∏M
m=1Mm and

b(v, µ) :=

M∑
m=1

∫
γm

[v] µ dσ, µ ∈Mh, v ∈ Xh.

Here, the jump is defined as [v]|γm := v|Ωm(m)
− v|Ωs(m)

; see, e.g., [6, 7]. The non-

conforming formulation of the mortar method can then be written in terms of the
constrained space Vh: find uh ∈ Vh such that

a(uh, vh) = (f, vh)0, vh ∈ Vh,(2.2)

where the bilinear form a(·, ·) is defined as

a(v, w) :=

K∑
k=1

∫
Ωk

a∇v · ∇w dx, v, w ∈ X :=

K∏
k=1

H1(Ωk).

It is obvious that the quality of the nonconforming approach (2.2) and the properties
of Vh depend on the discrete Lagrange multiplier space. We will work with the dual
Lagrange multiplier space introduced in [26] which satisfy nm := dimMm = dimWm.
The basis functions {µi}1≤i≤nm of Mm and the nodal basis functions {ϕi}1≤i≤nm of
the trace space Wm satisfy the following biorthogonality relation:∫

γm

µi ϕj dσ = δij

∫
γm

ϕj dσ, 1 ≤ i, j ≤ nm.

Such locally defined dual Lagrange multiplier spaces can also be defined for higher
order finite elements; see [24]. In this paper, we use piecewise linear but discontinuous
Lagrange multiplier basis functions, but we note that there also exist continuous
Lagrange multiplier basis functions; see [27].

3. New nested spaces. In the following, we denote the unconstrained product
spaces associated with a nested sequence of quasi-uniform and shape regular trian-
gulations T l, l = 0, . . . , L, by X l :=

∏K
k=1X

l
k. We assume that T l+1 is obtained

from T l by uniform refinement and that the mesh sizes satisfy 2hl+1 = hl. The
constrained mortar spaces are denoted by V l, the dual Lagrange multiplier spaces
by M l :=

∏M
m=1M

l
m, and the trace spaces having zero boundary conditions by

W l :=
∏M
m=1W

l
m. We note that, in general, the global triangulations T l, l = 0, . . . , L,

do not match across the interfaces. The corresponding nodal basis functions of X l,
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V l, and M l on level l are denoted by {θlp}p∈N l
u
, {φlp}p∈N l

c
, and {λlp}p∈N l

s
, respectively,

where N l
u, N l

c , and N l
s denote the sets of nodes. We note that N l

u = N l
c ∪ N l

s and
that {θlp}p∈N l

s
restricted to the interfaces defines a basis of Wh which is biorthogonal

to {λlp}p∈N l
s
. In contrast to the unconstrained product spaces X l, the nonconforming

mortar spaces V l are nonnested; i.e., V l �⊂ V l+1. In our multigrid analysis, we will
assume that the problem is H2-regular.

The central idea is to replace V l in a first step by Ṽ l yielding a nested sequence
of finite element spaces, i.e., with Ṽ 0 ⊂ Ṽ 1 ⊂ · · · ⊂ Ṽ L := V L, while maintaining the
same approximation properties. Then, in a second step, we replace Ṽ l, 0 ≤ l < L, by
a smaller space V̂ l that is continuous at the crosspoints. We note that each element
v in V l with [v] = 0 for all interfaces is an element in V l+1. But, generally, v ∈ V l

will not guarantee that b(v, µ) = 0 for all µ ∈M l+1 and thus v �∈ V l+1.
On each level, we therefore introduce a locally defined linear operator Ql : X l −→

X l by

Qlv := v −
∑
p∈N l

s

b(v, λlp)

b(θlp, λ
l
p)
θlp.(3.1)

Due to the duality of the Lagrange multiplier space, we find for each λlq, q ∈ N l
s,

b(Qlv, λlq) = b(v, λlq) −
∑
p∈N l

s

b(v, λlp)

b(θlp, λ
l
p)

b(θlp, λ
l
q) = b(v, λlq) − b(v, λlq) = 0,

and thus Qlv ∈ V l. Moreover, Ql restricted to V l is the identity, and the kernel of
Ql is span {θlp, p ∈ N l

s}. We now define our new spaces by Ṽ l := span {ϕlp, p ∈ N l
c},

where the basis functions ϕlp are given by

ϕlp := QL QL−1 . . . Ql+1 φlp, p ∈ N l
c .(3.2)

By construction, we have Ṽ L = V L and dim Ṽ l ≤ dimV l. Moreover, we find
that ϕlp(q) = δpq, p, q ∈ N l

c , and thus the ϕlp are linearly independent yielding

dim Ṽ l = dimV l. We note that the elements of Ṽ l are, in general, not level l func-
tions. Observing that φlp = Qlθlp, p ∈ N l

c , the new basis functions ϕlp can also be

written in terms of a subset of the nodal basis functions θlp

ϕlp = P l θlp := QL Ql−1 . . . Ql+1 Ql θlp, p ∈ N l
c .

Using the definition of P l, it is easy to see that Ṽ l = P lV l. By construction, the
elements of Ṽ l satisfy the mortar condition with respect to the finest level L and
thus Ṽ l ⊂ V L. The application of P l is illustrated in Figure 3.1. For each level
k = l, . . . , L, we add a local level k correction to v ∈ X l on the slave sides. These
level k corrections are nonzero only in a strip of width hk in the slave subdomains;
see Figure 3.1

To see that the spaces Ṽ l are nested, we consider the basis functions in more
detail. Using the definition (3.1), we obtain Qlθlq =

∑
p∈N l+1

u
αqpθ

l+1
p . Observing that

Ql+1θl+1
p = 0 for p ∈ N l+1

s , we find

ϕlq = P lθlq = P l+1
∑

p∈N l+1
u

αqpθ
l+1
p =

∑
p∈N l+1

c

αqpP
l+1θl+1

p =
∑

p∈N l+1
c

αqpϕ
l+1
p ,
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Fig. 3.1. Action of P l, where the master side is on the left and l = L− 3.

and thus Ṽ l ⊂ Ṽ l+1.
The definition of P l as a product provides the natural framework within a multi-

grid approach. We find that P l is closely related to the mortar projection. Introducing
the mortar projection πlm : L2(γm) −→W l

m, by∫
γm

πlmvµ dσ =

∫
γm

vµ dσ, µ ∈M l
m,(3.3)

and Πl : X l −→W l, by (Πlv)|γm := πlm([v]|γm ), we can rewrite the projection Ql as

Ql = Id − ElΠl,

where El : W l −→ X l is defined by El :=
∑M
m=1E

l
m, and Elm denotes the trivial

extension by zero from W l
m into X l

s(m) ⊂ X l; i.e., all coefficients in the basis repre-
sentation being not associated with nodes in the interior of γm are set to be zero. We
note that πlm restricted to W l

m is the identity. The operator Ql plays a crucial role in
the multigrid analysis. In the next lemma, we briefly recall the essential properties of
the mortar projection (3.3). For a proof in the dual Lagrange multiplier setting, we
refer to [26].

Lemma 3.1. The mortar projection πlm satisfies the following properties with
constants independent of the refinement level l:

• It is H
1/2
00 -stable, i.e.,

‖πlmv‖H1/2
00 (γm)

≤ C‖v‖
H

1/2
00 (γm)

, v ∈ H
1/2
00 (γm).

• It satisfies an approximation property

‖v − πlmv‖0;γm ≤ Chl|v|1;γm , v ∈ H1
0 (γm).

To establish level independent multigrid convergence rates, we have to consider
the spaces Ṽ l in more detail. In particular, appropriate approximation properties are
essential. As a preliminary step in this direction, we give an equivalent formulation
of P l.

Lemma 3.2. The operator P l, defined in terms of a product, can also be expressed
as a sum over different levels,

P l = Id −
L∑

k=l+1

Ek(Πk − Πk−1) − ElΠl.
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Proof. The proof is obtained by induction. By definition, we haveQl = Id −ElΠl.
Let us assume that Qj . . . Ql = Id −∑j

k=l+1E
k(Πk − Πk−1) −ElΠl holds. We then

get

Qj+1 Qj . . . Ql = (Id − Ej+1Πj+1)

(
Id −

j∑
k=l+1

Ek(Πk − Πk−1) − ElΠl

)

= Id −
j∑

k=l+1

Ek(Πk − Πk−1) − ElΠl − Ej+1Πj+1(3.4)

+

j∑
k=l+1

Ej+1Πj+1Ek(Πk − Πk−1) + Ej+1Πj+1ElΠl.

We recall that EkΠk and EkΠk−1 when restricted to the interfaces are Πk and Πk−1,
respectively. Moreover, the trace spaces are nested; i.e., W k ⊂ W k+1, and thus
Πk+iEkΠk = Πk, i ≥ 0. Using these observations in (3.4), we find

Qj+1 Qj . . . Ql = Id −
j∑

k=l+1

Ek(Πk − Πk−1) − ElΠl − Ej+1Πj+1

+

j∑
k=l+1

Ej+1(Πk − Πk−1) + Ej+1Πl

= Id −
j∑

k=l+1

Ek(Πk − Πk−1) − Ej+1(Πj+1 − Πj) − ElΠl.

4. V-cycle multigrid convergence analysis. The two basic tools to establish
level independent multigrid convergence rates are an approximation and a smoothing
property. The approximation property for the mortar space V l is well known; see,
e.g., [26]. Here, we have to consider the modified spaces Ṽ l. In the following, we work

with the broken H1-norm which is defined by ‖ · ‖2
1 :=

∑K
k=1 ‖ · ‖2

1;Ωk
.

Lemma 4.1. The modified spaces Ṽ l, 0 ≤ l ≤ L, satisfy an approximation
property, i.e.,

inf
v∈Ṽ l

‖u− v‖1 ≤ Chl|u|2, u ∈ H2(Ω) ∩H1
0 (Ω),

where the constant C <∞ does not depend on L and hl.
Proof. The starting point for the proof is Lemma 3.2. We define w := QlI lu,

where I l is the broken Lagrange interpolation operator onto X l. Then, it is well
known that

‖u− w‖1 ≤ Chl|u|2, u ∈ H1
0 (Ω) ∩H2(Ω);

see [26]. An analogous result for standard Lagrange multipliers can be found in [6, 7].

We recall that w ∈ V l and thus Πlw = 0. Defining v := P lw ∈ Ṽ l and using the
additive structure of P l, we find

‖u− v‖1 = ‖u− w +

L∑
k=l+1

Ek(Πk − Πk−1)w‖1

≤ ‖u− w‖1 +

L∑
k=l+1

‖Ek(Πk − Πk−1)w‖1.
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Fig. 4.1. Convergence rates based on Ṽ l, no crosspoints (left) and crosspoints (right).

A standard inverse estimate provides for the trivial extension on level k

‖Ek(Πk − Πk−1)w‖1 ≤ C√
hk

‖(Πk − Πk−1)w‖0;S ,

where S := ∪Mm=1γm. In what follows, we denote by ‖ · ‖t;S and | · |t;S the broken
Ht-norm and Ht-seminorm on S; i.e.,

‖v‖2
t;S :=

M∑
m=1

‖v‖2
t;γm , and |v|2t;S :=

M∑
m=1

|v|2t;γm ,

respectively. The definition of w guarantees that [w]|γm ∈ H1
0 (γm), and thus we are

in the setting of Lemma 3.1. In terms of the approximation property, we find

‖(Πk − Πk−1)w‖0;S ≤ ‖Πkw − [w]‖0;S + ‖Πk−1w − [w]‖0;S
≤ Chk|[w]|1;S = Chk|[w − u]|1;S .

Combining these results and using 2hk = hk−1, we obtain

‖u− v‖1 ≤ C

(
‖u− w‖1 +

L∑
k=l+1

√
hk|[w − u]|1;S

)

≤ C
(
‖u− w‖1 +

√
hl|[w − u]|1;S

)
≤ C

(
‖u− w‖1 +

√
hl|[I lu− u]|1;S +

√
hl|[ΠlI lu]|1;S

)
≤ C

(‖u− w‖1 + hl|u|3/2;S
) ≤ Chl|u|2.

To bound |[ΠlI lu]|1;S , we have used an inverse estimate and the stability of the mortar

projection in the H
1/2
00 -norm.

Unfortunately, the nested spaces Ṽ l do not, in general, provide optimal multigrid
results. Figure 4.1 shows the asymptotic convergence rates of a V-cycle with one
smoothing step.

In the left picture, the domain is decomposed into two subdomains and there are
no crosspoints. For this situation, we observe level independent convergence rates.
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However, in the more general case of many subdomains, this does not hold. This is
illustrated in the right picture. For a decomposition into 13 subdomains and with six
crosspoints, we find that the convergence rates depend on the refinement level. To
advance our understanding, we consider the stiffness matrix Ãl associated with Ṽ l in
more detail. As in the standard case, its smallest eigenvalue is of order 1/(hl)

2 but
its largest eigenvalue is not uniformly bounded independently of the refinement level.
This is caused by the modified basis functions ϕlp, associated with the crosspoints, for
which the energy is not bounded by a constant. As a consequence, the condition num-
ber of Ãl is not of order 1/(hl)

2, and we do not obtain level independent convergence
rates.

To obtain better numerical results, we have to work with different spaces. We
introduce a subspace of Ṽ l. Let V̂ l be defined by

V̂ L := V L,

V̂ l := {v ∈ Ṽ l | [v]|γm ∈ H
1/2
00 (γm), 1 ≤ m ≤M}, 0 ≤ l ≤ L− 1.

The condition [v]|γm ∈ H
1/2
00 (γm) for all interfaces is equivalent to making v continuous

at the crosspoints. We note that V̂ l �⊂ H1
0 (Ω) and as a consequence, the Galerkin

orthogonality does not hold. The proof of Lemma 4.1 gives rise to the following
corollary. By definition w := QlI lu is continuous at the crosspoints and thus v :=
P lw ∈ V̂ l.

Corollary 4.2. The nested spaces V̂ l, 0 ≤ l ≤ L, satisfy an approximation
property, i.e.,

inf
v∈V̂ l

‖u− v‖1 ≤ Chl|u|2, u ∈ H2(Ω) ∩H1
0 (Ω),

where the constant C <∞ does not depend on L and hl.
We now define ûl ∈ V̂ l as the solution of the following positive definite variational

problem: find ûl ∈ V̂ l such that

a(ûl, v) = (f, v)0, v ∈ V̂ l.

To obtain optimal a priori estimates, the consistency error has to be of order hl.
Lemma 4.3. The discrete finite element solution ûl, 0 ≤ l ≤ L, satisfies the

following a priori estimate for u ∈ H1
0 (Ω) ∩H2(Ω):

‖u− ûl‖1 +
1

hl
‖u− ûl‖0 ≤ Chl|u|2,

where the constant does not depend on L and hl.
Proof. We start with the jump of an element w ∈ V̂ l. Using the orthogonality of

[w] to ML, we find

‖[w]‖2
0;S = ([w], [w])0;S ≤ ‖[w]‖0;S inf

µ∈ML
‖[w] − µ‖0;S ≤ C

√
hL |[w]|1/2;S ‖[w]‖0;S .

In terms of the approximation property of ML and the orthogonality of [w] to ML,
the upper bound for the jump results in a bound on the consistency error given by

sup
w∈V̂ l

w �=0

∫
S
∂u
∂n [w] dσ

‖w‖1
≤ C

√
hL inf

µ∈ML
‖∂u
∂n

− µ‖0;S sup
w∈V̂ l

w �=0

|[w]|1/2;S
‖w‖1

≤ ChL|u|2.
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We note that the consistency error of an element in V̂ l is, in general, smaller than for
an element in V l. It is of order hL for all v ∈ V̂ l, 0 ≤ l ≤ L, whereas it is of order hl
for v ∈ V l. This is due to the fact that the jump is orthogonal to ML and not only to
M l. The space M l is associated with the mesh on level l whereas ML is associated
with that on level L and dim ML > dim M l. Then, the a priori estimate in the energy
norm follows from Corollary 4.2. The a priori estimate in the L2-norm can easily be
obtained by using the H2-regularity and the Aubin–Nitsche trick for nonconforming
elements. In that case, the consistency error of the dual problem enters additionally
in the upper bound.

Although the spaces V̂ l are nested, we are in a nonconforming setting. In contrast
to standard conforming approaches, no Galerkin orthogonality holds, and we cannot
bound ‖u− ûl‖0 by Chl‖u− ûl‖1. However, a weaker result can be established.

Corollary 4.4. There exists a constant independent of the level L such that

‖ûl − ûl−1‖0 ≤ Chl‖ûl − ûl−1‖1, 0 ≤ l ≤ L.

Proof. We start with a discrete Galerkin orthogonality

a(ûl − ûl−1, v) = 0, v ∈ V̂ l−1.

Introducing w ∈ H1
0 (Ω) by a(w, v) = (ûl − ûl−1, v)0, v ∈ H1

0 (Ω) and ŵk ∈ V̂ k by

a(ŵk, v) = (ûl − ûl−1, v)0, v ∈ V̂ k, we find

‖ûl − ûl−1‖2
0 = a(ŵl, ûl − ûl−1) = a(ŵl − ŵl−1, ûl − ûl−1)

≤ C‖ûl − ûl−1‖1‖ŵl − ŵl−1‖1 ≤ C‖ûl − ûl−1‖1(‖ŵl − w‖1 + ‖ŵl−1 − w‖1).

Then, the a priori estimate in the energy norm and the H2-regularity yield the upper
bound for ‖ûl − ûl−1‖0.

Following the approach in [16], we have to consider the condition number of the

modified stiffness matrix Âl associated with the nested spaces V̂ l to obtain level
independent convergence rates. The ellipticity of the bilinear form a(·, ·) on V̂ l × V̂ l

guarantees

c‖v‖2
0 ≤ a(v, v) ≤ C‖v‖2

1, v ∈ V̂ l, 0 ≤ l ≤ L.

We define N̂ l
c as a subset of N l

c such that p ∈ N̂ l
c if p does not coincide geomet-

rically with a crosspoint. We now use the following basis of V̂ l ⊂ Ṽ l:

{ϕlp, p ∈ N̂ l
c} ∪

{∑
p∈Cq

ϕlp, q ∈ C
}
,

where C is the set of crosspoints of the domain decomposition, and p ∈ Cq if and
only if p ∈ N l

c coincides geometrically with the crosspoint q ∈ C. In what follows, we
use the same symbol for the function v as an element in the finite element space S,
S ∈ {X l, Ṽ l, V̂ l}, and its vector representation v ∈ R

dimS with respect to the specified
basis functions of S.

We denote by ‖ · ‖S the Euclidean vector norm. Then for the L2-norm of v ∈ V̂ l,
we find the standard estimate

‖v‖0 ≥ c

hl
‖v‖V̂ l , 0 ≤ l ≤ L,
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where the constant c > 0 does not depend on the level L. We recall that the operator
P l does not modify the values at the interior and master nodes on level l. The
following lemma provides an upper bound for the condition number of the stiffness
matrix Âl.

Lemma 4.5. There exists a constant C <∞ independent of the level L such that

κ(Âl) ≤ C

h2
l

, 0 ≤ l ≤ L.

Proof. It is sufficient to establish a suitable upper bound for the energy norm of
v ∈ V̂ l. Each v ∈ V̂ l can be written as

v = QL QL−1 . . . Ql+1 Qlw,

where w ∈ X l is continuous at the crosspoints and vanishes at all nodes p ∈ N l
s. We

note that w is uniquely defined. Lemma 3.2 and the triangle inequality yield

‖v‖1 ≤ ‖w − ElΠlw‖1 +

L∑
j=l+1

‖Ej(Πj − Πj−1)w‖1.(4.1)

In a first step, we establish an upper bound for ‖w − ElΠlw‖1. The definition of
El and Πl gives z := w − ElΠlw ∈ V l. Applying an inverse estimate and using the
continuity of z, we obtain

‖z‖2
1 ≤ C

h2
l

‖z‖2
0 ≤ C

∑
p∈N l

u

z(p)2 ≤ C

(∑
p∈N l

c

z(p)2 +
∑
p∈N l

s

z(p)2

)

≤ C

(
‖z‖2

V l +
∑
p∈N l

s

z(p)2

)
.

The second term on the right-hand side can be bounded as follows: For each node
p ∈ N l

s, we find due to the mortar condition on level l that

z(p) =
∑
q∈N l

c

∫
S z(q)[φ

l
q]µ

l
p dσ∫

S φ
l
p dσ

.

We denote the set of nodes q ∈ N l
c such that supp φlq∩supp µlp has a nonzero measure

by Ip. Moreover, the number of elements in Ip is bounded independently of p and L.
Now, z(p) can be bounded by

z(p)2 ≤ C
∑
q∈Ip

z(q)2,

and as a result, we find
∑
p∈N l

s
z(p)2 ≤ C‖z‖2

V l . Observing that Qj , j > l, does not

modify the values at the mortar nodes on level l, we get z(p) = v(p) for all p ∈ N l
c .

We note that dim V l ≥ dim V̂ l and thus ‖z‖V l ≥ ‖v‖V̂ l . However, by construction, z
is continuous at the crosspoints and therefore ‖z‖V l ≤ C‖v‖V̂ l . In a second step, we
have to consider the second term on the right-hand side in (4.1). A standard inverse
inequality shows

‖Ej(Πj − Πj−1)w‖1 ≤ C

hj
‖Ej(Πj − Πj−1)w‖0 ≤ C√

hj
‖(Πj − Πj−1)w‖0;S

≤ C√
hj

(‖Πjw − [w]‖0;S + ‖Πj−1w − [w]‖0;S
)
.
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The continuity of w at the crosspoints guarantees that [w]|γm ∈ H
1/2
00 (γm) for all

interfaces γm, 1 ≤ m ≤M . Thus, we can apply Lemma 3.1 and get

‖Ej(Πj − Πj−1)w‖1 ≤ C
√
hj |[w]|1;S ≤ C

√
hj

hl
|[w]|0;S ≤ C

√
hj√
hl

‖v‖V̂ l .

Here, we have used w ∈ X l with w(p) = v(p) for all interior and master nodes on
level l and w(p) = 0 for all slave nodes p ∈ N l

s. In terms of (4.1), we obtain

‖v‖1 ≤ C

L∑
j=l

√
hj√
hl

‖v‖V̂ l ≤ C

∞∑
j=0

√
2
−j‖v‖V̂ l ≤ C‖v‖V̂ l .

We can now formulate our main result. Here, uLn stands for the nth multigrid
iterate, and uL is the mortar finite element solution on level L. Our multigrid method
is based on the nested sequence V̂ 0 ⊂ V̂ 1 ⊂ · · · ⊂ V̂ L−1 ⊂ V L. Moreover, we use the
natural embedding to define the prolongation operator, and the restriction matrix is
its transpose. We apply a damped Richardson iteration as the smoothing operator,
and the damping factor ω on level l is bounded by c/λ̂lmax ≤ ω ≤ 1/λ̂lmax, where λ̂lmax

is the maximal eigenvalue of the stiffness matrix associated with the nodal basis of
V̂ l.

Theorem 4.6. There exists a constant independent of the refinement level L
such that the V-cycle multigrid convergence rate is given by

a(uL − uLn , u
L − uLn) ≤

(
C

C +m

)2

a(uL − uLn−1, u
L − ûLn−1),

where m denotes the number of smoothing steps.
The condition number bound in combination with the approximation property

and the construction of the nested sequence of spaces yields level independent conver-
gence rates for the V-cycle multigrid method with one smoothing step; see [11, 13, 20].
Using the approach given in [16], the proof follows from Corollary 4.4 and Lemma
4.5. The results can also be extended to other multigrid variants such as, e.g., the
W-cycle.

Remark 4.7. We note that on the finest level no continuity at the crosspoints is
required.

5. Algebraic formulation. The multigrid method proposed in the previous
section is based on the natural embedding of the spaces. In this section, we con-
sider the algebraic representation of the prolongation and restriction and show how
the stiffness matrix Âl from Lemma 4.5 can be recursively assembled. We start by
describing how to obtain the stiffness matrix associated with the nodal basis of V L.
Let us denote by A the stiffness matrix associated with the unconstrained product
space XL. For simplicity, we suppress the level index L. Then A has a block diag-
onal structure. We use a decomposition of the matrix into block matrices and three
different sets of nodes: N l

s, N l
m, and N l

i . The index set N l
i contains all nodes not

on the interfaces γm, 1 ≤ m ≤ M . All nodes being on the master sides and all
nodes coinciding geometrically with a crosspoint are in N l

m; i.e., N l
m = N l

c \ N l
i . We

recall that the set N l
s stands for the nodes on level l associated with the vertices in

the interior of the slave sides. Now, each vector x ∈ R
nL , nL := dim XL, can be

decomposed according to the three different blocks in x = (xi, xm, xs)
T . Then, each
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element in v ∈ V L can be written in terms of the nodal basis of XL, and we find for
the algebraic representation

x =

⎛⎝ xi
xm
xs

⎞⎠ =

⎛⎝ Id 0
0 Id
0 M

⎞⎠( vi
vm

)
=: Bv,

where M is a sparse mass matrix associated with the mortar projection. We note
that x and v as functions are the same, but their algebraic representations differ.
We observe that each x ∈ XL is in V L if and only if it has the algebraic form
x = (xi, xm,Mxm)T with respect to the nodal basis of XL. We now define the
stiffness matrix Ac by

Ac :=

(
Aii Aim +AisM

Ami +MTAsi Amod

)
,

where Akl, k, l ∈ {s,m, i}, are the block matrices of the stiffness matrix A associated
with the nodal basis functions of XL, and Amod := Amm + MTAssM + AmsM +
MTAsm.

Lemma 5.1. The variational problem (2.1) on level L is equivalent to the algebraic
system

AcuL = f c :=

(
fi

fm +MT fs

)
.

Proof. Observing that each test function v ∈ V L has the algebraic form v =
(vi, vm,Mvm)T with respect to the nodal basis ofXL, we obtain vT f = (vi, vm)(fi, fm
+MT fs)

T , where f is the algebraic representation of the right-hand side with respect
to the nodal basis of XL. Thus, the variational problem (2.1) can be written as
(Bv)TA(BuL) = vT (BTAB)uL = (Bv)T f = vT (BT f). It is now easy to verify that
Ac = (BTAB) and f c = (BT f).

Remark 5.2. In contrast to standard mortar approaches the matrix Ac can easily
be assembled from A by local post processing. A crucial role is played by the structure
of M . Only in the case of a dual Lagrange multiplier space is M a sparse scaled mass
matrix. In the case of standard Lagrange multipliers, M has the form M = M−1

s Mm,
where Mm is a rectangular mass matrix and Ms is tridiagonal.

In the rest of this section, we focus on the prolongation operator. Let I l+1
l be

the algebraic representation of the natural embedding of X l in X l+1, and let Wl

be the matrix representation of the projection operator Ql. Using the definition of
Ql : X l −→ X l, we find

Wl :=

⎛⎝ Id 0 0
0 Id 0
0 M 0

⎞⎠ .(5.1)

The following lemma shows that the natural embedding of Ṽ l in Ṽ l+1 can be expressed
in terms of I l+1

l and Wl.

Lemma 5.3. Let the interpolation matrix Zl+1
l be defined by

Zl+1
l :=

(
(I l+1
l )ii (I l+1

l )im + (I l+1
l )isMl

0 (I l+1
l )mm

)
,
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where (I l+1
l )jk, j, k ∈ {i,m, s}, denote the block components of I l+1

l . Then, Zl+1
l is

the matrix representation of the natural embedding of Ṽ l in Ṽ l+1.
Proof. We start by considering the nodal basis functions of Ṽ l and Ṽ l+1 in more

detail. The algebraic representation of ϕlp in the nodal basis of XL is given by

WLI
L
L−1WL−1I

L−1
L−2 . . . I

l+1
l Wle

l
p,

where elp denotes the unit vector of R
nl , nl := dim X l, associated with the node p on

level l. Analogously, the algebraic presentation of ϕl+1
p in the nodal basis of XL is

given by

WLI
L
L−1WL−1I

L−1
L−2 . . . I

l+2
l+1Wl+1e

l+1
p ,

where el+1
p denotes the unit vector of R

nl+1 , nl+1 := dim X l+1, associated with the

node p on level l + 1. We now consider the natural embedding Ṽ l ⊂ Ṽ l+1. Each
element v ∈ Ṽ l ⊂ Ṽ l+1 ⊂ XL can be written uniquely as a linear combination of the
nodal basis functions ϕlp, ϕ

l+1
p , and θLp

v =
∑
p∈N l

c

vlpϕ
l
p =

∑
p∈N l+1

c

vl+1
p ϕl+1

p =
∑
p∈NL

u

xLp θ
L
p .

We define wl ∈ R
nl by wlp := vlp, p ∈ N l

c and wlp := 0, p ∈ N l
s, and wl+1 ∈ R

nl+1 by

wl+1
p = vl+1

p , p ∈ N l+1
c and wl+1

p = 0, p ∈ N l+1
s . We then find

WLI
L
L−1WL−1I

L−1
L−2 . . . I

l+1
l Wlw

l = WLI
L
L−1WL−1I

L−1
L−2 . . . I

l+2
l+1Wl+1w

l+1.

In the next step, we decompose I l+1
l Wlw

l = cl+1 + yl+1, where cl+1
p = 0, p ∈ N l+1

s

and yl+1
p = 0, p ∈ N l+1

c . We note that this decomposition is unique. Moreover, the

definition of Wl+1 yields Wl+1y
l+1 = 0 and thus WLI

L
L−1WL−1I

L−1
L−2 . . . I

l+1
l Wlw

l =

WLI
L
L−1WL−1I

L−1
L−2 . . . I

l+2
l+1Wl+1c

l+1. Observing that the kernel of Wj , 1 ≤ j ≤ L, is

associated with the nodes p ∈ N j
s , we find cl+1 = wl+1. A straightforward computa-

tion shows that

cl+1 =

⎛⎝ Id 0 0
0 Id 0
0 0 0

⎞⎠⎛⎝ (I l+1
l )ii (I l+1

l )im (I l+1
l )is

0 (I l+1
l )mm 0

0 (I l+1
l )sm (I l+1

l )ss

⎞⎠⎛⎝ Id 0 0
0 Id 0
0 Ml 0

⎞⎠wl

=

⎛⎝ (I l+1
l )ii (I l+1

l )im + (I l+1
l )isMl 0

0 (I l+1
l )mm 0

0 0 0

⎞⎠wl.

Using the structure of wl+1 and wl, we find(
vl+1

0

)
=

(
Zl+1
l 0
0 0

)(
vl

0

)
,

and thus vl+1 = Zl+1
l vl.

Figure 5.1 illustrates the prolongation operator. For simplicity, we restrict our-
selves to a function in Ṽ l which vanishes at all interior vertices. The support of such
a function is marked by the shadowed region. Then, the function, as an element in
Ṽ l, is uniquely defined by its values at the vertices on the master side, which are
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Coordinate vector on level l Coordinate vector on level l+1

Fig. 5.1. Prolongation operator from Ṽ l onto Ṽ l+1, L := l + 1.

marked by filled circles in the left picture of Figure 5.1. The values on the master
side are extended on the slave side in the prescribed multiplicative way such that the
constraints at the interface on level L are satisfied. The vertices on the slave side on
level l are marked by empty circles and on level L := l+1 by empty squares. We now
interpret the function as an element in Ṽ l+1. In the right picture, the relevant vertices
to specify the function are shown by filled circles. The values at the filled circles in
the interior of the slave subdomain are obtained from the values at the empty circles
and the standard prolongation. We note that the values at the empty squares do not
contribute.

Remark 5.4. Although the spaces M l are nonnested, we can assemble the scaled
mass matrices Ml, 0 ≤ l ≤ L− 1, recursively. We note that M l can be embedded in a
higher dimensional but locally defined space. These macro spaces are nested and can
be used for the assembly process. Thus, we have to compute the intersection of the
edges on the slave and master sides only on the highest level.

Additionally, we have to consider the spaces V̂ l which are continuous at the
crosspoints. By definition, we have V̂ l ⊂ Ṽ l. We start by introducing new sets of
nodes. Let Cl be the set of nodes which coincide geometrically with one crosspoint.
For each crosspoint c ∈ C, we define one master node pc such that pc ∈ Cl coincides
geometrically with the crosspoint c. The choice is arbitrary but should be fixed.
Moreover, we set N l

g := N l
m \ Cl and Clm := ∪c∈C pc. Now, each element v ∈ Ṽ l

and v ∈ V̂ l can be written as (vi, vg, vd) and (vi, vg, vc), respectively. Here, the block
vectors are connected to the basis functions associated with the nodes in N l

i , N l
g,

Cl and N l
i , N l

g, Clm, respectively. We note that N l
m = N l

g ∪ Cl. Then, the natural

embedding V̂ l ⊂ Ṽ l has the algebraic form

⎛⎝vivg
vd

⎞⎠ =

⎛⎝Id 0 0
0 Id 0
0 0 C

⎞⎠⎛⎝vivg
vc

⎞⎠ =: Rl

⎛⎝vivg
vc

⎞⎠ ,

where C is a block diagonal matrix. Each block diagonal entry Cii corresponds to one
crosspoint ci ∈ C and has the form Cii := (1, 1, . . . , 1)T , where the number of ones
is equal to the number of nodes coinciding geometrically with the crosspoint ci. We
note that the number of columns of C is equal to the number of crosspoints and the
number of rows is equal to the number of elements in Cl. Thus the size of C does not
depend on the level. On the other hand, each element v ∈ V̂ l, l < L, can be written
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as ⎛⎝vivg
vc

⎞⎠ =

⎛⎝Id 0 0
0 Id 0
0 0 DCT

⎞⎠⎛⎝vivg
vd

⎞⎠ =: R̂Tl

⎛⎝vivg
vd

⎞⎠ ,

where D ∈ R
nc×nc is a diagonal matrix, and nc is the number of crosspoints. The

entries are defined by dii := 1/ki, where ki is the number of nodes coinciding geomet-
rically with the crosspoint ci. We point out that DCT does not depend on the level,
and we set formally R̂TL := Id. Then, the algebraic representation of the embedding

of V̂ l ⊂ V̂ l+1, 0 ≤ l ≤ L− 1, is given by

Ẑl+1
l = R̂Tl+1Z

l+1
l Rl.

The coarse stiffness matrices Âl are obtained recursively by a Galerkin assembly

Âl := (Ẑl+1
l )T Âl+1Ẑ

l+1
l , 0 ≤ l ≤ L− 1,

where ÂL := Ac. We recall that Ac is the stiffness matrix associated with the con-
strained space VL. The restriction of the defect dl+1 is given by dl := ẐTl dl+1. We
note that all modifications can be carried out locally. Additionally, they are of smaller
complexity than one matrix vector multiplication, and only the nodes on the interfaces
are involved.

Remark 5.5. In contrast to the approach given in [19], we work with a nested
sequence of nonconforming spaces. The coarse spaces satisfy the constraints with
respect to the highest level. As a result, we can use the natural embedding operator
as prolongation. Using a Gauß–Seidel smoother, this yields a monotone variant. A
combination of monotone multigrid techniques for Signorini problems [21, 22, 23] with
our approach gives a globally convergent monotone multigrid strategy for variational
inequalities based on interface constraints; see [29].

Remark 5.6. The construction of the spaces V̂ l is restricted to the two-dimensional
situation and has to be generalized in three dimensions (3D). In 3D, we cannot, in
general, require continuity on the wirebasket. However, as in two dimensions, we can
impose continuity at the crosspoints. Additionally, we have to impose a weak match-
ing condition on the edges of the wire basket. This can be realized in terms of one
master edge.

6. Numerical results. In this section, we present some numerical results for
our multigrid method. They confirm the theoretical results and illustrate the per-
formance of the method. In particular, we consider three different examples with
several crosspoints. The numerical realization is based on the finite element toolbox
ug [4],and uniform refinement is applied in each refinement step. In all our examples,
we compare two different smoothers and show the influence of the number of smooth-
ing steps on the convergence rates. On each level, the initial iterate is set to be zero.
As stopping criteria, we use a relative tolerance of 5e−15.

In our first example, we consider a decomposition of the unit square Ω = (0, 1)×
(0, 1) into nine squares Ωij := ((i − 1)/3, i/3) × ((j − 1)/3, j/3), 1 ≤ i, j ≤ 3. The
right-hand side f and the boundary conditions of −∆u = f are chosen such that
the exact solution is given by u(x, y) = sin(2πy) exp(−x−2) exp(−0.1(1 − x)−2) +
sin(πx) exp(−1.25y−2) exp(−0.1(1 − y)−2). Figure 6.1 shows the decomposition into
subdomains, the nonmatching triangulations and the isolines of the solution. The
initial triangulation has 72 elements and is nonmatching at the interface.
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Fig. 6.1. Decomposition into nine subdomains and initial triangulation (left), isolines of the
solution (right) (Example 1).
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Fig. 6.2. Asymptotic convergence rates for a damped Jacobi smoother (left) and a symmetric
Gauß–Seidel one (right) (Example 1). In the first row the V(m,m)-cycle results are shown, and in
the second row those of the W(m,m)-cycle results.

We observe level independent convergence rates for all our tests. In particular, we
compare two different types of smoothers. As expected the symmetric Gauß–Seidel
smoother yields considerably better results than the damped Jacobi smoother, for
ω = 0.8. In each case, we apply m pre- and m postsmoothing steps, 1 ≤ m ≤ 4.
Increasing the number of smoothing steps gives better results. The first row in Figure
6.2 shows our numerical results for the V-cycle and in the second row those of the
W-cycle. There is no big difference between the V-cycle and W-cycle results.

In our second example, we consider a nonconvex domain which is decomposed into
13 subdomains; see Figure 6.3 for the decomposition and the isolines of the solution.
We find six crosspoints having four adjacent subdomains.

As in our first example, we observe asymptotically constant convergence rates.
In the case of the Jacobi smoother the asymptotic starts later than in the case of the
symmetric Gauß–Seidel smoother. We set the numerical convergence rate to be the
reduction factor of the residual in the last iteration step. At the beginning of the
iteration, ‖rl+1‖/‖rl‖ is increasing. However, asymptotically this ratio tends to be
a constant value on each refinement level. This constant value is not yet reached on
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Fig. 6.3. Decomposition into 13 subdomains and initial triangulation (left) and isolines of the
solution (right) (Example 2).

the higher levels for the V(1, 1)-cycle with the Gauß–Seidel smoother. As a result,
we observe, in the right upper picture of Figure 6.4, a decreasing convergence rate.
Comparing the multigrid convergence rates of m = 1 and m = 2, we find a big
difference in the case of the Gauß–Seidel smoother. This is also true if we compare
m = 2 and m = 4 in the case of the Jacobi smoother. Taking into account that
the symmetric Gauß–Seidel smoother is more expensive than the Jacobi smoother,
we cannot compare the results for the same m directly. Comparing the symmetric
Gauß–Seidel smoother with m = 2 and the Jacobi smoother with m = 4, we find that
the Gauß–Seidel smoother yields better convergence rates.
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Fig. 6.4. Asymptotic convergence rates for a damped Jacobi smoother (left) and a symmetric
Gauß–Seidel one (right) (Example 2). In the first row the V(m,m)-cycle results are shown and in
the second row those of the W(m,m)-cycle results.

In our third example, we consider a decomposition of the unit square (−0.5, 0.5)2

into three subdomains. Two of the subdomains are nonconvex. Figure 6.5 shows the
decomposition into the subdomains, the nonmatching triangulations, and the isolines
of the solution. The slave sides are chosen to be on the middle subdomain. The
right-hand side f and the Dirichlet boundary conditions of −∆u = f are chosen such
that the exact solution is given by x(x− y) exp(−10(x2 + 0.6y2)).
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In this example, the differences between the V(m,m)-cycle and W(m,m)-cycle
results are extremely small for the Jacobi smoother; see Figure 6.6. Moreover, the
number of iteration steps is the same. The Gauß–Seidel smoother results in better
convergence rates for the W(m,m)-cycle. The V(1, 1)-cycle and the W(2, 2)-cycle
show the same effect as the V(1, 1)-cycle in Example 2. We observe for all our examples
considerably better results if the number of smoothing steps is greater than one.

Fig. 6.5. Decomposition into three subdomains and initial triangulation (left) and isolines of
the solution (right) (Example 3).

In contrast to the right picture in Figure 4.1, we observe level independent conver-
gence rates for the V-cycle. A comparison of Figures 4.1 and 6.4 shows the influence
of the modification of the nonconforming spaces. The numerical results of Figure 4.1
are based on the nested sequence Ṽ 0 ⊂ Ṽ 1 ⊂ · · · ⊂ Ṽ L. The condition number of the
stiffness matrix associated with these spaces is not bounded by Ch−2

l . As a result,
we do not observe level independent convergence rates for the V(1, 1)-cycle.
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Fig. 6.6. Asymptotic convergence rates for a damped Jacobi smoother (left) and a symmetric
Gauß–Seidel one (right) (Example 3). In the first row the V(m,m)-cycle results are shown and in
the second row those of the W(m,m)-cycle results.

Compared to the more general saddlepoint multigrid method analyzed in [9, 25],
the performance of this multigrid variant applied to a mortar discretization with dual
Lagrange multipliers is considerably better. This is due to the fact that we can exploit
the biorthogonality of the Lagrange multiplier and the trace space for the construction
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of the solver. In case of the saddlepoint variant this cannot be done, and we have to
include an inner iteration loop in the multigrid scheme. Applying this new variant
to standard Lagrange multipliers increases the computational cost. The modified
stiffness matrices can be easily obtained by local static condensation in the case of
dual Lagrange multipliers. This does not hold for standard Lagrange multipliers. In
this situation the multiplication with a diagonal matrix has to be replaced by the
multiplication with the inverse of a mass matrix, and the resulting stiffness matrix
is not as sparse. In both cases, we obtain a condition number which is bounded by
Ch−2

l . Compared to [28], the V(1, 1)-cycle of this multigrid variant is more robust.
In contrast to the two variants discussed in [25, 28], this multigrid variant can also be
used in combination with monotone techniques to solve nonlinear multibody contact
problems [29]. The monotonicity and thus the convergence of the nonlinear algorithm
cannot be guaranteed if we do not work with nested spaces and a positive definite
formulation.
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Abstract. Local mesh-refining algorithms known from adaptive finite element methods are
adopted for locally conservative and monotone finite volume discretizations of boundary value prob-
lems for steady-state convection-diffusion-reaction equations. The paper establishes residual-type
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mesh-refining algorithms over uniform mesh refining. A discussion of adaptive computations in the
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1. Introduction. We consider the following convection-diffusion-reaction prob-
lem: Find u = u(x) such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lu ≡ ∇ · (−A∇u+ bu) + γu = f in Ω,

u = 0 on ΓD,

(−A∇u+ bu) · n = g on Γin
N ,

−(A∇u) · n = 0 on Γout
N .

(1.1)

Here Ω is a bounded polygonal domain in Rd, d = 2, 3; A = A(x) is d× d symmetric,
bounded, and uniformly positive definite matrix in Ω; b is a given vector function;
n is the unit outer vector normal to ∂Ω; and f is a given source function. We
have also used the notation ∇u for the gradient of a scalar function u and ∇ · b
for the divergence of a vector function b in Rd. The boundary of Ω, ∂Ω is split
into Dirichlet, ΓD and Neumann, ΓN parts. Further, the Neumann boundary is
divided into two parts: ΓN = Γin

N ∪ Γout
N , where Γin

N = {x ∈ ΓN : n(x) · b(x)< 0} and
Γout
N = {x ∈ ΓN : n(x) · b(x) ≥ 0}. We assume that ΓD has positive surface measure.

This problem is a prototype for flow and transport in porous media. For example,
u(x) can represent the pressure head in an aquifer or the concentration of a chemical
that is dissolved and distributed in groundwater due to the processes of diffusion,
dispersion, and absorption. In many cases A = εI, where I is the identity matrix in
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Rd and ε > 0 is a small parameter. This corresponds to the important and difficult
class of singularly perturbed convection-diffusion problems (see, e.g., the monograph
of Ross, Stynes, and Tobiska [31]). In our computations we have used our approach
for grid adaptation for this type of problem as well. However, we do not claim that
the developed theory in this paper covers this important practical case. Further, u(x)
can be viewed as a limit for t = ∞ of the solution u = u(x, t) of the corresponding
time-dependent problem

ut + Lu = f, t > 0, x ∈ Ω(1.2)

with boundary conditions as above and an initial condition u(x, 0) = u0(x), where
u0 is a given function in Ω. Various generalizations, mostly considering nonlinear
terms, are possible and widely used in the applications. For example, γu is replaced
by a nonlinear reaction term γ(u), or the linear convective term bu is replaced by a
nonlinear flux b(u). In this work we follow the framework of the model problem (1.1)
and focus on its 3-D setting.

The development of efficient solution methods featuring error control is important
for various applications. Our study has been motivated by the research in ground-
water modeling and petroleum reservoir simulations (see, e.g., [19]). The solutions
of problems in that area exhibit steep gradients and rapid changes due to localized
boundary data, discontinuities in the coefficients of the differential equation, and/or
other local phenomena (for example, extraction/injection wells, faults, etc.). In order
to accurately resolve such local behavior, the numerical method should be able to
detect the regions in which the solution changes significantly and to refine the grid
locally in a balanced manner so that the overall accuracy is uniform in the whole
domain.

Equation (1.1) expresses conservation of the properly scaled quantity u over any
subdomain contained in Ω. In the context of groundwater, fluid flow u(x) is in general
either the water mass or the mass of the chemical dissolved in the water. Numerical
methods that have this property over a number of nonoverlapping subdomains that
cover the whole domain are called locally conservative. Finite volumes (control vol-
umes, box schemes), mixed finite elements, and discontinuous Galerkin methods have
this highly desirable property. The simplicity of the finite volume approximations
combined with their local conservation property and flexibility motivated our study.

There are few works related to a posteriori error estimates for finite volume meth-
ods. In [2] Angermann studied a balanced a posteriori error estimate for finite vol-
ume discretizations for convection-diffusion equations in two dimensions on Voronoi
meshes. The derivation of the error estimator is based on the idea of his previous work
[3] on the finite element method. The estimator for the finite volume method contains
two new terms which have been studied previously. Some extensions to Angermann’s
work related to more general situations in respect to space dimension and type of
control volumes can be found in Thiele’s dissertation [35]. Again, the ideas from
the finite element method were exploited in deriving an upper error estimate for the
space discretization of parabolic problems. In our paper we use a similar approach;
namely, the error estimates for the finite volume method are derived by using the
relation between the finite volume and finite element methods (see, e.g., [8]). We note
that, despite recent progress (see, e.g., the monographs [23, 26]), the theory of finite
volume methods is still under development. This in turn raises certain difficulties in
establishing an independent and sharp a posteriori error analysis for the finite volume
approximations.
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A posteriori error indicators and estimators for the finite element method have
been used and studied in the past two decades. Since the pioneering paper of Babuška
and Rheinboldt [6], the research in this field has expanded in various directions that
include the residual-based method (see the survey paper of Verfürth [36]), hierarchical-
based error estimators [9], estimators based on postprocessing of the approximate so-
lution gradient [37, 38], error estimators that control the error or its gradient in the
maximum norm, etc. One popular approach is to evaluate certain local residuals and
obtain the a posteriori error indicator by solving local Dirichlet or Neumann prob-
lems by taking the local residuals as data [6, 9]. Another variation of the method that
controls the global L2- and H1-norms of the error uses the Galerkin orthogonality,
a priori interpolation estimates, and global stability (see, for example, [21]). Further-
more, solving appropriate dual problems, instead of using the a priori interpolation
estimates, leads to error estimators controlling various kinds of error functionals [11].
Solving finite element problems in a space enriched by hierarchical bases functions
gives rise to hierarchical-based error estimators [9]. There are error estimators based
on optimal a priori estimates in a maximum norm [22]. Another type of error estima-
tor/indicator, widely (and in most cases heuristically) used in many adaptive finite
element codes, is based on postprocessing (averaging) of the approximate solution
gradient (see [37, 38]). In the context of the finite element method for elliptic partial
differential equations, averaging or recovery techniques are justified in [10, 14, 30]. Fi-
nally, for an extensive study of the efficiency and the reliability of the local estimators
and indicators for finite element approximations, we refer to the recent monograph of
Babuska and Strouboulis [7].

In this paper we adapt the finite element local error estimation techniques to
the case of finite volume approximations. We consider mainly the residual-based
a posteriori error estimators and analyze the one that uses Galerkin orthogonality,
a priori interpolation estimates, and global stability in L2- and H1-norms. Our theo-
retical and experimental findings are similar to those in [2] and could be summarized
as follows. The a posteriori error estimates in the finite volume element method are
quite close to those in the finite element method, and the mathematical tools from
finite element theory can be successfully applied for their analysis. Our computa-
tional experiments with various model problems confirm this conclusion. For more
computational examples we refer to [25].

The paper is organized as follows. We start with the finite volume element for-
mulation in section 2. The section defines the used notation and approximations and
gives some general results from the finite volume approximations. Section 3 studies
the residual-based error estimator, followed by a short description of the used adaptive
refinement strategy (in section 4). Finally, in section 5, we present numerous compu-
tational results for 2-D and 3-D test problems which illustrate the adaptive strategy
and support our theoretical findings.

2. Finite volume element approximation. Subsection 2.1 introduces the no-
tation used in the paper. In subsection 2.2 we define the finite volume element ap-
proximations and give an a priori estimate for the error.

2.1. Notation. We denote by L2(K) the square-integrable real-valued functions
over K ⊂ Ω, by (·, ·)L2(K) the inner product in L2(K), and by | · |H1(K) and || · ||H1(K),
respectively, the seminorm and norm of the Sobolev space H1(K), namely,

||u||L2(K) := (u, u)
1/2
L2(K), |u|H1(K) := (∇u,∇u)1/2L2(K),

||u||2H1(K) := ||u||2L2(K) + |u|2H1(K).
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In addition, if K = Ω, we suppress the index K and also write (·, ·)L2(Ω) := (·, ·) and
|| · ||L2 := || · ||. Further, we use the Hilbert space H1

D(Ω) = {v ∈ H1(Ω) : v|ΓD
= 0}.

Finally, we denote by H1/2(∂K) the space of the traces of functions in H1(K) on the
boundary ∂K.

To avoid writing unknown constants we use the notation a � b instead of the
inequality a ≤ Cb, where the constant C is independent of the mesh size h.

In our analysis we shall use the following simple inequality valid for Ω ⊂ Rd, d > 1,
with Lipschitz continuous boundary ∂Ω (called Ilin’s inequality; cf., e.g., [28]): Let
Ωδ be a strip along ∂Ω of width δ. Then

||u||L2(Ωδ) � δ1/2||u||H1(Ω) for all u ∈ H1(Ω);

||u||L2(Ωδ) � δs||u||Hs(Ω) for all u ∈ Hs(Ω), 0 < s < 1/2.
(2.1)

The first inequality is trivial in the case where Ω is a half-space and u has a compact
support. The proof in the general case will follow easily by using partition of unity
and transforming each subdomain into half-space. The second inequality is obtained
using the fact that ||u||L2(Ωδ) � δ||u||H1(Ω) for all u ∈ H1

0 (Ω) and interpolation of
Banach spaces (cf., e.g., [1]).

Next, we introduce the bilinear form a(·, ·) defined on H1
D(Ω) ×H1

D(Ω) as

a(u, v) := (A∇u− bu,∇v) + (γu, v) +

∫
Γout
N

b · n u v ds.(2.2)

We assume that the coefficients of problem (1.1) are such that
(a) the form is H1

D(Ω)-elliptic (coercive); i.e., there is a constant c0 > 0 such that

c0||u||H1 ≤ a(u, u) for all u ∈ H1
D(Ω);(2.3)

(b) the form is bounded (continuous) on H1
D(Ω); i.e., there is a constant c1 > 0

such that

a(u, v) ≤ c1||u||H1 ||v||H1 for all u, v ∈ H1
D(Ω).(2.4)

The above two conditions guarantee that the expression a(u, u) is equivalent to
the norm in H1

D(Ω). Further, we shall use the notation ||u||2a = a(u, u) and call this
expression the “energy” norm.

A sufficient condition for the coercivity of the bilinear form is γ(x)+0.5∇·b(x) ≥ 0
for all x ∈ Ω, while a sufficient condition for the continuity is boundedness of the
coefficients A(x), b(x), and γ(x) in Ω. Further in the paper we assume that these
conditions are satisfied. Then (1.1) has the following weak form: Find u ∈ H1

D(Ω)
such that

a(u, v) = F (v) := (f, v) −
∫

Γin
N

gv ds for all v ∈ H1
D(Ω).(2.5)

2.2. Approximation method. The domain Ω is partitioned into triangular
(for the 2-D case) or tetrahedral (for the 3-D case) finite elements denoted by K. The
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Fig. 1. Left: Finite element and finite volume partitions in two dimensions. Right: Con-
tribution from one element to control volume Vi, γij , and γik in three dimensions; point q is the
element’s medicenter. Internal points for the faces are the medicenters of the faces.

elements are considered to be closed sets and the splitting, often called triangulation
of Ω, is denoted by T . We assume that the mesh is aligned with the discontinuities of
the coefficients of the differential equation (if any), with the data f and g, and with
the interfaces between ΓD, Γout

N , and Γin
N .

We note that our analysis will be valid also for domains with smooth boundaries.
In this case we have to modify the triangulation so that the methods do not lose
accuracy due to approximation of the domain. Such schemes have been discussed
in [18].

We introduce the set Nh = {xi : xi is a vertex of element K ∈ T } and denote by
N0
h the set of all vertices in Nh except those on ΓD. For a given vertex xi we denote

by Π(i) the index set of all neighbors of xi in Nh, i.e., all vertices that are connected
to xi by an edge.

For a given finite element triangulation T , we construct a dual mesh T ∗ (based
upon T ), whose elements are called control volumes (boxes, finite volumes, etc.).
There are various ways to introduce the control volumes. Almost all approaches can
be described in the following general scheme. In each element K ∈ T a point q is
selected. For the 3-D case, on each of the four faces xixjxk of K a point xijk is
selected and on each of the six edges xixj a point xij is selected. Then q is connected
to the points xijk, and in the corresponding faces, the points xijk, are connected to
the points xij by straight lines (see Figure 1). Control volume associated with a vertex
xi is denoted by Vi and defined as the union of the “quarter” elements K ∈ T , which
have xi as a vertex (see Figure 1). The interface between two control volumes, Vi and
Vj , is denoted by γij , i.e., V i ∩ V j = γij .

We assume that T is locally quasi uniform, that is, for K ∈T , |K|� ρ(K)d,
where ρ(K) is the radius of the largest ball contained in K and |K| denotes the area
or volume of K. In the context of locally refined grids, this means that the smallest
interior angle is bounded away from zero and any two neighboring finite elements are
of approximately the same size, whereas elements that are far away may have quite
different sizes.

In our 3-D computations q is the center of gravity of the element K, xijk are the
centers of gravity of the corresponding faces, and xij are the mid-points (centers of
gravity) of the corresponding edges (as shown on Figure 1).
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Fig. 2. Control volumes with circumcenters as internal points (Voronoi meshes) and interface
γij of Vi and Vj . The rightmost picture shows the segments βi in bold.

In two dimensions, another possibility is to choose q to be the center of the
circumscribed circle of K. These types of control volumes form Voronoi or perpen-
dicular bisector (PEBI) meshes (see, e.g. [23, pp. 764, 825]). Then obviously, γij are
the PEBIs of the three edges of K (see Figure 2). This construction requires that
all finite elements are triangles of acute type, which we shall assume whenever such
triangulation is used.

We define the linear finite element space Sh as

Sh = {v ∈ C(Ω) : v|K is affine for all K ∈ T and v|ΓD
= 0}

and its dual volume element space S∗
h by

S∗
h = {v ∈ L2(Ω) : v|V is constant for all V ∈ T ∗ and v|ΓD

= 0}.

Obviously, Sh = span{φi : xi ∈ N0
h} and S∗

h =span{χi : xi ∈ N0
h}, where φi denotes

the standard nodal linear basis function associated with the node xi, and χi denotes
the characteristic function of the volume Vi. Let Ih : C(Ω) ∩ H1

D(Ω) → Sh be the
interpolation operator and I∗h : C(Ω) ∩H1

D(Ω) → S∗
h and P ∗

h : C(Ω) ∩H1
D(Ω) → S∗

h

be the piecewise constant interpolation and projection operators:

Ihu =
∑
xi∈Nh

u(xi)φi(x), I
∗
hu =

∑
xi∈Nh

u(xi)χi(x), and P ∗
hu =

∑
xi∈Nh

ūiχi(x).

Here ūi is the averaged value of u over the volume Vi for xi ∈ N0
h , i.e., ūi =∫

Vi
u dx/|Vi|, and ūi = 0 for xi ∈ ΓD. In fact, Ih also makes sense as an interpolation

operator from S∗
h to Sh. Namely, if v∗ ∈ S∗

h, then Ihv
∗ ∈ Sh and Ihv

∗(xi) = v∗(xi).
Further, for v∗ ∈ S∗

h, we use the notation v∗i = v∗(xi). We also define the “total
flux” and its approximation by

σ := −A∇u+ bu, σh := −A∇huh + buh

and assume that the coefficients A(x) and b(x) are elementwise smooth. Also, we
denote by ∇h· the T -piecewise divergence and by ∇h the T -piecewise gradient. Inte-
grals involving piecewise quantities are considered as sums over the pieces where the
quantities are defined.

The finite volume element approximation uh of (1.1) is the solution to the follow-
ing problem: Find uh ∈ Sh such that

ah(uh, v
∗
h) := A(uh, v

∗
h) + C(uh, v

∗
h) = F (v∗h) for all v∗h ∈ S∗

h.(2.6)
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Here the bilinear forms A(uh, v
∗) and C(uh, v

∗) are defined on Sh×S∗
h and the linear

form F (v∗) is defined on S∗
h. They are given by

A(uh, v
∗) =

∑
xi∈N0

h

v∗i

(
−
∫
∂Vi\ΓN

(A∇huh) · nds+

∫
Vi

γuhdx

)
,(2.7)

C(uh, v
∗) =

∑
xi∈N0

h

v∗i

∫
∂Vi\Γin

N

(b · n) uh ds,(2.8)

F (v∗) =
∑
xi∈N0

h

v∗i

{∫
Vi

fdx−
∫
∂Vi∩Γin

N

g ds

}
.(2.9)

Obviously, ∇·σh is well defined over Vi ∩K for all Vi ∈ T ∗ and K ∈ T . This ensures,
in particular, that the surface integrals in (2.7) and (2.8) exist.

In addition to C(uh, v
∗) we introduce the form Cup(uh, v

∗) that uses upwind
approximation. Approximation (2.7)–(2.9) can be used for moderate convection fields
and dominating diffusion. For small diffusion, for example, when A = εI with ε small,
approximation (2.7)–(2.9) gives oscillating numerical results, which we would like to
avoid. We are interested in approximation methods that produce solutions satisfying
the maximum principle and are locally conservative. Such schemes are also known as
monotone schemes (see, e.g., [24, 31]). A well-known sufficient condition for a scheme
to be monotone is that the corresponding stiffness matrix be an M -matrix (see [33,
pp. 182, 260] and [31, p. 202]).

The upwind approximation that we use for problems with large convection (or
small diffusion) is locally mass conservative and gives the desired stabilization. We
split the integral over ∂Vi on integrals over γij = ∂Vi∩∂Vj (see Figure 1) and introduce
out-flow and in-flow parts of the boundary of the volume Vi. This splitting can be
characterized by the quantities (b · n)+ = max(0, b · n) and (b · n)− = min(0, b · n),
where n is the outer unit vector normal to ∂Vi. Then we introduce

Cup(uh, v
∗) =

∑
xi∈N0

h

v∗i

{ ∑
j∈Π(i)

∫
γij

(
(b · n)+uh(xi) + (b · n)−uh(xj)

)
ds

+

∫
Γout
N ∩∂Vi

(b · n)uh(xi) ds

}
.(2.10)

This approximation is well defined for any b. In order to avoid technicalities in our
analysis we assume that the vector field b is piecewise smooth and has small variation
over each finite element. Thus, the quantity b · n does not change sign over γij .

The upwind finite volume element approximation uh of (1.1) becomes the follow-
ing: Find uh ∈ Sh such that

aup
h (uh, v

∗) := A(uh, v
∗) + Cup(uh, v

∗) = F (v∗) for all v∗ ∈ S∗
h.(2.11)

This is an extension of the classical upwind approximation of the convection term and
is closely related to the discontinuous Galerkin approximation (see, e.g., [22]) or to
the Tabata scheme for the Galerkin finite element method [34]. It is also related to
the scheme on Voronoi meshes derived by Mishev [27]. A different type of weighted
upwind approximation on Voronoi meshes in two dimensions has been studied by
Angermann [2].
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3. A posteriori error analysis. This section is devoted to the mathematical
derivation of computable error bounds in the energy norm. Throughout this section,
u ∈ H1

D denotes the exact solution of (2.5) and uh ∈ Sh denotes the discrete solution
of either (2.6) or (2.11). Then, e := u − uh ∈ H1

D(Ω) is the (unknown) error and
e := P ∗

he ∈ S∗
h is its T ∗-piecewise integral mean. We denote by E the set of all

interior edges/faces in T , respectively, in two/three dimensions. Also, for a vertex
xi ∈ N0

h let βi := Vi ∩ E (see Figure 2). For any E ∈ E let [σh] · n denote the jump
of σh across E in normal to E direction n. The orientation of n is not important as
long as the jump is in the same direction. In general, if n is present in a boundary
integral, it will denote the outward unit vector normal to the boundary. With every
element K ∈T , edge/face E ∈ E , and volume Vi ∈ T ∗ we associate local mesh size
denoted correspondingly by hK , hE , and hi. Since the mesh is locally quasi uniform
the introduced mesh sizes are locally equivalent, i.e., bound each other from above
and below with constants independent of the mesh size. Then, we introduce a global
discontinuous mesh size function h(x), x ∈ Ω, that assumes value hK , hE , and hi
depending on x ∈ K \ ∂K, x ∈ E, or x = xi, respectively. Finally, we use the
following shorthand notation for integration over all faces E in E :∫

E
vds :=

∑
E∈E

∫
E

vds, ‖v‖L2(E) :=
∑
E∈E

∫
E

v2ds.

3.1. Energy-norm a posteriori error estimate of the scheme without
upwind. We consider problem (2.6) and begin our analysis with the case when the
form C(·, ·) is evaluated by (2.8). We first give a representation of the error and
introduce some locally computable quantities. In Theorem 3.1 we show that these
quantities give a reliable estimate for the error. Further, we introduce the error
estimator, based on local “averaging” of the “total flux” σ over the control volumes,
and show that this estimator is reliable up to higher order terms.

The following lemma gives a representation of the error.
Lemma 3.1. Assume that the bilinear form a(·, ·) satisfies (2.3) and (2.4). Then

for the error e = u − uh, where u is the solution of (2.5) and uh is the solution of
(2.6), we have

‖e‖2
a = (f −∇h · σh − γuh, e− e) −

∫
E
[σh] · n (e− e) ds

−
∫

Γin
N

(g − σh · n) (e− e) ds−
∫

Γout
N

(A∇huh) · n (e− e) ds.(3.1)

Proof. We take v = e ∈ H1
D(Ω) in (2.5) and use the definition of a(·, ·) by (2.2)

to get

a(e, e) = a(u, e) − a(uh, e)

= (f − γuh, e) + (σh,∇e) −
∫

Γin
N

ge ds−
∫

Γout
N

(b · n)uh e ds.

We integrate the second term on the right-hand side by parts on each element K ∈T :∫
K

σh · ∇e ds =

∫
∂K

(σh · n)e ds−
∫
K

e∇ · σh dx.
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The sum over all elements yields the jump contributions [σh]·n along E and eventually
proves

a(e, e) = (f −∇h · σh − γuh, e) −
∫
E
[σh] · n e ds

−
∫

Γin
N

(g − σh · n)e ds−
∫

Γout
N

(A∇huh) · n e ds.(3.2)

It remains to be shown that the preceding right-hand side vanishes if e is replaced by
e. For each control volume Vi we have from (2.6)–(2.8) that∫

∂Vi\ΓN

σh · nds =

∫
Vi

(f − γuh) dx−
∫
∂Vi∩Γout

N

(b · n)uh ds−
∫
∂Vi∩Γin

N

g ds.

The Gauss divergence theorem is applied to each nonvoid K ∩ Vi, K ∈ T , so that the
left-hand side of the above inequality becomes∫

∂Vi\ΓN

σh · nds =

∫
Vi

∇h · σh dx+

∫
βi

[σh] · nds−
∫
∂Vi∩ΓN

σh · nds.

The difference of the preceding two identities is multiplied by e(xi) and summed over
all control volumes. This results in

0 = (f −∇h · σh − γuh, e) −
∫
E
[σh] · n e ds−

∫
Γin
N

(g − σh · n) e ds−
∫

Γout
N

A∇huh · n e ds.

Subtracting this identity from (3.2) concludes the proof of (3.1).
Motivated by the above considerations we introduce the following locally com-

putable quantities that play a major role in the design of adaptive algorithms and
their a posteriori error analysis.

Definition 3.1. Set

RK(x) := (f −∇ · σh − γuh)(x), x ∈ K,

RE(x) := ([σh] · n)(x), x ∈ E, for E ∩ ΓN = ∅,
Rin
E (x) := (g − σh · n)(x), x ∈ E, for E ⊂ Γin

N ,

Rout
E (x) := (A∇uh · n)(x), x ∈ E, for E ⊂ Γout

N

and define

ηR := ‖hRK‖L2(Ω), ηE := ‖h1/2RE‖L2(E),

ηN := ‖h1/2Rin
E‖L2(Γin

N ) + ‖h1/2Rout
E ‖L2(Γout

N ).

Lemma 3.2. Suppose that RE ∈ L2(E) and that the partitioning T of Ω is locally
quasi uniform. Then∫

E
[σh] · n(e− e) ds � ηE ‖∇e‖ for any e ∈ H1

D(Ω),

where the constant in the notation � depends only on the shape of the elements in T
and the volumes in T ∗.
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Proof. A well-established trace inequality (cf., e.g., [12, Theorem 1.6.6] or [15,
Theorem 1.4]) and scaling argument lead to

h
1/2
E ‖v‖L2(E) � ‖v‖L2(K) + hE‖∇v‖L2(K)(3.3)

for all v ∈ H1(K) and edges E of an element K ∈ T . An application to v := e− e on
each K ∩ Vi, where K ∈ T and xi ∈ Nh, leads to∫

βi

[σh] · n(e− e) ds ≤ ‖[σh] · n‖L2(βi)‖e− e‖L2(βi)

� h
1/2
i ‖[σh] · n‖L2(βi)(h

−1
i ‖e− e‖L2(Vi) + ‖∇e‖L2(Vi)).

Further, Poincaré’s inequality for xi ∈ N0
h (in which case

∫
Vi

(e − e) dx = 0) or

Friedrichs’s inequality for xi ∈ Nh\N0
h (in which case e = 0 on Vi and e = 0 on

∂Vi ∩ ΓD) shows that

h−1
i ‖e− e‖L2(Vi) � ‖∇e‖L2(Vi).(3.4)

Poincaré’s, respectively, Friedrichs’s, inequality is valid in this case because the vol-
umes Vi are star shaped w.r.t. a ball of radius ∼ hi, which follows from the quasi
uniformity of T and our choice of T ∗. Substituting the last result into the preceding
inequality yields∫

βi

[σh] · n(e− e) ds � ‖h1/2 [σh] · n‖L2(βi)‖∇e‖L2(Vi)

for all xi ∈ Nh. A summation over all vertices yields the assertion.
Below we establish that the sum of the quantities ηR, ηE , and ηN gives a reliable

estimate for the error in the global energy norm.
Theorem 3.1. Assume that the coefficients of the bilinear form a(·, ·) are such

that (2.3) and (2.4) are satisfied, and that the partitioning T of Ω is locally quasi
uniform. Then

‖e‖a � ηR + ηE + ηN .

The constant in this inequality depends on the constants c0 in (2.3) and c1 in (2.4),
and on the shape of the elements in T and T ∗, but is independent of h.

Proof. The identity (3.1) of Lemma 3.1 represents ‖e‖2
a as a sum of four terms.

We bound the first term using Cauchy’s inequality, the second one using Lemma 3.2,
and the remaining two terms using again Cauchy’s inequality:

‖e‖2
a � ηR‖h−1(e− e)‖ + ηE‖∇e‖ + ηN‖h−1/2(e− e)‖L2(ΓN ).

Inequality (3.4) is combined with the trace inequality (3.3) to obtain

‖h−1/2(e− e)‖2
L2(ΓN )+ ‖h−1(e− e)‖2 �

∑
xi∈Nh

(h−2
i ‖e− e‖2

L2(Vi)
+ ‖∇e‖2

L2(Vi)
)�‖∇e‖2.

Condition (2.3) yields ‖∇e‖ � ‖e‖a and this concludes the proof of the theo-
rem.

Now we introduce an error estimator that is based on local averaging (post-
processing) of the “total flux” σh. For finite element approximations this estimator,
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often called the ZZ-estimator, has been justified by Carstensen and Bartels [10, 14]
and Rodriguez [30].

Definition 3.2. Let Pi be the L2-projection onto the affine functions on Vi. We
define the error indicator ηZ for A(x) and b(x) smooth over the volumes Vi ∈ T ∗ as

ηZ :=

( ∑
xi∈Nh

‖σh − Piσh‖2
L2(Vi)

)1/2

.

Remark 3.1. In our numerical experiments we have allowed A(x) to have jumps
that are aligned with the partition T . In such cases we have changed the projection Pi.
For example, if Vi = V 1

i ∪V 2
i and A(x) is smooth on V 1

i and V 2
i but has jumps across

their interface, then Pi is defined in a piecewise way as

‖σh − Piσh‖2
L2(Vi)

= ‖σh − P 1
i σh‖2

L2(V 1
i ) + ‖σh − P 2

i σh‖2
L2(V 2

i ),

where P 1
i and P 2

i are the L2-projections on the affine functions on V 1
i and V 2

i ,
respectively.

To simplify our notation we shall use the concept of “higher order terms” (h.o.t.).
Since the finite volume scheme at hand is of first order for u ∈ H2(Ω), i.e., ‖e‖a � h,
then it is reasonable to denote all terms that tend to zero faster than O(h) by h.o.t.
Below, we shall refer to the following quantities as h.o.t.:

(a) ‖h2 ∇(γuh)‖L2(Ω) for γ ∈ H1(Ω);
(b) ‖h2 ∇f‖L2(Ω) if f ∈ H1(Ω);
(c) ‖hf‖L2(ΩD) if f ∈ Hs(Ω), s > 0, and ΩD := ∪{Vi : xi ∈ Nh ∩ ΓD} is a strip

of width h around ΓD (to show that this quantity is h.o.t. we apply Ilin’s
inequality (2.1) and get ‖hf‖L2(ΩD) � h1+s‖f‖Hs(Ω), s < 1/2);

(d) h
1/2
E ‖g − ḡ‖L2(E) for ḡ =

∫
E
gds/|E| and g ∈ H1(E) for E ⊂ Γout

N ;

(e) denote by r̃(x) a linear approximation of r(x) on K. Thus, ∇̃ ·A and ∇̃ · b
are linear approximations on K of ∇ ·A and ∇ · b, respectively. Here ∇ ·A is
understood as a vector with components divergence of the rows of A(x). If

A and b are sufficiently smooth on K, then ∇ ·A−∇̃ ·A and ∇ · b−∇̃ · b are
h.o.t.

More generally, if functions α(h), β(h), and γ(h) satisfy α(h) ≤ β(h) + γ(h) and
γ(h)/β(h) → 0 as h→ 0, we will denote γ(h) as h.o.t. compared to β(h). In the case
above we have β(h) = h.

In the analysis that follows we derive a posteriori error estimates based on av-
eraging techniques. In the estimates derived the constants in � depend only on c0
from (2.3), c1 from (2.4), and the shape of the elements in T and T ∗. The h.o.t.
will account for the smoothness of the coefficients of the differential equation. The
smoothness requirements, as stated in the theorems below, yield h.o.t. of order O(h2),
i.e., one order higher than needed. Using standard results from interpolation of Ba-
nach spaces (cf., e.g., [1]) we can weaken the assumptions, requiring smoothness of
order ε > 0 less than that stated.

Lemma 3.3. Let the coefficients A and b be C1(Ω)-functions and let Pi be the
L2-projection onto the affine functions on Vi ∈ T ∗. Then

h
1/2
i ‖[σh] · n‖L2(βi) � ‖σh − Piσh‖L2(Vi) + h.o.t. for all Vi ∈ T ∗.(3.5)

The multiplicative constants in the notation � depend on the shape of the elements in
T and the shape of the control volumes in T ∗, while the h.o.t. depend on the smoothness
of the coefficients A and b.
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Proof. If A and b are polynomials, then σh|K is in a finite dimensional space for
any K ∈ T . In this case we easily prove (3.5) without h.o.t. by an equivalence-of-norm
argument on finite dimensional spaces. Namely, both sides of (3.5) define seminorms
for finite dimensional σh. If ‖σh − Piσh‖L2(Vi) = 0 for some σh, then σh = Piσh on
Vi. Since Piσh is linear on Vi, this shows that σh is also linear. Therefore, the jump
[σh] is zero on βi, i.e., the left-hand side of (3.5) vanishes as well. This proves that
the seminorm on the right-hand side is stronger than the seminorm on the left-hand
side and so proves (3.5). A scaling argument shows that the multiplicative constant
behind � is independent of hi.

The case when A and b are smooth functions but σh|K is not finite dimensional
over K ∈ T is treated using approximation. Namely, we introduce polynomial ap-
proximations σh of σh for any K ∈ T based on approximations of A and b, taking
into account that

‖σh − σh‖L2(Vi) = h.o.t. and ‖[σh − σh] · n‖L2(Vi) = h.o.t.,

and use the result for the finite dimensional case to get (3.5).
As a corollary we get the following inequality.
Corollary 3.1. Let the assumptions of Lemma 3.3 be satisfied. Then

ηE � ηZ + h.o.t.(3.6)

The above inequality follows directly by squaring (3.5) and summing over all
xi ∈ Nh.

Recall that ηZ is defined for internal vertex nodes. Below we show that ηZ
together with ηN can be used as an estimator for the H1-norm of the error modulus
of h.o.t.

Theorem 3.2. Let the assumptions of Lemma 3.3 be satisfied and let f ∈ H1(Ω).
Then

‖e‖a � ηZ + ηN + h.o.t.(3.7)

Proof. We use again the error representation from Lemma 3.1. In Theorem 3.1 we
have bounded the third and fourth sums from the error representation by ηN‖∇e‖ and
the second sum by ηE‖∇e‖. Further, ηE was bounded in Lemma 3.3 by ηZ + h.o.t.,
so it remains to establish the bound

(f −∇ · σh − γuh, e− e) � (ηZ + h.o.t.)‖∇e‖.
For xi ∈ N0

h denote by f and γuh the integral means over Vi of f and γuh, respectively.
Then we have∫

Vi

(f −∇h · σh − γuh)(e− e) dx =

∫
Vi

(f − f)(e− e) dx(3.8)

−
∫
Vi

∇h · (σh − Piσh)(e− e) dx−
∫
Vi

(γuh − γuh)(e− e) dx

≤ ‖e− e‖L2(Vi)

(‖f − f‖L2(Vi) + ‖∇h · (σh − Piσh)‖L2(Vi)

+ ‖γuh − γuh‖L2(Vi)

)
.

Poincaré’s inequality gives

‖e− e‖L2(Vi) � hi‖∇e‖L2(Vi),

‖f − f‖L2(Vi) � hi‖∇f‖L2(Vi),(3.9)

‖γuh − γuh‖L2(Vi) � hi‖∇(γuh)‖L2(Vi).
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The term ‖∇h · (σh − Piσh)‖L2(Vi) is treated by the inverse estimate

‖∇h · (σh − Piσh)‖L2(Vi) � h−1
i ‖σh − Piσh‖L2(Vi) + h.o.t.(3.10)

As in the proof of Lemma 3.3, we first prove (3.10) when σh is finite dimensional by
equivalence of norms followed by a scaling argument and then, for the general case,
by a perturbation analysis. The combination of (3.8)–(3.10) shows

(3.11)∫
Vi

(f −∇h · σh − γuh)(e− e) dx � ‖∇e‖L2(Vi)

(‖σh − Piσh‖L2(Vi) + h.o.t.
)
.

So far (3.11) holds for xi ∈ N0
h . For xi ∈ Nh ∩ ΓD we replace e, f , and γuh by zero

and deduce the first and third inequalities of (3.9) from Friedrichs’s inequality (notice
that e and γuh vanish on ΓD∩Vi). The inverse estimate (3.10) holds for xi ∈ Nh∩ΓD
as well. The aforementioned arguments prove (3.11) with ‖h2 ∇f‖L2(Vi) replaced by
‖h f‖L2(Vi). This shows

(f −∇h · σh − γuh, e− e) � (ηZ + ‖hf‖L2(ΩD) + h.o.t.)‖∇e‖.

The last result, the discussion at the beginning of the theorem, Ilin’s inequality (2.1),
and the ellipticity assumption conclude the proof of the theorem.

Theorem 3.3. Suppose that the coefficients A and b are C1(Ω)-functions, f ∈
H1(Ω), γ ∈ H1(Ω), g ∈ H1/2(E), and that the partitioning T of Ω is locally quasi
uniform. Then

ηZ + ηR + ηE + ηN � ‖e‖a + h.o.t.

Proof. We will prove that the quantities ηR, ηE , ηN , and ηZ are bounded by
C ‖e‖a + h.o.t. The h.o.t. appear by applying averaging techniques as in the proof of
Lemma 3.3 and therefore we will consider only the case when σh is finite dimensional.
First, we will bound the contributions to ηN due to Γin

N , namely, we will prove

‖h1/2 (g − σh · n)‖L2(Γin
N ) � ‖e‖a + h.o.t.(3.12)

We consider an element K ∈ T that has an edge/face E ⊂ Γin
N . We will use the pair

(K, E) in the rest of the proof (see Figure 3).

K

E ΓN
in

Fig. 3. The pair (K, E) of edge E ⊂ Γin
N and element K used in the proof of inequality (3.12).
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First, we note that

h
1/2
E ‖g − g‖L2(E) = h.o.t. for g :=

∫
E

g ds/|E|.

Then

‖g − σh · n‖L2(E) ≤ ‖g − g‖L2(E) + ‖g − σh · n‖L2(E) � ‖g − σh · n‖L2(E) + h.o.t.

We prove below that

‖g − σh · n‖L2(E) � h
−1/2
E ‖σ − σh‖L2(K) + h.o.t.

so that summation over all E ⊂ Γin
N yields (3.12).

Consider an edge-bubble function bE ∈ H1(Ω), bE ≥ 0, bE(x) = 0 on Ω \K and
∂K \ E, with properties∫

E

bE ds =

∫
E

ds, ‖bE‖L∞(K) � 1, ‖∇bE‖L∞(K) � 1/hE .(3.13)

A 2-D example of such a bubble is bE = 6φ1φ2, where φ1 and φ2 are the standard linear
nodal basis functions associated with the end points of the edge E. Let z ∈ H1(K)
be the harmonic extension of (g−σh ·n)bE from ∂K to K. The extension is bounded
in H1 [29, Theorem 4.1.1] on a reference element K̂ by the H1/2(Ê)-norm of the
extended quantity and, since all norms are equivalent on a finite dimensional space,
by its L2(Ê)-norm. Therefore, a scaling argument gives

h
1/2
E ‖∇z‖L2(K) + h

−1/2
E ‖z‖L2(K) � ‖bE(g − σh · n)‖L2(E).(3.14)

We define the linear operator PK into the space of polynomials of degree 2 on an
element K ∈ T as

(bK PKz, ph)L2(K) = (z, ph)L2(K)

for all polynomials ph of degree 2. Here bK ∈ H1(Ω), bK ≥ 0, is an element-bubble
function with properties

supp bK ⊂ K,

∫
K

bK ds =

∫
K

ds, ‖bK‖L∞(K) � 1, ‖∇bK‖L∞(K) � 1/hK .

A 2-D example of such a bubble is bK = 60φ1φ2φ3, where φ1, φ2, and φ3 are the
standard linear nodal basis functions associated with the vertices of the element K.
Then z̃ := z − bK PKz by construction has the properties

z̃ = (g − σh · n)bE on E, z̃ = 0 on ∂K\E,
(z̃, ph)L2(K) = 0 for all polynomials ph of degree 2.

Inequality (3.14) remains valid for z replaced by z̃ because of the following. Choosing
ph = PKz in the definition of PK yields

‖b1/2K PKz‖2
L2(K) = (z, PKz)L2(K) � ‖z‖L2(K)‖PKz‖L2(K).

We use norm equivalence on finite dimensional spaces on a reference element and scal-

ing to K to get that the quantities ||bKPKz||L2(K), ‖b1/2K PKz‖L2(K), and ‖PKz‖L2(K)
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are equivalent up to constants independent of h, and therefore ‖bKPKz‖L2(K) �
‖z‖L2(K). We use again the equivalence-of-norms argument, inverse inequality, and
the properties of z to get that

‖∇(bKPKz)‖L2(K) � ‖∇bK‖L2(K)‖PKz‖L2(K) + ‖bK∇(PKz)‖L2(K)

� h−1
E ‖PKz‖L2(K) + h−1

E ‖z‖L2(K)

� h
−1/2
E ‖bE(g − σh · n)‖L2(E).

Combined with the bound for ‖bKPKz‖L2(K), this completes the proof of (3.12) for
z = z̃.

Given a polynomial ph of degree 2, using the Gauss divergence theorem and the
properties of z̃, we deduce∫

E

bE(g − σh · n)(σ − σh) · nds =

∫
∂K

z̃(σ − σh) · nds

=

∫
K

(σ − σh) · ∇z̃ dx+

∫
K

z̃(∇·(σ − σh) − ph) dx

�
(‖σ − σh‖L2(K) + hE‖∇·(σ − σh) − ph‖L2(K)

)
h
−1/2
E ‖bE(g − σh · n)‖L2(E).

Choosing proper ph in the second term of the last inequality makes that term h.o.t.
Indeed, write down first the equality (see the basic problem (1.1))

∇·(σ − σh) − ph = γu− f − (∇·A) · ∇uh + uh∇· b+ b · ∇uh − ph.(3.15)

Here ∇ ·A is understood as a vector with component divergence on the rows of A(x).

Let f̃ , γ̃u, ∇̃· b, b̃, and ∇̃ ·A be the linear approximations on K of f , γu, ∇· b, b, and
∇ ·A, respectively.

Now, we choose ph to be the following polynomial of degree 2 on K,

ph = γ̃u− f̃ − (∇̃ ·A) · ∇uh + uh∇̃· b+ b̃ · ∇uh,
take the L2(K)-norm of (3.15), and use the triangle’s inequality to get

‖∇ · (σ − σh) − ph‖L2(K) ≤ ‖f − f̃‖L2(K) + ‖γu− γ̃u‖L2(K) + ‖uh(∇· b− ∇̃· b)‖L2(K)

+ ‖(b− b̃) · ∇uh‖L2(K) + ‖∇uh · (∇·A− ∇̃·A)‖L2(K)

�
(‖u‖H2(K) + ‖uh‖H1(K)

)
h.o.t.+ ‖hK∇f‖L2(K).

Therefore (note that g = σ · n on Γin
N ),

‖b1/2E (g − σh · n)‖2
L2(E) =

∫
E

z̃(g − g) ds+

∫
E

z̃(σ − σh) · nds

� h
−1/2
E

(‖σ − σh‖L2(K) + h.o.t.
) ‖b1/2E (g − σh · n)‖L2(E)

and so

‖b1/2E (g − σh · n)‖L2(E) � h
−1/2
E ‖σ − σh‖L2(K) + h.o.t.

Using again the equivalence-of-norms estimate (equivalence of norms on finite dimen-
sional spaces on reference element and scaling)

‖g − σh · n‖L2(E) � ‖b1/2E (g − σh · n)‖L2(E)
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we finally prove that

‖g − σh · n‖L2(E) ≤ ‖g − g‖L2(E) + ‖g − σh · n‖L2(E)

� ‖b1/2E (g − σh · n)‖L2(E) + h.o.t.

� h
−1/2
E ‖σ − σh‖L2(K) + h.o.t.

Similarly, ‖A∇uh · n‖L2(E) � h
−1/2
E ‖σ − σh‖L2(K) + h.o.t. for E ⊂ Γout

N , which, com-
bined with the result for E ⊂ Γin

N , proves that ηN � ||e||a + h.o.t.
A similar technique shows that ηE � ‖e‖a + h.o.t.
The inequality ηR � ‖e‖a + h.o.t. can be proved in the following way. Take the

average R̄K of the residual RK := f −∇ · σh − γuh over an element K to derive

‖R̄K‖L2(K) ≤ ‖RK − R̄K‖L2(K) + ‖RK‖L2(K) = h.o.t.+ ‖RK‖L2(K).

Further, apply the technique from Lemma 3.1 to deduce the equality (RK , bKR̄K)L2(K)

= a(e, bKR̄K) and therefore

(RK , bKR̄K)L2(K) = ‖b1/2K RK‖2
L2(K) − (RK , bK(RK − R̄K))L2(K) = a(e, bKR̄K)

� ‖e‖H1(K)‖bKR̄K‖H1(K) � ‖e‖H1(K)h
−1
K ‖R̄K‖L2(K)

� h−1
K ‖e‖H1(K)‖RK‖L2(K) + h.o.t.

Here we used the inverse inequality and the boundedness of the coefficients of the
differential equation (1.1). Then we take the term (RK , bK(RK − R̄K))L2(K) to the

right-hand side and consider it as h.o.t. Finally, use that ‖b1/2K RK‖L2(K) ≈ ‖RK‖L2(K)

to obtain

‖RK‖L2(K) � h−1
K ‖e‖H1(K) + h.o.t.

A summation over all K ∈ T yields the inequality ηR � ‖e‖a + h.o.t.
Now we prove the remaining inequality, ηZ � ‖e‖a + h.o.t. Since Pi is a linear

L2(Vi) projector, we have that

‖σh − Piσh‖L2(Vi) ≤ ‖σh − Piσ‖L2(Vi).

Adding and subtracting σ in the right-hand side and applying the triangle’s inequality
we get

‖σh − Piσ‖L2(Vi) ≤ ‖σh − σ‖L2(Vi) + ‖σ − Piσ‖L2(Vi) = ‖σh − σ‖L2(Vi) + h.o.t.

since ‖σ−Piσ‖L2(Vi) = h.o.t. for σ smooth. The summation over all xi concludes the
proof of the theorem.

3.2. Analysis of the upwind scheme in the H1-norm. This section is de-
voted to the case when an upwind approximation is applied to the convection term,
namely, we consider problem (2.11).

Definition 3.3. For an element K ∈ T we denote by γK := ∪γij (K ∩ γij) and
set

ηup
E :=

( ∑
K∈T

∑
γij⊂γK

‖h1/2b · n (uh(xi) − uh)‖2
L2(γij)

)1/2

,

ηup
N := ‖h1/2b · n ∇uh‖L2(Γout

N ).
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Theorem 3.4. Let the assumptions of Theorems 3.1 and 3.2 be satisfied, and let
the upwind approximation be applied to the convection term. Then

‖e‖a � ηZ + ηN + ηup
E + ηup

N + h.o.t.(3.16)

Proof. Since aup
h (uh, v

∗) = F (v∗) and ah(u, v
∗) = F (v∗) for v∗ ∈ S∗

h we have
the orthogonality condition ah(u, v

∗) − aup
h (uh, v

∗) = 0. Choosing v∗ = ē we get the
following representation for the energy norm of the error:

‖e‖2
a = a(e, e) − ah(u, ē) + aup

h (uh, ē)

= {a(e, e) − ah(e, ē)} + {aup
h (uh, ē) − ah(uh, ē)}

= {a(e, e) − ah(e, ē)} + {Cup
h (uh, ē) − Ch(uh, ē)} .

For the first term, a(e, e) − ah(e, ē), we use the same approach as in the analysis of
the scheme without upwind (see Lemma 3.1) and show that

a(e, e) − ah(u, e) = (f −∇h · σh − γuh, e− e) −
∫
E
[σh] · n (e− e) ds

−
∫

Γin
N

(g − σh · n) (e− e) ds−
∫

Γout
N

(A∇huh) · n (e− e) ds.(3.17)

This presentation allows us to use estimate (3.7) of Theorem 3.2.
For the second term, Cup

h (uh, ē) − Ch(uh, ē), we get

Cup
h (uh, ē) − Ch(uh, ē) =

∑
xi∈N0

h

ēi

{ ∑
j∈Π(i)

∫
γij

((b · n)+uh(xi)+(b · n)−uh(xj)−b · nuh) ds

+

∫
∂Vi∩Γout

N

(b · n uh(xi) − b · n uh) ds
}
.

Here the unit normal vector n on γij is oriented in such a way that b ·n ≥ 0. We want
to express the above sum as a sum over the elements. To do so we specify that the
indexes (ij) are oriented so that (xi − xj) · n ≤ 0. We get that

Cup
h (uh, ē) − Ch(uh, ē) =

∑
K∈Th

{ ∑
γij⊂K

(ēi − ēj)

∫
γij

b · n (uh(xi) − uh) ds

+
∑
Vi∩K

ēi

∫
∂Vi∩Γout

N

b · n (uh(xi) − uh) ds

}
.

We denote by [ē] := ei − ēj the jump of ē across γij and take into account that [ē −
e] = [ē]. Then, by the Schwarz inequality, the term involving the integral over γij
is bounded by C‖[e − ē]‖L2(γij) ‖b · n (uh(xi) − uh)‖L2(γij). As before, using trace,
Poincaré’s, and/or Friedrichs’s inequalities we get

‖[e− ē]‖L2(γij) � h
1/2
i ‖∇e‖L2(Vi),

which bounds the integrals over γij in the error representation with ηup
E .
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For the terms involving integration over Γout
N we have

|uh(xi) − uh(x)| ≤ |∇uh · t(x)|.|xi − x|.
Here t(x) is a unit vector along ∂Vi ∩K, an edge in two dimensions, or a face in three
dimensions. Then in two dimensions t is simply a unit vector perpendicular to n,
while in three dimensions t(x) depends on the position of x on the face and is again
perpendicular to n. In both cases |uh(xi) − uh(x)| ≤ |hK∇uh|. Using the Schwarz
inequality we bound the term involving integration over Γout

N in the following way:∑
Vi∩K

ēi

∫
∂Vi∩Γout

N

b · n (uh(xi) − uh) ds ≤ C‖∇e‖.‖h1/2b · n ∇uh‖L2(Γout
N ),

which eventually gives the term ηup
N in (3.16) and completes the proof.

3.3. Error estimates in L2. We use duality techniques to get error estimators
for different quantities of the error. In this subsection we will show how to use the
duality technique in order to derive an error estimator in the global L2(Ω)-norm for
the scheme without upwinding. The main assumption in this section is that the
solution of problem (1.1) is H2 regular.

Definition 3.4. We define the residual L2 a posteriori error estimator ρ̃ as

ρ̃ := (η̃2
R + η̃2

E + η̃2
N )1/2,(3.18)

where

η̃2
R := ‖h (RK − R̄K)‖2 + ‖h2RK‖2,

η̃2
E := ‖h1/2 (RE − R̄E)‖2

L2(E) + ‖h3/2RE‖2
L2(E),

η̃2
N := ‖h1/2 (Rin

E − R̄in
E )‖2

L2(Γin
N ) + ‖h3/2Rin

E‖2
L2(Γin

N )

+ ‖h1/2 (Rout
E − R̄out

E )‖2
L2(Γout

N ) + ‖h3/2Rout
E ‖2

L2(Γout
N ),

and R̄K , R̄E, R̄in
E , and R̄out

E are the K ∈ T , E ∈ E, E ∈ Γin
N , and E ∈ Γout

N piecewise
mean values of, correspondingly, RK , RE , R

in
E , and Rout

E introduced in Definition 3.1.
Our aim is to show that the estimator ρ̃ is reliable in the L2(Ω)-norm. The a

posteriori L2(Ω) error analysis involves the following continuous dual problem: Find
ẽ ∈ H1

D(Ω) such that

a(v, ẽ) = (e, v) for any v ∈ H1
D(Ω),(3.19)

where e is the exact error, defined as before.
Theorem 3.5. Let the solution ẽ of the dual problem (3.19) be H2(Ω) regular.

If the coefficients of our basic problem (1.1) are sufficiently regular, namely RK , RE,
Rin
E , and Rout

E are correspondingly in H1(K), H1/2(E), H1/2(Γin
N ), and H1/2(Γout

N ),
then the residual L2 a posteriori error estimator (3.18) from Definition 3.4 is reliable,
i.e., ‖e‖ � ρ̃.

Proof. Let v = e in (3.19) and argue as in the proof of Lemma 3.1 to show

‖e‖2 = a(e, ẽ) = (RK , ẽ− e∗) − (RE , ẽ− e∗)L2(E)

− (Rin
E , ẽ− e∗)L2(Γin

N ) − (Rout
E , ẽ− e∗)L2(Γout

N )(3.20)
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for an arbitrary e∗ ∈ S∗
h. To evaluate the right-hand side of this identity we use

the nodal interpolation operator Ih and its properties. If ẽ ∈ H2(Ω), the Sobolev
inequalities [12, Theorem 4.3.4] guarantee that Ihẽ is well defined. The properties of
the interpolant are well established in the finite element literature (see, for example,
[12]), namely,

h−2
K ‖ẽ− Ihẽ‖L2(K) + h−1

K |ẽ− Ihẽ|H1(K) + h
−3/2
K ‖ẽ− Ihẽ‖L2(∂K) ≤ CI,K |ẽ|H2(K).

(3.21)

Now, in (3.20) we choose e∗ = I∗hIhẽ so that ẽ−e∗ = (ẽ−Ihẽ)+(Ihẽ−I∗hIhẽ). Further,
we apply the Schwarz inequality on the integrals involving ẽ − Ihẽ and use (3.21) to
get the bound

(RK , ẽ− Ihẽ) − (RE , ẽ− Ihẽ)L2(E) − (Rin
E , ẽ− Ihẽ)L2(Γin

N ) − (Rout
E , ẽ− Ihẽ)L2(Γout

N )

�
(‖h2 RK‖ + ‖h3/2 RE‖L2(E) + ‖h3/2 Rin

E‖L2(Γin
N ) + ‖h3/2 Rout

E ‖L2(Γout
N )

)|ẽ|H2(Ω).

For the integrals involving Ihẽ − I∗hIhẽ we first note that if K is a fixed element in
T , then for every vertex xi of K, the quantities |K ∩ Vi| (volume in three dimensions
and area in two dimensions) are equal. Also, for vertices xi on the face/edge E we
have that the boundary quantities |E ∩ Vi| (area in three dimensions and length in
two dimensions) are also equal. Therefore,∫

K

(Ihẽ− I∗hIhẽ)dx = 0,

∫
E

(Ihẽ− I∗hIhẽ)ds = 0.

We apply the last fact to the integrals involving Ihẽ − I∗hIhẽ in order to subtract
from RK , RE , Rin

E , and Rout
E their mean values R̄K , R̄E , R̄in

E , and R̄out
E . Then, using

Schwarz and Poincaré inequalities we bound the term involving Ihẽ− I∗hIhẽ, namely,

|(RK , I∗hIhẽ− Ihẽ) − (RE , I
∗
hIhẽ− Ihẽ)L2(E) − (Rin

E , I
∗
hIhẽ− Ihẽ)L2(Γin

N )

− (Rout
E , I∗hIhẽ− Ihẽ)L2(Γout

N )|

�
(‖h (RK − R̄K)‖ + ‖h1/2(RE − R̄E)‖L2(E)

+ ‖h1/2 (Rin
E − R̄in

E )‖L2(Γin
N ) + ‖h1/2 (Rout

E − R̄out
E )‖L2(Γout

N )

)‖ẽ‖H2(K),

where we have used the inequality

‖Ihẽ− I∗hIhẽ‖L2(K) � hK |Ihẽ|H1(K) � hK |ẽ− Ihẽ|H1(K) + hK |ẽ|H1(K)

� h2
K |ẽ|H2(K) + hK |ẽ|H1(K) � hK |ẽ|H2(K).

Applying the above estimates, the stability of the dual problem with respect to
the right-hand side, ‖ẽ‖H2(Ω) ≤ C‖e‖, and obvious manipulations, we get that the
L2 a posteriori error estimator ρ̃ is reliable. Moreover, since the coefficients of
(1.1) are sufficiently regular we can apply Poincaré’s inequality to the terms ‖RK −
R̄K‖L2(K), ‖RE − R̄E‖L2(E), ‖Rin

E − R̄in
E‖L2(E), and ‖Rout

E − R̄out
E ‖L2(E) to get one

additional power of h that will make the error estimator of second order.
Note that we did not explicitly apply Poincaré’s inequality in the definition of

the error estimator in order to make it well defined for problems with less than that
stated in the theorem regularity.



ADAPTIVE FINITE VOLUME METHODS 2515

4. Adaptive grid refinement and solution strategy. In this section we
present the adaptive mesh refinement strategy that we use. It is based on the grid
refinement approach in the finite element methods (see, e.g., [11, 36]). A different grid
adaptation strategy, again in the finite element method, has been proposed, justified,
and used in [20].

For a given finite element partitioning T , desired error tolerance ρ, and a norm
in which the tolerance to be achieved is, say ||| · |||, do the following:

• compute the finite volume approximation uh ∈ Sh, as given in subsection 2.2;
• using the a posteriori error analysis, compute the errors ρK for all K ∈ T ;
• mark those finite elements K for which ρK ≥ ρ/

√
N ; here N is the number

of elements in T ;
• if

∑
K∈T ρ

2
K > ρ2, then refine the marked elements;

• additionally refine until a conforming mesh is reached;
• repeat the above process until no elements have been refined.

For the 2-D case we refine marked elements by uniformly splitting the marked
triangles into four. The refinement to conformity is done by bisection through the
longest edge. For the 3-D version of the code the elements (tetrahedrons) are refined
using the algorithm described by Arnold, Mukherjee, and Pouly in [5].

The described procedure yields error control and optimal mesh (heuristics), which
are the goals in the adaptive algorithm. The nested meshes obtained in the process
are used to define multilevel preconditioners. The initial guess for every new level is
taken to be the interpolation of uh from the previous level.

5. Numerical examples. Here we present two sets of numerical examples to
test the our theoretical results. The first two examples are simple 2-D elliptic prob-
lems while the remaining tests illustrate our approach on 3-D problems of flow and
transport in porous media.

5.1. 2-D test problems. In Example 1 we consider problems with known solu-
tions and compare the behavior of the error estimators with the exact errors. Example
2 is for discontinuous matrix A(x) with an unknown solution.

Example 1. We consider three Dirichlet problems for the Poisson equation on
an L-shaped domain with known exact solutions u = r4/3 sin 4θ

3 (Problem 1), u =

r2/3 sin 2θ
3 (Problem 2), and u = r1/2 sin θ

2 (Problem 3). These functions belong to
H1+s(Ω) with s almost 4/3, 2/3, and 1/2, respectively. In Figure 4 we show the mesh
and the error for Problem 2 after four levels of local refinement.

The theory shows that the a posteriori error estimators ηE and ηZ are equivalent
to the H1-norm of the error. This theoretical result is confirmed by our computations,
which are summarized in Figure 5. The left picture gives the exact error (solid line)
and the a posteriori error estimators ηZ (dashed line) and ηE (dash-dotted line) for
the three problems over the different levels of the mesh. The levels are obtained
by uniform refinement (splitting every triangle into 4) and have 65, 255, 833, 3,201,
12,545, 49,665, and 197,633 nodes correspondingly for levels 1, . . . , 7. The errors are
printed in logarithmic scale in order to demonstrate the linear behavior of the error
as a function of the level. For exact solutions in H1+1/2−ε, H1+2/3−ε, and H1+4/3−ε

(ε > 0) one can see the theoretically expected rate of error reduction over the levels of
1/2, 2/3, and 1 correspondingly. One can observe that both ηZ and ηE are equivalent
to the exact error, as proved in the theoretical section. The same is true when the
local refinement method from section 4 is applied. The numerical results are given in
Figure 5, right. The y scale is again the error, and the x scale is the refinement level.
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Fig. 4. Locally refined mesh and the corresponding error after four levels of refinement.

Fig. 5. Comparison of the H1-norm of the error for solutions H1+4/3−ε (Problem 1), H1+2/3−ε

(Problem 2), and H1+1/2−ε (Problem 3) on a sequence of uniformly refined grids and for grids refined
locally by using the a posteriori error estimates. Left: Exact error, ηZ , and ηE for uniformly refined
grids. Right: Exact error, ηZ , and ηE for locally refined grids.

The error tolerances supplied to the refinement procedures are 0.0026 for Problem 1,
0.0122 for Problem 2, and 0.0385 for Problem 3. These are the exact errors for the
problems considered on level 7 of the uniformly refined mesh. The result shows that,
on the locally refined meshes, as in the uniform refinement case, both ηZ and ηE are
equivalent to the exact error. Another observation is that, although the meshes are
refined, only locally is the rate of error reduction over the refinement levels the same
as on the uniformly refined meshes (compare the error reduction slopes with the ones
in Figure 5, left).

Finally, we demonstrate the efficiency of the adaptive error control by giving
the number of the degrees of freedom (DOF) on the locally refined mesh levels from
Figure 5, right, and comparing them with the number of DOF on the uniformly refined
mesh levels (see Table 5.1). Note the difference in the order of the mesh sizes for
uniform refinement and local refinement for Problems 2 and 3. For Problem 1 we have
full elliptic regularity, and ηZ/ηE are supposed to lead to uniform refinement, which
is confirmed by the numerical experiment. The results demonstrate the efficiency of
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Table 5.1

Number of DOF for the levels resulting from local refinement based on the ηZ and ηE error
estimators. The error tolerances supplied to the refinement procedures are 0.0026 for Problem 1,
0.0122 for Problem 2, and 0.0385 for Problem 3 (see Example 1).

Uniform Problem 1 Problem 2 Problem 3
Level

mesh ηZ ηE ηZ ηE ηZ ηE
1 65 65 65 65 65 65 65
2 255 225 225 225 225 213 175
3 833 833 833 815 805 467 375
4 3201 3201 3201 2025 2080 940 695
5 12545 12545 12545 3990 4219 1461 1033
6 49665 49665 49665 5879 6249 1889 1357
7 197633 169618 197626 7322 7815 2183 1634
8 581852 8365 9034 2508 1776
9 9793 1892
10 10097 1986

Fig. 6. Convection-diffusion problem; the inhomogeneities are represented by three layers. Left:
The locally refined mesh after four levels of adaptive refinement (3,032 nodes and 5,910 triangles).
Right: The level curves of the solution.

applying local refinement based on ηZ and ηE for problems with singular solutions.
Example 2. We consider problem (1.1) with Ω shown in Figure 6. In this problem

ΓD is the upper boundary, b = (1,−0.5), and f = 0. The domain is taken to have
three layers (see Figure 6) with A(x) = 0.01 I in the top layer, 0.05 I in the internal
layer, and 0.001 I at the bottom. The Dirichlet boundary value is 1 for x < 0.2 and
0 otherwise. On the Neumann boundary we take g = 0. In this problem we have
used the upwind approximation (2.11) and the local refinement procedures based on
ηZ and ηE .

Since the exact solution is not known we judge the quality of the error estimators
ηZ and ηE by comparing the results with the ones on uniformly refined meshes. Also,
when choosing problems with known local behavior we expect the estimators to lead
to refinement that closely follows the local behavior of the solution profile. This is a
standard testing approach (see, for example, [4]).
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Fig. 7. Pressure computations for a nonhomogeneous reservoir. Left: Contour curves of the
pressure for the cross section x2 = 250. Right: Contour curves of the pressure for the cross section
x3 = 200.

Figure 6 shows the mesh on level 4 (left) with 3,032 nodes and 5,910 triangles.
On the right are the solution level curves. This particular mesh was obtained by
refinement based on ηZ with ρ = 4% of |uh|1 (≈ 0.1616, i.e., ρ = 0.006464). The
mesh obtained by four levels of uniform refinement has 38,257 DOF. The discrete
solutions have the same qualitative behavior in both cases. As expected, the mesh
refinement follows the discrete solution profile. Refinement based on ηE , compared
to ηZ , leads to slightly different, but qualitatively and quantitatively similar, meshes.

5.2. 3-D problems of flow and transport in porous media. This test is
very similar to the 2-D Example 2. Here we test the error estimators ηZ and ηE
on a real 3-D application in fluid flow and transport in porous media. Again, the
exact solution is unknown but we know its local behavior, which is due to boundary
layers, discontinuities of coefficients, and localized sources. The problem is described
as follows.

A steady-state flow, with Darcy velocity v measured in ft/yr, has been established
in a parallelepiped-shaped reservoir Ω = [0, 1000]× [−500, 500]× [0, 500] (see Figure 7,
right). First, we determine the pressure p(x) in Ω as the solution u(x) of problem
(1.1) with b = 0, γ = 0, and A(x) = D(x), where D(x) is the permeability tensor. The
pressure at faces x1 = 0 and x1 = 1000 is constant (correspondingly, 2,000 and 0).
The rest of the boundary is subject to a no-flow condition. We take the permeability
D(x) to be 32 I everywhere in Ω except in the layer (see Figure 7, middle) where
D(x) is taken to be 10 times smaller than in the rest of the domain, i.e., in the layer
D(x) = 3.2 I.

Also, we have six production wells. For all of them x3 is in the range 0, . . . , 400.
Their (x1, x2) coordinates are correspondingly (200, −250), (400, −250), (200, 0),
(400, 0), (200, 250), and (400, 250). We treat a well simply as a line-delta function
(sink) along the well axis. Production rates Q = 16,000 l/yr for wells in plane x2 = 0,
and Q = 8,000 l/yr for the rest, are the intensities of the sink. Figure 7 shows half of
the mesh and the contour curves of the pressure for the cross section x2 = 250 (left)
after five levels of local refinement. It has 19,850 tetrahedrons and 3,905 nodes. The
right picture shows the contour curves for the cross section x3 = 200.
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Fig. 8. Concentration computations for a nonhomogeneous reservoir. Left: The 3-D mesh
on refinement level 11 with 219,789 tetrahedrons and 39,752 nodes. Right: Concentration contour
curves for cross section x2 = 250.

Fig. 9. Concentration level curves at cross sections x3 = 200 (left) and x1 = 400 (right).

The weighted pressure gradient −D∇p forces the groundwater to flow. The trans-
port of a contaminant dissolved in the water (in our case, benzene) is described by
the convection-diffusion-reaction equation (1.1), where u(x) represents the benzene
concentration, b is the Darcy velocity v = −D∇p, γ is the biodegradation rate, and
A(x) is the diffusion-dispersion tensor:

A(x) = kdiffI + ktv
T v/|v| + kl(|v|2I − vT v)/|v|.

Here kdiff = 0.0001, kt = 21, and kl = 2.1 are the coefficients of diffusion, transverse,
and longitudinal dispersions, respectively. A steady piecewise linear in x3 and constant
in x2 leakage of benzene of maximum 30 mg/l is applied on the boundary strip x1 = 0
and 50 ≤ x3 ≤ 350. The leakage is 30 mg/l at x3 = 200 and drops linearly to 0 at x3 =
50 and 350. The rest of the boundary is subject to a homogeneous Neumann boundary
condition. The dispersion/convection process causes the dissolved benzene to disperse
in the reservoir. The biodegradation transforms it into a solid substance which is
absorbed by the soil. This leads to a decrease in the benzene. The computations are
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for the case of low absorption rate γ = 0.05. We approximate the convection term
using the upwind approximation (2.10).

Figure 8 shows the obtained mesh in half of the domain (left) on refinement
level 11. The mesh has 219,789 tetrahedrons and 39,752 nodes. The first five level
of refinement are for the pressure equation, the rest for the concentration. Figure
8 (right) shows the level curves for the concentration in the reservoir cross section
x2 = 250 on the same refinement level. Figure 9 gives the level curves at two more
cross sections, x3 = 200 (left) and x1 = 400 (right).
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[6] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations,
SIAM J. Numer. Anal., 15 (1978), pp. 736–754.

[7] I. Babuska and T. Strouboulis, The Finite Element Method and Its Reliability, Oxford
University Press, London, 2001.

[8] R. E. Bank and D. J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal.,
24 (1987), pp. 777–787.

[9] R. E. Bank and R. K. Smith, A posteriori error estimates based on hierarchical bases, SIAM
J. Numer. Anal., 30 (1993), pp. 921–935.

[10] S. Bartels and C. Carstensen, Each averaging technique yields reliable a posteriori error
control in FEM on unstructured grids. Part II: Higher order FEM, Math. Comp., 71 (2002),
pp. 971–994.

[11] R. Becker and R. Rannacher, A feed-back approach to error control in finite element meth-
ods: Basic analysis and examples, East-West J. Numer. Math., 4 (1996), pp. 237–264.

[12] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
2nd ed., Springer-Verlag, New York, 2002.

[13] Z. Cai, On the finite volume element method, Numer. Math., 58 (1991), pp. 713–735.
[14] C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error

control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and
mixed FEM, Math. Comp., 71 (2002), pp. 945–969.

[15] C. Carstensen and S. A. Funken, Constants in Clément-interpolation error and residual-
based a posteriori estimates in finite element methods, East-West J. Numer. Anal., 8 (2000),
pp. 153–175.

[16] C. Carstensen and S. A. Funken, Fully reliable localized error control in the FEM, SIAM J.
Sci. Comput., 21 (2000), pp. 1465–1484.

[17] C. Carstensen and S. A. Funken, A posteriori error control in low-order finite element dis-
cretizations of incompressible stationary flow problems, Math. Comp., 70 (2001), pp. 1353–
1381.

[18] S. H. Chou and Q. Li, Error estimates in L2, H1, and L∞ in covolume methods for elliptic
and parabolic problems: A unified approach, Math. Comp., 69 (2000), pp. 103–120.

[19] G. Dagan, Flow and Transport in Porous Formations, Springer-Verlag, Berlin, Heidelberg,
1989.

[20] W. Dörfler and O. Wilderotter, An adaptive finite element method for a linear elliptic
equation with variable coefficients, ZAMM Z. Angew. Math. Mech., 80 (2000), pp. 481–491.

[21] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computational Differential Equations,
Cambridge University Press, Cambridge, UK, 1996.

[22] K. Eriksson and C. Johnson, An adaptive finite element method for linear elliptic problems,
Math. Comp., 50 (1988), pp. 361–382.



ADAPTIVE FINITE VOLUME METHODS 2521
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Abstract. We describe how classical Floquet theory may be utilized, in a continuation frame-
work, to construct an efficient Fourier spectral algorithm for approximating periodic orbits. At
each continuation step, only a single square matrix, whose size equals the dimension of the phase-
space, needs to be factorized; the rest of the required numerical linear algebra just consists of back-
substitutions with this matrix. The eigenvalues of this key matrix are the Floquet exponents, whose
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1. Introduction. Floquet theory is the mathematical theory of linear, periodic
systems of ordinary differential equations (ODEs) and as such appears in every stan-
dard book on ODEs, e.g., [1, 20]. (We especially recommend, however, the extensive
elementary discussion in [19].) In this paper we wish to utilize Floquet theory in or-
der to efficiently compute approximations to periodic orbits of nonlinear autonomous
systems. The basic equations defining a periodic orbit are nonlinear, but applying a
Newton-like method for their solution will lead to linear, periodic systems. It is for
this reason that Floquet theory is so important for us.

The nonlinear, autonomous system we shall consider is

ẋ(t) = F (x(t), λ), F : R
n × R �→ R

n;(1.1)

i.e., F is a smooth function on R
n and depends on a parameter λ. For the rest of this

section (and sections 2 and 4), however, we shall temporarily consider

ẋ(t) = F (x(t)), F : R
n �→ R

n.(1.2)

The simplest solutions of (1.2) are the stationary points x� ∈ R
n defined by

F (x�) = 0.

We will only be interested in stationary points at which periodic orbits are created,
i.e., the famous Hopf bifurcation points considered in section 3. It is the next simplest
solution of (1.2) that this paper is concerned with.

Definition. u� : R �→ R
n is a periodic orbit for (1.2), with (minimal) period

2πT � > 0, if

u̇�(t) = F (u�(t)) ∀t ∈ R,

u�(0) = u�(2πT �),

u�(t) �= u�(0) ∀t ∈ (0, 2πT �).

∗Received by the editors August 28, 2003; accepted for publication (in revised form) June 19,
2004; published electronically March 31, 2005.

http://www.siam.org/journals/sinum/42-6/43417.html
†Department of Mathematics, Imperial College of Science, Technology and Medicine, 180 Queen’s

Gate, London SW7 2AZ, UK (g.moore@imperial.ac.uk).

2522



FLOQUET THEORY 2523

In order to set up an appropriate set of equations for computing a periodic orbit, two
key facts should be kept in mind:

• T � that defines the period is also unknown;
• for any c ∈ R, u�(t+ c) describes the “same” periodic orbit.

(More precisely, u�(t) and u�(t+ c) differ only by phase.)
The problem of working with an unknown period is dealt with by defining

v�(θ) ≡ u�(T �θ).

Hence v� has period 2π and satisfies

v̇�(θ) = T �F (v�(θ)).

Thus we should solve

v̇(θ) = TF (v(θ)), v(0) = v(2π)(1.3)

for both the function v and the scalar T . Since there is an extra unknown, i.e., T ,
we must have an extra scalar equation. This fits in with the fact that v�(θ + c) is a
solution for any c ∈ R. The modern way of “fixing the phase,” i.e., constructing an
extra scalar equation which determines a unique c, is as follows.

• We assume that we know a nearby periodic orbit v0(θ) of period 2π. This is
a natural assumption to make in a continuation framework.

• We fix the phase by seeking the value of c which makes v�(θ + c) as close as
possible to v0(θ), e.g.,

min
c∈R

∫ 2π

0

‖v�(θ + c) − v0(θ)‖2
2 dθ.

• Setting the derivative with respect to c equal to zero gives∫ 2π

0

v0(θ) · v̇�(θ + c) dθ = 0,

but it is convenient to integrate-by-parts and write∫ 2π

0

v̇0(θ) · v�(θ + c) dθ = 0.

Hence our final set of equations for a periodic orbit is

v̇(θ) = TF (v(θ)), v(0) = v(2π),∫ 2π

0

v̇0(θ) · v(θ) dθ = 0.
(1.4)

We shall follow this idea later in section 4, but using a more appropriate inner product.
As we shall see, Floquet theory is best combined with a Fourier method to approx-

imate periodic orbits. This leads to the question, why aren’t Fourier spectral meth-
ods more popular, compared to the completely dominant collocation with piecewise-
polynomials [11, 14, 23, 24]? (Of course, Fourier approximation of periodic orbits has
been considered in a few papers, e.g., [9, 10], but not using the present approach. For
example, in [30] it is suggested that an approximation to the monodromy matrix be
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computed using an initial-value algorithm, which we regard as generally unaccept-
able.) So long as the solution one is trying to approximate is smooth, the standard
advantage of spectral methods has always been their approximation power, and the
standard disadvantage has been that they require the solution of linear equations with
nonsparse coefficient matrices. The key task of the present paper is to emphasize that
this disadvantage is not present when using Fourier spectral methods to approximate
periodic orbits in a continuation framework. The underlying reason can be split into
three parts.

• Fourier mode decoupling occurs for linear, constant-coefficient differential
equations, as described in section 2.

• Floquet theory transforms linear, periodic differential equations into constant-
coefficient form, as described in section 4.

• The Floquet variables required for this transformation can be updated effi-
ciently as part of the continuation process, as described in section 5.

The practical difference between piecewise-polynomial and Fourier approximation be-
comes clear if one considers the linear, periodic system

−ẏ(θ) + A(θ)y(θ) = f(θ),

where f : [0, 2π] �→ R
n and A : [0, 2π] �→ R

n×n is given periodic data, and we wish
to determine a periodic solution y : [0, 2π] �→ R

n. Applying a piecewise-polynomial
collocation method at the N mesh-points

0 = θ0 < θ1 < · · · < θN−1 < θN = 2π

leads to an Nn×Nn coefficient matrix with the almost block-bidiagonal structure⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

� �
� �

. . .
. . .

. . .
. . .

� �
� �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(1.5)

where each � is of size n× n. (We assume that condensation of local parameters has
been applied, as in [3].) With a spectral method based on Fourier modes, however,
just a single n× n matrix needs to be factorized; all other matrix operations are just
back-substitutions with quasi-upper triangular matrices. We must admit, however,
that it is necessary to use a small multiple of Nn2 locations for storing Floquet
information, i.e., roughly the same number of nonzero elements as in (1.5).

To conclude this introduction, we describe the contents of this paper. In section 2,
we show how mode-decoupling occurs for Fourier approximation of constant-coefficient
problems, not only for 2π-periodic equations but also for another form of periodicity
that is (in general) required by the Floquet theory. Some of these results are then
applied in section 3 in order to efficiently calculate periodic orbits created at a Hopf
bifurcation point. In section 4, we describe Floquet theory in the practical form that
we shall utilize it. It is then immediately employed, in section 5, to advance a periodic
orbit over a single continuation step. To illustrate the performance of the previous
algorithms, we present some numerical results in section 6. Finally, section 7 shows
how the Floquet theory makes it very easy to move onto the new periodic orbits
created at a period-doubling point. For a background to many of the topics discussed
in this paper, we recommend [12, 13].
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2. Constant-coefficient equations. For periodic, constant-coefficient equa-
tions, Fourier analysis is especially simple because the Fourier modes decouple. We
shall require two spaces of periodic functions, which we denote by Y+ and Y−, re-
spectively. The first of these is just the usual space of 2π-periodic functions, spanned
by

1, cos θ, sin θ, cos 2θ, sin 2θ, . . . .

The second of these is the subspace of 4π-periodic functions which satisfy

y(θ) = −y(θ + 2π)

and is therefore spanned by

cos θ2 , sin θ
2 , cos 3θ

2 , sin 3θ
2 , . . . .

Of course, the direct sum

Y+ ⊕ Y−

gives all 4π-periodic functions. The key reason why the space Y− is important to
us is that the product of two of its elements lies in Y+, and such products will arise
naturally in section 4. Similarly, the product of an element of Y+ with an element of
Y− lies in Y−.

We mention here that, throughout this paper, Fourier series will be described
using real trigonometric functions rather than the mathematically more elegant com-
plex exponentials. This is solely because we wish to remain close to the practical
implementation of our algorithms.

2.1. Equations in Yn
+. For a constant n × n matrix A, consider the linear,

periodic, homogeneous differential equation

−ż(θ) + Az(θ) = 0, z ∈ Yn+,

which means that each component of z is in Y+. If the set {mi : m ∈ Z} does not
contain any eigenvalue of A, then this equation only has the trivial solution z(θ) ≡
0. Under this assumption, consider the linear, periodic, inhomogeneous differential
equation

−ż(θ) + Az(θ) = f(θ), z ∈ Yn+,(2.1)

for a given f ∈ Yn+. If

f(θ) ≡ f c0 +

∞∑
m=1

{
f cm cosmθ + fsm sinmθ

}
,

then the Fourier coefficients of

z(θ) ≡ zc0 +

∞∑
m=1

{
zcm cosmθ + zsm sinmθ

}
are given by

Azc0 = f c0(2.2a)
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and (
A −mI
mI A

)(
zcm
zsm

)
=

(
f cm
fsm

)
, m = 1, 2, . . . .(2.2b)

Since the eigenvalues of
(

A −mI
mI A

)
are related to those of A through the mapping

µ→ µ±mi,

the above eigenvalue assumption means that
(

A −mI
mI A

)
is nonsingular for all m ∈ N.

2.2. Equations in Yn
−. Similarly, if we ask the question whether the linear,

periodic, homogeneous differential equation

−ż(θ) + Az(θ) = 0, z ∈ Yn−,

has any nontrivial solution, then the answer is that it does not, provided that the set{
[m− 1

2 ]i : m ∈ Z
}

contains no eigenvalue of A. Furthermore, if f ∈ Yn− is given, the
linear, periodic, inhomogeneous differential equation

−ż(θ) + Az(θ) = f(θ), z ∈ Yn−,(2.3)

has a unique solution under this assumption. If

f(θ) ≡
∞∑
m=1

{
f cm cos [m− 1

2 ]θ + fsm sin [m− 1
2 ]θ

}
,

then the Fourier coefficients of

z(θ) ≡
∞∑
m=1

{
zcm cos [m− 1

2 ]θ + zsm sin [m− 1
2 ]θ

}
are given by (

A −[m− 1
2 ]I

[m− 1
2 ]I A

)(
zcm
zsm

)
=

(
f cm
fsm

)
, m = 1, 2, . . . .(2.4)

2.3. Computational algorithm in Yn
+. Now we show how to efficiently com-

pute spectral approximations to the solution of (2.1). This is achieved by restricting to
a finite number of Fourier modes (m ≤M) and using accurate numerical quadrature
to approximate the Fourier coefficients of f .

Thus f in (2.1) is approximated by

f(θ) ≈ f̃ c0 +

M∑
m=1

{
f̃
c

m cosmθ + f̃
s

m sinmθ
}
,(2.5)

where

• f̃
c

0 ≡ 1

N

N∑
j=1

f(θj),

• f̃
c

m ≡ 2

N

N∑
j=1

f(θj) cosmθj , m = 1, 2, . . . ,M,

• f̃
s

m ≡ 2

N

N∑
j=1

f(θj) sinmθj , m = 1, 2, . . . ,M,
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and N ≡ 2M +1 with θj = 2πj
N , j = 1, . . . , N . In other words, we are using the fact

that

1

2π

∫ 2π

0

f(θ)g(θ) dθ =
1

N

N∑
j=1

f(θj)g(θj)(2.6)

when f and g are both in the subspace of Y+ spanned by

1, cos θ, sin θ, cos 2θ, sin 2θ, . . . , cosMθ, sinMθ.

Also the above transformation from function values to approximate Fourier coefficients
can be written in matrix form

Q+g
p =

√
N/2 g̃m,

where

gp ≡ (g(θ1), g(θ2), . . . g(θN ))T ,

g̃m ≡ (
√

2g̃c0, g̃
c
1, g̃

s
1, . . . g̃

c
M , g̃

s
M )T

with

g(θ) ≈ g̃c0 +

M∑
m=1

{
g̃cm cosmθ + g̃sm sinmθ

}
,

and Q+ is the N ×N orthogonal matrix with (i, j)th component

i = 1 odd i ≥ 3 even i

1/
√
N

√
2/N sin i−1

2 θj
√

2/N cos i2θj
.

Thus it can be applied to the point values of each component of f to obtain (2.5).
(For large M , it is more efficient to map between point values and approximate modal
values of f using the fast Fourier transform [17, 29]. In this case it may be preferable
to choose N to be slightly greater than 2M + 1, i.e., so as to be a highly composite
integer. The standard techniques for dealing with this situation are described in
[6, 29].) Now the approximate Fourier coefficients for z in (2.1),

z(θ) ≈ z̃c0 +

M∑
m=1

{
z̃cm cosmθ + z̃sm sinmθ

}
,

may be computed as in (2.2). Note that this is especially efficient when A has already
been reduced to Schur form [17]; i.e.,

A = QÛQT ,(2.7)

where Û ∈ R
n×n is a quasi-upper triangular matrix and Q ∈ R

n×n is an orthogonal
matrix. Then, if z̃c0 = Qẑc0, f̃

c

0 = Qf̂
c

0, and

z̃c/sm = Qẑc/sm

f̃
c/s

m = Qf̂
c/s

m

}
, m = 1, . . . ,M,
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we have only to solve the systems

Ûẑc0 = f̂
c

0 and

(
Û −mI

mI Û

)(
ẑcm
ẑsm

)
=

(
f̂
c

m

f̂
s

m

)
, m = 1, . . . ,M.

The first is just back-substitution, starting with ûnn or the 2 × 2 block(
ûn−1,n−1 ûn−1,n

ûn,n−1 ûnn

)
,

while the second only requires solving 2 × 2 or 4 × 4 systems like

(
ûnn −m
m ûnn

)
or

⎛⎜⎜⎝
ûn−1,n−1 ûn−1,n −m 0
ûn,n−1 ûnn 0 −m
m 0 ûn−1,n−1 ûn−1,n

0 m ûn,n−1 ûnn

⎞⎟⎟⎠ .

2.4. Computational algorithm in Yn
−. Now we show how to efficiently com-

pute spectral approximations to the solution of (2.3). Again this is achieved by
restricting to a finite number of Fourier modes (m ≤ M) and using accurate nu-
merical quadrature to approximate the Fourier coefficients of f . Thus f in (2.3) is
approximated by

f(θ) ≈
M∑
m=1

{
f̃
c

m cos [m− 1
2 ]θ + f̃

s

m sin [m− 1
2 ]θ

}
,(2.8)

where

• f̃
c

m ≡ 2

N

N∑
j=1

f(θj) cos [m− 1
2 ]θj , m = 1, 2, . . . ,M,

• f̃
s

m ≡ 2

N

N∑
j=1

f(θj) sin [m− 1
2 ]θj , m = 1, 2, . . . ,M,

and θj = 2πj
N , j = 1, . . . , N . In other words, we are now using the fact that (2.6)

also holds when f and g are both in the subspace of Y− spanned by

cos θ2 , sin θ
2 , cos 3θ

2 , sin 3θ
2 , . . . , cos [M − 1

2 ]θ, sin [M − 1
2 ]θ.

Again the above transformation from function values to approximate Fourier coeffi-
cients can be written in matrix form

Q−gp =
√
N/2 g̃m,

where

gp ≡ (g(θ1), g(θ2), . . . g(θN ))T ,

g̃m ≡ (g̃c1, g̃
s
1, . . . g̃

c
M , g̃

s
M )T

with

g(θ) ≈
M∑
m=1

{
g̃cm cos [m− 1

2 ]θ + g̃sm sin [m− 1
2 ]θ

}
,
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and Q− is the 2M ×N matrix with orthonormal rows and (i, j)th component

i even i odd√
2/N sin i−1

2 θj
√

2/N cos i2θj
;

the inverse transformation similarly being

gp =
√
N/2 QT− g̃

m.

Thus it can be applied to the point values of each component of f to obtain (2.8).
(Again, for large M , the mapping between point values and approximate modal values
of f is more efficiently carried out by a variant of the fast Fourier transform.) Now
the approximate Fourier coefficients for z in (2.3),

z(θ) ≈
M∑
m=1

{
z̃cm cos [m− 1

2 ]θ + z̃sm sin [m− 1
2 ]θ

}
,

may be computed as in (2.4) above. Note that this is again especially efficient when
A has already been reduced to Schur form as in (2.7). Then, if

z̃c/sm = Qẑc/sm

f̃
c/s

m = Qf̂
c/s

m

}
, m = 1, . . . ,M,

we have only to solve the systems(
Û −[m− 1

2 ]I

[m− 1
2 ]I Û

)(
ẑcm
ẑsm

)
=

(
f̂
c

m

f̂
s

m

)
, m = 1, . . . ,M.

This just involves back-substitution, e.g., starting with the 2 × 2 system(
ûnn −[m− 1

2 ]
[m− 1

2 ] ûnn

)
or the 4 × 4 system⎛⎜⎜⎝

ûn−1,n−1 ûn−1,n −[m− 1
2 ] 0

ûn,n−1 ûnn 0 −[m− 1
2 ]

[m− 1
2 ] 0 ûn−1,n−1 ûn−1,n

0 [m− 1
2 ] ûn,n−1 ûnn

⎞⎟⎟⎠ .

3. Hopf bifurcation. In this section we look at a straightforward application
of the ideas in sections 2.1 and 2.3. We were surprised that this does not seem to
have appeared in the literature before, the closest example we have found being [16],
which does not, however, take full advantage of the mode-decoupling.

Hopf bifurcation refers to the creation of small amplitude periodic orbits at a par-
ticular point on a curve of stationary points. For the parameter-dependent equation
(1.1), we shall consider a stationary point (x�, λ�) satisfying the following properties.1

1For simplicity, we assume that the curve of stationary points is parametrizable by λ; cf. [18].
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(a) F (x�, λ�) = 0 and the Jacobian matrix J(x�, λ�) is nonsingular. Thus the
implicit function theorem tells us that there is a locally unique curve of sta-
tionary points passing through (x�, λ�). This may be parametrized by λ, and
so we denote it by (x�(λ), λ).

(b) J(x�, λ�) has a pair of simple purely imaginary eigenvalues

±iω�, ω� > 0,

and no other eigenvalues of the form {miω� : m ∈ Z}. Hence the right
eigenvector pair ϕ�� ± iϕ�� satisfies

J(x�, λ�)[ϕ�� ± iϕ��] = ±iω�[ϕ�� ± iϕ��],

i.e.,

J(x�, λ�)ϕ�� = −ω�ϕ��, J(x�, λ�)ϕ�� = ω�ϕ��,

and the left eigenvector pair ψ�� ± iψ�� satisfies

J(x�, λ�)T [ψ�� ± iψ��] = ∓iω�[ψ�� ± iψ��],

i.e.,

J(x�, λ�)Tψ�� = ω�ψ��, J(x�, λ�)Tψ�� = −ω�ψ��.

A suitable choice of normalization is that

ϕ�� ·ϕ�� = 0, ‖ϕ��‖2
2 + ‖ϕ��‖2

2 = 1,

ψ�� ·ϕ�� = 1, ψ�� ·ϕ�� = 0,

ψ�� ·ϕ�� = 0, ψ�� ·ϕ�� = 1.

(c) If the n× n matrix K� is defined by

K� ≡ d

dλ

{
J(x�(λ), λ)

} ∣∣∣
λ=λ�

,

then

ψ�� · K�ϕ�� +ψ�� · K�ϕ�� �= 0.(3.1)

This means that, as λ moves away from λ�, the eigenvalues of J(x�(λ), λ)
corresponding to ±iω� are no longer purely imaginary; i.e., if these eigenvalues
are denoted

µ�(λ) ± iω�(λ),

then (3.1) is equivalent to dµ�

dλ (λ�) �= 0, since (from [22])

γ�� ≡ dµ�

dλ
(λ�) =

ψ�� · K�ϕ�� +ψ�� · K�ϕ��
2

,

γ�� ≡ dω�

dλ
(λ�) =

ψ�� · K�ϕ�� −ψ�� · K�ϕ��
2

.

(3.2)
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If, for λ near λ�, we look for a periodic orbit of (1.1) near x�, then first we make
our usual change-of-variable

v(θ) ≡ u(Tθ),

which switches from u(t) with unknown period 2πT to v(θ) with period 2π, and (1.1)
transforms to

v̇(θ) = TF (v(θ), λ), v ∈ Yn+.(3.3)

Since F (x�, λ�) = 0,

v(θ) ≡ x� + z(θ), z ∈ Yn+,

will be an approximate periodic orbit (of period 2πT ) if z(θ) is “small” and satisfies

−ż(θ) + TJ(x�, λ�)z(θ) = 0.(3.4)

But for T = 1
ω� , we know that (3.4) has solutions

z(θ) = Ca�(θ + c)

for arbitrary constants C & c, where

a�(θ) ≡ ϕ�� sin θ +ϕ�� cos θ.

Thus we seek solutions of (3.3) in the form

v(θ) ≡ x�(λ) + ε[a�(θ) + z(θ)](3.5)

for small nonzero ε, with

1

π

∫ 2π

0

a�(θ) · z(θ) dθ = 0(3.6a)

and

1

π

∫ 2π

0

p�(θ) · z(θ) dθ = 0,(3.6b)

where

p�(θ) ≡ da�

dθ
(θ) = ϕ�� cos θ −ϕ�� sin θ.

Equation (3.6a) fixes the amplitude of the periodic orbit, so we are using ε as a para-
metrization, and (3.6b) fixes the phase.

We shall soon require properties of the constant coefficient differential operator

− d

dθ
+ A�(3.7)

on Yn+, where

A� ≡ T �J(x�, λ�) and T � ≡ 1

ω�
.
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The right null-space of (3.7) is spanned by p�(θ) and a�(θ), while its left null-space
is spanned by

ã�(θ) ≡ ψ�� sin θ +ψ�� cos θ and p̃�(θ) ≡ ψ�� cos θ −ψ�� sin θ.

If we consider the augmented linear equation

−ż(θ) + A�z(θ) + T
T�p

�(θ) + λT �K�a�(θ) = 0,

1

π

∫ 2π

0

a�(θ) · z(θ) dθ = 0,

1

π

∫ 2π

0

p�(θ) · z(θ) dθ = 0

(3.8)

for unknowns (z(θ), T, λ), as a mapping from Yn+ × R
2 to itself; then (3.8) will only

have the trivial solution (0, 0, 0) if the determinant of⎡⎣ 1
T�

∫ 2π

0
ã�(θ) · p�(θ) dθ T �

∫ 2π

0
ã�(θ) · K�a�(θ) dθ

1
T�

∫ 2π

0
p̃�(θ) · p�(θ) dθ T �

∫ 2π

0
p̃�(θ) · K�a�(θ) dθ

⎤⎦
is nonzero. Since∫ 2π

0

ã�(θ) · p�(θ) dθ = 0 and

∫ 2π

0

p̃�(θ) · p�(θ) dθ �= 0,

this depends only on ∫ 2π

0

ã�(θ) · K�a�(θ) dθ �= 0,

which is equivalent to (3.1).
If the smooth mapping

G : (Yn+ × R
2) × R �→ Yn+ × R

2

is constructed by the following:
• for ε �= 0, G(z, T, λ; ε) is defined by

−[ȧ�(θ) + ż(θ)] +
1

ε
TF (x�(λ) + ε[a�(θ) + z(θ)], λ)

1

π

∫ 2π

0

a�(θ) · z(θ) dθ

1

π

∫ 2π

0

p�(θ) · z(θ) dθ,

• G(z, T, λ; 0) is defined by

−[ȧ�(θ) + ż(θ)] + TJ(x�(λ), λ)[a�(θ) + z(θ)]

1

π

∫ 2π

0

a�(θ) · z(θ) dθ

1

π

∫ 2π

0

p�(θ) · z(θ) dθ;
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then the zeroes (z(θ), T, λ) of G for nonzero ε correspond to periodic orbits of (3.3)
through (3.5). It is immediate, however, that G(0, T �, λ�; 0) = 0, and (3.8) also
tells us that, at ε = 0, the linearization of G with respect to (z, T, λ) at (0, T �, λ�)
has no nontrivial solution. Hence the implicit function theorem applies to G at
(0, T �, λ�; 0) and tells us there is a locally unique solution curve of periodic orbits for
(3.3), parametrized by ε. (We note that, from a practical point of view, it is more
efficient to replace x�(λ) above with the first-order approximation

x� + [λ− λ�]��,

where �� is defined by

J(x�, λ�)�� = −F λ(x�, λ�).

For simplicity, however, we do not include this extra trick.)
Rearranging the equation for zeroes of G enables us to define the following

Newton-chord iteration for obtaining these periodic orbits.
• Choose small ε �= 0 and set

y(0)(θ) = a�(θ), T (0) = T �, λ(0) = λ�.

• Solve [
− d

dθ
+ A�

]
z(θ) + δT

T�p
�(θ) + δλ T �K�a�(θ) = 1

εr
(k)(θ),

1

π

∫ 2π

0

a�(θ) · z(θ) dθ = 0,

1

π

∫ 2π

0

p�(θ) · z(θ) dθ = 0

(3.9)

for z ∈ Yn+, δT , and δλ, where

rk(θ) ≡ ẏ(k)(θ) − T (k)F (x�(λ(k)) + εy(k)(θ), λ(k)).

• Set

y(k+1)(θ) = y(k) + z(θ),

T (k+1) = T (k) + δT,

λ(k+1) = λ(k) + δλ.

Note that only the same augmented constant-coefficient differential equation, with
varying right-hand sides, needs to be solved at each iteration.

3.1. Fourier approximation. Finally, we show how to efficiently compute ac-
curate approximations to the periodic orbits of (3.3), using the above Newton-chord
iteration and the results of section 2.3. The key step is how to calculate the approxi-
mate Fourier coefficients

z(θ) ≈ z̃c0 +

M∑
m=1

{
z̃cm cosmθ + z̃sm sinmθ

}
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from the right-hand side

f(θ) ≡ 1
εr

(k)(θ)

≈ f̃ c0 +

M∑
m=1

{
f̃
c

m cosmθ + f̃
s

m sinmθ
}

in (3.9), and we see that matching Fourier coefficients gives the modal equations
• for m = 0

A�z̃c0 = f̃
c

0,

• for m = 1 ⎡⎢⎢⎣
A� −I 1

T�ϕ
�
� T �K�ϕ��

I A� − 1
T�ϕ

�
� T �K�ϕ��

ϕ��
T ϕ��

T 0 0

ϕ��
T −ϕ��

T 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
z̃c1
z̃s1
δT
δλ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
f̃
c

1

f̃
s

1

0
0

⎤⎥⎥⎦ ,
• for 2 ≤ m ≤M [

A� −mI
mI A�

] [
z̃cm
z̃sm

]
=

[
f̃
c

m

f̃
s

m

]
.

Hence the extra scalar unknowns δT and δλ are solved for as part of the m = 1 system,
while the other modal equations remain the same as in section 2.3. Thus, by applying⎡⎢⎢⎣

ψ��
ψ��
0
0

⎤⎥⎥⎦
T

and

⎡⎢⎢⎣
ψ��
−ψ��

0
0

⎤⎥⎥⎦
T

to the m = 1 equation, we immediately determine δT and δλ from[
0 T �γ��
1
T� T �γ��

] [
δT
δλ

]
=

1

2

[
ψ�� · f̃ c1 +ψ�� · f̃s1
ψ�� · f̃ c1 −ϕ�� · f̃s1

]
;

i.e.,

δλ =
1

T �
dλ and δT = T �dT ,

where

dλ ≡ ψ�� · f̃ c1 +ψ�� · f̃s1
2γ��

,

dT ≡
γ��

(
ψ�� · f̃ c1 −ϕ�� · f̃s1

)
− γ��

(
ψ�� · f̃ c1 +ψ�� · f̃s1

)
2γ��

and γ��, γ
�
� are defined in (3.2).

If A� has already been reduced to Schur form by

A�Q� = Q�U�,
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where U� ∈ R
n×n is a quasi-upper triangular matrix and Q� ∈ R

n×n is an orthogonal
matrix, then it can be arranged that U� has its eigenvalues ±i in the top left corner,
i.e.,

U� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 β . . . . . . . . . . . . . . . . .
−β−1 0 . . . . . . . . . . . . . . . . .

0 0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .

0 0
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for some nonzero β, as in the LAPACK standard form [2]. This means that

ϕ�� ≡ β√
1 + β2

q�1 and ϕ�� ≡ 1√
1 + β2

q�2,

where q�j denotes the jth column of Q�. Hence, under the transformations z̃c0 = Q�ẑc0,

f̃
c

0 = Q�f̂
c

0, and

z̃c/sm = Q�ẑc/sm

f̃
c/s

m = Q�f̂
c/s

m

}
, m = 1, . . . ,M,

we have only to solve the systems
• for m = 0

U�ẑc0 = f̂
c

0;

• for m = 1⎡⎢⎢⎣
U� −I
I U�

eT2 βeT1
βeT1 −eT2

⎤⎥⎥⎦[ẑc1ẑs1
]

=

⎡⎢⎢⎢⎢⎣
f̂
c

1 − dT
β√

1+β2
e1 − dλ

1√
1+β2

c�2

f̂
s

1 + dT
1√

1+β2
e2 − dλ

β√
1+β2

c�1

0
0

⎤⎥⎥⎥⎥⎦ ,
where the components of c�1 and c�2 are the coefficients of K�q�1 and K�q�2, re-
spectively, with respect to the orthonormal basis of R

n formed by the columns
of Q�, i.e.,

Q�c�1 ≡ K�q�1 and Q�c�2 ≡ K�q�2;

• for 2 ≤ m ≤M [
U� −mI
mI U�

] [
ẑcm
ẑsm

]
=

[
f̂
c

m

f̂
s

m

]

by back-substitution. The systems for m = 0 and m ≥ 2 are the same as in section 2.3
and nonsingular because of the eigenvalue conditions satisfied by J(x�, λ�) in (b) on
page 2530. The system for m = 1 is overdetermined, but consistent by construction,
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and the last n− 2 components for ẑ
c/s
1 can again be solved by back-substitution. We

are then left with the simple system⎡⎢⎢⎣
0 β −1 0
1 0 0 β
0 1 β 0
β 0 0 −1

⎤⎥⎥⎦
⎡⎢⎢⎣
ẑc11
ẑc12
ẑs11
ẑs12

⎤⎥⎥⎦ =

⎡⎢⎢⎣
	
	
0
0

⎤⎥⎥⎦ ,
where ẑ

c/s
11 and ẑ

c/s
12 refer to the first two components of ẑ

c/s
1 .

4. Practical Floquet theory. Now let A(θ) be a 2π-periodic n×n matrix, i.e.,

A(θ + 2π) = A(θ) ∀θ ∈ R.

At first glance the periodic differential equation

−v̇(θ) + A(θ)v(θ) = f(θ), v ∈ Yn+,(4.1)

for a given f ∈ Yn+, seems much more difficult to analyze and solve than (2.1). It is
the fundamental result of Floquet theory, however, that there is a change-of-variable

v(θ) = P(θ)w(θ)

which transforms (4.1) to constant-coefficient form. The price one has to pay to
remain within real arithmetic, however, is that some of the components of the solution
to the constant-coefficient problem may lie in Y− rather than Y+: i.e., some of the
components ofw(θ) may be in Y−, with the corresponding columns of the n×nmatrix
P(θ) in Yn−, but this still means that the product P(θ)w(θ) is in Yn+. In conclusion
then, our constant-coefficient equations may be a combination of (2.1) and (2.3).

To see how this occurs, let X(θ) be the principal fundamental solution matrix for
the differential operator

− d

dθ
+ A(θ);(4.2)

i.e., X(0) = I and

Ẋ(θ) = A(θ)X(θ) ∀θ ∈ R,

and thus the jth column of X(θ) solves the homogeneous initial value problem formed
from (4.2), with ej as the initial value. The columns of X(θ) remain linearly indepen-
dent, and so X(θ) is always nonsingular. (There is, of course, no necessity for X to
have any periodicity property!) X(2π) is called the monodromy matrix, and solutions
of the fundamental algebraic eigenproblem

X(2π)y = λy

lead to the following three possibilities for solutions of the differential eigenproblem

−ṗ(θ) + A(θ)p(θ) = µp(θ),

with either p ∈ Yn+ or p ∈ Yn−.
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1. For real λ > 0, we may define µ ∈ R by λ = e2πµ and set

p(θ) ≡ e−µθX(θ)y,

so p ∈ Yn+ and

−ṗ(θ) + A(θ)p(θ) = µp(θ).

2. For real λ < 0, we may define µ ∈ R by −λ = e2πµ and set

p(θ) ≡ e−µθX(θ)y,

so p ∈ Yn− and

−ṗ(θ) + A(θ)p(θ) = µp(θ).

3. For a complex conjugate pair λ� ± iλ� and y� ± iy�, so that

X(2π)[y�,y�] = [y�,y�]

[
λ� λ�

−λ� λ�

]
,

we can do either of the following. (We describe below how to make a sensible
choice!)

• Define µ ≡ µ� + iµ� ∈ C by λ = e2πµ and set

[p�(θ),p�(θ)] ≡ e−µ�θX(θ)[y�,y�]

[
cosµ�θ − sinµ�θ
sinµ�θ cosµ�θ

]
.

Then p�,p� ∈ Yn+, with p�(0) = y� and p�(0) = y�, and

− d

dθ
[p�(θ),p�(θ)] + A(θ) [p�(θ),p�(θ)]

= [p�(θ),p�(θ)]

[
µ� µ�

−µ� µ�

]
.

• Define µ ≡ µ� + iµ� ∈ C by −λ = e2πµ and again set

[p�(θ),p�(θ)] ≡ e−µ�θX(θ)[y�,y�]

[
cosµ�θ − sinµ�θ
sinµ�θ cosµ�θ

]
.

Now p�,p� ∈ Yn−, but we still have p�(0) = y� and p�(0) = y�, and

− d

dθ
[p�(θ),p�(θ)] + A(θ) [p�(θ),p�(θ)]

= [p�(θ),p�(θ)]

[
µ� µ�

−µ� µ�

]
.

The eigenvalues λ of X(2π) are called the Floquet multipliers for (4.2), while the
corresponding µ are called the Floquet exponents. (This is not quite the standard
terminology but is certainly what we require for a practical algorithm!) Note that
each µ, and hence also the corresponding p(θ), is not uniquely defined by the above
construction; i.e., for any 
 ∈ Z we may set µ→ µ+ i
 and p(θ) → p(θ)ei	θ. We shall
always choose the size of the imaginary parts of the Floquet exponents to be as small
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Fig. 1. Splitting of the complex plane for Floquet multipliers.

as possible in modulus. In conclusion, if the Floquet multipliers and exponents are
denoted by

λ ≡ |λ|eiθ and µ ≡ µ� + iµ�,

respectively, with −π < θ ≤ π, then the following table gives the mappings between
them for Y+ and Y−.

Y+ λ = e2πµ µ� = 1
2π ln |λ|, µ� = θ

2π

Y− −λ = e2πµ µ� = 1
2π ln |λ|, µ� =

{
θ−π
2π , θ > 0,
θ+π
2π , θ < 0

Instead of considering individual eigenvalues and eigenvectors for the monodromy
matrix X(2π), the above argument can be better applied to well-conditioned invariant
subspaces. Thus we choose some 0 < η < π, such that no eigenvalue λ of X(2π) has
arg λ = η, and split the spectrum of X(2π) into two parts (see Figure 1), i.e.,

X(2π)Y+ = Y+Λ+ and X(2π)Y− = Y−Λ−,

where, for some n± ≥ 0 with n+ + n− = n, Y+ ∈ R
n×n+ , Λ+ ∈ R

n+×n+ , Y− ∈
R
n×n− , Λ− ∈ R

n−×n− . Here the columns of Y+ span the invariant subspace of
X(2π) corresponding to all the eigenvalues λ of X(2π) satisfying −η < arg λ < η,
while the columns of Y− span the invariant subspace of X(2π) corresponding to all
the eigenvalues λ of X(2π) satisfying η − π < arg[−λ] < π − η. Therefore, defining
E+ ∈ R

n+×n+ and P+(θ) ∈ R
n×n+ by

Λ+ = e2πE+ , P+(θ) = X(θ)Y+e−E+θ

and E− ∈ R
n−×n− and P−(θ) ∈ R

n×n− by

−Λ− = e2πE− , P−(θ) = X(θ)Y−e−E−θ,

we finally have

−Ṗ(θ) + A(θ)P(θ) = P(θ)E,(4.3)
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where

P(θ) = [P+(θ),P−(θ)]

and

E =

(
E+ O
O E−

)
.

Each column of P+(θ) is in Yn+ and each column of P−(θ) is in Yn−, but the n × n
matrix P(θ) must be nonsingular for all θ. The choice of η is not critical but, in order
for our linear algebra problems to be uniformly well-posed, we shall

• keep η away from 0 and π, so that the moduli of the imaginary parts of the
eigenvalues of E± are all less than 1

2 ,
• let η correspond to a “gap” in the arguments of the Floquet multipliers, so

that the sum of the largest imaginary part of an eigenvalue from E+ with the
largest imaginary part of an eigenvalue from E− stays below 1

2 .
We shall see later that it is easy to adapt η within a continuation framework for
periodic orbits.

The above differential equation for P, i.e., (4.3), should be regarded as an eigen-
problem. This makes it clear that there is an indeterminacy in the choice of P(θ)
and E, although the eigenvalues of E are invariants. Thus, for any orthogonal matrix
Q ∈ R

n×n, we have

− d

dθ
[P(θ)Q] + A(θ) [P(θ)Q] = [P(θ)Q]

[
QTEQ

]
,

and therefore we can choose

Q ≡
(

Q+ O
O Q−

)
, Q+ ∈ R

n+×n+ , Q− ∈ R
n−×n− ,

so that the transformations

P(θ) �→ P(θ)Q,

E �→ QTEQ

mean that we can assume E+ and E− are in real Schur (i.e., quasi-upper triangular)
form. It would also be possible to ensure that

1

4π

∫ 4π

0

P(θ)TP(θ) dθ = I,

and so (4.3) could be regarded as a dynamic Schur factorization; but this is of more
theoretical than practical interest.

If we now return to the problem of solving (4.1), then we can use the change-of-
variable

v(θ) = P(θ)w(θ) ≡ P(θ)

(
w+(θ)
w−(θ)

)
,

where w+ ∈ Yn+

+ and w− ∈ Yn−
− , and obtain

−P(θ)ẇ(θ) +
{
−Ṗ(θ) + A(θ)P(θ)

}
w(θ) = f(θ).
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This simplifies to

−ẇ(θ) + Ew(θ) = P(θ)−1f(θ),

and so we merely have to solve

−ẇ+(θ) + E+w+(θ) = g+(θ),

−ẇ−(θ) + E−w−(θ) = g−(θ),
(4.4)

where

P(θ)g(θ) ≡ P(θ)

(
g+(θ)
g−(θ)

)
= f(θ)

and thus g+ ∈ Yn+

+ and g− ∈ Yn−
− ; i.e., we have reduced the problem of solving (4.1)

to the simpler problem of solving (2.1) and (2.3). Equation (4.4) is nonsingular so
long as E+ has no eigenvalues of the form mi for m ∈ Z and E− has no eigenvalues of
the form (m − 1

2 )i for m ∈ Z. Hence, by our construction of E+ and E−, singularity
can only occur when 0 is an eigenvalue of E+, i.e., there is a Floquet multiplier equal
to 1.

4.1. Application to periodic orbits. Just as for stationary points, it is impor-
tant to distinguish between regular periodic orbits and singular ones. For stationary
points x�, we have only to look at the Jacobian matrix J(x�): however, for a periodic
orbit u�(t), with period 2πT �, we must consider whether a linear differential equation
has any nontrivial solutions. Looking at (1.4), we see that (v�(θ), T �) satisfies

v̇(θ) = TF (v(θ)), v ∈ Yn+,∫ 2π

0

v̇�(θ) · v(θ) dθ = 0.
(4.5)

Hence we consider whether the linearization of this equation at the solution (v�, T �),
i.e.,

−v̇(θ) + T �J(v�(θ))v(θ) + TF (v�(θ)) = 0, v ∈ Yn+,∫ 2π

0

v̇�(θ) · v(θ) dθ = 0,
(4.6)

has any nonzero solutions (v(θ), T ).
We investigate (4.6) by applying the above Floquet theory to the linear periodic

differential operator

−v̇(θ) + A�(θ)v(θ), v ∈ Yn+,(4.7)

where A�(θ) ≡ T �J(v�(θ)); i.e., there exist n× n matrices

P�(θ) =
[
P�+(θ),P�−(θ)

]
and E� =

(
E�+ O
O E�−

)
so that the change-of-variable

v(θ) = P�(θ)w(θ) ≡ P�(θ)

(
w+(θ)
w−(θ)

)
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transforms (4.6) to

−ẇ(θ) + E�w(θ) + TP�(θ)−1F (v�(θ)) = 0, w± ∈ Yn±
± ,∫ 2π

0

v̇�(θ) · [P�(θ)w(θ)] dθ = 0.

Since we know that

−v̇(θ) + T �J(v�(θ))v(θ) = 0, v ∈ Yn+,

has the nontrivial solution v(θ) = v̇�(θ), we can choose the first column of P�(θ) to
be a normalization of v̇�(θ), i.e.,

α�P�(θ)e1 ≡ 1
T� v̇

�(θ)

for some nonzero α� ∈ R; hence, E�+ is in quasi-upper triangular form with zero first
column and

P�(θ)−1F (v�(θ)) = 1
T� P�(θ)−1v̇�(θ)

= α�e1.

Thus to answer our question about (4.6), we only have to determine whether the much
simpler problem

−ẇ+(θ) + E�+w+(θ) + Tα�e1 = 0, w+ ∈ Yn+

+ ,

−ẇ−(θ) + E�−w−(θ) = 0, w− ∈ Yn−
− ,∫ 2π

0

[P�(θ)e1] · [P�(θ)w(θ)] dθ = 0

(4.8)

has any nontrivial solutions (w(θ), T ). Since, by our construction of E�±, it is only
possible for a nontrivial solution to appear in the constant Fourier mode for w+, this
leads us to the following key definition.

Definition. u� : R �→ R
n is called a nonsingular or regular periodic orbit of

(1.2) if zero is a simple eigenvalue of E�+.
The justification for this definition is that if zero is a simple eigenvalue of E�+,

with corresponding right and left eigenvectors ϕ� and ψ� say, then we know that the
conditions [23]

ψ� · e1 �= 0,∫ 2π

0

[P�(θ)e1] · [P�(θ)ϕ�] dθ �= 0

are both necessary and sufficient for (4.8) to have only the zero solution. However,
since ϕ� ≡ e1, both these conditions are immediately satisfied. Similarly, if zero is
not a simple eigenvalue of E�+, then it is simple to check that (4.8) does have nontrivial
solutions. Hence the basis of the above definition is the following conclusion.

Conclusion. A necessary and sufficient condition for (4.6) to have only the
trivial solution (v, T ) = (0, 0) is that zero is a simple eigenvalue of the matrix E�+.

Of course, this is in complete agreement with the standard definition of a non-
singular periodic orbit, i.e., that 1 is a simple Floquet multiplier for (4.7) [1, 20].
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Since, however, our algorithm in the next section works explicitly with E�+, the above
definition is more appropriate for us.

Finally, it is also clear that, when using Floquet theory and working with w(θ)
instead of v(θ), we can simplify our phase condition in (4.5); i.e., the second equation
there can be replaced by

1

2π

∫ 2π

0

v̇�(θ) ·
[
P�(θ)P�(θ)T

]−1
v(θ) dθ = 0,

which is equivalent to the final equation of (4.8) being replaced by

1

2π

∫ 2π

0

e1 ·w+(θ) dθ = 0.(4.9)

(As we shall see in the next section, the 2π is a convenient normalization.) It is this
phase condition that we shall use as part of our continuation algorithm in the next
section, which connects with the fact that the bordered matrix[

E�+ α�e1

eT1 0

]
is invertible for a nonsingular periodic orbit.

5. Continuation of periodic orbits. From our Floquet point of view, we de-
scribe a standard strategy for following a curve of periodic orbits for (1.1), commonly
called pseudo-arclength [23]. Thus we assume that the equation

v̇(θ) = TF (v(θ), λ), v ∈ Yn+,(5.1)

has a solution v�(θ) with period 2πT � at λ = λ�. We also assume that the linearization

− d

dθ
+ A�(θ),

where

A�(θ) ≡ T �J(v�(θ), λ�),

has invariant subspaces defined by

−Ṗ�(θ) + A�(θ)P�(θ) = P�(θ)E�,

where
• P�(θ) ≡

[
P�+(θ),P�−(θ)

]
with each column of the n×n+ matrix P�+ in Yn+ and

each column of the n×n− matrix P�− in Yn−;
• E� is quasi-upper triangular, with

E� ≡
[
E�+ O
O E�−

]
,

where E�+ ∈ R
n+×n+ and E�− ∈ R

n−×n− ;
• the sum of the largest imaginary part of an eigenvalue of E�+ with the largest

imaginary part of an eigenvalue of E�− is less than 1
2 ;
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• the first column of P�(θ) is a normalization of v̇�(θ) and the first column of
E� is zero.

If our periodic orbit v�(θ) of period 2πT � is nonsingular at λ = λ�, according to
the definition in section 4.1, then the implicit function theorem applies. This follows
from considering the linearization of (5.1) with respect to v(θ), T at (v�(θ), T �, λ�)
and adding the phase condition (4.9): thus the equation

−v̇(θ) + A�(θ)v(θ) + Tp�(θ) = 0,

1

2π

∫ 2π

0

P�(θ)−Te1 · v(θ) dθ = 0

for (v(θ), T ) ∈ Yn+×R, where

p�(θ) ≡ 1
T� v̇

�(θ) = F (v�(θ), λ�),

has only the zero solution; or equivalently, the equation

−ẇ+(θ) + E�+w+(θ) + α�Te1 = 0,

1

2π

∫ 2π

0

e1 ·w+(θ) dθ = 0,

−ẇ−(θ) + E�−w−(θ) = 0

for (w+(θ),w−(θ), T ) ∈ Yn+

+ × Yn−
− ×R, where

α�P�(θ)e1 ≡ p�(θ),

has only the zero solution. Hence there is a unique curve of periodic orbits through
(v�(θ), T �), and this curve is parametrizable by λ.

We do not, however, wish to restrict ourselves to curves of periodic orbits which
are parametrizable by λ. Thus we consider the full linearization of (5.1) with respect
to v(θ), T, λ at (v�(θ), T �, λ�), and our basic assumption is that the equation

−v̇(θ) + A�(θ)v(θ) + Tp�(θ) + λk�(θ) = 0,

1

2π

∫ 2π

0

P�(θ)−Te1 · v(θ) dθ = 0
(5.2)

for (v(θ), T, λ) ∈ Yn+×R
2, where

k�(θ) ≡ T �F λ(v
�(θ), λ�),

has a one-dimensional solution set spanned by (v�t (θ), T
�
t , λ

�
t ). (This will be normal-

ized in (5.7) below.) So the augmented equation

−v̇(θ) + TF (v(θ), λ) = 0,

1

2π

∫ 2π

0

P�(θ)−Te1 · v(θ) dθ = 0,

1

2π

∫ 2π

0

v�t (θ)·[v(θ) − v�(θ)] dθ

+ T �t [T − T �] + λ�t [λ− λ�] − ε = 0

(5.3)
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has the solution [v�(θ), T �, λ�] for ε = 0; and the full linearization of (5.3) at this
point gives the equation

−v̇(θ) + A�(θ)v(θ) + Tp�(θ) + λk�(θ) = 0,

1

2π

∫ 2π

0

P�(θ)−Te1 · v(θ) dθ = 0,

1

2π

∫ 2π

0

v�t (θ) · v(θ) dθ + T �t T + λ�tλ = 0,

(5.4)

which has only the zero solution. Hence, the implicit function theorem tells us that
(5.3) has a locally unique solution for all |ε| sufficiently small, and this gives us a
curve of periodic orbits [v(θ), T, λ] parametrized by ε.

�
���

����
�
�
�
�
�
��

�
�

�
�	

��
��

��
��

��
��

��
��

��
��

��

Newton correction

Predicted point
on tangent line�

�

�

(v�, T �, λ�)

(v�n, T
�
n , λ

�
n)

�
�
�

Fig. 2. Continuing a curve of periodic orbits.

Geometrically, our basic assumption on (5.2) is saying that the curve of periodic
orbits has a unique tangent line. Thus, in section 5.1, we use our Floquet transforma-
tion to compute a Fourier approximation to this tangent line. Then, in section 5.2,
we solve (5.3) using a Newton-chord iteration whose starting value is a point on this
tangent line; see Figure 2. By using a simplified Newton’s method, which keeps the
linearization fixed, we sacrifice the quadratic convergence of the full Newton’s method;
this is more than compensated, however, by only having to apply our Floquet theory
at (v�(θ), T �, λ�). Thus we have an efficient algorithm for computing the Fourier ap-
proximation of a new point, (v�n(θ), T

�
n , λ

�
n) say, on the curve of periodic orbits. Having

obtained this new point, we require the new Floquet variables P�n(θ),E
�
n there; i.e.,

we must efficiently update from P�(θ),E� to P�n(θ),E
�
n. The algorithm for obtaining a

Fourier approximation of P�n(θ),E
�
n is described in section 5.3. Finally, in section 5.4

we explain how the crucial bound on the size of the imaginary parts of the Floquet
exponents is maintained, while in section 5.5 we show how to start the continuation
method at a Hopf point.

5.1. Tangent predictor. First, we consider what the assumption (5.2) means
in terms of our Floquet variables; i.e., if we set

v(θ) ≡ P�+(θ)w+(θ) + P�−(θ)w−(θ),
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then we are assuming that

−ẇ+(θ) + E�+w+(θ) + α�Te1 + λk�+(θ) = 0,

1

2π

∫ 2π

0

e1 ·w+(θ) dθ = 0,

−ẇ−(θ) + E�−w−(θ) + λk�−(θ) = 0,

(5.5)

where

P�(θ)

[
k�+(θ)
k�−(θ)

]
≡ k�(θ),

has a one-dimensional solution space. It is clear that this assumption rests on the
equation for the constant mode of w+(θ); i.e., that the (n+ + 1)×(n+ + 2) coefficient
matrix [

E�+ α�e1 kc0
eT1 0 0

]
,

where

kc0 ≡ 1

2π

∫ 2π

0

k�+(θ) dθ,

has full rank. Using the bordered matrix[
E�+ α�e1

eT1 0

]
,(5.6)

this can arise in three different ways.
• If (5.6) is nonsingular, then v�(θ) is a nonsingular periodic orbit as described

in section 4.1.
• If (5.6) has rank n+, with E�+ having rank n+ − 1, then this corresponds

to zero being an eigenvalue of E�+ of geometric multiplicity one and alge-
braic multiplicity greater than one; in addition kc0 is not in the range of E�+.
(Generically, we would expect this zero eigenvalue of E�+ to have algebraic
multiplicity two [15, 21].)

• If (5.6) has rank n+, with E�+ having rank n+ − 2, then this corresponds to
zero being an eigenvalue of E�+ of geometric multiplicity two, but e1 is not in
the range of E�+; in addition kc0 is not in the range of E�+ and not parallel to
e1. (Generically, we would not expect these conditions to appear [21].)

This analysis also shows that a suitable normalization for the solution of (5.2) or (5.5)
is

‖t̂�‖2 + [T �t ]2 + [λ�t ]
2 = 1,(5.7)

where t̂
� ∈ R

n+ is the constant mode of w+(θ); i.e.,

t̂
� ≡ 1

2π

∫ 2π

0

w+(θ) dθ.

We shall also require t� ∈ R
n later, which is just t̂

�
padded out with zeroes.
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Discretizing (5.5), our Fourier approximations

w+(θ) ≈ wc
0 +

M∑
m=1

{
wc
m cosmθ +ws

m sinmθ
}
,

k�+(θ) ≈ kc0 +

M∑
m=1

{
kcm cosmθ + ksm sinmθ

}
give us (

E�+ α�e1 kc0
eT1 0 0

)⎛⎝wc
0

T �t
λ�t

⎞⎠ =

(
0
0

)
(5.8)

for m = 0 and (
E�+ −mI
mI E�+

)(
wc
m

ws
m

)
= −λ�t

(
kcm
ksm

)
(5.9)

for m = 1, . . . ,M ; similarly, our Fourier approximations

w−(θ) ≈
M∑
m=1

{
wc
m cos [m− 1

2 ]θ +ws
m sin [m− 1

2 ]θ
}
,

k�−(θ) ≈
M∑
m=1

{
kcm cos [m− 1

2 ]θ + ksm sin [m− 1
2 ]θ

}
give us (

E�− −[m− 1
2 ]I

[m− 1
2 ]I E�−

)(
wc
m

ws
m

)
= −λ�t

(
kcm
ksm

)
(5.10)

for m = 1, . . . ,M . The one-dimensional null-space for the full-rank structured matrix
in (5.8) may be efficiently obtained by employing algorithms from [17, Chap. 5].

• First, we construct the n×(n+ 1) quasi-upper triangular matrix(
α�e1 Ê�+ kc0

)
,(5.11)

where Ê�+ is obtained from E�+ by removing the zero first column.
• Second, Givens rotations are used to annihilate the nonzero elements below

the diagonal and thus change (5.11) into an n × (n + 1) upper triangular
matrix.

• Third, post-multiplication with Householder matrices is used to annihilate
the final column of (5.11).

We can then solve (5.9) and (5.10), since the restriction on the size of the imaginary
parts of the eigenvalues of E�± makes these systems nonsingular.

5.2. Newton correction. Our Newton correction will solve the system

−v̇(θ) + TF (v(θ), λ) = 0,

1

2π

∫ 2π

0

P�(θ)−Te1 · v(θ) dθ = 0,

1

2π

∫ 2π

0

P�(θ)−T t�·[v(θ) − v�(θ)] dθ

+ T �t [T − T �] + λ�t [λ− λ�] − ε = 0.

(5.12)
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Thus, for the same reason as in (4.9), we have replaced the final equation for the
tangent line step in (5.3) by the more convenient equation above. Our Newton-chord
iteration for solving (5.12) is defined from the starting values

v(0)(θ) = v�(θ) + εv�t (θ),

T (0) = T � + εT �t ,

λ(0) = λ� + ελ�t

for chosen small |ε|, and consists of

v(k+1)(θ) = v(k)(θ) + z(θ),

T (k+1) = T (k) + δT,

λ(k+1) = λ(k) + δλ,

where (z(θ), δT, δλ) ∈ Yn+×R
2 satisfy

−ż(θ) + A�(θ)z(θ) + δTp�(θ) + δλk�(θ) = r(k)(θ),

1

2π

∫ 2π

0

P�(θ)−Te1 · z(θ) dθ = 0,

1

2π

∫ 2π

0

P�(θ)−T t� · z(θ) dθ + T �t δT + λ�t δλ = 0,

(5.13)

with

r(k)(θ) ≡ v̇(k)(θ) − T (k)F (v(k)(θ), λ(k)).

Hence, under the Floquet transformations

z(θ) ≡ P�+(θ)w+(θ) + P�−(θ)w−(θ),

r(k)(θ) ≡ P�+(θ)f+(θ) + P�−(θ)f−(θ),

our equation in Yn+

+ becomes

−ẇ+(θ) + E�+w+(θ) + δTα�e1 + δλk�+(θ) = f+(θ),

1

2π

∫ 2π

0

e1 ·w+(θ) dθ = 0,

1

2π

∫ 2π

0

t̂
� ·w+(θ) dθ + T �t δT + λ�t δλ = 0,

and our equation in Yn−
− is

−ẇ−(θ) + E�−w−(θ) + δλk�−(θ) = f−(θ).

Hence our Fourier approximation in Yn+

+ is

w+(θ) ≈ wc
0 +

M∑
m=1

{
wc
m cosmθ +ws

m sinmθ
}
,

f+(θ) ≈ f c0 +

M∑
m=1

{
f cm cosmθ + fsm sinmθ

}
,

k�+(θ) ≈ kc0 +

M∑
m=1

{
kcm cosmθ + ksm sinmθ

}
,
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leading to ⎛⎝ E�+ α�e1 kc0
eT1 0 0

(t̂
�
)T T �t λ�t

⎞⎠⎛⎝wc
0

δT
δλ

⎞⎠ =

⎛⎝f c00
0

⎞⎠(5.14)

for m = 0 and (
E�+ −mI
mI E�+

)(
wc
m

ws
m

)
=

(
f cm − δλkcm
fsm − δλksm

)
(5.15)

for m = 1, . . . ,M ; while our Fourier approximation in Yn−
− is

w−(θ) ≈
M∑
m=1

{
wc
m cos [m− 1

2 ]θ +ws
m sin [m− 1

2 ]θ
}
,

f−(θ) ≈
M∑
m=1

{
f cm cos [m− 1

2 ]θ + fsm sin [m− 1
2 ]θ

}
,

k�−(θ) ≈
M∑
m=1

{
kcm cos [m− 1

2 ]θ + ksm sin [m− 1
2 ]θ

}
,

giving us (
E�− −[m− 1

2 ]I
[m− 1

2 ]I E�−

)(
wc
m

ws
m

)
=

(
f cm − δλkcm
fsm − δλksm

)
(5.16)

for m = 1, . . . ,M . By our construction of (t̂
�
, T �t , λ

�
t ), the coefficient matrix in (5.14)

is nonsingular. Our linear algebra at the end of section 5.1 also means that we can
solve (5.14) efficiently. We can then solve (5.15) and (5.16), since the restriction on the
size of the imaginary parts of the eigenvalues of E�± makes these systems nonsingular.

5.3. Floquet continuation. After having calculated v�n(θ), T
�
n , and λ�n, we

need to update from

−Ṗ�(θ) + A�(θ)P�(θ) = P�(θ)E�(5.17)

to

−Ṗ�n(θ) + A�n(θ)P
�
n(θ) = P�n(θ)E

�
n,(5.18)

where

A�n(θ) ≡ T �nJ(v�n(θ), λ
�
n).

We seek P�n(θ) in the Floquet form

P�n(θ) ≡ P�(θ)P(θ),

with the normalization

1

2π

∫ 2π

0

P(θ) dθ = I.(5.19)
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Hence we can apply a Newton-chord method to solve (5.18) for P(θ) and E�n, analogous
to that described theoretically in [28] and practically in [7], and make use of our known
Floquet variables for (5.17). Thus our Newton iteration starts from P(0)(θ) ≡ I and
E(0) ≡ E� and computes

P(k+1)(θ) = P(k)(θ) + Z(θ),

E(k+1) = E(k) + δE

from

−Ż(θ) + E�Z(θ) − Z(θ)E� − δE = R(k)(θ),(5.20)

where

R(k)(θ) ≡ P�(θ)−1

{
d

dθ

[
P�(θ)P(k)(θ)

]
− A�n(θ)P

�(θ)P(k)(θ) + P�(θ)P(k)(θ)E(k)

}
.

We now make use of the decompositions

E� ≡
[
E�+ O
O E�−

]
, δE ≡

[
δE+ O
O δE−

]
and the fact that P�(θ) ≡

[
P�+(θ)|P�−(θ)

]
leads to

Z(θ) ≡
[
Z++(θ) Z+−(θ)
Z−+(θ) Z−−(θ)

]
and R(k)(θ) ≡

[
R

(k)
++(θ) R

(k)
+−(θ)

R
(k)
−+(θ) R

(k)
−−(θ)

]
.

Here Z++(θ) ∈ R
n+×n+ and Z−−(θ) ∈ R

n−×n− have components in Y+, while
Z+−(θ) ∈ R

n+×n− and Z−+(θ) ∈ R
n−×n+ have components in Y−, and similarly

for the decomposition of R(k)(θ). Hence we can decompose (5.20) into two equations
with components in Y+,

−Ż++(θ) + E�+Z++(θ) − Z++(θ)E�+ − δE+ = R
(k)
++(θ)(5.21)

and

−Ż−−(θ) + E�−Z−−(θ) − Z−−(θ)E�− − δE− = R
(k)
−−(θ),(5.22)

and two equations with components in Y−,

−Ż+−(θ) + E�+Z+−(θ) − Z+−(θ)E�− = R
(k)
+−(θ)(5.23)

and

−Ż−+(θ) + E�−Z−+(θ) − Z−+(θ)E�+ = R
(k)
−+(θ).(5.24)

Each of (5.21), (5.22), (5.23), and (5.24) can be replaced by the analogous Fourier
approximation, which leads to mode-decoupling as we see below. We then obtain
Sylvester equations [17], which can be solved by the Bartels–Stewart algorithm [4, 17].
Most of the work in this algorithm is devoted to reducing the appropriate matrices to
Schur form, but here E�± already have this form! Otherwise, only back-substitutions

are required. Of course the product to form R(k)(θ) in (5.20) is carried out in point-
space.
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• To obtain Z++(θ), we set

Z++(θ) ≈
M∑
m=1

{Zcm cosmθ + Zsm sinmθ} ,

R
(k)
++(θ) ≈ Rc0 +

M∑
m=1

{Rcm cosmθ + Rsm sinmθ} ,

and so (5.21) gives us

δE+ = −Rc0(5.25)

for m = 0 and [
E�+ −mI
mI E�+

] [
Zcm
Zsm

]
−
[
Zcm
Zsm

]
E�+ =

[
Rcm
Rsm

]
(5.26)

for m = 1, . . . ,M . The Sylvester equations in (5.26) are nonsingular, because
the restriction on the size of the imaginary parts of the eigenvalues of E�+
means that [

E�+ −mI
mI E�+

]
and E�+

have no common eigenvalue.
• To obtain Z−−(θ), we set

Z−−(θ) ≈
M∑
m=1

{Zcm cosmθ + Zsm sinmθ} ,

R
(k)
−−(θ) ≈ Rc0 +

M∑
m=1

{Rcm cosmθ + Rsm sinmθ} ,

and so (5.22) gives us

δE− = −Rc0(5.27)

for m = 0 and [
E�− −mI
mI E�−

] [
Zcm
Zsm

]
−
[
Zcm
Zsm

]
E�− =

[
Rcm
Rsm

]
(5.28)

for m = 1, . . . ,M . The Sylvester equations in (5.28) are nonsingular, because
the restriction on the size of the imaginary parts of the eigenvalues of E�−
means that [

E�− −mI
mI E�−

]
and E�−

have no common eigenvalue.
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• To obtain Z+−(θ), we set

Z+−(θ) ≈
M∑
m=1

{
Zcm cos [m− 1

2 ]θ + Zsm sin [m− 1
2 ]θ

}
,

R
(k)
+−(θ) ≈

M∑
m=1

{
Rcm cos [m− 1

2 ]θ + Rsm sin [m− 1
2 ]θ

}
,

and so (5.23) gives us[
E�+ −[m− 1

2 ]I
[m− 1

2 ]I E�+

] [
Zcm
Zsm

]
−
[
Zcm
Zsm

]
E�− =

[
Rcm
Rsm

]
(5.29)

for m = 1, . . . ,M . The Sylvester equations in (5.29) are nonsingular, because
of the restriction on the size of the imaginary parts of the eigenvalues of E�+
and E�− means that [

E�+ −[m− 1
2 ]I

[m− 1
2 ]I E�+

]
and E�−

have no common eigenvalue.
• To obtain Z−+(θ), we set

Z−+(θ) ≈
M∑
m=1

{
Zcm cos [m− 1

2 ]θ + Zsm sin [m− 1
2 ]θ

}
,

R
(k)
−+(θ) ≈

M∑
m=1

{
Rcm cos [m− 1

2 ]θ + Rsm sin [m− 1
2 ]θ

}
,

and so (5.24) gives us[
E�− −[m− 1

2 ]I
[m− 1

2 ]I E�−

] [
Zcm
Zsm

]
−
[
Zcm
Zsm

]
E�+ =

[
Rcm
Rsm

]
(5.30)

for m = 1, . . . ,M . The Sylvester equations in (5.30) are nonsingular, because
the restriction on the size of the imaginary parts of the eigenvalues of E�− and
E�+ means that [

E�− −[m− 1
2 ]I

[m− 1
2 ]I E�−

]
and E�+

have no common eigenvalue.
Finally, we note that our limit

E�n ≡ lim
k→∞

[
E

(k)
+ O

O E
(k)
−

]

will not generally be quasi-upper triangular, and so we will have to perform a last
Schur factorization with

Q ≡
(

Q+ O
O Q−

)
, Q+ ∈ R

n+×n+ , Q− ∈ R
n−×n− ,
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so that the transformations

P�n(θ) �→ P�n(θ)Q,

E�n �→ QTE�nQ

mean that the diagonal blocks of E�n are now in real Schur form.

5.4. Controlling the Floquet exponents. On page 2539 we stated the con-
ditions on our Floquet exponents, the eigenvalues of

E ≡
[
E+ O
O E−

]
,

that must be maintained during the continuation process. Basically, this means that
the sum of any imaginary part of an eigenvalue of E+ with any imaginary part of an
eigenvalue of E− must be less than 1

2 . We now show what to do if this condition is
found either to fail or to be dangerously close to failing at the end of a continuation
step.

Suppose we have

−Ṗ(θ) + A(θ)P(θ) = P(θ)E,

with

P(θ) ≡ [P+(θ),P−(θ)] and E ≡
[
E+ O
O E−

]
.

If the imaginary parts of a pair of complex conjugate eigenvalues of E− are too large,
we could [17]

• move them to the top left of E−,
• block-diagonalize E−

(altering P−(θ) in consequence), so that now E− has the form

E− =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α β1 0 · · · · · · 0
−β2 α 0 · · · · · · 0

0 0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .

0 0
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where β1, β2 are positive. Now, if we denote the first two columns of P−(θ) by p1(θ)
and p2(θ), then transforming them by

[
p1(θ) p2(θ)

]
→

[
p1(θ) p2(θ)

] [ √
β1 cos 1

2θ
√
β1 sin 1

2θ

−
√
β2 sin 1

2θ
√
β2 cos 1

2θ

]

will transform the leading 2×2 block of E− into[
α

√
β1β2 − 1

2
1
2 −

√
β1β2 α

]
,
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thus decreasing the size of the imaginary parts of the eigenvalues by 1
2 . Now the new

p1(θ),p2(θ) are in Yn+, and so we increase n+ by 2 and decrease n− by 2.
Similarly, if the imaginary parts of a pair of complex conjugate eigenvalues of E+

are too large, we carry out the analogous procedure to transfer them to E−; e.g.,
• moving them to the bottom right of E+,
• block-diagonalizing E+,
• transforming the final two columns of P+(θ), so that the size of the imaginary

parts of the dangerous eigenvalues is decreased by 1
2 .

We have described above the simplest situations, where there is only a single pair
of dangerous eigenvalues. We omit the obvious extensions, where a larger block of
eigenvalues has to be controlled.

5.5. Starting at a Hopf point. Finally, we show how E� and P�(θ) may be
constructed at a Hopf bifurcation point in order to start the continuation process; so
(x�, λ�) is a Hopf bifurcation point for (1.1), satisfying the conditions at the beginning
of section 3. Hence we have a Schur factorization

A�Q� = Q�U�

for

A� ≡ T �J(x�, λ�).

1. Block-diagonalize A� to obtain

A�S� = S�D�,

where D� is the n×n block-diagonal matrix

D� ≡
[
U�+ O
O U�−

]
with quasi-upper triangular U�+ ∈ R

n+×n+ and U�− ∈ R
n−×n− . In fact each

of U�+ and U�− is itself block-diagonal with

U�+ ≡

⎡⎢⎢⎢⎢⎢⎢⎣

U0

U1

U2

. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎦
and

U�− ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

U 1
2

U 3
2

U 5
2

. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

so that the eigenvalues of Uj , j ≥ 0, have an imaginary part “close to” ±j
and the eigenvalues of U j

2
, j ≥ 1, have an imaginary part “close to” ± j

2 .
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2. If
[ α β1

−β2 α

]
is a 2×2 diagonal block of Uj or U j

2
for j ≥ 1, with β1, β2 positive

and s�	 , s
�
	+1 denoting the corresponding columns of S�, then we can transform

these columns by

s̃�	 →
√
β1s

�
	 −

√
β2s

�
	+1,

s̃�	+1 →
√
β1s

�
	 +

√
β2s

�
	+1.

Thus we obtain

A�S̃� = S̃�D̃�,

where

D̃� ≡
[
Ũ�+ O

O Ũ�−

]
with

Ũ�+ ≡

⎡⎢⎢⎢⎢⎢⎢⎣

U0

Ũ1

Ũ2

. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎦
and

Ũ�− ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ũ 1
2

Ũ 3
2

Ũ 5
2

. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

so that the 2×2 diagonal blocks of Ũj , Ũ j
2
, j ≥ 1, have the form

[ α
√
β1β2

−√
β1β2 α

]
.

3. Finally, if
[ α

√
β1β2

−√
β1β2 α

]
is now a 2×2 diagonal block of Ũj , j ≥ 1, with

corresponding columns s̃�	 , s̃
�
	+1 of S̃�, then P�+(θ) ∈ R

n×n+ is obtained by
replacing these columns with

s̃�	 cos jθ − s̃�	+1 sin jθ and s̃�	 sin jθ + s̃�	+1 cos jθ.

Similarly, if
[ α

√
β1β2

−√
β1β2 α

]
is now a 2×2 diagonal block of Ũ j

2
, j ≥ 1, with

corresponding columns s̃�	 , s̃
�
	+1 of S̃�, then P�−(θ) ∈ R

n×n− is obtained by
replacing these columns with

s̃�	 cos jθ/2 − s̃�	+1 sin jθ/2 and s̃�	 sin jθ/2 + s̃�	+1 cos jθ/2.

Hence the columns of P�+ are in Yn+ and the columns of P�− are in Yn−, with
P�(θ) ≡

[
P�+(θ),P�−(θ)

]
satisfying

−Ṗ�(θ) + A�(θ)P�(θ) = P�(θ)E�.
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Fig. 3. Approximating the zero Floquet exponent.

Here

E� ≡
[
E�+ O
O E�−

]
is constructed from Ũ�+ and Ũ�−. The imaginary parts of the eigenvalues of
E� are close to zero.

6. Numerical results. Now we illustrate the above algorithms with some well-
known examples.

6.1. The Lorenz equations.

ẋ = σ(y − x),

ẏ = λx− y − xz,

ż = xy − bz.

For σ > b + 1 there is a subcritical Hopf bifurcation from the stationary solution
curves (

±
√
b(λ− 1),±

√
b(λ− 1), λ− 1

)
, λ > 1,

at

λH ≡ σ(σ + b+ 3)

σ − b− 1
.

We use the parameter values (σ, b) = (10, 8
3 ), which gives λH ≈ 24.74, and follow the

branch of periodic orbits in the range λH ≥ λ ≥ 24. For N ≡ 2 ∗M + 1, where M is
the number of Fourier modes, we plot in Figure 3 the maximum size of the smallest
Floquet exponent (which should be zero) over this range of λ. The exponential decay
is clear. For this example, it is necessary only to work in Y+.
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Fig. 4. Approximating four periodic orbits.

6.2. The A → B reaction equations.

ẋ1 = −x1 + λ(1 − x1) expx2,

ẋ2 = −x2 + λa(1 − x1) expx2 − bx2.

This system is used as an example in [14], in particular for the parameter values
a = 14 and b = 2. In this case, the stationary solution curve through (x, λ) = (0, 0)
has two turning points as λ increases, and then there is a Hopf bifurcation point at

λ ≈ 0.1309, x1 ≈ 0.8951, x2 ≈ 4.177.

The curve of periodic orbits created here exists, with λ decreasing, until λ ≈ 0.1055,
where it ends in a homoclinic orbit connected to the stationary solution curve. Again
it is only necessary to work in Y+.

We use this example to illustrate how our algorithm may perform badly when
applied to periodic orbits which lack smoothness or are poorly conditioned. In Fig-
ure 4, we show approximations to periodic orbits at four different values of λ, using
the algorithm in section 5 with M = 50. We see oscillations appearing in the approx-
imations as they try to cope with the lack of smoothness developing as x = (1, 10)
is approached. As is shown in [14], this point is reached at λ ≈ 0.1055, when the
homoclinic orbit appears. (If results for smaller λ were shown, the oscillations would
be more violent.) We exhibit this lack of smoothness differently in Figure 5, where the
size of the Fourier modes is shown for m = 1, . . . ,M . It is clear that, as λ decreases,
the exponential decay of these modes is gradually being lost. Similar conclusions can
be drawn when we plot the “zero” Floquet exponent against λ in Figure 6. By the
time λ ≈ 0.1193 is reached, the two exponents are almost equal! Finally, and most
tellingly, we examine cond (P�(θ)) in Figure 7. Theoretically P�(θ) can never be sin-
gular, and its condition number is a measure of the conditioning of the boundary value
problem defining the periodic orbit. Here, however, we see cond (P�(θ)) reaching 108!
It is therefore no surprise that our algorithm, which explicitly works with P�(θ), has
difficulties in this situation. Collocation with piecewise-polynomials and an adaptive
mesh, as used in [14], will obviously perform better in such cases.
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6.3. The fourth order Lorenz equations.

ẏ1 = −y1 + 2λ− y2
2 + (y2

3 + y2
4)/2,

ẏ2 = −y2 + (y1y2 − y3y4) + (y2
4 − y2

3)/2,

ẏ3 = −y3 + (y2 − y1)(y3 + y4)/2,

ẏ4 = −y4 + (y2 + y1)(y3 − y4)/2.

This system is described in [27]. There is a stationary solution curve

y(λ) ≡ (2λ, 0, 0, 0),

which has a supercritical bifurcation at λ = 1
2 into the two stationary solution curves

y±(λ) ≡ (1,±
√

2λ− 1, 0, 0).

At λ = 3, the new solution curves bifurcate again, and there is then a supercritical
Hopf bifurcation at

λH ≈ 3.8531.

We follow the branch of periodic orbits for λH ≤ λ ≤ 17 and plot the behavior
of the critical Floquet exponent in the three graphs of Figure 8. Of course one
Floquet exponent is always zero, but another uninteresting one remains real and
strictly negative. Thus it is the other two that we are concerned with. They are
plotted in the complex plane for λH ≤ λ ≤ 10 in the first graph of Figure 8. (Since
they become a complex conjugate pair for λ ≈ 4, we only plot the one with positive
imaginary part.) In this range of λ we can take n+ = n = 4, but when λ reaches 10,
this imaginary part has become greater than 0.3. Thus we decide to switch this pair
of Floquet exponents from E+ to E−, as described in section 5.4, and so n+ = 2 and
n− = 2. In the second graph of Figure 8, we continue to plot the critical Floquet
exponent in the complex plane, but now for 10 ≤ λ ≤ 14.3. Note that the imaginary
part of the exponent at λ = 10 differs by 1

2 in these two graphs (±.33 and ±.17) as
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Fig. 5. Decay of Fourier modes for periodic orbits.
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described in section 5.4. At λ ≈ 14.3, this complex pair of critical Floquet exponents
become real and negative, thus corresponding to negative real Floquet multipliers as
described in section 4. We follow the interesting real Floquet exponent in the third
graph of Figure 8, this time plotting it against λ. It quickly passes through zero, thus
corresponding to a period-doubling bifurcation as described in section 7, and then
continues to increase.

7. Period-doubling bifurcation. A further advantage of using Floquet theory
to continue periodic orbits is that the occurrence of nonhyperbolic behavior is always
obvious; i.e., because we always have E� available in quasi-upper triangular form, we
can immediately see when a Floquet exponent crosses the imaginary axis. The three
simplest types of bifurcation that can occur are as follows.

1. Saddle-node bifurcation (turning points): when E�+ has a geometrically single,
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Fig. 7. Ill-conditioning of periodic orbits.



FLOQUET THEORY 2559

−0.1 −0.09 −0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Real

Im
ag

in
ar

y

Floquet exponent

−0.025 −0.024 −0.023 −0.022 −0.021 −0.02 −0.019 −0.018 −0.017 −0.016 −0.015
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Real

Im
ag

in
ar

y

Floquet exponent

−0.02 0 0.02 0.04 0.06 0.08 0.1
14

14.5

15

15.5

16

16.5

17

17.5

λ

Floquet exponent

Fig. 8. Movement of critical Floquet exponent.

but algebraically double, zero eigenvalue, as mentioned in section 5.
2. Period-doubling bifurcation: when both E�+ and E�− have a simple zero eigen-

value.
3. Neimark–Sacker (torus) bifurcation: when either E�+ or E�− has a conjugate

pair of purely imaginary simple eigenvalues.
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If any of these occur during the continuation process, we may wish to determine
the bifurcation point more precisely, which can be achieved by two different means.

• After having determined two values of the continuation parameter that bracket
the bifurcation point, we may use a secant-like method to determine the pa-
rameter value at which the critical Floquet exponent is zero or has zero real
part.

• We may set up a special augmented system of equations, whose solution will
give the bifurcation point immediately! Modern algorithms for the above
three types of bifurcation have recently been described in [15], and Floquet–
Fourier versions of these algorithms could be constructed.

In addition, after having located a period-doubling or torus bifurcation point ac-
curately, we may wish to follow these newly created objects. We do not consider
Neimark–Sacker bifurcation here, since this is rather complicated [8, 21] and a treat-
ment combining Floquet theory with the ideas in [25] would be quite lengthy. In
this section, however, we do wish to present an algorithm for moving onto the new
periodic orbits created at a period-doubling bifurcation point. In particular, we will
see how this fits in very neatly with the spaces Y± used in section 4 to describe
our general Floquet theory and with the symmetry-breaking framework within which
period-doubling is usually described [10].

The conditions that (v�(θ), T �, λ�) must satisfy in order to be a period-doubling
bifurcation point are as follows.2

(a) At λ = λ� we have a nonsingular periodic orbit v�(θ) of period 2πT �, so that

v̇�(θ) = T �F (v�(θ), λ�)

and the solution space in Yn+ for

−v̇(θ) + T �J(v�(θ), λ�)v(θ) = 0(7.1)

is one-dimensional and spanned by v̇�(θ). Hence the implicit function theo-
rem applies and there is a locally unique curve of periodic orbits through λ�,
parametrized by λ, which we denote by (v�(θ;λ), T �(λ)) and which satisfies

∂v�

∂θ
(θ;λ) = T �(λ)F (v�(θ;λ), λ).(7.2)

(b) If (v�(θ), T �, λ�) is a period-doubling bifurcation point; however, the solution
space of (7.1) must also be one-dimensional in Yn−, spanned by ϕ�(θ) say.

(c) The final condition for period-doubling to occur is that∫ 2π

0

ψ�(θ) · K�(θ)ϕ�(θ) dθ �= 0,(7.3)

where

K�(θ) ≡ d

dλ

{
T �(λ)J(v�(θ;λ), λ)

} ∣∣∣
λ=λ�

and ψ� ∈ Yn− is the left null-vector satisfying

ψ̇
�
(θ) + T �J(v�(θ), λ�)Tψ�(θ) = 0.

2As with Hopf bifurcation, we assume that the curve of periodic orbits is parametrizable by λ;
cf. [15].
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If µ�(λ) were a simple real eigenvalue equaling zero at λ = λ� and satisfying

−∂v
∂θ

(θ;λ) + T �(λ)J(v�(θ;λ), λ)v(θ;λ) = µ�(λ)v(θ;λ)

for some nonzero v(θ;λ) ∈ Yn− such that v(θ;λ�) ≡ ϕ�(θ), then (7.3) is equivalent to
the transversal crossing condition

dµ�

dλ
(λ�) �= 0,

since

dµ�

dλ
(λ�) ≡

∫ 2π

0
ψ�(θ) · K�(θ)ϕ�(θ) dθ∫ 2π

0
ψ�(θ) ·ϕ�(θ) dθ

.

It is not necessary, however, for this eigenvalue to be simple.
In terms of our Floquet variables we have

−Ṗ�(θ) + T �J(v�(θ), λ�)P�(θ) = P�(θ)E�;

where

P�(θ) ≡ [P�+(θ),P�−(θ)],

with P�+(θ) ∈ R
n×n+ and P�−(θ) ∈ R

n×n− , and

E� ≡
[
E�+ O
O E�−

]
,

with E�+ ∈ R
n+×n+ and E�− ∈ R

n−×n− . As usual, n+ + n− = n, with the columns of
P�+(θ) in Yn+ and the columns of P�−(θ) in Yn−. Since E�+ has a simple zero eigenvalue,
this matrix can be chosen to be in quasi-upper triangular form with first column zero.
Hence the first column of P�+(θ) is a multiple of v̇�(θ), i.e., α�p�(θ) = v̇�(θ). Similarly,
since E�− has a one-dimensional null-space, it too can be chosen to be in quasi-upper
triangular form with first column zero, so that the first column of P�−(θ) is ϕ�(θ). We
thus have

p�(θ) = P�+(θ)e1 and ϕ�(θ) = P�−(θ)e1.

Hence the key period-doubling condition (7.3) is equivalent to the last n− components
of

1

2π

∫ 2π

0

k�(θ) dθ

not lying in the range of E�−, where k�(θ) ∈ R
n is defined by

P�(θ)k�(θ) ≡ K�(θ)ϕ�(θ).

Note that K�(θ)ϕ�(θ) ∈ Yn− and so the first n+ components of k�(θ) lie in Yn+

− while
the last n− components lie in Yn−

+ .
From now on, we will be interested in a doubling of v�(θ); i.e., we define

v�d(θ) ≡ v�(2θ) and T �d ≡ 2T �,
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and so (v�d(θ), T
�
d ) satisfies

v̇(θ) = TF (v(θ), λ�).

(Thus we are offending against the minimality condition usually considered as part
of the definition of a periodic orbit; cf. page 2522.) The Floquet variables for this
period-doubled orbit are

P�d(θ) ≡ P�(2θ) ≡ [P�+(2θ),P�−(2θ)] and E�d ≡ 2 E� ≡ 2

[
E�+ O
O E�−

]
,

and thus they satisfy the equation

−Ṗ�d(θ) + A�d(θ)P
�
d(θ) = P�d(θ)E

�
d,

where

A�d(θ) ≡ T �d J(v�d(θ), λ
�).(7.4)

Note that all the columns of P�d(θ) are now in Yn+, but if q�(θ) is one of the first n+

columns, then it is symmetric, i.e.,

q�(θ) = q�(θ + π) ∀θ ∈ R,

while if q�(θ) is one of the last n− columns, then it is antisymmetric, i.e.,

q�(θ) = −q�(θ + π) ∀θ ∈ R.

If we use (7.2) to define

v�d(θ;λ) ≡ v�(2θ;λ) and T �d (λ) ≡ 2T �(λ),

then (v�d(θ;λ), T �d (λ), λ) is a curve of periodic orbits passing through (v�d(θ), T
�
d , λ

�).
It is symmetric and parametrizable by λ and satisfies

∂v�d
∂θ

(θ;λ) = T �d (λ)F (v�d(θ;λ), λ).

It is important to realize that, since the imaginary parts of the eigenvalues of E�

are bounded below 1
2 in size, the imaginary parts of the eigenvalues of E�d are corre-

spondingly bounded below 1 in size. As we will only be using E�d in connection with
equations in Yn+, as in section 2.1, this will be sufficient.

Now we look for a new curve of periodic orbits passing through (v�d(θ), T
�
d , λ

�) of
the form

v(θ) ≡ v�d(θ;λ) + ε [a�d(θ) + z(θ)]

with period T �d (λ) + εT . Here ε is a small scalar which parametrizes the new curve,
and (z(θ), T, λ) ∈ (Yn+,R2) are to be determined. a�d(θ) is the (n+ + 1)th column of
P�d(θ), and the amplitude of v(θ) is fixed by insisting that

1

2π

∫ 2π

0

a�d(θ) ·
[
P�d(θ)P

�
d(θ)

T
]−1

z(θ) dθ = 0.(7.5a)
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Note that a�d(θ) ≡ ϕ�(2θ) is antisymmetric according to the above definition, and
so we are breaking the symmetry of v�d(θ;λ). Similarly, the phase of v(θ) is fixed by
insisting that

1

2π

∫ 2π

0

p�d(θ) ·
[
P�d(θ)P

�
d(θ)

T
]−1

z(θ) dθ = 0,(7.5b)

where p�d(θ) ≡ p�(2θ) is the first column of P�d(θ), i.e., 2α�p�d(θ) = v̇�d(θ). The system
of equations (z(θ), T, λ) must satisfy is therefore

−v̇(θ) + [T �d (λ) + εT ]F (v(θ), λ) = 0,(7.6)

together with (7.5). In order to apply the implicit function theorem, we may adopt
the strategy used for Hopf bifurcation in section 3 and construct the smooth mapping

G : (Yn+ × R
2) × R �→ Yn+ × R

2

by the following:
• for ε �= 0, G(z, T, λ; ε) is defined by

−[ȧ�d(θ) + ż(θ)] + 1
ε

{
[T �d (λ) + εT ]

F (v�d(θ;λ) + ε[a�d(θ) + z(θ)], λ) − T �d (λ)F (v�d(θ;λ), λ)
}(7.7)

plus the two scalar conditions (7.5),
• G(z, T, λ; 0) is defined by

−[ȧ�d(θ) + ż(θ)] + T �d (λ)J(v�d(θ;λ), λ)[a�d(θ) + z(θ)] + TF (v�d(θ;λ), λ)(7.8)

plus the two scalar conditions (7.5).
Thus the zeroes (z(θ), T, λ) of G for nonzero ε define nonsymmetric periodic orbits
near (v�d(θ), T

�
d , λ

�). It is immediate, however, that G(0, 0, λ�; 0) = 0, and we can
determine whether the linearization of G at this point has any nontrivial solutions by
considering the system

−ż(θ) + A�d(θ)z(θ) + T α�

T�p
�
d(θ) + λK�d(θ)a

�
d(θ) = 0,

1

2π

∫ 2π

0

a�d(θ) ·
[
P�d(θ)P

�
d(θ)

T
]−1

z(θ) dθ = 0,

1

2π

∫ 2π

0

p�d(θ) ·
[
P�d(θ)P

�
d(θ)

T
]−1

z(θ) dθ = 0

(7.9)

for (z(θ), T, λ), where A�d(θ) is defined in (7.4) and

K�d(θ) ≡
d

dλ

{
T �d (λ)J(v�d(θ;λ), λ)

} ∣∣∣
λ=λ�

≡ K�(2θ).

Using the Floquet transformation

z(θ) ≡ P�d(θ)w(θ) with w ∈ Yn+,
(7.9) becomes

−ẇ(θ) + E�dw(θ) + T α�

T� e1 + λk�d(θ) = 0,

1

2π

∫ 2π

0

e1 ·w(θ) dθ = 0,

1

2π

∫ 2π

0

en++1 ·w(θ) dθ = 0,
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where

P�d(θ)k
�
d(θ) ≡ K�d(θ)a

�
d(θ) ≡ 2K�(2θ)ϕ�(2θ).

From (7.3) and the fact that zero is a simple eigenvalue of E�+, we know that neither
of the two linearly independent vectors

e1 and
1

2π

∫ 2π

0

k�d(θ) dθ

are in the range of E�d. Hence (7.9) has no nontrivial solution, and the implicit function
theorem applies to G at (0, 0, λ�; 0) and tells us that G(z, T, λ; ε) = 0 has a locally
unique solution curve parametrized by ε.

Thus we define the following Newton-chord iteration for obtaining these non-
symmetric period-doubled orbits.

• Set

y(0)(θ) = a�d(θ), T (0) = 0, λ(0) = λ�.

• Solve [
− d

dθ
+ A�d(θ)

]
z(θ) + δT

α�

T �
p�d(θ) + δλK�d(θ)a

�
d(θ) =

1

ε
r(k)(θ),

1

2π

∫ 2π

0

p�d(θ) ·
[
P�d(θ)P

�
d(θ)

T
]−1

z(θ) dθ = 0,

1

2π

∫ 2π

0

a�d(θ) ·
[
P�d(θ)P

�
d(θ)

T
]−1

z(θ) dθ = 0

(7.10)

for z ∈ Yn+, δT , and δλ, where

rk(θ) ≡ v̇�d(θ;λ(k)) + εẏ(k)(θ)

−
[
T �d (λ(k)) + εT (k)

]
F (v�d(θ;λ

(k)) + εy(k)(θ), λ(k)).

• Set

y(k+1)(θ) = y(k) + z(θ),

T (k+1) = T (k) + δT,

λ(k+1) = λ(k) + δλ.

Note that only the same augmented linear periodic differential equation, with varying
right-hand sides, needs to be solved, at each iteration.

7.1. Fourier approximation. Finally, we show how to efficiently compute ac-
curate approximations to the periodic orbits of (7.6), using the above Newton-chord
iteration and the results of section 2.3. Floquet transforming the basic linear iteration
(7.10), we obtain

−ẇ(θ) + E�dw(θ) + δT α�

T� e1 + δλk�d(θ) = f(θ),

1

2π

∫ 2π

0

e1 ·w(θ) dθ = 0,

1

2π

∫ 2π

0

en++1 ·w(θ) dθ = 0,

(7.11)
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where

z(θ) ≡ P�d(θ)w(θ),
1
εr

(k)(θ) ≡ P�d(θ)f(θ)

with w(θ),f(θ) ∈ Yn+.
Using the approximate Fourier coefficients

w(θ) ≈ w̃c
0 +

M∑
m=1

{w̃c
m cosmθ + w̃s

m sinmθ} ,

f(θ) ≈ f̃ c0 +

M∑
m=1

{
f̃
c

m cosmθ + f̃
s

m sinmθ
}
,

and

k�d(θ) ≈ k̃
c

0 +

M∑
m=1

{
k̃
c

m cosmθ + k̃
s

m sinmθ
}

and then matching coefficients, gives us the modal equations
• for m = 0 ⎡⎣ E�d

α�

T� e1 k̃
c

0

e1
T 0 0

eTn++1 0 0

⎤⎦⎡⎣w̃c
0

δT
δλ

⎤⎦ =

⎡⎣f̃ c00
0

⎤⎦ ,
• for 1 ≤ m ≤M [

E�d −mI
mI E�d

] [
w̃c
m

w̃s
m

]
=

[
f̃
c

m − δλk̃
c

m

f̃
s

m − δλk̃
s

m

]
.

Hence the extra scalar unknowns δT and δλ are solved for as part of the nonsingular
m = 0 system, while the other modal equations remain the same as in section 2.3,
and nonsingular because of the eigenvalue conditions imposed on E�.

The above iteration only moves us onto the curve of period-doubled orbits near
(v�(θ), T �, λ�). If we want to follow this new curve, using the techniques in section 5,
then we must update the Floquet information as in section 5.3. Since the imaginary
parts of the eigenvalues of E�d may exceed 1

2 in size, it may first be necessary to apply
section 5.4 to P�d(θ), thus introducing some components in Y−.

7.2. Numerical example. As an illustration of period-doubling bifurcation,
we continue using the fourth order Lorenz equations as an example. The third graph
in Figure 8 shows the critical Floquet exponent passing through zero for λ slightly
greater than 14.3, and a simple secant iteration quickly locates the bifurcation point
at

λ� ≈ 14.4722024 and T � ≈ 0.1530674 .

Now we apply the algorithm developed in this section to move onto the period-doubled
orbit with ε = 1

2 . Since the phase-space is four-dimensional, Figure 9 shows two
different three-dimensional projections. The number of Fourier modes used in the
approximation is M = 50.
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Fig. 9. Period-doubled orbit with ε = 1
2
.

8. Conclusion. We have shown how Floquet theory may be utilized in order
to compute Fourier approximations of periodic orbits. The key result is that the
size of the linear systems which must be solved is independent of the number M of
Fourier modes used in the approximation. The overhead is that the Floquet variables
P(θ) must also be carried along in the continuation process, and this extra work is
proportional to n, the dimension of the phase-space. Consequently, when n � M ,
we have a highly efficient and accurate algorithm for smooth and well-conditioned
periodic orbits.

Of course, it would be silly to assert that the present algorithm can replace the
AUTO package in [14], and we make no such claim! AUTO has been gradually refined
over 20 years, and was developed from collocation and adaptive mesh ideas of an even
earlier vintage, e.g., COLSYS [3]. What we do claim is that (just as in other areas of
differential equations) spectral approximation of periodic orbits has its place alongside
finite difference and piecewise polynomial approximation. Spectral methods are not
trivial to implement efficiently and accurately on nonlinear problems, and further
work is necessary before practical conclusions can be drawn. For example, if the basic
linear algebra philosophy of [29] were used, Floquet theory could be thought of as an
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efficient way of (approximately) factorizing the structured Nn×Nn matrix obtained
from collocation [6].

Perhaps the most pleasing feature of the present algorithm is that it exploits
the full mathematical structure of the periodic orbit problem. The fact that Floquet
theory provides a constant matrix means that many algorithms for questions about
stationary solutions (where the Jacobian matrix is constant of course) can easily be
adapted for similar questions about periodic orbits.

• The algorithm for Hopf bifurcation in section 3 can be adapted to apply when
invariant tori are created at a Neimark–Sacker bifurcation, as mentioned near
the beginning of section 7.

• The algorithms for stable manifolds of stationary solutions and connecting
orbits in [26] can be adapted to apply to stable manifolds of periodic orbits
and periodic connections [5].

• Fourier approximation was recommended in [9, 10] to exploit spatial-temporal
symmetries of periodic orbits. The analysis of such symmetries becomes even
clearer when Floquet theory is utilized as well.

Papers devoted to these three applications of Floquet theory are currently being
prepared.
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Abstract. In this paper we present an analytic assessment of the stability and convergence of
the so-called method of transport for solving the elastic-plastic wave equation, which is a nonlinear
hyperbolic partial differential equation. For the purely elastic wave equation, which is a linear hyper-
bolic conservation law, one can use von Neumann analysis for proving that stability and convergence
immediately follow from the Lax equivalence theorem. For plastic deformation, however, nonlinear
stability proofs require greater effort.
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1. Introduction. There exist a large number of numerical schemes for hyper-
bolic conservation laws (cf. [2], [7], [9], [10], [22], [23]), some of which have been used
for the simulation of waves in solids (e.g., [11], [12], [13], [14], [15], [16]). In [5] we
followed the ansatz of Fey, who developed in [3], [4], and [8] a high order scheme called
method of transport for solving the multidimensional Euler equations, to develop a
numerical scheme for solving the elastic-plastic wave equation, which is not a pure
conservation law anymore, since only the equations describing the conservation of
momentum are in conservation form.

For linear conservation laws—as for linear PDEs in general—convergence proofs
of numerical schemes are quite common, e.g., the Lax equivalence theorem (cf. [19])
for linear (schemes for) hyperbolic conservation laws, which also applies to the elastic
wave equation due to its linearity. The Lax equivalence theorem basically states the
equivalence of convergence of a linear numerical scheme on the one hand and consis-
tency and stability on the other. For nonlinear PDEs, however, such as the elastic-
plastic wave equation, convergence results are rare, mostly because a proof of stability
is not possible.

In this paper, we will present analytic stability results for the method of transport
for solving the elastic-plastic wave equation in one and two dimensions. We will start
with an introduction to the method of transport for the elastic-plastic wave equation
in the case of so-called antiplane shear in two space dimensions. Then we present
the concepts of defining linear and nonlinear stability and their implications on the
convergence of a numerical scheme. Afterwards, we analyze the stability of the linear
scheme for elastic waves and the nonlinear stability of the scheme for plastic waves,
including convergence considerations.

We will abstain from presenting computational examples, since they can be found
in [3] or [5], reconfirming the convergence property for the scheme in one and two
dimensions by various numerical computations.
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2. Antiplane shear waves. We consider the propagation of shear waves in a
plane. Let u ∈ R

3 denote the vector of displacements. Then

ε =
∂u3

∂x
,

γ =
∂u3

∂y
,

w =
∂u3

∂t

are the strain components in x- and y-directions and the velocity component in the
z-direction. Of the symmetric stress tensor σ we need only the stress components
σ = (σ)13 and τ = (σ)23 in the x- and y-directions. The physical equations for
the description of shear waves consist of three equations, the first one containing
the conservation of momentum and two compatibility relations between velocity and
strain, ⎛⎝w

ε
γ

⎞⎠
t

=

⎛⎝σ/ρ
w
0

⎞⎠
x

+

⎛⎝ τ/ρ
0
w

⎞⎠
y

,(2.1)

where ρ denotes the density of the material. Our description of waves in solids is based
on the model of small-strains, which is a linearization of the general flow-equations
(cf. [18]). Equation (2.1) models an elastic medium that corresponds to a membrane
with no coupling between longitudinal and transversal deformation, as would be the
case in a solid with nonzero Poisson ratio.

Analogous to gas dynamics, we need an equation connecting stress and strain
components, where we will distinguish between elastic and plastic deformation in the
following.

2.1. Elastic shear waves. In the elastic case, Hook’s law relates the stresses
to the strains by

σ = με,

τ = μγ

with the elastic shear modulus μ. The wave-speed c is given by

c =

√
μ

ρ
.(2.2)

Thus, we can write (2.1) in the well-known form of the wave equation as⎛⎝w
σ
τ

⎞⎠
t

= ∇ · c
⎛⎝σ/(ρc) τ/(ρc)

ρcw 0
0 ρcw

⎞⎠.(2.3)

Defining the vector of conserved quantities as U and the “flux” as cL, we get the
simple form for (2.3):

U t + ∇ · cL = 0.(2.4)
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2.2. Plastic shear waves. In regions of plastic deformation, however, the stress-
strain relation contains only a relationship between infinitesimal changes of stress and
strain components in time: (

ε̇

γ̇

)
= C(σ, τ)

(
σ̇

τ̇

)
.(2.5)

There exist quite a lot of different models for describing plastic deformation (cf. [18],
[20]). For our further investigations we make use of the well-known Prandtl–Reuss
equations, which we will present briefly in the following (for details, see [21] or [5],
[11]).

The model uses the most commonly used yield function, i.e., the von Mises yield
function, which reads in the special case of antiplane shear:

f(σ, τ) = σ2 + τ2 =: κ2.(2.6)

This yield function enables us to distinguish between plastic and elastic deformation,
i.e., with

κ0(t) = max
t0≤t′≤t

κ(t′)

three different cases may occur:
• κ(t) < κ0: elastic deformation.
• κ(t) = κ0 and κ̇ ≤ 0: elastic unloading.
• κ(t) = κ0 and κ̇ > 0: plastic loading.

In the elastic case, the stress-strain relationship is described by Hooke’s law (cf. section
2.1). In the plastic region, the model of Prandtl–Reuss (for details, see [21]) yields
the following matrix C(σ, τ) used in the stress-strain relationship (2.5):

C(σ, τ) =

⎛⎜⎜⎜⎝
1

μ
+

1

κ2

(
1

μp(κ)
− 1

μ

)
σ2 1

κ2

(
1

μp(κ)
− 1

μ

)
στ

1

κ2

(
1

μp(κ)
− 1

μ

)
στ

1

μ
+

1

κ2

(
1

μp(κ)
− 1

μ

)
τ2

⎞⎟⎟⎟⎠,(2.7)

where the function μp(σ) is the plastic shear modulus which can be measured in
experiments. In the following we always assume that the occurrence of plasticity
decreases the wave-speed, which is the case for almost all materials (cf. [18]), and
hence

μp(σ) ≤ μ ∀σ ∈ R
+.

Using this stress-strain relationship in order to replace the time derivatives of strain
variables in (2.1) by derivatives of stress variables, the wave equation describing plastic
deformation has the form

⎛⎝wσ
τ

⎞⎠
t

−

⎛⎜⎜⎜⎜⎜⎝
1 0 0

0
1

μ
+

1

κ2

(
1

μp(κ)
− 1

μ

)
σ2 1

κ2

(
1

μp(κ)
− 1

μ

)
στ

0
1

κ2

(
1

μp(κ)
− 1

μ

)
στ

1

μ
+

1

κ2

(
1

μp(κ)
− 1

μ

)
τ2

⎞⎟⎟⎟⎟⎟⎠

−1

∇·c
⎛⎝σ/(ρc) τ/(ρc)w/c 0

0 w/c

⎞⎠=0,

(2.8)
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or simply ⎛⎝w
σ
τ

⎞⎠
t

−A(σ, τ)∇ · c
⎛⎝σ/(ρc) τ/(ρc)

w/c 0
0 w/c

⎞⎠ = 0.(2.9)

Since A(σ, τ) is not a Jacobian matrix, we no longer have a conservation law. Equation
(2.8) can be written in divergence form with “source term”:

U t + ∇ · cL = P (σ, τ, σx, σy, τx, τy)(2.10)

with

L = −A(σ, τ)

⎛⎝σ/(ρc) τ/(ρc)
w/c 0
0 w/c

⎞⎠,
P (σ, τ, σx, σy, τx, τy) = A(σ, τ)∇ · c

⎛⎝σ/(ρc) τ/(ρc)
w/c 0
0 w/c

⎞⎠
−∇ · cA(σ, τ)

⎛⎝σ/(ρc) τ/(ρc)
w/c 0
0 w/c

⎞⎠.
Another interpretation of the equation is to rewrite it as a system for five state
variables: ⎛⎜⎜⎜⎜⎝

w
ε
γ
σ
τ

⎞⎟⎟⎟⎟⎠
t

−∇ · c

⎛⎜⎜⎜⎜⎝
σ/(ρc) τ/(ρc)
w/c 0
0 w/c
0 0
0 0

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0
0
0

C−1(σ, τ)

(
ε

γ

)
t

⎞⎟⎟⎟⎟⎠.(2.11)

This formula will be the basis for the numerical scheme presented below. It shows
that the velocity and strain variables have to be updated by computing fluxes, e.g.,
by using the method of transport and the stress variables σ and τ can be computed
by integrating the stress-strain relationship, which will be done by applying a high
order ODE solver.

The idea of the method of transport for solving a hyperbolic conservation law
consists of decomposing the conservation law into advection equations which can be
solved numerically. We will develop such decompositions for the wave equation under
antiplane in the following sections, first for elastic waves where the system under
consideration is a linear conservation law, and then for plastic waves, where not all
variables are conserved.

2.3. Decomposition of the elastic wave equation. For elasticity the wave
equation (2.3) (or the abbreviated version (2.4)) is a linear hyperbolic conservation
law. We define new vectors Ri,

Ri = U +L�ni, i = 1, . . . , k,(2.12)

where �ni ∈ R
2 are k constant vectors, not necessarily of unit length. Then (2.4) can

be rewritten in the strictly equivalent form

U t + ∇ · cL =
1

k

k∑
i=1

[
(Ri)t + ∇ ·

(
Ri�n

T
i c
)]

= 0,(2.13)
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provided the vectors �ni satisfy the following two conditions:

k∑
i=1

�ni = 0,(2.14)

1

k

k∑
i=1

�ni�n
T
i = I.

The right-hand side of (2.13) can be reinterpreted as a coupled system of advection
equations, transporting the quantityRi at speed c�ni. Relation (2.14) is necessary and
sufficient for this reinterpretation and the following numerical scheme to be consistent
with the original equation.

Our numerical approximation for (2.3) consists of decoupling the system, i.e.,
solving each advection equation in (2.13) independently on the time interval [tn, tn+1]
of time-step n, which leads to

(Ri)t + ∇ ·
(
Ri�n

T
i c
)

= 0, i = 1, . . . , k,(2.15)

and consequently our approximate update for the state vector U reads

U(tn+1) =
1

k

k∑
i=1

Ri(t
n+1).(2.16)

This decomposition into decoupled advection equations is a first order approximation
in time, which is easy to prove:

U t =
1

k

k∑
i=1

(Ri)t = −1

k

k∑
i=1

∇ ·
(
cRi�n

T
i

)
= −∇ · cL.

To obtain approximations of order two or higher in the time integration with the
same one-step method, additional correction terms in the numerical fluxes are needed,
which can be found by comparing the Taylor of the exact solution and the numerical
solution (cf. [3], [4], [5]). We omit these correction terms in the following, since we
focus our stability analysis on the first order scheme. The application of our analysis to
higher order schemes including correction terms in the numerical fluxes is in principle
analogous to the one-dimensional (1-D) case, but more complicated due to the more
complex form of the numerical fluxes and hence beyond the scope of this paper.

It is noteworthy that the decomposition into advection equations according to
(2.13) is a generalization of the decomposition of a linear conservation law into right
eigenvectors in one dimension, which we will further analyze in our stability analysis
for the scheme in one dimension.

2.4. Decomposition of the elastic-plastic wave equation. For plastic waves,
the scheme described above with a decomposition of the form (2.13) is no longer pos-
sible since the plastic wave equation in the form (2.10) or (2.11) has no conservation
form.

One approach is to use the same transported quantities Ri as defined in (2.12)
and decompose the term on the right-hand side of (2.10) as well. Unfortunately,
this formulation leads to severe numerical problems since the “source term” on the
right-hand side of (2.10) depends on the spatial derivatives of U . Moving derivatives
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change the flux and thus the jump conditions, which means that the wave equation in
divergence form with “source term” does not have the correct physical discontinuities.

Another idea is to start with (2.11). Our numerical approach consists of “extract-
ing” the stress-strain relationship out of the flux computation, i.e., we write (2.1) as

V t + ∇ · cL(U) = 0(2.17)

with

V =

⎛⎝w
ε
γ

⎞⎠, U =

⎛⎝w
σ
τ

⎞⎠, L = −1

c

⎛⎝σ/ρ τ/ρ
w 0
0 w

⎞⎠.
According to this ansatz, our numerical scheme will possess two steps:

• First, we decompose (2.17) into advection equations (analogously to the elas-
tic wave equation) by defining

Ri := V +L(U)�ni.(2.18)

The corresponding advection equations

(Ri)t + ∇ ·
(
Ri�n

T
i c
)

= 0(2.19)

are solved independently for the time-step [tn, tn+1] to compute the update

V n+1 =
1

k

k∑
i=1

Ri(t
n+1)(2.20)

of the velocity and strain variables.
• Afterwards, the stress variables contained in U have to be updated by inte-

grating (2.5) in the stress space, which means integrating the ODE

(
σ̇

τ̇

)
=

⎛⎜⎜⎜⎝
1

μ
+

1

κ2

(
1

μp(κ)
− 1

μ

)
σ2 1

κ2

(
1

μp(κ)
− 1

μ

)
στ

1

κ2

(
1

μp(κ)
− 1

μ

)
στ

1

μ
+

1

κ2

(
1

μp(κ)
− 1

μ

)
τ2

⎞⎟⎟⎟⎠
−1(

ε̇

τ̇

)
,(2.21)

or in simple form (
σ̇

τ̇

)
= C−1(σ, τ)

(
ε̇

τ̇

)
,(2.22)

which is an equivalent formulation of (2.5) for σ̇ and τ̇ on the given time interval
[tn, tn+1] of time-step n. The problem arises that ε̇(t) and γ̇(t) are not known ∀t ∈
[tn, tn+1]. We only know Δε := εn+1−εn and Δγ := γn+1−γn from the flux updates.

In order to solve the ODE (2.22) we have to reconstruct the strain path, i.e., the
evolution of the strain variables on the time interval t ∈ [0, tn+1 − tn]:(

εn+1

γn+1

)
−
(
εn

γn

)
= at+ bt2 + ct3 + · · · .(2.23)
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Since we can compute the time derivatives of the strain variables at times tn and tn+1

by using

ε̇(t∗) = ∂xw(t∗),(2.24)

ε̈(tn) = ∂xẇ(tn) =
1

ρ

(
∂2

∂x2
σ +

∂2

∂x∂y
τ

)
(tn),

γ̇(t∗) = ∂yw(t∗),

γ̈(tn) = ∂yẇ(tn) =
1

ρ

(
∂2

∂x∂y
σ +

∂2

∂y2
τ

)
(tn)(2.25)

at t∗ = tn or tn+1

(w is known at times tn and tn+1 and σ and τ are known at time tn), we can reconstruct
the strain variables up to order four and the time derivatives of the strain variables
(and thus the right-hand side of the ODE (2.22)) up to order three—higher order can
be achieved by using higher spatial derivatives.

If the matrix function C(σ, τ) is not smooth at the transition from elasticity to
plasticity, one has to restart the integration on the yield surface. The exact point on
the yield surface where the transition from elasticity to plasticity takes place can be
found by iteration, e.g., bisection (cf. [5]).

2.5. Boundary conditions. Throughout this paper we will consider the
Cauchy-type problem for the elastic-plastic wave equation (2.11), i.e., the compu-
tational domain is R for the 1-D equation and R

2 for the two-dimensional (2-D) equa-
tion, and we prescribe an initial solution for the velocity, strain, and stress variables
at a certain time t0 and then advance the solution forward in time. Consequently, the
physical domain under consideration has no spatial boundaries and does not require
the prescription of spatial boundary conditions.

3. Definition of stability. The classical proof of convergence for numerical
schemes consists of proving consistency and stability. For explicit numerical schemes
for solving a PDE of the form

W n+1 = Ψ[W n](3.1)

with the discrete solution W n calculated using a grid Δx× Δt at time tn, we define
linear stability as follows.

Definition 3.1 (linear stability). A linear scheme of the form (3.1) is called
stable if there exist constants C(T ), Δx0, and Δt0 independent of Δt, Δx with

‖WN‖ ≤ C‖W 0‖ ∀Δt ≤ Δt0, ∀Δx ≤ Δx0(3.2)

with N = T/Δt.
This definition of stability (together with the requirement that the physical prob-

lem is well-posed) is sufficient for the Lax equivalence (cf. [19]) theorem to hold and
to ensure convergence of a consistent linear scheme. Of course, a sufficient condition
for linear stability is that the update operator Ψ is bounded by one, i.e.,∥∥W n+1

∥∥ ≤ ‖W n‖,(3.3)

which one can prove for linear schemes with von Neumann analysis.
However, for nonlinear schemes a reasonable definition of nonlinear stability is

more difficult. Our goal is to apply the convergence results for nonlinear schemes
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obtained in [1], [17]. The following definition of nonlinear stability is sufficient for
the convergence proof obtained by [1], [17] to be applicable to a consistent numerical
scheme of the form (3.1).

Definition 3.2 (nonlinear stability). A consistent numerical scheme of the form
(3.1) is called stable if for two arbitrary state vectors W1 and W2 there exists a constant
C independent of Δx and Δt such that

‖Ψ(W 1) − Ψ(W 2)‖ ≤ (1 + CΔt)‖W 1 −W 2‖ ∀W 1,W 2.(3.4)

The definition of nonlinear stability is constructed in such a way that consistency
and stability will be sufficient for convergence to the exact solution. However, consis-
tency and stability in this sense will not be necessary for convergence, as in the linear
case (cf. [24]).

Simply put, we define a scheme to be nonlinearly stable if the evolution of the
difference in time t of two states is bounded by an expression proportional to eCt,
which is sufficient (together with consistency) to show convergence. The convergence
follows from [24] using the L2-norm of the approximate solution W n at a grid level,
which is defined as the sum over the L2-norm of all grid cells:

‖W n‖ := Δx
∑
i

‖W n
i ‖2 in one dimension,

‖W n‖ := ΔxΔy
∑
i,j

‖W n
i,j‖2 in two dimensions.

The system under consideration in (2.11) contains physical constants such as ρ and μ,
which make the application of the L2-norm problematic, as we show in the following.

Remark 3.3 (variable transform). When using the L2-norm for the state-vector
containing velocity, stress, and strain variables for the physical system as presented
in (2.11), the problem occurs that the different components of the state-vector are
measured in different physical units (since we left physical constants such as ρ and
μ in the system) and hence the L2-norm is meaningless, since it contains the sum of
(squared) physical quantities measured in different physical units. Hence, we either
have to use a weighed L2-norm (i.e., an energy norm) or apply a method often used
in physics (cf. [11]): transforming physical quantities and time so that all components
of the state-vector are denoted in the same unit. To be more precise, we apply the
following transformation:

Transformed variables Physical variables

t′ = ct =⇒ ∂

∂t
= c

∂

∂t′
,

w′ = cw,

(σ′, τ ′) =

(
σ

ρ
,
τ

ρ

)
,

(ε′, γ′) = (c2ε, c2γ),

κ′ =
κ

ρ
,

μ′
p(κ

′) :=
μp(κ)

ρc2
.

Rewriting our physical system (2.11) in these “transformed variables” yields a system
of the same form, but ρ′ = c′ = μ′ = 1, measuring all quantities in the same unit,
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which will be used throughout the following stability analysis. For simplicity we will
drop the ′ used for the transformed variables.

4. Stability for elastic-plastic waves in 1-D. The physical behavior of a
solid undergoing stress can be classified according to three categories—elastic load-
ing, elastic unloading, and plastic loading. Analogous to the physical behavior, our
stability analysis in one dimension consists of three steps. First, we assume that we
have purely elastic deformation only, which means that the stress-strain relationship
is described by the line 0 → A according to Figure 4.1, and hence our system, as well
as our numerical scheme, is linear, and stability in the sense of Definition 3.1 can be
proved with von Neumann analysis (cf. [10]).

In the second step, we still consider elastic deformation, but this time the stress-
strain values may lie on a line which does not necessarily pass through the origin, e.g.,
line B → C according to Figure 4.1. Physically speaking, the material is assumed to
be in an elastic state everywhere, but having a different plasticity history in the past,
explaining why different cells have a different linear stress-strain relationship (e.g., in
Figure 4.1 one cell can be in an elastic unloading process, described by a straight line
not passing through the origin).

In the last step, we allow plastic deformation. First of all, we will prove bound-
edness (i.e., (3.3)) of the solution for plastic deformation, provided 0 < μp(κ) ≤ μ.
However, a severe problem occurs for plastic deformation, explained in the following
remark, leading to restriction of our further analysis.

Remark 4.1 (restriction of analysis). In the general case of plasticity described
by a hysteresis model as outlined in section 2.2, it is no longer possible to write the
update operator in the form

W n+1 = Ψ[W n](4.1)

since the yield condition depends on κ0(t) = maxt0≤t′≤t κ(t
′); i.e., it depends on

all past state vectors W 0,W 1, . . . ,W n. In order to analyze nonlinear stability for
plastic waves in the sense of (3.4), we will restrict our analysis to the following special
cases:

• Nonlinear elastic waves (cf. Figure 4.2): The stress-strain relationship is de-
scribed by a nonlinear function ε = h(σ).

• Ideal plastic deformation (cf. Figure 4.1): κ0 ≡ const and μp(κ) ≡ 0.

������

�� ��
��
��
��

 σ

εC0

BAκ0

Fig. 4.1. Hysteresis curve of an ideal plastic material. We consider three steps in our stability
analysis: Elastic loading 0 → A, elastic unloading B → C, and plastic loading along A→ B.
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Fig. 4.2. Stress-strain relationship of a nonlinear elastic material: The wave-speed decreases if
|σ| > κ0.

In both cases the operator Ψ is of the form (4.1), as used in our definition of nonlinear
stability (Definition 3.2).

4.1. Purely elastic waves. The first step of our analysis starts with the 1-D
elastic wave equation (i.e., (2.3) restricted to one space dimension)

U t =

(
w

σ

)
t

=

(
σ

w

)
x

with μ = 1 (cf. Remark 3.3),(4.2)

where the method of transport for elasticity is equivalent to the decomposition of
the linear conservation law into right eigenvectors (cf. [10]). Hence, the 1-D right
eigenvectors

R± =
1

2

(
w ± σ

σ ± w

)
(4.3)

allow us to decompose the state- and flux-vectors as follows:

U = R+ +R−,(
σ

w

)
x

= (R+)x − (R−)x.

The cell update for a first order scheme with constant values in each cell reads

Un+1
i = (1 − λ)Un

i + λ(R+,n
i−1 +R−,n

i+1)(4.4)

(λ = CFL-number), which can be written in the form

Un+1
i = (1 − λ)Un

i + λ(A+Un
i−1 +A−Un

i+1)(4.5)

with the matrices

A± :=
1

2

(
1 ±1
±1 1

)
.

Due to the linearity of the scheme, stability can be proven with von Neumann analysis,
which consists of analyzing the norm of the solution U(x, t) in the Fourier space. The
Fourier transform of the approximate solution reads

F [U ](k, tn) = Û(k, tn) =
1√
2π

∫ ∞

−∞
U(x, tn)e−ikx dx.(4.6)



NONLINEAR STABILITY ANALYSIS 2579

Furthermore we need the identity

F [U(x+ lΔx, tn)](k, tn) = Û(k, tn)e−ilξ(4.7)

with ξ = kΔx. Applying the Fourier transform to (4.4) leads to the amplification
matrix

G(ξ) = (1 − λ)I + λ(eiξA+ + e−iξA−),(4.8)

which has the eigenvalues r1,2,

r1,2 = 1 − λ(1 − e±iξ).(4.9)

Obviously, we have |r1,2| ≤ 1 for λ ∈ [0, 1], which is necessary for stability.
Moreover, a sufficient condition for stability is that the L2-norm of the matrix

G(ξ) is bounded by one; i.e., all eigenvalues of GHG are bounded by one. We have
the following.

Lemma 4.2. For λ = 1, the scheme (4.4) satisfies

‖Un+1‖2 = ‖Un‖2.(4.10)

Proof. For λ = 1, the two eigenvalues of GHG are

r1,2 = 1.

Proposition 4.3. Scheme (4.4) is stable according to Definition 3.1 ∀λ ∈ [0, 1].
Proof. We consider the L2-norm of Un+1 computed according to (4.4). Obviously,

the squared norm ‖Un+1‖2
2 is a polynomial of degree 2 in λ. Since

‖Un+1‖2
2(λ) ≥ 0 ∀λ ∈ R,

‖Un+1‖2
2(λ = 0) = ‖Un‖2

2,

‖Un+1‖2
2(λ = 1) = ‖Un‖2

2,

and because of limλ→±∞ ‖Un+1‖2
2(λ) = ∞, this polynomial has to be convex. Hence,

‖Un+1‖2(λ) ≤ ‖Un‖2 ∀λ ∈ [0, 1].(4.11)

4.2. Elastic loading and unloading waves. The second step of the stability
analysis, as sketched in Figure 4.1, focuses on the case when the stress-strain rela-
tionship is still linear, but not necessarily on a straight line through the origin (e.g.,
line B → C); for example, a cell could be in an elastic unloading process.

Our numerical scheme consists of two steps now—updating velocity and strain
by the method of transport and then updating the stress. To apply the method of
transport (cf. (2.19) and (2.20) in two dimensions), we decompose the PDE in the
1-D case,

V t =

(
w

ε

)
t

=

(
σ

w

)
x

,(4.12)

into transported quantities R± as follows:

R± :=
1

2

(
w ± σ

ε± w

)
.(4.13)
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Thus, we update the velocity and strain variables in each cell by solving the advection
equations,

R+
t + (R+)x = 0,

R−
t − (R−)x = 0,

which yields an update formula for V = (w, ε) with the CFL-number λ:

V n+1
i = (1 − λ)V n

i + λ(R+,n
i−1 +R−,n

i+1).(4.14)

Afterwards, the stress is updated according to Hooke’s law (with μ = 1 due to Re-
mark 3.3),

σn+1
i = σni + (εn+1

i − εni ).(4.15)

The stress-strain relationship is obviously linear but can be described by a different
linear equation in each cell, which generalizes the analysis of the previous section,
where each cell was described by the same linear stress-strain relationship. Physically
speaking, each cell can be in a different elastic loading or unloading process. We
will write these two steps (4.14), (4.15) as a one-step update for the vector W n

i =
(wni , ε

n
i , σ

n
i ).

With the matrices A+, A−, A0, and E defined as follows:

A± :=
1

2

⎛⎝ 1 0 ±1
±1 1 0
±1 1 0

⎞⎠,
A0 :=

⎛⎝ 0 0 0
0 0 0
0 −1 1

⎞⎠,
E :=

⎛⎝ 1 0 0
0 1 0
0 1 0

⎞⎠.
We can write the scheme (4.14), (4.15) as one step:

W n+1
i = λ[A+W n

i−1 +A−W n
i+1]W

n
i +A0W n

i + (1 − λ)EW n
i .(4.16)

Since the scheme (4.16) is still linear, we apply von Neumann analysis, which means
we analyze the amplification matrix

G(ξ) = λ[A+eiξ +A−e−iξ] +A0 + (1 − λ)E.(4.17)

The eigenvalues ri of the complex non-Hermitian matrix G(ξ) turn out to be

r1 = 1,

r2,3 = 1 − λ+ λe±iξ,

which are all bounded by one ∀λ ∈ [0, 1], which is necessary for stability.
A sufficient condition for stability is that the eigenvalues of GHG are bounded

by one. The calculation of the eigenvalues of GHG yields lengthy expressions for the
eigenvalues, which are too complicated to be discussed analytically. Thus, we perform
a computational analysis to verify the following.
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Fig. 4.3. Three eigenvalues of the matrix GHG, plotted over the region (λ, ξ) ∈ [0, 1] ×
[−π/2, π/2], showing their boundedness between zero and one.

Conjecture 4.4 (boundedness of eigenvalues of GHG). The eigenvalues of GHG
with the amplification matrix defined in (4.17) are bounded by one ∀λ ∈ [0, 1].

Proof. The three eigenvalues of the matrix GHG plotted in Figure 4.3 for (λ, ξ) ∈
[0, 1] × [−π/2, π/2] show that these three eigenvalues are bounded by one.

Consequently, we can conclude that

‖W n+1‖2 ≤ ‖W n‖2.(4.18)

It is important to mention that our further investigations for plastic waves are
independent of this result for the method of transport; i.e., the following results can
be applied to any numerical scheme fulfilling the stability condition (4.18) for elastic
waves.

4.3. Boundedness for elastic-plastic waves. The third step of our stability
analysis generalizes to the case of plastic deformation, i.e., the stress update in (4.15)
has to be replaced by the integral equation

σn+1
i = σni +

∫ εn+1
i

εn
i

μp(σ(ε))dε,(4.19)

which yields an update for σ. For most materials (cf. [18]) μp(σ) is smaller for plas-
ticity than for elasticity, i.e.,
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μp(σ) =

{
μ = 1 if |σ| ≤ κ0,
≤ μ = 1 otherwise,

(4.20)

with

κ0(t) = max
0≤t′≤t

|σ(t)|,

which will be used as an assumption in the following proposition. Equation (4.20)
shows that the following analysis covers not only purely plastic deformation but also
the case where deformation is first elastic and then becomes plastic.

Proposition 4.5. If (4.18) holds for elastic waves ∀λ ∈ [0, 1] and 0 < μp(κ) ≤
μ = 1 ∀κ ∈ R

+, then the update operator Ψ of the scheme is also bounded by one for
plasticity ∀λ ∈ [0, 1], i.e.,

‖W n+1‖2 ≤ ‖W n‖2.

Proof. The basic idea of the proof is simple: With a given solution W n at time
level tn we compute two different updates: one purely elastic updateW n+1

el computed
according to (4.15) neglecting the existence of plasticity, and the plastic updateW n+1

pl

computed according to (4.19). Since the elastic update of the stress σn+1
el cannot be

smaller than the plastic update if μp(κ) ≤ μ = 1, i.e.,

|σn+1
pl | ≤ |σn+1

el |,(4.21)

the norm of the plastic update of the vector W n+1
pl cannot be larger than the elastic

update W n+1
el :

‖W n+1
pl ‖2 ≤ ‖W n+1

el ‖2 ≤ ‖W n‖2.

Hence, boundedness by one of the update operator for elasticity implies bound-
edness for plastic waves as well. It is noteworthy that this result is independent of
the numerical scheme used for solving the fluxes, e.g., the method of transport.

4.4. Nonlinear stability for elastic-plastic waves. However, since we have a
nonlinear scheme for plastic waves, boundedness of the operator is no longer sufficient
for stability in the sense of Definition 3.2.

Therefore, we have to use (3.4) from Definition 3.2, which means that we have to
investigate the difference between two solutions ΔW n

i = W̄
n
i −W n

i with

W n
i := (wni , ε

n
i , σ

n
i ),

W̄
n
i := (w̄ni , ε̄

n
i , σ̄

n
i )

in order to prove nonlinear stability.
As for the proof of boundedness, the basic idea is to prove that plasticity can only

decrease the norm of the difference between two states relative to elasticity. There-
fore, one computes an elastic update for both W i and W̄ i ignoring the existence of
plasticity and then compares it to the plastic update. Provided the stability condition
(4.18) holds for elastic waves, then we can already conclude a relation of the form

‖ΔW n+1‖2 ≤ ‖ΔW n‖2(4.22)
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for elastic waves, since in that case Ψ[W n − W̄ n
] = Ψ[W n] − Ψ[W̄

n
] due to the

linearity of the scheme for elastic waves. Thus, it is sufficient to show that plasticity
can only reduce the norm of ‖ΔW n+1‖2; i.e., we have to show

(Δσn+1
pl )2 ≤ (Δσn+1

el )2(4.23)

in each cell, where the indices el and pl distinguish between an elastic and a plastic
stress update.

For reasons explained above in Remark 4.1, we will analyze only the special cases
of an ideal plastic material and nonlinear elastic material.

4.4.1. Ideal plastic material. For such material, the stress-strain relationship
can be described as follows:

κ(t) =
√
σ2(t),(4.24)

dσ =

{
0 if κ = κ0 and κ̇ > 0,
dε otherwise,

which implies

κ0 ≡ const and |σ(t)| ≤ κ0.(4.25)

We have the following proposition.
Proposition 4.6. The update operator Ψ for plastic waves in a material with the

plasticity model described in (4.24) is nonlinearly stable in the sense of Definition 3.2;
i.e., for the difference between two solutions ΔW n we have

‖ΔW n+1‖2 ≤ ‖ΔW n‖2.

Proof. If σn+1
el and σ̄n+1

el denote the elastic stress update in a cell i neglecting the
occurrence of plasticity, then the plastic update in this cell reads

σn+1
pl = sgn(σn+1

el ) min{|σn+1
el |, κ0},

σ̄n+1
pl = sgn(σ̄n+1

el ) min{|σ̄n+1
el |, κ0}.

Thus, one easily verifies

|σn+1
pl − σ̄n+1

pl | ≤ |σn+1
el − σ̄n+1

el |,(4.26)

which implies

‖ΔW n+1
pl ‖2 ≤ ‖ΔW n+1

el ‖2 ≤ ‖ΔW n‖2.(4.27)

4.4.2. Nonlinear elastic material. The second case we want to study is a non-
linear elastic material, where the stress-strain relationship is described by a nonlinear
function σ = h(ε) (cf. Figure 4.2). If the elastic shear modulus μ = 1 is a Lipschitz
constant for the function f (which implies that the nonlinear wave-speed is smaller
than the elastic speed), then we have the following.

Proposition 4.7. For stress-strain relationship of the form σ = h(ε) with μ = 1
being a Lipschitz constant of the function h(·), the operator Ψ is stable in the sense
of Definition 3.2.



2584 GUIDO GIESE

Proof. Let the index pl and el distinguish between the nonlinear and the linear
elastic updates, whence in a cell i we have

|σn+1
pl − σ̄n+1

pl | = |h(εn+1) − h(ε̄n+1)| ≤ |εn+1 − ε̄n+1| = |σn+1
el − σ̄n+1

el |(4.28)

and thus

‖ΔW n+1
pl ‖2 ≤ ‖ΔW n+1

el ‖2 ≤ ‖ΔW n‖2.(4.29)

It is noteworthy that these two results for nonlinear stability are independent of
the method used for solving the PDE; i.e., they can be used for schemes other than
the method of transport as well.

5. Stability for elastic-plastic waves in two dimensions. In this section,
we will analyze the stability of our scheme in two dimensions. In principle, one
can follow the same three steps and the same ideas as for one dimension. In two
dimensions, the method of transport based on the decomposition of the PDE into
advection equations is a generalization of the decomposition of a linear conservation
law into right eigenvectors in one dimension.

5.1. Stability for elastic waves. As in one dimension, the first step of our
stability analysis focuses on an purely elastic material. As mentioned above (cf. (2.13)–
(2.16)), the idea of the method of transport is to decompose a PDE into advection
equations describing the transport of some quantities Ri. For elastic waves, these
quantities can be written as

Ri := U +L�ni = AiU(5.1)

with

Ai =

⎛⎝ 1 n1
i n2

i

n1
i 1 0
n2
i 0 1

⎞⎠ and �ni =

(
n1
i

n2
i

)
.(5.2)

We call λ the CFL-number of the scheme. In the following we use four diagonal waves,
i.e.,

�n1 =

(
1

1

)
, �n2 =

(
1

−1

)
, �n3 =

(−1

1

)
, �n4 =

(−1

−1

)
,(5.3)

which fulfill the consistency relation (2.14).
We assume a Cartesian grid, and consequently λ2 is the part of the quantity Ri

in a certain cell which is transported into the corner neighbors and λ(1 − λ) is the
part which is transported into the direct neighbor cells (cf. Figure 5.1).

With the above assumptions, the update formula of the scheme for the state
vector U ij in the cell (i, j) can be formulated:

Un+1
ij = [1 − λ2 − 2λ(1 − λ)]Un

i,j(5.4)

+ {λ2[(Rn
1 )i−1,j−1 + (Rn

3 )i+1,j−1 + (Rn
2 )i−1,j+1 + (Rn

4 )i+1,j+1]

+λ(1 − λ)[(Rn
1 )i−1,j + (Rn

4 )i−1,j + (Rn
2 )i−1,j + (Rn

3 )i+1,j ]

+λ(1 − λ)[(Rn
3 )i,j−1 + (Rn

4 )i,j+1 + (Rn
1 )i,j−1 + (Rn

2 )i,j+1]}/4.
Taking into account (5.1) and (5.2), the quantities Rk used in (5.4) can be expressed
by the Un

ij .
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yΔ

xΔ

λ λ(1-   ) λ2

Ri

Fig. 5.1. Advection of the quantity Ri in a cell into the direction �n1 = (1, 1)T . The part
transported into the corner cell is λ2, and the part transported into each of the two direct neighboring
cells is λ(1 − λ), where λ denotes the CFL-number.

Since the scheme is linear, we can apply the well-known von Neumann analysis
to show stability for the scheme (5.4). Therefore, we analyze the Fourier transform
of U(x, y, t),

F [U ](k1, k2, t
n) = Û(k1, k2, t

n)(5.5)

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
U(x, y, tn)e−i(k1x+k2y) dx dy.

Obviously we have

F [U(x+ lΔx, y +mΔy, tn)](k1, k2, t
n) = Û(k1, k2, t

n)e−i(lξ+mη)(5.6)

with ξ = k1Δx and η = k2Δy. Hence, in the Fourier space the update scheme can be
written as

Û(k1, k2, t
n+1) = G(ξ, η)Û(k1, k2, t

n).(5.7)

In order to prove stability for the scheme (5.4) it is sufficient to show that the ampli-
fication matrix G(ξ, η) is bounded in the L2-norm; i.e., the eigenvalues of GHG are
less than or equal to one. We have the following.

Proposition 5.1 (boundedness for CFL = 1). For CFL = 1, the eigenvalues
of GH(ξ, η)G(ξ, η) on a Cartesian grid are bounded by one, and hence the scheme is
linearly stable according to Definition 3.1.

Proof. Using (5.5) in (5.4), the eigenvalues of GHG can be found:

r1 = −1

8
cos(2ξ + 2η) +

1

4
cos(2η) − 1

8
cos(2η − 2ξ) +

1

4
cos(2ξ) +

3

4
,

r2,3 =
1

8
cos(2ξ + 2η) +

1

4
cos(2η) +

1

8
cos(2η − 2ξ) +

1

4
cos(2ξ) +

1

4
,

which are bounded by one. Hence, for CFL = 1 the scheme is stable.
Further, numerical plots of the eigenvalues of GHG confirm that stability holds

∀λ ∈ [0; 1]. We omit the plots of eigenvalues in this step, since we show them below
in the more general context of the second step.

5.2. Stability for elastic loading and unloading waves. As in one dimen-
sion, the second step of our analysis still focuses on elastic waves, but now allowing
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different cells to be in a different hysteresis state (i.e., different cells have different
linear stress-strain relationships, as indicated in Figure 4.1). Again, we can rewrite
our two-step scheme:

• Updating w, ε, and γ using the method of transport, i.e., (2.18)–(2.20).
• Then updating σ and τ using the stress-strain relationship

σn+1
ij = σnij + (εn+1

ij − εnij),

τn+1
ij = τnij + (γn+1

ij − γnij)

as a one-step update scheme for the vector W = (w, ε, γ, σ, τ). With the matrix

Ai :=
1

4

⎛⎜⎜⎜⎜⎝
1 0 0 n1

i n2
i

n1
i 1 0 0 0
n2
i 0 1 0 0
n1
i 1 0 0 0
n2
i 0 1 0 0

⎞⎟⎟⎟⎟⎠(5.8)

we can define the transported quantities

Ri := AiW ,(5.9)

where i is the index of one of the four diagonal waves according to (5.3). Furthermore,
we define

A0 :=

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎠,

B :=

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −1 0 1 0
0 0 −1 0 1

⎞⎟⎟⎟⎟⎠.
Hence, our scheme for the update of W n

ij in cell (i, j) reads

W n+1
ij = [1 − λ2 − 2λ(1 − λ)]A0W

n
i,j +BW n

i,j(5.10)

+ {λ2[(Rn
1 )i−1,j−1 + (Rn

3 )i+1,j−1 + (Rn
2 )i−1,j+1 + (Rn

4 )i+1,j+1]

+λ(1 − λ)[(Rn
1 )i−1,j + (Rn

4 )i+1,j + (Rn
2 )i−1,j + (Rn

3 )i+1,j ]

+λ(1 − λ)[(Rn
3 )i,j−1 + (Rn

4 )i,j+1 + (Rn
1 )i,j−1 + (Rn

2 )i,j+1]}/4.
Analogous to the 1-D case, we compute the amplification matrix as

G(ξ, η) = [1 − λ2 − 2λ(1 − λ)]A0 +B(5.11)

+ {λ2[eiξ+iηA1 + e−iξ+iηA3 + eiξ−iηA2 + e−iξ−iηA4]

+λ(1 − λ)[eiξA1 + e−iξA4 + eiξA2 + e−iξA3]

+λ(1 − λ)[eiηA3 + e−iηA4 + eiηA1 + e−iηA2]}/4,
which is a complex non-Hermitian matrix. As in one dimension, we come to the
following conjecture.
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Fig. 5.2. Three eigenvalues of the matrix GHG for CFL = λ = 1, plotted over the region
(ξ, η) ∈ [−π/2, π/2]2, showing their boundedness between zero and one. The remaining two eigen-
values are omitted, since they are constantly one.

Conjecture 5.2 (boundedness of eigenvalues of amplification matrix). The eigen-
values of the update matrix GHG with the amplification matrix defined in (5.11) on
a Cartesian grid are bounded by one for CFL = λ = 1.

Proof. The eigenvalues of the amplification matrix GH(ξ, η)G(ξ, η) plotted in
Figure 5.2 show the eigenvalues for λ = 1, which are bounded by one.

It is important to mention that further computations of the eigenvalues of
GHG for CFL-numbers between zero and one illustrates that stability holds ∀λ ∈
[0, 1].

5.3. Stability for elastic-plastic waves. Analogous to the 1-D case, one can
argue that the norm of the difference of two solutions ΔW can only decrease when
plasticity occurs if we make similar assumptions for the stress-strain relationship as
in 1-D, i.e., ideal plasticity. The argument used is the same as in one dimension:
Plasticity yields smaller stress updates than elasticity as long as the plastic wave-
speed is not greater than the elastic one.

6. Conclusion. The “classical” convergence proof for ODE and linear PDE
solvers is based on two properties of a numerical scheme—consistency and stabil-
ity. For our numerical scheme for solving the (nonlinear) elastic-plastic wave equation
using the method of transport as underlying numerical scheme, we used a def-
inition of nonlinear stability, which is based on a limit for the evolution of the
difference between two numerical solutions in time. On the basis of this stability
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definition it is straightforward to obtain convergence proofs for a consistent numerical
scheme.

For purely elastic waves where our scheme is linear, and hence boundedness of
the update operator is sufficient for stability, we were able to show stability with von
Neumann analysis in one and two dimensions. For plastic waves, where the system to
be simulated nonlinear, as, consequently, is our scheme, we were able to show bound-
edness of the update operator, provided that the plastic wave-speed is not higher than
the elastic wave-speed in one dimension. Furthermore, we showed nonlinear stabil-
ity for two special cases in one dimension—nonlinear elastic waves and ideal plastic
waves, where the shear modulus reduces to zero in the plastic zone. The basic idea
for the proof of boundedness and nonlinear stability is the observation that plasticity
only decreases the value of the stress variables, provided the material “weakens” in
plastic zones. Furthermore, it is straightforward to generalize this argument to two
dimensions.

It is noteworthy that our stability results in the nonlinear (i.e., plastic) case are
very general in the sense that they are independent of the numerical scheme used for
solving the PDE, and they are based on the observation that the occurrence of plas-
ticity only “improves” stability, provided the material becomes weaker in the plastic
zone, which is the case for almost all materials. Moreover, the analysis performed is
not restricted to one or two space dimensions—a generalization to the wave equation
in three dimensions is straightforward.
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Abstract. A family of dual-primal finite element tearing and interconnecting (FETI) methods
for edge element approximations in two dimensions is proposed and analyzed. The primal constraints
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1. Introduction. In this paper, we consider the boundary value problem

Lu := curl (a curlu) +A u= f in Ω,
u · t= 0 on ∂Ω,

(1.1)

with Ω a bounded polygonal domain in R
2. The domain Ω has unit diameter and t

is its unit tangent. We have

curl v :=

[
∂v

∂x2
,− ∂v

∂x1

]T
, curlu :=

∂u2

∂x1
− ∂u1

∂x2
;

see, e.g., [19]. The coefficient matrix A is a symmetric uniformly positive definite
matrix-valued function with entries Aij ∈ L∞(Ω), 1 ≤ i, j ≤ 2, and a ∈ L∞(Ω) is a
positive function bounded away from zero.

The weak formulation of problem (1.1) requires the introduction of the Hilbert
space H(curl ; Ω), defined by

H(curl ; Ω) := {v ∈ (L2(Ω))2 | curlv ∈ L2(Ω)}.

The space H(curl ; Ω) is equipped with the inner product and graph norm

(u,v)curl :=

∫
Ω

u · v dx+

∫
Ω

curlu curlv dx, ‖u‖2
curl := (u,u)curl,

and the tangential component u · t, of a vector u ∈ H(curl ; Ω) on the boundary ∂Ω,

belongs to the space H− 1
2 (∂Ω); see [6, 19]. The subspace of vectors in H(curl ; Ω)

with vanishing tangential component on ∂Ω is denoted by H0(curl ; Ω).
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For any D ⊂ Ω, we define the bilinear form

aD(u,v) :=

∫
D

(a curlu curlv +A u · v) dx, u, v ∈ H(curl ; Ω).(1.2)

The variational formulation of (1.1) is as follows.
Find u ∈ H0(curl ; Ω) such that

aΩ(u,v) =

∫
Ω

f · v dx, v ∈ H0(curl ; Ω).(1.3)

The purpose of this work is to construct and analyze a dual-primal finite element
tearing and interconnecting (FETI-DP) preconditioner for h and p finite element
approximations of problem (1.3). Neumann–Neumann (NN) and finite element tearing
and interconnecting (FETI) algorithms are particular domain decomposition (DD)
methods of iterative substructuring type; they rely on a nonoverlapping partition into
subdomains. They are among the most popular and heavily tested DD methods and
are now employed for the solution of huge problems on parallel architectures; see, e.g.,
[16, 9, 8, 31, 4]. The rate of convergence is often independent of possibly large jumps
of the coefficients.

FETI methods rely on the reformulation of the original algebraic problem into an
equivalent saddle point problem, involving discontinuous functions across the subdo-
main boundaries and a continuity constraint for the solution; see (3.3). In the original
one-level FETI methods, completely discontinuous vectors are employed; the elimi-
nation of the primal variable thus requires the solution of local (generally singular)
Neumann problems, and an equation for the Lagrange multipliers is then obtained. A
first step consists in the elimination of the components belonging to a suitable coarse
space, constructed from local subdomain kernels or suitable functions (constants for
the Laplace equation and rigid body modes for linear elasticity, for example). This
elimination employs a projection, constructed with a suitable scaling matrix. A pre-
conditioner for the resulting equation is then constructed by solving local Dirichlet
problems on the subdomains and by employing a set of scaling matrices which have
the purpose of making convergence independent of possibly large jumps of the coef-
ficients. We recall that one-level FETI methods actually consist of both coarse and
local components; in the context of FETI methods the term “one-level” is in contrast
to two-level methods that were developed primarily for biharmonic and shell element
problems and that involve satisfying some of the continuity constraints at each step
of the iterations.

The more recently developed FETI-DP methods employ a smaller space for the
solution, where a certain number of degrees of freedom or linear functionals is con-
tinuous across the subdomains. These so-called primal constraints ensure that a
nonsingular global problem needs to be solved in order to obtain an equation for
the Lagrange multipliers; this step requires the solution of modified nonsingular Neu-
mann problems and the solution of a coarse problem the size of which equals the
number of primal constraints. As before, a preconditioner is constructed by solving
local Dirichlet problems. FETI-DP algorithms present considerable advantages: the
same code can now be employed for a wider class of problems, much less dense coarse
matrices need to be inverted, they do not require the characterization of the kernels
of local Neumann operators or the introduction of an additional scaling matrix for the
construction of the coarse component of the preconditioner, and they may start the
conjugate gradient (CG) iteration from an arbitrary initial guess. For these reasons,
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they have now almost completely replaced one-level FETI methods for large scale
computations. Connections between NN and FETI methods are being investigated;
see [13].

The motivation of this work lies in the fact that no iterative substructuring meth-
ods (and, in particular, no NN or FETI preconditioners) that are robust with respect
to the number of unknowns, the number of subdomains, and large jumps of the coef-
ficients are presently available for edge element approximations of three-dimensional
problems.

Some methods are available for two-dimensional approximations.

In [30], a DD preconditioner was proposed, which is based on a standard coarse
space and local spaces associated to the subdomain edges. NN preconditioners with
standard coarse spaces were studied in [24]. One-level FETI methods were devel-
oped in [26, 21], thanks to the introduction of suitable local functions which are the
analogue of constants and rigid body modes for the Laplace equation and linear elas-
ticity, respectively. These functions were then employed to construct a Balancing
NN method in [25]. Standard coarse spaces, however, are not in general suitable for
quasi-optimal preconditioners in three dimensions, and the search for suitable local
functions in three dimensions for balancing NN and one-level FETI methods has pro-
duced no results so far. For these reasons we believe that FETI-DP algorithms will
turn out to be easier to devise for three-dimensional problems. The scope of this work
is then to begin to understand a good set of primal constraints in two dimensions,
which have not been available so far. It turns out that the natural choice of edge
averages on the subdomain edges leads to a robust preconditioner.

For the analysis, we employ the tools developed in [30]. We note that more general
tools were later devised in [32], which consisted in decomposition results for trace
functions in H(curl ; Ω) in two dimensions or H(div ; Ω) and stable curl/divergence-
free extensions from the subdomain boundaries. Here, we have chosen to employ
the results in [30], since we have in mind extensions to anisotropic meshes which are
often needed for problems in conductor materials with high jumps in the conductivity.
The work in [27, 28, 29] for scalar problems showed that when dealing with highly
anisotropic meshes the analysis cannot employ trace norms or stable extensions, since
the latter are not available in this case. The approach in [30], which does not rely
on trace norms or stable extensions, but only on results for scalar problems (see
Lemma 4.1 and its proof in section 5), appears more promising for edge element
approximations on anisotropic meshes. This generalization is left to a future work.

We recall that effective multilevel strategies have also been developed for problems
involving the curl-curl operator in three dimensions. We refer to, e.g., [1, 12, 22, 5].

This paper is organized as follows. In section 2, we introduce our discrete prob-
lems, the subdomain partition, and local and global finite element spaces. In section 3,
we introduce our FETI-DP algorithms. Condition number bounds are given in sec-
tion 4. First we give the technical tools necessary to prove them in subsection 4.1.
These are the decomposition lemma, Lemma 4.1, and the abstract framework for the
analysis of FETI-DP methods originally proposed in [15]. Our main result is the
stability property in Lemma 4.6 in subsection 4.2. Lemma 4.1 is proven in [30] for h
approximations, and we provide a proof for the case of p finite elements in section 5.
A practical implementation of our algorithm is given in section 6 and some numerical
results in section 7.

2. Discrete spaces. In this paper, we consider both h and p version finite
elements. We discretize this problem using edge elements, which are also known as
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Nédélec elements; see [20]. These are vector finite elements that ensure only the
continuity of the tangential component across the elements, as is physically required
for the electric and magnetic fields, solutions of Maxwell’s equations. We refer to [19]
for a general introduction of approximations of electromagnetic problems, the Sobolev
space H(curl ; Ω), and edge elements.

2.1. Triangulations and subdomain partitions. We introduce a shape-reg-
ular triangulation T = Th of the domain Ω, made of affinely mapped quadrilaterals. In
particular, if Q̂ = (−1, 1)2 is a reference square, for each element K ∈ T , there exists

an affine mapping FK : Q̂→ K, such that K is the image of Q̂. Here we consider only
quadrilateral meshes for simplicity but note that our results are equally valid for h
approximations on triangular meshes.

Let E = Eh be the set of edges of T . For every edge e ∈ E , we fix a direction,
given by a unit vector te, tangent to e. The length of the edge e is denoted by |e|.

We next consider a nonoverlapping partition of the domain Ω,

FH =

{
Ωi | 1 ≤ i ≤ N,

N⋃
i=1

Ωi = Ω

}
,

such that each Ωi is connected. The elements of FH are called subdomains or sub-
structures. For the h version, we take the substructures Ωi as unions of fine elements.
We denote the diameter of Ωi by Hi and define H as the maximum of the diameters
of the subdomains:

H := max
1≤i≤N

{Hi}.

In this case h < H. For the p version we take FH = Th and thus H = h.
We always assume that the substructures are images of a reference square un-

der sufficiently regular maps, which effectively means that their aspect ratios remain
uniformly bounded. In addition, we assume that the ratio of the diameters of two
adjacent subregions is bounded away from zero and infinity. Further assumptions,
necessary for the analysis but not for the definition of the algorithms, are made at
the beginning of section 4.1.

We define the edges of the partition as the interior Eij of the intersections

Eij := ∂Ωi ∩ ∂Ωj , i �= j, |Eij | > 0,

where |Eij | denotes the measure of Eij and Eij its closure. We note that Eji = Eij .
We introduce a unit vector tEij that is tangent to Eij . Let EH be the set of edges
of FH , and let the interface Γ be the union of the edges of FH or, equivalently, the
parts of the subdomain boundaries that do not belong to ∂Ω:

Γ :=

N⋃
i=1

∂Ωi \ ∂Ω.

For every subdomain Ωi, let Ii be the set of indices j, such that Eij is an edge of Ωi:

Ii := {j | Eij ⊂ ∂Ωi, Eij ∈ EH}.

Our assumptions on the partition FH ensure that the the number of edges |Ii| is
uniformly bounded.
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We assume that the coefficients a and A are constant in each substructure Ωi and
denote them by ai and Ai, respectively. We also assume that

0 < βi|x|2 ≤ xtAix ≤ γi|x|2, x ∈ R
2,(2.1)

for i = 1, . . . , N , where | · | denotes the standard Euclidean norm.

2.2. Edge element functions. We next define the local spaces

H�(curl ; Ωi) := {ui ∈ H(curl ; Ωi) | ui · t = 0 on ∂Ω ∩ ∂Ωi}

and the following polynomial spaces on the reference square for k ≥ 1:

Rk(Q̂) = Qk−1,k(Q̂) ⊗ Qk,k−1(Q̂),

with Qk1,k2(Q̂) the space of polynomials of degree ki in the ith variable. On an affinely
mapped element K ∈ T , we take

Rk(K) = {u = J−T
FK

û | û ∈ Rk(Q̂)},(2.2)

with JFK
the Jacobian of the transformation FK . We note that the tangential com-

ponent of a vector in Rk(K) is a function of Qk−1 over each edge of K.
For the h version, we employ the lowest-order Nédélec finite element spaces, orig-

inally introduced in [20], defined on each subdomain Ωi:

Xi = Xh(Ωi) := {u ∈ H�(curl ; Ωi) | u|K ∈ R1(K), K ∈ Th, K ⊂ Ωi}.

Higher polynomial degrees can also be considered and our results and bounds will
remain valid with constants that depend on the polynomial degree. See, e.g., [19] for
more details. Functions in Xi have a constant tangential component over the fine
edges in E . The degrees of freedom for Xi are the constant values of the tangential
component on the fine edges in E contained in Ωi.

For the p version, we choose

Xi = Xk(Ωi) := Rk(Ωi) ∩ H�(curl ; Ωi).

The basis functions can be associated to the (mapped) Gauss–Lobatto nodes on Ωi,
and the corresponding degrees of freedom are in this case the values at these nodes.
Other basis functions are also possible, however. We refer to, e.g., [3, 11, 18, 7, 19]
for more details on spectral and p finite element approximations of electromagnetic
problems. The results in this paper for the p version are independent of the particular
basis chosen.

We next consider the product space

X = X(Ω) :=
N∏
i=1

Xi ⊂
N∏
i=1

H�(curl ; Ωi),

which consists of vectors that have in general a discontinuous tangential component
along the subdomain edges. The discrete solution is sought in the conforming space

X̂ := X ∩ H0(curl ; Ω)

of vectors with a continuous tangential component along the edges in EH .



FETI-DP FOR EDGE ELEMENTS 2595

We now introduce some trace spaces consisting of tangential components on the
boundaries of the substructures. A scalar function u, defined on ∂Ωi \ ∂Ω, belongs to
Wi if and only if there exists u ∈ Xi such that, for each edge,

u|Eij
= u · tEij , Eij ∈ EH , j ∈ I(i).

For h approximations these are piecewise constant (or piecewise polynomial of degree
k − 1 if higher-order Nédélec elements are considered) along the edges Eij . For p
approximations they are polynomials of degree k − 1 on each edge Eij . We will
employ the product space of functions defined on Γ, W :=

∏
iWi, and its continuous

subspace Ŵ consisting of tangential traces of vectors in X̂.
The scalar functions in the spaces Wi and W are uniquely defined by the degrees

of freedom of the spaces Xi and X involving the tangential components along edges in
EH . Throughout this paper, we will use the following notation: we denote a generic
vector function in Xi using a bold letter with the superscript (i), e.g., u(i), and
employ the same notation for the corresponding column vector of degrees of freedom.
Its tangential component u(i) is an element of Wi and is defined by

u(i)|Eij
:= u(i) · tEij

, Eij ∈ EH , j ∈ I(i).

It is uniquely determined by the degrees of freedom u(i) involving the tangential
component along ∂Ωi \ ∂Ω. We use the same notation u(i) for the column vector of
these tangential degrees of freedom and the same notation for the spaces of functions
Xi and Wi and for the corresponding spaces of degrees of freedom. We use similar
notation for global functions in X and W .

We remark that a vector u belongs to the continuous space X̂ (and consequently

its tangential component to Ŵ ) if

u(i)|Eij
= u(j)|Eij

, Eij ∈ EH .(2.3)

Finally, for i = 1, . . . , N , we define the extensions into the interior of the Ωi,

Hi : Wi −→ Xi,

that are discrete harmonic with respect to the bilinear forms aΩi(·, ·). We recall that
u(i) = Hiu

(i) minimizes the energy aΩi(u
(i),u(i)) among all the vectors of Xi with

tangential component equal to u(i) on ∂Ωi \ ∂Ω. We will refer to Hi as the Maxwell
discrete harmonic extension.

2.3. Continuous finite element spaces. In the following we will also need the
standard finite element spaces of scalar, continuous, piecewise polynomial functions.
With

H1
�(Ωi) := {φ ∈ H1(Ωi) | φ = 0 on ∂Ω ∩ ∂Ωi},

we define, for the h version, the space of continuous piecewise bilinear functions

Qi = Qh(Ωi) := {φ ∈ H1
�(Ωi) φ ∈ Q1,1(K), K ∈ Th, K ⊂ Ωi}.

For the p version, we employ

Qi = Qk(Ωi) := Qk,k(Ωi) ∩ H1
�(Ωi).

We note that in both cases gradQi ⊂ Xi.
Discrete harmonic functions in Qi will be referred to as Laplace discrete harmonic

in the following.
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3. FETI-DP methods. In this section, we introduce a FETI-DP method for
the solution of the linear system arising from the edge element discretization of prob-
lem (1.3). In section 6, we give a practical implementation of the algorithm. Through-
out the paper, we denote the Euclidean scalar product in l2 by 〈·, ·〉. We recall that
FETI-DP methods were originally introduced in [8]. The first theoretical result was
given in [17] for two-dimensional problems and then later in [15] for three dimensions.
Some theoretical results for linear elasticity can be found in [14].

We first assemble the local stiffness matrices, relative to the bilinear forms aΩi(·, ·),
and the local load vectors. The degrees of freedom that belong only to one substruc-
ture can be eliminated in parallel by block Gaussian elimination. We note that these
are degrees of freedom associated to edges or nodes in the interior of the substruc-
tures, on ∂Ω, and, in case polynomial spaces with k > 0 are employed, they also
consist of values of the normal component on the subdomain boundaries. We are
then left with the degrees of freedom involving the tangential component along the
substructure boundaries. Let f (i) be the resulting right-hand sides and S(i) the Schur
complement matrices

S(i) : Wi −→Wi,

relative to the tangential degrees of freedom on ∂Ωi \ ∂Ω.

We recall that the local Schur complements satisfy the property

|u(i)|2S(i) := 〈u(i), S(i)u(i)〉 = aΩi
(Hiu

(i),Hiu
(i));(3.1)

see, e.g., [23, 24]. Since the local bilinear forms are positive definite, so are the local
Schur complements S(i).

We write

u :=

⎡⎢⎣ u
(1)

...
u(N)

⎤⎥⎦ ∈W, S := diag{S(1), . . . , S(N)}, f :=

⎡⎢⎣ f
(1)

...
f (N)

⎤⎥⎦.
The solution u ∈W to the discrete problem can then be found by minimizing the

energy

1

2
〈u, Su〉 − 〈f, u〉

subject to the constraint that u is continuous, i.e., it belongs to Ŵ .

For FETI-DP methods we work in a subspace W̃ ⊂ W of functions satisfying a
certain number of continuity constraints. We have

W̃ = ŴΠ ⊕ W̃Δ.

Here the primal space ŴΠ ⊂ Ŵ consists of continuous functions determined by degrees
of freedom associated to the substructures. We choose a space of constant functions
on the subdomain edges.

ŴΠ = ŴH := {u ∈ Ŵ | u|Eij
∈ Q0, Eij ∈ EH}.(3.2)
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The degrees of freedom (primal variables) associated to this space are the averages of
tangential components over the subdomain edges:

ūEij =

∫
Eij

u ds

|Eij |
=

∫
Eij

u · tEij ds

|Eij |
.

These are the same degrees of freedom associated to a standard coarse space in case
the substructures are elements of a coarse mesh; see [30, 24] and section 4.1.

The dual space W̃Δ is the product space of spaces associated to the substructures

W̃Δ :=

N∏
i=1

W̃Δ,i

of functions for which the functional given by the primal variables vanish:

W̃Δ,i := {u ∈Wi | ūEij = 0, j ∈ I(i)}.

Therefore, W̃ consists of functions that have a continuous average along the sub-
structure edges; i.e., the averages are the same regardless of which substructure is
considered for the calculation.

The primal degrees of freedom can then be eliminated together with the internal
ones, at the expense of solving one coarse problem. We are then left with a problem
involving interface functions with vanishing mean value along the substructure edges
and, consequently, in the dual space, W̃Δ. Let S̃ : W̃Δ → W̃Δ be the corresponding
Schur complement and f̃Δ the corresponding load vector. We then look for uΔ ∈ W̃Δ,
such that

1

2
〈uΔ, S̃uΔ〉 − 〈f̃Δ, uΔ〉 −→ min

subject to the constraint that uΔ is continuous. The continuity constraint is expressed
by the equation

BΔuΔ = 0,

where BΔ is constructed from {0, 1,−1} and evaluates the difference between all the
corresponding tangential degrees of freedom on Γ; cf. (2.3). We employ the same
matrix as in our previous paper [26] and then enforce redundant conditions. The
matrix BΔ has the following block structure:

BΔ = [B
(1)
Δ B

(2)
Δ · · · B

(N)
Δ ],

where each block corresponds to a substructure.
We obtain the saddle point problem

S̃uΔ +BTΔλ = f̃Δ,
BΔuΔ = 0,

(3.3)

with uΔ ∈ W̃Δ and λ ∈ V := Range(BΔ).

We note that S̃ can be obtained from the restriction of S to the space W̃ ,
by eliminating the primal degrees of freedom. We have therefore the minimization
property

〈uΔ, S̃uΔ〉 = min〈u, Su〉,(3.4)
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where the minimum is taken over all the functions u = uΔ + wΠ, wΠ ∈ ŴΠ. This
property ensures that S̃ is also positive definite.

Since the Schur complement S̃ is invertible, an equation for λ can easily be found:

Fλ = d,(3.5)

with

F := BΔS̃
−1BTΔ, d := BΔS̃

−1f̃Δ.(3.6)

In section 6, we provide explicit formulas for F and d. Once λ is found, the primal
variables are given by

uΔ = S̃−1(f̃Δ −BTΔλ) ∈ W̃Δ.

In order to define a preconditioner for (3.5), we need to define scaling matrices
and functions defined on the subdomain boundaries. As in our previous work they
are constructed with the coefficient A only. For each substructure, we define δ†i ∈Wi,
such that on the edge Eij , j ∈ I(i),

δ†i =
γχi

γχi + γχj
(3.7)

for an arbitrary but fixed χ ∈ [1/2,+∞); see (2.1). By direct calculation, we find

γiδ
†
j

2
≤ min(γi, γj).(3.8)

For each substructure Ωi, we next introduce a diagonal matrix D
(i)
Δ : V → V . The

diagonal entry corresponding to the Lagrange multipliers that enforce the continuity
along an edge Eij is set equal to the (constant) value of δ†j along Eji

δ†ji := δ†j |Eji

=
γχj

γχi + γχj
.

We next define the scaled matrix

BD,Δ = [D
(1)
Δ B

(1)
Δ D

(2)
Δ B

(2)
Δ · · · D(N)

Δ B
(N)
Δ ] : W̃Δ → V.

We solve the dual system (3.5) using the preconditioned CG algorithm with the
preconditioner

M−1 := BD,ΔSB
T
D,Δ =

N∑
i=1

D
(i)
Δ B

(i)
Δ S(i)B

(i)T
Δ D

(i)
Δ ;(3.9)

see [8, 17, 15].

4. Condition number bounds.

4.1. Technical tools. The analysis of the FETI-DP methods presented here
relies on a decomposition result. We first need to introduce coarse spaces on the
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subdomains. As is often customary in the analysis of iterative substructuring methods,
we require that the substructures are elements of a shape-regular coarse mesh TH .
This is always the case for p finite elements. We next define

XH(Ωi) := R1(Ωi),(4.1)

the lowest-order edge element space on the coarse element Ωi; see (2.2). We note that
the tangential traces of vectors in XH(Ωi) are restrictions of functions in the space

ŴH , defined in (3.2), to the boundary of Ωi.
The following result can be found in [30, Lem. 4.2] for h approximations. The

proof for the p finite element case is given in section 5. We need the scaled norm

‖u‖2
curl ,Ωi

:= ‖u‖2
L2(Ωi)

+H2
i ‖curlu‖2

L2(Ωi)
, u ∈ Xi.

Lemma 4.1. Let Ωi be a substructure. Then, for every u ∈ Xi there exists a
unique decomposition

u = uH +
∑
j∈I(i)

uij + uint(4.2)

such that the following hold:
1. uH is a coarse function in XH(Ωi);
2. uij = ∇φij, with φij ∈ Qi, is a Laplace discrete harmonic function that

vanishes on ∂Ωi \ Eij;
3. uint has a vanishing tangential component on ∂Ωi.

In addition, for j ∈ I(i),∫
Eij

(u − uH) · tEij
ds =

∫
Eij

∇φij · tEij
ds = 0,(4.3)

and

‖∇φij‖2
L2(Ωi)

≤ Cω2‖u‖2
curl ,Ωi

,(4.4)

with ω = (1 + log(H/h)) for h approximations and ω = (1 + log k) for p approxima-
tions.

We note that bounds for the components uH and uint can also be found, but
they will not be necessary for the analysis in this paper.

The following result is a straightforward application of the existence of a stable
finite element extension and of a trace theorem; see, in particular, [2] for the p version.

Lemma 4.2. Let Ωi and Ωj be two substructures that share an edge Eij. Let
φ(i) ∈ Qi and φ(j) ∈ Qj be two Laplace discrete harmonic functions that have a
common trace on Eij and vanish on ∂Ωi \Eij and ∂Ωj \Eij, respectively. Then there
exists a constant C, independent of h, k, Hi, and Hj, such that

‖∇φ(j)‖2
L2(Ωj)

≤ C‖∇φ(i)‖2
L2(Ωi)

.

We now recall an abstract framework for the analysis of FETI-DP algorithms,
which was originally given in [15]. It turns out that condition number bounds rely on
one stability estimate for the following jump operator:

PΔ := BTD,ΔBΔ : W̃ −→ W̃ .
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We summarize the properties of PΔ proven in [15, sect. 6] in the following lemma.
Lemma 4.3. The operator PΔ is a projection and preserves the jump of any

function w ∈ W̃ , i.e.,

BΔPΔw = BΔw.

If v := PΔw for w ∈ W̃ , then on every edge Eij of a substructure Ωi, we have

v(i) = δ†j (w
(i) − w(j)).(4.5)

Finally, PΔw = 0 if w ∈ Ŵ .
The following fundamental result can be found in [15, Th. 1]. It employs the

norms

|v|2S := 〈v, Sv〉 =

N∑
i=1

〈v(i), S(i)v(i)〉, |v|2
S̃

:= 〈v, S̃v〉.(4.6)

Theorem 4.4. Let CPΔ be such that

|PΔwΔ|2S ≤ CPΔ |wΔ|2
S̃
, wΔ ∈ W̃Δ.(4.7)

Then, if S̃ and M−1 are invertible,

〈Mλ, λ〉 ≤ 〈Fλ, λ〉 ≤ CPΔ 〈Mλ, λ〉, λ ∈ V.(4.8)

4.2. Main results. We now present two lemmas. The first one is trivial for
our approximations and ensures that the Schur complement S̃ and the preconditioner
M−1 are invertible. The second provides a key stability estimate in order to bound
the largest eigenvalue of the preconditioned operator M−1F . Our main result is given
in Theorem 4.7.

Lemma 4.5. The Schur complement S̃ and the preconditioner M−1 are invert-
ible.

Proof. The result for S̃ is an immediate consequence of the fact that the local bi-
linear forms aΩi

(·, ·) are positive definite. Indeed the Schur complement S is invertible

and so is S̃ thanks to (3.4).
In order to prove the invertibility of M−1, we assume that there is a λ = BΔwΔ,

wΔ ∈ W̃ , such that

0 = M−1λ = BD,ΔSB
T
D,ΔBΔwΔ.

This implies

0 = 〈λ,M−1λ〉 = |PΔwΔ|2S .

Since the local Schur complements S(i) are invertible, this implies PΔwΔ = 0. Lem-
ma 4.3 then implies

λ = BΔwΔ = BΔPΔwΔ = 0.

Lemma 4.6. There is a constant C, such that, for wΔ ∈ W̃Δ,

|PΔwΔ|2S ≤ C η ω2 |wΔ|2
S̃
,
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where ω is the same as in Lemma 4.1 and

η := max
1≤i≤N

γi
βi

(
1 +

H2
i βi
ai

)
.

Proof. Using the minimization property in (3.4), we consider the element w =

wΔ + wΠ, wΠ ∈ ŴΠ, such that

|wΔ|2
S̃

= |w|2S .(4.9)

We note that, since wΠ is continuous,

v := PΔwΔ = PΔw.

We then need to calculate

|PΔw|2S =

N∑
i=1

|v(i)|2S(i) =

N∑
i=1

aΩi
(Hiv

(i),Hiv
(i)).

On an edge Eij of a substructure Ωi, we employ the representation in (4.5). We

recall that the function δ†j is constant along an edge Eij and δ†ji is this value. We then

decompose v(i) into contributions supported on single edges:

v(i) =
∑
j∈I(i)

θEijδ
†
ji(w

(i) − w(j)),(4.10)

where θEij ∈ Wi is identically one on Eij and vanishes on ∂Ωi \ Eij . We consider

each contribution in this sum separately. Since, in addition, w is an element of W̃ , its
average w̄Eij

is the same whether it is calculated using w(i) or w(j). We can therefore
write

θEij
δ†ji(w

(i) − w(j)) = θEij
δ†ji(w

(i) − w̄Eij
) − θEij

δ†ji(w
(j) − w̄Eij

).(4.11)

We consider the two terms in (4.11) separately.
In order to bound the first, we employ the decomposition in Lemma 4.1 for the

vector u := Hiw
(i). We recall that the tangential component of uij = ∇φij vanishes

on ∂Ωi \ Eij and, thanks to (4.3), it is equal to θEij
(w(i) − w̄Eij

). Using (3.8), the
minimizing property of the Maxwell discrete harmonic extension in (3.1), (2.1), and
(4.4), we find

|θEijδ
†
ji(w

(i) − w̄Eij )|2S(i) ≤ γi‖∇φij‖2
L2(Ωi)

≤Cγiω
2(‖u‖2

L2(Ωi)
+H2

i ‖curlu‖2
L2(Ωi)

)

≤C η ω2 aΩi(Hiw
(i),Hiw

(i)) = C η ω2 |w(i)|2
S(i) .

(4.12)

We then consider the second term in (4.11). The vector

u(i) := Hi(θEij (w
(j) − w̄Eij ))

can be decomposed according to Lemma 4.1, into the sum of two contributions uij =
∇φij and uint. We next apply Lemma 4.1 to the function Hjw

(j) and obtain

u(j) := Hjw
(j) = uH +

∑
k∈I(j)

ujk + ũint.
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We note that the functions uji = ∇φji and uij = ∇φij have the same tangential com-
ponent along the common edge Eij , which is equal to θEij (w

(j) − w̄Eij ). Using (3.8),
the minimizing property of the Maxwell discrete harmonic extension, Lemma 4.2,
(2.1), and (4.4), we find

|θEijδ
†
ji(w

(j) − w̄Eij )|2S(i) ≤ γj‖∇φij‖2
L2(Ωi)

≤Cγj‖∇φji‖2
L2(Ωj)

≤Cγjω
2(‖u(j)‖2

L2(Ωj)
+H2

j ‖curlu(j)‖2
L2(Ωj)

)

≤C η ω2 aΩj (Hjw
(j),Hjw

(j)) = C η ω2 |w(j)|2
S(j) .

(4.13)

Combining (4.10), (4.12), and (4.13) and summing over the edges Eij , we finally find

|v(i)|2S(i) ≤ C η ω2 |w(i)|2S(i) + C η ω2
∑
j∈I(i)

|w(j)|2S(j) .

The proof is then concluded by summing over the substructures Ωi and using
(4.9).

By combining Lemmas 4.6 and 4.5 and Theorem 4.4, we obtain our final result.
Theorem 4.7. The condition number of the preconditioned system M−1F satis-

fies

κ(M−1F ) ≤ C η (1 + log(H/h))2

for h finite element approximations and

κ(M−1F ) ≤ C η (1 + log k)2

for p finite elements. Here, η is defined in Lemma 4.6.

5. Proof of Lemma 4.1. As already mentioned, the proof of Lemma 4.1 for
the case of finite elements is given in [30, Lemma 4.2]. In this section we provide a
proof for the case of p finite elements. The proof follows that of [30, Lemma 4.2] and
is given here for completeness. It employs suitable orthogonal decomposition of edge
element functions into gradients of scalar functions and discrete curl free functions.

Let X0
i ⊂ Xk(Ωi) be the subspace of vectors with vanishing tangential component

of ∂Ωi. If Q0
i ⊂ Qi is the subspace of functions that vanish on ∂Ωi, then gradQ0

i ⊂ X0
i

and the following orthogonal decomposition is well defined:

X0
i = gradQ0

i ⊕X0,⊥
i .(5.1)

Proofs of the following fundamental result for a substructure of unit diameter can be
found in [10, Th. 7.18] and in [18, sect. 4]. The case of a subdomain of diameterHi can
be treated by a scaling argument. We recall that its proof employs an interpolation
operator on the edge element space.

Lemma 5.1. Let u ∈ X0,⊥
i . Then there is a constant, independent of Hi and k,

such that

‖u‖L2(Ωi) ≤ CHi‖curlu‖L2(Ωi).

We also need a decomposition result for polynomial functions. It is a classical
result that is available in the literature in various forms. Since we did not find it in
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exactly the form that we need, we have included a proof which employs the tools in
[2] in order to help the reader.

Lemma 5.2. Let ψH ∈ Q1,1(Ωi) and, for j ∈ I(i), let ψij ∈ Qk(Ωi) be a Laplace
discrete harmonic function that vanishes on ∂Ωi \ Eij. If

ψ := ψH +
∑
j∈I(i)

ψij ,

then

|ψij |2H1(Ωi)
≤ C(1 + log k)2|ψ|2H1(Ωi)

,

with a constant that is independent of k and Hi.
Proof. We consider the case of a substructure of unit diameter. The more general

case Hi < 1 can be treated by a scaling argument. The function ψij belongs to

H
1/2
00 (Eij), the subspace of H1/2(∂Ω) of functions that vanish on ∂Ωi \ Eij ; see, e.g.,

[2, sect. 2] for the definition of these spaces and the corresponding norms. Using the
stable extension in [2, Th. 7.5], we find

|ψij |2H1(Ωi)
≤ C‖ψij‖2

H1/2(∂Ωi)
≤ C‖ψij‖2

H
1/2
00 (Eij)

,

and, using [2, Th. 6.6],

‖ψij‖2

H
1/2
00 (Eij)

≤ ‖ψij‖2
H1/2(Eij)

+ C(1 + log k)‖ψij‖2
L∞(Eij)

.

Combining these two inequalities yields

|ψij |2H1(Ωi)
≤ C(1 + log k)‖ψ − ψH‖2

L∞(Eij)
+ ‖ψ − ψH‖2

H1/2(Eij)
.(5.2)

We note that ψH is the nodal interpolant of ψ on the linear space Q1,1, and therefore
the inverse inequality in [2, Th. 6.2] can be employed. We obtain

(1 + log k)‖ψ − ψH‖2
L∞(Eij)

≤ C(1 + log k)2‖ψ‖2
H1/2(Eij)

(5.3)

and

‖ψ − ψH‖2
H1/2(Eij)

≤ C(1 + log k)‖ψ‖2
H1/2(Eij)

.(5.4)

Combining (5.2), (5.3), (5.4), and a trace estimate, we find

|ψij |2H1(Ωi)
≤ C(1 + log k)2‖ψ‖2

H1(Ωi)
.

We note that if we add a constant to ψ, the left-hand side does not change. A
quotient space argument then allows us to replace the full norm with the seminorm
on the left-hand side.

We recall that the coarse space XH(Ωi) was defined in (4.1). We now introduce
the coarse interpolant

ρH : Xk(Ωi) −→ XH(Ωi).

Here, ρHu is the unique vector that satisfies∫
Eij

(ρHu − u) · tEij
ds = 0, j ∈ I(i).(5.5)
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We also define Xij ⊂ Xk(Ωi) as the space of functions ∇φij , where φij ∈ Qk(Ωi) is
Laplace discrete harmonic and vanishes on ∂Ωi \ Eij .

We are now ready to give a proof of Lemma 4.1. It is immediate to see that, for
the substructure Ωi and for j ∈ I(i), l ∈ I(i), j �= l,

XH(Ωi) ∩X0
i = XH(Ωi) ∩Xij = Xij ∩X0

i = Xij ∩Xil = {0}.

Counting the degrees of freedom, we see that

Xk(Ωi) = XH(Ωi) ⊕
∑
j∈I(i)

Xij ⊕X0
i(5.6)

is a direct sum. We have therefore proved the existence and the uniqueness of the
decomposition (4.2).

The first equality in (4.3) is a consequence of the fact that the tangential com-
ponent of ui := uint and of uil for l �= j vanishes on the edge Eij . The second one
comes from the fact that φij vanishes at the endpoints of Eij .

We are then left with the proof of the stability property (4.4). Since the decom-
position is unique, thanks to (5.5), we find uH = ρHu. We now decompose each term
into a gradient of a scalar function and a remainder. Since the coarse space XH(Ωi)
is R1(Ωi), we can write

uH = ∇φH + α

[
y − yi
xi − x

]
=: ∇φH + u⊥

H ,

with φH ∈ Q1,1 bilinear and (xi, yi) the center of gravity of Ωi. By direct calculation,
we find that this is an L2 orthogonal decomposition and that

‖u⊥
H‖L2(Ωi) ≤ CHi‖curlu⊥

H‖L2(Ωi).(5.7)

For the term ui := uint ∈ X0
i , we employ the orthogonal decomposition in (5.1) and

find

ui = ∇φi + u⊥
i .

Finally, by definition, uij = ∇φij for each edge Eij . We then group the gradient
terms and the remainders and set

φ := φH +
∑
j∈I(i)

φij + φi, u⊥ := u⊥
H + u⊥

i .

We have therefore the decomposition

u = ∇φ+ u⊥.(5.8)

We need to bound the ∇φij in terms of u. Since φH and the {φil} are Laplace discrete
harmonic, we can apply Lemma 5.2 and find

|φij |2H1(Ωi)
≤ C(1 + log k)2

∣∣∣∣∣∣φH +
∑
l∈I(i)

φil

∣∣∣∣∣∣
2

H1(Ωi)

≤ C(1 + log k)2|φ|2H1(Ωi)
.(5.9)

For the last step we also have used that fact that φi vanishes on ∂Ωi and is thus
orthogonal to Laplace discrete harmonic functions.
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The last step is to bound ∇φ in terms of u. We first note that, using (5.7) and
Lemma 5.1, we obtain

‖u⊥‖2
L2(Ωi)

≤ CH2
i (‖curlu⊥

H‖2
L2(Ωi)

+ ‖curlu⊥
i ‖2

L2(Ωi)
).

Since curlu⊥
H is constant and curlu⊥

i has a vanishing mean value on Ωi, these two
functions are L2 orthogonal and thus

‖u⊥‖2
L2(Ωi)

≤ C⊥H2
i ‖curlu⊥‖2

L2(Ωi)
.(5.10)

Using (5.8), (5.10), and Young’s inequality, we find

‖u‖2
curl ,Ωi

= |φ|2H1(Ωi)
+ ‖u⊥‖2

curl ,Ωi
+ 2

∫
Ωi

∇φ · u⊥ dx

≥ (1 − ε)|φ|2H1(Ωi)
+ (1 + (1 − ε−1)C⊥)H2

i ‖curlu⊥‖2
L2(Ωi)

(5.11)

for ε ∈ (0, 1). The choice ε = C⊥/(C⊥ + 1) ensures

|φ|2H1(Ωi)
≤ (C⊥ + 1)‖u‖2

curl ,Ωi
,

which, combined with (5.9), concludes the proof.

6. Implementation aspects. In this section, we describe how we can efficiently
implement the preconditioned algorithm described in this paper. Indeed, we need to
construct the matrix F , the vector d (see (3.5) and (3.6)), and the preconditioner
M−1 in (3.9).

In principle, a change of basis should be performed and the degrees of freedom
partitioned into I (interior to the substructures), Π (common averages along the
subdomain edges), and Δ. However, such change of basis is not trivial or advisable.
Since the basis functions associated to the Δ block are not local in general, this would
spoil the sparsity of certain matrices. In practice we will work with full vectors in
the original product space consisting of all the degrees of freedom on Γ, satisfying no
continuity constraint. We will then make sure that these degrees of freedom belong to
the dual space W̃Δ; i.e., the averages along all the subdomain edges vanish. For this
reason, as already pointed out in section 3, the matrix BΔ = B is the same as that
of the one-level FETI method in [26]; it is constructed from {0, 1,−1} and evaluates
the difference between all the corresponding tangential degrees of freedom on Γ.

We then consider an initial vector of Lagrange multipliers λ0. We note that since
we work with the matrix B which acts on the whole space W , in order to ensure that
λ0 ∈ V = Range(BΔ), we need to choose λ0 = Bu0, with u0 ∈ W̃ .

We work with the matrix K : X → X, which acts on the product space and is
block diagonal; each block K(i) corresponds to a substructure Ωi and is the represen-
tation of the local bilinear form aΩi(·, ·). We also work with global vectors u ∈ X and
the load vector, still denoted by f , which represents the linear functional∫

Ω

f · w dx, w ∈ X.(6.1)

In addition, if w ∈W is a vector of degrees of freedom on Γ, let

R̃T : W → X

be the extension by zero from Γ into the whole of Ω.
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We can then write the system for the solution u ∈ X as

Ku + CTμ+ (BR̃)Tλ = f ,

Cu = 0,(6.2)

(BR̃)u = 0.

Here Cu = 0 imposes the constraint to a vector u ∈ X that it have vanishing averages
along the subdomain edges and μ is a vector of Lagrange multipliers associated to
these constraints. We note that the last condition imposes then redundant constraints.
An equation for λ is obtained by eliminating u and μ. We obtain

u = K−1(I − CT (CK−1CT )−1CK−1)(f − (BR̃)Tλ) =: H(f − (BR̃)Tλ)

and thus

BR̃H R̃TBTλ = BR̃H f .

We finally find

F = BR̃H R̃TBT ,

d = BR̃H f .

We note that R̃H R̃T gives an expression for S̃−1. In addition, the application of H
to a vector requires two applications of K−1 (and then the solution of two Neumann
problems on each substructure) and one application of (CK−1CT )−1. If we partition

C = [C(1) C(2) · · · C(N)],

with each block corresponding to a substructure, we can write

F0 := CK−1CT =

N∑
i=1

C(i)K(i)−1
C(i)T .

Since the number of constraints (and thus of nonzero columns in C(i)T ) is equal to

the number of edges of Ωi, we need to apply K(i)−1
only to these nonzero columns

in order to calculate F0. The matrix F0 is then factored once and for all and its
inversion provides a coarse problem, the size of which is equal to the number of edges
of the subdomain partition. Finally, by construction, the operator H always returns a
vector in the kernel of C, which therefore has vanishing mean value on the subdomain
edges. We note that, in case the subdomain partition coincides with a coarse mesh
the coarse matrix F0 has the same size and stencil as the coarse one for the balancing
NN method in [24], for which coarse degrees of freedom are also associated to the
edges of a coarse mesh.

Concerning the preconditioner M−1 in (3.9), the local Schur complements S(i) are
the same as those employed for the one-level FETI method in [26] and are obtained
from the local stiffness matrices in the standard way; see, e.g., [24, Eq. 3.3].

With the exception of the coarse problem, which is here larger, the cost of the
setup of the algorithm is the same as that in [26] since the matrices for the same local
Dirichlet and Neumann problems need to be inverted. A similar consideration holds
for the cost of each iteration. Each step of our algorithm requires the solution of one
coarse and two local Neumann problems per subdomain for the application of F and
one Dirichlet problem per subdomain for the application of the preconditioner. The
same is true for the algorithm in [26].
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Table 7.1

FETI-DP method. Estimated condition number and number of CG iterations necessary to
obtain a relative preconditioned residual less than 10−12 (in parentheses), versus H/h and n. Case
of a = 1, b = 1. The asterisks denote the cases for which we had not enough memory to run the
corresponding algorithm.

H/h 32 16 8 4 2

n = 32 − 1.529 (5) 2.212 (11) 1.777 (11) 1.309 (8)

n = 64 1.801 (6) 2.950 (12) 2.446 (13) 1.806 (10) 1.312 (7)

n = 128 3.827 (13) 3.278 (15) 2.484 (12) 1.819 (10) 1.314 (7)

n = 192 4.154 (17) 3.329 (15) 2.496 (12) 1.816 (9) *

n = 256 4.265 (17) 3.337 (14) 2.500 (12) * *

7. Numerical results. We consider the same mesh, partitions, and coefficient
distribution as in [26, sect. 6] in order to allow a comparison with the one-level FETI.
The domain Ω := (0, 1)2 is partitioned into two uniform meshes Th and TH . The fine
triangulation is made of triangles and the coarse one of squares that are unions of fine
triangles. The substructures Ωi are the elements of the coarse triangulation TH . The
fine triangulation Th consists of 2 ∗ n2 triangles, with h = 1/n. We choose

A =

[
b 0
0 b

]
, f = [exp(−x/3 + y2),−3 cos(2x− 5y − 10)]T ,

and we use the value χ = 1/2 for the definition of the scaling matrices D
(i)
Δ ; see (3.7).

We consider a CG algorithm and estimate the condition number of the preconditioned
operator using the quantities provided by the CG. Since, however, convergence is much
faster here, we employ a more restrictive stopping criterion than in [26] in order to
obtain good condition number estimates: we stop the iteration when ‖zk‖/‖f‖ is less
than 10−12 instead of 10−6. Here, zk is the kth preconditioned residualM−1(d−Fλk).
The estimated condition numbers here can then be compared with those in [26, sect. 6],
while in order to compare the iteration counts we need to consider the double of those
in [26].

In Table 7.1, we show the estimated condition number and the number of iter-
ations as functions of the dimensions of the fine and coarse meshes for a = b = 1.
For a fixed ratio H/h, the condition number and the number of iterations are quite
insensitive to the dimension of the fine mesh and are consistent with a quadratic loga-
rithmic growth; see Theorem 4.7. The condition numbers here can be compared with
those in [26, Table 1]. Those for the FETI-DP method are generally slightly smaller
than those for the one-level method. This is related to the fact that a coarse problem
of larger size is solved here. For the uniform partition into square substructures, we
have one coarse function for each substructure for one-level FETI and two for FETI-
DP (four degrees of freedom for the four edges of each subdomain, shared by two
substructures).

On the other hand, comparison of the iteration counts shows a faster convergence
for the FETI-DP algorithm. This is related to the smaller condition number and also
to the fact that there is basically no freedom for the initial guess of one-level FETI
methods (cf., e.g., the algorithm in [21, p. 100]); this may often give a quite high
initial residual. An arbitrary initial guess can be employed for FETI-DP and the null
vector employed here provides a relatively small initial residual for our tests.

In Table 7.2, we show some results when the coefficient b has jumps across the
interface. We consider a 4× 4 checkerboard distribution, where b assumes two values,
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Table 7.2

4 × 4 checkerboard distribution for b : (b1, b2). Estimated condition number and number of CG
iterations to obtain a relative preconditioned residual less than 10−12 (in parentheses), versus H/h
and b2. Case of n = 128, a = 1, and b1 = 100.

H/h 4 8 16

b2 = 1e − 4 3.777 (21) 5.395 (28) 7.633 (32)

b2 = 1e − 3 3.760 (20) 5.382 (27) 7.606 (30)

b2 = 1e − 2 3.713 (20) 5.308 (25) 7.504 (29)

b2 = 1e − 1 3.561 (18) 5.089 (23) 7.196 (27)

b2 = 1 3.155 (16) 4.502 (20) 6.364 (25)

b2 = 1e + 1 2.355 (13) 3.338 (17) 4.692 (20)

b2 = 1e + 2 1.800 (10) 2.436 (13) 3.068 (15)

b2 = 1e + 3 2.298 (13) 3.059 (15) 3.798 (17)

b2 = 1e + 4 2.612 (14) 3.036 (16) 3.435 (17)

b2 = 1e + 5 2.203 (12) 2.630 (14) 2.918 (15)

b2 = 1e + 6 2.085 (12) 2.593 (13) 2.820 (14)

b1 and b2. For a fixed value of n = 128, b1 = 100, and a = 1, the estimated condition
number and the number of iterations are shown as a function of H/h and b2. Similar
behavior as in [26, Table 2] is observed here. For b2 = 100, the coefficient b has
a uniform distribution, and this corresponds to a local minimum for the condition
number and the number of iterations. When b2 decreases or increases, the condition
number and the number of iterations normally increase, but they can still be bounded
independently of b2. We note, however, that for some very large values of b2, con-
vergence may be faster than in the uniform case. We also remark that, when b2 is
large, the local ratio b2/a is also large; see η in Theorem 4.7. In this case, however,
our results remain good and the condition number even appears to be less sensitive
to H/h. We remark that condition numbers and iteration counts are smaller than the
corresponding ones in [26, Table 2] for one-level FETI.

In Table 7.3, we show some results when the coefficient a has jumps. We consider
the same 4× 4 checkerboard distribution shown as for the previous tests. For a fixed
value of n = 128, a1 = 0.01, and b = 1, the estimated condition number and the
number of iterations are shown as a function of H/h and a2. For a2 = 0.01, the

Table 7.3

4× 4 checkerboard distribution for a : (a1, a2). Estimated condition number and number of CG
iterations to obtain a relative preconditioned residual less than 10−12 (in parentheses), versus H/h
and a2. Case of n = 128, b = 1, and a1 = 0.01.

H/h 4 8 16

a2 = 1.e − 7 2.668 (15) 4.342 (20) 7.097 (26)

a2 = 1.e − 6 2.285 (14) 3.665 (19) 6.024 (25)

a2 = 1.e − 5 1.769 (12) 2.418 (16) 3.869 (21)

a2 = 1.e − 4 1.764 (12) 2.294 (15) 2.814 (17)

a2 = 1.e − 3 1.791 (12) 2.353 (15) 2.814 (17)

a2 = 1.e − 2 1.813 (13) 2.447 (16) 3.071 (18)

a2 = 1.e − 1 1.816 (12) 2.467 (15) 3.173 (18)

a2 = 1 1.808 (10) 2.466 (14) 3.182 (16)

a2 = 1.e + 1 1.801 (9) 2.454 (12) 3.172 (14)

a2 = 1.e + 2 1.791 (8) 2.438 (10) 3.164 (12)

a2 = 1.e + 3 1.771 (7) 2.427 (9) 3.159 (11)
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Table 7.4

5 × 5 checkerboard distribution for b : (b1, b2). Estimated condition number and number of CG
iterations to obtain a relative preconditioned residual less than 10−12 (in parentheses), versus H/h
and b2. Case of n = 128, a = 1, and b1 = 100.

H/h 4 8 16

b2 = 1e− 3 1.373e+ 04 (>100) 42.26 (60) 9.056 (26)

b2 = 1e− 2 1390 (>100) 37.22 (55) 8.824 (25)

b2 = 1e− 1 145.1 (>100) 33.85 (53) 8.1 (24)

b2 = 1 87.32 (92) 23.6 (43) 5.99 (23)

b2 = 1e+ 1 20.91 (45) 6.342 (23) 3.588 (17)

b2 = 1e+ 2 1.800 (10) 2.436 (13) 3.068 (15)

b2 = 1e+ 3 3.115 (15) 2.664 (14) 2.639 (14)

b2 = 1e+ 4 10.53 (28) 2.847 (14) 1.855 (11)

b2 = 1e+ 5 41.41 (31) 2.857 (14) 1.761 (11)

b2 = 1e+ 6 107.7 (36) 2.87 (14) 1.82 (10)

coefficient a has a uniform distribution. A slight increase in the number of iterations
and the condition number may be observed for some larger or smaller values of a2

and when H/h is large. As for the previous table, when a2 is small, the local ratio
b/a2 is large and our results remain good. The condition numbers and the iteration
counts are smaller than the corresponding ones in [26, Table 3].

We finally present a test case where coefficient discontinuities do not coincide
with the subdomain interfaces. We consider a 5 × 5 checkerboard distribution for
the coefficient b. For a fixed value of n = 128, b1 = 100, and a = 1, the estimated
condition number and the number of iterations are shown in Table 7.4 as a function
of H/h = 4, 8, 16 (corresponding to 32 × 32, 16 × 16, and 8 × 8 subdomains) and b2.
We see that there are cases corresponding to a large number of subdomains and small
values of b for which convergence may deteriorate; the assumption that the coefficient
b does not vary much in each subdomain may be therefore required in practice. The
analogous case for jumps in the coefficient a, on the other hand, produces results that
are similar to those in Table 7.3, and they are not presented here.
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Abstract. We propose a new sweeping algorithm which discretizes the Legendre transform of
the numerical Hamiltonian using an explicit formula. This formula yields the numerical solution at
a grid point using only its immediate neighboring grid values and is easy to implement numerically.
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numerical examples in two and three dimensions.
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1. Introduction. The Hamilton–Jacobi equation

ψt(x, t) +H(x,∇ψ(x, t)) = 0(1.1)

arises in many applications ranging from classical mechanics to contemporary prob-
lems of optimal control. These include geometrical optics, crystal growth, etching,
computer vision, obstacle navigation, path planning, photolithography, and seismol-
ogy. In general, these nonlinear PDEs cannot be solved analytically. The solutions
usually develop singularities in their derivatives even with smooth initial conditions.
In these cases, the solutions do not satisfy the equation in the classical sense. The
weak solution that is usually sought is called the viscosity solution [10]. Numerically,
in general, one looks for a consistent and monotone scheme to construct approximate
viscosity solutions [27].

In this paper, we focus on static Hamilton–Jacobi equations of the following form:{
H(x,∇φ(x)) =R(x) for x ∈ Ω,

φ(x) = q(x) for x ∈ Γ ⊂ ∂Ω,
(1.2)

whereH, q, andR > 0 are Lipschitz continuous andH is also convex and homogeneous
of degree one in ∇φ(x). A special case of this type of equation is the eikonal equation,

|∇φ| = r(x)(1.3)

with the same type of Dirichlet boundary condition as in (1.2). Many numerical meth-
ods have been developed for this problem. Rouy and Tourin [24] used an iterative
method to solve the discretized eikonal equation and proved that it converges to the
viscosity solution. The key is to use an upwind, monotone, and consistent discretiza-
tion for |∇φ|. Instead of using iterative methods, Tsitsiklis [29], later Sethian [25],
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and Helmsen et. al. [14] proposed single-pass methods. Based on the monotonicity
of the solution along the characteristics, they combined the heap-sort data structure
with a variation of the classical Dijkstra algorithm to solve the steady state equation
|∇φ| = r(x). This became known as the fast marching method whose complexity is
O(N logN), where N is the total number of grid points in the domain. Later Sethian
and Vladimirsky [26] generalized the method of [29] to solve (1.2).

Osher [18] provided a link between time-independent and time-dependent
Hamilton–Jacobi equations. The zero level set of the viscosity solution ψ of (1.1)
with suitable initial conditions at various time t is the solution φ(x, y) = t of (1.2).
This gives an approach that one can try to solve the time-dependent equation by the
level set formulation [19] with high order approximations on the partial derivatives
[20], [15]. Falcone and Ferretti studied a class of semi-Lagrangian schemes which
can be interpreted as a discrete version of the Hopf–Lax–Oleinik representation for-
mula for first order time-dependent Hamilton–Jacobi equations. In semi-Lagrangian
schemes, ψ needs to be interpolated using its grid values, the Legendre transformation
of H needs to be obtained, and the minimum must be computed on an unbounded
set. See [11] and the references therein for more details.

Another approach to obtaining a “time-dependent” Hamilton–Jacobi equation
from a time-independent Hamilton–Jacobi equation comes by using the so-called
paraxial formulation, i.e., by assuming that there is a preferred direction in the wave
propagation. In [13], the paraxial formulation was first proposed for the eikonal equa-
tion (1.3). Later in [22], [23], a paraxial formulation was proposed for the static
general eikonal equation (1.2) in geophysical applications.

An important application for (1.2) is obtaining geodesic distance on a manifold.
Suppose that P = (x, y) is a point on a manifold M defined as the graph of a smooth
function f(x, y) and that γ are the curves connecting P and Γ ⊂M on the manifold.
The minimizing curve of γ is called the geodesic. Let φ be the distance function such
that

φ(x, y) = min
γ⊂M

∫
γ

ds.

Then φ is the solution of√(
1 + f2

y
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x + f2
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φxφy = 1, φ|Γ = 0.(1.4)

This equation can be easily generalized to higher dimensions. For example, in three
dimensions we again write down the formula for M as the graph of a smooth function
f(x, y, z). The distance function φ then satisfies√
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We will apply our new algorithm to compute the geodesic distance later. There are
other approaches that are designed to compute geodesic distances on manifolds. Kim-
mel and Sethian [16] extended the fast marching method to triangulated manifolds
and provided an algorithm for computing the geodesic distances, thereby extracting
shortest paths on triangulated manifolds. Barth [2] used the discontinuous Galerkin
method to find the distance on graphs of functions that are represented by spline
functions. In [7], the authors embeded the manifold as the zero level set of a Lips-
chitz continuous function and solved the corresponding eikonal equation (1.4) in the
embedding space. In [17], the authors based their work on the theory of geodesics
on Riemannian manifolds with boundaries and adapted the standard fast marching
method to compute weighted distance functions and geodesics on implicit surfaces
efficiently. Tsai et. al. [28] used a fast Gauss–Seidel-type iteration method and a
monotone upwind Godunov flux for the numerical Hamiltonian.

We propose a new interpretation of the monotone upwind Godunov flux for the
numerical Hamiltonian to solve (1.2). The complexity of our method appears to be
O(N). We illustrate the approach with several numerical examples in two and three
dimensions.

2. A new numerical scheme for convex Hamiltonians. Our new numerical
algorithm for static Hamilton–Jacobi equations is composed of a sweeping process and
an update formula. The sweeping process we use here is a version of Gauss–Seidel
iteration. It is motivated originally by Boué and Dupuis [3], who first suggested that
the complexity of this approach for the eikonal case is O(N). In [31], the fast sweeping
algorithm was first formulated in PDE framework for the eikonal equation and was
used to compute the distance function. In the sweeping process, we sweep through
the grids with alternating directions in order to follow the characteristics and use the
most recent values as we update the solution. This means that we overwrite an old
value with its new value as soon as we obtain the latter. In one dimension, we sweep
through the grids from left to right followed by right to left because the characteristics
have only two possible directions. In two dimensions, the characteristics may have
an infinite number of possible directions. We use four sweeping directions so that a
specific sweeping direction covers a group of characteristics at the same time. We
denote these four sweeping directions as one iteration. In n dimensions, we will use
2n alternating directions per iteration. We stop our iterations when the L1 norm of
the difference of two successive iteration results is less than the given tolerance, which
is O(h), where h is the grid size.

The new update formula we derive here comes from using the Legendre trans-
formation. The Legendre transformation can be applied to the Wulff problem [21],
which is usedto determine the equilibrium shape of crystalline materials. We give the
definitions in the following.

Definition 2.1. Let γ : Sd−1 → R+ be a continuous function defined on a
curved space Sd−1.

1. The first Legendre transformation of γ is

γ∗(ν) = min
θ·ν>0, |θ|=1

[
γ(θ)

(θ · ν)
]
.

2. The second Legendre transformation of γ is

γ∗(ν) = max
θ·ν>0, |θ|=1

[γ(θ)(θ · ν)].
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The first and second Legendre transformations are dual to each other in a certain
sense, i.e., (γ∗)∗ = γ if γ is convex and (γ∗)∗ = γ if γ is polar-convex. See, e.g., [21].
We can extend γ to the whole space Rd by defining

γ̃(x) = |x|γ
(
x

|x|
)
,

where the extension γ̃ is homogeneous to degree 1 and x ∈ Rd.
The convex Hamiltonian using the Bellman formula or the Legendre transforma-

tion is

H(∇φ(x)) = max
θ

[(∇φ · θ)w(θ)], θ ∈ Sd−1,

where

w(θ) = min
ν·θ>0, |ν|=1

[
H(ν)

(ν · θ)
]

and ν =
∇φ(x)

|∇φ(x)| .(2.1)

We define the numerical Hamiltonian as follows:

Ĥ(Di
−φ;Dj

+φ) = max
θ

{(∑
k

Dk
∓φ · θ±k

)
w(θ)

}
,

where Di
−φ (Dj

+φ) are the backward (forward) difference in i (j) direction, θ+ =
max(θ, 0), and θ− = min(θ, 0). This numerical Hamiltonian is monotone and consis-
tent. It also turns out to be Godunov’s numerical Hamiltonian. In order to describe
this clearly without loss of generality, we discuss the two-dimensional case here,

H(φx, φy) = max
θ

(φx cos θ + φy sin θ)w(θ),

where

w(θ) = min
−π

2 ≤ν−θ≤π
2

H(cos ν, sin ν)

cos(ν − θ)
.

The new numerical Hamiltonian is

Ĥ(Dx
−φ,D

x
+φ;Dy

−φ,D
y
+φ) = max

θ
{((cos θ)±Dx

∓φ+ (sin θ)±Dy
∓φ)w(θ)}.

We say a function H(x1, x2, . . . , xn) is nondecreasing in xj by writing H(x1, x2, . . . ,
xj−1, ↑, xj+1, . . . , xn) and nonincreasing by writingH(x1, x2, . . . , xj−1, ↓, xj+1, . . . , xn).

Lemma 2.2. Ĥ is monotone; i.e., Ĥ(↑, ↓, ↑, ↓).
Proof. Since w > 0, this conclusion is straightforward.
Lemma 2.3. Ĥ is consistent; i.e., Ĥ(p, p; q, q) = H(p, q).
Proof. This is a simple manipulation of the following definitions:

Ĥ(p−, p+; q−, q+) := max
θ

{((cos θ)±p∓ + (sin θ)±q∓)w(θ)},
Ĥ(p, p; q, q) = max

θ
{((cos θ)±p+ (sin θ)±q)w(θ)}

= max
θ

{(p cos θ + q sin θ)w(θ)}
=: H(p, q).
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By solving the Riemann problem for Hamilton–Jacobi equations (a generaliza-
tion of Godunov’s procedure), Bardi and Osher [1] proved the following result for
Godunov’s scheme:

HG(p−, p+; q−, q+) = extp∈I[p−,p+] extq∈I[q−,q+]H(p, q),(2.2)

where

extp∈I[a,b] = min
p∈[a,b]

if a ≤ b,

extp∈I[a,b] = max
p∈[b,a]

if a > b,

HG(Dx
−φij , D

x
+φij ;D

y
−φij , D

y
+φij) = HG(p−, p+; q−, q+),

and I[a, b] denotes the closed interval bounded by a and b.
Proposition 2.4. Ĥ is Godunov’s numerical Hamiltonian; i.e., Ĥ = HG.
Proof. We first assume p− < p+ and q− < q+,

HG(p−, p+; q−, q+) := min
p−≤p≤p+

min
q−≤q≤q+

H(p, q)

= min
p−≤p≤p+

min
q−≤q≤q+

{
max
θ

{(p cos θ + q sin θ)w(θ)}
}

= max
θ

{
min

p−≤p≤p+
min

q−≤q≤q+
(p cos θ + q sin θ)w(θ)

}
= max

θ
{((cos θ)±p∓ + (sin θ)±q∓)w(θ)}

=: Ĥ(p−, p+; q−, q+).

The proof for the other 3 cases is equally straightforward.
Now we use our new numerical Hamiltonian to solve (1.2). In order to write our

scheme in an explicit form, we prove the following property first.

Lemma 2.5. maxθ(af(θ) − g(θ)) = 0 with f(θ) > 0 ⇐⇒ a = minθ
g(θ)
f(θ) .

Proof.

max
θ

(af(θ) − g(θ)) = max
θ
f(θ)

(
a− g(θ)

f(θ)

)
= 0.

Since f(θ) > 0, we have maxθ(a− g(θ)
f(θ) ) = 0, which implies a = minθ

g(θ)
f(θ) .

Apply this property to

Ĥ(Dx
−φ,D

x
+φ;Dy

+φ,D
y
−φ) = R(x, y).

Let φ0 = φi,j , φW = φi−1,j , φE = φi+1,j , φS = φi,j−1, and φN = φi,j+1. Breaking
down the expressions, we have

max
θ,φW,E,S,N

{{
(cos θ)+(φO − φW )
−(cos θ)−(φO − φE)

}
+

{
(sin θ)+(φO − φS)
−(sin θ)−(φO − φN )

}}
w(θ) − hR(xi, yj) = 0,

max
θ,φW,E,S,N

φO((cos θ)+ − (cos θ)− + (sin θ)+ − (sin θ)−)w(θ)

+

{−(cos θ)+φW
(cos θ)−φE

}
+

{−(sin θ)+φS
(sin θ)−φN

}
w(θ) = hR(xi, yj).
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Thus

φO = min
θ

⎧⎪⎪⎨⎪⎪⎩
{

(cos θ)+φW
−(cos θ)−φE

+
(sin θ)+φS
−(sin θ)−φN

}
w(θ) + hR(xi, yj)

(| cos θ| + | sin θ|)w(θ)

⎫⎪⎪⎬⎪⎪⎭
(2.3)

= min
θ
K(θ).

We can also derive the three-dimensional numerical Hamiltonian and the update for-
mula in the same way. Let φ0 = φi,j.k, φW = φi−1,j,k, φE = φi+1,j,k, φS = φi,j−1,k,
φN = φi,j+1,k, φD = φi,j,k−1, and φU = φi,j,k+1. We have

Ĥ(Dx
−φ,D

x
+φ;Dy

−φ,D
y
+φ;Dz

−φ,D
z
+φ)

= max
θ1,θ2

{((sin θ1 cos θ2)
±Dx

∓φ+ (sin θ1 sin θ2)
±Dy

∓φ+ (cos θ1)
±Dz

∓φ)w(θ1, θ2)},

φO = min
θ1,θ2

⎧⎪⎪⎨⎪⎪⎩
{

(sin θ1 cos θ2)
+φW

−(sin θ1 cos θ2)
−φE

+
(sin θ1 sin θ2)

+φS
−(sin θ1 sin θ2)

−φN
+

(cos θ1)
+φD

−(cos θ1)
−φU

}
w + hR

(| sin θ1 cos θ2| + | sin θ1 cos θ2| + | cos θ1|)w

⎫⎪⎪⎬⎪⎪⎭ .

(2.4)

Sometimes it is possible to obtain explicit expression for w from (2.1), but in gen-
eral, one has to use numerical approximations by the fast Legendre transform devel-
oped by Brenier [4] and Corrias [9]. The minimization in the update formulas (2.3)
and (2.4) can be achieved either analytically or numerically. For a Hamiltonian of
quadratic form in the gradient, we solve the minimization analytically in the next
section. For other cases, we find the minimizer by using some well-developed numer-
ical optimization techniques, e.g., L-BFGS-B [5], [32] and trust region methods that
employ quadratic interpolation [12], [8].

3. Analytically solving a class of Hamilton–Jacobi equations. The quad-
ratic form Hamiltonian√

a(x, y)φ2
x + b(x, y)φ2

y − 2c(x, y)φxφy = R(x, y)(3.1)

is of special interest because computing geodesic distances on a manifold leads to this
type of equation. Here we show that the minimization of (2.3) can be solved explicitly.
Using the Legendre transformation, we have (after some simple calculations)

H(cos ν, sin ν) =
√
a cos2 ν + b sin2 ν − 2c sin ν cos ν

and

w(θ) =

√
ab− c2

a sin2 θ + b cos2 θ + 2c cos θ sin θ
.

Finding the minimum of (2.3) when 0 < θ < π/2 first, dKdθ = 0 leads to

(−φW + φS)w2 − hR[(cos θ + sin θ)w
′
+ (− sin θ + cos θ)w] = 0.(3.2)
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Thus

−φW + φS
hR

=
−a sin θ + b cos θ + c(sin θ − cos θ)√

(ab− c2)(a sin2 θ + b cos2 θ + 2c sin θ cos θ)
= T (θ)(3.3)

and

T ′(θ) = −
√
ab− c2(cos θ + sin θ)

(a sin2 θ + b cos2 θ + 2c sin θ cos θ)3/2
< 0.

The solvability condition for θ1 is

c− a√
a(ab− c2)

<
−φW + φS

hR
<

b− c√
b(ab− c2)

.(3.4)

If (3.4) is satisfied, we will have a unique solution for 0 < θ < π/2 because of the
monotonicity of T . Let m = (−φW + φS)/hR. We have

θ= tan−1

(
−cm2(ab− c2)− (a− c)(b− c)±m(ab− c2)

√
(a+ b− 2c)−m2(ab− c2)

am2(ab− c2)− (a− c)2

)
if both m and the denominator are not zero. Here we have two choices for θ because
we square both sides while we do the calculation. We need to plug in (3.3) and pick
up the right one. Also

θ = tan−1

(
b− a

c− a

)
if the denominator is zero, and

θ = tan−1

(
c− b

c− a

)
if m = 0. Using similar arguments, we can write down solvability conditions and
explicit formulas for θ in other ranges. This can be summarized in the following
algorithm.

Algorithm (Quadratic Hamilton–Jacobi solver using the Bellman

formula). We assume that φ(i, j) is given in a small neighborhood of Γ. We initialize
the unknown φ by setting φ(i, j) to ∞1 and mask (i, j) = unknown.

We begin by setting φ(0) = φ.
Do the following steps while |φ(n+1) − φ(n)| > δ: (δ > 0 is the given tolerance

which is O(h)).
Sweeping Process: A compact way of writing these sweeping iterations in

C/C++ is
for(s1=-1;s1<=1;s1+=2)

for(s2=-1;s2<=1;s2+=2)

for(i=(s1<0?nx:0);(s1<0?i>=0:i<=nx);i+=s1)

for(j=(s2<0?ny:0);(s2<0?j>=0:j<=ny);j+=s2)

update φi,j
Update Formula: For each grid point (i, j) visited in the sweeping iteration, if

mask (i, j) = unknown, do the following:
For (sx, sy) = (±1,±1)

1Notice that we only need to use a large value in actual implementation.
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1. Check the solvability condition

m =
sxsy(φ

(n)(i, j − sy) − φ(n)(i− sx, j))

hR
,

check
c− a√
a(ab− c2)

< m <
b− c√
b(ab− c2)

when sxsy > 0,

check
−(b+ c)√
b(ab− c2)

< m <
a+ c√
a(ab− c2)

when sxsy < 0.

2. If the condition is satisfied,

θ = tan−1

(
−cm2(ab− c2) − (asx − csy)(bsy − csx)

am2(ab− c2) − (asx − csy)2

± m(ab− c2)
√

(a+ b− 2csxsy) −m2(ab− c2)

am2(ab− c2) − (asx − csy)2

)
+ (1 − sx)

π

2

if both m and the denominator are not zero. Plug in the test function

T (θ) =
(−asx + csy) sin θ + (bsy − csx) cos θ√

(ab− c2)(a sin2 θ + b cos2 θ + 2c sin θ cos θ)

and pick up the right one which equals m, not −m. Also

θ = tan−1

(
b− a

c− asxsy

)
+ (1 − sx)

π

2

if the denominator is zero, and

θ = tan−1

(
csx − bsy
csy − asx

)
+ (1 − sx)

π

2

if m = 0.
3. Add

φtmp =
(sxφ(i− sx, j) cos θ + syφ(i, j − sy) sin θ)w(θ) + hR

(| cos θ| + | sin θ|)w(θ)

to the list phi candidate.

4. Add K(0), K(π2 ), K(π), K( 3π
2 ) to the list phi candidate.

5. Let φmin be the minimum element of phi candidate.
6. Update

φ(n+1)(i, j) = min(φ(n)(i, j), φmin).

4. Numerical minimization. For a more general sweeping algorithm, we use
numerical optimization to calculate φ0. There are many minimization methods that
are readily available to us. Some methods need only evaluations of the function while
others also require evaluations of the derivative of the function. For our multidi-
mensional cases, we use the L-BFGS-B method [5], [32], [6] because the cost of the
iteration is low and the storage requirements of the algorithm are modest. L-BFGS-
B is a limited memory quasi-Newton method for a large-scale bound-constrained
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problem. The minimizer θ̃ of (2.3) and the minimizer (θ̃1, θ̃2) of (2.4) at a grid point
is constructed to be within a given tolerance through iterations, and the number of
iterations depends on the initial condition and the tolerance. In our algorithm, we use
the minimizer obtained in the previous sweep as our initial guess. In the first sweep,
we use the minimizers of the upwind neighboring grid pronts as initial conditions for
the quasi-Newton method. This implies that the initial conditions that we end up us-
ing are, in most cases, close enough to the minimizers. In practice, with the tolerance
of 10−6, we observed that, in average, only four to five iterations are needed. There is
an alternative approach of discretizing θ and then searching for the minimum in the
corresponding discretized space. Take the two-dimensional case, for example,

φO = min
θ
K(θ) = K(θ̃) ∼ min

θj
k(θj),(4.1)

where θj = j� θ/2π. Used in a straightforward manner, this kind of approach would
require that the grid size �θ is comparable to the given tolerance. In the following,
we briefly describe how the L-BFGS-B method works.

Consider finding a minimum by Newton’s method to search for a zero of the
gradient of the function f(θ) : Rn → R. The iteration formula is given by

θK+1 = θk −A−1 · ∇f(θ),

where A is the Hessian matrix of f . The BFGS method is a quasi-Newton method
because it doesn’t use the actual Hessian matrix of f , but it constructs a sequence
of Hk to approximate A−1. The iteration formula for unconstrained optimization is
given by

θk+1 = θk − λkHkgk, k = 0, 1, 2, . . . ,

where λk is a step size, gk is the gradient of f at θk, and Hk is updated at every
iteration by the following formula:

Hk+1 = (V k)THkV k + ρksk(sk)T ,(4.2)

where

ρk = 1/(yk)T sk, V k = I − ρkyk(sk)T ,

and

sk = θk+1 − θk, yk = gk+1 − gk.

The limited memory BFGS method only stores the m most recent pairs {si, yi}k−1
i=k−m

to update Hk. Suppose that the current iteration is θk and the initial limited memory
matrix Hk

(0) (usually a diagonal matrix) is updated by {si, yi}k−1
i=k−m. From (4.2) we

have

Hk = ((V k−1)T · · · (V k−m)T )Hk
(0)(V

k−m · · ·V k−1)

+ ρk−m((V k−1)T · · · (V k−m+1)T )sk−m(sk−m)T (V k−m+1 · · ·V k−1)
(4.3)

+ ρk−m+1((V k−1)T · · · (V k−m+2)T )sk−m+1(sk−m+1)T (V k−m+2 · · ·V k−1)

+ · · · + ρk−1sk−1(sk−1)T .
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For bound constrained problems, the direct Hessian approximation Bk = (Hk)−1 is
used. The detail derivation and efficient algorithm for computing Hk and Bk are
found in [6]. This Bk is used to define a quadratic model of f at θk,

Qk(θ) = f(θk) + (gk)T (θ − θk) +
1

2
(θ − θk)TBk(θ − θk).

In order to find the minimizer of Qk subject to the bound constrained, the gradient
projection method is first used to determine a set of active bounds. Suppose we have
Θ = {θ | li ≤ θi ≤ ui, i = 1, . . . , n}; the ith coordinate of the projection of vector θ
is given by

P (θ, l, u)i =

⎧⎨⎩
li if θi ≤ li,
ui if θi ≥ ui,
θi otherwise.

We can then find the generalized Cauchy point that is the first local minimizer
θc of

QkL(t) = Qk(P (θk − tgk, l, u)).

Use θc to identify a set of active variables and then find the minimizer θ
k+1

of the
quadratic model with respect to the free variables. Perform a line search

θk+1 = θk + αk
(
θ
k+1 − θk

)
,(4.4)

where αk is the step size, to find θk+1 that satisfies the sufficient decrease condition

f(θk+1) ≤ f(θk) + 10−4(gk)T
(
θ
k+1 − θk

)
.

For more details, please refer to [5]. In our calculation, we choose m = 5 and the
stopping criterion is then

‖P (θk − gk, l, u) − θk‖∞ < 10−6.

5. Examples. We implement our new numerical scheme in the following ex-
amples. We choose δ = 10−15 for two dimensional cases and δ = 10−12 for three
dimensional cases for simplicity. Ideally the δ should be chosen as a small constant
times the grid size. We test an anisotropic case with constant coefficients a, b, and
c in Figures 1 and 2 to show a very degenerate case with varied coefficients and a
box-shape boundary condition. The equation is√

0.375φ2
x + 0.25φ2

y − 0.58φxφy = (2.1 − cos(4π2xy))/4.

Thus a = 0.375, b = 0.25, c = 0.29, and R(x, y) = (2.1 − cos(4π2xy))/4. Notice that
in this case, ab = 0.0938 is barely greater than c2 = 0.0841 and R is highly oscillatory.
That is why it needs more iterations. In general, we usually need more iterations when
the characteristics are very curvy. Figures 3 and 4 show the geodesic distances on
manifolds. In Figure 3, there are two boundary points. The contour plot has kinks on
the equal distance places. In Figure 4, the boundary point is in the center and on the
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Fig. 1. A sweeping result after 2 sweeping iterations on a 50 × 50 grid. The boundary is a
single point in the center. a = 1.0, b = 1.0, c = 0.9, and R = 1.

−1 −0.5 0 0.5 1
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0

0.5

1

Fig. 2. a = 0.375, b = 0.25, c = 0.29, and R(x, y) = (2.1 − cos(4π2xy))/4.0 on a 100 × 100
grid. Convergence is reached after 45 sweeping iterations.

top of the mountain-shaped manifold. The contour plot shows the geodesic distance to
the boundary point. Figure 5 is an example of the first arrival travel times to seismic
imaging. The computational domain suggests material layering under a sinusoidal
profile with layer shapes C(x) = 0.1225 sin(4πx). Suppose the domain is split into
four parts by yi(x) = 0.1225 sin(4πx) + pi where i = 1, 2, 3, and pi = (−0.25, 0, 0.25).
In each layer, the anisotropic speed at (x, y) is given by an ellipse with the long axis
(of length 2F2) tangential to the curve C(x) and the short axis (of length 2F1) normal
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Fig. 3. This is an example of the distance on a half sphere. The sweeping algorithm was applied
to the graph of f(x, y) =

√
1.0 − (x2 + y2) with φ(−0.56,−0.35) = φ(0.35, 0.35) = 0 as a boundary

condition on a 200 × 200 grid. The convergence was reached after 3 sweeping iterations.

to the curve. F1 and F2 are constants in each layer. This leads to

F2

√
((1 + n2)φ2

x + (1 +m2)φ2
y − 2mnφxφy)/(1 +m2 + n2) = 1,

where

(m,n) =

√
(F2/F1)2 − 1√
1 +

(
dC(x)
dx

)2

(
dC(x)

dx
,−1

)
.

From the results, we know that the algorithm is stable even with discontinuous coef-
ficients. Figures 6 and 7 are the solutions for three-dimensional eikonal equation with
one and two point boundary conditions. Figures 8 and 9 are the more general cases for
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Fig. 4. The distance contour from (0, 0) on the graph of f(x, y) = cos(2πx) cos(2πy). The
convergence was obtained after 12 iterations on a 100 × 100 grid.

three dimensions. Figure 8 has a boundary point φ(0, 0, 0) = 0 and Figure 9 has a cu-
bic boundary condition with sides of length one. The governing equation we solved is√

aφ2
x + bφ2

y + cφ2
z − 2dφxφy − 2eφyφz − 2fφzφx = 1,

where

a =
1 + f2

y + f2
z

1 + f2
x + f2

y + f2
z

, b =
1 + f2

x + f2
z

1 + f2
x + f2

y + f2
z

, c =
1 + f2

x + f2
y

1 + f2
x + f2

y + f2
z

,

d =
fxfy

1 + f2
x + f2

y + f2
z

, e =
fyfz

1 + f2
x + f2

y + f2
z

, f =
fzfx

1 + f2
x + f2

y + f2
z

,

and f(x, y, z) = cos(2πx) cos(2πy) cos(2πz), and the corresponding
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Fig. 5. This is an example of first arrival travel times in seismic imaging [26]. The (F2, F1)
pair for each layer is given in the above figures. The convergence was obtained after 5, 4, 16, and 16
iterations on a 200 × 200 grid.

w(θ1, θ2) =

√
1

1 + (fx sin θ1 cos θ2 + fy sin θ1 sin θ2 + fz cos θ1)2
.

This seems to be the first successful rapid computation in three dimensions for such
problems. In [30], it was proved that the results from the fast sweeping method for the
eikonal equation with R(x) = 1 need only one iteration, which is exactly 2n Gauss–
Seidel alternating sweepings for the problem in Rn, to reach a solution with global
error O(h log(1/h)). We provide the numerical evidence by testing our methods on an
eikonal equation with R(x) = 1 on two and three dimensions. The results are given
in Tables 1 and 2. For anisotropic cases, we found out that the number of iterations
depend on the anisotropy of the Hamiltonian, but it is always reasonable and appears
to be independent of the grid size.

6. Conclusion. In this paper, we have presented a new numerical method for
Hamilton–Jacobi equations written in the form of Bellman’s formula. We proved that
the numerical Hamiltonian we proposed is monotone and consistent and is in fact
also the Godunov Hamiltonian. We implemented this new scheme and showed some
results in two- and three-dimensional cases.
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Fig. 6. This is the one-iteration result of the 3D eikonal equation with the boundary (0, 0) in
the center of the graph. The corresponding contours are 0.25, 0.5, 0.75, 1.0, and 1.25.
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Fig. 7. This is the one-iteration result of the 3D eikonal equation with two boundary points
(−0.5,−0.5) and (0.5, 0.5). The corresponding contours are 0.25, 0.5, 0.75, 1, 1.25, and 1.5.
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Fig. 8. This is a 3D example with f(x, y, z) = cos(2πx) cos(2πy) cos(2πz), the corresponding
w = (1 + (�f · θ)2)−1/2, and a boundary point at the center. The convergence was obtained after
10 iterations on a 100 × 100 × 100 grid. The contours shown here are 1.2, 1.5, 1.8, 2.2, and 2.5.
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Fig. 9. This is a 3D example with f(x, y, z) = cos(2πx) cos(2πy) cos(2πz), the corresponding
w = (1 + (�f · θ)2)−1/2, and the cubic boundary condition. The convergence was obtained after 9
iterations on a 100 × 100 × 100 grid. The contours shown here are 0.2, 0.4, 0.6, 0.8, and 1.0.
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Table 1

The errors of a 2D eikonal case.

2D eikonal equation dx = 2/50 2/100 2/200

L1 error 0.102158 0.060888 0.0358203
L∞ error 0.0437414 0.0262969 0.0154506

2/400 2/800 2/1600 1/3200

0.0207759 0.0118848 0.0067128 0.00374894
0.00890583 0.00505242 0.00282877 0.00156648
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Table 2

The errors of a 3D eikonal case.

3D eikonal equation dx = 2/50 2/64 2/100

L1 error 0.399696 0.330305 0.233834
L∞ error 0.0761747 0.0635267 0.0454065

2/128 2/200 2/256 2/300

0.192961 0.135946 0.111793 0.0985156
0.0375639 0.0264938 0.0217706 0.0191687
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Abstract. The macroscopic behavior of stationary micromagnetic phenomena can be modeled
by a relaxed version of the Landau–Lifshitz minimization problem. In the limit of large and soft
magnets Ω, it is reasonable to exclude the exchange energy and convexify the remaining energy
densities. The numerical analysis of the resulting minimization problem,

minE∗∗
0 (m) amongst m : Ω → R

d with |m(x)| ≤ 1 for almost every x ∈ Ω,

for d = 2, 3, faces difficulties caused by the pointwise side-constraint |m| ≤ 1 and an integral over
the whole space R

d for the stray field energy. This paper involves a penalty method to model the
side-constraint and reformulates the exterior Maxwell equation via a nonlocal integral operator P
acting on functions exclusively defined on Ω. The discretization with piecewise constant discrete
magnetizations leads to edge-oriented boundary integrals, the implementation of which and related
numerical quadrature are discussed, as are adaptive algorithms for automatic mesh-refinement. A pri-
ori and a posteriori error estimates provide a thorough rigorous error control of certain quantities.
Three classes of numerical experiments study the penalization, empirical convergence rates, and
performance of the uniform and adaptive mesh-refining algorithms.
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1. Introduction. Numerical simulations of stationary micromagnetic phenom-
ena are most frequently based on a mathematical model named after Landau and
Lifshitz [2, 11]. Therein, one minimizes the energy functional

Eα(m) :=

∫
Ω

φ(m) dx−
∫

Ω

f · m dx+
1

2

∫
R

d

|∇u|2 dx+ α

∫
Ω

|∇m|2 dx(1.1)

over some admissible vector-valued magnetizations m : Ω → R
d on the magnet Ω;

m(x) := 0 for x ∈ R
d\Ω. Moreover, φ ∈ C∞(Rd; R≥0) denotes the anisotropy density

(it models material properties on a crystalline level), f ∈ L2(Ω; Rd) denotes an applied
exterior magnetic field, α ≥ 0 is the very small exchange parameter, and u is the
magnetic potential related to m by Maxwell’s equation

div(−∇u+ m) = 0 in D′(Rd).(1.2)

The model description is completed by a nonconvex side-constraint given by the point-
wise length condition on the magnetization vector, namely,

|m(x)| = 1 for almost every x ∈ Ω.(1.3)

∗Received by the editors September 29, 2003; accepted for publication (in revised form) July 29,
2004; published electronically April 19, 2005. This paper was supported by the Austrian Science
Fund FWF under grant P15274 and the EPSRC under grant N09176/01. Part of this work was done
during a visit to the Isaac-Newton Institute of Mathematical Sciences, Cambridge, England.

http://www.siam.org/journals/sinum/42-6/43565.html
†Department of Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099

Berlin, Germany (cc@math.hu-berlin.de).
‡Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner

Hauptstraße 8-10, A-1040 Vienna, Austria (dirk.praetorius@tuwien.ac.at).

2633



2634 CARSTEN CARSTENSEN AND DIRK PRAETORIUS

Any of the summands in (1.1) favors another property of an energy-minimizing mag-
netization. First, uniaxial materials such as cobalt allow the uniaxial anisotropy
energy

φ(x) =
1

2

(
1 − (x · e)2

)
for all |x| = 1(1.4)

with given easy axis e ∈ R
d, a fixed unit vector, which favors magnetizations m aligned

with e. Second, the exterior energy favors magnetizations m aligned to the exterior
field f . Third, the magnetic energy vanishes for divergence-free magnetizations, as
seen in (1.2); notice that (1.2) involves a boundary condition [∂u/∂n] = −m · n for
the jump [·] on ∂Ω, where n denotes the outer normal vector on ∂Ω. Fourth, the
exchange energy penalizes changes in the magnetization m and so yields Weissian
domains and rapidly changes at the Bloch walls between those.

The macroscopic material behavior for large and soft magnets, however, is con-
served in the case α = 0. Then, the model lacks classical solutions in general [12] and
hence has to be relaxed by considering measure-valued solutions [17] or by convexifi-
cation [6, 21]. Notice that the convexified problem is the mathematical foundation of
the so-called phase theory [11, p. 184].

Throughout this paper, the focus is on the numerical approximation of macro-
scopic quantities such as the magnetic potential u or the space-averages of the mag-
netization vector m. In fact, in a certain limit configuration of soft-large bodies,
α → 0, and then E0 is the correct model with generalized solutions. The well-posed
macroscopic values of E0 are u and m, which minimize the convexified model E∗∗

0 .
We refer to [6, 21] for justifications of this and the proof of

E∗∗
0 (m) :=

∫
Ω

φ∗∗(m) dx−
∫

Ω

f · m dx+
1

2

∫
R

d

|∇u|2 dx(1.5)

with the side-constraint (1.2) and

|m(x)| ≤ 1 for almost every x ∈ Ω.(1.6)

Here, φ∗∗ is the convexified density defined by

φ∗∗(x) = sup
{
ϕ(x)

∣∣ϕ : R
d → R convex and ϕ|S ≤ φ

}
for |x| ≤ 1,

where S =
{
x ∈ R

d
∣∣ |x| = 1

}
denotes the unit sphere. Then the relaxed problem (RP )

reads as follows:

Minimize E∗∗
0 (m) over A :=

{
m ∈ L∞(Ω; Rd)

∣∣ ‖m‖L∞ ≤ 1
}
.

In contrast to the ill-posed problem E0, its convexification is well-posed. In particular,
the minimum of E∗∗

0 (A) is attained in A.
The numerical analysis of the model in [5, 20] considers d = 2 only, replaces the

entire space R
d in (1.2) by a bounded Lipschitz domain Ω̂ containing Ω, and solves

for u ∈ H1
0 (Ω̂). The potential u is discretized by a nonconforming uh and a piecewise

constant mh on Ω. The choice of uh as a conforming, piecewise affine, and glob-
ally continuous finite element scheme leads to instabilities [5, 20]. In this paper, we
treat (1.2) exactly via an integral representation, i.e., u = Lm with a linear convolu-
tion operator L and Pm := ∇(Lm); cf. Theorem 2.1. The algorithmic realization of
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P is less obvious and discussed in subsection 4.1. The advantage is that the result-
ing model requires only one discretization, e.g., by piecewise constant approximations
mh. Those allow exact fulfillment of the side-constraint |mh| ≤ 1 involved approxi-
mately by a penalization procedure. The resulting discrete minimization problem is
to minimize

E∗∗
ε,h(mh) :=

∫
Ω

φ∗∗(mh) dx−
∫

Ω

f · mh dx+
1

2

∫
R

d

|Pmh|2 dx(1.7)

+
1

2

∫
Ω

1

ε
(|mh| − 1)2+ dx

over all T -piecewise constant magnetizations mh ∈ L0(T )d, where T is a partition
of Ω. According to the a priori error analysis, the T -piecewise constant penalization
function ε ∈ L0(T ; R>0) will be a power of the local mesh-size later on. It turns
out that the error analysis of [5] essentially carries over to the situation presented in
section 3 and generalizes to d = 2, 3.

The remaining part of the paper is organized as follows: Section 2 states the
Euler–Lagrange equations related to (RP ) and gives an alternate proof of the unique-
ness of the solution of (RP ) in the uniaxial case. The discrete problem (RPε,h) is
formulated and unique existence of discrete solutions is discussed. Section 3 presents
the assertion and proofs of a priori and a posteriori error estimates. Section 4 dis-
plays details on a possible implementation: the computation of a discrete solution
by a Newton–Raphson scheme (subsection 4.1), an indicator-based adaptive mesh-
refinement (subsection 4.2), the implementation of the proposed refinement indica-
tors (subsection 4.3), and the efficient realization of the involved integral operator
P by an H-matrix approach (subsection 4.4). Sections 5–7 report on the results of
careful numerical studies. The first and second examples provide a closed formula for
the smooth and nonsmooth exact solution with a computable error ‖m − mh‖L2(Ω).

Empirical evidence supports the choice of the penalty parameter ε = h3/2 and the
superiority of adaptive mesh-refining strategies over uniform meshes. The real-life sci-
entific computing in section 7 with unknown solution shows, very much in surprising
contrast to [5], that almost no local mesh-refinement is required.

2. Preliminaries. This section is devoted to the Euler–Lagrange equations re-
lated to (RP ) which characterize the minimizers and introduces the proposed dis-
cretization by a penalization strategy. For (RP ) and the discrete problem (RPε,h) we
prove unique existence of solutions in the uniaxial case.

The magnetic potential is modeled via a Newton integral representation as in [14,
13]. The subsequent theorem gathers the required properties of the respective integral
operator. Proofs can be found in [19] although we expect that the result is known
to the experts. The Newtonian kernel G : R

d\{0} → R is defined by

G(x) :=

{
1
γd

log |x| for d = 2
1

(2−d)γd |x|2−d for d > 2
for x �= 0,(2.1)

where the constant γd := |S| > 0 denotes the surface measure of the unit sphere.
Theorem 2.1. Given any m∈L∞(Ω; Rd), there exists (up to an additive con-

stant) a unique magnetic potential u = Lm ∈ H1
�oc(R

d) such that

∇u ∈ L2(Rd; Rd) and div(−∇u+ m) = 0 in D′(Rd).(2.2)
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The (extended) operator P : L2(Rd; Rd) → L2(Rd; Rd),m 	→ ∇(Lm) is an L2 orthog-
onal projection. The potential Lm can be represented as a convolution operator

Lm =

d∑
j=1

∂G

∂xj
∗ mj ,(2.3)

where m = (m1, . . . ,md) is trivially extended (by zero) from Ω to R
d (so that the

convolution is formally well-defined).
Remark 2.1. For d = 3 it can be shown that the convolution Lm from (2.3)

already is in H1(Rd). Further details on the case m ∈ Lp(Rd; Rd) for 1 < p <∞ are
found in [19].

Since the energy functional E∗∗
0 from (1.5) is convex and (Gâteaux-)differentiable,

the minima are equivalently characterized by the corresponding Euler–Lagrange equa-
tions [6]. Thus, problem (RP ) reads as follows: Find (λ,m)∈L2(Ω)×L2(Ω; Rd) such
that

Pm +Dφ∗∗(m) + λm = f a.e. in Ω,(2.4)

λ ≥ 0, |m| ≤ 1, λ(1 − |m|) = 0 a.e. in Ω.(2.5)

Remark 2.2. For the uniaxial model case (1.4), direct calculations show φ∗∗(x) =
1
2

∑d
j=2(x · zj)2, where e ∈ R

d is the easy axis and {e, z2, . . . , zd} is an orthonormal

basis of R
d. Thus, Dφ∗∗(x) =

∑d
j=1(x · zj)zj .

Theorem 2.2. Problem (RP ) has at least one solution (λ,m). For any two
solutions (λ1,m1), (λ2,m2) of (RP ), the magnetic potentials coincide (modulo an
additive constant), Lm1 = Lm2. In the uniaxial model case (1.4) the solution is
unique, i.e., (λ1,m1) = (λ2,m2) a.e.

Proof. Existence of solutions of (RP ) is obtained by the direct method of the cal-
culus of variations. For any solutions (λj ,mj) of (RP ) and δδδ = m2 −m1, (2.4) yields

〈Pδδδ ; δδδ〉L2(Ω) + 〈Dφ∗∗(m2) −Dφ∗∗(m1) ; δδδ〉L2(Ω) + 〈λ2m2 − λ1m1 ; δδδ〉L2(Ω) = 0.
(2.6)

By orthogonality of P, we have 〈Pδδδ ; δδδ〉L2(Ω) = ‖Pδδδ‖L2(Ω) ≥ 0. Further, convexity
yields that the second term in (2.6) is nonnegative. Direct calculation shows the same
for the last term [5, Proof of Theorem 2.1]. Thus, all three terms vanish. Hence,
Pδδδ = 0; i.e., the potentials coincide and moreover δδδ is (weakly) divergence free in R

d

by definition of P (and L); see (2.2) in Theorem 2.1.
In the model case we may assume that the easy axis e = e1 is the first standard

unit vector. The vanishing second term in (2.6) shows that δδδ vanishes in all but the
e1 direction. Now we use a standard mollification argument: For any test function
ψ ∈ D(Rd), we have ψ ∗ δδδ ∈ D(Rd) with 0 = ψ ∗ (divδδδ) = div(ψ ∗ δδδ) = ∂(ψ ∗ δδδ)/∂x1.
Hence ψ ∗ δδδ is constant in the e1 direction and must therefore vanish. This shows
δδδ = 0. From (2.4) and (2.5) we infer that λj is uniquely determined by (mj , f).
Therefore uniqueness of mj implies uniqueness of λj .

Let T = {T1, . . . , TN} be a finite family of pairwise disjoint nonempty open sets

Tj which satisfy Ω =
⋃N
j=1 Tj . The space of all T -piecewise constant functions is

denoted by L0(T ), and h ∈ L0(T ) is the mesh-size function, h|T := hT := diam(T ).
For f ∈ L2(Ω), let fT ∈ L0(T ) be the T -piecewise integral mean given by

fT |T :=
1

|T |
∫
T

f dx for all T ∈ T .
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The map (·)T : L2(Ω) → L0(T ), f 	→ fT is the L2 orthogonal projection.
The discrete problem (RPε,h) reads as follows: Given a penalization parameter

ε ∈ L0(T ) with ε > 0, find mh ∈ L0(T )d such that

〈Pmh +Dφ∗∗(mh) + λhmh ; νννh〉L2(Ω) = 〈f ; νννh〉L2(Ω) for all νννh ∈ L0(T )d,(2.7)

where λh ∈ L0(T ) is defined by

λh = ε−1 (|mh| − 1)+
|mh| with (·)+ := max{·, 0}.(2.8)

Remark 2.3. Problem (RPε,h) are the Euler–Lagrange equations of the minimiza-
tion problem related to the convex functional from (1.7) and the finite-dimensional
space A = L0(T )d. Thus, the existence of solutions of the discrete problem (RPε,h)
follows by the direct method of the calculus of variations.

Theorem 2.3. The discrete problem (RPε,h) has at least one solution. For any
two solutions (λ1,m1), (λ2,m2) of (RPε,h), the magnetic potentials Lmj coincide.
In the uniaxial model case (1.4), we have uniqueness of the discrete solution, i.e.,
(λ1,m1) = (λ2,m2).

Proof. The same proof as for Theorem 2.2 applies for the discrete setting as
well.

Remark 2.4. (a) If the elements T ∈ T are rectangular, it can easily be shown that
(independent of φ∗∗) the solution (λh,mh) of (RPε,h) is unique. The easy proof just
needs that for two discrete solutions (λ1,m1), (λ2,m2) the difference δδδ := m2 −m1 ∈
L0(T )d is (weakly) divergence free in R

d. Consider the set T ∗ :=
{
T ∈ T ∣∣δδδ|T �= 0

}
and Ω∗ :=

⋃{
T
∣∣T ∈ T ∗} and argue by contradiction: If T ∗ is not empty, we have

δδδ · n = 0 a.e. by the Gauss divergence theorem, where n is the outer normal vector
on ∂Ω∗. Using that δδδ is T ∗-piecewise constant, the contradiction easily follows.

(b) The preceding argument applies to more general (but not all) triangula-
tions T .

3. A priori and a posteriori error control. This section provides an a priori
and a posteriori error analysis for the proposed discrete scheme (RPε,h) with or with-
out a further monotonicity assumption (3.4) on φ∗∗ valid in the uniaxial case (1.4).

Theorem 3.1. Let (λ,m) and (λh,mh) solve (RP ) and (RPε,h), respectively.
Then

‖Pm − Pmh‖2
L2(Rd) + 2〈Dφ∗∗(m) −Dφ∗∗(mh) ; m − mh〉L2(Ω) + ‖√ε λhmh‖2

L2(Ω)

≤ 3‖m − mT ‖2
L2(Ω) + ‖Dφ∗∗(m) − (Dφ∗∗(m))T ‖2

L2(Ω) + ‖λm − (λm)T ‖2
L2(Ω)

+ ‖√ε λm‖2
L2(Ω).

(3.1)

(Note that according to convexity, the second term on the left-hand side is also non-
negative.)

Proof. To abbreviate notation, define d := Dφ∗∗(m) and dh := Dφ∗∗(mh). Using
the orthogonal projection P and the Cauchy inequality, we infer

‖Pm − Pmh‖2
L2(Rd) ≤

1

2
‖Pm − Pmh‖2

L2(Rd) +
1

2
‖m − mT ‖2

L2(Ω)

+ 〈Pm − Pmh ; mT − mh〉L2(Ω).
(3.2)
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According to the Galerkin orthogonality

〈Pm − Pmh + d − dh + λm − λhmh ; νννh〉L2(Ω) = 0 for all νννh ∈ L0(T )d,(3.3)

the last term in (3.2) may be written as

〈Pm − Pmh ; mT − mh〉L2(Ω)

= −〈d − dh ; m − mh〉L2(Ω) − 〈λm − λhmh ; m − mh〉L2(Ω)

+ 〈d − dh ; m − mT 〉L2(Ω) + 〈λm − λhmh ; m − mT 〉L2(Ω).

Since (·)T is an orthogonal projection, dh and λhmh may be replaced by dT and
(λm)T in the third and fourth terms. Pointwise evaluation [5, Proof of Theorem 4.3]
shows

−〈λm − λhmh ; m − mh〉L2(Ω) ≤ 1

2
‖√ε λm‖2

L2(Ω) −
1

2
‖√ε λhmh‖2

L2(Ω).

Combining the last two results with two Cauchy inequalities, we conclude (3.1).
Theorem 3.2. Let (λ,m) and (λh,mh) solve (RP ) and (RPε,h), respectively,

and assume that there is a constant c1 > 0 such that, for all m1,m2 ∈ L2(Ω; Rd), the
following holds:

c1‖Dφ∗∗(m1) −Dφ∗∗(m2)‖2
L2(Ω) ≤ 〈Dφ∗∗(m1) −Dφ∗∗(m2) ; m1 − m2〉L2(Ω).

(3.4)

Then there is a constant c2 > 0 which depends only on c1 such that

‖Pm − Pmh‖2
L2(Rd) + ‖Dφ∗∗(m) −Dφ∗∗(mh)‖2

L2(Ω) + ‖λm − λhmh‖2
L2(Ω)

≤ c2

(
(1 + ‖ε‖L∞(Ω))

{
‖m − mT ‖2

L2(Ω) + ‖Dφ∗∗(m) − (Dφ∗∗(m))T ‖2
L2(Ω)

+ ‖λm − (λm)T ‖2
L2(Ω)

}
+ ‖ε‖L∞(Ω)‖

√
ε λm‖2

L2(Ω)

)
.

(3.5)

Proof. Use notation from the proof of Theorem 3.1. Direct calculation with
Galerkin orthogonality, orthogonal projections (·)T and P, and simple use of the
Cauchy inequality shows

‖λm − λhmh‖2
L2(Ω)

≤ 4
(‖λm − (λm)T ‖2

L2(Ω) + ‖Pm − Pmh‖2
L2(Rd) + ‖d − dh‖2

L2(Ω)

)
,

(3.6)

whence the left-hand side of (3.5) ≤ 5× the right-hand side of (3.6). Assumption
(3.4) allows us to dominate the last two terms by Theorem 3.1, which leads to
c3
(‖√ε λm‖2

L2(Ω)−‖√ε λhmh‖2
L2(Ω)

)
on the right-hand side with c3 := 5 max{1, c−1

1 }.
Elementary calculations for scalars a, b, c ∈ R show c (a2 − b2) = c (a + b)(a − b) ≤√

2 c (a2 + b2)1/2|a− b| ≤ c2 (a2 + b2) + |a− b|2/2, whence

c3
(‖√ε λm‖2

L2(Ω) − ‖√ε λhmh‖2
L2(Ω)

)
≤ c23

(‖ελm‖2
L2(Ω) + ‖ελhmh‖2

L2(Ω)

)
+

1

2
‖λm − λhmh‖2

L2(Ω)
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by pointwise application and integration over Ω. Finally, the second term is dom-
inated by ‖ε λhmh‖2

L2(Ω) ≤ ‖ε‖L∞(Ω)‖
√
ε λhmh‖2

L2(Ω) and a second application of
Theorem 3.1.

Remark 3.1. Theorem 3.2 applies in particular to the uniaxial case, where we
have equality with c1 = 1 in the monotonicity assumption (3.4).

Remark 3.2. Assume the monotonicity assumption (3.4) and that the exact so-
lution is sufficiently smooth. Whereas Theorem 3.1 leads to an estimate of order
O(ε1/2 + h) for the error ‖Pm−Pmh‖L2(Rd) + ‖Dφ∗∗(m)−Dφ∗∗(mh)‖L2(Ω), Theo-
rem 3.2 leads to O(ε+h). This favors the choice ε = h for the penalization parameter.

Remark 3.3. Note that the full L2 convergence of mh towards m could not be
proven, although it is observed in the numerical experiments. For the uniaxial case,
Theorem 3.2 yields the L2 convergence in all directions orthogonal to the easy axis;
cf. Remark 2.2.

Theorem 3.3. Let (λ,m) and (λh,mh) solve (RP ) and (RPε,h), respectively, and
assume monotonicity as in (3.4). Then

‖Pm − Pmh‖2
L2(Rd) + c1‖Dφ∗∗(m) −Dφ∗∗(mh)‖2

L2(Ω)

≤ (1 + 1/c1) ‖ε λhmh‖2
L2(Ω) + 2‖ε|λhmh|{(f − fT ) − (Pmh − (Pmh)T )}‖L1(Ω)

+ 2〈(f − fT ) − (Pmh − (Pmh)T ) ; m − mT 〉L2(Ω).

(3.7)

Remark 3.4. (a) In fact, the last term on the right-hand side of (3.7) is not
an a posteriori term but can always be dominated by an application of the Hölder
inequality and (1.6)

〈(f − fT ) − (Pmh − (Pmh)T ) ; m − mT 〉L2(Ω)

≤ 2‖(f − fT ) − (Pmh − (Pmh)T )‖L1(Ω),

where we used the side-constraint ‖m‖L∞(Ω) ≤ 1.

(b) For m ∈W 1,∞(Ω; Rd) and C = CP ‖m‖W 1,∞(Ω), Poincaré’s inequality yields

〈(f − fT ) − (Pmh − (Pmh)T ) ; m − mT 〉L2(Ω)

≤ C ‖h{(f − fT ) − (Pmh − (Pmh)T )}‖L1(Ω).

Remark 3.5. We did not succeed in deriving an a posteriori bound for the a priori
term ‖λm − λhmh‖L2(Ω).

Proof of Theorem 3.3. Adopt notation from the proof of Theorem 3.1. By defini-
tion of the discretization scheme, we have

f − fT = (Pm − Pmh) + (Pmh − (Pmh)T ) + (d − dh) + (λm − λhmh) a.e. in Ω.
(3.8)

This and the elementary inequality [5, Proof of Theorem 5.2]

−〈λm − λhmh ; m − mh〉L2(Ω) ≤
∫

Ω

ε|λhmh| |λm − λhmh| dx

allow us to dominate the left-hand side of (3.7),

‖Pm − Pmh‖2
L2(Rd) + c1‖d − dh‖2

L2(Ω)

≤ 〈(f − fT ) − (Pmh − (Pmh)T ) ; m − mh〉L2(Ω) +

∫
Ω

ε|λhmh| |λm − λhmh| dx.
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In the scalar product, m − mh may be replaced my m − mT due to orthogonality
of (·)T . Inserting λm − λhmh from (3.8) into the integrand and serious use of the
Cauchy inequality yield the assertion.

4. Numerical algorithms. This section is devoted to the implementation of
(RPε,h) for the uniaxial case (1.4) in MATLAB. The discrete problem (RPε,h) leads
to a nonlinear systems of equations solved by a Newton–Raphson scheme. Subsec-
tions 4.2 and 4.3 describe an adaptive mesh-refinement based on refinement indicators
motivated by Theorem 3.3 and the practical computation of the refinement indica-
tors. The computation of both—the Galerkin element and the refinement indicators—
involves the integral operator P and hence leads to dense matrices. Subsection 4.4
gives
an outlook of their efficient approximation with an H-matrix approach.

4.1. Computation of the discrete solution mh. Given T = {T1, . . . , TN},
the set B :=

{
χTj

ek
∣∣ 1 ≤ j ≤ N, 1 ≤ k ≤ d

}
is a basis of L0(T )d, where ek denotes

the kth standard unit vector in R
d. The computation of a discrete solution mh =∑dN

j=1 μjϕj is done via a Newton–Raphson scheme. To abbreviate notation and fix a
numbering of the basis elements ϕ� ∈ B, let{

[j, 1] := j
[j, 2] := j +N

for d = 2 and

⎧⎨⎩
[j, 1] := j
[j, 2] := j +N
[j, 3] := j + 2N

for d = 3,

respectively, and for all 1 ≤ j ≤ N . Further let ϕ[j,k] := χTj
ek ∈ B. With x ∈ R

dN

and

mh =

N∑
j=1

d∑
k=1

x[j,k]ϕ[j,k],(4.1)

equation (2.7) is equivalent to the nonlinear system F(x) = 0 with

F : R
dN → R

dN , F� = 〈Pmh ; ϕ�〉L2(Ω) + 〈λhmh +Dφ∗∗(mh) − f ; ϕ�〉L2(Ω).

(4.2)

Thus, the discrete scheme needs the computation of the matrix

A ∈ R
dN×dN , Amn := 〈Pϕm ; ϕn〉L2(Ω) for basis functions ϕm, ϕn ∈ B.(4.3)

Provided all Tj ∈ T are bounded Lipschitz domains, the following lemma allows for
the exact computation of (4.3).

Lemma 4.1 (see [10, 19]). Let m, m̃ ∈ R
d and let ω, ω̃ ⊆ R

d be bounded Lipschitz
domains with outer normals n, ñ, respectively. Then A(χωm, χω̃m̃) := 〈P(χωm);
χω̃m̃〉L2(Rd) satisfies

A(χωm, χω̃m̃) = A(χω̃m̃, χωm) = A(χωm̃, χω̃m)

= −
∫
∂ω

∫
∂ω̃

G(x− y)(n(x) · m)(ñ(y) · m̃) dsy dsx.
(4.4)

Remark 4.1. In the context of the boundary element method, boundary integrals∫
E

∫
Ẽ

G(x− y) dsy dsx
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occur for the computation of the Galerkin elements for Symm’s integral equation and
piecewise constant ansatz functions. Analytic formulas are known for E, Ẽ being
affine boundary pieces (d = 2) [15, 16, 4] or axis-orientated flat rectangles (d = 3)
[15, 16, 9].

4.2. Adaptive mesh-refinement. Theorem 3.3 gives rise to the error estima-
tors

μ :=

(∑
T∈T

μ2
T

)1/2

and η :=

(∑
T∈T

η2
T

)1/2

,(4.5)

where the refinement indicators μT , ηT , for T ∈ T , are defined by

�T := (ελh|mh|)|T = (|mh|T | − 1)+,

μ2
T := (1 + �T )‖(f − fT ) − (Pmh − (Pmh)T )‖L1(T ) + |T |�2T ,
η2
T := (hT + �T )‖(f − fT ) − (Pmh − (Pmh)T )‖L1(T ) + |T |�2T .

(4.6)

Remark 4.2. (a) The estimator μ is reliable, i.e., an upper bound for the error
‖Pm−Pmh‖L2(Rd) + ‖Dφ∗∗(m) −Dφ∗∗(mh)‖L2(Ω) up to a multiplicative constant.

(b) μ cannot be efficient, i.e., a lower bound for the error.
(c) η is reliable for m ∈W 1,∞(Ω; Rd), but not in general.
(d) Efficiency of η is expected but could not be proven.
Algorithm 4.2 (adaptive mesh-refinement). Let T (0) be the initial triangula-

tion, n = 0, α > 0, and 0 ≤ θ ≤ 1.
(i) For Tj ∈ T (n) = {T1, . . . , TN} choose a penalization parameter εj = hαTj

> 0.

(ii) Compute approximation mh with respect to the current triangulation T (n)

and ε ∈ L0(T (n)), ε|Tj
:= εj, by the Newton–Raphson scheme.

(iii) Compute error estimators μ and η from (4.5) and refinement indicators ηj :=
ηTj and μj := μTj

from (4.6).

(iv) Mark an element Tj ∈ T (n) provided ηj ≥ θmax1≤k≤N ηk for η-adaptive
mesh-refinement and provided μj ≥ θmax1≤k≤N μk for μ-adaptive mesh-
refinement.

(v) Refine the marked elements, update n 	→ n+ 1, and go to (i).
Remark 4.3. The choice θ = 0 in Algorithm 4.2 leads to uniform mesh-refinement,

whereas θ ≈ 1 leads to highly adapted meshes. In the numerical experiments, θ = 0
or θ = 1/2.

Remark 4.4. To lower the computational cost for the Newton–Raphson scheme,
we used nested iterations: In step (ii) of Algorithm 4.2, the Newton–Raphson scheme

was started with the prolonged discrete solution m
(n−1)
h for the previous grid T (n−1).

4.3. Implementation of the refinement indicators. The L1 norm in the
definition of μT and ηT , respectively, was computed by a (2×2)-tensor Gauss quadra-
ture rule. The following lemma shows that the point evaluation of Pmh is well-defined
outside the skeleton of T .

Lemma 4.3. For mh ∈ L0(T ; Rd), the corresponding potential satisfies Lmh ∈
C(Rd) ∩ C1(Rd\S), where S :=

⋃{
∂T
∣∣T ∈ T } denotes the skeleton of the triangula-

tion. Moreover, the derivative Pmh = ∇(Lmh) can be computed pointwise by

Pmh(x) =
1

|S|
∑
T∈T

∫
∂T

mh|T · (x− y)

|x− y|d n(y) dsy for x ∈ R
d\S,(4.7)
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where n(y) denotes the outer normal with respect to T ∈ T and S ⊆ R
d the unit

sphere.
Proof. For the Lipschitz domain T ∈ T , the Newtonian potential of the charac-

teristic function satisfies G ∗ χT ∈ C1(Rd) ∩ C2(intT ) with

∂2

∂xj∂xk

(
G ∗ χT

)
(x) =

∂

∂xk

(
(∂G/∂xj) ∗ χT

)
(x) =

∫
∂T

∂G

∂xj
(x− y)nk(y) dsy;(4.8)

see [8, Lemma 4.2]. With the abbreviated notation m(T ) := mh|T , we have

Lmh =
∑
T∈T

d∑
j=1

m
(T )
j

∂G

∂xj
∗ χT =

∑
T∈T

m(T ) · ((∇G) ∗ χT
)
.

Computing the kth partial derivative of Lmh via (4.8), we verify the assertion.
Remark 4.5. Note that the singularities of Pmh on the skeleton S are quite weak

since it can be shown that Pmh ∈ Lp(Ω; Rd) for all 1 < p < ∞; see [19]. This seems
to justify the computation of the L1 norms by a simple quadrature rule.

Remark 4.6. In the context of the boundary element method, boundary integrals
as in (4.7) occur for the computation of the double layer potential for piecewise con-
stants. If one replaces ∂T by a bounded boundary piece E, the analytic formulas are
known for E being affine (d = 2) [15, 16, 4] and being a triangle or rectangle (d = 3)
[15, 16, 9].

4.4. Efficient realization of the involved integral operator PPP. The dense
matrix A ∈ R

dN×dN
sym from (4.3) has certain symmetry properties. To decrease com-

putation time and memory, H- and H2-matrix approaches can be used [1, 10, 19, 18],

where A is replaced by an approximation Ã.
Lemma 4.4. For any bounded open sets ω, ω̃ ⊆ R

d with dist(ω; ω̃) > 0, for
α, β = 1, . . . , d, and the �th canonical unit vector e� ∈ R

d, the bilinear form A(·, ·)
from Lemma 4.1 satisfies

A(χωeα, χω̃eβ) =

∫
ω

∫
ω̃

∂2G

∂xα∂xβ
(x− y) dy dx.

Proof. The lemma follows from standard results on convolutions.
The idea of the H2-matrix approach is to approximate the kernel

gαβ(x, y) :=
∂2G

∂xα∂xβ
(x− y)

based on panel clustering. For certain σ, τ ⊆ T with dist(∪σ,∪τ) > 0, let vectors

x
(σ)
m1 ∈ ∪σ, y(τ)

m2 ∈ ∪τ and polynomials p
(σ)
m1 , p

(τ)
m2 on ∪σ, respectively, ∪τ , be given and

define

g̃αβ(x, y) :=

M1∑
m1=1

M2∑
m2=1

gαβ(x
(σ)
m , y(τ)

m2
) p(σ)

m1
(x) p(τ)

m2
(y) for (x, y) ∈ ∪σ × ∪τ.

For Tj ∈ σ and Tk ∈ τ there holds the approximation

∫
Tj

∫
Tk

gαβ(x, y) dy dx≈
M1∑
m1=1

M2∑
m2=1

gαβ(x
(σ)
m1
, y(τ)
m2

)︸ ︷︷ ︸
=:Dm1m2

{∫
Tj

p(σ)
m1

(x) dx
}

︸ ︷︷ ︸
=:C

(σ)
jm1

{∫
Tk

p(τ)
m2

(y) dy
}

︸ ︷︷ ︸
=:C

(τ)
km2

.

(4.9)
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For fixed α, β, consider the matrix B ∈ R
N×N
sym , Bjk := A(χTj

eα, χTk
eβ). With the

matrices C(σ) ∈ R
|σ|×M1 , C(τ) ∈ R

|τ |×M2 , and D ∈ R
M1×M2 defined in (4.9), the

submatrix B|σ×τ from B satisfies

B|σ×τ ≈ C(σ)D(C(τ))T .(4.10)

The use of the latter approximation significantly reduces the computational cost for
assembling the matrix B|σ×τ , provided max{M1,M2} < min{|σ|, |τ |}.

Remark 4.7. Notice that only the matrix D in (4.9) depends on α and β and the

matrix A can be approximated by the block-matrix Ã with blocks of H2-matrix type.
The time to assemble the matrix A could be highly decreased by use of the indicated
H2-matrix approach. However, all experiments in this paper have been made using
the exactly computed matrix A, but the much cheaper H2-matrix approach leads
to (almost) the same accuracy, in (almost) linear complexity. (Since the present
implementation is in MATLAB, comparisons will appear in [18].)

Remark 4.8. The computation of the refinement indicators can also be based on
an H-matrix approach since the computation of Pmh(x) corresponds to a collocation
method with the double layer potential; cf. Lemma 4.3.

5. Numerical example with exact solution m ∈ W 1,∞(Ω; R
2). The unit

square Ω = (0, 1)2 is filled with a uniaxial magnetic material (1.4) with easy axis
e = (−1, 1)/

√
2, i.e., z = (1, 1)/

√
2 in Remark 2.2. Define

m(x) :=

{
x for |x| ≤ 1,
x/|x| for |x| ≥ 1

and λ(x) :=

{
0 for |x| < 1,
1 for |x| ≥ 1.

(5.1)

Then (m, λ) ∈W 1,∞(Ω; R2) × L∞(Ω) solves (2.4)–(2.5) with given right-hand side

f := Pm + (m · z)z + λm ∈ L2(Ω; R2).(5.2)

In all our numerical experiments, we replaced Pm on the right-hand side of (5.2) by
PmT for the elementwise integral means mT of m. Recall that Lemma 4.1 allows the
exact integration of PmT . Figure 1 shows discrete solutions mh for the penalization
parameter α = 1.

For a given sequence of h-uniform meshes with N = h−2 elements in T (n), the
first set of experiments studies the choice of the parameter α > 0 in the penalization
ε = hα. Figure 2 displays the L2 error of the magnetization vectors as a function
of the mesh-size h = N−2 for 12 values of α. Any choice of α ≥ 1 seems to result
in a linear convergence, while values α < 1 seem to result in smaller experimental
convergence rates (until α = 1/4 with almost no convergence). The length |mh(x)|
for |x| > 1 and α = 1/2 are about 1.1, compared to ≤ 1.01 for α = 3/2. The
value α = 3/2 is recommended throughout all examples of this paper. Theoretical
estimates concern the z direction of m−mh exclusively. In the numerical examples,
however, linear convergence is observed also for the easy axis direction e. Notice that
m is essentially smooth, and hence adaptive mesh-refinements cannot improve the
experimental convergence rates further.

In conclusion, the first example gives empirical support for the a priori analysis
and the choice of the penalization parameter. As indicated by Theorem 3.2, the choice
of ε = hα with α ≥ 1 appears to be necessary for optimal experimental convergence
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Fig. 1. Discrete solution (mh, λh) in section 5 on T4 (with N = 1024) for penalization param-
eter ε = h: mh as vectors mh|T and |mh|T | in grayscale (left) and λh in grayscale (right).
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Fig. 2. Error ‖m − mh‖L2(Ω) versus the number of elements N = 4, 16, . . . , 4096 for various
choices of the penalization parameter ε = hα for uniform meshes with α = .25, .5, .75, 1, 1.25, 1.5,
1.75, 2, 2.25, 2.5, 2.75, 3. The results for α = 1.5, 1.75, . . . , 3 essentially coincide and lead to the
linear convergence in h indicated by the slope 1/2.

behavior. The lower order of convergence for a choice of α < 1 can be explained as
follows: Theorem 3.2 shows the L2 convergence λhmh → λm in Ω, particularly on
the restricted domain ω :=

{
x ∈ Ω

∣∣ |x| ≥ 1
}
; i.e., the smaller α, the larger the length

|mh|:

h−α(|mh| − 1)+ = λh|mh| → λ|m| = 1 in L2(ω).

6. Numerical example with exact solution m �∈ H1(Ω). This section is
devoted to the numerical approximation of a more singular magnetization,

(m(x), λ(x)) :=

{
(y(x), 0) for x ∈ ω,
(x1x2(1 − y1(x))

−1(1 − y2(x))
−2y(x), 1) for x ∈ Ω\ω(6.1)
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Fig. 3. Best approximation mT (left) of the magnetization vector m in section 6 on a uniform
mesh (with N = 1024), and elementwise distribution of the corresponding best approximation error
‖m − mT ‖L2(Tj)

(right). Notice that the grayscale displays values multiplied with 1 (left) and

10−3 = 1/1000 (right).
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Fig. 4. Best approximation mT (left) in section 6 on an error adapted generated mesh
(with N = 1717), and elementwise distribution of the corresponding best approximation error
‖m − mT ‖L2(Ω) (right). For the adaptive mesh-refinement, we used Algorithm 4.2 with refine-

ment indicators �j = ‖m − mT ‖L2(Tj)
. Notice that the grayscale displays values multiplied with 1

(left) and 10−4 = 1/10000 (right).

with a singular gradient at the three vertices (0, 1), (1, 0), (1, 1) on the boundary of
the magnetic body Ω = (0, 1)2. Here,

y(x) :=
(1, 1) − x

|(1, 1) − x| and ω :=
{
x ∈ Ω

∣∣ |(1, 1) − x| < 1
}
.

The remaining data φ, z, and f are as in section 5. The magnetization vector m
(6.1) and the error by the piecewise integral means are depicted in Figure 3. We
observe a larger elementwise L2 error in Ω\ω and hence expect the necessity of
adaptive mesh-refining for an effective computation. For a comparison, Figure 4
displays the best approximation mT and its elementwise L2 errors ‖m − mT ‖L2(T )

on an adapted mesh. The latter was generated by Algorithm 4.2 with the refine-
ment indicator �j := ‖m − mT ‖L2(Tj); i.e., an element Tj is marked in step (iv) if
�j ≥ 1/2 max1≤k≤n �k. The singularity at (1, 1) is visible in Figures 3 and 4, as is
a refinement near the arc

{
x ∈ Ω

∣∣ |(1, 1) − x| = 1
}
. There is no theoretical support
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Fig. 5. Error ‖m−mh‖L2(Ω) and dependence from penalization parameter ε = hα for uniform
mesh-refinement. For comparison, the best approximation errors on uniform and adapted meshes
from Figure 4 are also shown.

that the refinement indicator �j leads to optimal meshes, but it allows an interesting
theoretical comparison. Also, heuristically we expect optimal meshes (asymptoti-
cally) since the mesh-refinement with respect to � leads to meshes on which the best
approximation errors are equidistributed.

A comparison between Figures 3 and 4 (keeping in mind the different scalings
in the right figures) shows that adaptive meshes have the potential for improvement.
Numerical evidence for this is provided in Figure 5: Besides various choices of penaliza-
tion parameter α with conclusions similar to those of section 5, the sequence of uniform
and �-adapted mesh-refining are compared. The adaptive meshes yield linear conver-
gence in a reference mesh-size h := N−2 even in all components of ‖m − mT ‖L2(Ω).
The sequence of uniform meshes shows a suboptimal convergence rate.

Figures 6 and 7 display the L2 error ‖m − mh‖L2(Ω) and the error estimators μ
and η from (4.5) as functions of the number of elements N for various sequences of
meshes. Those are generated by Algorithm 4.2 with refinement indicators ηj and μj
from (4.6) and penalizations ε = hα for α = 1 and α = 3/2. The two penalizations
show similar convergence rates; the overall recommendation of α = 3/2 is again
supported in Figure 6 by better results. Each of the two adaptive algorithms leads
to optimal convergence rates and is (asymptotically) factor 2 for α = 1, respectively,
1.3, for α = 3/2 worse than the best approximation errors.

Figure 7 illustrates the reliability-efficiency gap [3]: What is reliable is not effi-
cient and what is efficient is not (known to be) reliable. Theorem 3.2 and Remark 3.1
show that the error terms are bounded from above by c1μ and c2(m)η, and the lat-
ter bound is of higher order but valid only for a smooth magnetization. The second
estimate is also expected to be efficient (up to higher-order terms in the magnetiza-
tion). Figure 7 displays η and μ and clearly shows their different convergence rates.
From Figure 7 there is no support that adaptive is more effective than uniform mesh-
refining.
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strategies as shown in Figure 6 is not reflected by the estimators. There is (up to a multiplicative
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Fig. 8. Discrete magnetization mh (zoom on the left) on the η-adaptively generated mesh T4

(with N = 236) and corresponding potential uh (right) for constant exterior field f = (.6, 0), easy
axis e = (1, 0), and penalization parameter ε = h3/2. The grayscale in the zoomed magnet displays
the length |mh| of the discrete magnetization. On the right, the pointwise value of uh is shown by
the grayscale and some isolines have been drawn.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Fig. 9. η-adaptively generated meshes T0 (with N = 5) till T7 (with N = 1604) in section 7 for
f = (.6, 0), e = (1, 0), and ε = h3/2. The grayscale shows the length |mh| of the discrete solution.

7. Real-life scientific computing. The ferromagnetic body Ω = (−1/2, 1/2)×
(−5/2, 5/2) is loaded with a constant applied magnetic field f := (0.6, 0) aligned with
the easy axis e = (1, 0). Figure 8 displays the magnetic potential uh = Lmh and the
magnetization vectors mh on an adaptively generated mesh. The exact solution m
is unknown. The first numerical computations for this example have been performed
in [5]. Although there the potential equation

div(−∇u+ m) = 0 in R
2

is discretized and solved by a finite element scheme for a bounded domain that sur-
rounds Ω instead of the full space, we obtain similar results.

The initial mesh T0 consists of 5 congruent squares with side-length 1. Figure 9
shows η-adaptively generated meshes T0, . . . , T7 with N = 5, . . . , 1604 elements. We
observe some mesh-refinement towards the 4 vertices of Ω which we might expect to
be caused by singularities in the stray field. However, this refinement seems to be
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Fig. 10. Experimental convergence of the error estimators η and μ in section 7 for uniform,
η-adaptive, and μ-adaptive mesh-refinement and penalization parameter ε = h3/2. There is (up
to a multiplicative constant) no improvement of the convergence behavior by the adaptive mesh-
refinement, although we obtain some local mesh-refinement towards the corners in Figure 9.

accomplished in T0, . . . , T6 as T7 and T8 show a refinement of a more global zone.
Figure 8 displays the discrete solution which follows the exterior field f and develops
some flowering at the tips of Ω. One observes large curvatures of the magnetiza-
tion near the top and bottom of the magnet Ω but no strong point singularity there.
Furthermore, Figure 8 displays the corresponding magnetic potential uh = Lmh com-
puted analytically by

Lmh(x) =

N∑
k=1

∫
∂Tk

G(x− y)mh|Tk
· n(y) dsy for all x ∈ R

d,(7.1)

as follows from partial integration of (2.3). In comparison with a corresponding nu-
merical experiment in [5], we see that the potential lines of the magnetic potential
are not perpendicular on the boundary of the domain displayed. This is a conse-
quence of the correct treatment of the stray field in the full space R

2. More impor-
tant, the discretization in [5] shows a strong refinement towards the vertices, much
stronger than those visible in Figures 8 or 10. To monitor the asymptotic behavior,
Figure 10 displays the error estimators μ and η. In comparison with uniform and η-
and μ-adaptive mesh-refinement one deduces that, in this example, adaptivity is not
important—there is a small improvement, but one obtains essentially the same con-
vergence rate for all three strategies. Our interpretation is that, to our great surprise,
there is no singularity in the integral-operator model at hand and so the formulation
is indeed superior to that of [5].

Finally, Figure 11 shows the discrete Lagrange multipliers λh corresponding to
the triangulations from Figure 9. They do not indicate some particular resolution of
the set {x ∈ Ω : λh(x) = 0} (or some other level set of λh).
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0 0.1 0.2

Fig. 11. Discrete Lagrange multiplier λh on η-adaptively generated meshes T0 (with N = 5)
till T7 (with N = 1604) in section 7 for f = (.6, 0), e = (1, 0), and ε = h3/2. The grayscale shows
the pointwise value of λh. In the white region we have λh ≡ 0, i.e., |mh| ≤ 1.
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and Helmholtz Equation in 3D BEM, Institut für Angewandte Mathematik, Univer-
sität Hannover, preprint, 2000; available online from http://www.ifam.uni-hannover.
de/˜maischak/publication.html.

[17] P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, Basel, 1997.
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Abstract. We construct a convolution-thresholding approximation scheme for the geometric
surface evolution in the case when the velocity of the surface at each point is a given function of the
mean curvature. Conditions for the monotonicity of the scheme are found and the convergence of
the approximations to the corresponding viscosity solution is proved. We also discuss some aspects
of the numerical implementation of such schemes and present several numerical results.
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1. Introduction. The topic of curvature flows of different types was popular
during the last 20 years and is still popular in both pure and applied mathematics.
By curvature flow we mean a family {Γt}t≥0 of hypersurfaces in R

n depending on
time t with local normal velocity equal to the mean curvature or a function of it for
generalized curvature flows. The mean curvature in turn denotes here the sum of
principal curvatures.

In the three-dimensional case a smooth initial surface can develop singularities
after some finite time. There have been several successful attempts to deal with
singularities and topological complications: the varifold approach [7], [2], the phase
field method [14], [8], and the level-set method. This approach was suggested in the
physical literature [26] and was extensively developed for numerical purposes by Osher
and Sethian [27]. The main idea of this method is to evolve some continuous function
u : [0,∞)×R

n �→ R in such a way that Γt ⊂ R
n would always be a level-set of u (x, t),

i.e., Γt = {x ∈ R
n : u (x, t) = 0} for all t ≥ 0. In the case of the mean curvature flow,

the evolution equation for u turns out to be

ut = |Du|div

(
Du

|Du|
)
.(1.1)

The evolution equation for a function u with each point of a level-set moving along the
normal with velocity equal to some function G of the mean curvature is the so-called
generalized mean curvature evolution PDE

ut = |Du|G
(

div

(
Du

|Du|
))

.(1.2)
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This equation is degenerate parabolic. The existence and uniqueness of general-
ized viscosity solutions (see [12]) to the initial value problem{

ut = |Du|G
(
div
(
Du
|Du|

))
in R

n × (0, T ) ,

u = g (x) ∈ BUC (Rn) on R
n × {0}

(1.3)

was investigated in [17], [11], [22].
Curvature flows arise naturally in various problems. Among these are the fast

reaction–slow diffusion problem [29], [4], [16], [19] and image processing [1].
In the present work we construct a class of approximations of a convolution-

thresholding type to the generalized curvature flows. By this we mean the following.
Assume that, initially, the surface under consideration is a boundary of a compact
set C ∈ R

n. Take compactly supported functions ρ̃i : R+, �−→ R+, i = 1, 2 (in fact,
one can also take ρ̃i with unbounded support decreasing fast for large x). We define
ρi : R

n �→ R+,

ρi (x) =
1

hn/2
ρ̃i

(
|x| /

√
h
)
,

and introduce a convolution

Mi (C) (x, h) =

∫
R

n

χC (y) ρi (x− y) dy.

Now Mi (C) (x, h) are functions of x, and we define a new position of the surface as
a boundary of the set

HhC = {x ∈ R
n : F (M1 (C) (x, h) ,M2 (C) (x, h)) ≥ 0} ,(1.4)

where F is some (thresholding) function. Next we follow Evans [15] and introduce an
operator on the space of bounded functions B (Rn): H (h) : B (Rn) �→ B (Rn) by

[H (h)u] (x) = sup {λ ∈ R : x ∈ Hh [u ≥ λ]} .(1.5)

The purpose of the present study is, for a given function G in (1.3), to find a cor-
responding thresholding function F in (1.4) so that H (t/m)

m
g (x) converges to the

unique viscosity solution of (1.3) as m→ ∞.
Such a function in the case when G is linear was proposed by Merriman, Bence,

and Osher in [25]. This result is often referred to as the Bence–Merriman–Osher
method. Rigorous proofs of the convergence of such approximations can be found in
[15], [20], and [3]. In this case it is enough to take a thresholding function depending
only on one convolution.

Suppose that G is nonlinear. As we show in section 3, in this case one has to use
two convolutions M1 and M2 and a thresholding function depending on two variables
F (M1,M2). This is necessary to ensure that the operator H is consistent with the
PDE in (1.3). We also show how to choose convolution kernels in order to get a
monotone H. These two conditions—monotonicity and consistency—are crucial for
the convergence.

Using our approach we also suggest a new construction of higher order schemes
for the classical curvature flows. The numerical experiments with these schemes show
a considerable improvement in the accuracy.

Finite difference approximations for (1.3) have been studied in [27], [31], [13].
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Another class of approximation operators, the so-called Matheron filters, comes
from image processing. The connection between such operators and the mean curva-
ture evolution PDE (1.2) was established in [10]. This result was then extended in
[18] and [9].

Threshold dynamics models, introduced earlier in [21], lead to approximations
of the solution of the Cauchy problem to a nonlinear parabolic equation, where the
right-hand side can be interpreted as a general elliptic operator on a level set of the
solution. This is a generalization of the curvature flow, but it does not entirely include
(1.3) as a special case.

Another generalization of the Bence–Merriman–Osher method can be found in
[23]. The author suggests an approximation procedure that allows tracking the surface
evolution when the velocity of the surface depends also on the coordinates. The
convergence of this approximation is also proved.

Outline. This paper is organized as follows. After introducing the basic notions
and stating some results for viscosity solutions in section 2, we turn to our method of
approximation for such solutions. In section 3, we construct F to get the convergence
of the convolution-thresholding approximation to the viscosity solution of (1.3) with a
monotone continuous function G. This is the main result of the paper. More precisely,
the following local uniform convergence is proved:

((H (t/m))
m
g) (x) → u (x, t) , m→ ∞,

where H is defined by (1.5) and u (x, t) is the viscosity solution of (1.3).
We use this construction for numerical calculation for some cases of the gener-

alized curvature flows in R
2 and R

3. Numerical results and two approaches to the
implementation are described in section 4.

2. The viscosity solution framework. Consider the nonlinear equation (1.2)
on an open set Ω× (0, T ) with function G continuous and nondecreasing. This is the
second order equation with a right-hand side that is monotonic and degenerate elliptic
(see [12]) provided that G is nondecreasing and Du 	= 0. Viscosity solution to (1.2)
was defined by Evans and Spruck in [17] and by Chen, Giga, and Goto in [11]. In
our presentation we will use a somewhat more general definition of viscosity solutions
introduced by Ishii and Souganidis in [22] to allow for a wider class of functions G in
(1.2). For the general degenerate elliptic equation

ut + G (Du,D2u
)

= 0,(2.1)

they introduce a special class of test functions and adapt the definition of viscosity
solution for possible singularities of the right-hand side. Representation of (1.3) in
the form of (2.1) gives

G(p,X) = −|p|G
(

1

|p| tr
((

I − p⊗ p

|p|2
)
X

))
.

Let us begin by introducing an auxiliary subclass of C2 ([0,∞)). We say that
f : [0,∞) �→ R lies in F ⊂ C2 if f (0) = f ′ (0) = f ′′ (0) = 0, f ′′ (r) > 0 for r > 0 and
the following limits hold:

lim
f ′ (|p|)
|p| G (p, I) = lim

f ′ (|p|)
|p| G (p,−I) = 0.



APPROXIMATION OF GENERALIZED CURVATURE FLOWS 2655

As was shown in [22], this set of functions is a nonempty cone, provided that the right-
hand side lies in C ((Rn\ {0}) × S (n)). The class of test functions A (G) depends on
G and is defined as follows.

Definition 2.1. A function φ is admissible if it is in C2 (Rn × (0, T )) and if,
for each ź =

(
x́, t́
)

where Dφ (ź) = 0, there is δ > 0, f ∈ F , and ω ∈ C ([0,∞)) such
that ω = o (r) and for all (x, t) ∈ B (ź, δ)∣∣φ (x, t) − φ (ź) − φt (ź)

(
t− t́

)∣∣ ≤ f (|x− x́|) + ω
(∣∣t− t́

∣∣) .
Let us also denote by u∗ and u∗ the upper and lower semicontinuous envelopes

of u:

u∗ (x, t) = lim sup
(y,s)→(x,t)

u (y, s) , u∗ (x, t) = lim inf
(y,s)→(x,t)

u (y, s) .

The definition of viscosity solution follows.
Definition 2.2. Take an open set Õ ⊂ R

n and O = Õ × (0, T ). u : O ⊂
R
n× (0, T ) �→ R∪{−∞} is a viscosity subsolution (supersolution) of (1.2) in an open

O if u∗ < ∞ (u∗ > −∞) and for all φ ∈ A (G) and all local maximum (minimum)
points (z0, t0) of u∗ − φ (u∗ − φ),⎧⎨⎩ φt (z0, t0) ≤ (≥) |Dφ (z0, t0)|G

(
div

Dφ (z0, t0)

|Dφ (z0, t0)|
)

if Dφ (z) 	= 0,

φt (z0, t0) ≤ (≥)0 otherwise.

Consequently, a viscosity solution is a function that is sub- and supersolution simul-
taneously.

The result by Ishii and Souganidis presented in [22] can be restated in terms of
the level-set equation (see [28]) as follows.

Theorem 2.3. Assume that G is continuous and nondecreasing. Then the initial
value problem (1.3) has a unique viscosity solution u ∈ BUC (Rn × (0, T )) .

In what follows, we also use another result by Ishii and Souganidis [22] concerning
locally uniform perturbations of the right-hand side of the equation. One can restate
this result in the case of (1.2) as follows (see [28]).

Theorem 2.4. Assume that G is continuous and nondecreasing. Suppose also
that {Gm}∞1 is a sequence of continuous, nondecreasing functions on R and Gm → G
locally uniformly. For any m, let F (G) ⊂ F (Gm) and for any f ∈ F (G),

lim inf
p→, m→∞ f ′ (|p|)Gm (1/p) ≥ 0,(

resp., lim sup
p�→0, m→∞

f ′ (|p|)Gm (−1/p) ≤ 0
)
.

Let um be a subsolution (resp., supersolution) of

∂um
∂t

= |Dum|Gm
(

div
Dum
|Dum|

)
in O.

Then

u+ (z) = lim sup
r �→0

{um (y) , |y − z| ≤ r, m > 1/m} ,(2.2) (
resp., u+ (z) = lim inf

r→0
{um (y) , |y − z| ≤ r, m > 1/m} )(2.3)

is a subsolution (resp., supersolution) of (1.2) in O provided that u+ < ∞ (resp.,
u+ > −∞).
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3. A convolution-thresholding method for a generalized curvature flow.

3.1. Convergence of approximation schemes. Here we make use of a theo-
rem by Barles and Souganidis proved in [5]. In order to base the proof of our main
result on this theorem, we follow Pasquignon [28] and restate it in terms of (1.2).

Let H (h) be the approximation operator, i.e.,

uh (x, (n+ 1)h) = H (h)uh (x, nh) = H (h)
n+1

u0 (x) ,

uh (x, 0) = u0 (x) .

Definition 3.1.

1. Consistency.
An approximation operator H (h) , h > 0, is consistent with (1.2) if for any
φ ∈ C∞ (Ω̄) and for any x ∈ Ω̄, the following holds:

(H (h)φ) (x) − φ (x)

h
= |Dφ|G

(
div

Dφ

|Dφ|
)

+ ox (1) for Dφ 	= 0.(3.1)

If the convergence of ox (1) is locally uniform on sets, where Dφ 	= 0, then
H (h) is said to be uniformly consistent with the PDE.

2. Monotonicity.
An operator H (h) , h > 0, is locally monotone if there exists r > 0 such
that for any functions u (y) , v (y) ∈ B

(
Ω̄
)

with u ≥ v on B (x, r) \ {x}, the
following holds:

H (h)u (y) ≥ H (h) v (y) + o (h) ,

where the convergence of o (h) is uniform on B (x, r) \ {x}.
3. Stability.

An approximation scheme H (h) is stable if H (h)
n
u ∈ B

(
Ω̄
)

for every u ∈
B
(
Ω̄
)
, n ∈ N, h > 0, with a bound independent of h and n.

In this setting the result of Barles and Souganidis reads as follows.
Theorem 3.2. Consider a monotone, stable approximation operator H (h) that

commutes with additions of constants (i.e., H (h) (u+ C) = H (h)u+C for all C ∈ R)
and is uniformly consistent with (1.2). Suppose also that

lim
h→0

H (h) (f (|x− x0|)) (x0)

h
= 0(3.2)

for any f ∈ F (G). Then uh (x, nh) converges locally uniformly to the unique viscosity
solution u (x, t) of (1.2) as nh �→ t.

3.2. Properties of H. We consider a convolution generated motion of a hyper-
surface in R

n defined by (1.4) and the corresponding evolution of an initially bounded
function g : R

n �→ R defined by (1.5). Consider also the initial value problem (1.3)
with given G and g. We are looking for such a thresholding function F in (1.4) so that
Hm
t/mg (x) would converge (in some sense) to the unique viscosity solution of (1.3).

For example, set F (M1,M2) = M1 − 1
2 and ρ̃1 (x) = 1

(4π)n/2 e
−x2/4 to get cor-

responding operators Hh and H (h) by (1.4) and (1.5). Then we get the Bence–
Merriman–Osher procedure to which the main result of [15] applies, and H (h)

n
u0

converges locally uniformly to the unique viscosity solution of (1.3) with G (k) = k.



APPROXIMATION OF GENERALIZED CURVATURE FLOWS 2657

We will see that it is necessary to compute two convolutions M1 and M2 and
use the thresholding function depending on both these values to resolve the problem
when G is not linear.

Let us now consider an operatorH (h) defined by (1.5) with the help of an operator
Hh with an arbitrary thresholding function (1.4). We look for requirements on F
sufficient to fulfill the conditions of Theorem 3.2.

Stability. Suppose u (x) ∈ B (Rn). We show that H (h)u ∈ B (Rn). Intuitively,
we require

HhR
n = R

n,(3.3)

Hh∅ = ∅,(3.4)

and denote A = max |u|. With these settings, we have [u ≤ A] = R
n and

−A ≤ H (h)u (x) = inf {λ ∈ R : x ∈ Hh [u ≤ λ]} ≤ A.

It remains to find out for which F the conditions (3.3) and (3.4) are satisfied. To do
this, we substitute the corresponding sets into the definition of H:

HhR
n = {x ∈ R

n : F (M1R
n (x, h) ,M2R

n (x, h)) ≥ 0}
=

{
x ∈ R

n : F

(∫
R

n

ρ1dx,

∫
R

n

ρ2dx

)
≥ 0

}
= R

n

Hh∅ = {x ∈ R
n : F (M1∅ (x, h) ,M2∅ (x, h)) ≥ 0}

= {x ∈ R
n : F (0, 0) ≥ 0} = ∅.

Thus, the requirements on F become

F

(∫
R

n

ρ1dx,

∫
R

n

ρ2dx

)
≥ 0,

F (0, 0) < 0.

Monotonicity. Let us now show that if Hh satisfies the so-called inclusion princi-
ple, then Hh is monotonous.

Lemma 3.3. Assume, that Hh satisfies the inclusion principle, i.e.,

∀C1, C2 ⊆ R
n : C1 ⊆ C2 we have HhC1 ⊆ HhC2;(3.5)

then Hh is monotone, that is,

∀u, v ∈ C (Rn) : v ≤ u we have Hh (v) ≤ Hh (u) .

Proof. Suppose, there exists x0 s.t.H (h)u (x0)<H (h) v (x0). We denote λ1 =
H (h)u (x0), λ2 = H (h) v (x0), and ε = λ2−λ1

2 > 0. Since

λ1 + ε < inf {λ ∈ R : x0 ∈ Hh [v ≤ λ]} ,
we have x0 /∈ Hh [v ≤ λ1 + ε], but

Hh [v ≤ λ1 + ε] ⊇ Hh [u ≤ λ1 + ε] .

Therefore x0 /∈ Hh [u ≤ λ1 + ε], which contradicts the definition of λ1.
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Consistency. We sum up some calculations in the following lemma.
Lemma 3.4. Let φ ∈ C∞ (Rn) φ (0) = 0 and Dφ (0) = (0, 0, . . . , β). Then the

consistency of an operator H (h) with (1.3) is equivalent to

γ (h, 0) = hG (−Δγ (h, 0)) + o (h),(3.6)

where Δγ (h, 0) =
∑n−1
i=1 ∂

2γ/∂x2
i (0) and xn = γ (h, x́) is a parameterization of the

surface

{x ∈ R
n : φ (x) = H (h)φ (0)}

near x́ = 0.
We observe that in these settings −Δγ (h, 0) ≡ k is the mean curvature of the

graph of γ at the point (0, γ (h, 0)).
Proof. Without loss of generality, one can consider the consistency condition (3.1)

only for φ as in the statement. We rewrite (3.1) in a more convenient form:

(H (h)φ) (0) = h |Dφ (0)|G
(

div
Dφ

|Dφ| (0)

)
+ o (h) .(3.7)

We use the equality

div

(
Dφ

|Dφ|
)

=
1

|Dφ|
n∑

i,j=1

(
δi,j −

φxiφxj

|Dφ|2
)
φxixj

.

Since φ (0) = 0 and φxi (0) = δniβ,

div
Dφ

|Dφ|
∣∣∣∣
x=0

=
1

β

[
n∑
i=1

φxixi (0) − φxn (0)φxn (0)

β2
φxnxn (0)

]

=
1

β
Δ

′
φ (0) .(3.8)

Here Δ
′
φ =

∑n−1
i=1 φxixi

. Our next step is to take small x́, namely |x́| < Rh. For such
x́ we apply the inverse function theorem to φ,

H (h)φ (0) = φ (x́, γ (h, x́)) = φ (0) + βγ (h, 0) +O
(
h2
)
.(3.9)

Putting (3.9) and (3.8) into (3.7) we get

γ (h, 0) = hG

(
1

β
Δ

′
φ (0)

)
+ o (h) .(3.10)

Furthermore, differentiating both sides of H (h)φ (0) = φ (x́, γ (h, x́)) gives

φxi + φxnγxi = 0,

φxixj
+ φxixn

γxj
+ φxnxj

γxi
+ φxnxn

γxj
γxi

+ φxn
γxixj

= 0

for j, i = 1, . . . , n− 1. We deduce γxi (h, 0) = 0 from the first equality and rewrite the
second one for i = j,

φxjxj (0) + φxn (0) γxjxj (h, 0) = 0.

After a summation over j this becomes

1

β
Δ

′
φ (0) = −Δγ (h, 0) .

It remains to put this relation into (3.10) to get the desired equality (3.6).
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3.3. The convergence result for general G. In this subsection we construct
the thresholding function F (M1,M2) and show that the corresponding convolution
thresholding scheme (1.4), (1.5) converges to the viscosity solution u (x, t) of (1.3),

Hm
t
m
g (x) → u (x, t) as m→ ∞.

We start with F (M1C (x, h) ,M2C (x, h)), where

MiC (x, h) =

∫
C

ρi (x− y) dy.

For each ρi we expand this integral into the power series in h (see (3.19)), i.e.,

Mi [φ ≤ H (h)φ (0)] (0, h) = Ai +
√
hvCi +

√
hΔγ (h, 0)Bi +O

(
h3/2

)
,(3.11)

where

Ai =

∫
R

n−1

∫ 0

−∞
ρi (|y|) dyndý,(3.12)

Bi =
1

2

∫
R

n−1

y2
kρi (ý, 0) dý,(3.13)

Ci =

∫
R

n−1

ρi (ý, 0) dý,(3.14)

and i = 1, 2. This is a system of linear algebraic equations for Δγ (h, 0) and v. We
choose the kernels so that the determinant of this system is positive,

D = C1B2 − C2B1 > 0,

denote Ni = Mi [φ ≤ H (h)φ (0)] (0, h) −Ai, and write the solution

v =
γ (h, 0)

h
=

1√
h

N1B2 −N2B1

C1B2 − C2B1
+O (h) ,

Δγ (h, 0) =
1√
h

N2C1 −N1C2

C1B2 − C2B1
+O (h) .

Lemma 3.4 implies that the operator H is consistent with the PDE in (1.3) if we take

F (N1, N2) = v −G (−Δγ (h, 0))

=
1√
h

N1B2 −N2B1

D
−G

(
1√
h

N1C2 −N2C1

D

)
.(3.15)

In the case of the thresholding function of one variable, the inclusion principle
(3.5) holds for H when F is nondecreasing. In the case of two variables we require

∂F

∂N1
=
B2

D
− C2

D
G

′ ≥ 0,(3.16)

∂F

∂N2
= −B1

D
+
C1

D
G

′ ≥ 0.(3.17)
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This implies

B1

C1
≤ G

′ ≤ B2

C2
.(3.18)

Therefore, for awhile we restrict ourselves with G having a bounded and positive
derivative. Comparing (3.14) with (3.13) one sees that it is possible to make the
lower bound in (3.18) small by choosing ρ1 with mass concentration close to the
origin. The upper bound will be large if the mass of ρ2 is concentrated relatively far
from the origin.

Next, we state some auxiliary results.
Lemma 3.5. Suppose (3.16) and (3.17) hold and H is defined by (1.4); then for

all h ∈ R+,
1. H (h) (Rn) = R

n, H (h) (∅) = ∅,
2. for all a, b ∈ X : a ⊆ b⇒ H (h) a ⊆ H (h) b.

Proof.
1. It is enough to show that F

(
M1 (Rn) (x, h) ,M2 (Rn)

(
x, h

)) ≥ 0, and F
(
M1

(∅) (x, h),M2 (∅) (x, h)
)
< 0. First we observe that F (A1, A2) = 0,Mi (R

n) (x, h)

≥ Ai, and Mi (∅) (x, h) = 0 < Ai. This, together with ∂F
∂Ni

> 0, gives the
desired inequalities.

2. Since Mi (b) ≥ Mi (a), F (M1 (b) ,M2 (b)) ≥ F (M1 (a) ,M2 (a)), therefore
[F (M1 (a) ,M2 (a)) ≥ 0] ⊆ [F (M1 (b) ,M2 (b)) ≥ 0], which is equivalent to
H (h) a ⊆ H (h) b.

Proposition 3.6. Define H by (1.5) and H by (1.4); then for each h > 0 and
u ∈ B (Rn) one has H (h)u ∈ B (Rn).

Proof. Without loss of generality we assume that S1 ≤ u (x) ≤ S2 for some
S1, S2 ∈ R. From

∀h ∈ R+ H (h) (Rn) = R
nand H (h) (∅) = ∅

it follows that x ∈ H (h) [u ≤ S2] and x /∈ H (h) [u ≤ S1]. Therefore, we see that

S1 ≤ H (h)u (x) = inf {λ ∈ R : x ∈ H (h) [u ≤ λ]} ≤ S2.

With the results above, we are ready to state the convergence of the approxima-
tions H (t/m)

m
g to the unique viscosity solution of (1.3).

Theorem 3.7. Let H (h) be defined by

[H (h)u] (x) = sup {λ ∈ R : x ∈ Hh [u ≥ λ]}

with

HhC = {x ∈ R
n : F (M1 (C) (x, h) ,M2 (C) (x, h)) ≥ 0} ,

where

F (N1, N2) =
1√
h

N1B2 −N2B1

D
−G

(
1√
h

N2C1 −N1C2

D

)
,
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and where ρ̃1, ρ̃2 have compact support and G is continuous nondecreasing satisfying
(3.18). Then

Hm
t/mg (x) → u (x, t)

locally uniformly when m→ ∞. Here u (x, t) is the unique viscosity solution of (1.3)
with G satisfying (3.18).

Proof. Our aim is to show here that the operator H (h) satisfies the conditions of
Theorem 3.2. The monotonicity of Hh is ensured by Lemmas 3.3 and 3.5.

The stability of H is exactly the result of Proposition 3.6: H (h)u ∈ B
(
Ω̄
)
.

Another requirement in Theorem 3.2 is that H (h) must commute with the addi-
tion of constants, i.e.,

∀a ∈ R H (h) (u (x) + a) = H (h)u (x) + a.

This follows from the very definition of H (h):

H (h) (u (x) + a) = inf {λ ∈ R : x ∈ H (h) [u (x) + a ≤ λ]}
= inf {β + a ∈ R : x ∈ H (h) [u (x) ≤ β]} = H (h)u (x) + a.

The operator H (h) has to fulfill (3.2) as well. The limit we are interested in is

lim
h→0

H (h)u (x0)

h
= 0

for u of the form u (x) = f (|x− x0|), where f ∈ C2 ([0,∞)) with f (0) = f ′ (0) =
f ′′ (0) = 0 and f ′′ (r) > 0 for r > 0.

It is enough to show that this is true for x0 = 0. First, we observe that H−1
h [{0}] =

{u ≤ λ1}, where λ1 = H (h)u (0). Since both ρ1 and ρ2 have compact support, we
can be sure that there exists R s.t.

{ |x| ≤ R
√
h
} ⊇ H−1

h [{0}]. Now we observe, that{ |x| ≤ R
√
h
}

= {u ≤ λ2} for some λ2 > λ1. From the latter equality we deduce

λ2 = O
(
h3/2

)
and conclude with

lim
h→0

H (h)u (x0)

h
≤ lim
h→0

O
(
h3/2

)
h

= 0.

To show that our approximation operator is consistent with the PDE, we use
Lemma 3.4. It is enough to prove the following:

γ (h, 0) = hG (−Δγ (h, 0)) + o (h) ,

where xn = γ (h, x́) is a parameterization of the surface

{x ∈ R
n : u (x) = H (h)u (0)}

near x́ = 0. To show this, we use the fact that

F (M1 [u ≤ μ] ,M2 [u ≤ μ])|x=0 = 0.

We begin by writing the expressions for Mi in detail:
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Mi =

(
χ[u≤μ] �

1

hn/2
ρi

( |·|√
h

))
(0) =

∫
R

n

χ[u≤μ] (y)
1

hn/2
ρi

( |y|√
h

)
dy

=

∫
R

n−1

∫ γ(h,ý)

−∞

1

hn/2
ρi

( |y|√
h

)
dyndý = Ai +

∫
R

n−1

∫ (1/
√
h)γ(h,

√
hý)

0

ρi (|y|) dyndý.

Here Ai is given by (3.12). Expanding γ
(
h,

√
hý
)

in the Taylor series with respect to
the spatial variables (keeping h as a parameter) we get

1√
h
γ
(
h,

√
hý
)

=
√
h
γ (h, 0)

h
+

√
h

2

n−1∑
i,j=1

γyiyj (h, 0) yiyj

+
h

6

n−1∑
i,j,l=1

γyiyjyl (h, 0) yiyjyl +O
(
h3/2ý4

)
.

Observing that γ (h, 0) = O
(√
h
)
, we denote γ(h,0)

h = v. The expression for Mi be-
comes

Mi = Ai +

∫
R

n−1

ρi (ý, 0)

⎡⎣√hv +

√
h

2

n−1∑
i,j=1

γyiyj (h, 0) yiyj +O
(
h3/2ý4

)⎤⎦ dyndý
= Ai +

√
hvCi +

√
hΔγ (h, 0)Bi +O

(
h3/2

)
,(3.19)

where we have used the fact that ρi (x́, xn) is smooth and radially symmetric, in
particular,

∂ρi
∂xn

(x́, 0) = 0.

The constants Bi, Ci depend only on ρi and are given by (3.13) and (3.14).
Remark 1. At this point it is easy to see that a scheme with a thresholding

depending only on one variable can be consistent with the PDE (1.2) only in the case
of linear G. The thresholding condition becomes

F
(
A+

√
hvC +

√
hΔγ (h, 0)B +O

(
h3/2

))
= 0.

As was required by the inclusion principle, the function F is nondecreasing. This
implies

A+
√
hvC +

√
hΔγ (h, 0)B +O

(
h3/2

)
= a,

where a is the unique solution of F (a) = 0. Thus

v =
γ (h, 0)

h
= −B

C
Δγ (h, 0) − a−A√

hC
+ o

(√
h
)
.

Comparing this relationship with the one in Lemma 3.4, we see that the only G’s we
can resolve by thresholding depending on one variable are the linear ones: G (k) =
const · k + const.
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Let us denote here k = Δγ (h, 0).
Now we can express v and k in terms of Mi and constants Ai, Bi, and Ci :

v =
1√
h

N1B2 −N2B1

C1B2 − C2B1
+O (h) ,

k =
1√
h

N2C1 −N1C2

C1B2 − C2B1
+O (h) .

Since F (M1,M2) = v −G (−k) = 0, we have

γ (h, 0) = hG (−Δγ (h, 0)) + o (h) .

Remark 2. As was already mentioned above, convolution kernels ρ̃i can also
be taken with unbounded support. For example, the exponential decay for large
arguments is sufficient in order for Theorem 3.7 to hold.

The requirement (3.18) is quite restrictive. Our next result shows that it is
enough to take Gε satisfying (3.18) and uniformly close to G in order to approximate
the solutions of (1.3).

Proposition 3.8. Suppose Gε, G are continuous and Gε → G uniformly on R

as ε→ 0. Then F (G) = F (Gε).
Proof. Suppose f ∈ F (G). It means that f (0) = f ′ (0) = f ′′ (0), f (r) > 0 for

r > 0, and

lim
p→0

f ′ (p)G
(

1

p

)
= lim
p→0

f ′ (p)G
(−1

p

)
= 0.

Since Gε → G uniformly, G (k) = Gε (k) + oε (1)α (k), where α ∈ B (R). We write

0 = lim
p�→0

f ′ (p)G
(

1

p

)
= lim
p→0

f ′ (p)
(
Gε

(
1

p

)
+ oε (1)α

(
1

p

))
= lim
p→0

f ′ (p)Gε

(
1

p

)
to see that f ∈ F (Gε).

The proof of the reverse inclusion is analogous.
Lemma 3.9. Suppose Gε, G are nondecreasing continuous and Gε → G uniformly

on R as ε→ 0. Suppose also that for each ε > 0 the operator Hε is monotone, stable,
commuting with additions of constants, and consistent with

∂uε
∂t

= |Duε|Gε
(

div
Duε
|Duε|

)
.(3.20)

Additionally, let the following limit hold:

lim
h→

Hh (h) (f (|x− x0|)) (x0)

h
= 0(3.21)

for each f ∈ F (G). Then

Hm
t/m (t/m)u0 (x) → u (x, t)

locally uniformly as m→ ∞, where u (x, t) is the unique viscosity solution of (1.3).
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Proof. We show here that the operator Hh (h) satisfies the conditions of Theorem
3.2. This operator commutes with additions of constants and satisfies limit (3.21) by
the assumption. Since the operator Hε is stable for all ε > 0, it is particularly stable
for ε = h for each h > 0.

Since the operator Hε is monotonic for all ε > 0, it is particularly monotonic for
ε = h for each h > 0.

We have to show consistency; i.e., for each φ ∈ C∞ (Rn) at each point where
|Dφ| 	= 0,

Hh (h)φ (x) − φ (x) = h |Dφ (x)|G
(

div
Dφ (x)

|Dφ (x)|
)

+ o (h)(3.22)

has to hold. Since the operator Hε is consistent with (3.20) and Gh (k) = G (k) +
oh (1)α (k) for some α ∈ B (R) , we write

Hh (h)φ (x) − φ (x) = h |Dφ (x)|Gh
(

div
Dφ (x)

|Dφ (x)|
)

+ o (h)

= h |Dφ (x)|
(
G

(
div

Dφ (x)

|Dφ (x)|
)

+ oh (1)α

(
div

Dφ (x)

|Dφ (x)|
))

+ o (h)

= h |Dφ (x)|G
(

div
Dφ (x)

|Dφ (x)|
)

+ o (h) ;

here oh (1) → 0 as h→ 0.

Theorem 3.10. Consider a convolution-thresholding scheme

Hε (h)u (x) = inf {λ ∈ R : x ∈ Hε (h) [u ≤ λ]} ,
Hε (h)C = {x ∈ R

n : Fε (M1 (C) (x, h) ,M2 (C) (x, h)) ≥ 0} ,

where the thresholding function Fε (M1,M2) is chosen so that the scheme is monotone
and consistent with (3.20) and the convolution kernels have compact support. If Gε →
G uniformly, then

Hm
t/m (t/m)u0 (x) → u (x, t)

locally uniformly as m→ ∞, where u (x, t) is the unique viscosity solution of (1.3).

Proof. The convergence follows form Lemma 3.9 if we show that the limit (3.21)
holds. Let us set x0 = 0; then the set [f (|x|) ≤ λ] is a ball centered at the origin with
radius O

(
λ1/3

)
. We denote Hh (h) f (0) = λ1. Observe that λ1 can be characterized

as a number for which Hh (h) [f ≤ λ1] = {0}. Since we know that Fh (A1, A2) > 0,
the radius of [f ≤ λ1] must be less than or equal to the radius of the greatest support

of the kernel: O
(
λ

1/3
1

) ≤ R
√
h. From this inequality we deduce Hh (h) f (0) = λ1 ≤

O
(
h3/2

)
. This establishes the desired limit (3.21).

Let us now consider the particular interesting case with G (k) = k |k|α−1
with

α > 1. We set

Gm (k) =

⎧⎪⎪⎨⎪⎪⎩
(1 − α)mα + αmα−1k for k < −n,
m1−αk for |k| < 1/n,
− (1 − α)mα + αmα−1k for k > n,

k |k|α−1
elsewhere.
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Gm is continuous, increasing, and its derivative is bounded from below and above:
m1−α ≤ G

′
m ≤ αmα−1. Moreover, Gm → k |k|α−1

locally uniformly as m → ∞.
Using Theorem 2.4 it is easy to show the following.

Theorem 3.11. Let um be the viscosity solution of

∂um
∂t

= |Dum|Gm
(

div
Dum
|Dum|

)
in O,

where Gm is defined above. Then um → u locally uniformly as m → ∞, where u is
the viscosity solution of (1.2) in O, with G (k) = k |k|α−1

, α > 1.
Proof. First we establish the inclusion F (G) ⊂ F (Gm). Take f ∈ F (G). By the

definition of F (G), f ′ (x) = o (xα). This immediately gives

lim
p→0

f ′ (p)Gm (1/p) = lim
p→0

f ′ (p) /p = 0,

since α > 1. We observe also that the remaining conditions of Theorem 2.4 are
satisfied. Hence a subsolution and a supersolution u+ and u+ can be constructed by
means of (2.2) and (2.3). Since the equation has the strong comparison property (see
[12]), u+ = u+ and the result follows.

Remark 3. In a more general case when G (k) = O (kα), α > 1, one can pick a
sequence of increasing functions with derivative bounded below and above and apply
Theorem 2.4 to get a result similar to Theorem 3.11.

4. Numerical implementation. This section is devoted to a description of
our numerical implementations of the convolution-thresholding scheme developed in
section 3.

Given a compact set C ⊂ R
n, we fix convolution kernels ρ1, ρ2 and the time step

h and approximate Ct at a time moment t = mh by (H (h))
m
C. The algorithm of

computations consists of the following steps:
1. Compute convolutions and the thresholding function

MiC (x, h) =

∫
R

n

χC (y) ρi (x− y) dy, i = 1, 2,(4.1)

F (x, h) = F (M1C (x, h) ,M2C (x, h)) .(4.2)

2. Find the evolved set H (h)C = {x ∈ R
n : F (x, h) ≥ 0}.

3. Repeat the procedure with the evolved set to get H2(h)C and so on.
We used two different algorithms for the calculation of the convolution step, which

constitutes the main computational part of the algorithm.

4.1. Spatial discretization. We assume that initially the surface is closed and
contained in a unit cube. The surface under consideration is always an isosurface of
some function. In our implementation we use a modification of the so-called marching
cubes algorithm for extracting an isosurface. The algorithm was originally proposed
in [24] and was first applied for the mean curvature flow calculations in [30]. The
algorithm creates an adaptive spatial discretization of C (see Figure 4.1).

By our implementation, we significantly reduce the number of grid points. In
addition, the accurate piecewise polynomial approximation of the ∂C can be arranged.

4.2. Spectral method. One can use a Fourier series to calculate the convo-
lutions (4.1). Numerical aspects of this approach have been presented by Ruuth in
[30].
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Fig. 4.1. On the spatial discretization.

In order to compute Fourier coefficients of χC given on a nonuniform grid, the
unequally spaced approximate fast Fourier transform algorithm [6] is used. The nu-
merical cost of this transform algorithm combined with the marching cubes procedure
is (see [30]) O

(
mnNp +Nn

f log (Nf )
)
, where m is a constant depending on a desired

accuracy in the calculation of the Fourier coefficients (in case m = 23, the accuracy is
comparable with the machine truncation error), Nf is a number of the Fourier modes
along each axis, and Np is the number of nodes in the grid.

4.3. Direct method. If ρ1 and ρ2 are simple enough and have compact support,
their convolutions with χC can be calculated explicitly. Let us choose

ρ̃1 (x) =

{ 1
|B1| if x < 1,

0 otherwise,

ρ̃2 (x) =
1

αn
ρ̃1

(x
α

)
,

where |B1| is the Lebesgue measure of a unit ball in R
n and α ∈ R+, α < 1. In this

case, convolution values (4.1) are proportional to the measure of the intersection of
C with a ball of radius proportional to

√
h centered at the point x.

We present expressions for the thresholding function F (M1,M2) in the case n = 2:

F (M1,M2) = v −G (k) , where

v =
πα (2αM1 − 2M2 − α+ 1)

4
√
h (α2 − 1)

,

k =
−3π (2M1 − 2αM2 + α− 1)

2
√
h (α2 − 1)

.

In this case convolutions M1 and M2 can be calculated as follows. We represent
C as a disjoint union of squares and triangles (or cubes in tetrahedron in case n = 3)
using the marching cubes method and calculate the area (volume) of intersection of
the ball (supp ρ) with each square and triangle. The numerical cost of each step of
the evolution can be estimated by O (Np ∗Ni +Np), where Ni is the number of points

inside the ball of radius
√
h with the center at some grid point. When h is large, the

accuracy of the method is low; therefore one can take less grid points. Thus, Ni is
entirely determined by the desired accuracy.

4.4. Computed examples. In the case of the mean curvature curve evolution in
R

2, the accuracy of calculations can be monitored with the help of the Von Neumann–
Mullins parabolic law. It asserts that dS/dt = −2π, where S is the area enclosed by
the curve.
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Fig. 4.2. The mean curvature evolution of a nonsmooth, nonconvex curve.
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Fig. 4.3. Local area error dependence on time. The first order method with time step 1/600—
the line with triangle markers; the first order method with time step 1/6000—the thin line; the
second order method with time step 1/6000—the line with square markers.

Consider a nonconvex, nonsmooth initial curve, depicted in Figure 4.2. The mean
curvature evolution of this curve was calculated using the direct method with time
step values dt = 1/600 and 1/6000. The shape of the curve is plotted in Figure 4.2 for
times t = 1/600, 2/600, . . . when calculated with the fine time step. The comparison
between local relative errors

ei =
|Si − Si+1 − 2πdt|

2πdt
(4.3)

for calculations with different time steps is seen in Figure 4.3. One can observe that
the error indeed depends linearly on the time step.



2668 RICHARDS GRZHIBOVSKIS AND ALEXEI HEINTZ

Fig. 4.4. The evolution v = k1/3 of an ellipse.

Fig. 4.5. Computed mean curvature evolution.

The evolution with the velocity v = k1/3 is depicted in Figure 4.4. In this case
the flow is affine invariant [1]; hence the eccentricity e of the evolving ellipse remains
constant. In this particular example, the curvature is bounded from above and below
by some positive constants for some evolution time. This means that we never use
the parts of G(k) = k1/3, where its derivative is too large or too small. This allows
us to apply the thresholding procedure without any approximation of G.

In Figures 4.5 and 4.6 computed three-dimensional evolution of a nonconvex sur-
face is represented for curvature flow and for a flow with velocity v = G(k), as in
Figure 4.7 with ∼ 200000 triangles approximating the surface.

4.5. On the higher order schemes for the mean curvature motion. Let
us now look at approximations to the mean curvature evolution. It is easy to see
that if the surface is smooth, the Bence–Merriman–Osher method gives the first order
approximation in time for a curvature flow. A higher order scheme by an extrapolation
argument in time was proposed by Ruuth in [30]. We propose here higher order
approximations to the mean curvature evolution using some properties of functions
Mi.

We rewrite the equations (3.11) and keep an additional term of order h3/2 in each
equation with a kernel-dependent multiplier Ei to get the error term of order h5/2.
Considering two equations we get the relation

E2N1 − E1N2 =
√
h[(E2C1 − E1C2)v + (E2B1 − E1B2)γ

′′ (h, 0)] +O
(
h5/2

)
.(4.4)

This relationship motivates us to take the thresholding function F (N1, N2) = E2N1−
E1N2 to approximate the mean curvature evolution with the second order accuracy
for smooth curves. However, this thresholding function does not simultaneously sat-
isfy (3.16) and (3.17) and, therefore, the stability of the numerical scheme is not
guaranteed by the previous argument.

The calculations with the above thresholding function were performed. No sign
of instability was observed in the numerical experiments and, as one can see in Figure
4.3, the accuracy was increased by approximately one order. This increase agrees with
the construction (4.4).
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Fig. 4.6. Computed generalized mean curvature evolution.
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A SMOOTH TRANSITION MODEL BETWEEN KINETIC
AND DIFFUSION EQUATIONS∗
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Abstract. This paper presents a model which provides a smooth transition between a kinetic
and a diffusion domain. The idea is to use a buffer zone, in which both diffusion and kinetic
equations will be solved. The solution of the original kinetic equation will be recovered as the sum
of the solutions of these two equations. We use an artificial connecting function which makes the
equation on each domain degenerate at the end of the buffer zone. Thus no boundary condition
is needed at the transition point. This model avoids the delicate issue of finding the interface
condition or iteration in a typical domain decomposition method that couples a kinetic equation
with hydrodynamic equations. A new asymptotic-preserving method for this model is introduced,
and numerical examples are used to validate this new model and the new numerical method.
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preserving schemes
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1. Introduction. The collision transition rate in a kinetic transport process is
often position dependent and varies from order unity in certain parts of the domain
to an order of magnitude much smaller in other parts of the domain. For instance,
in radiative transfer, the transition from a transparent to an opaque medium involves
a change of collision rate by several orders of magnitude. Similarly, in stellar astro-
physics, the magnitude of the photon transition rate can change by decades from the
core of a star to its surface. When the collision rate is large, the diffusion equation is
valid and much more efficient to solve numerically. In the domain where the collision
rate is small, solving the more expensive kinetic transport equation in the phase space
is necessary. Although one can solve the transport equation in the entire domain, to
reduce the computational cost it is more advantageous to use a domain decomposition
method that couples the diffusion equation with the transport equation.

Domain decomposition methods matching kinetic with hydrodynamic or diffusion
models have received much attention in the past 15 years. Some methods have been
proposed in [3], [7], [14], [15], [18], [19], [25], [26], [27], [28], [29], [33], [34], [37].
Typically a domain decomposition is done by an iteration procedure at each time step
in which the diffusion and transport equations are solved alternately until convergence
of the successive approximation is reached, or through an interface condition which
provides the boundary conditions for each subdomain [18].

Other strategies include hybrid strategies, in which two equations are solved si-
multaneously, such as a fluid equation for the equilibrium part of the distribution
function and a kinetic equation for perturbation to the equilibrium part. Recently,
hybrid methods have been derived by a domain decomposition method in velocity
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space [11], [12], [13]. These methods bear similarities with the δf method developed
by plasma physicists [8].

In this paper we present a new approach to the domain decomposition method
using a buffer zone, in which both diffusion and kinetic equations will be solved.
The solution of the original transport equation will be recovered as the sum of the
solutions of these two equations. In this way, our strategy departs from strategies
based on domain decomposition with overlap, in which each of the models represents
the full solution. Unlike a typical domain decomposition, where an interface condition
has to be worked out in order to provide the boundary condition for each decomposed
domain [18], we use an artificial connecting function which makes the equation on
each domain degenerate at the end of the buffer zone; thus no boundary condition
is needed at the transition point. Thus the delicate issue of finding the interface
condition is completely avoided, and this method will not require any iteration at any
given time step to match the solution of the two subdomains.

The paper is organized as follows. In the next section, we introduce the cou-
pling technique and carry out some elementary analysis on its properties. A new
asymptotic-preserving numerical scheme for this coupling model is derived in section
3. In section 5, we present numerical experiments to validate this new model and the
numerical method introduced and state our conclusions.

2. The coupling methodology.

2.1. The transport equation and its diffusion limit. We present the method
on a simple kinetic equation, the one-group transport equation in slab geometry [10].
Let f(x, μ, t) represent the particle phase-space density, where x ∈ R is the (one-
dimensional) position variable, μ ∈ [−1, 1] is the cosine of the angle between the
velocity and the x-axis, and t is the time. In this model, the magnitude of the particle
velocities are equal and normalized to 1. Then, the transport equation is

∂tf + μ∂xf = Q(f) ,(2.1)

Q(f) =

∫ 1

−1

S(x, μ, μ′)(f(x, μ′, t) − f(x, μ, t)) dμ′ .(2.2)

The left-hand side of (2.1) describes the motion of the particles along the x-axis
with velocity μ while the operator Q takes into account the particle interactions with
the medium. S(x, μ, μ′) is the collision transition rate from μ to μ′ at point x. In
the formulation (2.2), we implicitly assumed that these interactions preserve particle
number, i.e., ∫ 1

−1

Q(f) dμ = 0 .(2.3)

This will be sufficient for our purpose. In practical cases, like neutron transport
or radiative transfer, it is necessary to include nonconservative cases (like neutron
multiplication or photon absorption/emission), but these effects are not essential and
can be easily incorporated into our formulation if needed. Equation (2.1) must be
supplemented with an initial condition f0(x, μ) and suitable boundary conditions. A
particular case is when S does not depend on μ and μ′: S(x, μ, μ′) = σ(x)/2, where
σ is the collision frequency. Then

Q(f) = σ(x)

[
1

2

∫ 1

−1

f(x, μ′, t) dμ′ − f(x, μ, t)

]
(2.4)
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is (up to a multiplicative factor) a projection operator onto the functions independent
of μ.

When the particle interactions with the medium are very frequent, i.e., when Q is
“large,” the numerical resolution of (2.1) becomes extremely time consuming, and it is
worth using the asymptotic model obtained when Q “tends to infinity.” We introduce
a new set of “macroscopic variables” x′ and t′ according to

x′ = εx , t′ = ε2t ,

where ε denotes the ratio of the microscopic to the macroscopic scale. Typically, ε is
the ratio of the particle mean-free path (related to a typical value of S) to the size of
the problem under consideration and is called the Knudsen number. After using this
change of variables and dropping the primes for simplicity, one gets

ε2∂tf
ε + εμ∂xf

ε = Q(fε).(2.5)

In the limit ε → 0, fε converges towards the solution of a diffusion equation. More
precisely, we have the following (see, e.g., [5], [6]).

Lemma 2.1. fε → n(x, t), where n is a solution of

∂tn− ∂x(D(x)∂xn) = 0 ,(2.6)

with initial condition n|t=0 = 1
2

∫
f0(x, μ) dμ. The diffusion constant D is related to

Q by

D(x) = −1

2

∫ 1

−1

Q−1(μ)μdμ > 0 .(2.7)

We shall not be more precise on the functional spaces and instead refer readers to
[5], [17] for details. The definition of Q−1 needs a few words of explanation. We first
note that Q only operates with respect to the variable μ, while x is just a parameter.
As an operator acting on functions of μ, Q has the following properties (see, e.g., [5]).

Lemma 2.2. Suppose that 0 < C0 ≤ S ≤ C1 < ∞. Then Q is a bounded
self-adjoint nonpositive operator on L2(−1, 1). Furthermore

(i) Ker Q consists of constant functions with respect to μ.
(ii) Im Q = (Ker Q)⊥ = {g s.t.

∫
g dμ = 0}.

(iii) Q is invertible from (Ker Q)⊥ to (Ker Q)⊥. Its (pseudo-)inverse is denoted
by Q−1.

It is worth summarizing the main steps of the proof.
Proof of Lemma 2.1. We use the Hilbert expansion

fε = f (0) + εf (1) + ε2f (2) +O(ε3) .(2.8)

We insert this expansion into (2.5) and identify terms of equal powers of ε. This leads
to the sequence of equations

Q(f (0)) = 0 ,(2.9)

Q(f (1)) = μ∂xf
(0) ,(2.10)

Q(f (2) = μ∂xf
(1) + ∂tf

(0) .(2.11)

With (2.9) and Lemma 2.2(i), we deduce that f (0) does not depend on μ. We
denote n(x, t) = f (0)(x, μ, t).
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Equation (2.10) simplifies into

Q(f (1)) = μ∂xn .(2.12)

Its right-hand side is an odd function of μ and therefore, integrated against any
constant function, yields 0. Therefore, it belongs to (KerQ)⊥. By Lemma 2.2(iii), we
can invert (2.12) in (KerQ)⊥ and get

f (1) = Q−1(μ)∂xn .(2.13)

For the most general solution of (2.12), we should add an element of (KerQ), i.e., a
function of (x, t) only. We fix this function to be zero to ensure that n is an O(ε2)
approximation to the true density nε = (1/2)

∫
fε dμ (since then

∫
f (1) dμ = 0).

Equation (2.11) is solvable for f (2) if and only if its right-hand side is orthogonal
to the functions independent of μ. Therefore, the solvability condition of (2.11) reads

∂tn+ ∂xj = 0(2.14)

with

j =
1

2

∫ 1

−1

f (1)μdμ .(2.15)

Inserting (2.13) into (2.15), we get that j = −D∂xn with D given by (2.7). Fi-
nally, with (2.14), we get (2.6). The fact that D is positive comes from the positive
definiteness of −Q on (KerQ)⊥.

Note that in the case (2.4), D = 1/(3σ).
The proof of Lemma 2.1 relies on the fact that S (or σ) is everywhere of order

unity (with respect to ε). However, S is position dependent and there are numerous
situations in which it is of order unity in certain parts of the domain, while it is much
smaller (of order ε or ε2) in other parts of the domain. The diffusion equation is
only valid when S is of order unity. If S is smaller, solving the transport equation is
necessary. Therefore, one needs to couple the diffusion equation in the regions where
S is of order unity to the transport equation in the regions where it is smaller.

2.2. The coupling method. This problem has been addressed by many authors
with many methods (see the references in the introduction). Our approach is novel
and consists of introducing a buffer zone in which both diffusion and kinetic equations
will be solved. The solution of the initial transport equation will be recovered as the
sum of the solutions of these two equations. In this way, our strategy departs from
strategies based on domain decomposition with overlap, in which each of the models
represents the full solution. The buffer interval is denoted by [a, b]. We introduce a
smooth function h(x) such that⎧⎨⎩

h(x) = 1 for x ≤ a ,
h(x) = 0 for x ≥ b ,
h(x) ∈ (0, 1) for a ≤ x ≤ b .

We consider the following coupled system for two distribution functions fL and fR:

ε2∂tf
ε
L + εhμ∂xf

ε
L + εhμ∂xf

ε
R = h(Q(fεL) +Q(fεR)) ,(2.16)

ε2∂tf
ε
R + ε(1 − h)μ∂xf

ε
L + ε(1 − h)μ∂xf

ε
R = (1 − h)(Q(fεL) +Q(fεR))(2.17)
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with initial data

fεL|t=0 = hf0, fεR|t=0 = (1 − h)f0 .(2.18)

We first note the following.
Lemma 2.3. If fεL and fεR are the solution of problem (2.16), (2.17) with initial

data (2.18), then f = fεL + fεR is the solution of problem (2.5) with initial condition
f0.

Proof. For the proof, simply add up (2.16) and (2.17).
We note that, in reality, (2.16) is posed on the interval (−∞, b) and (2.17) on

(a,+∞) since h vanishes for x > b and 1 − h for x < a. Additionally, since h (resp.,
1 − h) multiplies the space derivative operator in (2.16) (resp., (2.17)), no boundary
condition is required for fεL at x = b (resp., for fεR at x = a).

Now, we assume that S is of order ε2 in the interval (−∞, a), while it is of
order 1 in (a,+∞). Therefore, we shall only be allowed to perform the diffusion
approximation on fεR, while fεL will have to stay untouched. For this purpose, we
rewrite (2.17) according to

ε2∂tf
ε
R + ε(1 − h)μ∂xf

ε
R − (1 − h)Q(fεR)

= −ε(1 − h)μ∂xf
ε
L + (1 − h)Q(fεL) ,(2.19)

and we consider the terms on the right-hand side to be of order ε2. The following
proposition states the diffusion approximation ε→ 0 of this equation.

Proposition 2.4. Consider (2.19), where the right-hand side is treated as an
O(ε2) term. Then as ε → 0, fεR ∼ nεR where nεR = nεR(x, t) is a solution of the
following diffusion equation:

∂tn
ε
R − (1 − h)∂x[D(x)∂xn

ε
R] + (1 − h)∂xj

ε
L = 0,(2.20)

where D is given by (2.7) and

jεL =
1

2ε

∫ 1

−1

fεLμdμ .(2.21)

Since ε tends to 0 only in some terms and not in others, we cannot speak of
convergence but rather of asymptotic equivalence; hence the use of the symbol ∼.
Again, (2.20) is a diffusion equation on the interval [a,+∞). However, since 1 − h
vanishes at x = a, the diffusion operator is degenerate at this point and no boundary
condition is required.

Proof. We again write the Hilbert expansion fεR = f
(0)
R + εf

(1)
R + ε2f

(2)
R +O(ε3).

The computations of f
(0)
R = nR and of f

(1)
R are the same as in Lemma 2.1. Indeed,

the right-hand side of (2.19) being of order ε2 does not contribute anything to (2.9)
and (2.10). The only change is in (2.11), which becomes

(1 − h)Q(f
(2)
R ) = (1 − h)μ∂xf

(1)
R + ∂tf

(0)
R

+
1

ε
(1 − h)μ∂xf

ε
L − 1

ε2
(1 − h)Q(fεL) .(2.22)

We note that the sum of the last two terms is of order 1 by our hypothesis, despite
their apparent dependence on ε. Integrating (2.22) with respect to μ in order to
express the solvability condition for f2

R, we obtain

∂tn
ε
R + (1 − h)∂xj

ε
R = −(1 − h)∂x

(
1

2ε

∫ 1

−1

fεLμdμ

)
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because the contribution of Q(fεL) vanishes after integration with respect to μ by
(2.3). This leads to (2.20) and concludes the proof.

The coupled kinetic-diffusion model is now written as follows:

ε2∂tf
ε
L + εhμ∂xf

ε
L + εhμ∂xf

ε
R = h(Q(fεL) +Q(fεR)) , −∞ < x ≤ b,(2.23)

∂tn
ε
R − (1 − h)∂x(D(x)∂xn

ε
R) + (1 − h)∂xj

ε
L = 0 , a ≤ x <∞,(2.24)

fεR = nεR + εQ−1(μ)∂xn
ε
R ,(2.25)

jεL =
1

2ε

∫ 1

−1

fεLμdμ ,(2.26)

with initial data

fεL|t=0 = hf0 , fεR|t=0 = (1 − h)f0 , nεR|t=0 =
1

2
(1 − h)

∫ 1

−1

f0 dμ .(2.27)

So far we use ε to perform the asymptotic analysis more conveniently. In numeri-
cal implementation, one should drop ε in the coupling model (2.23)–(2.26) by setting
ε = 1. The domain is diffusive if Q ≈ O(1/ε).

2.3. Properties of the coupling. The reconstruction of the distribution func-
tion fεR from the solution of the diffusion equation nεR retains both the zeroth and
first order terms of the Hilbert expansion. This is necessary in order to recover the
diffusion equation on the entire real line when both regions are diffusive (see below).
Equations (2.23) and (2.25) can be combined into

ε2∂tf
ε
L + εhμ∂xf

ε
L − hQ(fεL) = ε2hμ∂x(Q

−1(μ)∂xn
ε
R) ,(2.28)

showing that the nεR enters the equation for fεL in an order O(ε2) term. In the case
where S = σ(x)/2 does not depend on μ, this equation becomes

ε2∂tf
ε
L + εhμ∂xf

ε
L − hQ(fεL) = ε2hμ2∂x(σ

−1∂xn
ε
R) .(2.29)

We now prove that if both regions are diffusive, we recover the global diffusion
equation (2.6) for n = nL + nR.

Proposition 2.5. As ε → 0, the solution fεL, nεR of system (2.23)–(2.27) con-
verges to the pair nL, nR, the solution of the diffusion system

∂tnL − h[∂x(D(x)∂xnL) + ∂x(D(x)∂xnR)] = 0 ,(2.30)

∂tnR − (1 − h)[∂x(D(x)∂xnR) + ∂x(D(x)∂xnL)] = 0 ,(2.31)

with initial data

nL|t=0 = hn0 , nR|t=0 = (1 − h)n0 , n0 =
1

2

∫ 1

−1

f0 dμ .(2.32)

In particular, n = nL + nR is the solution of the diffusion equation (2.6) with initial
condition n0.

Proof. The proof is similar to that of Proposition 2.4. The term involving nεR
in the transport equation for fεL is of order O(ε2). Therefore, it does not induce any
change in the expression of the first two equations of the Hilbert expansion (2.9)–
(2.10). Equation (2.11) is modified into

hQ(f
(2)
L ) = hμ∂xf

(1)
L + ∂tf

(0)
L + hμ∂x(Q

−1(μ)∂xnR) .(2.33)
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Integrating it with respect to μ in order to express the solvability condition for f
(2)
L ,

we obtain

∂tn
ε
L + h∂xj

ε
L = −h∂x

((
1

2

∫
Q−1(μ)μdμ

)
∂xnR

)
,

thus leading to (2.30). We use the expression of jL from (2.15), (2.13), giving jL =
−D∂xnL. Inserting this expression into (2.24) yields (2.31), which concludes the
proof.

Therefore, our coupled kinetic-diffusion model is consistent with the diffusion
equation on the entire real line when the kinetic region (−∞, a) is also in the diffusive
regime.

An important issue is positivity. Indeed, a distribution function being a density
in phase space is a positive quantity. Therefore, we should ensure that fεL + fεR,
which is our approximation of f , remains positive, or at least close to positive. Since
the signs of the coupling terms in (2.23)–(2.24) are not determined, both fεL and nεR
could become negative. In fact, outside the buffer zone, i.e., in the intervals (−∞, a]
or (b,+∞], the coupling terms vanish identically, and we solve either a standard
transport equation or a standard diffusion equation. Therefore, loss of positivity can
originate only from the buffer zone [a, b]. This region is a diffusive region for both
fεL and fεR since the conditions which ensure that the diffusion approximation is valid
for fεR (i.e., Q = O(1)) also make the diffusion approximation valid for fεL. In this
case, both fεL and fεR are close (at order ε) to the solutions nR and nL of the diffusion
equations (2.30), (2.31). But since nR + nL solves the classical diffusion equation, it
remains positive. Therefore, in the buffer zone, fεL + fεR are close, up to order 0(ε)
terms, to a positive function.

Consequently, if losses of positivity occur in the buffer zone, they will remain
small, i.e., of order ε. If they are ultimately propagated outside the buffer zone, they
will remain small and of this order everywhere. Therefore, although we cannot prove
that our method preserves positivity, we have solid indications that negative values,
if they occur, will remain small. Our numerical simulations did not exhibit any loss
of positivity so far (see next section).

Remark 2.1. There is an alternate coupling strategy to (2.23)–(2.27). It consists
of the following system:

ε2∂tf
ε
L + εhμ∂xf

ε
L + εhμ∂xn

ε
R = Q(fεL) ,(2.34)

∂tn
ε
R − ∂x((1 − h)D(x)∂xn

ε
R) − ∂x((1 − h)D(x)∂xn

ε
L) + (1 − h)∂xj

ε
L = 0 ,(2.35)

nεL =
1

2

∫ 1

−1

fεL dμ , jεL =
1

2ε

∫ 1

−1

fεLμdμ .(2.36)

This model is more heuristic since it is not obtained from a diffusion approximation of
the coupled kinetic equations (2.16), (2.17). However, it shares with (2.23)–(2.27) the
property of relaxing towards the solution of the diffusion equation on the whole real
line when both regions are diffusive (we leave the details of the proof to the reader).

Remark 2.2. A rigorous convergence analysis of this coupling strategy is outside
the scope of the present paper, which focuses more on the practical feasibility of the
method. The convergence analysis, as well as a rigorous study of the loss of positivity,
will be investigated in future work.

3. Numerical method. In this section we introduce a new (spatially discrete)
numerical method for the coupling problem. In fact, this numerical scheme can be
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used for a discretization of the transport equation, with different order of magnitude
in ε, in the spirit of the asymptotic-preserving method [9], [17], [20], [21], [22], [23],
[24], [26], [30], [31], [32] that works uniformly with respect to the mean-free path.
However, this new asymptotic-preserving spatial discretization method has not been
reported in the literature.

This goal of this scheme to is verify the validity of the coupling method numer-
ically. It remains a future research topic to find the best numerical scheme for the
coupling problem.

3.1. Parity formulation. We explain the new scheme using the transport equa-
tion with isotropic scattering (2.4). It is based on the parity form of the transport
equation. This is a standard form used to construct the asymptotic-preserving scheme
[1], [24], [36]. For anisotropic scattering, if S(x, μ, μ′) is even in both μ and μ′, one
can also use the parity form. For isotropic scattering (2.4), the coupling problem
(2.23)–(2.26) becomes

ε2∂tfL + εhμ∂xfL + εhμ∂xfR

= hσ

[
1

2

∫ 1

−1

(fL(μ′) + fR(μ′))dμ′ − fL(μ) − fR(μ)

]
,(3.1)

∂tnR − 1

3
(1 − h)∂x(σ(x)−1∂xnR) + (1 − h)∂xjL = 0 ,(3.2)

fR = nR − ε
μ

σ
∂xnR ,(3.3)

jεL =
1

ε

∫ 1

0

fLμdμ .(3.4)

Applying (3.3) in (3.1) one gets

ε2∂tfL + εhμ∂xfL − ε2hμ2∂x(σ
−1∂xnR) = hσ

[
1

2

∫ 1

−1

fL(μ′)dμ′ − fL(μ)

]
,(3.5)

∂tnR − 1

3
(1 − h)∂x(σ(x)−1∂xnR) + (1 − h)∂xjL = 0 ,(3.6)

jL =
1

ε

∫ 1

0

fLμdμ .(3.7)

Define the even and odd parities, for μ > 0, as

fE(t, x, μ) =
1

2
[f(t, x, μ) + f(t, x,−μ)],(3.8)

fO(t, x, μ) =
1

2ε
[f(t, x, μ) − f(t, x,−μ)].(3.9)

Then

n(t, x) =
1

2

∫ 1

−1

f(t, x, μ) dμ =

∫ 1

0

fE(t, x, μ) dμ ,(3.10)

j(t, x) =
1

2ε

∫ 1

−1

f(t, x, μ)μdμ =

∫ 1

0

fO(t, x, μ)μdμ .(3.11)

With the parities, from now on we only consider μ > 0. First, we split (3.1) and
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(3.2), i.e., one for μ and one for −μ (from now on we omit the superscript):

ε2∂tfL(μ) + εhμ∂xfL(μ) − ε2hμ2∂x(σ
−1∂xnR)

= hσ

[
1

2

∫ 1

−1

fL(μ′)dμ′ − fL(μ)

]
for x < b ,(3.12)

ε2∂tfL(μ) + εhμ∂xfL(−μ) − ε2hμ2∂x(σ
−1∂xnR)

= hσ

[
1

2

∫ 1

−1

fL(μ′)dμ− fL(−μ)

]
for x < b ,(3.13)

∂tnR − 1

3
(1 − h)∂x(σ(x)−1∂xn

ε
R) + (1 − h)∂xj

ε
L = 0 for x > a ,(3.14)

jL =
1

ε

∫ 1

0

fOL μdμ .(3.15)

Adding and subtracting the two equations in (3.12) and (3.13) leads to

ε2∂tf
E
L + εhμ∂xf

O
L − ε2hμ2∂x(σ

−1∂xnR) = hσ

(∫ 1

0

fEL dμ− fEL

)
,(3.16)

ε2∂tf
O
L + εhμ∂xf

E
L = −hσfOL for x < b.(3.17)

Our system now consists of (3.16), (3.17), (3.14), and (3.15).

3.2. Asymptotic-preserving spatial discretization using staggered grids.
For spatial discretization, let xj be the mesh point for i = 0, 1, . . . , J . The even par-
ity will be defined on these mesh points, namely, fEi = fE(xi), nR,i = nR(xi). For
the odd parity we define them on a staggered mesh point xi+1/2 = (xi + xi+1)/2:
fOi+1/2 = fO(xi+1/2). This definition guarantees that, when ε → 0, one ends up at a
three-point rather than five-point scheme for the diffusion equation. This has better
resolution than the previous asymptotic-preserving schemes [23], [24], [26] for diffu-
sive transport equations that yield five-point stencils in this limit. However, we point
out that using staggered mesh is restricted to one space dimension. For a higher
dimension, the classical asymptotic-preserving schemes can still be applied, but this
is beyond scope of this paper.

Let σi = σ(xi), σi+1/2 = 1
2 (σi + σi+1), hi = h(xi), hi+1/2 = h(xi+1/2). The

spatially discrete scheme for the coupling problem (3.16), (3.17), (3.14), (3.15) is
given by center difference on a staggered grid:

ε2∂tf
E
L,i + εhiμ

fOL,i+1/2 − fOL,i−1/2

Δx

− εhiμ
2 1

(Δx)2

[
σ−1
i+1/2(nR,i+1 − nR,i) − σ−1

i−1/2(nR,i − nR,i−1)
]

= hiσi

[∫ 1

0

fEL,i dμ− fEL,i

]
,(3.18)

ε2∂tf
O
L,i+1/2 + εhi+1/2 μ

fEL,i+1 − fEL,i
Δx

= −hi+1/2σi+1/2f
O
L,i+1/2,(3.19)

∂tnR,i − (1 − hi)
1

(Δx)2

[
σ−1
i+1/2 (nR,i+1 − nR,i) − σ−1

i−1/2 (nR,i − nR,i−1)
]

+ (1 − hi)
jL,i+1/2 − jL,i−1/2

Δx
= 0 ,(3.20)
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jL,i+1/2 =
1

ε

∫ 1

0

fOL,i+1/2μdμ .(3.21)

This is a second order approximation. To verify that it is asymptotic preserving,
for ε	 1, the leading order approximation of (3.18) gives

fEL,i =

∫ 1

0

fEL.i dμ ≡ nL,i,(3.22)

while (3.19) gives

fOL,i+1/2 = −ε μ

σi+1/2

fEL,i+1 − fEL,i
Δx

.(3.23)

Applying (3.22) and (3.23) into (3.18) and integrating over μ, we get

∂tρ
E
L,i − hi

1

3(Δx)2

[
σ−1
i+1/2(nL,i+1 − nL,i) − σ−1

i−1/2(nL,i − nL,i−1)
]

−hi
1

3(Δx)2

[
σ−1
i+1/2(nR,i+1 − nR,i) − σ−1

i−1/2(nR,i − nR,i−1)
]

= 0 ,(3.24)

which is a three-point second order approximation to (2.20) with D = σ−1.
Since the space discretization is a centered-difference one, in order to ensure sta-

bility of the time discretization, one can use a so-called I-stable ODE solver. An
I-stable solver is a scheme for ODEs whose stability region contains part of the imag-
inary axis. The third and fourth order explicit Runge–Kutta methods, among other
schemes, are I-stable. An I-stable ODE solver is particularly well suited for convection
problems where the convection term is discretized using centered differences, since the
spectrum of a centered difference operator is purely imaginary and an I-stable scheme,
unlike the forward Euler method, will be stable with a suitable choice of the time step
[4], [16], [38]. We would like to remark that for steady state computations, the conver-
gence to the steady state for such an explicit solver is very slow, and some acceleration
techniques, such as the diffusion synthetic acceleration [2], can be used but will not
be explored in this paper.

For discretization in the velocity space, we use the standard discrete-ordinate
method with Gaussian quadrature over (0, 1) [35].

4. Numerical examples. In this section we present several numerical examples
on the coupling model (3.1)–(3.4) by the numerical schemes described in the previous
section. We solve the problem in domain [0, 1] with Dirichlet boundary condition

f(t, 0, μ) = fl(μ) , f(t, 1,−μ) = fr(−μ) , μ > 0 .

In these examples ε = 1, and the value of σ characterizes the nature of the regime
(transport or diffusive). We use 1001 points to solve the transport equation in the
entire domain as the “exact” solution and 25 points for the numerical approximations.
We use three choices of h that are piecewise linear: 1 for x ≤ a; 0 at x > b; and a line
connecting 1 at a and 0 at b with a = 0.2912, b = 0.7072; a = 0.416, b = 0.5824; and
a = b = 0.5, respectively. The last set gives a step function. The buffer zone is always
chosen to be symmetric and centered at x = 0.5. The “exact” solution is given by the
solid line, while the numerical results are given by o, x, and * for the three different
sets of a and b, respectively. We compare both transient and steady state solutions.



TRANSITION BETWEEN KINETIC AND DIFFUSION EQUATIONS 2681

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x

n

Fig. 1. The numerical solution of n for Example 1 at t = 1 (top) and at steady state (bottom)
of Example 1. The solid line is the solution of the transport equation in the entire domain computed
using 1001 points, while the other three symbols represent numerical solution of the coupling model
with 25 grid points and three different sizes of the buffer zone. Circles represent the solution for the
larger buffer zone, x’s for the intermediate one, and * for the smaller one (when it reduces to one
single point).

Remark 4.1. When h is a step function, one may wonder if the advantage of the
coupling model—avoiding the boundary condition at the buffer zone—is lost. Note
that we solve only fεL for x ≤ b, and nεR for x ≥ a, and set fεL = 0 for x > b and
nεR = 0 for x < a. This provides the numerical boundary condition for fεL and nεR at
the interface. Although there is no theoretical justification for this numerical bound-
ary condition, the numerical experiments in this section (where σ(x) is continuous)
suggests that h being a step function is still acceptable.

Example 1. We first test the case when both sides of the domain are diffusive in
the entire domain, namely, σ(x) � 1. We take σ(x) ≡ 100, fl(μ) = 3, fr(μ) = 0, and
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Fig. 2. The numerical solution of n at t = 0.5 (top) and at steady state (bottom) for Example
2. The solid line is the solution of the transport equation in the entire domain computed using 1001
points, while the other three symbols represent numerical solutions of the coupling model with 25
grid points and three different sizes of buffer zone. Circles represent the solution for the larger buffer
zone, x’s for the intermediate one, and * for the smaller one (when it reduces to one single point).

the initial condition

f(0, x, μ) = 3x2 .

The solution to the diffusion equation (2.20) withD = σ−1 should be a line connecting
3 to 0. The numerical results at t = 1 and at steady state are plotted in Figure 1.

One can see that the numerical results match the “exact” solution quite well,
while the choice of h seems to have little influence on the numerical solution.

Example 2. We take σ(x) = 2 for x < 0.45, σ(x) = 100 for x > 0.55. σ(x) is
a linear function interpolating 2 and 100 for 0.45 ≤ x ≤ 0.55. The boundary and
initial conditions are the same as in Example 1. Thus the domain [0, 0.45] is in the
kinetic regime, while the domain [0.55, 1] is diffusive. The results at t = 0.5 and
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Fig. 3. Example 2. Top: Comparison of different h: piecewise linear x, C∞, o. Bottom: The
corresponding numerical results for these h-functions versus the “exact” solution at t = 0.5.

at steady state for n = nL + nR are depicted in Figure 2 (top) for several different
choices of a and b. As one can see, for the steady state solution, the choice of h has
little influence on the numerical results, which match well with the “exact” solution.
For the transient solution, the first set of parameters for the buffer zone (which is
much larger than the domain for nonconstant σ) yields poor approximation in both
the buffer zone and the transport domain, while in the diffusion domain the accuracy
is as good as the other two buffer zones. This experiment indicates that the buffer
zone should be within the transition region of σ.

In order to compare the effect of regularity of h on the numerical solution, we
compare the piecewise linear h corresponding to a = 0.2912, b = 0.7072 (x in Figure
3, top) and h = 0.5(1− tanh(30(x− 0.5))) ∈ C∞ (o in Figure 3, top). The numerical
results at t = 0.5 are given in the bottom of Figure 3. The numerical results are
comparable.
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Fig. 4. Example 2. Top: Comparison of same C∞-function h with different mesh sizes. o: 25
grid points. x: 50 grid points. Bottom: The corresponding numerical results for these h-functions
versus the “exact” solution at t = 0.5.

For the same C∞-function h, we compare the effect of mesh refinement on the
numerical solution. In Figure 4 we compare the numerical results obtained by 25
and 50 points, respectively. The discrete h looks more regular in the finer mesh. The
numerical results look similar, indicating that the regularity of h plays an insignificant
role in the coupling algorithm.

Example 3. This problem is the same as Example 2 except for the boundary
condition at x = 0, where we take an anisotropic one fl(μ) = 3μ + 1 at x = 0. The
numerical results at the steady state for the three piecewise linear h corresponding to
the three different sizes of the buffer zone are given in Figure 5 and match quite well
with the “exact” solution.

5. Conclusion. In this paper, we have presented a model which allows us to
handle the transition between a kinetic and a diffusive region in a smooth way. In
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Fig. 5. The numerical steady state solutions n = nL + nR of Example 3. The solid line shows
the solution of the transport equation in the entire domain cumputed using 1001 points, while the
other three symbols represent numerical solution of the coupling model with 25 grid points and three
different sizes of the buffer zone. Circles represent the solution for the larger buffer zone, x’s for the
intermediate one, and * for the smaller one (when it reduces to one single point).

the transition region both models are solved and the solution of the original transport
equation is recovered by adding up the solutions of each model. The advantage of this
coupling is that no boundary condition nor any iteration process at the overlapping
zone is needed, as is the case for a typical domain decomposition method. The
numerical discretization in the kinetic region is based on the parity formulation of the
transport equation and the use of a new asymptotic-preserving scheme. Numerical
experiments show that the coupling model describes quantitatively the behavior of
the original transport equation, for both transient and steady state solutions, if the
buffer zone is chosen inside the transition zone.

Further development of this work will include more robust time and space dis-
cretizations, multidimensional problems, and extensions to more complex kinetic
models such as drift-diffusion or energy-transport models in semiconductors or the
Boltzmann–BGK (Bhatnagar–Gross–Krook) model of rarefied gas dynamics.
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A LOW-ORDER NONCONFORMING FINITE ELEMENT
FOR REISSNER–MINDLIN PLATES∗
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Abstract. We propose a locking-free element for plate bending problems, based on the use of
nonconforming piecewise linear functions for both rotations and deflections. We prove optimal error
estimates with respect to both the meshsize and the analytical solution regularity.
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1. Introduction. Nowadays, a wide choice of reliable finite element schemes for
the approximation of Reissner–Mindlin plate problems is available in the engineering
and mathematical literature (see, for instance, [7], [8], [9], [10], [11], [14], [17], [26],
[27], [28], [29], [30] and the references therein). However, the extension to the more
complex (and more interesting) shell problems appears to be a difficult task. Indeed,
only very few and not completely satisfactory results have been established in this
direction (cf., e.g., [3], [19], [20], [21], [22], and [24]).

In this paper we propose and analyze a new low-order Reissner–Mindlin plate
element, some properties of which seem to be favorable for its generalization to shell
problems. This triangular mixed element can be considered as a simplified variant of
the one presented in [18], and it is based on the use of nonconforming piecewise linear
functions for both rotations and deflections, while the shear stresses are approximated
by piecewise constant functions. In actual computations the shear stress variables can
be easily eliminated at the element level, and the final system to be solved involves
only rotation and deflection unknowns, which share the same nodes (the midpoints
of the edges). Compared with the element detailed in [18], the one we are going to
study has the following features:

• no additional bubble functions are required;
• no additional sophisticated “reduction” operator on the shear term (other

than the simple L2-projection operator on piecewise constant functions) needs
to be introduced.

In view of a possible extension to shell problems, the promising features of our
element are the same as the ones met by the scheme presented in [18], i.e.,

• it is a simple low-order method;
• once the shear stresses have been eliminated, all the variables into play share

the same nodes;
• the element has optimal order of approximation and is locking-free.

An outline of the paper is as follows. In section 2 we briefly present the Reissner–
Mindlin plate problem. In section 3 we introduce the nonconforming element, together
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with the necessary definitions and notation. In section 4 we develop the stability anal-
ysis, while in section 5 we perform the error analysis. The final results (cf. Theorem 5.1
and Corollary 5.1) show that our element is locking-free and is optimally convergent
with respect to both the meshsize and the analytical solution regularity.

Furthermore, throughout the paper we will use standard notation for Sobolev
spaces and norms (cf. [16] and [25], for instance). Finally, we will denote by C a generic
constant, independent of h and t, which may differ in different occurrences.

2. The Reissner–Mindlin problem. The Reissner–Mindlin equations for a
clamped plate with convex polygonal midplane Ω require us to find (θ, w,γ) such
that

−div C ε(θ) − γ = 0 in Ω,(2.1)

−div γ = g in Ω,(2.2)

γ = λt−2(∇w − θ) in Ω,(2.3)

θ = 0, w = 0 on ∂Ω.(2.4)

In (2.1)–(2.3), t is the plate thickness, λ is the shear modulus, and C is the tensor of
bending moduli, given by (for isotropic materials)

Cτ :=
E

12(1 − ν2)

(
(1 − ν)τ + νtr(τ)I

)
,(2.5)

where τ is a generic second-order symmetric tensor, tr(τ) its trace, I is the second-
order identity tensor, while E and ν are Young’s modulus and Poisson’s ratio, respec-
tively. Moreover, θ represents the rotations, w the transversal displacement, γ the
scaled shear stresses, and g a given transversal load. Finally, ε is the usual symmetric
gradient operator. The classical variational formulation of problem (2.1)–(2.4) is⎧⎪⎪⎪⎨⎪⎪⎪⎩

Find (θ, w,γ) ∈ Θ ×W × (L2(Ω))2 :

a(θ,η) + (∇v − η,γ) = (g, v), (η, v) ∈ Θ ×W,

(∇w − θ, τ ) − λ−1t2(γ, τ ) = 0, τ ∈ (L2(Ω))2,

(2.6)

where Θ = (H1
0 (Ω))2, W = H1

0 (Ω), (·, ·) is the inner-product in L2(Ω), and

a(θ,η) :=

∫
Ω

C ε(θ) : ε(η)dx.(2.7)

It is well known that for problem (2.6) the following inf-sup condition holds (cf. [16],
for instance):

∃β > 0 such that

sup
(η,v)∈Θ×W

(∇v − η, τ )

(||η||21,Ω + ||v||21,Ω)1/2
≥ β||τ ||Γ ∀τ ∈ Γ,

(2.8)
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where

Γ = H−1(div,Ω) and ||τ ||Γ := (||τ ||2−1,Ω + ||div τ ||2−1,Ω)1/2.(2.9)

Moreover, the following regularity result is valid (cf., e.g., [7] and [23]).
Proposition 2.1. Suppose that Ω is a convex polygon and g ∈ L2(Ω). Let

(θ, w,γ) be the solution of problem (2.6). Then the following estimate holds:

||θ||2,Ω + ||w||2,Ω + ||γ||H(div) + t||γ||1,Ω ≤ C||g||0,Ω,(2.10)

where

||γ||2H(div) = ||γ||20,Ω + ||div γ||20,Ω.

3. The new nonconforming element. We now introduce a nonconforming fi-
nite element approximation of problem (2.1)–(2.4) using the approach detailed in [18].
Then let Th be a decomposition of Ω into triangular elements T and let us set

H1(Th) :=
∏
T∈Th

H1(T ).(3.1)

We now define suitable jump and average operators. We first denote by Eh the set of
all the edges in Th, and by E in

h the set of internal edges. Let e be an internal edge of
Th, shared by two elements T+ and T−, and let ϕ denote a function in H1(Th), or a
vector in (H1(Th))2, or a tensor in (H1(Th))4s. We define the average as usual:

{ϕ} =
ϕ+ + ϕ−

2
∀e ∈ E in

h .(3.2)

For a scalar function ϕ ∈ H1(Th) we define its jump as

[ϕ] = ϕ+n+ + ϕ−n− ∀e ∈ E in
h ,(3.3)

while the jump of a vector ϕ ∈ (H1(Th))2 is given by

[ϕ] = (ϕ+ ⊗ n+)S + (ϕ− ⊗ n−)S ∀e ∈ E in
h ,(3.4)

where (ϕ ⊗ n)S denotes the symmetric part of the tensor product, and n+ (resp.,
n−) is the outward unit normal to ∂T+ (resp., to ∂T−). On the boundary edges
we define jumps of scalars as [ϕ] = ϕn, and jumps of vectors as [ϕ] = (ϕ ⊗ n)S ,
where n is the outward unit normal to ∂Ω. We also define averages of vectors and
tensors as {ϕ} = ϕ. It can be easily checked that, if ϕ is a smooth tensor and η a
piecewise smooth vector, the following equality holds (see, e.g., [4] and [5] for a similar
computation): ∑

T∈Th

∫
∂T

ϕn · η ds =
∑
e∈Eh

∫
e

{ϕ} : [η] ds.(3.5)

In order to introduce our scheme, we first consider the finite element spaces:

Θh =

{
η : η|T ∈ (P1(T ))2,

∫
e

[η]ds = 0 ∀e ∈ Eh
}
,(3.6)
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θ w γ

Fig. 3.1. Local degrees of freedom for the three variables.

Wh =

{
v : v|T ∈ P1(T ),

∫
e

[v]ds = 0 ∀e ∈ Eh
}
,(3.7)

Γh =
{
τ : τ |T ∈ (P0(T ))2

}
,(3.8)

where Pk(T ) is the space of polynomials of degree at most k defined on T . We also
notice that

∇hWh ⊂ Γh,(3.9)

where ∇h denotes the gradient element by element. The local degrees of freedom for
the three variables are depicted in Figure 3.1.

Moreover, we introduce a penalty on the jumps of functions in Θh as

pΘ(θ,η) :=
∑
e∈Eh

κe
|e|
∫
e

[θ] : [η] ds,(3.10)

where |e| denotes the length of the side e, and κe is a positive constant having the
same physical dimension as C (for smooth C, one could take κe as |C| evaluated at
the midpoint of e). We then define

aT (θ,η) :=

∫
T

C ε(θ) : ε(η) dx,(3.11)

and we finally set

ah(θ,η) :=
∑
T∈Th

aT (θ,η) + pΘ(θ,η).(3.12)

Following the ideas of [18], the discrete problem is then⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find (θh, wh,γh) ∈ Θh ×Wh × Γh :

ah(θh,ηh) + (γh,∇hvh − ηh) = (g, vh), (ηh, vh) ∈ Θh ×Wh,

(∇hwh − θh, τh) − λ−1t2(γh, τh) = 0, τh ∈ Γh.

(3.13)

We will use norms || · ||Θh
and || · ||Wh

for functions in Θh and Wh, defined as

||ηh||Θh
:=

(∑
T∈Th

∫
T

|∇ηh|2
)1/2

= ||∇hηh||0,Ω,(3.14)
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||vh||Wh
:=

(∑
T∈Th

∫
T

|∇vh|2
)1/2

= ||∇hvh||0,Ω.(3.15)

Due to the discrete Poincaré inequality, both || · ||Θh
and || · ||Wh

are indeed norms on
Θh and Wh, not only seminorms.

Remark 3.1. The discrete Poincaré inequality is known to hold for the scalar-
valued space Wh, as detailed, for instance, in [7] (see also [6] and [12] for related and
more general results). However, the same techniques can be applied to obtain the
corresponding version for the vector field space Θh.

It has been proved in [6] (see also [13]) that there exist positive constants α and
M such that

ah(ηh,ηh) ≥ α||ηh||2Θh
∀ηh ∈ Θh,(3.16)

ah(θh,ηh) ≤M ||θh||Θh
||ηh||Θh

∀θh ,ηh ∈ Θh.(3.17)

For functions in Γh we will work with the (natural) norms (cf. also (2.9))

||τh||Γ and t||τh||0,Ω.(3.18)

Remark 3.2. We remark that the coercivity property (3.16) can be easily deduced
from the nontrivial Korn-type inequality (see [6] and [13])

‖∇hη‖2
0,Ω ≤ C

(
‖εh(η)‖2

0,Ω +
∑
e∈Eh

1

|e| ‖[η]‖2
0,e

)
, η ∈ (H1(Th))2,(3.19)

where εh denotes the symmetric gradient element by element. We point out that
estimate (3.19) holds for a generic piecewise smooth function η ∈ (H1(Th))2, not only
for functions in Θh. Therefore, the coercivity of the form ah(·, ·) is valid essentially
for all the boundary conditions arising in actual applications. We finally stress that
property (3.16) cannot hold without inserting the jump term (3.10) into the bilinear
form ah(·, ·) (cf. (3.12)). More precisely, the form

ãh(θ,η) :=

∫
Ω

Cεh(θ) : εh(η) dx(3.20)

is not coercive on the nonconforming space Θh. Indeed, consider a square plate meshed
into four triangles by means of the diagonals. The nonvanishing function ηh ∈ Θh

shown in Figure 3.2 verifies εh(ηh) = 0, since in each element it represents an infinites-
imal rotation about the corresponding boundary edge midpoint. As a consequence,
coercivity for ãh(·, ·) fails.

Remark 3.3. For Dirichlet boundary conditions on the whole ∂Ω, one might take
advantage of the relation

div ε(θ) =
1

2
(div∇θ + ∇ div θ)(3.21)

to write the discrete problem (3.13) using the modified bilinear form (cf. also (2.5))

am(θh,ηh) :=
E

24(1 − ν2)

∑
T∈Th

∫
T

(
(1 − ν)∇θh : ∇ηh + (1 + ν) div θh divηh

)
.

(3.22)
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Fig. 3.2. Rotational spurious mode ηh on a mesh with four triangles.

Due to the discrete Poincaré inequality (see Remark 3.1), the bilinear form am(·, ·)
is now coercive on Θh and we do not need to insert the penalty term (3.10) in the
finite element method. We remark, however, that this approach is limited to the case
of Dirichlet boundary conditions on the whole ∂Ω. Since we have in mind a method
applicable to every reasonable boundary condition (we consider the clamped plate
only for the sake of simplicity), we have chosen to work with a formulation involving
the bilinear form ah(·, ·) (see (3.10)–(3.12) and Remark 3.2).

Remark 3.4. We point out that by eliminating γh from system (3.13), our scheme
is equivalent to the following problem involving only the rotations and the vertical
displacements:⎧⎪⎪⎨⎪⎪⎩

Find (θh, wh) ∈ Θh ×Wh :

ah(θh,ηh) + λt−2(∇hwh − P0θh,∇hvh − P0ηh)

= (g, vh) ∀(ηh, vh) ∈ Θh ×Wh,

(3.23)

where P0 denotes the L2-projection operator on the piecewise constant functions.
From (3.23) we may notice that the method implementation turns out to be rather
simple.

4. Stability analysis. In this section we will prove a stability result for the dis-
cretized problem (3.13), using a macroelement technique essentially developed in [28].
In what follows it will be useful to set V := Θ ×W and Vh := Θh ×Wh, equipped
with the usual product norms. We first need the following preliminary result.

Proposition 4.1. The approximation spaces defined in (3.6)–(3.8) satisfy the
following properties:
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(P1) There exists a linear operator πh : W −→Wh such that

||πhv||Wh
≤ c||v||1,Ω, c independent of h∫

Ω

∇h(v − πhv) · τh = 0 ∀τh ∈ Γh.

(P2) If the mesh Th contains at least three triangles, then for τh ∈ Γh condition∫
Ω

(∇hvh − ηh) · τh = 0 ∀(ηh, vh) ∈ Vh(4.1)

implies τh = 0.
Proof. Consider the usual nonconforming interpolating operator πh : W −→Wh,

defined by

(πhv)(m) =
1

|e|
∫
e

v ds ∀e ∈ Eh (with m the midpoint of e).

It is easily seen that property (P1) is fulfilled.
To verify (P2), for a given internal edge e ∈ E in

h we first choose one of the two
possible normal (resp., tangential) vectors to e, indicated in what follows as ne (resp.,
te). Let us take τh ∈ Γh satisfying condition (4.1).

By choosing (0, vh) ∈ Vh, integrating by parts yields

0 =

∫
Ω

∇hvh · τh =
∑
T∈Th

∫
∂T

vh τh · nT .(4.2)

Since (4.2) is true for every (0, vh) ∈ Vh, it follows that τh ·ne is continuous across
every internal edge e ∈ E in

h . Therefore τh ∈ H(div; Ω) and, obviously, div τh = 0. As
a consequence, there exists ϕh (defined up to a constant) such that

ϕh ∈ L1
1(Ω; Th), τh = curlϕh,(4.3)

where L1
1(Ω; Th) is the usual space of piecewise linear and continuous functions on Ω.

Fix now a generic internal edge e ∈ E in
h with midpoint m, and denote with T+

e ,
T−
e the triangles sharing e as common side. Recalling that curlϕh · ne is constant

and continuous across e, we consider (ηh, 0) ∈ Vh, where ηh is uniquely defined by{
(ηh · te)(m) = 0, (ηh · ne)(m) = curlϕh · ne,
ηh(m

′) = 0 ∀ e′ ∈ E in
h , e′ �= e (with m′ the midpoint of e′).

(4.4)

Since τh = curlϕh satisfies (4.1), using (4.4) we have

0 =

∫
Ω

ηh · curlϕh =

∫
T+
e ∪T−

e

ηh · curlϕh =
|T+
e | + |T−

e |
3

(ηh · curlϕh)(m)

(4.5)

=
|T+
e | + |T−

e |
3

|curlϕh · ne|2.

Repeating the same argument for every e ∈ E in
h , from (4.5) we infer that

curlϕh · ne = ∇ϕh · te = 0 for every e ∈ E in
h .(4.6)
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Equation (4.6) implies that τh = curlϕh vanishes in all the triangles T ∈ Th having
at least two sides in E in

h . Therefore, it remains to show that curlϕh = 0 also on the
triangles sharing two sides with the boundary ∂Ω if there are any in the mesh Th.
Consider then any such triangle T , and denote with e its unique side belonging to E in

h

and with T in the triangle sharing the side e with T . Since Ω is a regular domain and
Th contains at least three triangles, it follows that T in has at least two sides in E in

h .
Hence we already know that

(curlϕh)|T in = 0.(4.7)

Recalling that curlϕh is constant in T , let us now take (ηh, 0) ∈ Vh, where ηh is
uniquely defined by{

ηh(m) = (curlϕh)|T (with m the midpoint of e),

ηh(m
′) = 0 ∀ e′ ∈ E in

h , e′ �= e(with m′ the midpoint of e′).
(4.8)

Again, since τh = curlϕh satisfies (4.1), by (4.7) and (4.8) we obtain

0 =

∫
Ω

ηh · curlϕh =

∫
T∪T in

ηh · curlϕh =

∫
T

ηh · curlϕh

=
|T |
3

|(curlϕh)|T |2,
(4.9)

so that curlϕh = 0 also in T and the proof is complete.

Remark 4.1. We remark that property (P2) can be written in the following equiva-
lent form:

(P2′) For every ϕ ∈ (L2(Ω))2, the problem⎧⎪⎨⎪⎩
Find (ηh, vh) ∈ Θh ×Wh :∫

Ω

(∇hvh − ηh) · τh =

∫
Ω

ϕ · τh ∀τh ∈ Γh

is solvable.

4.1. Macroelement decomposition. We start by recalling some standard def-
initions and notation we will use in what follows. First of all, we say that a family
{Th}h>0 of triangular meshes of Ω is regular (see [25]) if there exists a constant σ > 0
such that

hT ≤ σρT ∀T ∈
⋃
h>0

Th,(4.10)

where hT is the diameter of the element T and ρT is the maximum diameter of
the circles contained in T . Furthermore, a macroelement M is a set with connected
interior part, formed by the union of a fixed number of neighboring triangles along a
well-defined pattern (cf. [31]). A macroelement M = ∪mi=1Ti is said to be equivalent

to a reference macroelement M̂ = ∪mi=1T̂i if there is a mapping FM : M̂ −→ M for
which the following conditions are fulfilled (cf. [31]):
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1. FM is a continuous bijection.
2. Ti = FM (T̂i) ∀ i, 1 ≤ i ≤ m.
3. F

M |T̂i
= FTi ◦ F−1

T̂i

, where FTi and F
T̂i

are the usual functions mapping the

standard reference triangle (of vertices (0, 0), (1, 0), and (0, 1)) onto Ti and

T̂i, respectively.
From a given mesh Th of Ω it is always possible to derive (obviously not in a

unique manner) a “macroelement mesh” Mh in such a way that each T ∈ Th is covered
by some macroelement M in Mh and each macroelement M is equivalent to a certain
reference macroelement M̂ .

Associated with every macroelement M in Mh, the following spaces are relevant
for the stability analysis (cf. [28]):

V0,M :=
{
(ηh, vh) ∈ Vh : (ηh, vh) = (0, 0) in Ω \M}

,(4.11)

ΓM :=
{
τh ∈ Γh : τh = 0 in Ω \M}

.(4.12)

4.2. Fortin’s trick by macroelements. The aim of this subsection is to prove
that Fortin’s trick (cf. [16]) applies to our finite element scheme, leading therefore to
a suitable inf-sup condition with respect to the natural norms (see (2.8)). Indeed, we
have the following result.

Proposition 4.2. Suppose that the family {Th}h>0 is regular and choose a
corresponding macroelement family {Mh}h>0 such that

1. each macroelement M contains at least three triangles;
2. there is only a fixed finite number of reference macroelements {M̂1, . . . , M̂r}

to which each macroelement M ∈ ∪h>0Mh is equivalent.
Then for the approximation spaces defined in (3.6)–(3.8) the following inf-sup

condition holds

∃β > 0 independent of h, such that

sup
(ηh,vh)∈Vh

(∇hvh − ηh, τh)
||(ηh, vh)||Vh

≥ β||τh||Γ ∀τh ∈ Γh.
(4.13)

Proof. Let (η, v) ∈ V be given. Fix an arbitrary macroelement M ∈ Mh and set

hM := max
1≤i≤m

hTi if M =

m⋃
i

Ti.(4.14)

Let us denote by iM the index 1 ≤ iM ≤ r such that M is equivalent to M̂iM.
Consider the problem of finding (ηM , vM ) ∈ V0,M solution of∫

M

(∇hvM − ηM ) · τM =

∫
M

(Π1η − η) · τM ∀τM ∈ ΓM ,(4.15)

where Π1η is the usual nonconforming interpolated of η, defined by

(Π1η)(m) =
1

|e|
∫
e

η ds ∀e ∈ Eh (with m the midpoint of e).

By property (P2) of Proposition 4.1, applied to the macroelement M , it follows
that system (4.15) is solvable, since M contains at least three triangles (cf. also



A NONCONFORMING PLATE ELEMENT 2697

Remark 4.1). Let us take the solution of minimal Vh-norm. A scaling argument

and the features of the interpolating operator Π1 show that there exists c(M̂iM ) > 0
such that

∃ c1(M̂iM ) > 0 : ||ηM ||2Θh
+ || vM ||2Wh

≤ c1(M̂iM ) ||η ||21,M .(4.16)

Let us set

ηF = Π1η +
∑
M

ηM ,(4.17)

vF = πhv +
∑
M

vM ,(4.18)

where πh is the operator as in property (P1) of Proposition 4.1 (i.e., the standard
nonconforming interpolation operator). We now notice that every τh ∈ Γh can
be uniquely written as τh =

∑
M τM , where τM ∈ ΓM . Hence, recalling (4.15),

from (4.17)–(4.18) we have∫
Ω

(∇hvF − ηF ) · τh =
∑
M

∫
M

[
∇h(πhv + vM ) − Π1η − ηM

]
· τM

=
∑
M

[ ∫
M

∇hπhv · τM +

∫
M

(∇hvM − Π1η − ηM ) · τM
]

=
∑
M

(∫
M

∇ v · τM −
∫
M

η · τM
)

=

∫
Ω

(∇ v − η) · τh.

(4.19)

Therefore, for every (η, v) ∈ V we have found Πh(η, v) = (ηF , vF ) ∈ Vh such that∫
Ω

(∇hvF − ηF ) · τh =

∫
Ω

(∇ v − η) · τh ∀τh ∈ Γh.(4.20)

Let us estimate ||ηF ||2Θh
+ ||vF ||2Wh

. By using the continuity of Π1 and πh, and
estimate (4.16), we get

||ηF ||2Θh
+ ||vF ||2Wh

=

∥∥∥∥∥Π1η +
∑
M

ηM

∥∥∥∥∥
2

Θh

+

∥∥∥∥∥πhv +
∑
M

vM

∥∥∥∥∥
2

Wh

≤ 2

(
||Π1η||2Θh

+ ||πhv||2Wh
+
∑
M

(||ηM ||2Θh
+ || vM ||2Wh

))

≤ 2

(
c
(||v||21,Ω + ||η||21,Ω

)
+
∑
M

c1(M̂iM )||η||21,M
)
.

(4.21)

Since there is only a finite number of reference macroelements {M̂1, . . . , M̂r}, we
obtain

||ηF ||2Θh
+ ||vF ||2Wh

≤ C1

(||v||21,Ω + ||η||21,Ω
)

(4.22)
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with C1 = 2 max {c, c1(M̂1), . . . , c1(M̂r)}. Therefore, we finally have

||Πh(η, v)||Vh
≤ C

(||η||21,Ω + ||v||21,Ω
)1/2

(4.23)

with C independent of h. It is well known (cf. [16], for instance) that (4.20) together
with (4.23) implies condition (4.13), and the proof is complete.

Remark 4.2. Note that it is always possible to derive, from a given regular
family {Th}h>0, a macroelement family {Mh}h>0 which fulfills the assumption of
Proposition 4.2, provided in each Th there are at least three triangles.

4.3. The stability result. Once the inf-sup condition (4.13) has been estab-
lished, suitable stability estimates can be derived using standard techniques (see, for
instance, [9] and [23] for their application to Reissner–Mindlin plate problems). For
the sake of completeness, we develop such a stability analysis in full detail.

First, it is useful to set

Ah(θh, wh,γh;ηh, vh, τh) := ah(θh,ηh) + (∇hvh − ηh,γh)
− (∇hwh − θh, τh) + λ−1t2(γh, τh).

(4.24)

Therefore, the discrete problem (3.13) reads{
Find (θh, wh,γh) ∈ Θh ×Wh × Γh such that

Ah(θh, wh,γh;ηh, vh, τh) = (g, vh) ∀(ηh, vh, τh) ∈ Θh ×Wh × Γh.
(4.25)

We have the following result.
Proposition 4.3. Given (βh, zh,ρh) ∈ Θh×Wh×Γh, there exists (ηh, vh, τh) ∈

Θh ×Wh × Γh such that

||ηh||Θh
+ ||vh||Wh

+ ||τh||Γ + t||τh||0,Ω
≤ C

(
||βh||Θh

+ ||zh||Wh
+ ||ρh||Γ + t||ρh||0,Ω

)(4.26)

and

Ah(βh, zh,ρh;ηh, vh, τh) ≥ C
(
||βh||2Θh

+ ||zh||2Wh
+ ||ρh||2Γ + t2||ρh||20,Ω

)
.(4.27)

Proof. Let (βh, zh,ρh) be given in Θh×Wh×Γh. The proof is performed in three
steps.

Step 1. Let us first choose (η1, v1, τ 1) ∈ Θh ×Wh × Γh as

η1 = βh, v1 = zh, τ 1 = ρh.

It is obvious that

||η1||Θh
+ ||v1||Wh

+ ||τ 1||Γ + t||τ 1||0,Ω
= ||βh||Θh

+ ||zh||Wh
+ ||ρh||Γ + t||ρh||0,Ω.

(4.28)

Furthermore, it holds that

Ah(βh, zh,ρh;η1, v1, τ 1) = ah(βh,βh) + λ−1t2||γh||20,Ω.(4.29)
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By the coercivity of ah(·, ·) (cf. (3.16)) it follows that

Ah(βh, zh,ρh;η1, v1, τ 1) ≥ C1

(
||βh||2Θh

+ t2||ρh||20
)
.(4.30)

Step 2. Notice that from (4.13) it follows that there exists (η2, v2) ∈ Θh ×Wh

such that

||η2||Θh
+ ||v2||Wh

≤ C||ρh||Γ(4.31)

and

(∇hv2 − η2,ρh) = ||ρh||2Γ.(4.32)

Choose (η2, v2, τ 2) ∈ Θh ×Wh × Γh with τ 2 = 0. We have

Ah(βh, zh,ρh;η2, v2, τ 2) = ah(βh,η2) + (∇hv2 − η2,ρh),(4.33)

so that by (4.32) it follows that

Ah(βh, zh,ρh;η2, v2, τ 2) = ah(βh,η2) + ||ρh||2Γ.(4.34)

To control the first term on the right-hand side of (4.34), we note that (see
also (3.17))

ah(βh,η2) ≥ −M
2δ

||βh||2Θh
− δM

2
||η2||2Θh

≥ −M
2δ

||βh||2Θh
− δCM

2
||ρh||2Γ.(4.35)

Taking δ sufficiently small, we get

Ah(βh, zh,ρh;η2, v2, τ 2) ≥ C2||ρh||2Γ − C3||βh||2Θh
.(4.36)

Step 3. Choose (η3, v3, τ 3) ∈ Θh ×Wh × Γh as

η3 = 0, v3 = 0, τ 3 = −∇hzh.

Notice that by (3.9) the choice above is admissible.
On one hand it is easily seen that

||τ 3||Γ ≤ C||zh||Θh
.(4.37)

On the other hand it holds that

Ah(βh, zh,ρh;η3, v3, τ 3) = (∇hzh − βh,∇hzh) − λ−1t2(ρh,∇hzh)

= ||zh||2Wh
− (βh,∇hzh) − λ−1t2(ρh,∇hzh)

≥
(

1 − δ

2

)
||zh||2Wh

− C

2δ
||βh||2Θh

− λ−1t2(ρh,∇hzh).

(4.38)

Moreover, one has

−λ−1t2(ρh,∇hzh) ≥ −t2
(
λ−1

2ε
||ρh||20,Ω +

λ−1ε

2
||zh||2Wh

)
.(4.39)

By (4.38)–(4.39), and taking δ and ε sufficiently small, one finally gets

Ah(βh, zh,ρh;η3, v3, τ 3) ≥ C4||zh||2Wh
− C5||βh||2Θh

− C6t
2||ρh||20,Ω.(4.40)

Now it suffices to take a suitable linear combination of {(ηi, vi, τ i)}3
i=1 so that by

(4.28), (4.30), (4.34), (4.36), (4.37), and (4.40) it follows that (4.26) and (4.27) hold.
The proof is then complete.
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5. Error analysis. In this section we develop a convergence analysis for our
scheme, taking advantage of Proposition 4.3.

We shall need the following result (see [1], [2]): let T be a triangle, and let e be
an edge of T . Then ∃C > 0 only depending on the minimum angle of T such that

||ϕ||20,e ≤ C
(|e|−1||ϕ||20,T + |e||ϕ|21,T

)
, ϕ ∈ H1(Th).(5.1)

Clearly, (5.1) also holds for vector-valued functions ϕ ∈ (H1(Th))2. Moreover, we shall
use the estimate (see [6])(∑

e∈Eh

|e|−1 ||[ηh]||20,e
)1/2

≤ C||ηh||Θh
∀ηh ∈ Θh.(5.2)

We can now prove the following theorem.
Theorem 5.1. Let (θ, w,γ) be the solution of problem (2.1)–(2.4). Furthermore,

let (θh, wh,γh) be the solution of the discretized problem (4.25). The following error
estimate holds

||θ − θh||Θh
+ ||w − wh||Wh

+ ||γ − γh||Γ + t||γ − γh||0,Ω
≤Ch

(
||θ||2,Ω + ||w||2,Ω + ||γ||H(div) + t||γ||1,Ω

)
.

(5.3)

Proof. By Proposition 4.3, given (θh − θI , wh − wI ,γh − γI) ∈ Θh ×Wh × Γh,
there exists (ηh, vh, τh) ∈ Θh ×Wh × Γh such that

||ηh||Θh
+ ||vh||Wh

+ ||τh||Γ + t||τh||0,Ω
≤ C

(
||θh − θI ||Θh

+ ||wh − wI ||Wh
+ ||γh − γI ||Γ + t||γh − γI ||0,Ω

)(5.4)

and

C
(
||θh − θI ||2Θh

+ ||wh − wI ||2Wh
+ ||γh − γI ||2Γ + t2||γh − γI ||20,Ω

)
≤ Ah(θh − θI , wh − wI ,γh − γI ;ηh, vh, τh)
= ah(θh − θI ,ηh) + (∇hvh − ηh,γh − γI)
− (∇h(wh − wI) − (θh − θI), τh

)
+ λ−1t2(γh − γI , τh).

(5.5)

Multiplying (2.1) by ηh, integrating by parts, and using [θ] = 0, we obtain

ah(θ,ηh) − (γ,ηh) = cΘ(θ,ηh),(5.6)

where, using (3.5),

cΘ(θ,ηh) :=
∑
T∈Th

∫
∂T

C ε(θ)n · ηh ds =
∑
e∈Eh

∫
e

{C ε(θ)} : [ηh] ds.(5.7)

Multiplying (2.2) by vh and integrating by parts, we have

(γ,∇hvh) = (g, vh) + cW (γ, vh),(5.8)
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where

cW (γ, vh) :=
∑
T∈Th

∫
∂T

γ · nvh ds =
∑
e∈Eh

∫
e

{γ} · [vh] ds.(5.9)

Multiplying (2.3) by τh and integrating, we obtain

(∇w − θ, τh) − λ−1t2(γ, τh) = 0.(5.10)

Therefore, from (5.6)–(5.10) we get that

Ah(θ, w,γ;ηh, vh, τh) = (g, vh) + cΘ(θ,ηh) + cW (γ, vh).(5.11)

By recalling that (θh, wh,γh) solves (4.25), from (5.5) and (5.11) we obtain

C
(
||θh − θI ||2Θh

+ ||wh − wI ||2Wh
+ ||γh − γI ||2Γ + t2||γh − γI ||20,Ω

)
≤ ah(θ − θI ,ηh) − cΘ(θ,ηh) + (∇hvh − ηh,γ − γI) − cW (γ, vh)

− (∇h(w − wI) − (θ − θI), τh
)

+ λ−1t2(γ − γI , τh)
= T1 + T2 + T3 + T4,

(5.12)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T1 = ah(θ − θI ,ηh) − cΘ(θ,ηh),

T2 = (∇hvh − ηh,γ − γI) − cW (γ, vh),

T3 =
(∇h(w − wI) − (θ − θI), τh

)
,

T4 = λ−1t2(γ − γI , τh).

(5.13)

In order to estimate the four terms above, we need to choose θI , wI , and γI . For
θI and wI we take the usual nonconforming piecewise linear interpolated of θ and w,
respectively. A suitable choice of γI is more involved and requires the introduction
of the Helmholtz decomposition for γ (see [15] or [16], for instance). More precisely
we write

γ = ∇r + curl p, r ∈ H2(Ω) ∩H1
0 (Ω), p ∈ H1(Ω)/R.(5.14)

It is easily seen that (||r||22,Ω + ||p||21,Ω
)1/2 ≤ C||γ||H(div).(5.15)

We now take rI as the piecewise linear and continuous Lagrange interpolation of r,
and pI as the Clemént interpolation of p. Following [23], we finally set γI ∈ Γh as

γI = ∇rI + curl pI .(5.16)

We have (see [23])

||γ − γI ||Γ ≤ Ch ||γ||H(div)(5.17)

and

||γ − γI ||0,Ω ≤ Ch ||γ||1,Ω.(5.18)
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We are ready to estimate the terms in (5.13).
Estimate for T1. Using (3.17), we have

ah(θ − θI ,ηh) ≤ Ch ||θ||2,Ω||ηh||Θh
(5.19)

and (cf. [18])

cΘ(θ,ηh) ≤ Ch ||θ||2,Ω||ηh||Θh
.(5.20)

Therefore

T1 ≤ Ch ||θ||2,Ω||ηh||Θh
.(5.21)

Estimate for T2. Using (5.14) and (5.16) we get

T2 =
(∇hvh − ηh,∇(r − rI) + curl (p− pI)

)− cW (γ, vh)

=
(∇hvh,∇(r − rI)

)
+
{(∇hvh, curl (p− pI)

)− cW (γ, vh)
}

− (
ηh,∇(r − rI)

)− (
ηh, curl (p− pI)

)
= T 1

2 + T 2
2 + T 3

2 + T 4
2 .

(5.22)

• From standard approximation theory and (5.15), we have

T 1
2 ≤ Ch ||r||2,Ω||vh||Wh

≤ Ch ||γ||H(div)||vh||Wh
.(5.23)

• We now treat the term T 2
2 : since vh ∈ Wh and pI is a piecewise linear and

continuous function, the discrete Helmholtz decomposition proved in [7] gives

(∇hvh, curl pI) = 0,

so that, using also (5.9), we obtain

T 2
2 =

∑
T∈Th

∫
T

∇hvh · curl p−
∑
e∈Eh

∫
e

{curl p} · [vh] −
∑
e∈Eh

∫
e

{∇r} · [vh].(5.24)

Since ∑
T∈Th

∫
T

∇hvh · curl p−
∑
e∈Eh

∫
e

{curl p} · [vh] = 0,

it follows that

T 2
2 = −

∑
e∈Eh

∫
e

{∇r} · [vh].(5.25)

By a standard nonconforming approximation result and (5.15), we have

T 2
2 ≤ Ch ||∇r||1,Ω||vh||Wh

≤ Ch ||γ||H(div)||vh||Wh
.(5.26)

• To bound T 3
2 we simply observe that

T 3
2 = −(ηh,∇(r − rI)

) ≤ Ch ||∇r||1,Ω||ηh||0,Ω ≤ Ch ||γ||H(div)||ηh||Θh
.(5.27)
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• Integrating by parts the term T 4
2 , we get

T 4
2 = −

∑
T∈Th

{∫
T

rot ηh(p− pI) +

∫
∂T

ηh · tT (p− pI)

}

= −
∑
T∈Th

∫
T

rot ηh(p− pI) −
∑
e∈Eh

∫
e

te ⊗ ne : [ηh]{p− pI}.
(5.28)

On one hand, we have

−
∑
T∈Th

∫
T

rot ηh(p− pI) ≤ Ch ||p||1,Ω||ηh||Θh
≤ Ch ||γ||H(div)||ηh||Θh

.(5.29)

On the other hand, using (5.1) and (5.2) we get

−
∑
e∈Eh

∫
e

te ⊗ ne : [ηh]{p− pI}

≤
(∑
e∈Eh

|e| ||{p− pI}||20,e
)1/2(∑

e∈Eh

|e|−1 ||[ηh]||20,e
)1/2

≤ C

(∑
T∈Th

(||p− pI ||20,T + h2
T |p− pI |21,T

))1/2

||ηh||Θh

≤ Ch ||p||1,Ω||ηh||Θh
.

(5.30)

Therefore, from (5.28)–(5.30) and (5.15) we obtain

T 4
2 ≤ Ch ||γ||H(div)||ηh||Θh

.(5.31)

Collecting (5.23), (5.26), (5.27), and (5.31), we conclude that

T2 ≤ Ch ||γ||H(div)

(
||ηh||Θh

+ ||vh||Wh

)
.(5.32)

Estimate for T3. Since τh is piecewise constant, it follows that(∇h(w − wI), τh
)

= 0.

Hence

T3 = −(θ − θI , τh) ≤
(∑
T∈Th

h−2
T ||θ − θI ||20,T

)1/2(∑
T∈Th

h2
T ||τh||20,T

)1/2

≤ Ch ||θ||2,Ω||τh||−1,Ω ≤ Ch ||θ||2,Ω||τh||Γ,
(5.33)

where we have used both the inverse inequality∑
T∈Th

h2
T ||τh||20,T ≤ C||τh||2−1,Ω

and the definition of the Γ-norm (see (2.9)).
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Estimate for T4. We have, using (5.18),

T4 = λ−1t2(γ − γI , τh) ≤ Ch t||γ||1,Ω t||τh||0,Ω.(5.34)

Collecting (5.21), (5.32) (5.33), and (5.34), from (5.12) we obtain(
||θh − θI ||2Θh

+ ||wh − wI ||2Wh
+ ||γh − γI ||2Γ + t2||γh − γI ||20,Ω

)
≤ Ch

(
||θ||2,Ω + ||γ||H(div) + t||γ||1,Ω

)
×
(
||ηh||Θh

+ ||vh||Wh
+ ||τh||Γ + t||τh||0,Ω

)
.

(5.35)

Using (5.4) we get

||θh − θI ||Θh
+ ||wh − wI ||Wh

+ ||γh − γI ||Γ + t||γh − γI ||0,Ω
≤ Ch

(
||θ||2,Ω + ||γ||H(div) + t||γ||1,Ω

)
,

(5.36)

and estimate (5.3) follows from the triangle inequality.
Using Proposition 2.1, from Theorem 5.1 we get an optimal error estimate with

respect to h and independent of t.
Corollary 5.1. Suppose that Ω is a convex polygon and g ∈ L2(Ω). Then it

holds that

||θ − θh||Θh
+ ||w − wh||Wh

+ ||γ − γh||Γ + t||γ − γh||0,Ω ≤ Ch ||g||0,Ω.(5.37)
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